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Abstract: This paper presents a novel and superior Genetic Algorithm (GA) based resolver for Optimal Power flow 

(OPF) problem. Here, the main contrast to other Genetic Algorithm based approaches is that a novel expert based 

initial generation of population and adaptive probability approach (variable Cross over probability and mutation 

probability) is adopted in selection of offspring together with roulette wheel technique which reduces the computation 

time and increases the quality considerably. Selection and Placement of Shunt Devices are considered as a variable in 

this novel approach. Here continuous variables like Voltage Profile and discrete variable like transformer tapings are 

considered while minimizing the Fuel cost. The results obtained on standard IEEE 14 bus and 30 bus systems is 

compared with simple Genetic Algorithm and Particle Swarm Optimization (PSO) to Optimal Power flow and is found 

that this approach is more efficient, robust and promising. 

Keywords: Adaptive probability, Optimal Power Flow, Genetic Algorithm, Genetic Operators, Power system 

Optimization. 

 

1. Introduction 
 

The rapid deregulation and restructuring of power 

system piloted increased complexity of the network 

and posed new challenges for a reliable and powerful 

mathematical modeling and control in Power System 

Energy Management. The optimal power flow has been 

attracting the researchers for long and wide use of 

semiconductor devices and qualms on security and 

quality of Power has added more shine to it. More over 

the competitive market looks for more and more profit 

based business in deregulated scenario and each 

operator works for maximum profit margins, which 

cannot permitted at the cost of Social and 

Environmental aspects which lead to the establishment 

of central authority and techniques to analyze the status 

of network. The requirement of an efficient and secure 

modeling has led to inevitability of Optimal Power 

flow (OPF) in Power System Operation, Control and 

Planning in energy management system (EMS).   

Optimal Power flow (OPF) is a highly Non-linear, 

Non-convex, large optimization problem which solves 

for the best settings of the control variables for 

optimized Power flow with multiple equality and 

inequality constraints together with continuous and 

discrete control variables.  Since years, the first 

approach to OPF has been made by J Carpentair in 

1962 and much of the considerable developments are 

marked in [1-3]. Classical approaches contained 

‘Newton Method’ which suffered from slow 

convergence at higher roots, ‘Gradient Method’, 

‘Linear Programming’, ‘Mixed Integer Linear 

Programming’ methods which required linearization of 

the objective function and non-negative control 

variables by taking incremental changes over an 

operating point, lead to mediocrity and inferior 

accuracy. All above methods had difficulty in handling 

large number of different constraints. ‘Non-Linear 

Programming (NLP)’, ‘Semi-definite programming’,  

and ‘Quadratic programming’ emerged as special NLP 

methods whose objective function is a quadratic 

equation and constraints are linear functions and 

‘Decomposition method’ is reported in [4]. Much 

extension of classical methods emerged as ‘sequential 

quadratic programming’, ‘Sequential linear 

programming’ and ‘homogenous linear programming’. 

The approach based on Non-Linear programming uses 

the Karush-Kuhn-Tackeroptimality conditions. Later 

higher models of 'Interior Point Method’ (IPM) 

emerged as predictor–corrector, multiple centrality 

corrections and non-interior point method based 

unlimited point algorithm and the complementarity 

method found to excel more. The ‘primal-dual integer 

programming’ of ‘Semi-definite programming’ has 

found to the best advantage of not having to calculate 

the Jacobian and Hessian matrix.  

As OPF being multi-model in nature, all these methods 

had the shortcoming of settling in a local minimum 

than a global optimal solution and being a much of 

approximation and dependent on continuous variables, 

designing with discrete variable became a concern. 
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The application of Artificial Intelligence, Meta-

heuristics and Evolutionary based solutions emerged to 

unravel these constraints and much research is being 

done on Evolutionary methods and in depth Fuzzy 

modeling and fuzzy mathematical programming has 

been discussed by V. Miranda et al. and Y. Terasawaet 

al.(1992).‘Artificial Neural Network’ based and 

‘Genetic Algorithm’ and much tailored adaptations of 

it have been discussed in Section IV.  Meta-heuristics 

based Optimization proved to be an another 

prospective option and various natural observable facts 

were mimicked like the animal flocking and ‘fish 

schooling’ and‘Particle swarm Technique’, the way the 

ants communicate, transfer and store food was 

impersonated to build as ‘Ant colony’ based OPF, and 

imitate how the metals gets annealed and the revisions 

from a hot metal to a strong Cold meal developed in 

‘Simulated Annealing’&‘Tabu Search Algorithm’. 

