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Abstract: In this paper, a broadband double-matching network design algorithm has been presented. In the 

network, an unsymmetrical lattice network has been used. The branch impedances of the lattice network are 

composed of singly terminated lossless LC networks. After giving the procedure, its usage has been illustrated 

via an example. 
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1. Introduction 
 

Broadband matching network design is an 

essential problem for microwave engineers [1]. So 

analytic theory of broadband matching [2-3] and 

computer-aided-design (CAD) methods are two 

essential tools for them [4-6]. But it is well known 

that analytic theory is difficult to utilize even if the 

source and load impedances are simple. Therefore, 

it is always preferable to use CAD methods. All the 

CAD techniques optimize the matched system. But 

this optimization is highly nonlinear and requires 

very good initial values [7]. As a result, initial 

element values are extremely important for 

successful optimization. 

The matching problem can be classified 

basically as filter, single matching, double-

matching and active two-port problems. If both 

terminating impedances are resistive, it is a filter 

problem. In single matching problem, generator 

impedance is resistive and load impedance is 

complex. If both terminating impedances are 

complex, then the problem is referred to as the 

double-matching problem. If the input and output of 

an active device is simultaneously matched to given 

load and generator impedances, then this is called 

as the active two-port problem. Design of a 

microwave amplifier is a typical example of this 

matching problem. 

In matching network design problems, 

ladder networks are preferred, since these structures 

have very low sensitivity [8]. If one requires more than 

one path of transmission between the input and output 

ports, this can be realized by parallel or bridged 

structures. Without the common ground between the 

input and output ports, right half-plane zeros can be 

realized by a bridge structure. If the bridge leads are 

twisted, the configuration seen in Fig. 1 is obtained, 

which is known as an unsymmetrical lattice network 

[9]. 

 

 
Figure 1.Unsymmetrical lattice network with complex 

terminations. 

 

Therefore, in this paper, two-port bridge 

structures are utilized in broadband double-matching 

networks. The proposed method generates very good 

initials to improve the matched system performance by 

optimizing the element values via commercially 

available CAD tools. In the following section, real 

frequency broadband matching will be summarized. 

Then, the design algorithm and an example will be 

presented. 
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2. Real frequency broadband matching 
 

The matching conditions of the complex 

load LZ  to the complex generator SZ  can be 

formulated in terms of the normalized reflection 

coefficients at ports 1 and 2. The input reflection 

coefficients 1  can be defined by 
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where inZ  is the input impedance seen at port 1 

when port 2 is terminated by the load LZ . Similarly 

the reflection coefficient at port 2 can be defined by 

Lout

Lout

ZZ

ZZ






*

2     (2) 

where outZ  is the impedance seen at port 2 when 

port 1 is terminated by the source impedance SZ , 

and the upper asterisk denotes complex 

conjugation. Here, 2  is the normalized reflection 

coefficient at port 2. Since the two-port is 

considered as lossless, we have on the imaginary 

axis of the complex frequency plane 
2

2
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Then, the transducer power gain ( TPG ) at 

real frequencies can be expressed as 
2

2

2

1 11)(  TPG   (4) 

The goal in broadband matching is to 

design the lossless network N , which consists of 

the arm impedances )(),(),( 321 pZpZpZ  and 

)(4 pZ , such that )(TPG  given by Eq. (4) is 

maximized inside a desired frequency band. 

Obviously, maximizing )(TPG  means to 

minimizing the modulus of the reflection 

coefficients 1  or 2 . In this context, the 

matching problem is reduced to the determination 

of a realizable impedance function inZ  or outZ . 

Let the equalizer input impedance inZ  be 

expressed in terms of its real and imaginary parts 

on the real frequency axis as 

)()()(  ininin jXRjZ    (5) 

By using Eq. (5), Eq. (4) and Eq. (1) we 

obtain transducer power gain in terms of the real 

and imaginary parts of the input impedance inZ  

and the source impedance 

)()()(  SSS jXRjZ   as follows: 
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Namely the matching problem consists of 

finding )( jZ in  such that )(TPG  is maximized 

inside a desired frequency band. Once inZ  is 

determined properly, the equalizer network N  can be 

synthesized directly by using the obtained impedance or 

the corresponding reflection coefficient. 

