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ABSTRACT: Telecom software systems are a major aspect of telecommunications networks used for 

managing, administrating, auditing and monitoring purposes. One of the most significant features is the 

performance of the telecom software system, since there is a great variety of network elements in use 

within built systems through which the telecom software interacts. Workload characterization is an 

essential methodology for simulating load usage for a given infrastructure that is exposed to a 

production environment. Hence, exploring the characteristics of workloads well leads an increase on 

system efficiency and performance.  Nevertheless, workload characterization has not been well 

examined yet for Telecom Software System.  In this paper, a new workload characterization architecture 

is proposed and implemented to model the workload and simulate the behavior of the network element. 

This architecture provides information regarding the accuracy of the workload models for more precise 

performance testing. Additionally, we verify our workload characterization results obtained from our 

architecture in a real software system. Performance results show that proposed workload model-based 

simulation environment is promising to predict the performance of the software systems. 
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Telekom Yazılımı İş Yükü Karakterizasyonu 

 

ÖZ: Telekom yazılım sistemleri, yönetim, denetim ve izleme amacıyla kullanılan telekomünikasyon 

ağlarının önemli bir parçasıdır. Telekom yazılım sistemlerinin en önemli özelliklerinden biri 

performansıdır. Bunun nedeni telekom yazılımının etkileşim içinde olduğu yerleşik sistemler içinde 

kullanılan çok farklı ağ elemanları vardır. İş yükü karakterizasyonu, üretim ortamına maruz kalan belirli 

bir altyapı için yük kullanımını simüle etmek için temel bir metodolojidir. Bu nedenle, iş yüklerinin 

özelliklerini iyi araştırmak, sistem verimliliği ve performansında artışa neden olmaktadır. Bununla 

birlikte, literatürde iş yükü karakterizasyonunun Telekom Yazılım Sistemlerinin performansına etkileri  

henüz iyi bir şekilde incelenmemiştir. Bu yazıda, iş yükünü modellemek ve ağ elemanının davranışını 

simüle etmek için yeni bir iş yükü karakterizasyon mimarisi önerilmiş ve uygulanmıştır. Bu mimari, 

daha yüksek doğrulukta performans testleri için iş yükü modellerinin doğruluğu hakkında bilgi 

sağlamaktadır. Ek olarak, çalışma da önerilen mimariden elde edilen iş yükü karakterizasyon sonuçları 

gerçek bir yazılım sistemi ile doğrulanmaktadır. Performans sonuçları, önerilen iş yükü modeline dayalı 

simülasyon ortamının yazılım sistemlerinin performansını öngörmeyi vaat ettiğini göstermektedir. 
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INTRODUCTION 

A workload can be defined as a set of requests that a system receives as an input over a certain 

period of time (Shirasb, 1983). To detect the performance of any system-i.e., the requests processed by 

the system-its workload must be analyzed. The input requests arrive into the system from external 

sources. This generic unit of work is called a “workload component". Workload components include 

transactions, interactive commands, processes and http requests, depending on the nature of the service 

provided. The workload parameters that are required for workload characterization are obtained from 

the workload components. Workload parameters are the measured quantities, service requests, or 

resource demands, etc. Examples of workload parameters include instructions, transaction types, packet 

sizes, page reference patterns and source-destinations of a packet. Workload component and parameter 

selection plays a key role in workload characterization. The workload component must represent as 

homogeneous a group as possible, and parameters that have little effect must be excluded. The system 

domain is important to the workload component since the component itself can be selected according to 

the domain. Operating system-level parameters, such as CPU time, cannot be used; instead, parameters 

that depend on the workload itself are selected.  

A major problem for performance testing is the use of unrealistic workloads, which lead to incorrect, 

inefficient performance results (Jain, 2008). Such badly measured or mis-measured performance results 

could lead to performance problems and failures with "production", or in other words, the "live" 

environment. Hence, an efficient workload characterization is a vital issue for regulating efficient 

resource provisioning, power management and energy conservation strategies within a technological 

infrastructure (Feitelson, 2014). The workload models that derive from the characterization process play 

also an important role in performance testing. The main fields in which workload characterization is 

practiced are the web, online social networks, video services, mobile devices and the cloud systems 

(Avritzer et al., 2002; Calzarossa et al., 2016).  

