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Abstract: This article presents the rational approximations of recursively obtained solutions of the quadratic 

equation which lead to networks with lattice or tree structure. The impedance of a similar electrical circuit, 

composed of resistors and capacitors, has a module, depending on the square root of the frequency and its phase 

is equivalent to -45º. 

 After considering the effect that the number of elements and their tolerances have on the accuracy of 

the impedance function of the networks, an eight section lattice cascade was constructed. The deviation between 

the theoretically and experimentally obtained magnitude and phase characteristics of such a device in the 

frequency interval 0,05÷1MHz did not exceed  -1,2% and -1,3º respectively. Furthermore, it was found that the 

lattice network performance had impedance close to the expected one but in parallel with a capacity. 

Keywords: Circuit, Irrational impedance, Synthesis, Continued fraction, Lattice structure, Tree structure. 

 

1. Introduction 
 

 Numerous detailed approaches have been 

discussed in the literature for the realizations of 

irrational impedances Z(s) [1-6]. This is due to the 

many applications of such network functions in 

areas like signal processing circuits, robotics, PID 

controllers, macro-modeling and so forth [7-11]. 

For analysis, synthesis and implementation of such 

objects, the need often arises for some 

approximation of Z(s) which yields simple lumped 

network realizations with known component values. 

Particularly interesting for the purposes of 

approximation are polynomials, rational functions 

and continued fractions. 

 A real polynomial function of the variable 

s is one that has the form: 
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where p0,p1,p2,…pμ, pμ≠0 are real numbers and μ 

denotes a non-negative integer that defines the 

degree of the polynomial [12]. A polynomial with a 

degree of 0 is simply a constant. Polynomials are 

among the most frequently used fitting functions. 

They are popular because of their simple form, well 

known and understood properties. 

 A real rational function is simply the ratio of 

two real polynomial functions: 
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where p0,p1,p2,…pμ, q0,q1,q2,…qν, pμ≠0, qν≠0 are real 

numbers, μ denotes a non-negative integer that defines 

the degree of the numerator and ν is a non-negative 

integer that defines the degree of the denominator. A 

rational function contains a polynomial as a subset (i.e., 

the case when the denominator is a constant). Rational 

functions are sometimes superior to polynomials 

because of their ability to model functions with poles or 

some other singularity [13,14]. They are often used to 

model a complicated structure with a fairly low degree 

in both the numerator and denominator. This, in turn, 

means that fewer coefficients will be required compared 

to the polynomial model [13]. 

 Another related tool used to find good rational 

approximations are truncated continued fractions (CF). 

They are an excellent choice if the practical realization 

of irrational impedance is needed because: 
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-CF frequently converge much more rapidly than 

power series expansions, and converge in a much 

larger domain in the complex plane [13]. In this 

case, the final circuit will contain fewer elements, 

since the required accuracy of approximation can 

be achieved with low order convergents; 

-Rational approximation in the form of a truncated 

CF can be directly used to build one-port electrical 

network with impedance ZRF [14,16]; 

-In addition, periodic continued fractions lead to 

circuits in which the range of values of the elements 

is less [16,17]. This is an important advantage 

because the provision of a large number of elements 

with different values (especially when these values 

are not standard) can be difficult and expensive. 

 As distinguished from most known studies 

[1-6], this work presents a time- and cost- effective 

method of synthesis that combines the advantages 

mentioned above. In Section 2 are presented two 

solutions of quadratic equation used to synthesize a 

circuit with an irrational impedance. The effect that 

the structure of the circuit realization, the number 

of elements and their tolerance has on the 

impedance of the circuit is subject to consideration 

of Section 3. Experimental results are presented and 

discussed in Section 4. Finally, conclusions are 

summarized in Section 5. 

