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Abstract: In this paper, we consider the searching for good turbo code interleavers. Especially, we focus on the 

permutation polynomial interleavers. Three key properties (i.e. spread factor, dispersion, and edge effects) of turbo 

code interleavers are investigated, and two new metrics alpha and beta are proposed for turbo code interleavers. Good 

permutation polynomial interleavers for turbo codes of various lengths are found by these metrics. Computer 

simulations show that interleavers with small α or β will lead to the poor performance of turbo codes. Furthermore, 

turbo codes with good permutation polynomial interleavers found by these metrics always outperform the well-known s-

random interleavers. Moreover, turbo codes with good cubic permutation polynomial interleavers found by these 

metrics are superior to the quadratic permutation polynomial interleavers adopted as turbo code interleavers in the 3rd 

generation partnership project long term evolution and its advance. 
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1. Introduction 
 

Facing to the ever-increasing growth of user 

demands, practical constraints (e.g. scarce spectrum, 

processing delay, resource requirment, etal. ) place more 

and more obstacles to the advances of wireless 

communication theories and practices[1, 2].  Since the 

adorable properties of permutation polynomial 

interleavers, e.g. the compact mathematical presentation 

and maximum contetion-free ability[2-4], which can 

perfectly solve the aforementioned problems, the 3rd 

generation partnership project long term evolution and its 

advance (3GPP LTE and LTE-A) [3], which aim at 

providing advanced services with very high speed and 

low lantency, have adopted turbo codes using 

permutation polynomial  interleavers (PP interleavers).  

Interleaving is a key component for the error 

correcting performance of turbo codes [3-5]. An 

interleaver is a device which reorders its input sequence, 

and can be always represented by a one-to-one mapping 

: {0,1, , 1}Kf S K   given by ( )x f x [5-6]. 

Denote the set of all possible interleavers of length K  

by KI . Since the cardinality of KI is as large as !K , it is 

necessary that effective interleaver metrics are defined to 

rapidly search good interleavers for turbo codes. 

In this paper we focus on the optimization of 

qudratic and cubic PP interleavers for turbo codes. The 

rest of the paper is organized as follows. In Section 2, the 

properties of interleavers relevant to the performance of 

turbo codes are discussed and two new metrics are 

proposed to seek good interleavers for turbo codes. Then, 

good permutation polynomial interleavers are founded 

by the methods based on the both new metrics in Section 

3. Finally, simulations and conclusions are given in 

Section 4 and 5, respectively. 

 

2. Turbo Code Interleavers 
 

In a turbo coding scheme, interleaving is 

employed before the information sequence is encoded by 

the second component encoder [5, 6]. The first role of 

interleaving is to construct a long random code due to its 

Shannon limit approaching capability [5]. Second, a 

turbo code interleaver is designed to transform low-

weight parity sequence of the first constituent code into 

high-weight parity sequence of the second constituent 

code [6-8]. Hence, it increases the turbo codes free 

distance and reduces the multiplicity of low-weight 

codewords. The final function of the interleaver is to 

spread the outputs from one decoder to provide the other 

with less correlated inputs [9, 10].  

The bit error rate of turbo codes over an 

additive white Gaussian noise (AWGN) channel is upper 

bounded by Eq.1 [7]: 
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Where freed , R , 0/bE N , dA and d denote the free 

distance, code rate, signal to noise ratio per information 

bit, the multiplicity and average information weight for 

codewords of weight d , respectively [7]. Typically, the 

performance of turbo codes is dominated by the first few 

terms of the distance spectrum, which are produced by 

the low-weight self-terminating input sequences and the 

edge effects caused by the termination of convolution 

codes into block codes [5-8]. It is well-known that an 

interleaver for turbo codes has three important properties 
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(i.e. spread factor, dispersion, and edge effects). The 

spread factor determines the effective free distance [3, 5-

7], and the dispersion gives a proportional reduction in 

the multiplicities of low-weight codewords [3, 7]. Edge 

effects refer to the implications on the distance spectrum 

resulting from the termination of the encoder [7, 10]. 

Due to the termination, a low-weight parity word can be 

produced, even though the encoder input does not force 

the encoder back to the zero state. 

Given an interleaver f , its dispersion D can be 

defined as: 

  
2

D C f
K

 
  

 
 (2) 

Where C is the set defined as: 

       , 0C f j i f j f i j i K      (3) 

The set C is composed by the pairs of the 

distance between any two elements in the original input 

sequence and the distance of these elements interleaved 

by f . The dispersion D evaluates the randomness of the 

interleaver pattern. Obviously, a high dispersion 

indicates a high randomness. 

