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Abstract:Due to the fast growth of the demand for the use of internet during the last decade, congestion control 

mechanisms to keep the throughput high and the queuing delays low get of vital importance. The purpose of this 

paper is to present a new approach, which is called as “Orange” in IP level congestion control as an active 

queue management mechanism and to compare its performance with that of the other mechanisms. Within the 

framework of this paper, the best operating point of Orange algorithm is evaluated by using the empirical 

formulas we derive. It is investigated that when the best operating point parameters are applied, Orange gives 

the best performance against other active queue management algorithms. 

Keywords:Congestion control, IP level routing strategies, threshold, computer simulation, active queue 

management. 

 

1. Introduction 
 

Communication networks have evolved 

significantly in the past few decades. Internet 

doubles its traffic every few months and more and 

more traffic involves increasing number of various 

flows. With this explosive growth over the past few 

years, network congestion phenomenon getsof vital 

importance. It is important to allocate the available 

resources effectively and fairly among a collection 

of competing users. Most networks provide a 

congestion control mechanism to deal with such a 

situation.  

The basic goal of congestion control is to 

maximize the throughput of the link and minimize 

the average delay of packets in the network. In 

addition, it should also consider fair allocation of 

the resources among all the users.  

TCP congestion control algorithm is the most 

widely used algorithm for congestion control. It 

detects congestion only after a packet has been 

dropped along the path. Increasing the queue 

capacities does not solve the congestion problem 

causing higher queuing delays. Queues should be 

generally kept as short as it is possible. Therefore, it 

is important to have mechanisms that keep 

throughput high but average queue sizes low. 

 

2. Active Queue Management Schemes 
 

Active Queue Management (AQM) schemes are 

IP level (gateway based) congestion control 

schemeswhere gateways notify the sources of 

incipient congestion. Active queue management 

schemes use a single FIFO (First In First Out) 

queue for all flows flowing through the router. The 

input to the control is the arrival rate and queue size 

for a particular outgoing link, and the output is a 

decision on how to mark or drop packets. It uses a 

certain algorithm to manage the length of the packet 

queue by dropping packets when necessary or 

appropriate. The responsive sources detect packet 

loss as a congestion indicator and react to these 

signals and adjust their sending rates. Unless the 

packets are dropped because of high queue sizes at 

the gateways, sources will keep increasing the 

sending rate causing longer delays in the network, 

which is not desirable. This kind of approach 

requires no state information and scales well.  

The aim of AQM systems is to keep the average 

queue sizes at the gateways low. Keeping the queue 

sizes low has some advantages including, 

 Provide queue space to absorb bursts of packet 

arrivals,  

 Avoid lock-out and bias effects, from a few flows 

dominating queue space,  

 Provide lower delays for interactive applications. 

 Reduced packet loss rate. 

 Reduced queuing delay and jitter. 

 Improved throughput. 

All AQM schemes detect impending queue 

buildup and notify the sources before the queues at 

the gateways overflows. AQM algorithms differ in 

the mechanism used to detect congestion and in the 

type of control method used to achieve a stable 

operating point for the queue size. Trying to keep 

the queue size stable at a desired level causes a 

tradeoff between link utilization and queuing delay. 
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A short queue reduces latency at the router but 

setting the target queue size too small may reduce 

link utilization by limiting the router’s ability to 

buffer short bursts of arriving packets. 

The way in which the congestion notification is 

delivered to the sources is the other important 

property of AQM schemes, which affects the 

performance. Two different alternatives are 

available to be used to notify the sources, namely 

Early Congestion Notification (ECN), and Random 

Early Detection (RED). 

 

2.1.Early Congestion Notification (ECN) 
 

Early Congestion Notification (ECN) [1] 

features end-to-end notification of network 

congestion without dropping packets. This feature 

is optional and only used when both of the 

endpoints signal that they want to use it. Unlike 

dropping packets to signal congestion in the 

traditional way in TCP/IP networks,after ECN is 

negotiated, itadds an explicit signaling mechanism 

by allocating bits in the IP and TCP headers of the 

packets flowing through the router in order to signal 

the beginning of congestion. The receiver side 

echoes back the congestion indication to the sender 

side and it reacts as if a packet drop were 

detected.In turn, the destination will transmit such 

information to the source piggybacking it into the 

acknowledgement message. Another way of 

speaking, gateways signal congestion to the sources 

by “marking” a packet (setting a bit in the header). 

 

2.2.Random Early Detection (RED) 
 

Second method is to drop the packets randomly 

with a probability when the queue sizes grow up in 

order to notify the sources about the incipient 

congestion. Floyd and Jacobson propose a 

mechanism called Random Early Detection (RED) 

[2]. RED makes a decision to drop a packet 

randomly when the queue average length ranges 

between a minimum and a maximum threshold. The 

probability of packet dropping is obtained from the 

average queue length accordingly to a linear law.  

The basic idea of RED algorithm is to keep the 

average queue size low (and hence end-to-end 

delay) while allowing occasional bursts of packets 

in the queue. Packet dropping probability is 

proportional to that connection’s share of the 

throughput through the router. RED performs better 

than the drop tail algorithm because it has higher 

throughput and lower delays. It avoids global 

synchronization and has the ability to accommodate 

short bursts. It is easy to implement. It controls the 

average queue size even in the absence of non-

adaptive sources. Because of its various advantages, 

in 1998, RED has been recommended as the 

standard of congestion avoidance mechanism in 

gateways.  