Much comparison of the optimization methods has 

been marked in [5] and a good comparison of AC and 

DC power flows can be found in [6].      

     Further, growth of Power systems have opened a 

new domain, where consumer not only look for 

uninterrupted power, but also for the quality of the  

power, lead to Introduction of security constraints to 

maintain  the system in secure mode free from 

contingencies and lead to the prerequisite of software 

packages for ‘Security constrained Optimal Power flow 

(SCOPF)’. Latest developments include algorithms for 

real-time implementation of OPF based on Unlimited 

Point Algorithm with Message Passing Interface and 

Parallel Virtual Machine techniquefor distributed 

implementation which in explains the OPF 

implementation in real time.  

    Researchers have been working on Classic Optimal 

Power flow of Single objective function. However 

advancements in Power system lead to inevitability of 

Multi-objective OPF. Much of the work has been done 

in Multi-objective Optimal Power flow is on the 

reduction of Generation cost (Minimization of fuel 

cost) and reduction in Real power losses under given 

load condition and without violating the bus voltage 

and other constraints. With growing concerns on 

environmental protection objective functions like 

reduction in Environmental impact reduction and 

Social welfare has gained velocity. A much singular 

and exciting work has been done by KhaledZeharet al. 

in (2008), which considers the environmental 

protection factor viz, Harmful ecological effects caused 

by the emission of gaseous pollutants like sulfur 

dioxide (SO2) and nitrogen oxides (NOx) reduction by 

load adequate distribution between power plants. Much 

work has been discussed by DeqiangGaet al (2000) 

about Stability constrained Optimal Power flow; 

‘transient stability’and other stability constraints like 

‘voltage stability’, ‘rotor angle stability’ limits, ‘tie-line 

stability’ limits and others, has been discussedby 

DeqiangGanet al., (2000). Increasing demand invited 

efficent transfer of Power and the development of High 

power semiconductor devices lead to the introduction 

of Flexible AC Transmission system (FACTS), first 

introduced by Hingorani. Optimal Power flow with 

FACTS modeling has been discussed by Prasad pathyet 

al.[80] and finally a hardware software co-design for 

optimal power flow using Field Programmable Gate 

Array (FPGA) has been reported by Murachet al. in 

[81].  

      Widely used objective function is the fuel cost 

minimization. Some other objective functions are 

reduction in Environmental impact, Social Welfare 

factor, Minimizing load shedding (2001), maximizing 

system performance, reducing magnetic field by 

LucioIppolitoet al., (2008), minimizing real and 

reactivepower losses, maximizing power exchange 

between other operators, minimize heat and loss at 

generator, minimize transmission losses or can be 

maximization of reliability and security level of the 

systemwith thermal constraints, Interface constraints 

(stability) and Spinning reserve constraints. 

    The present paper is organized as 7 sections. Section 

I and Section II deals with the Introduction and 

Literature overview. Section III gives a view of 

Optimal Power flow problem origination; Section IV 

presents a general outlook of the Genetic Algorithm 

approach. Section VI offers information on the new 

approach in GA which has been adopted in this paper. 

Section VII gives comparative results of the new 

algorithm and summarizes its supremacy over other 

algorithms.  

 

2.1. Problem Formulation 
 

Optimal Power flow can be defined as a exploration for 

the finest settings of continuous and discrete variables 

to attain a certain objective, herein, the minimization of 

generation cost. In this paper, the approach is 

formulated by minimizing the Generating cost ($/MW) 

 

 
, where i = 1 to n (Equality constraints) 

where j = 1 to m (Inequality constraints) 

where ‘u’ is the set of controllable quantities, which 

can be adjusted by the operator like Generator Active 

Power output, Generator voltage, Transformer settings 

and Capacitor settings. ‘x’ is the set of state quantities 

like voltage magnitude at load bus and Slack bus power 

and reactive power at each generator & Line Flows.  

