
G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

Received On:17.12.2010

Accepted On:25.04.2011

ANALYSIS OF ORANGE

ACTIVE QUEUE MANAGEMENT ALGORITHM

TO FIND ITS OPTIMUM OPERATING PARAMETERS

Gökhan ÇATALKAYA
1
, M. Kemal ŞİŞ

2

1
Department of Elt.&Eltr. Engineering, Dokuz Eylul University, Buca, Izmir, Turkey

2
Department of Computer Science, DokuzEylul University, Buca, Izmir, Turkey

gcatalkaya@gmail.com

Abstract:Due to the fast growth of the demand for the use of internet during the last decade, congestion control

mechanisms to keep the throughput high and the queuing delays low get of vital importance. The purpose of this

paper is to present a new approach, which is called as “Orange” in IP level congestion control as an active

queue management mechanism and to compare its performance with that of the other mechanisms. Within the

framework of this paper, the best operating point of Orange algorithm is evaluated by using the empirical

formulas we derive. It is investigated that when the best operating point parameters are applied, Orange gives

the best performance against other active queue management algorithms.

Keywords:Congestion control, IP level routing strategies, threshold, computer simulation, active queue

management.

1. Introduction

Communication networks have evolved

significantly in the past few decades. Internet

doubles its traffic every few months and more and

more traffic involves increasing number of various

flows. With this explosive growth over the past few

years, network congestion phenomenon getsof vital

importance. It is important to allocate the available

resources effectively and fairly among a collection

of competing users. Most networks provide a

congestion control mechanism to deal with such a

situation.

The basic goal of congestion control is to

maximize the throughput of the link and minimize

the average delay of packets in the network. In

addition, it should also consider fair allocation of

the resources among all the users.

TCP congestion control algorithm is the most

widely used algorithm for congestion control. It

detects congestion only after a packet has been

dropped along the path. Increasing the queue

capacities does not solve the congestion problem

causing higher queuing delays. Queues should be

generally kept as short as it is possible. Therefore, it

is important to have mechanisms that keep

throughput high but average queue sizes low.

2. Active Queue Management Schemes

Active Queue Management (AQM) schemes are

IP level (gateway based) congestion control

schemeswhere gateways notify the sources of

incipient congestion. Active queue management

schemes use a single FIFO (First In First Out)

queue for all flows flowing through the router. The

input to the control is the arrival rate and queue size

for a particular outgoing link, and the output is a

decision on how to mark or drop packets. It uses a

certain algorithm to manage the length of the packet

queue by dropping packets when necessary or

appropriate. The responsive sources detect packet

loss as a congestion indicator and react to these

signals and adjust their sending rates. Unless the

packets are dropped because of high queue sizes at

the gateways, sources will keep increasing the

sending rate causing longer delays in the network,

which is not desirable. This kind of approach

requires no state information and scales well.

The aim of AQM systems is to keep the average

queue sizes at the gateways low. Keeping the queue

sizes low has some advantages including,

 Provide queue space to absorb bursts of packet

arrivals,

 Avoid lock-out and bias effects, from a few flows

dominating queue space,

 Provide lower delays for interactive applications.

 Reduced packet loss rate.

 Reduced queuing delay and jitter.

 Improved throughput.

All AQM schemes detect impending queue

buildup and notify the sources before the queues at

the gateways overflows. AQM algorithms differ in

the mechanism used to detect congestion and in the

type of control method used to achieve a stable

operating point for the queue size. Trying to keep

the queue size stable at a desired level causes a

tradeoff between link utilization and queuing delay.

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1244

A short queue reduces latency at the router but

setting the target queue size too small may reduce

link utilization by limiting the router’s ability to

buffer short bursts of arriving packets.

The way in which the congestion notification is

delivered to the sources is the other important

property of AQM schemes, which affects the

performance. Two different alternatives are

available to be used to notify the sources, namely

Early Congestion Notification (ECN), and Random

Early Detection (RED).

2.1.Early Congestion Notification (ECN)

Early Congestion Notification (ECN) [1]

features end-to-end notification of network

congestion without dropping packets. This feature

is optional and only used when both of the

endpoints signal that they want to use it. Unlike

dropping packets to signal congestion in the

traditional way in TCP/IP networks,after ECN is

negotiated, itadds an explicit signaling mechanism

by allocating bits in the IP and TCP headers of the

packets flowing through the router in order to signal

the beginning of congestion. The receiver side

echoes back the congestion indication to the sender

side and it reacts as if a packet drop were

detected.In turn, the destination will transmit such

information to the source piggybacking it into the

acknowledgement message. Another way of

speaking, gateways signal congestion to the sources

by “marking” a packet (setting a bit in the header).

2.2.Random Early Detection (RED)

Second method is to drop the packets randomly

with a probability when the queue sizes grow up in

order to notify the sources about the incipient

congestion. Floyd and Jacobson propose a

mechanism called Random Early Detection (RED)

[2]. RED makes a decision to drop a packet

randomly when the queue average length ranges

between a minimum and a maximum threshold. The

probability of packet dropping is obtained from the

average queue length accordingly to a linear law.

The basic idea of RED algorithm is to keep the

average queue size low (and hence end-to-end

delay) while allowing occasional bursts of packets

in the queue. Packet dropping probability is

proportional to that connection’s share of the

throughput through the router. RED performs better

than the drop tail algorithm because it has higher

throughput and lower delays. It avoids global

synchronization and has the ability to accommodate

short bursts. It is easy to implement. It controls the

average queue size even in the absence of non-

adaptive sources. Because of its various advantages,

in 1998, RED has been recommended as the

standard of congestion avoidance mechanism in

gateways.