 

3. Rationale of the matching procedure 
 

For a lossless two-port like the one shown in 

Fig. 1, the canonic form of the scattering matrix is given 

by [10,11] 
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where  jp   is the complex frequency variable, 

and 1  is a unimodular constant. If the two-port is 

reciprocal, then the polynomial )( pf  is either even or 

odd. In this case, 1  if )( pf  is even, and 1  

if )( pf  is odd. 

For a lossless 2-port, energy conversation 

requires that 

IpSpS T  )()( ,   (8) 

where I  is the identity matrix. The explicit form of Eq. 

(8) is known as the Feldtkeller equation and given as 

)()()()()()( pfpfphphpgpg  . (9) 

In Eqs. (7) and (9), )( pg  is a strictly Hurwitz 

polynomial of thn  degree with real coefficients, and 

)( ph  is a polynomial of thn  degree with real 

coefficients. The polynomial function )( pf  includes all 

transmission zeros of the two-port. 

Consider the bridge network seen in Fig. 1 or 

Fig. 2. Since it is not desired to dissipate any power in 

the impedances )(),(),( 321 pZpZpZ  and )(4 pZ , they 

must be lossless, so they must be composed of only 

inductors and capacitors. Also their terminations must 

be either short or open, not resistive terminations. So 

these impedances are singly terminated lossless LC 

networks [12]. 

In [12], it has been shown that for a lossless 

singly terminated network, the input reflection 

coefficient can be expressed as 
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where 1  and 1  corresponds to an open and 

short termination, respectively. So the procedure 

proposed in [12] can be used to design the impedances 

)(),(),( 321 pZpZpZ  and )(4 pZ . Then the following 

algorithm is used to design the broadband matching 

network by using unsymmetrical lattice networks. 

Algorithm 
Inputs 

 ;2 )()( actualiactuali f   Ni ,,2,1  : Measurement 

or calculation frequencies selected arbitrarily. 
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 N : Total number of measurement or 

calculation frequencies. 

 )()()( )()()( iactualLiactualLiactualL jXRjZ  

; Ni ,,2,1  : Measured or calculated load 

impedance data at N  frequency points. 

 )()()( )()()( iactualSiactualSiactualS jXRjZ  

: Ni ,,2,1  : Measured or calculated source 

impedance data at N  frequency points. 

 Normf : Normalization frequency. 

 0R : Normalization resistance, usually 50 . 

 kn ; 4,3,2,1k : Desired number of elements 

in the arms of the bridge network. 

 1k ; 4,3,2,1k : Desired termination type 

of the arms of the bridge network. 

 )(pg k ; 4,3,2,1k : Initialized polynomial 

)( pg  describing the arm impedances of the bridge 

network. 

 0T : Desired flat transducer power gain level. 

  : The stopping criteria. For many practical 

problems, it is sufficient to choose 310 . 

Computational Steps 

Step 1: If the given load and source impedances 

and frequencies are actual values, not normalized, 

then normalize the frequencies with respect to 

Normf  and set all the normalized angular 

frequencies 

Normactualii ff /)( . 

Normalize the load and source impedances 

with respect to normalization resistance 0R  over 

the entire frequency band as 

0)(0)( /,/ RXXRRR actualLLactualLL  , 

0)(0)( /,/ RXXRRR actualSSactualSS  . 

It should be noted that if the load and 

source is specified as admittance data, then the 

normalization resistance 0R  multiplies the real and 

imaginary parts of the admittance data (i.e., 

0)(0)( , RBBRGG actualLLactualLL  , 

0)(0)( , RBBRGG actualSSactualSS  ). 

But if the given load and source 

impedances and frequencies are already 

normalized, and then go to the next step directly 

without any normalization process. 

Step 2: Calculate the input impedance values of the 

arms of the bridge network as 
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
  is the input 

reflection coefficient of the arms of the bridge network. 

Step 3: Calculate the input impedance of the bridge 

network when port 2 is terminated by the load 

impedance LZ  via the following equation, 
D

N
Z in   

(see Fig. 1), where 
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The input impedance expression has been 

obtained by using Yto   transformation equations 

[13]. 

