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Abstract: Among the numerous noise reduction techniques that were developed over the past several decades, the 

Wiener filter can be considered as one of the most fundamental noise reduction approaches, which has been delineated 

in different forms and adopted in various applications. An important parameter of numerous speech enhancement 

algorithms is the a priori signal-to-noise ratio (SNR). The Wiener filter emphasizes portions of the noisy signal 

spectrum where SNR is high and attenuates portions of the spectrum where the SNR is low. An adaptive time varying 

filter can be used for whitening the noisy speech signal corrupted by narrow-band noise whereas by enhancing the 

signal using Perceptual frequency weighting filter (PFWF), formant regions of the noisy speech spectrum can be made 

less affected for a given SNR. Incorporation of PFWF and/or NSSF (Noise spectrum shaping filter) into the Weiner 

denoising technique improves the performance of the speech enhancement system. 

Keywords: A priori SNR, Wiener filter, speech enhancement, perceptual weighting, noise spectreum shaping. 

  
1. Introduction 
  

The removal of additive noise from speech has been 

an active area of research for several decades. 

Numerous methods have been proposed by signal 

processing community. Among the most successful 

signal enhancement techniques have been spectral 

subtraction [1, 2] and Wiener filtering [3, 4]. Although 

these techniques improve speech quality, they 

generally results in random narrowband fluctuations in 

the residual noise called musical noise caused by 

randomly spaced spectral peaks that come and go in 

each frame and at random frequencies, which is 

annoying and disturbing to perception of the enhanced 

signal. The quality and the intelligibility of the 

enhanced speech signal could be improved by reducing 

or in better cases eliminating this kind of musical 

residual noise. 

Many variations have been developed to cope with 

the musical residual noise phenomena including 

spectral subtraction techniques based on masking 

properties of the human auditory system. A number of 

methods have been developed to improve intelligibility 

by modeling several aspects of the enhancement 

function present in the auditory system [5]–[8]. These 

attractive methods use a noise masking threshold 

(NMT) as a crucial parameter to empirically adjust 

either thresholds or gain factors. This auditory system 

is based on the fact that the human ear cannot perceive 

additive noise when the noise level falls below the 

NMT. 

In this paper, instead of empirically adjusting the 

parameters by the NMT for various types of noise, a 

perceptual frequency-weighting algorithm is derived based 

on the spectral envelope information of noisy input signal. 

The formant regions of the noisy speech spectrum will be 

less affected by WF for a given SNR value, if it is 

previously enhanced by the PFWF [17-18]. This maintains 

more properties of the original clean speech at formant 

peaks while leaves more noise at the same regions. The 

noise elements are considered to be masked by the speech 

power in the formant regions and conversely unmasked in 

the valleys between the formants. Therefore, the gain 

factor, which decides the amount of estimated noise 

subtracted from the noisy input signal, is controlled to be 

lower in formants and higher in valleys. 

For some narrow-band noise or noise with evident and 

stable spectral peaks, an adaptive time varying filter can be 

used additionally to suppress the frequencies where noise 

energy is high. This can help to improve the speech 

enhancement performance of the WF by whitening the 

noisy speech signal especially for some signals corrupted 

by narrow-band noise, e.g., highway noise. The time 

varying noise spectrum shaping (NSSF) filter is proposed 

for this purposes [16]. Experimental results show that 

incorporating PFWF and/or NSSF filter into the Wiener 

denoising technique improve the performance of the speech 

enhancement system. 

The remaining part of this paper is organized as follows: 

section 2 provides a description of the baseline speech 

enhancement system, in section 3, descriptions of the a 

priori SNR estimation, noise estimation and proposed 
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method are given and discussion on the experimental 

results and conclusion are drawn in section 4 and 

section 5 respectively. 