RED algorithm (see Figure 1) calculates the

average queue size by assigning different weights

(the exponential weight factor, a user-configurable

value) to old value and current measure. This

means the adoption of a low pass filter to reduce the

high frequency variation of the instantaneous

queue. For high values of n, the previous average

becomes more important. A large factor filters

occasional bursts and keeps the queue length low.

The average queue size is unlikely to change very

quickly. RED algorithm will be slow to start

dropping packets, but it may continue dropping

packets for a time after the actual queue size has

fallen below the minimum threshold. The slow

moving average will accommodate temporary

bursts in traffic. If the value of n gets too high,

RED will not react to congestion. Packets will not

be dropped by the RED algorithm. This would

mean higher queuing delays.

Figure 1.RED Algorithm.

For each packet arrival;

calculate the average queue size avg

ifminth≤avg<maxth

calculate probability Pa

with probability Pa:

mark the arriving packet

else ifmaxth≤avg

mark the arriving packet.

On the other hand, if the maximum threshold is

set to a low value, the average queue size is easily

affected from the current queue size. The resulting

average may fluctuate with changes in the traffic

levels. In this case, the RED process responds

quickly to long queues. Once the queue falls below

the minimum threshold, the process will stop

dropping packets. If the value of n gets too low,

RED will overreact to temporary traffic bursts and

drop traffic unnecessarily. This would mean a bad

usage of the link because of severe buffer

oscillations. From these considerations, it is very

difficult to find out the right trade-off, and it is hard

http://en.wikipedia.org/wiki/Network_congestion
http://en.wikipedia.org/wiki/Network_congestion

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1245

to tune RED to achieve both high link utilization

and low delay and packet losses.

Although RED is a big success in internet

congestion control, it still suffers from some

problems. Dropping packets from flows in

proportion to their bandwidth does not always lead

to fair bandwidth sharing. For example, if two TCP

connections unevenly share one link, dropping one

packet periodically from the low speed flow will

almost certainly prevent it from claiming its fair

share, even if the faster flow experiences more

packet drops. RED is designed to work with

adaptive flows. Non-adaptive flows can take over

the link’s bandwidth. A non-adaptive connection

can force RED to drop packets at a high rate from

all connections. RED heavily penalizes TCP flows

and awards non-TCP flows.

2.3.Other Active Queue Management

Algorithms

In the last years, the active queue management

policies have been object of a large interest in

networking. Several proposals [3-4-5-6] have been

presented to find more effective control policies

than RED. REM and PI [7] are proposed to solve

the problems, which RED faces. Their solution is

very similar to each other. REM aims to achieve a

high utilization of link capacity, scalability,

negligible loss and delay. As an improvement to

RED, REM algorithm differentiates between the

congestion measure of each router and the dropping

probability. REM algorithm maintains a so-called

variable price, which eliminates the dependence of

the dropping probability from the current value of

the queue size. The REM algorithm uses the current

queue size and the difference from a desired value

to calculate the dropping probability accordingly to

an exponential law. A source calculates the price of

the whole path using the knowledge of the total

number of packets dropped on the path. The main

disadvantages of REM algorithm is that it gives no

incentive to cooperative sources and a properly

calculated and fixed value of price variable must be

known globally.

In summary, internet routers should implement

active queue management mechanisms to reduce

average delay, to manage average queue length, to

reduce packet dropping, and to avoid global

synchronization. It is obvious that, current active

queue management mechanisms have their own

advantages as well as they have their own

drawbacks.

3. Introducing Orange

By using the threshold type policy and the use

of virtual drop server, we propose a new approach

to drop or mark packets when the congestion will

likely occur. We intend to use an IP level

congestion control proposal, called Orange. Orange

replaces RED as an active queue management

algorithm to decide which packets are to be marked

to indicate a congestion condition. The idea behind

Orange is similar to RED which also uses “early

dropping” concept to regulate the flows before

congestion occurs. Here, “early” refers the fact that

actually as long as there is space in the queue buffer

to place the incoming packet; we still chose to drop

them to warn TCP friendly sources (responsive or

adaptive) against that possible congestion situation.

In a threshold queuing discipline, packets are

preferably routed to the faster server. Packets are

allowed to queue up while the slower server

remains idle until the queue size reaches a certain

“threshold” value, at which a point a packet is

removed from the queue and sent to the slower

server for service. The threshold value becomes

critical control parameter affecting system’s overall

performance, and facilitating optimal system

control. The primary performance parameter is the

mean number of customers in the system, and

accordingly the average waiting time per packet.

Optimization of the two heterogeneous servers

problem is considered over an infinite time horizon

with an average cost criterion. Although linear

holding and service costs are considered, it is

generally assumed that there is no additional cost

incurred to turn on or to turn off a server.

Orange is based on the idea of dropping packets,

randomly whenever some conditions are met, that is

equivalent of using an alternate virtual server to the

default link of that outgoing interface. Orange waits

for a random amount of time after a dropping

occurs before another one may be considered. This

is the time equivalent of a service time sample of

the “drop server”. Orange proposal’s main idea

relies on a single queue, two server M/M/2 model

analyses. In this model, first server is the link

transmission element, and the second one is the

unpreferred alternative link. The second one is used

only when queue size exceeds a threshold.

Orange allows the incoming packet go to the

queue for transmission if the queue size is below

the threshold (Orange Limit). It drops the incoming

packet and sets the timer if the timer is idle and the

queue size is in between the Orange limit and the

queue limit (maximum queue size). While the timer

continues to be busy, Orange does not drop any

incoming packet. Orange drops all incoming

packets if the queue is full. One can refer to the

Figure 2 for pseudo code of Orange algorithm.

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1246

If (queue limit) then

 Drop(packet)

Else

 If (Orange limit) then

 If (timer is idle) then

 Drop(packet)

 Begintimer()

 Else

 Enque(packet)

 End if

 Else

 Enque(packet)

 End if

End if

Figure 2.Pseudo code of Orange algorithm.