General Fuel cost objective function is represented as 

      (1) 

whereNgis the number of generators including the slack 

bus. Pgiis the generated activepower at bus i. Ai, Biand 

Ciare the unit costs curve constants for i
th

generator. The 

real splendor of the Optimal power flow lies in 

minimizing the objective function collectively 

satisfying the equality constraint and making certain 

that inequality constraints are not to surpass at any 

time.  

 

3. Equality Constraints 
 

Optimality of the power cannot be at the cost of 

essential necessities as the power generated should be 

able to supply the maximum load and the various 
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losses in transmitting. These constraints are together 

termed as equality constraints and normally the power 

flow equation needs to be satisfied 
n

Gi loadi i j ij ij ij ij

j=1

0=P -P -V V (G cosδ +B sinδ ) (2) 

n

Gi loadi i j ij ij ij ij

j=1

0=Q -Q -V V (G sinδ -B cosδ ) (3) 

where, i =1 to n, and ‘n’ is the number of buses in the 

system. PGiand QGi are active and reactive power 

generations at bus-i, Ploadiand Qloadiare corresponding 

active and reactive load demands. Here Fast decoupled 

(FDC) optimal power flow method is adopted for faster 

convergence.  

 

4. In-equality Constraints 
 

The inequality constraints selected are: Generator bus 

upper voltage limits and lower voltage limits (Vi
min

≤ 

Vi≤ Vi
max

) at every bus. Active power limits at 

generator buses (Pgi
min

≤ Pgi ≤Pgi
max

), Reactive Power 

limits at generator buses, Bus injections (Qgi
min

≤ Qgi 

≤Qgi
max

) limits, Tap changing limits, Maximum 

loadability and size of capacitors are considered under 

Inequality constraints.  

 

4.1. Constraint Handling 
 

Constraints are handled either by preserving the only 

one feasible solution or rejecting the solution when 

there is a violation of the search space.  But a 

compensatory addition to the objective function is 

adopted, when the violation takes place in the search 

space making it more feasible. Any infeasible solution 

can be converted to a probable feasible solution by 

generating the control variables again.  

 
(4) 

where , is the value of worst feasible solution 

together. Much detailed literature on constraint 

handling using penalty based function is done by 

vardarajanet al. (2008). 

 

3.2. Tables 
 

Captions of tables should be aligned above the 

tables, in 9-point font, single spacing. The word 

"Table" and the successive number with the full-stop 

symbol (".") must be written in bold. Below each table 

and above its caption should be 1 blank line spacing 

(10-point). The caption should be separated from the 

table by one 9-point empty line. Tables must be cited 

consecutively in the text, e.g. "Table 1". 

 

5. Conventional Approach 
 

Genetic Algorithm (GA) became popular with the 

much inspired works of John Holland in early 1970s 

and much of the basic information on algorithms and 

methods are reported in [7-12]. GA refers to finding 

solutions in a search space by generating a sequence of 

individuals, where each one can be a probable solution. 

The quality of solution is improved by generating 

newer and better population using genetic operators. 

Genetic Algorithm proved to be an opportunity when 

all conventional algorithms had the drawback in 

modeling discrete variables and of prematurely 

convergence in a local minimum than at a global 

minimum due to its parallel processing capabilities 

[13]. GA refers to stochastic algorithm, with 

competences of exploring many peaks parallel using 

probabilistic approach and provides better quality 

solutions than deterministic approaches. GA doesn’t 

anticipate a much ‘well behaved’ objective function 

and allows simple discontinuities and non-linearity 

which are difficult to model in mathematical 

programming methods. Hence ‘non-linear’, ‘non-

convex’, ‘non-differential’ objective functions are 

found to receive quality solutions using this method. 

GA exchanges data between the peaks there by much 

reducing the chances of being trapped in a local 

minimum. The constraints are modeled as a string of 

data referred as ‘chromosomes’ or ‘genotype’either in 

‘binary’ or ‘real-coded’ and the genetic operators 

include ‘Cross-over’, ‘Mutation’ and ‘Reproduction’. 