RED algorithm (see Figure 1) calculates the 

average queue size by assigning different weights 

(the exponential weight factor, a user-configurable 

value) to old value and current measure. This 

means the adoption of a low pass filter to reduce the 

high frequency variation of the instantaneous 

queue. For high values of n, the previous average 

becomes more important. A large factor filters 

occasional bursts and keeps the queue length low. 

The average queue size is unlikely to change very 

quickly. RED algorithm will be slow to start 

dropping packets, but it may continue dropping 

packets for a time after the actual queue size has 

fallen below the minimum threshold. The slow 

moving average will accommodate temporary 

bursts in traffic. If the value of n gets too high, 

RED will not react to congestion. Packets will not 

be dropped by the RED algorithm. This would 

mean higher queuing delays.  

 
 

Figure 1.RED Algorithm. 
 

 

For each packet arrival; 

calculate the average queue size avg 

ifminth≤avg<maxth 

calculate probability Pa 

with probability Pa:  

mark the arriving packet  

else ifmaxth≤avg 

mark the arriving packet.  

 

On the other hand, if the maximum threshold is 

set to a low value, the average queue size is easily 

affected from the current queue size. The resulting 

average may fluctuate with changes in the traffic 

levels. In this case, the RED process responds 

quickly to long queues. Once the queue falls below 

the minimum threshold, the process will stop 

dropping packets. If the value of n gets too low, 

RED will overreact to temporary traffic bursts and 

drop traffic unnecessarily. This would mean a bad 

usage of the link because of severe buffer 

oscillations. From these considerations, it is very 

difficult to find out the right trade-off, and it is hard 

http://en.wikipedia.org/wiki/Network_congestion
http://en.wikipedia.org/wiki/Network_congestion
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to tune RED to achieve both high link utilization 

and low delay and packet losses. 

Although RED is a big success in internet 

congestion control, it still suffers from some 

problems. Dropping packets from flows in 

proportion to their bandwidth does not always lead 

to fair bandwidth sharing. For example, if two TCP 

connections unevenly share one link, dropping one 

packet periodically from the low speed flow will 

almost certainly prevent it from claiming its fair 

share, even if the faster flow experiences more 

packet drops. RED is designed to work with 

adaptive flows. Non-adaptive flows can take over 

the link’s bandwidth. A non-adaptive connection 

can force RED to drop packets at a high rate from 

all connections. RED heavily penalizes TCP flows 

and awards non-TCP flows. 

 

2.3.Other Active Queue Management 

Algorithms 
 

In the last years, the active queue management 

policies have been object of a large interest in 

networking. Several proposals [3-4-5-6] have been 

presented to find more effective control policies 

than RED. REM and PI [7] are proposed to solve 

the problems, which RED faces. Their solution is 

very similar to each other. REM aims to achieve a 

high utilization of link capacity, scalability, 

negligible loss and delay. As an improvement to 

RED, REM algorithm differentiates between the 

congestion measure of each router and the dropping 

probability. REM algorithm maintains a so-called 

variable price, which eliminates the dependence of 

the dropping probability from the current value of 

the queue size. The REM algorithm uses the current 

queue size and the difference from a desired value 

to calculate the dropping probability accordingly to 

an exponential law. A source calculates the price of 

the whole path using the knowledge of the total 

number of packets dropped on the path. The main 

disadvantages of REM algorithm is that it gives no 

incentive to cooperative sources and a properly 

calculated and fixed value of price variable must be 

known globally. 

In summary, internet routers should implement 

active queue management mechanisms to reduce 

average delay, to manage average queue length, to 

reduce packet dropping, and to avoid global 

synchronization. It is obvious that, current active 

queue management mechanisms have their own 

advantages as well as they have their own 

drawbacks. 

 

 

3. Introducing Orange 
 

By using the threshold type policy and the use 

of virtual drop server, we propose a new approach 

to drop or mark packets when the congestion will 

likely occur. We intend to use an IP level 

congestion control proposal, called Orange. Orange 

replaces RED as an active queue management 

algorithm to decide which packets are to be marked 

to indicate a congestion condition. The idea behind 

Orange is similar to RED which also uses “early 

dropping” concept to regulate the flows before 

congestion occurs. Here, “early” refers the fact that 

actually as long as there is space in the queue buffer 

to place the incoming packet; we still chose to drop 

them to warn TCP friendly sources (responsive or 

adaptive) against that possible congestion situation. 

In a threshold queuing discipline, packets are 

preferably routed to the faster server. Packets are 

allowed to queue up while the slower server 

remains idle until the queue size reaches a certain 

“threshold” value, at which a point a packet is 

removed from the queue and sent to the slower 

server for service. The threshold value becomes 

critical control parameter affecting system’s overall 

performance, and facilitating optimal system 

control. The primary performance parameter is the 

mean number of customers in the system, and 

accordingly the average waiting time per packet. 

Optimization of the two heterogeneous servers 

problem is considered over an infinite time horizon 

with an average cost criterion. Although linear 

holding and service costs are considered, it is 

generally assumed that there is no additional cost 

incurred to turn on or to turn off a server.  

Orange is based on the idea of dropping packets, 

randomly whenever some conditions are met, that is 

equivalent of using an alternate virtual server to the 

default link of that outgoing interface. Orange waits 

for a random amount of time after a dropping 

occurs before another one may be considered. This 

is the time equivalent of a service time sample of 

the “drop server”. Orange proposal’s main idea 

relies on a single queue, two server M/M/2 model 

analyses. In this model, first server is the link 

transmission element, and the second one is the 

unpreferred alternative link. The second one is used 

only when queue size exceeds a threshold.  