The queuing model behind the Orange

algorithm is mainly based on the M/M/2 queues.

The M/M/2 case shown in Figure 3 is the simplest

non-trivial case of a local model for a node in a

network. In this type of network, for the traffic at

the concerned node, there is only one final

destination, but there are two different links by

which the traffic can be carried toward the

destination node. There may be several incoming

links to the node; however, since all the traffic is

destined to the same destination node it can all be

stored in one queue. Arrivals to this queue are

modeled as a Poisson arrival process (mean rate λ).

Time spent on a link is modeled as exponentially

distributed so links can be thought of as servers

with exponentially distributed service times (mean

rate µ). Therefore, the birth rate is always equal to

λ, whereas the death rate depends on the state.

M/M/2 queue with a threshold is studied by [8],

[9]. In their work, First passage time to an idle

period (FPTIP) is studied. FPTIP value is derived

as a function of µ1, µ2, λ. Here, we want to evaluate

a formula for the average queue size and waiting

time for the same system.

Figure 3.M/M/2 queue model.

The exact solution becomes cumbersome and is

not efficient and necessary for M/M/2 system with

a threshold. Moreover, the main contribution of this

work is to find a direct relationship between the

threshold value and the service time pair that give

the minimum waiting delays per packet instead of

finding an exact solution. For this aim, we consider

to use the equations in Morrison’s study [10] for

derivation of our empirical formulas.

In his work, Morrison [10] finds an efficient

solution of a threshold based queuing system with

two heterogeneous servers and one queue. For the

sake of simplicity, he considers a birth-death

queuing system with two exponential servers with

mean rates “µ”, and Poisson arrivals with mean rate

is “λ < 2µ”, first in first out queuing discipline,

unlimited buffer size of the bottleneck queue. Both

servers are in use when the number of the customer

in the system is more than a threshold level “c”.

Only one server is in use when the number of the

customers in the system is less than “c + 1”. Thus,

the service rate of both servers is equal to each

other; it is not important which server becomes idle.

This system reduces to the generic M/M/2 case

when “c” is one. So it is necessary to study the

cases when” c > 1” for a non-trivial generalization.

The equilibrium probabilities of the number in

the system are known by [11] and the mean waiting

and sojourn times may be obtained from these by

Little’s formula. The system can be summarized as

a single server system where the mean service rate

is “µ” when there are less than “c + 1” customers in

the system, and “2µ” when there are more than “c”

customers are in the system. The difference

between our preferred model and the Morrison’s

model is that in Morrison’s model, second server

with the same service rate is used when the number

of customer in the system reaches to a certain

threshold level whereas in our Orange’s preferred

model, second server with a service rate lower than

the first server is used when the queue size reaches

to a certain threshold level as long as the second

alternate server is idle.

From Morrison’s study, we easily state that, the

equilibrium probability P0 that there is no customer

in the system is

 (1)

The equilibrium probability Pi that there are “i” customers in the system is

 (2)

λ

Q
S1

S2

μ1

μ2

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1247

The mean waiting and sojourn times are given by

 (3)

 (4)

 (5)

 (6)

We can adapt the Morrison’s results into our

case by substituting “2µ = µ1 + µ2”, “µ = µ1”, and

and “c = K + 1” in the above equations. Therefore,

the mean waiting and sojourn times of M/M/2 with

a threshold K case are found as,

 (7)

 (8)

 (9)

 (10)

Where

 (11)

Those derived formulas are used to justify the

simulation results. The equations are valid in a

system where the Poisson arrivals and

exponentially distributed service rates are applied.

However, most of the flows in today’s networking

world consist of responsive flows like TCP, which

adjust their sending rate according to the congestion

indications from the network. Thereforememoryless

arrival process cannot be a realistic assumption.

In systems, which have the memoryless

property, the time distribution until the next event is

the same regardless of how much time has passed

since the last event, and the average time until the

next event is the same as the average interevent

time. This property is also a direct consequence of

the complete randomness of the Poisson process;

what happens in the current interval is independent

of what has happened in the previous interval.

The main goal of active queue management

algorithms is to warn TCP friendly sources about

the incoming congestion situation so that they will

be able to reduce their sending rate to prevent the

network to get in congestion collapse. The main

objection of our proposed algorithm is to provide

better conditions (high throughput and low per

packet delays) for the networks where not only the

constant bit rate sources but also the responsive

sources are available. Therefore, it is meaningful to

provide practically an empirical formula to

determine the best operating point for Orange

having its system parameters (threshold and service

time) tuned for such conditions.

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1248

4. Testing M/M/2 Equations With

Simulation

In order to test our algorithm’s performance, we

simulate the topology in Figure 4 for different

queue types (DropTail, Orange, and RED) using the

NS-2 network simulator. When Orange is applied,

the queue model can be considered as an “M/M/2”

queue with a threshold. It means that the faster

server, which is the primary server at the output

link of the queue, remains the same whereas the

virtual drop server appears when the number of the

packets at the buffer of the queue exceeds a

threshold level.

1 Mbps, 0 msNode 0 Node 1

100 M
bps, 0 m

s

Poisson 1-250

Poisson 251-500
100 Mbps, 0 ms

Null 1-250

Null 251-500

10
0

M
bp

s,
 0

 m
s

Poisson 501-750

Poisson 751-1000

Null 501-750

Null 751-1000

100 Mbps, 0 ms

100 M
bps,

0 m
s

100 Mbps, 0 ms

100 Mbps, 0 ms
100 M

bps, 0 m
s

Figure 4.Simulation topology for M/M/2 queue.