 

2. Syntesis of irrational impedance 

based on solutions of quadratic 

equations  
 

 Continued fractions, which represent 

recursively obtained solutions of the quadratic 

equations, can be very useful for synthesis of 

circuits with specific impedance. Let impedances 

Za=Za(s) and Zb=Zb(s) are positive real functions 

[17]:  

-Za and Zb are real when s is positive and real; 

-Re[Za(s)]≥0 and Re[Zb(s)]≥0 when Re[s]≥0.  

 It is our intention to present the synthesis 

of a passive one-port circuit with driving point 

impedance (DPI) equivalent to their geometrical 

mean:  

 

ba ZZZ .  (3) 

 

where Z is a solution of the equation: 

 

ba ZZZ .2   (4) 

 

which can be solved in a number of different ways. 

Let's consider some of them. Multiplying both sides 

of Eqn (4) by two and after that adding the terms 

(Za+ Zb).Z: 
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the Eqn (5) can be rewritten as it follows: 
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Recursively substituting this expression for Z back into 

itself yields a continued fraction: 
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Figure 1. Circuit of two cascaded T-sections 
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Figure 2. Circuit of two cascaded lattice sections 
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Table 1. Total number of impedances in a lattice network 

DPI of a lattice network in the general case Section TNI 
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Now let’s consider the circuit shown in Fig.1. It 

presents two cascaded T-sections. When the right 

port is a short circuit the driving point impedance 

ZPF(s) of the entire network can be found easily by 

considering it in the right-to-left direction: 
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 Each T-section can be transformed into a 

lattice section using Bartlett's theorem [18] as 

shown in Fig.2. It is easy to demonstrate that 

truncation of the continued fraction (7) at a suitable 

point will result in an approximation of the 

impedance Z which leads to a finite cascade lattice 

network. As shown in Table 1 the total number of 

impedances (TNI) necessary to implement a 

network of N symmetric lattices will be equivalent 

to 4N.  

 The presented form of a solution of the 

quadratic Eqn (4) is not unique. Taking into 

account Eqn (4), from Eqn (5) it is obtained: 
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Now we can apply the last equation to itself 

recursively to obtain the infinite continued fraction 

in the limit: 
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 The truncation of the continued fraction (11) at 

a suitable point will result in an approximation of the 

impedance Z which leads to a finite binary tree. This 

can be demonstrated using the example shown in Fig.3. 

The network begins with a bifurcation into two branches 

with impedances Za(s) and Zb(s), which build the first 

generation. Each branch in the first generation then 

bifurcates into two new branches in the following 

generation. This bifurcation repeats for each generation. 

By moving from bottom to top into the network we will 

get the following: 
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 As shown in Table 2 the DPI of M-generational 

tree network consists of 2M+1-2 separate impedances. 
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Figure 3. Circuit of two generational binary tree 
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Table 2. Total number of impedances in a tree network 

DPI of a tree network in the general case Generation TNI 
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Figure 4. Magnitude error refers to 

specific realization of the lattice 

network. 

 Figure 5. Phase error refers to specific 

realization of the lattice network. 

   

0

-25

-50

0,001 1 1000

ω.T

σ
M

, 
%

           SQRT(Frequency*Frequency)

1.0m 1.0 1.0K 1.0M 1.0G 1.0T

100*(VM(REF)/IM(PRINT1)-VM(LAP:OUT)/VM(REF))/(VM(LAP:OUT)/VM(REF))

100*(VM(REF)/IM(PRINT2)-VM(LAP:OUT)/VM(REF))/(VM(LAP:OUT)/VM(REF))

100*(VM(REF)/IM(PRINT3)-VM(LAP:OUT)/VM(REF))/(VM(LAP:OUT)/VM(REF))

100*(VM(REF)/IM(PRINT4)-VM(LAP:OUT)/VM(REF))/(VM(LAP:OUT)/VM(REF))

-50

-25

0

M=1

M=4

M=3

M=2

 

 

           SQRT(Frequency*Frequency)

1.0m 1.0 1.0K 1.0M 1.0G 1.0T

VP(REF)-IP(PRINT1)-(VP(LAP:OUT)-VP(REF)) VP(REF)-IP(PRINT2)-(VP(LAP:OUT)-VP(REF))

VP(REF)-IP(PRINT3)-(VP(LAP:OUT)-VP(REF)) VP(REF)-IP(PRINT4)-(VP(LAP:OUT)-VP(REF))

-50d

0d

50d50

0

-50

0,001 1 1000

ω.T

σ
P
, 
º

M=1

M=4

M=3

M=2

 

Figure 6. Magnitude error refers to 

specific realization of the tree 

network. 