In this study, we present a new workload characterization architecture which model the workload 

and then simulate the behavior of the network element for a Telecom software system. In the 

architecture, we utilize different clustering techniques to characterize workload. Then, the effect of 

clustering accuracy on the performance has been analyzed in terms of CPU usage, memory and Disc I/O. 

We adapt “measurement-based" technique which is given in (Franks et al., 2007) for performance 

modeling to predict future loads of a software system.  This architecture also provides accuracy for the 

characterization of more precise workload models and the accuracy effect on the performance results is 

also studied. Furthermore, we have developed a new software system named PAS (Parameter Audit 

SmartApp) to explore the performance of the proposed workload characterization architecture in real 

test environment. The effect of clustering accuracy on performance testing has been shown for workload 

characterization. To the best of our knowledge, workload characterization methodologies have not yet 

been applied or studied in relation to software architectures that operate within the telecom domain. 

 The rest of the paper is organized as follows; Section 2 describes the existing literature relating to 

workload characterization techniques. In Section 3, we show how we characterized the telecom log data 

and outlines of the architecture is shown. Performance results of clustering techniques are given in 

Section 4. Section 5 presents the effect of workload characterization performance on resource utilization. 

Finally, Conclusion is given in Section 6. 

RELATED WORK 

Workload characterization analysis techniques vary from statistical, Markov models, Principal 

component analysis, histograms (single and multi-parameter) to clustering (Calzarossa et al., 2016). 

Statistical methods include median, mode and averaging operations to characterize workload in the 

system. The averaging method is used when the average value of a parameter can be considered its basic 

characterization. The median and mode formulations are used in addition to the arithmetic mean. This 

methodology functions well with good uniform distributions or gross studies (Feitelson and Rudolph, 
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1996). The specifying dispersion method is used when most of the parameters is non-uniform. Variance 

or standard deviation specifications can be a major improvement over the average. Both average and 

standard deviation allow workloads to be grouped into classes, but this still ignores the exact 

distribution (Tietjen, 1986). Markov models are used when distribution is not enough, meaning that 

requests can be received by a system in sequences and the sequencing affects performance. Markov 

models represent models as a state diagram and show probabilistic transitions between states. Request 

generation is based on these transitions. When creating a Markov model, a long string of activities is 

observed. A matrix is used to count pairs of states. The matrix rows must be normalized to sum to 1.0 

(Neuts, 1989).  Clustering technique has been used for workload characterization task (Saraswathi and 

Sheela, 2014; Menasce et al., 1996; Gruttner et al., 2015; Xu and Tian, 2015). The main objective when 

applying clustering algorithms is to classify requests into a smaller group of classes to create similar 

workloads to those on the production side. During the process of workload characterization of a system, 

log files are analyzed, and a clustering algorithm is applied. This classification is made based on a 

widely used clustering algorithm, such as the connectivity-based (hierarchical), centroid-based or 

density-based algorithms (Saraswathi and Sheela, 2014).  

There are several workload characterization implementations are applied on different software 

domains such as mass storage systems (Menasce et al., 1996), embedded software (Gruttner et al., 2015), 

and parallel scientific programs (Helm and Malony, 2001). 

WESSBAS (Hasselbring et al., 2008; Hasselbring et al., 2014) is a model-driven approach for 

automatically expositing and transforming workload models for the load testing and performance 

prediction of session-based applications. This approach is extended with WESSBASS-DSL, which can 

define the layered modeling of workload specifications for the Palladio component model (Hasselbring 

et al., 2014). Casalicchio et al. (2015) has proposed a workload characterization based on three months of 

the real traffic and resource usage of Desktop-as-a-Service. The cloud desktop service workload and the 

cloud storage service workload are defined as representative workloads. As reported in this study, 

workload characterizations such as session length could be modelled with exponential distribution, 

while CPU load and disk load (R/W) are longtail distributed. Feitelson and Zakay (2014) describe a 

workload characterization method based on real traces, which are divided into sub-traces to represent 

different users. The re-sampling is applied in various ways and collected over daily and weekly periods. 