Poisson sources in NS generate packets of

constant size that we have to set in the beginning of

the simulation. In order to overcome this lack of

NS, we make a large number of Poisson sources

involve in the simulation by setting the packet size

of each traffic source is different and determined by

random number generator that generates

exponentially distributed packet sizes with an

average value. Aggregating Poisson sources in this

way generates a traffic source with exponentially

distributed sending rates, and packet sizes with a

mean value, which is assumed to be in the

mathematical analysis. Note that; we have four

different nodes in simulation topology. Because, in

NS, the total number of agents we can connect to a

node is 256, so we have to connect the 1000

sources and destinations to 4 different nodes where

each node has 250 different sources.

In this set of experiments, our aim is to compare

the simulation results with the calculations from

equations which we have already derived in

previous section.Remember that, in NS application,

the maximum threshold value of the RED algorithm

is three times of its minimum threshold parameter

unless specifically specified. The other parameters

for RED are kept the same as NS’s default

parameters. Different values of the minimum

threshold of both RED and Orange can be applied

upon our request. Orange timer (the service time of

the unpreferred alternate link) of the bottleneck

queue is given in milliseconds and this value is

directly proportional of the capacity of the link at

the output of the queue of virtual drop server.

In Orange, while the packet, which takes service

from virtual drop server, is being dropped, the

virtual drop server will not consider to drop another

packet. For example, 8 ms service time corresponds

to 1 Mbps bandwidth. It means that, if the link is

fully utilized, 125 packets will take service per

second. In other words, the service time of the

virtual drop server is 8 ms/packet.

We want to aggregate traffic to generate a total

arrival rate “λ = 1200 packets/s”, and average

packet size equal to 100 bytes by aggregating 1000

Poisson sources. The packet size of each source is

set by sampling an exponential random variable of

average 100 bytes. Each link capacity between the

source and the bottleneck node is 100 Mbps with

zero link delays. Bottleneck link capacity is Mbps

and zero delays. Thus, the average service rate of

the link can be computed for 100 bytes packets as

1250 packets/s. Minimum threshold value of

Orange is 10 packets and service time of the virtual

drop server is 5 ms, which corresponds to a service

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1249

rate of 200 packets per second. It is assumed that

there would be a virtual link at the output buffer of

the server with a capacity of 200 Kbps.

Using the above parameters, we can calculate

the results from the Morrison’s equations.

Remember that Morrison finds the mean waiting

time “W” as;

 (12)

This waiting time can be compared with the

average queue size in our simulations with a

calculation by using the Little’s formula. Average

queue size (q) is then computed by “W = q / ”.

Using the equation (12), waiting time is computed

as 0.006989, and correspondingly using the Little’s

formula, the average queue size is computed as 8.38

packets.

Simulation results for 1200 packets per second

of arrival rate, minimum threshold value of 10

packets of minimum threshold and 5 ms of service

time of the virtual drop server can be found in

Table 1. Average queue size is obtained by

simulation as 9.04 packets, which matches to the

computed value of average queue size 8.38 packets.

The difference between the simulation results and

the computed values are negligible so that we are

able to state that our derived formulas give the

correct results and match to the simulation results.

Table 1. Simulation results of M/M/2 queue with a threshold.

Queue Type MinTh
Orange Timer

(ms)

Sent

Packets

Arrival to

Router

Arrival to

Destination

Average

Delay ms

Average

Queue Size

Orange 14 5 13178 12680 11728 8.49 9.04

5. Orange’s Performance Analysis

To appreciate Active Queue Management

application, we must consider congestion, and

responsive flows like TCP. Otherwise effect of

using AQM algorithms like RED or Orange over

Drop Tail may not be recognized. “For offered

loads up to 80% of bottleneck link capacity, no

AQM scheme provides better response times than

simple drop-tail FIFO queue management”[12].In

the practical cases, most of the traffic is formed by

the responsive sources of large amounts. Those are

the flows of surfing a web site, or downloading a

file from the internet. It is more complicated to

control those flows.

In order to test our algorithm’s performance in a

more realistic environment, we use a sample

topology consisting of heterogeneous TCP flows

whose link delays are varying. This topology has

also been studied by Kinicki and Zheng[13]. They

use this topology to test their own algorithm’s

performance with that of RED algorithm. They

claim that the chosen RED parameters in their work

give the best result when RED algorithm is applied.

To test our algorithm with other IP level congestion

control methods, this topology which has many

heterogeneous TCP Reno flows is best suited for

our performance comparisons of our proposed

algorithm. We run a series of simulation

experiments using the NS simulator to compare the

performance of Orange with RED and its variants

with heterogeneous TCP Reno sources.

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1250

10 Mbps, 5 msRouter

Ftp 21-40

1.5 Mbps, 45 ms

Ftp 41-60

Sink 1-90

1.5
 M

bps,
 2

0 m
s

1.5 Mbps, 90 ms
Ftp 1-20

RTTs: (200 ms, 100 ms, 50 ms)

Aggregate Bandwidth: 90 Mbps

Figure 5.Simulation topology for a more realistic environment.

The simulated network topology in Figure 5

consists of one router, one sink and a number of

simulated FTP sources. All flows are divided into

three flow groups (fragile, average, and robust)

based on the instantaneous round trip time of each

flow. The mentioned Orange router maintains a

single flow queue for each flow group, which is a

FIFO queue that stores a pointer to a packet in the

router queue for each packet. The aim of this

topology is to establish a real network environment,

which has many flows with too many RTT’s.

Each FTP source feeds 1000-byte packets into a

single congested link attached to the router. The

TCP ACK packets are 40 bytes long and each

source has a window size of 64 packets. The

capacity of the botleneck link is 10 Mbps with a 5

ms delay to the sink. When the demand is kept

constant, the number of the flows that generates the

demand has a negative effect on performance. We

choose one-way link delays for the fragile, average

and robust sources of 95 ms, 45 ms and 20 ms

respectively. Thus, the fragile, average and robust

flows have round trip times of 200 ms, 100 ms and

50 ms when there is no queuing delay at the router.