Orange allows the incoming packet go to the 

queue for transmission if the queue size is below 

the threshold (Orange Limit). It drops the incoming 

packet and sets the timer if the timer is idle and the 

queue size is in between the Orange limit and the 

queue limit (maximum queue size). While the timer 

continues to be busy, Orange does not drop any 

incoming packet. Orange drops all incoming 

packets if the queue is full. One can refer to the 

Figure 2 for pseudo code of Orange algorithm. 
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If (queue limit) then 

 Drop(packet) 

Else  

 If (Orange limit) then 

  If (timer is idle) then  

   Drop(packet) 

   Begintimer() 

  Else  

   Enque(packet) 

  End if 

 Else  

  Enque(packet) 

 End if 

End if 

Figure 2.Pseudo code of Orange algorithm. 

 

The queuing model behind the Orange 

algorithm is mainly based on the M/M/2 queues. 

The M/M/2 case shown in Figure 3 is the simplest 

non-trivial case of a local model for a node in a 

network. In this type of network, for the traffic at 

the concerned node, there is only one final 

destination, but there are two different links by 

which the traffic can be carried toward the 

destination node. There may be several incoming 

links to the node; however, since all the traffic is 

destined to the same destination node it can all be 

stored in one queue. Arrivals to this queue are 

modeled as a Poisson arrival process (mean rate λ). 

Time spent on a link is modeled as exponentially 

distributed so links can be thought of as servers 

with exponentially distributed service times (mean 

rate µ). Therefore, the birth rate is always equal to 

λ, whereas the death rate depends on the state. 

M/M/2 queue with a threshold is studied by [8], 

[9]. In their work, First passage time to an idle 

period (FPTIP) is studied. FPTIP value is derived 

as a function of µ1, µ2, λ. Here, we want to evaluate 

a formula for the average queue size and waiting 

time for the same system. 

Figure 3.M/M/2 queue model. 

The exact solution becomes cumbersome and is 

not efficient and necessary for M/M/2 system with 

a threshold. Moreover, the main contribution of this 

work is to find a direct relationship between the 

threshold value and the service time pair that give 

the minimum waiting delays per packet instead of 

finding an exact solution. For this aim, we consider 

to use the equations in Morrison’s study [10] for 

derivation of our empirical formulas. 

In his work, Morrison [10] finds an efficient 

solution of a threshold based queuing system with 

two heterogeneous servers and one queue. For the 

sake of simplicity, he considers a birth-death 

queuing system with two exponential servers with 

mean rates “µ”, and Poisson arrivals with mean rate 

is “λ < 2µ”, first in first out queuing discipline, 

unlimited buffer size of the bottleneck queue. Both 

servers are in use when the number of the customer 

in the system is more than a threshold level “c”. 

Only one server is in use when the number of the 

customers in the system is less than “c + 1”. Thus, 

the service rate of both servers is equal to each 

other; it is not important which server becomes idle. 

This system reduces to the generic M/M/2 case 

when “c” is one. So it is necessary to study the 

cases when” c > 1” for a non-trivial generalization. 

The equilibrium probabilities of the number in 

the system are known by [11] and the mean waiting 

and sojourn times may be obtained from these by 

Little’s formula. The system can be summarized as 

a single server system where the mean service rate 

is “µ” when there are less than “c + 1” customers in 

the system, and “2µ” when there are more than “c” 

customers are in the system. The difference 

between our preferred model and the Morrison’s 

model is that in Morrison’s model, second server 

with the same service rate is used when the number 

of customer in the system reaches to a certain 

threshold level whereas in our Orange’s preferred 

model, second server with a service rate lower than 

the first server is used when the queue size reaches 

to a certain threshold level as long as the second 

alternate server is idle. 

From Morrison’s study, we easily state that, the 

equilibrium probability P0 that there is no customer 

in the system is  

 

 

    (1) 

 

 

The equilibrium probability Pi that there are “i” customers in the system is  

 

    (2) 

λ 

 

Q 
S1 

S2 

μ1 

 

 

 

μ2 
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The mean waiting and sojourn times are given by 

 

   (3) 

 

    (4) 

 

   (5) 

 

    (6) 

 

We can adapt the Morrison’s results into our 

case by substituting “2µ = µ1 + µ2”, “µ = µ1”, and 

and “c = K + 1” in the above equations. Therefore, 

the mean waiting and sojourn times of M/M/2 with 

a threshold K case are found as, 

 

    (7) 

 

 

   (8) 

 

  
 (9) 

 

   (10) 

Where 

    (11) 

 

 

Those derived formulas are used to justify the 

simulation results. The equations are valid in a 

system where the Poisson arrivals and 

exponentially distributed service rates are applied. 

However, most of the flows in today’s networking 

world consist of responsive flows like TCP, which 

adjust their sending rate according to the congestion 

indications from the network. Thereforememoryless 

arrival process cannot be a realistic assumption.  

In systems, which have the memoryless 

property, the time distribution until the next event is 

the same regardless of how much time has passed 

since the last event, and the average time until the 

next event is the same as the average interevent 

time. This property is also a direct consequence of 

the complete randomness of the Poisson process; 

what happens in the current interval is independent 

of what has happened in the previous interval. 