  

2. Wiener Denoising Technique 
  

Let the distorted signal be expressed as 

                          ( ) ( ) ( )y n x n d n  ,                          (1) 

where ( )x n  is the clean signal and ( )d n  is the additive 

random noise signal, uncorrelated with the original 

signal. If at the mth frame and kth frequency 

bin, ( , )Y m k , ( , )X m k  and ( , )D m k   represent the 

spectral component of ( )y n , ( )x n  and ( )d n , 

respectively, then the distorted signal in the 

transformed domain is 

               ( , ) ( , ) ( , )Y m k X m k D m k  .                      (2) 

An estimate ˆ ( , )X m k  of ( , )X m k is given by 

                 ˆ ( , ) ( , ) ( , )X m k H m k Y m k ,                       (3) 

where ( , )H m k  is the noise suppression gain (denoising 

filter), which is a function of a priori SNR and/or a 

posteriori SNR, given by 

                          
( , )

( , )
( , )

m k
H m k

m k




 

 
   

,              (4) 

where   is a constant,   is the order of the filter and 

( , )m k  is the a priori SNR. If 1  and 1
2  then 

(4) corresponds to power spectrum filtering. In our case 

(i.e., for a Wiener filter) 1   . 

The first parameter of the noise suppression rule is the 

a posteriori SNR given by 

                     
 

2
( , )

( , )
,

d

Y m k
m k

m k
 


,                      (5) 

where  
2

, { ( , ) }d m k E D m k   is the noise power 

spectrum estimated during speech pauses. The a priori 

SNR, which is the second parameter of the noise 

suppression rule, is expressed as 

                            
 
 

,
( , )

,

x

d

m k
m k

m k






,                        (6) 

where  2
( , ) ( , )x m k E X m k  .  

The estimation of ( , )m k is given by the well known 

decision-directed approach [7] and is expressed as 

 

 

2

min

( 1, ) ( 1, )
...

,( , ) max ,

 (1 ) ( , ) ,

DD

DD d

H m k Y m k

m km k

P m k


 

  

  
 

   
 

  

                                                                                   

                                                                       (7) 

where [ ]P x x   if 0x   and [ ] 0P x   otherwise. In 

this paper we have chosen 0.98   and min 0.0032   

(i.e., -25 dB) by the simulations and informal listening 

tests.  

The instantaneous SNR can be defined as [11] 

                        
 

2
( , )

( , ) 1
,

d

Y m k
m k

m k
  


.                   (8) 

The temporal-domain denoised speech is obtained with the 

following relation   

                     arg( ( , ))( ) ( , ) . .j Y m kx n IFFT X m k e               (9) 

We have used noisy signal phase to obtain temporal-

domain denoised speech, because the human ear is 

fundamentally phase deaf and perceives speech primarily 

based on the magnitude spectrum. 
  

3. Proposed Method 
  

2.1. Speech Enhancement based on PFWF 
  

Different parts of the speech spectrum have different 

levels of perceptual importance on the basis of our 

knowledge of human perception. The difference between the 

clean speech spectrum and the noise speech spectrum is 

larger in the spectral valleys than in spectral peaks i.e., 

formant regions. The SNR is much higher around spectral 

peaks than that is near spectral valleys. Noise auditory 

impressions are generally provided by the parts of the 

spectrum with a low SNR, such as the spectral valleys. On 

the other hand, spectral peaks carry the most information. 

Therefore attenuation of spectral valleys is thought to be 

very effective due to reduction of speech distortion to a 

human listener. This encourages us to think about treating 

spectral peaks and spectral valleys differently with the help 

of a Perceptual Weighting Filter (PFWF), an IIR filter which 

shapes the overall spectrum of noisy speech to exploit the 

masking properties of the human ear [17].  
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Figure 1. Block diagram of the Perceptual weighting filter 

(PFWF) 
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The PFWF used in this study is a 6
th

 order IIR filter 

defined by the transfer function [18] 
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,                       (10) 

where ( )A z  is the LPC synthesis filter, 

 0,  1,2,....., , 1ia i p a   are the LPC coefficients 

and 
1r  and 

2r  are weighting factors between 0 and 1. In 

this study we have chosen 
1 0.85r   and 

2 0.9r   by 

experiment. The reason for using the 6
th

 order filter is 

that this filter is sufficient for calculating the spectral 

envelope, which consists of the 1
st
 - 3

rd
 formants [18]. 

Figure 1 shows the block diagram of the perceptual 

weighting filter. The LPC coefficients  ia  are first 

generated via LPC analysis of on the input noisy 

speech, and then scaled by multiplying the powers of 

the weighting factors 
1r  and 

2r  , so as to expand the 

bandwidth of the peaks and valleys respectively. The 

scaled LPC coefficients are considered as the forward 

and backward coefficients of the desired PFWF.  