 Figure 7. Phase error refers to specific 

realization of the tree network. 
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3. Properties of Lattice and Tree 

structure network realization 
 

 Obtained in the previous section results are 

interesting from a theoretical point of view. The 

expressions: 

 

sAsZ .)(   (13) 

 

and 

 

sA
sZ

.

1
)(  , (14) 

 

 

 

where A is a real number, represent some of the  

simplest irrational impedances. According to Eqn (3) 

infinite lattice or infinite tree structure network 

composed of resistances Za=R and capacitors Zb=(s.C)
-1

 

will have DPI as in Eqn (14) where: 

 

R

C
A  . (15) 

 

Unfortunately, real circuits contain a finite number of 

elements. When we are looking for proper practical 

realization it’s important to know: 

-the accuracy of approximation with a definite number 

of impedances (or elements); 

 

 

 

Table 3. Magnitude and phase error 

when the circuit elements have a 

nominal value 

 Table 4. Magnitude and phase error 

when the circuit elements have a 

tolerance of 2% 

σ'M σ'P 
Type TNI 

 σ'M σ'P 
Type TNI 

% º  % º 

68.5 39.3 Tree 2  69.2 39.5 Tree 2 

41.4 39.3 Lattice 4  43.8 39.5 Lattice 4 

39.8 31.5 Tree 6  40.9 31.9 Tree 6 

18.9 19.5 Lattice 8  20.8 20.1 Lattice 8 

18.4 22.8 Tree 14  19.6 23.3 Tree 14 

15.0 3.16 Lattice 12  16.5 3.70 Lattice 12 

5.64 15.4 Tree 30  7.07 2.51 Lattice 16 

5.56 2.14 Lattice 16  6.94 15.9 Tree 30 

0.95 1.52 Lattice 20  2.48 1.86 Lattice 20 

0.83 0.44 Lattice 24  2.26 0.77 Lattice 24 

0.47 0.12 Lattice 28  1.93 0.49 Lattice 28 

0.09 0.10 Lattice 32  1.73 0.41 Lattice 32 

 

 

 

Table 5. Magnitude and phase error 

when the circuit elements have a 

tolerance of 1% 

 Table 6. Magnitude and phase error 

when the circuit elements have a 

tolerance of 0,5% 

σ'M σ'P 
Type TNI 

 σ'M σ'P 
Type TNI 

% º  % º 

68.9 39.4 Tree 2  68.7 39.3 Tree 2 

42.6 39.4 Lattice 4  42.0 39.3 Lattice 4 

40.4 31.7 Tree 6  40.1 31.6 Tree 6 

19.8 19.8 Lattice 8  19.4 19.4 Lattice 8 

19.1 23.1 Tree 14  18.7 22.9 Tree 14 

15.7 3.40 Lattice 12  15.4 3.30 Lattice 12 

6.30 2.32 Lattice 16  5.94 15.6 Tree 30 

6.23 15.7 Tree 30  5.91 2.23 Lattice 16 

1.65 1.71 Lattice 20  1.25 1.61 Lattice 20 

1.48 0.63 Lattice 24  1.13 0.53 Lattice 24 

1.15 0.32 Lattice 28  0.78 0.22 Lattice 28 

1.01 0.29 Lattice 32  0.46 0.19 Lattice 32 
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Figure 8. Curves 1 and 2 represent the magnitude error of the circuit realization before and 

after the impedance of Ci is subtracted from the Z(s). 
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Figure 9. Curves 1 and 2 represent the phase error of the circuit realization before and after 

the impedance of Ci is subtracted from the Z(s). 
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-the sensitivity of the network to changes of the 

impedance parameters. 