Amrehn et al. (2015) presents an automated workload characterization approach for I/O-intensive 

software applications in virtualized environments. Storage request properties are extracted via 

monitoring tools, with a proposed algorithm defining the workload models. Workload migration and 

consolidation cases have also been studied in this work.  

The customer behavior model graph (CBMG) technique has been applied as a workload 

characterization methodology in (Almeida et al., 1999). The CBMG technique is likewise implemented 

for automated workload characterization using system log analysis in (Daniel and Mahmoud, 2015). The 

authors have enhanced its implementation by using ELK as a technology stack, to achieve greater 

efficiency and generalness. This technique is also used in (Politi et al., 2004). Gruttner et al. (2015) has 

proposed a hybrid approach to defining automatic workload models for embedded software 

performance estimation. From CPU usage and memory access patterns, embedded software workload 

models are extracted and used for host-based simulation. Simulation results are obtained from WCET 

benchmarks. Curiel and Pont (2018) describe new innovations in the WWW that involve dealing with 

more complex workload models. This survey summarizes and provides guidelines for these challenges. 

Some recent studies have also applied these approaches on other software architectures, like 

microservices. Nakaike et al.'s (2016) study is the first empirical study on the performance analysis of 

microservices; it constitutes important research, as it shows that the microservice architecture consumes 

more resources due to its monolithic approach. ACME Air, a public benchmark, is used for the 

experimental results.  

Although there are several workload characterization implementations in software domains, none of 

them has been dealt with the real telecom data. In this paper we propose a workload characterization 
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methodology on telecom data which uses several clustering techniques. We also utilize a software tool 

named PAS  to verify of our performance results in a real log data. 

PROPOSED ARCHITECTURE  

In this section, we present our workload characterization architecture which is given in Figure 1. 

Our architecture includes Production Logs, Workload Simulation Tool, PAS (Parameter Audit 

SmartApp) and Trace based Simulation modules. PAS is a software tool that supports the automated 

auditing of network elements' configurable parameters. Using its network element-specific software 

modules, or “communicators", PAS collects data from network elements over secure connections (Goren 

et al., 2017).  The PAS tool logs both the data requested by a network element (NE) and the response 

coming from it, along with the total audit completion time. Each audit for a specific network element has 

specific retrieval mechanisms, and for every retrieval request, the response output varies. Due to the 

characteristics of the PAS tool, the key parameters for workload component can be identified as: 

 

• Network element type, 

• Total number of retrieval commands per audit, 

• Total data exchange volume (transmitted between NEs and PAS) per audit, 

• Total completion time per audit. 

 

This modeling of the key parameters step is important for telecom software systems. The main duty 

of telecom software systems are to communicate with network elements for auditing, administration and 

monitoring purposes. Key values for PAS can be changed to request-based terminology to deal with 

generic definition. Once the identification step of key parameters is completed, data files (log files) are 

collected for a given period. Workload characterization and Generation is based on clustering algorithms 

applied to extracted key parameters. As every workload is characterized by a group of features (key 

parameters), clustering algorithms are appropriate methods to identify the number of clusters in the 

workload. The workloads placed in the same cluster are merged to obtain a core model of the 

workloads. Once the workloads have been defined based on clustering, the selected core models are 

given to PAS, and the network element simulations are initiated. Along with the cluster results, selected 

cluster member is used as a workload model for the trace-based simulated network elements. The 

simulation lists all the network elements, along with detailed information like network element name, 

network port, network element log file and assigned network element IP. The trace-based simulations 

are defined to PAS via a web service API. The trace-based network elements are initiated with their 

assigned IPs and ports. Performance tests can be started once this operation is complete. The trace-based 

simulator is a simulation tool developed by Nokia Turkey Research and Development Center to mimic 

the network element behavior for testing purposes (Celik et al., 2015). This simulator is integrated into 

the workload simulation to enable the creation of the network elements needed for workload testing 

without the need for actual NEs or NE configuration. 
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Figure 1. Workload characterization architecture 

 

For user interactions, a graphical user interface (GUI) is implemented as a Java Swing application 

(Java). 