The spread factor S of f is defined as:  

        min mod modS i j K f i f j K     (4) 

Where 0 i K  , 0 j K  and i j . Clearly, by an 

interleaver with large spread factor, any two adjacent 

elements in the original input sequence will be separated 

far away in the permuted sequence. 

For turbo codes using dual-termination and 

MAP decoding algorithm, an interleaver with large 

dispersion and spread factor is more suitable for turbo 

codes. Normally, turbo codes always use block 

interleavers. However, the majority of block interleavers 

are prone to small spread factor S or dispersion D . The 

asymptotic free distance of turbo codes is linear to the 

logarithm of K [12] and the spread factor S is upper 

bounded by 2K [3]. Besides, the dispersion D gives a 

proportional reduction in the multiplicities of low-weight 

codewords. Hence, to rapidly seek block interleavers 

with large spread factor and dispersion simultaneously, 

the following metric can be defined for a turbo code 

interleaver f : 

  lnD S   (5) 

The metric  is the product of the 

dispersion D and the logarithm of spread factor S .  

Apparently, a large enough metric is necessary for a 

good turbo code interleaver. However, the performance 

of turbo codes depends not only on the spread factor and 

dispersion but also on the edge effects. For a codeword 

produced by an input sequence of weight 1, its weight 

can be upper bounded by Eq.6: 

     1 1 tailK i K f i        (6) 

Where i is the index of the nonzero bit in the input 

sequence and tail is the weight of the tail bits. For 

codewords produced by all input sequences of weight 1, 

their minimum weight can be estimated by Eq.7: 

 
1 1 tail      (7) 

Where ( ( ))min K i K f i     . We define  as the 

edge effects factor of f to measure the minimum sum of 

the distances between an arbitrary bit position and its 

permuted bit position to the edge of the input sequences. 

And the definition of  can be simplified as bellow: 

     min ' maxK i K f i i f i         (8) 

Due to the edge effects, turbo codes using a 

block interleaver with large does not sufficiently mean 

that they have a good distance spectrum. E.g. 

if ( 1) 1f K K   (i.e. 2  ), the free distance of 

turbo codes using two identical, parallel, 8-state, rate 1/3, 

recursive systematic convolutional encoders with 

polynomials (13,15)8 is no more than 11. Clearly, a large 

metric  or a small metric ' is also necessary for a good 

turbo code interleaver. 

 

3. Search Good PP Interleavers For Turbo 

Codes 
 

Considering the memory and fast decoding 

requirements, PP interleavers (i.e. Eq.9) with compact 

formulations and maximum contention-free properties 

[8, 9] are preferred by practical turbo coded 

communication systems as the 3GPP LTE and LTE-A 

[13]. 

    
0

mod
n

n

n

n

f x f x K


 
  
 
  (9) 

The sufficient and necessary conditions for the 

coefficients
nf of a polynomial over integer ring

K
to be 

a PP interleaver are summarized in [14, 15]. By 

introducing high degree terms in the relative prime 

algebraic PP (i.e. 1n  in Eq.9) interleavers, the PP 

interleavers will tend to lower the spread factor 

somewhat and provide sufficient irregularity (i.e. 

randomness), and turbo codes with PP interleavers will 

achieve outstanding error correcting performance [3, 7]. 

In order to search PP interleavers with both large 

metrics and  , we propose the following method: 

1).Select interleavers KP  from KPP  with 

d  ; 

2).Select interleavers with maximum  from 

set
KP . 

The interleaver set
KPP is composed by all PP 

interleavers of degree n and length K , and the 

constant d can be set to a value near the upper bound of 

the minimum distance of turbo codes with length K [12]. 

For quadratic (i.e. 2n  in Eq.9) PP (QPP) and cubic 

(i.e. 3n  in Eq.9) PP (CPP) interleavers of 

length 1184K  , 592K  , and 104K  , some good 

interleavers searched by the proposed method are listed 

in TABLE 1-3. And some interleavers with 
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smaller  or  are also listed in these tables for 

comparisons. 