The main goal of active queue management 

algorithms is to warn TCP friendly sources about 

the incoming congestion situation so that they will 

be able to reduce their sending rate to prevent the 

network to get in congestion collapse. The main 

objection of our proposed algorithm is to provide 

better conditions (high throughput and low per 

packet delays) for the networks where not only the 

constant bit rate sources but also the responsive 

sources are available. Therefore, it is meaningful to 

provide practically an empirical formula to 

determine the best operating point for Orange 

having its system parameters (threshold and service 

time) tuned for such conditions. 
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4. Testing M/M/2 Equations With 

Simulation 
 

In order to test our algorithm’s performance, we 

simulate the topology in Figure 4 for different 

queue types (DropTail, Orange, and RED) using the 

NS-2 network simulator. When Orange is applied, 

the queue model can be considered as an “M/M/2” 

queue with a threshold. It means that the faster 

server, which is the primary server at the output 

link of the queue, remains the same whereas the 

virtual drop server appears when the number of the 

packets at the buffer of the queue exceeds a 

threshold level. 

1 Mbps, 0 msNode 0 Node 1

100 M
bps, 0 m

s

Poisson 1-250

Poisson 251-500
100 Mbps, 0 ms

Null 1-250

Null 251-500

10
0 

M
bp

s,
 0

 m
s

Poisson 501-750

Poisson 751-1000

Null 501-750

Null 751-1000

100 Mbps, 0 ms

100 M
bps, 

0 m
s

100 Mbps, 0 ms

100 Mbps, 0 ms
100 M

bps, 0 m
s

 
 

Figure 4.Simulation topology for M/M/2 queue. 

 

Poisson sources in NS generate packets of 

constant size that we have to set in the beginning of 

the simulation. In order to overcome this lack of 

NS, we make a large number of Poisson sources 

involve in the simulation by setting the packet size 

of each traffic source is different and determined by 

random number generator that generates 

exponentially distributed packet sizes with an 

average value. Aggregating Poisson sources in this 

way generates a traffic source with exponentially 

distributed sending rates, and packet sizes with a 

mean value, which is assumed to be in the 

mathematical analysis. Note that; we have four 

different nodes in simulation topology. Because, in 

NS, the total number of agents we can connect to a 

node is 256, so we have to connect the 1000 

sources and destinations to 4 different nodes where 

each node has 250 different sources. 

In this set of experiments, our aim is to compare 

the simulation results with the calculations from 

equations which we have already derived in 

previous section.Remember that, in NS application, 

the maximum threshold value of the RED algorithm 

is three times of its minimum threshold parameter 

unless specifically specified. The other parameters 

for RED are kept the same as NS’s default 

parameters. Different values of the minimum 

threshold of both RED and Orange can be applied 

upon our request. Orange timer (the service time of 

the unpreferred alternate link) of the bottleneck 

queue is given in milliseconds and this value is 

directly proportional of the capacity of the link at 

the output of the queue of virtual drop server. 

In Orange, while the packet, which takes service 

from virtual drop server, is being dropped, the 

virtual drop server will not consider to drop another 

packet. For example, 8 ms service time corresponds 

to 1 Mbps bandwidth. It means that, if the link is 

fully utilized, 125 packets will take service per 

second. In other words, the service time of the 

virtual drop server is 8 ms/packet. 

We want to aggregate traffic to generate a total 

arrival rate “λ = 1200 packets/s”, and average 

packet size equal to 100 bytes by aggregating 1000 

Poisson sources. The packet size of each source is 

set by sampling an exponential random variable of 

average 100 bytes. Each link capacity between the 

source and the bottleneck node is 100 Mbps with 

zero link delays. Bottleneck link capacity is Mbps 

and zero delays. Thus, the average service rate of 

the link can be computed for 100 bytes packets as 

1250 packets/s. Minimum threshold value of 

Orange is 10 packets and service time of the virtual 

drop server is 5 ms, which corresponds to a service 



G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255 

 

  

1249 

rate of 200 packets per second. It is assumed that 

there would be a virtual link at the output buffer of 

the server with a capacity of 200 Kbps. 

Using the above parameters, we can calculate 

the results from the Morrison’s equations. 

Remember that Morrison finds the mean waiting 

time “W” as; 

 

 

  
 (12) 

 

  

This waiting time can be compared with the 

average queue size in our simulations with a 

calculation by using the Little’s formula. Average 

queue size (q) is then computed by “W = q / ”. 

Using the equation (12), waiting time is computed 

as 0.006989, and correspondingly using the Little’s 

formula, the average queue size is computed as 8.38 

packets. 

Simulation results for 1200 packets per second 

of arrival rate, minimum threshold value of 10 

packets of minimum threshold and 5 ms of service 

time of the virtual drop server can be found in 

Table 1. Average queue size is obtained by 

simulation as 9.04 packets, which matches to the 

computed value of average queue size 8.38 packets. 

The difference between the simulation results and 

the computed values are negligible so that we are 

able to state that our derived formulas give the 

correct results and match to the simulation results. 

 

 
Table 1. Simulation results of M/M/2 queue with a threshold. 