Each parent who is most likely to contain a better 

fitness solution is nominated for reproduction by 

exchange of string which emulsifies its characteristics 

and offspring’s are produced which contain strings of 

both parents which help in exploring newer search 

spaces.  

     Crossover can be a single point or multiple point 

crossovers and a uniform cross-over strategy is 

implemented in this paper. A sudden and drastic 

change in the character is introduced in offspring by 

randomly changing a bit of string to prevent the 

solutions being trapped in local minima and to prevent 

all offspring from inheriting similar characteristics. The 

operator ‘reproduction’ is based on Darwins’ theory of 

‘survival of fittest’, which refers the natural theory that 

only the fittest, survives and other perishes. More 

generations owe a better qualified solution. Much 

differentiation of GA with other evolutionary 

algorithms for power flow applications can be found in 

[14-21].  

 

6. Proposed Approach 
 

   The conventional Genetic Algorithm approach has 

the serious disadvantage of a blind generation of initial 

population, which ended in larger search space area, 

prolonged computation time and mediocre solutions. 

The inferiorly fit individuals too actively participate 

which leads to higher computational time for 

evaluation and convergence into global solution. As the 

mutation probability is constant in conventional GA for 

all the individuals, the chances of good fit individual 

getting distorted and degraded to a lower band are 

more. Here a novel approach is adapted in selection of 

initial population and in Genetic Operators which are 

explained in detail in the following sessions. 

 



M. BHASKAR  et al. / IU-JEEE Vol. 10(2), (2010), 1257-1266 
 

  

 

 

1260 

 

6.1. Representation of Individual 

 
Each of the strings in the population represents a 

probable solution. Depended on either binary coded or 

real coded, the strings are designed, as a set of 

filaments which moulds as chromosomes. The size of 

the chromosome is decided in concurrence with the 

accuracy of the solution required and each variable is 

allotted specific binary capacity to represent 

themselves, which in-turn with all the variables 

together form the string representing the chromosome. 

Each individual in the chromosomes consists of control 

variables and discrete variables represented as, 

 
    Control variables are modeled as being continuously 

varying, are narrowed to the lower and higher limits 

while discrete variables are sculpted by taking 

particular step size. Continuous controls taking values 

in the interval [ui
min

, ui
max

]  
max min

min i i
i i ili

u -u
u =u + DV

2 -1

 
 
    (5)

 

 

Discrete controls taking M values ui
1
,ui

2
…,ui

M 

m

i iu =u  , with 

ili

M
m=int DV +1.5

2

 
 
 

      (6) 

 

whereDVi is the decoded value of control variable ui 

from li bits and ‘li’ is the gene length (number of bits) 

used for encoding the variable uifor i
th

 control variable. 

Each chromosome represents a set of control variables.  

 

6.2. Variables 

 
   Variables namely continuous control variables and 

discrete control variables are modeled as below in fig. 

1. The continuous control variables include generator 

active power outputs except slack bus power, generator 

voltage magnitudes, and discrete control variables 

include transformer tap settings and switchable shunt 

devices. 

 

PG2 …. PNG   VG1…    VNG   T1…  ……TNT   

b1….bNC

 
Figure. 1.Encoding design of a chromosome 

 

 

 

6.3. Expert Based Initial Generation 
 

   In conventional GA, the entire population is 

generated randomly. In proposed method, 

chromosomes are generated randomly as customary in 

the first generation and based on their fitness the most 

significant bits are transferred to lowest fitness of 

chromosome as illustrated below.  

Chromosome1: 

                       Most Significant bits 

 

 

1 0 1 1 0 0 1 1 

Chromosome2: 

1 1 0 0 0 1 0 0 
 

 

                        Most Significant bits 

Figure. 2a. Conventional Generation method 

 

The decoded value depends on most significant bits 

and hence, the most significant bits of chromosome 

having high fitness are transferred to chromosome 

which is having low fitness. In the Fig. 2, the first 

chromosome has a decoded value of 0.7019 and the 

second chromosome offers 0.7686. This can be 

illustrated using simple Sin(x) maximization problem, 

consists of x limits from 0 to 180, a string length of 8 

and the fitness of Ch1 = 0.8104 and Ch2 = 0.6715. 