The router queue size was fixed at 120 packets

based on published rules of thumb for

accommodating the network bandwidth delay

product. All simulations for this study run for 100

simulated seconds and include an equal number of

fragile, average and robust TCP flows. Half of the

flows in each flow group start at time zero the

second half start at time 2 seconds. For example,

for a 60-flow simulation, 10 fragile, 10 average and

10 robust flows start at time 0, and the remaining

30 flows start at 2 seconds. The first 20 seconds of

simulated time are not considered to reduce the

startup and transient effects. The sum of the

capacities of all the incoming flows is held constant

at 90 Mbps for all simulations in this study

regardless of the number of flows. Thus when the

number of flows are increased the individual link

capacities are proportionally decreased. Unless

specifically specified the values for RED

parameters of minth and maxth are set in such a

way that maxth is three times of the minth.

Our aim by using Orange algorithm is to keep

the aggregate throughput high but the average

packet delay and the average queue sizes low. We

have four sets of simulation; each has a different

minimum threshold value (10, 15, 20, and 25). In

RED, when the average queue size exceeds the

minimum threshold value, queue starts to drop the

incoming packets according with a dropping

probability value based on the calculation of the

maximum dropping probability and the value of the

average queue size. In Orange, when the current

queue size exceeds the minimum threshold value,

queue starts to drop the incoming packets according

the busy – idle status of the alternate drop server.

RED has a maximum threshold value parameter to

drop all the incoming packets when the average

queue size exceeds it. Maximum threshold of the

RED is three times of its minimum threshold

parameter and unless it is specifically specified.

On the other hand, Orange has no maximum

threshold parameter, but it has the parameter, which

is the service time of the alternate server. It is the

busy period between the time that the Orange drops

a packets and the time that the Orange queue will

consider another packet to drop (busy time for

dropping a packet). This time value (Orange Timer)

is not constant, it is exponentially distributed about

a mean average value, which is parameter of

Orange queue type. We have simulated our sample

topology with the values of the service time of the

alternate server from values of 1 second to 10000

seconds in order to test the effect of the service time

to the Orange’s overall performance. As the

Orange’s service time goes to infinity, its operating

behavior approaches the drop tail. With a big

service time, Orange drops a packet and after this

time, it never drops any packets because its

alternate drop server is busy during the simulation

time. The results of the experiments are given in

Table2. Detailed simulation results can be found in

[14].

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1251

The performance parameters that we have

compared RED and Orange are the average

throughput (Kbps), average delay (ms), average

queue size. It is obvious that in most of the regions,

Orange has better performance compared to RED

and Drop Tail especially when the service time of

the alternate server is around from 4 ms to 7 ms.

Orange provides better performance for smaller

timer values as the minimum threshold value

increases.

In Table 2, when the threshold is 10, RED’s

throughput is measured as 9610 Kbps, average

delay, and average queue are measured as 79.18,

and 23.82, respectively. In this set of experiments,

Orange’s minimum threshold value is fixed at 10

packets. It means that Orange starts to drop the

incoming packets when the queue size exceeds 10

packets. Orange’s service time is adjusted from low

values to the high values. When it gets higher,

Orange approaches to work like a DropTail queue.

Orange drops the packet, and it never gets idle

because the service time for that packet is too high

to consider another packet to drop or not. While

keeping the threshold at a fixed level which is 10

for this set of simulations, total throughput

increases, as the service time increases whereas

average delay, and average queue size decrease.

Orange gives better results than RED when

Orange’s timer is adjusted around 6.5, 7 ms.This is

the point where Orange provides higher throughput

values and lower delay values than that of RED. It

is obvious that average delay is directly

proportional to average queue size. It increases as

the average queue size increases.

When the threshold is 15, RED’s throughput is

measured as 9615 Kbps, average delay, and average

queue are measured as 88.26, and 33.83,

respectively when RED’s minimum threshold

value, and maximum threshold value are fixed at

15, 45 respectively. RED’s throughput, average

delay, and average queue are measured as 9606,

80.65, 25.26, respectively when RED’s minimum

threshold value, and maximum threshold value are

fixed at 15, 30 respectively. In this set of

experiments, Orange’s minimum threshold value is

fixed at 15 packets. As we know, RED starts to

consider dropping packets when the average queue

size exceeds its minimum threshold value.

Therefore, as we expect, the average delay and

average queue size are more than the previous

results. Orange gives better results -higher

throughput and lower delay- than RED when

Orange’s timer is adjusted around 5, 6 ms.

When the threshold is 20, RED’s throughput is

measured as 9615 Kbps, average delay, and average

queue are measured as 96.67, and 43.31,

respectively when RED’s minimum threshold

value, and maximum threshold value are fixed at

20, 60 respectively. RED’s throughput, average

delay, and average queue are measured as 9591,

82.40, 26.98, respectively when RED’s minimum

threshold value, and maximum threshold value are

fixed at 20, 30 respectively. Orange’s minimum

threshold value is fixed at 20 packets. Orange gives

better results -higher throughput and lower delay-

than RED when Orange’s timer is adjusted around

4.5 ms.

Table 2. Simulation results

Orange

Timer

(ms)

When MinTh= 10 When MinTh = 15 When MinTh = 20 When MinTh = 25

Avg.

T.Put

Avg.

Delay

Avg.

Q.Size

Avg.

T.Put

Avg.

Delay

Avg.

Q.Size

Avg.

T.Put

Avg.

Delay

Avg.

Q.Size

Avg.

T.Put

Avg.

Delay

Avg.