Queue Type MinTh 
Orange Timer 

(ms) 

Sent 

Packets 

Arrival to  

Router 

Arrival to 

Destination 

Average 

Delay ms 

Average 

Queue Size 

Orange 14 5 13178 12680 11728 8.49 9.04 

 

5. Orange’s Performance Analysis  
 

To appreciate Active Queue Management 

application, we must consider congestion, and 

responsive flows like TCP. Otherwise effect of 

using AQM algorithms like RED or Orange over 

Drop Tail may not be recognized. “For offered 

loads up to 80% of bottleneck link capacity, no 

AQM scheme provides better response times than 

simple drop-tail FIFO queue management”[12].In 

the practical cases, most of the traffic is formed by 

the responsive sources of large amounts. Those are 

the flows of surfing a web site, or downloading a 

file from the internet. It is more complicated to 

control those flows.  

 

 

 

In order to test our algorithm’s performance in a 

more realistic environment, we use a sample 

topology consisting of heterogeneous TCP flows 

whose link delays are varying. This topology has 

also been studied by Kinicki and Zheng[13]. They 

use this topology to test their own algorithm’s 

performance with that of RED algorithm. They 

claim that the chosen RED parameters in their work 

give the best result when RED algorithm is applied. 

To test our algorithm with other IP level congestion 

control methods, this topology which has many 

heterogeneous TCP Reno flows is best suited for 

our performance comparisons of our proposed 

algorithm. We run a series of simulation 

experiments using the NS simulator to compare the 

performance of Orange with RED and its variants 

with heterogeneous TCP Reno sources. 
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Aggregate Bandwidth: 90 Mbps

 
Figure 5.Simulation topology for a more realistic environment. 

 

The simulated network topology in Figure 5 

consists of one router, one sink and a number of 

simulated FTP sources. All flows are divided into 

three flow groups (fragile, average, and robust) 

based on the instantaneous round trip time of each 

flow. The mentioned Orange router maintains a 

single flow queue for each flow group, which is a 

FIFO queue that stores a pointer to a packet in the 

router queue for each packet. The aim of this 

topology is to establish a real network environment, 

which has many flows with too many RTT’s.  

Each FTP source feeds 1000-byte packets into a 

single congested link attached to the router. The 

TCP ACK packets are 40 bytes long and each 

source has a window size of 64 packets. The 

capacity of the botleneck link is 10 Mbps with a 5 

ms delay to the sink. When the demand is kept 

constant, the number of the flows that generates the 

demand has a negative effect on performance. We 

choose one-way link delays for the fragile, average 

and robust sources of 95 ms, 45 ms and 20 ms 

respectively. Thus, the fragile, average and robust 

flows have round trip times of 200 ms, 100 ms and 

50 ms when there is no queuing delay at the router. 

The router queue size was fixed at 120 packets 

based on published rules of thumb for 

accommodating the network bandwidth delay 

product. All simulations for this study run for 100 

simulated seconds and include an equal number of 

fragile, average and robust TCP flows. Half of the 

flows in each flow group start at time zero the 

second half start at time 2 seconds. For example, 

for a 60-flow simulation, 10 fragile, 10 average and 

10 robust flows start at time 0, and the remaining 

30 flows start at 2 seconds. The first 20 seconds of 

simulated time are not considered to reduce the 

startup and transient effects. The sum of the 

capacities of all the incoming flows is held constant 

at 90 Mbps for all simulations in this study 

regardless of the number of flows. Thus when the 

number of flows are increased the individual link 

capacities are proportionally decreased. Unless 

specifically specified the values for RED 

parameters of minth and maxth are set in such a 

way that maxth is three times of the minth. 

Our aim by using Orange algorithm is to keep 

the aggregate throughput high but the average 

packet delay and the average queue sizes low. We 

have four sets of simulation; each has a different 

minimum threshold value (10, 15, 20, and 25). In 

RED, when the average queue size exceeds the 

minimum threshold value, queue starts to drop the 

incoming packets according with a dropping 

probability value based on the calculation of the 

maximum dropping probability and the value of the 

average queue size. In Orange, when the current 

queue size exceeds the minimum threshold value, 

queue starts to drop the incoming packets according 

the busy – idle status of the alternate drop server. 

RED has a maximum threshold value parameter to 

drop all the incoming packets when the average 

queue size exceeds it. Maximum threshold of the 

RED is three times of its minimum threshold 

parameter and unless it is specifically specified.  

On the other hand, Orange has no maximum 

threshold parameter, but it has the parameter, which 

is the service time of the alternate server. It is the 

busy period between the time that the Orange drops 

a packets and the time that the Orange queue will 

consider another packet to drop (busy time for 

dropping a packet). This time value (Orange Timer) 

is not constant, it is exponentially distributed about 

a mean average value, which is parameter of 

Orange queue type. We have simulated our sample 

topology with the values of the service time of the 

alternate server from values of 1 second to 10000 

seconds in order to test the effect of the service time 

to the Orange’s overall performance. As the 

Orange’s service time goes to infinity, its operating 

behavior approaches the drop tail. With a big 

service time, Orange drops a packet and after this 

time, it never drops any packets because its 

alternate drop server is busy during the simulation 

time. The results of the experiments are given in 

Table2. Detailed simulation results can be found in 

[14].  
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The performance parameters that we have 

compared RED and Orange are the average 

throughput (Kbps), average delay (ms), average 

queue size. It is obvious that in most of the regions, 

Orange has better performance compared to RED 

and Drop Tail especially when the service time of 

the alternate server is around from 4 ms to 7 ms. 

Orange provides better performance for smaller 

timer values as the minimum threshold value 

increases.  