For clustering algorithm implementation, the WEKA software API is used (WEKA). We used F-

measure and accuracy metric to represent the performance of clustering. The F-measure is a metric of 

accuracy based on the calculated precision (P) and recall (R) values. The F-measure formulation is given 

Eq 1.: 

 

    
   

   
           (1) 

 

CLUSTER RESULT ANALYSIS 

The cluster result analysis is performed on a total of 500 network element audit log files. The log 

instances are labeled in the different cluster results according to certain predefined cluster number (K) 

parameters:  K=3, 4 and 5. The result analysis is applied on the actual label set of the log files.  
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Table 1. Comparison for the number of clusters K=3  

Algorithms Accuracy F-Measure Time Taken Instances 

K-Means 49.4% 52.1% 0.085 

0: 87 (17%) 

1: 104 (21%) 

2: 309 (62%) 

EM Clustering 47.8% 50.6% 0.12 

0: 102 (20%) 

1: 300 (60%) 

2: 98 (20%) 

Hierarchical 

Clustering 
43.4% 45.2% 0.14 

0: 386 (77%) 

1: 104 (21%) 

2: 10 (2%) 

Density-Based 

Clustering 
49.4% 52.1% 0.21 

0: 89 (18%) 

1: 104 (21%) 

2: 307 (61%) 

 

Table 1 shows that K-means and density-based clustering algorithms has the higher accuracy and F-

measure results when the number of clusters k is 3. It also shows that K-means has the lowest 

computational time among other algorithms. Density based clustering algorithm has the highest 

computational time despite having close accuracy and F-measure values to K-means. Hierarchical 

clustering algorithm has the lowest accuracy and F-measure values which is also can be seen by cluster 

instance member difference.  Since the cluster instance number is limited with 3, there is no clear 

distinction between clustering algorithms. 

 

Table 2. Comparison for the number of clusters K=4 

Algorithms Accuracy F-Measure Time Taken Instances 

K-Means 69.2 % 72.4% 0.092 

0: 87 (17%) 

1: 104 (21%) 

2: 103 (21%) 

3: 206 (41%) 

EM Clustering 56.6% 60.4% 0.21 

0: 265 (53%) 

1: 104 (21%) 

2: 77 (15%) 

3: 54 (11%) 

Hierarchical 

Clustering 
51.2% 52.4% 0.18 

0: 347 (69%) 

1: 104 (21%) 

2: 39 (8%) 

3: 10 (2%) 

Density-Based 

Clustering 
68.6% 70.9% 0.28 

0: 89 (18%) 

1: 104 (21%) 

2: 101 (20%) 

3: 206 (41%) 

 

Table 2 shows that all clustering algorithms shows higher accuracy and F-measure values with 4 

cluster instances. K-means algorithm still shows the highest accuracy and F-measure values with lowest 

computational time. Density based clustering algorithm has the highest computational time as it was 

with 3 cluster instances. As the cluster instance number increases, F-measure and accuracy difference 

hierarchical clustering presents wors performance compared to the other algorithms. 
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Table 3. Comparison for the number of clusters K=5 

Algorithms Accuracy F-Measure Time Taken Instances 

K-Means 77% 82.2% 0.14 

0: 77 (15%) 

1: 104 (21%) 

2: 103 (21%) 

3: 167(33%) 

4: 49(10%) 

EM Clustering 59.2% 61% 0.28 

0: 269 (54%) 

1: 39 (8%) 

2: 104 (21%) 

3: 78 (16%) 

4: 10 (2%) 

Hierarchical 

Clustering 
59.2% 61.1% 0.21 

0: 270 (54%) 

1: 77 (15%) 

2: 104 (21%) 

3: 39 (8%) 

4: 10 (2%) 

Density-Based 

Clustering 
76.6% 81.8% 0.36 

0: 77 (15%) 

1: 104 (21%) 

2: 103 (21%) 

3: 165 (33%) 

4: 51 (10%) 

 

Density-based clustering tended to show an increased rate of accuracy and F-measure values as the 

number of clusters increased. Hierarchical clustering had the disadvantage of not being able to undo 

cluster member changes, which resulted in worse performance results. As the number of clusters 

increases, the difference in accuracy performance and execution time increases between K-means and 

density-based algorithms versus EM and hierarchical clustering algorithm. Table 3 results also fits the 

previous table results which fulfills the overall cluster analysis. To characterize workload models 

accurately, accuracy and f-measure values are also taken into consideration while creating workload 

models and performance results. 