Q.Size

RED-75 - - - - - - - - - 9615.54 103.78 52.56

RED-60 - - - - - - 9615.53 96.67 43.32 - - -

RED-45 - - - 9615.48 88.27 33.83 - - - - - -

RED-30 9610.84 79.18 23.82 9606.00 80.66 25.26 9591.64 82.41 26.99 9482.20 83.27 28.80

1 9493.04 62.30 7.00 9546.53 65.65 11.23 9560.86 69.41 15.02 9583.09 72.12 19.23

2 9516.54 65.09 7.99 9552.46 70.38 11.97 9561.77 74.39 16.12 9592.58 77.26 20.23

3 9522.86 68.87 9.35 9661.41 73.51 13.56 9585.87 78.04 17.99 9599.21 81.59 22.24

3.5 - - - - - - - - - 9615.48 78.84 24.36

4 9591.63 70.94 11.19 9603.82 74.87 16.43 9611.11 78.83 20.83 9612.87 82.87 25.60

4.5 - - - - - - 9607.86 81.51 21.81 9610.27 84.07 25.62

5 9597.22 69.56 14.59 9610.26 73.04 18.98 9611.19 77.17 23.95 9615.27 81.30 28.38

5.5 - - - - - - 9612.82 82.74 23.57 9614.22 86.47 27.58

6 9606.77 74.24 17.06 9613.37 77.51 21.00 9615.28 81.98 26.22 9615.44 85.95 31.01

6.5 9612.53 77.86 18.71 9613.41 81.04 22.37 9614.90 85.78 27.43 9615.54 89.07 31.65

7 9614.52 84.02 23.24 9615.63 88.56 28.26 9615.35 89.93 30.75 9615.44 93.13 34.45

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1252

8 9615.43 119.81 63.99 9615.53 119.08 93.88 9615.53 118.80 62.90 9615.63 121.48 66.15

9 9615.44 97.18 39.18 9615.64 97.96 40.56 9615.54 99.91 42.76 9615.54 99.75 42.92

10 9615.53 105.42 54.74 9615.44 105.41 54.89 9615.53 105.76 54.73 9615.53 105.02 54.56

50 9615.53 146.67 110.95 9615.43 146.65 110.71 9615.73 146.35 110.72 9615.53 146.35 110.79

100 9615.52 146.87 112.44 9615.53 145.73 111.26 9615.53 146.56 112.02 9615.45 146.81 112.51

When the threshold is 25, RED’s throughput is

measured as 9615 Kbps, average delay, and average

queue are measured as 103.77, and 52.56,

respectively when RED’s minimum threshold

value, and maximum threshold value are fixed at

25, 75 respectively. RED’s throughput, average

delay, and average queue are measured as 9482,

83.27, 28.80, respectively when RED’s minimum

threshold value, and maximum threshold value are

fixed at 25, 30 respectively. Orange’s minimum

threshold value is fixed at 25 packets. Orange gives

better results -higher throughput and lower delay-

than RED when Orange’s timer is adjusted around

4 ms.

When we try to track the change the change in

Orange’s timer optimum value as compared to the

change in the set threshold value, we can fit an

inverse proportional relation to the square root of

threshold (K). For instance, if we compare the

simulation results where the threshold value is 10

with the results where the threshold value is 25,

service time of the alternate server should be

multiplied by .

Thus, to get the optimum value of the alternate

server’s average service time, if we multiply best

service time value where the threshold is 10 with

this coefficient, we can easily see that the result fits

very well with the result where the threshold is 25.

(6.5 ms * 0.632 = 4.10 ms). This last value is the

best service time value of the alternate server where

the threshold is 25.

Consequently, empirically fitting relationship

can be formulated as

 (13)

where “K” is Orange’s threshold value for the best

performance of our simulation.

Hence, we can state that, from the analysis of

the simulation, empirical results suggests with our

used simulation parameters are

 (14)

inmiliseconds. A comparison between the

simulation results and this empirical formula is

given in Table 3.We can easily see that the results

fit well.

Table 3.A comparison between simulation results and empirical formula.

Threshold Applied
Orange's Timer in ms

Best Result from Simulation Calculation from Empirical Formula - Equation (14)

10 6.50 6.32

15 6.00 5.16

20 4.50 4.47

25 4.00 4.00

6. Interpretation Of Empirical

Formula For Determining Orange’s

System Parameters

We have made our experiments for different

threshold values and different service times for

slower server in order to find the best operating

point of our algorithm in a congested network

environment, which includes responsive flows. Our

aim is to find a relation between the values of the

threshold and the service time of the slower server

at the operating point from the experiments and the

mathematical analysis. Şiş [8] studied the optimum

threshold value of an M/M/2 queue where Poisson

arrivals, and exponentially distributed service times

are of interest (when the service rates of both

servers are predetermined). He proved that the first

order approximate value of optimum threshold, is

the largest non-negative integer which satisfies (if

there is no such non-negative integer, it is zero)

1

2

1K

 (15)

This approximate value for the optimum value

of the threshold gives satisfactory result under the

assumption that “μ1” is considerably greater than

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1253

“μ2” and “μ1 >> λ”. Here, the results are approached

as there is a continuous flow of traffic arriving to

the queue with the average rate of “λ” units/time

and similarly μi units/time is the continuous average

out-flow through link i. Therefore, the results are

valid in the systems where memoryless sources like

Possion sources are applied. If “μ1” is not

considerably larger than “μ2”, it is clear that

threshold is nearly zero. When “μ1” is considerably

larger than “μ2”, if “μ1 >> λ”, for optimum

threshold we can use the approximate value in

Equation 15. The only remaining case is the case

where “μ1 >> μ2“, but “(μ1-λ) ≈ 0”. There, actually a

non-zero threshold value occurs which is not

anticipated in our approximation. Although this

afore mentioned analysis can be made to find the

expected delay value to relate it with the threshold

value, this would be restricted to the case where

Poisson arrivals and exponentially distributed

service times are involved.