  

2.2. Speech Enhancement based on NSSF Filter 
  

The Wiener filter (WF) algorithm introduced in 

section 1 has been shown to be asymptotically near 

optimal for the signals corrupted by additive white 

noise [4]. For some narrow band noise or noise with 

evident and stable spectral peaks, an adaptive time 

varying filter can be used additionally to suppress the 

frequencies where the noise energy is high. This can 

help to improve the speech enhancement performance 

of the WF by “whitening” the noisy speech signals, 

especially for some signals corrupted by narrow-band 

noise, e.g., highway noise. The time varying Noise 

Spectrum Shaping Filter (NSSF) is proposed for this 

purpose [17-18]. The design of NSSF has taken into 

account that the spectral characteristics of the noise 

change remarkably more slowly than those of the clean 

speech, as well as the bandwidth broadening effect of 

the noisy speech. After filtered by the NSSF, 

amplitudes of the noisy speech at the frequencies 

where the noise has spectral peaks are de-emphasized 

slightly. 

The NSSF used in this study is a 6
th

 order IIR filter 

defined by the transfer function [18] 
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where ( )A z  is the LPC synthesis filter, 

 0,  1,2,....., , 1ia i p a   are the LPC coefficients 

and 1r  and 2r  are weighting factors between 0 and 1.  

 

 

 

 

In this study we have chosen 
1 0.95r   and 

2 1r   by 

experiment. 
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Figure 2. Block diagram of the Noise spectrum shaping filter 

(NSSF) 
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Figure 3. Block diagram showing various stages of the Wiener 

denoising technique based on the PFWF. 

  

 

Compared with (10) for the case of the PFWF, we notice 

that the new coefficients  ia  in (11) are average values 

from the adjacent analysis frames of the reference noise, 

rather than the instantaneous predictor coefficients from a 

single analysis frame of noisy speech. 
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Figure 4. Block diagram showing various stages of the 

Wiener denoising technique that incorporates the NSSF. 
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Figure 4. Block diagram showing various stages of the 

Wiener denoising technique that incorporates both the PFWF 

and NSSF. 

  

4. Experimental Results and Discussion 
  

In order to evaluate the performance of the 

proposed PFWF and NSSF-based Wiener denoising 

technique, we conducted extensive objective quality 

tests under various noisy environments. The objective 

quality measures used for the performance evaluation 

are: Segmental signal-to-noise-ratio (SSNR), Weighted 

spectral slope (WSS), Log likelihood ratio (LLR) and 

Log spectral distance (LSD). Wiener filter (WF) is 

chosen to compare the performance of the proposed 

methods. The analysis frame lenggth was chosen to be 

32 msec long with an overlap of 40%; a sampling 

frequency of 8 kHz and a hamming window were 

applied.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

  

Figure 6: Speech spectrograms of (a) clean speech signal, (b) 

noisy speech signal corrupted with car noise, SNR = 5dB, and 

enhanced speech signals using (c) the Wiener denoising method, 

(d) PFWF-based Wiener denoising method, (e) NSSF-based 

Wiener denoising method, and (f) Wiener denoising method based 

on the PFWF and NSSF. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 7: Histograms of the average (a) SSNR, (b) WSS, (c) 

LSD, and (d) LLR measures (averaged over various SNR 

levels, 0 - 20 dB) of the enhanced speech signals obtained 

using the Wiener denoising method (WF), (d) PFWF-based 

Wiener denoising method (WF+PFWF), NSSF-based Wiener 

denoising method (WF+NSSF), and Wiener denoising method 

based on the PFWF and NSSF (WF+PFWF+NSSF). 

  
Table 1: Weighted spectral slope (WSS) of the enhanced signals. 

A lower WSS measure indicates a better speech quality.  