 

Table 1. Interleavers for comparison, K=1184 

f(x) S D α β 

19x+74x
2
 20 0.018 0.053 64 

923x+74x
2
 20 0.018 0.053 26 

441x+148x
2
+74x

3
 26 0.017 0.056 48 

103x+148x
2
+74x

3
 8 0.017 0.035 30 

Table 2. Interleavers for comparison, K=592 

f(x) S D α β 

19x+74x
2
 20 0.018 0.053 26 

93x+74x
2
 20 0.018 0.053 20 

113x+148x
2
+74x

3
 20 0.019 0.057 32 

75x+148x
2
+74x

3
 2 0.018 0.012 2 

Table 3. Interleavers for comparison, K=104 

f(x) S D α β 

7x+26x
2
 8 0.053 0.115 14 

11x+26x
2
 8 0.057 0.116 10 

33x+26x
2
+26x

3
 8 0.065 0.134 24 

33x+52x
2
+26x

3
 8 0.062 0.129 8 

Table 4. CPPs with maximum α and large β 

K f(x) α β 

40 13x+10x
2
+10x

3
 0.220 14 

104 33x+26x
2
+26x

3
 0.134 24 

160 38+99x+20x
2
+10x

3
 0.243 32 

592 113x+148x
2
+74x

3
 0.057 32 

640 431x+50x
2
+10x

3
 0.237 88 

768 138+138x+18x
2
+18x

3
 0.274 86 

1184 441x+148x
2
+74x

3
 0.056 48 

 

In fact, when a turbo code interleaver is 

circularly shifted (i.e. 0 0f  in Eq.9), its metric almost 

remains unchanged, but its metric  varies sharply. 

Therefore, we also can first find the PP interleaver with 

maximum .Then, if the metric  of the PP interleaver 

is less than d , a circular shift 0f which can maximize the 

metric  of the interleaver is applied. By this method, we 

find some good CPP interleavers as listed in TABLE 4. 

Compared to the former searching method, the 

latter usually can find interleavers with larger 

metric and  , but extra memories are needed for the 

storage of the circular shift constant
0f . 

 

 

4. Simulation Results 
 

Block error rate (Bler) curves for turbo codes 

with the PP interleavers listed in TABLE 1-3 are shown 

in Fig. 1-3, respectively. We use two identical 

component encoders with generator polynomials 

(13,15)8, and assume QPSK modulation and AWGN 

channel. The decoding is performed with the improved 

max-log-MAP algorithm [16] with 8 iterations. 

These results show that an interleaver with 

small or  will lead to the poor performance of turbo 

codes, and it is necessary for a turbo code interleaver to 

have both large metrics  and  . In Fig.1, the poor 

performance of turbo codes 

with    2 3103 148 74 mod 1148f x x x x   is incurred 

by the small . And the small  leads to the high error 

floor of turbo codes 

with    2923 74 mod 1148f x x x  . In Fig.2, the poor 

performance of turbo codes 

using    2 375 148 74 mod 592f x x x x   is caused 

by both small metrics  and  . In Fig.3, the 

small  leads to the high error floor of turbo codes 

with    2 333 52 26 mod 104f x x x x   . Since the 

best CPP interleavers (i.e. the CPP interleavers in the 4th 

row of TABLE 1-3) always have larger metrics than 

the best QPP interleavers (i.e. the QPP interleavers in the 

second row of TABLE 1-3), turbo codes using the best 

CPP interleavers always outperform the best QPP 

interleavers as observed in Fig.1-3. Moreover, it is worth 

to be noted that, the best QPP interleavers, found by the 

proposed method as listed in TABLE 3, have already 

been adopted as turbo code interleavers in LTE and LTE-

A [13] which are the 4th generation standards of radio 

technologies designed to increase the capacity and speed 

of mobile telephone networks.  

In Fig.1-3, the performance of turbo codes with 

the well-known s-random interleaver is also shown and 

the typical assumption for s-random 

interleaver / 2s K is assumed. We can see that turbo 

codes using the QPP and CPP interleavers with large 

metrics  and  always outperform the well-known s-

random interleavers.  
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Fig 1. Bler comparison of turbo codes, K=1184 
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Fig 2. Bler comparison of turbo codes, K=592 
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Fig 3. Bler comparison of turbo codes, K=104 

 
 

5. Conclusions 

 
In this paper, the spread factor, dispersion and 

edge effects of turbo code interleavers were studied, and 

we proposed two simple metrics α and β based on them 

to search good PP interleavers for turbo codes. Through 

simulation, we have proved that an interleaver with small 

metrics α or β will lead to the poor performance of turbo 

codes, and it is necessary for a turbo code interleaver to 

have both large metrics α and β. Furthermore, the turbo 

code interleavers found by the proposed metrics always 

perform much better than the benchmark s-random 

interleavers. Besides, we have also found some good 

CPP interleavers outperform the QPP interleavers which 

have been adopted as turbo code interleavers in LTE and 

LTE-A. 
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