In order to test our algorithm’s performance in a

network where the responsive flows are dominant,

we use the responsive sources (ftp sources) in our

simulation. Responsive sources probe the available

bandwidth in the network, and they adjust their

sending rate as long as there is no packet loss.

Arrival rate will be almost the same as the service

rate of the server. We can easily say that, in our

experiment “(μ1-λ) ≈ 0”. We need to find an

equation for this case in terms of μ1, μ2, λ, and K

under these circumstances where responsive flows

are involved.

Padhye and his friends [15] develop a simple

analytic characterization of the steady state

throughput of a bulk transfer TCP flow (i.e., a flow

with a large amount of data to send, such as FTP

transfers) as a function of loss rate and round trip

time. Their model captures not only the behavior of

TCP's fast retransmit mechanism but also the effect

of TCP's timeout mechanism on throughput.

In their work, Nt represents the number of

packets transmitted in the interval [0,t] and “Bt

(Nt/t)” represents the throughput on that interval.

Thus, Bt represents the throughput of the

connection, rather than its goodput. They define the

long-term steady-state TCP throughput B to

 (16)

They have assumed that if a packet is lost in a

round, all remaining packets transmitted until the

end of the round are also lost. Therefore they define

p to be the probability that a packet is lost, given

that either it is the first packet in its round or the

preceding packet in its round is not lost. They are

interested in establishing a relationship B(p)

between the throughput of the TCP connection and

the loss probability (p).

In their work, when timeout occurrences are

ignored, B(p) is derived to be;

 (17)

where“b” is the number of packets

acknowledged by a received ACK. In many TCP

implementations, “b = 2”. When timeouts are taken

into account, they derive the B(p) as;

 (18)

By this formula, we can easily observe that TCP

favors the flows with short RTT. It means that

when downloading a file from a closer server, the

download performances will be better. We can

observe that the relationship between loss rate p and

throughput is not linear but an inverse square root

relation! It means when p is increased 4 times,

throughput drops to half.

As we have already shown, while the service

time of the drop server increases, the optimum

value of the threshold decreases in order to achieve

the best operating point. If the service time of the

drop server were too low, the threshold would be

high enough to prevent unnecessary packet drops. If

the threshold were too low, we need high values of

the service time of the drop server to make the drop

server idle after dropping a packet. To use the drop

server for enough times, it must work faster.

Therefore, we can easily say that the optimum

value of the threshold is inversely proportional to

the service time of the drop server. We have found

empirically a relation like;

 (19)

On the other hand, according to [15], we can

state that TCP’s throughput is inversely

proportional with the square root of dropping

probability (P). We can also intuitively claim that

the dropping probability is inversely proportional

with the threshold (K):

 (20)

If we think alternate server as a real server,

departures from it contributes to the total

throughput. Therefore, the service rate of the

alternate server and the throughput can be assumed

that they are directly proportional.

 (21)

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1254

If we use the last two formulas in Padhye’s

simple throughput equation, then we get

 (22)

In general TCP implementations, b value is

fixed as 2 and we can assumed that the RTT is

constant during simulation so without specifying

proportionality constants, we can end up with

 (23)

or, alternate server’s service time is inversely

proportional with square root of threshold (K):

 (24)

We can just conclude that, empirically the best

value of the service time is inversely proportional

with the square root of the threshold value applied

as we have already stated in Equation 13.

Furthermore, if we can estimate as “a rule of

thumb”, the best value of μ2 departing from the

capacity of the main (bottleneck) link, it can be

estimated in the order of “1/10” to “1/5” of the

capacity of the main link. By using our empirical

formula, we can try to find an optimal threshold (K)

value. This finishes selecting Orange parameters

that gives the best operating point. This parameter

estimation procedure is much simpler, effective,

and more meaningful than the tuning the complex

RED parameters.

The other way around, if we take the threshold

value of Orange departing from the minimum

threshold value proposed for RED implementers,

we can easily calculate the best optimum value of

Orange’s timer for the best performance of active

queue management.

Explanation of this relates the drop server to

behave like a TCP friendly source. The implication

of this can be very meaningful. Mentioning TCP

friendliness in general means reacting to congestion

in the same way as TCP, considering only Triple

Duplicate (TD) packet loss occurrences that result

in TD, this would mean to be conformant with the

throughput equation (16). We have demonstrated

that our empirical result is in accordance with the

equation (16), therefore suggesting the TCP

friendliness for the best operating conditions.

However, keeping in mind that alternate server’s

output is, in return as retransmission, a load for the

original sender (TCP source), they will be part of

the offered load, hence throughput is in relation

with alternate server’s link capacity or service time.

7. Conclusions

The main contribution of this work is to present

an IP level congestion control mechanism to control

the performance of a traffic network at the node

level. In this work, a new active queue management

algorithm called Orange is designed and evaluated.

The main idea behind Orange comes from the

analysis of two heterogeneous servers and one

queue with a threshold-based queuing system in

order to achieve both higher throughput and lower

queuing delays. By using the threshold type policy

and the use of virtual drop server, we have

proposed a new approach to drop or mark packets

when the congestion will likely occur. The primary

performance parameter is the mean number of

customers in the system, and accordingly the

average waiting time per packet as well as the

throughput of the network.

In addition, we consider finding out an

empirical relationship between the system

parameters of our algorithm using the mathematical

analysis. Simulation results are used to tune up the

empirical formulation. By achieving this aim, we

consider to use a virtual drop server to drop the

incoming packets when the actual queue size

exceeds a threshold level. The only adjustable

parameter based on the changing conditions of the

network is the service time of the virtual drop

server. Since for many applications, this service

time is not usable, we consider it an important and

distinguishing characteristic of our work.

Moreover, we provide an efficient solution of a

threshold based queuing system with two

heterogeneous servers and one queue.