 Increasing the number of sections in the 

lattice structure or the number of generations in the 

tree structure will result in a DPI more close to Eqn 

(14). But this process is not the same for both 

structures. In Fig.4-7 are depicted the magnitude 

error 

 

,%100.
Z

ZZ RF

M


  (16) 

 

and the phase error  

 

ZZRFP   (17) 

 

of some specific realization. These results were 

obtained using the PSpice. The maximum absolute 

value of σM and σP: 

 

MM  max  (18) 

 

PP  max  (19) 

 

in the frequency interval 0,1≤ω.T≤10, T=R.C  is 

given in Table 3. It can be seen that the considered 

networks have the following features: 

-when TNI does not exceed 32, the number of 

possible realizations is eight for a lattice and four 

for a tree network; 

-when TNI is equal to eight or more, the lattice 

network achieves better σ'M and σ'P than the tree 

network at a smaller number of elements. 

 Manufacturing tolerances of the resistors 

and capacitors also affect the accuracy of 

realization. Monte Carlo analysis is perhaps the 

most well-known method for evaluating this 

influence. It is a purely statistical method in which 

the tolerance values are varied by a random 

algorithm over a number of simulation runs. Using 

PSpice Monte Carlo analysis the maximum value of 

σ'M and σ'P for a set of 300 runs is obtained. The 

results for the different tolerances are listed in 

Table 4-6. 
 

4. Experimental results 
 

 Following previous recommendations the 

circuit of eight lattice section has been 

implemented. The resistors and capacitors have a 

nominal value of 4,3kΩ and 68pF respectively, and 

a tolerance of 0,5%. The input impedance of the 

circuit is measured by means of the impedance 

analyzer Agilent 4294A in a frequency interval 

0,05÷1MHz. As shown in Fig.8 and Fig.9 the 

experimentally obtained errors σ'M and σ'P increase 

with the increase in frequency and they are several 

times greater than the errors in Table 6. This is due to 

the frequency-dependent effects in the real resistors and 

capacitors, together with the strain immittance in the 

circuit performance. These phenomena are complex and 

difficult to predict. Taking into account that σM<0 and 

σP<0, we fit the experimental data to a simple model 

composed of impedance (14) and capacitor Ci≈1.4pF in 

parallel. The value of Ci is found by minimizing the 

functional of weighted errors σ'M and σ'P 
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in the given frequency interval. If the impedance of Ci is 

subtracted from the input impedance of the circuit, the 

errors (16) and (17) will have almost the same values as 

those in Table 6.  

 

5. Conclusion 
 

 Papers [19,20] describe synthesis of irrational 

impedance 

 

sA.

1  (21) 

 

of arbitrary order 0≤α≤1. Unfortunately, practical 

application of this method is difficult because the 

elements of the scheme have very different values. The 

lattice circuit and the tree circuit are constructed of 

identical resistors and capacitors. Both circuits present a 

solution of the same equation but have different 

properties. The lattice circuit can be implemented in 

more different variants and when the number of 

elements is equal to eight or more, it offers better 

accuracy. Experimental data showed that in the 

frequency interval 0,05÷1MHz the lattice circuit 

realization has an input impedance close to the irrational 

impedance A
-1

.s
-0,5

 in parallel with some capacitor Ci. 

The impact of Ci can be ignored if it does not need an 

accuracy presentation (in this case the magnitude and 

phase error do not exceed -1,2% and -1,3º respectively).   

 The results in this work were successfully used 

to research the effect that a constant phase element has 

on charge transfer processes in capacitive transducers 

and validation of measurement methods suitable for this 

case [20-22]. 
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