In Table 2, when the threshold is 10, RED’s 

throughput is measured as 9610 Kbps, average 

delay, and average queue are measured as 79.18, 

and 23.82, respectively. In this set of experiments, 

Orange’s minimum threshold value is fixed at 10 

packets. It means that Orange starts to drop the 

incoming packets when the queue size exceeds 10 

packets. Orange’s service time is adjusted from low 

values to the high values. When it gets higher, 

Orange approaches to work like a DropTail queue. 

Orange drops the packet, and it never gets idle 

because the service time for that packet is too high 

to consider another packet to drop or not. While 

keeping the threshold at a fixed level which is 10 

for this set of simulations, total throughput 

increases, as the service time increases whereas 

average delay, and average queue size decrease. 

Orange gives better results than RED when 

Orange’s timer is adjusted around 6.5, 7 ms.This is 

the point where Orange provides higher throughput 

values and lower delay values than that of RED. It 

is obvious that average delay is directly 

proportional to average queue size. It increases as 

the average queue size increases.  

When the threshold is 15, RED’s throughput is 

measured as 9615 Kbps, average delay, and average 

queue are measured as 88.26, and 33.83, 

respectively when RED’s minimum threshold 

value, and maximum threshold value are fixed at 

15, 45 respectively. RED’s throughput, average 

delay, and average queue are measured as 9606, 

80.65, 25.26, respectively when RED’s minimum 

threshold value, and maximum threshold value are 

fixed at 15, 30 respectively. In this set of 

experiments, Orange’s minimum threshold value is 

fixed at 15 packets. As we know, RED starts to 

consider dropping packets when the average queue 

size exceeds its minimum threshold value. 

Therefore, as we expect, the average delay and 

average queue size are more than the previous 

results. Orange gives better results -higher 

throughput and lower delay- than RED when 

Orange’s timer is adjusted around 5, 6 ms. 

When the threshold is 20, RED’s throughput is 

measured as 9615 Kbps, average delay, and average 

queue are measured as 96.67, and 43.31, 

respectively when RED’s minimum threshold 

value, and maximum threshold value are fixed at 

20, 60 respectively. RED’s throughput, average 

delay, and average queue are measured as 9591, 

82.40, 26.98, respectively when RED’s minimum 

threshold value, and maximum threshold value are 

fixed at 20, 30 respectively. Orange’s minimum 

threshold value is fixed at 20 packets. Orange gives 

better results -higher throughput and lower delay- 

than RED when Orange’s timer is adjusted around 

4.5 ms. 

 

 
Table 2. Simulation results 

Orange 

Timer 

(ms) 

When MinTh= 10 When MinTh = 15 When MinTh = 20 When MinTh = 25 

Avg. 

T.Put 

Avg. 

Delay 

Avg. 

Q.Size 

Avg. 

T.Put 

Avg. 

Delay 

Avg. 

Q.Size 

Avg. 

T.Put 

Avg. 

Delay 

Avg. 

Q.Size 

Avg. 

T.Put 

Avg. 

Delay 

Avg. 

Q.Size 

RED-75 - - - - - - - - - 9615.54 103.78 52.56 

RED-60 - - - - - - 9615.53 96.67 43.32 - - - 

RED-45 - - - 9615.48 88.27 33.83 - - - - - - 

RED-30 9610.84 79.18 23.82 9606.00 80.66 25.26 9591.64 82.41 26.99 9482.20 83.27 28.80 

1 9493.04 62.30 7.00 9546.53 65.65 11.23 9560.86 69.41 15.02 9583.09 72.12 19.23 

2 9516.54 65.09 7.99 9552.46 70.38 11.97 9561.77 74.39 16.12 9592.58 77.26 20.23 

3 9522.86 68.87 9.35 9661.41 73.51 13.56 9585.87 78.04 17.99 9599.21 81.59 22.24 

3.5 - - - - - - - - - 9615.48 78.84 24.36 

4 9591.63 70.94 11.19 9603.82 74.87 16.43 9611.11 78.83 20.83 9612.87 82.87 25.60 

4.5 - - - - - - 9607.86 81.51 21.81 9610.27 84.07 25.62 

5 9597.22 69.56 14.59 9610.26 73.04 18.98 9611.19 77.17 23.95 9615.27 81.30 28.38 

5.5 - - - - - - 9612.82 82.74 23.57 9614.22 86.47 27.58 

6 9606.77 74.24 17.06 9613.37 77.51 21.00 9615.28 81.98 26.22 9615.44 85.95 31.01 

6.5 9612.53 77.86 18.71 9613.41 81.04 22.37 9614.90 85.78 27.43 9615.54 89.07 31.65 

7 9614.52 84.02 23.24 9615.63 88.56 28.26 9615.35 89.93 30.75 9615.44 93.13 34.45 
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8 9615.43 119.81 63.99 9615.53 119.08 93.88 9615.53 118.80 62.90 9615.63 121.48 66.15 

9 9615.44 97.18 39.18 9615.64 97.96 40.56 9615.54 99.91 42.76 9615.54 99.75 42.92 

10 9615.53 105.42 54.74 9615.44 105.41 54.89 9615.53 105.76 54.73 9615.53 105.02 54.56 

50 9615.53 146.67 110.95 9615.43 146.65 110.71 9615.73 146.35 110.72 9615.53 146.35 110.79 

100 9615.52 146.87 112.44 9615.53 145.73 111.26 9615.53 146.56 112.02 9615.45 146.81 112.51 

 

When the threshold is 25, RED’s throughput is 

measured as 9615 Kbps, average delay, and average 

queue are measured as 103.77, and 52.56, 

respectively when RED’s minimum threshold 

value, and maximum threshold value are fixed at 

25, 75 respectively. RED’s throughput, average 

delay, and average queue are measured as 9482, 

83.27, 28.80, respectively when RED’s minimum 

threshold value, and maximum threshold value are 

fixed at 25, 30 respectively. Orange’s minimum 

threshold value is fixed at 25 packets. Orange gives 

better results -higher throughput and lower delay- 

than RED when Orange’s timer is adjusted around 

4 ms. 