  

Noise  

Type 

Input 

SNR 

(dB) 

WF 
WF 

+PFWF 

WF 

+NSSF 

WF 

+PFWF 

+NSSF 

S
u

b
w

ay
 0 

5 

10 

15 

20 

103.15 

87.90 

71.03 

58.09 

48.82 

90.95 

76.40 

61.98 

51.76 

45.41 

92.13 

75.73 

62.99 

51.78 

42.68 

90.95 

76.40 

61.98 

51.76 

45.41 

B
ab

b
le

 

0 

5 

10 

15 

20 

132.76 

103.26 

78.63 

92.29 

73.62 

120.71 

90.09 

69.51 

84.18 

61.55 

121.29 

90.96 

68.85 

84.44 

63.89 

120.71 

90.09 

69.51 

84.18 

61.55 

C
ar

 

0 

5 

10 

15 

20 

133.79 

92.75 

75.65 

63.10 

54.03 

117.48 

73.70 

59.74 

51.96 

47.72 

117.57 

74.72 

60.61 

52.42 

48.13 

117.48 

73.70 

59.74 

51.96 

47.72 

E
x

h
ib

it
io

n
 0 

5 

10 

15 

20 

126.29 

102.29 

94.81 

83.05 

69.59 

115.32 

94.73 

86.47 

73.47 

61.73 

116.46 

94.79 

87.28 

74.36 

62.52 

115.32 

94.73 

86.47 

73.47 

61.73 

W
G

N
 

0 

5 

10 

15 

20 

96.20 

80.60 

67.07 

57.50 

51.67 

85.85 

72.53 

61.96 

55.00 

49.52 

85.90 

72.84 

61.70 

53.85 

47.18 

85.85 

72.53 

61.96 

55.00 

49.52 

  

To evaluate and compare the performance of the 

proposed PFWF- and NSSF-based Wiener denoising 

techniques, we carried out simulations with the TEST A set 

of the Aurora-2 corpus [9]. Speech signals were degraded 

with five types of noise at global SNR levels of 0 dB, 5 dB, 

10 dB, 15 dB and 20 dB. The noises were N1 (subway 

noise), N2 (babble noise), N3 (car noise), N4 (exhibition 

hall noise) and WGN (white Gaussian noise). 

Figure 6 represents the spectrograms of the clean speech 

signal, noisy signal and enhanced speech signals obtained 

using the Wiener denoising technique and the proposed 

techniques. The speech spectrograms provide more accurate 

information about the residual noise and speech distortion 

than the corresponding time domain waveforms. We 

compared the spectrograms for each of the methods and 

confirmed a reduction of the residual noise and speech 

distortion. Speech spectrograms presented in Figure 6 use a 

Hamming window of 256 samples with 50% overlap and 

the noisy signals include N3 (car noise) with SNR = 5 dB. 

It is seen that the musical noise is almost removed for most 

part in figures 6 (d-f). 

Tables 1-4 presents the WSS, SSNR, LSD, and LLR of the 

enhanced signals obtained using various speech 

enhancement methods at various SNR levels of different 

noisy environments. Fig. 7 depicts the histograms of the 

average SSNR, average WSS, average LSD, and average 
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LLR (averaged over various SNR levels 0-20 dB) 

versus various noise environments for the speech 

enhancement methods considered in this work. It is 

evident from the reported results that the proposed 

methods performed better (except in the LLR measure) 

than the WF alone.  
 

Table 2: Segmental SNR (SSNR) of the enhanced signals. A 

higher SSNR measure indicates a better speech quality. 

  

Noise 

Type 

Input 

SNR 

(dB) 

WF 
WF+ 

PFWF 

WF+ 

NSSF 

WF+ 

PFWF 

+NSSF 

S
u

b
w

ay
 0 

5 

10 

15 

20 

-1.20 

2.19 

5.10 

8.03 

10.63 

-1.04 

2.44 

5.22 

8.33 

10.94 

-0.98 

2.42 

5.31 

8.47 

11.88 

-1.04 

2.44 

5.22 

8.33 

10.94 

B
ab

b
le

 

0 

5 

10 

15 

20 

-2.42 

0.05 

2.52 

5.24 

7.60 

-2.40 

0.19 

2.65 

5.57 

7.72 

-2.44 

0.17 

2.88 

5.66 

8.02 

-2.40 

0.19 

2.65 

5.57 

7.72 

C
ar

 