Then,  

Fit (Ch2) < Fit (Ch1) 

The most significant bits of Ch2 are replaced with the 

most significant bits of Ch1 produce a chromosome as 

below.  

Chromosome1 (New): 

                       Most Significant bits 

 

 

1 0 1 1 0 0 1 1 

Chromosome2 (New): 

1 0 1 1 0 1 0 0 
 

                        Most Significant bits 

Figure. 2b. Proposed Initial Generation method 

 

The direct fitness values for the new chromosomes are 

0.8104 and 0.803 respectively which endorses the 

considerable improvement using the new technique, 

which is adopted throughout in the proposed algorithm.  

 

The algorithm for n chromosomes is as below: 

A. Generate two chromosomes calculate the 

decoded value and fitness of each 

chromosome. 

B. Based on fitness, change most significant bits 

as explained above 

C. Begin i=3 to psize(= n) 

Ch(j) = rand int (j, string length) 

D. Calculate fitness of i
th

 Chromosome.  

E. If fit (i) > fit (i-1), change most significant of 

previous chromosomes with i
th

 chromosomes, 

ELSE 
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F. Change Ch(i) most significant bits with Ch(i-

1) 

G. End of i
th

 loop 

This is how an initial population with better fit values 

is generated without much additional computational 

burden. This aspect undoubtedly improves the 

convergence of GA.  

 

6.4. Fitness and Probability 
 

Fitness is derived from the evaluated objective 

function of the available chromosomes. Here, the 

objective is a minimization problem and hence the 

fitness is the reciprocal of evaluated objective function, 

as we tend to minimize the fuel cost. If any constraint 

violates, the fitness function is modified using 

constraint handling method which is discussed in 

Section III.  In this approach proper penalty factors are 

to be selected judiciously by the operator. Operators 

experience & Suitability of the selected penalty factors 

will have significant influence on the speed of 

convergence. To overcome this disadvantage a method 

reported in [84] is used. The , is the value of 

worst feasible (least fitness) solution together with the 

overall constraint violation of solution. The overall 

constraint violation integer is the sum of the total 

inequality constraints violated.  

 

6.5. Elitism 

 
Elitism prevents from losing best individual received 

so far as we move to further reproduction. Depending 

upon the fitness values, 20% of the total population are 

selected as best fit and is promoted to next generation. 

Before implementing the elitism, arrange the 

chromosomes in descending order. 

 

6.6. Chromosome Selection 

 
  The Roulette Wheel technique is adapted for the 

selection of Parents. The cumulative fitness (FitSum) is 

evaluated for the chromosomes, after arranging in 

descending order according to the fitness.  A random 

number is generated in-between 0 and on order of their 

fitness values. The cumulative sum of the 

chromosomes starting from 1
st
 chromosome is 

compared with the generated random number and 

whenever this sum exceeds the random value, then that 

chromosome is selected as parent. In existing approach 

of parent selection by Roulette Wheel technique, there 

is a possibility of random number, generated between 0 

to ‘fitsum’, may fall near to ‘fitsum’ and there is a 

chance to pick up the chromosome with poor fit value 

as a parent chromosome. This causes slow convergence 

in next generation of GA & may take more solution 

time. Further observation is that after 4 to 5 

generations, most of the additional iterations or 

generations are required to force the dejected 

chromosomes to reach better fit.  

These drawbacks can be considerably reduced in the 

proposed approach. In this approach, after the 

minimum 3 to 4 iterations, a random numbers is 

generated between 0 to  and the process is 

continued as usual. This could help to pick up 

chromosome with better fit as ‘parent chromosome’ in 

new iterations. This would force the algorithm to have 

fast convergence without any sacrifice on the quality or 

accuracy of final solution.  