When we try to track the change the change in 

Orange’s timer optimum value as compared to the 

change in the set threshold value, we can fit an 

inverse proportional relation to the square root of 

threshold (K). For instance, if we compare the 

simulation results where the threshold value is 10 

with the results where the threshold value is 25, 

service time of the alternate server should be 

multiplied by  .  

Thus, to get the optimum value of the alternate 

server’s average service time, if we multiply best 

service time value where the threshold is 10 with 

this coefficient, we can easily see that the result fits 

very well with the result where the threshold is 25. 

(6.5 ms * 0.632 = 4.10 ms). This last value is the 

best service time value of the alternate server where 

the threshold is 25. 

Consequently, empirically fitting relationship 

can be formulated as  

 

  (13) 

 

where “K” is Orange’s threshold value for the best 

performance of our simulation.  

Hence, we can state that, from the analysis of 

the simulation, empirical results suggests with our 

used simulation parameters are 

 

  (14) 

 

inmiliseconds. A comparison between the 

simulation results and this empirical formula is 

given in Table 3.We can easily see that the results 

fit well. 

 

Table 3.A comparison between simulation results and empirical formula. 

Threshold Applied 
Orange's Timer in ms 

Best Result from Simulation Calculation from Empirical Formula - Equation (14) 

10 6.50 6.32 

15 6.00 5.16 

20 4.50 4.47 

25 4.00 4.00 

 

6. Interpretation Of Empirical 

Formula For Determining Orange’s 

System Parameters 
 

We have made our experiments for different 

threshold values and different service times for 

slower server in order to find the best operating 

point of our algorithm in a congested network 

environment, which includes responsive flows. Our 

aim is to find a relation between the values of the 

threshold and the service time of the slower server 

at the operating point from the experiments and the 

mathematical analysis. Şiş [8] studied the optimum 

threshold value of an M/M/2 queue where Poisson 

arrivals, and exponentially distributed service times 

are of interest (when the service rates of both 

servers are predetermined). He proved that the first 

order approximate value of optimum threshold, is 

the largest non-negative integer which satisfies (if 

there is no such non-negative integer, it is zero) 

 

1

2

1K
 




    (15) 

 

This approximate value for the optimum value 

of the threshold gives satisfactory result under the 

assumption that “μ1” is considerably greater than 
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“μ2” and “μ1 >> λ”. Here, the results are approached 

as there is a continuous flow of traffic arriving to 

the queue with the average rate of “λ” units/time 

and similarly μi units/time is the continuous average 

out-flow through link i. Therefore, the results are 

valid in the systems where memoryless sources like 

Possion sources are applied. If “μ1” is not 

considerably larger than “μ2”, it is clear that 

threshold is nearly zero. When “μ1” is considerably 

larger than “μ2”, if “μ1 >> λ”, for optimum 

threshold we can use the approximate value in 

Equation 15. The only remaining case is the case 

where “μ1 >> μ2“, but “(μ1-λ) ≈ 0”. There, actually a 

non-zero threshold value occurs which is not 

anticipated in our approximation. Although this 

afore mentioned analysis can be made to find the 

expected delay value to relate it with the threshold 

value, this would be restricted to the case where 

Poisson arrivals and exponentially distributed 

service times are involved. 

In order to test our algorithm’s performance in a 

network where the responsive flows are dominant, 

we use the responsive sources (ftp sources) in our 

simulation. Responsive sources probe the available 

bandwidth in the network, and they adjust their 

sending rate as long as there is no packet loss. 

Arrival rate will be almost the same as the service 

rate of the server. We can easily say that, in our 

experiment “(μ1-λ) ≈ 0”. We need to find an 

equation for this case in terms of μ1, μ2, λ, and K 

under these circumstances where responsive flows 

are involved.  

Padhye and his friends [15] develop a simple 

analytic characterization of the steady state 

throughput of a bulk transfer TCP flow (i.e., a flow 

with a large amount of data to send, such as FTP 

transfers) as a function of loss rate and round trip 

time. Their model captures not only the behavior of 

TCP's fast retransmit mechanism but also the effect 

of TCP's timeout mechanism on throughput.  

In their work, Nt represents the number of 

packets transmitted in the interval [0,t] and “Bt 

(Nt/t)” represents the throughput on that interval. 

Thus, Bt represents the throughput of the 

connection, rather than its goodput. They define the 

long-term steady-state TCP throughput B to 

 

 (16) 

 

They have assumed that if a packet is lost in a 

round, all remaining packets transmitted until the 

end of the round are also lost. Therefore they define 

p to be the probability that a packet is lost, given 

that either it is the first packet in its round or the 

preceding packet in its round is not lost. They are 

interested in establishing a relationship B(p) 

between the throughput of the TCP connection and 

the loss probability (p). 