Step 4: Calculate transducer power gain via Eq. (6) as 

follows 
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where ))((Re)( iSiS jZalR   , ))((Re)( iiniin jZalR   , 

))((Im)( iSiS jZaginaryX   , ))((Im)( iiniin jZaginaryX    

Step 5: Calculate the sum of the squared error via 
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Step 6: If  C , synthesize 
)(
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)(11),(

pg

pg
pS

k

k
kk


  

and obtain the arm networks of the bridge, then stop. 

Otherwise, change k   (termination types) and/or 

)(pg k  (initialized polynomials) via any optimization 

routine and go to Step 2. 

The algorithm explained above has been 

applied to broadband single-matching problems in [14]. 

But in this paper, the method is utilized to broadband 

double-matching problems. 

 

4. Example 

 
Figure 2. The source and load terminations, 1SR , 

1SL 1LL , 3LC , 1LR  (Normalized). 

 

In this section, an example will be given to 

illustrate the proposed algorithm. Here all the 

calculations will be made by using normalized values. 

After designing the matching network, all components 
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can be de-normalized by using the given 

normalization frequency (fNorm) and resistance (R0). 

The source and load impedances in 

normalized values can be seen in Fig. 2. So there is 

no need a normalization process. In Table 1, the 

calculated source and load impedance values are 

given. 

 
Table 1. Given normalized source and load impedance 

data 

  SR  SX  LR  LX  

0.1 1.0 0.1 0.9174 -0.1752 

0.2 1.0 0.2 0.7353 -0.2412 

0.3 1.0 0.3 0.5525 -0.1972 

0.4 1.0 0.4 0.4098 -0.0918 

0.5 1.0 0.5 0.3077 0.0385 

0.6 1.0 0.6 0.2358 0.1755 

0.7 1.0 0.7 0.1848 0.3118 

0.8 1.0 0.8 0.1474 0.4450 

0.9 1.0 0.9 0.1206 0.5743 

1.0 1.0 1.0 0.1000 0.7000 

 

The selected initial coefficients of the 

polynomials ))(( pg k , the alpha constants ( k ) 

and the desired flat transducer power gain level 

( 0T ) are as follows,  32061 g , 

 1762 g ,  16133 g ,  121314 g , 

11  , 12  , 13  , 14  , and 

8.00 T , respectively. 

After running the proposed algorithm, the 

following polynomial coefficients and alpha 

constants are obtained, 

 9256.16652.21001.01 g , 

 001.01205.43578.82 g , 

 3547.01955.41635.143 g , 

 4634.108068.17001.04 g , 11  , 

12  , 13  , 14  , respectively. 

After synthesizing the corresponding 

reflection coefficients the bridge network seen in 

Fig. 3 is reached. The obtained transducer power 

gain curve is given in Fig. 4. 

 
Figure 3. Designed matching network, 5

1 106157.4 L , 

2511.111 C , 5.41202 L , 0284.22 C , 8283.113 L , 

3759.33 C , 7019.14 L , 5
4 106158.5 C  

(Normalized). 

 

Actual element values can be obtained by de-

normalization. So actual element values are given by 

.)Re(Re
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Since the matching network is designed by 

using normalized values, the cutoff frequency of the 

network is 1  (see Fig. 4). After de-normalization 

process, it shifts to the given normalization frequency, 

since Normiactuali ff )( . 

As can be seen in Fig. 4, a fluctuating 

transducer power gain curve is obtained within the 

required frequency band at the desired flat gain level 

( 8.00 T ). 

 

5. Conclusions 
 

An algorithm has been proposed to design 

broadband impedance matching networks via lossless 

unsymmetrical lattice networks. Since it is not desired 

to dissipate power in the equalizer, the arm impedances 

of the lattice network are selected as singly terminated 

lossless LC sections. In the paper, double-matching 

problem (complex source and complex load impedance) 

has been considered. 

In the example, the desired flat transducer 

power gain level is selected as 0.8. As can be seen from 

the transducer power gain graph, a fluctuating gain 

curve around this level has been obtained. 

It is shown that the proposed method generates 

very good initials to improve the matched system 

performance by optimizing the element values. 

Therefore, it is expected that the proposed algorithm can 

be used as a front-end for the commercially available 

CAD tools to design broadband matching networks for 

communication systems. 

 
Figure 4. Transducer power gain curve. 
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