 

6.7. Chromosome and Mutation 
  Mutations are essential to develop more athletic 

generations and are induced by a sudden 

change/inversion in a bit of chromosome. Cross over 

allows transferring the parental traits to the offspring’s 

by partially transferring the genes. Crossover can be a 

uniform crossover, random cross over; single point or 

multiple point crossovers.  A uniform cross-over is 

adapted in this algorithm. The cross over probability 

(Pc) is limited from 0.5 to 1 and Mutation probability 

(Pm) from 0.001 to 0.05 

In the conventional approach, the probabilities of 

crossover and mutation are constant then solution with 

high fitness and low fitness values are subjected to 

same level of mutation and crossover, which leads to 

the convergence of the solution in a local optimum.  

    The above problem is overcome by changing Pc and 

Pm depending on their fitness values. For high fitness 

the Pc and Pm must be low and vice-versa. Then the PC 

can be taken as 

/ ( )    (7) 

where f is highest fitness of two chromosomes selected, 

fmaxis the maximum fitness and favgis the average 

fitness. Similarly the Pm  is also taken as  

/ ( )   (8) 

where f is the fitness of chromosome selected. 

This two equations will offer PC and Pmmore 

appropriately.  

The improved strategy is,  

a. when f’=f=fmax then Pc = Pm = zero   

b. If f’=f = favg  Pc=k, and Pm=k2 

Now, if f <favg and f <favg then Pc and Pm might be of 

larger value, a modified equation is formed as            

/ ( );     f’ ≥ favg  …….. 

(9) 

Pc = k3, f’ <favg 

/ ( ); f ≥ favg …….. 

(10) 

Pm = k4, f <favg 

k1, k2,k3,k4 values are 1, 0.5, 1, 0.5 respectively [22].  

When fitness value tend to less than or equal to 

favg,chromosomesare enforced to undergo crossover 

and mutation. When the individual fitness of each 

chromosome attains the maximum fitness, then cross 

over PC and Pm  will tend to be zero, in such case, the 

global optimal solution may not be attained, which 

necessitates the modification of PC and Pm . If PC1, PC2; 

and Pm1, Pm2 are values evaluated for two selected 

chromosomes (9) and (10), then the modified values 

are given by 

/ 

( );    where,  f ≥ favg      (11) 

PCnew = PC1, where, f <favg 
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/(

)        (12) 

where  and f1, f2are fitness of first and 

second chromosomes. The above approach could avoid 

chance of reaching local optimum & allow it to reach 

global optimum. 

 

6.8. Shunt Capacitor Placement using 

Quadratic Power Flow 

 
  The converged voltages, phase angles and power 

flows at each bus are obtained using the Quadratic 

Power Flow Method [23]. The optimal locations of the 

capacitors are found using the Quadratic Fast 

Decoupled Load flow based index (FDLFI) values.  

The active and reactive power injections at bus-p bus 

are given by eqns.  





n

1q

pqpqpqqpp )θcos(δYVVP (13) 





n

1q

pqpqpqqpp )θsin(δYVVQ  (14) 

wherepq=p -q .    
n n

p p p q pq pq pq p q pq pq pq

q 1, p q 1, p

2

p pp pp

P Q V V Y cos(δ θ ) V V Y sin(δ θ )

V (G B )

   

    

 

 

  

(15)

 

This is of the form   

0CBVAV p

2

p     (16) 

where )B(GA pppp  ;   





n

p1,q

pqpqpqq

n

p1,q

pqpqpqq )θsin(δYV)θcos(δYVB   

(17) 

)Q(PC pp  ; Pp= PGp- Ploadp ;Qp  =QGp - Qloadp       

(18) 

 

The following sets of equations are adopted for the 

Quadratic Fast Decoupled Load Flow method.  

  ΔP V B' Δδ  
from FDLF model (19) 

0CBVAV p

2

p                 (20) 

Eqn. (19) provides Phase angle corrections bus voltage 

angles and with updated angles and (20) provides bus 

voltage magnitudes. Here, load flow solution exists 

only if the ‘discriminant’ is greater than or equal to 

zero which implies that (B
2
-4AC ≥ 0), which in turn 

serves as a voltage stability indicator (VSI), 

determining the proximity of the system to voltage 

collapse. A high value of (B
2
-4AC ≥ 0) indicates a 

stable system and low value implies a voltage collapse. 

Further, the voltage stability index is obtained just as 

an integral part of the load flow solution and no 

additional calculation is required for determination of 

voltage stability indices.  