In their work, when timeout occurrences are 

ignored, B(p) is derived to be; 

 

  (17) 

 

where“b” is the number of packets 

acknowledged by a received ACK. In many TCP 

implementations, “b = 2”. When timeouts are taken 

into account, they derive the B(p) as; 

 

 (18) 

 

By this formula, we can easily observe that TCP 

favors the flows with short RTT. It means that 

when downloading a file from a closer server, the 

download performances will be better. We can 

observe that the relationship between loss rate p and 

throughput is not linear but an inverse square root 

relation! It means when p is increased 4 times, 

throughput drops to half.  

As we have already shown, while the service 

time of the drop server increases, the optimum 

value of the threshold decreases in order to achieve 

the best operating point. If the service time of the 

drop server were too low, the threshold would be 

high enough to prevent unnecessary packet drops. If 

the threshold were too low, we need high values of 

the service time of the drop server to make the drop 

server idle after dropping a packet. To use the drop 

server for enough times, it must work faster. 

Therefore, we can easily say that the optimum 

value of the threshold is inversely proportional to 

the service time of the drop server. We have found 

empirically a relation like; 

 

  (19) 

 

On the other hand, according to [15], we can 

state that TCP’s throughput is inversely 

proportional with the square root of dropping 

probability (P). We can also intuitively claim that 

the dropping probability is inversely proportional 

with the threshold (K): 

   (20) 

 

If we think alternate server as a real server, 

departures from it contributes to the total 

throughput. Therefore, the service rate of the 

alternate server and the throughput can be assumed 

that they are directly proportional.  

 

   (21) 
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If we use the last two formulas in Padhye’s 

simple throughput equation, then we get  

 

 (22) 

 

In general TCP implementations, b value is 

fixed as 2 and we can assumed that the RTT is 

constant during simulation so without specifying 

proportionality constants, we can end up with 

   (23) 

 

or, alternate server’s service time is inversely 

proportional with square root of threshold (K): 

 

 (24) 

 

We can just conclude that, empirically the best 

value of the service time is inversely proportional 

with the square root of the threshold value applied 

as we have already stated in Equation 13. 

Furthermore, if we can estimate as “a rule of 

thumb”, the best value of μ2 departing from the 

capacity of the main (bottleneck) link, it can be 

estimated in the order of “1/10” to “1/5” of the 

capacity of the main link. By using our empirical 

formula, we can try to find an optimal threshold (K) 

value. This finishes selecting Orange parameters 

that gives the best operating point. This parameter 

estimation procedure is much simpler, effective, 

and more meaningful than the tuning the complex 

RED parameters. 

The other way around, if we take the threshold 

value of Orange departing from the minimum 

threshold value proposed for RED implementers, 

we can easily calculate the best optimum value of 

Orange’s timer for the best performance of active 

queue management. 

Explanation of this relates the drop server to 

behave like a TCP friendly source. The implication 

of this can be very meaningful. Mentioning TCP 

friendliness in general means reacting to congestion 

in the same way as TCP, considering only Triple 

Duplicate (TD) packet loss occurrences that result 

in TD, this would mean to be conformant with the 

throughput equation (16). We have demonstrated 

that our empirical result is in accordance with the 

equation (16), therefore suggesting the TCP 

friendliness for the best operating conditions. 

However, keeping in mind that alternate server’s 

output is, in return as retransmission, a load for the 

original sender (TCP source), they will be part of 

the offered load, hence throughput is in relation 

with alternate server’s link capacity or service time. 

 

 

7. Conclusions 
 

The main contribution of this work is to present 

an IP level congestion control mechanism to control 

the performance of a traffic network at the node 

level. In this work, a new active queue management 

algorithm called Orange is designed and evaluated. 

The main idea behind Orange comes from the 

analysis of two heterogeneous servers and one 

queue with a threshold-based queuing system in 

order to achieve both higher throughput and lower 

queuing delays. By using the threshold type policy 

and the use of virtual drop server, we have 

proposed a new approach to drop or mark packets 

when the congestion will likely occur. The primary 

performance parameter is the mean number of 

customers in the system, and accordingly the 

average waiting time per packet as well as the 

throughput of the network.  

In addition, we consider finding out an 

empirical relationship between the system 

parameters of our algorithm using the mathematical 

analysis. Simulation results are used to tune up the 

empirical formulation. By achieving this aim, we 

consider to use a virtual drop server to drop the 

incoming packets when the actual queue size 

exceeds a threshold level. The only adjustable 

parameter based on the changing conditions of the 

network is the service time of the virtual drop 

server. Since for many applications, this service 

time is not usable, we consider it an important and 

distinguishing characteristic of our work.  

Moreover, we provide an efficient solution of a 

threshold based queuing system with two 

heterogeneous servers and one queue.  

This study confirms that generally Orange 

performs better than RED due to the fact from 

simulations that it results in higher throughput 

values and lower queuing delays (thus the lower 

mean waiting times per packet) for the networks 

with heterogeneous flows. Orange simulations 

indicate that Orange requires less parameter settings 

than RED. 

We can propose that Orange replaces RED as an 

active queue management algorithm to decide 

which packets are to be marked to indicate a 

congestion condition for the current Internet 

routers. We still chose to drop them to warn TCP or 

TCP friendly sources (responsive or adaptive) 

against that possible congestion situation. While 

doing so, we tune Orange parameters such that 

Orange’s drop server acts like a TCP friendly 

source as depicted in (24). Since dropped TCP 

packets by the virtual drop server will be re-sent as 

offered load to the system. Drop server can be 

considered as a virtual source to the network. 
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