0 
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-0.49 

2.57 

5.30 

8.38 

11.42 

-0.29 

2.68 

5.47 

8.46 

11.59 

-0.35 

2.73 

5.53 

8.87 

12.39 

-0.29 

2.68 

5.47 

8.46 

11.59 

E
x

h
ib
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io

n
 0 

5 

10 

15 

20 

0.72 

2.17 

5.23 

7.38 

10.02 

0.73 

2.24 

5.42 

7.70 

10.54 

0.70 

2.27 

5.44 

7.82 

10.67 

0.73 

2.24 

5.42 

7.70 

10.54 

W
G

N
 

0 

5 

10 

15 

20 

1.13 

3.95 

6.08 

8.47 

11.56 

1.46 

3.79 

6.63 

9.31 

11.82 

1.45 

3.84 

6.57 

9.37 

12.56 

1.46 

3.79 

6.63 

9.31 

11.82 

  
Table 3: Log Spectral distance (LSD) measures of the 

enhanced signals. A lower LSD measure indicates a better 

speech quality. 

  

Noise 

Type 

Input 

SNR 

(dB) 

WF 
WF+ 

PFWF 

WF 

+NSSF 

WF 

+PFWF 

+NSSF 

  
 S

u
b

w
ay

 

0 

5 

10 

15 

20 

2.11 

1.68 

1.69 

1.39 

1.17 

2.03 

1.58 

1.62 

1.34 

1.14 

2.02 

1.58 

1.62 

1.34 

1.12 

2.08 

1.55 

1.57 

1.28 

1.17 

  
  

B
ab

b
le

 

0 

5 

10 

15 

20 

2.08 

1.74 

1.53 

1.48 

1.35 

1.98 

1.66 

1.42 

1.39 

1.21 

1.97 

1.66 

1.42 

1.40 

1.22 

1.97 

1.62 

1.39 

1.36 

1.18 

  
  

  
  

C
ar

 

0 

5 

10 

15 

20 

1.70 

1.49 

1.39 

1.28 

1.26 

1.61 

1.40 

1.29 

1.20 

1.18 

1.62 

1.40 

1.30 

1.22 

1.19 

1.57 

1.35 

1.22 

1.11 

1.05 

E
x

h
ib

it
io

n
 0 

5 

10 

15 

20 

1.82 

1.69 

1.75 

1.43 

1.38 

1.75 

1.63 

1.66 

1.38 

1.33 

1.75 

1.63 

1.67 

1.39 

1.33 

1.75 

1.64 

1.64 

1.28 

1.20 

W
G

N
 

0 

5 

10 

15 

20 

2.05 

1.83 

1.59 

1.38 

1.25 

2.00 

1.78 

1.54 

1.35 

1.23 

2.00 

1.78 

1.54 

1.35 

1.22 

1.94 

1.69 

1.45 

1.25 

1.11 

  
Table 4: Log likelihood ratio (LLR) measures of the enhanced 

signals. A lower LSD measure indicates a better speech quality. 

  

Noise 

Type 

Input 

SNR 

(dB) 

WF 
WF+ 

PFF 

WF 

+NSSF 

WF+ 

PFWF 

+NSSF 

 

S
u

b
w

ay
 0 

5 

10 

15 

20 

1.33 

0.84 

0.72 

0.53 

0.35 

1.46 

0.90 

0.86 

0.62 

0.46 

1.48 

0.90 

0.86 

0.60 

0.46 

1.39 

0.76 

0.70 

0.49 

0.41 
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1.18 

0.93 

0.77 

0.85 

0.71 

1.20 

0.89 

0.80 
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0.71 

1.21 

0.89 

0.82 

0.88 

0.72 

1.12 

0.81 

0.75 

0.81 

0.69 
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5. Conclusions 
  

The aim of our study is to improve the performance of 

the Wiener denoising technique. In this paper we have 

presented PFWF and NSSF-based Wiener denoising 

techniques that would maximize noise reduction while 

minimizing speech distortion. Performance evaluations of 

the proposed approaches are carried out using four 

objective quality measures, namely, SSNR, WSS, LSD and 

LLR. Simulation results and plotted speech spectrograms 

show that the proposed algorithms give better performance 

for speech enhancement in various noisy environments than 

that of the conventional Wiener denoising method. 
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