Voltage stability Margin (VSM) = B
2
- 4AC    (21) 

Voltage Stability Index = (VSM) / (Max (VSM))  (22) 

The index tends to vary from 0 to 1 and the bus with 

minimum index is found to be the best location for 

placing the shunt capacitor.  

 

6.9. Termination Condition 

 
  The algorithm is designed to terminate when the 

fitness of all chromosomes are equal or when the 

maximum iteration limit is attained. A detailed flow 

chart of the proposed algorithm is given in fig. 3  

 

 

7. Algorithm and Simulation 

 
    The proposed Genetic Algorithm (PGA) is tested on 

standard IEEE 14 and 30 bus systems and are 

compared with Simple Genetic algorithm (SGA) and 

Particle Swarm Optimization (PSO) algorithm. IEEE 

14 bus test system consists of 5 generators, 20 lines, 3 

transformers, 1 shunt device and a total active power 

load of 259 MW. IEEE standard 30 bus test system 

comprises of 6 generators (including slack bus), 30 

buses, 41 branches, 4 tap changing transformers, 2 

shunt reactors, 5 shunt capacitors placed at optimal  

location (after Base Case Power Flow) and with a load 

of 283.14 MW. The complete algorithm has been 

implemented in Matlab platform using a C2D 2 GHz 

processor.  

On comparative analysis with available algorithms, the 

proposed method is proved to be a very promising 

development. Detailed results are given in following 

Tables I, II and III.  
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Acquire Data of variables:  Line, 
Bus Data, Shunt & Transformer 

data etc.

Run Base Case Power Flow
(Identify the optimal Location of 

Capacitors)

Generate Population using 
Expert based initial generation 

technique. 

Decoding and Enforcing the limits

Run QFDC Power Flow

Acquire data: 
Power Flow, Slack Bus, Voltage 
Magnitude and Phase angles

Is System Secure?
(MVA, V, etc.)

Calculate Fitness

Generate New 
Chromosome

Increment 
Generation Loop

Calculate Genetic 
Operators, Parent 

Selection, Cross-over, 
Mutation, Elitism etc.

Store Data

Convergence 
Criteria 

Satisfied?

Increase Chromosome 
Number

Calculate the 
Objective

Y

N

Y

N

Impose the variable 
PC and PM

Initialize the Chromosome Count 
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           Figure. 3. Basic Flow Chart of the Process 

 

 
      Figure. 4. IEEE 14 Bus test system  

     (Courtesy: University of Washington) 

 
. Fig. 5 IEEE 30 Bus test system 

(Courtesy: University of Washington) 

 

Table 1.Results on a standard IEEE 30 bus sytem 

System 

(30 bus) 

SGA-

VP* 
SGA PSO

+
 PGA PGAVP

*
 

Time 

(secs) 
69.43 47.39 36.26 29.96 21.17 

Iterations 73 41 84 24 21 

Time/Iter 0.95 0.91 0.431 1.25 0.53 

Fuel 

Cost 

($/MW) 

802.85 802.88 802.64 802.6 802.96 

*
SGA-VP: simple GA without Variable probability 

*
PGAVP: proposed GA without variable probability 

+
 Termination Criteria as of GA 

 

Table 2.Results with various Npop 

Npop 
PG2(M

W) 

PG5(M

W) 

PG8(M

W) 

PG11(M

W) 

P13(M

W) 

Los

s 

(MW) 

100 49.17 20.87 23.18 11.95 12.37 9.37 

60 48.96 22.01 21.35 10.96 12 9.4 

30 48.92 20.52 26.65 13.74 12.85 9.47 

 

Table 3.Comparison using various Algorithms 

Control 

Variables 

Base 

Case 
SGA PSO PGA 

PG2 (MW) 80 49.34 48.83 48.96 

PG5 50 21.93 21.13 22.01 

PG8 20 22.96 20.27 21.35 

PG11 20 12.78 12.37 10.96 

PG13 20 12.1 12.8 12 

VG1(pu) 1 1.05 1.05 1.05 

VG2 1 1.01 1.044 1.06 

VG5 1 1.09 1.043 0.99 

VG8 1 1.04 1 0.972 

VG11 1 1.08 1.02 1.02 

VG13 1 1.02 1.01 1.01 

Tap6,9(pu) 1 0.96 0.9 1.02 

Tap6,10 1 1.05 1.1 0.92 
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PGA