This study confirms that generally Orange

performs better than RED due to the fact from

simulations that it results in higher throughput

values and lower queuing delays (thus the lower

mean waiting times per packet) for the networks

with heterogeneous flows. Orange simulations

indicate that Orange requires less parameter settings

than RED.

We can propose that Orange replaces RED as an

active queue management algorithm to decide

which packets are to be marked to indicate a

congestion condition for the current Internet

routers. We still chose to drop them to warn TCP or

TCP friendly sources (responsive or adaptive)

against that possible congestion situation. While

doing so, we tune Orange parameters such that

Orange’s drop server acts like a TCP friendly

source as depicted in (24). Since dropped TCP

packets by the virtual drop server will be re-sent as

offered load to the system. Drop server can be

considered as a virtual source to the network.

G. CATALKAYA AND M.K. SIS / IU-JEEE Vol. 10(2), (2010), 1243-1255

1255

8. References

[1] K. Ramakrishnan, S. Floyd, “A Proposal to add

Explicit Congestion Notification (ECN) to IP”, RFC

2481, Proposed Standard, 1999. Retrived May 2009 from

http://www.rfc-editor.org/info/rfc248.

[2] S.Floyd, V.Jacobson, “Random Early Detection

Gateways for Congestion Avoidance”, IEEE/ACM

Transactions on Networking, vol: l, no: 4, pp. 397-413,

1993.

[3] W.Feng, D. Kandlur, D.Saha, K. Shin, “A Self-

Configuring RED Gateway”, Proceedings IEEE

INFOCOM '99, vol: 3, pp. 1320-1328, 1999.

[4] T. J.Ott, T. V.Lakshman, L. H. Wong, “SRED:

Stabilized RED”, Proceedings IEEE INFOCOM'99, vol:

3, pp. 1346-1355, 1999.

[5] D. D.Clark, W.Fang, “Explicit Allocation of Best

Effort Packet Delivery Service”, IEEE/ACM

Transactions on Networking-TON,vol: 6, no: 4, pp. 362-

373, 1998.

[6] R.Pan, B. Prabhakar, K.Psounis, “CHOK, A Stateless

Active Queue Management Scheme for Approximating

Fair Bandwidth Allocation”, Proceedings IEEE

INFOCOM 2000, vol: 2, pp. 942-951, 2000.

[7] C.V.Hollot, V. Misra, D. Towsley, W. Gong, “On

designing improved controllers for AQM routers

supporting TCP flows”, Proceedings IEEE INFOCOM

2001,vol: 3, pp. 1726-1734, 2001.

[8] M. K. Şiş, A Dynamic Local Congestion Reducing

Strategy Based on a Mini-Max Criterion. USA;

Polytechnic Institute of New York University, Ph.D.

Thesis, 1994.

[9] G.Çatalkaya, Simulation of a Local Congestion

Reducing Routing Strategy for Multidestination

Networks. Izmir; DokuzEylul University, Engineering

Faculty, Msc. Thesis. 2003.

[10] J. Morrison, “Two Server Queue with One Server

Idle below a Threshold”, Queueing Systems: Theory and

Applications, vol: 7, no: 3-4, pp. 325-336, 1990.

[11] L.Kleinrock,Queueuing Systems. vol I. Wiley,1975.

[12] L. Le, J. Aikat, K.Jeffay, F. D.Smith, “The Effects of

Active Queue Management on Web Performance”, ACM

SIGCOMM2003, pp. 265-276, 2003.

[13] Z. Zheng, R. E. Kinicki, “Adaptive Explicit

Congestion Notification Techniques for Heteregeneous

TCP Flows”, Computer Science Technical Report Series,

2001.

[14] G. Çatalkaya A New Approach to IP Level

Congestion Control. Izmir; DokuzEylul University,

Engineering Faculty, Ph.D. Thesis, 2011.

[15] J. Padhye, V. Firoiu, D. Towsley, J. Kurose,

“Modeling TCP Thrughput: A Simple Model and its

Empirical Validation”, ACM SIGCOMM 1998,vol: 28,

no: 4, pp. 303-314. 1998.

Note:
Malik Kemal ŞİŞ has received his BS and MSc degrees

in Electrical Engineering in 1978 and in 1980,

respectively, both from Istanbul Technical University. In

1994, he has received his Ph.D. in EE from Polytechnic

University in New York. After gradution he has been

employed as Networking design consultant for several

private companies. Since 2001 he has been working for

Dokuz Eylül University in Computer Engineering

department as a member of faculty. His major research

interests are Netwok control, Performance analysis,

Digital Audio Processing and Quantum Computation.

Gökhan ÇATALKAYA has received his BS, MSc and

Ph.D. degrees in Electrical & Electronics Engineering in

1999, 2003, 2011 respectively from Dokuz Eylul

University. He has been working in a private company as

an engineer since 1999. His main interests are

networking, congestion control, network performence,

and processor sharing.

http://www.rfc-editor.org/info/rfc248
http://libra.msra.cn/Journal/7.aspx?query=Explicit%20Allocation%20of%20Best%20Effort%20Packet%20Delivery%20Service
http://libra.msra.cn/Journal/7.aspx?query=Explicit%20Allocation%20of%20Best%20Effort%20Packet%20Delivery%20Service
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Hollot,%20C.V..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Misra,%20V..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Towsley,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Towsley,%20D..QT.&newsearch=partialPref
http://www.google.com.tr/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.sigcomm.org%2Fsigcomm2003%2Fpapers.html&ei=y3R3Tb6nEc3xsgaX4JiOBQ&usg=AFQjCNEPOHk8Zq07x0c8-Fg0sD_j1UQcBg
http://www.google.com.tr/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.sigcomm.org%2Fsigcomm2003%2Fpapers.html&ei=y3R3Tb6nEc3xsgaX4JiOBQ&usg=AFQjCNEPOHk8Zq07x0c8-Fg0sD_j1UQcBg