SGA

PSO

Tap4,12 1 1.012 1 0.95 

Tap27, 28 1 1.02 1.025 1.03 

Shunt14(pu) 0 0.02 0.03 0.02 

Shunt16 0 0.04 0.05 0.01 

Shunt23 0 0.02 0.04 0.03 

Shunt25 0 0.01 0.01 0.01 

Shunt26 0 0.03 0.02 0.01 

Shunt29 0 0.01 0.05 0.01 

Shunt30 0 0.01 0.02 0.02 

Losses 6.1787 9.66 9.51 9.4 

(MW)     

Cost 

($/MW) 
902.92 803.15 802.64 802.66 
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      Fig. 6 Objective function on various trials in IEEE 

14 bus system 
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Fig. 8 Voltage Profile before and after Optimization in 

IEEE 14 bus system 

 

 

 

 

Fig. 9 Voltage Profile of IEEE 30 bus system using 

PGA, SGA and PSO techniques 
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Fig. 10 Fuel cost minimization for IEEE 30 bus system 

using PGA, SGA and PSO techniques 
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Fig. 11 Transformer Tap settings with Optimization 
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Fig. 12 Voltage Profile of 30 Bus before and after 

Optimization 
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Fig. 13 Shunt MVAR injected using various algorithms 

 

 The proposed algorithm offers considerable savings in 

the computation time to the tune of 3x times. 

Conventional Genetic Algorithm without variable 

probability has converged at lowest iterations of 21 

generations and with variable probability has 

converged in 24 generations in 0.53 and 1.25 seconds 

respectively, which shows a considerable superiority 

on other algorithms on PSO and SGA. Variation of 

Active Power Generation using different Population 

size has been discussed in Table 6, and it’s found that a 

Population size of 100 provides the lowest losses, but 

computationally intense. Comparison of various 

continuous variables and discrete variables are given in 

Table 7. The performance of the proposed GA for 

various trials is shown in Fig. 6 for a population size of 

60. The voltage profile of generators of IEEE 14 and 

30 bus test system before and after Optimization is 

given in Fig. 7 and Fig. 12 respectively. The effect of 

Population size is illustrated in Fig 8 and its found that 

with increase in population size, better optimization is 

achieved, but at the cost of higher computation power 

and time. Voltage profile and Cost minimization of 

IEEE 30 bus test system using PGA, PSO and SGA is 

illustrated in Fig. 9 and Fig. 10 respectively and it’s 

found that maximum cost minimization is achieved 

using the proposed algorithm. Off-nominal transformer 

ratios for base case and Optimized case are illustrated 

in Fig. 11. The optimum location of the shunt devices 

are found using VSI technique and Shunt MVARs 

injected into various buses using different Optimization 

techniques are illustrated in Fig. 13.  

 

8. Conclusions 
 

In this paper, an attempt has been made to propose a 

new notion in generating an improved initial 

population for GA, involving an expert based 

technique instead of a blind conventional method for 

initial population generation. An adaptive probability 

for Crossover and Mutation probability has been 

tested on standard OPF problem. Further, discussions 

on developments in Optimal Power flow, its 

challenges are made in detail. An effective suggestion 

has been made in selecting parent-1 & Parent-2 using 

roulette wheel technique after minimal iterations with 

proposed initial population. The objective function 

minimizes the Generator Fuel cost while satisfying all 

the security and necessary constraints. The results of 

Proposed Genetic Algorithm on IEEE 14 and 30 bus 

test system are compared with Simple Genetic 

Algorithm and Particle Swarm optimization 

techniques for same test composition. Results 

revealed that the proposed algorithms superiority over 

other algorithms and is promising for implementation 

on numerous further applications comprising of 

continuous and discrete variables. The PGA is found 

to demonstrate an enhanced performance in 

minimizing the fuel cost, power loss and computation 

time and converges in lowest number of iterations.  
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