Figure 2 and Figure 3 also show accuracy and f-measure comparison of K-Means, EM, Hierarchical 

and Density based Clustering methods for varying number of clusters. The Figures also verify that, K-

means algorithm shows higher accuracy performance with an increase in the number of clusters, the 

algorithms perform with higher accuracy performance and a higher execution time. The partitioning 

clustering algorithm (K-means) also demonstrated a more accurate performance and lower execution 

time when compared to the EM, density-based and hierarchical clustering algorithms.  
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Figure 2. Accuracy comparison                                         Figure 3. F-Measure comparison 

RESOURCE UTILIZATION 

In this Section, we present the effect of workload characterization performance on resource 

utilization. in terms of CPU and Memory and DISC I/O usage. Depending on the accuracy results, the 

best workload model is defined for our software system (PAS) and then trace-based network element 

simulators are configured by considering its performance. 

CPU and Memory Usage 

CPU and memory data are collected while an audit job employed in network elements is running for 

each cluster instance. These resource usage characteristics are depicted according to the standard 

deviation of the CPU and memory usages. As shown in Figure 4, as the accuracy of the cluster increases, 

the derivation of the graph decreases. This result can be interpreted as follows: a greater number of 

network elements having these characteristics results in the same usage patterns for CPU and memory. 
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(a)CPU Usage Standard Deviation for Three Cluster Instances            (b)CPU Usage Standard Deviation for Four Cluster Instances 

 
(c)CPU Usage Standard Deviation for Five Cluster Instances 

Figure 4. CPU usage standard deviation 

 

Figure 4.a shows the three-instance cluster CPU result tests, based on density, K-means and 

hierarchical clustering result workloads, which tend to show lower standard deviation values compared 

to EM. As the accuracy of the clusters are close to each other, standard deviations of the resource usage 

for different clustering methods will be nearly same. Figure 4.b shows the four-instance cluster CPU test 

results. The K-means and density clustering result workloads show lower standard deviation values 

compared to EM and hierarchical clustering. The accuracy levels of the clusters are differentiated, which 

results in lower standard deviation values as well. Figure 4.c represents the five-instance cluster CPU 

test results. The accuracy difference being higher for both the three- and four-instance cluster results for 

K-means and density clustering as opposed to EM and hierarchical clustering has an adverse effect on 

the standard deviation values. Figure 5 shows standard deviation values of the memory usage. The 

results are calculated for workloads obtained from each cluster instance.  Figure 5.a presents that the K-

means and density clustering workloads produce lower memory standard deviation values when 

compared to EM and hierarchical. Figure 5.b shows the related results. As a relevant result for CPU 

usage, the memory usage standard deviation values are lower for the K-means and density clustering 

result workload models. As the accuracy of the cluster results become higher, characteristically close 

network elements are formed into cluster members. Figure 5.c shows the memory usage standard 

deviation results for five cluster instance results. 
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(a)Memory Usage Standard Deviation for                                 (b)Memory Usage Standard Deviation for Four Cluster 

Instances 

     Three Cluster Instances 

 
 (c)Memory Usage Standard Deviation for Five Cluster Instances 

Figure 5. Memory usage standard deviation 

 

The CPU and memory usage graphs were checked for standard deviations to compare the 

differences between cluster instances for each clustering algorithm. Our performance results show that, 

standard deviation values decrease as the accuracy of the clusters increase. This was an expected 

outcome as PAS software performance tests are run against network elements, which are members of a 

cluster instance. For CPU and memory usage, this means PAS audits are completed for network 

elements, which have the same kind of data to be processed. As an example, when a network element 

returns a bulk configuration data response for a retrieval, this requires more computing resources for the 

processed data. When a network element's response data type varies within a cluster instance, this 

results in a high standard deviation value for the CPU and memory usage. PAS software resource usage 

will differ between audit jobs for network elements with bulk configuration data and for network 

elements with key-value-type configuration data. These results are important for two reasons: firstly, if 

performance tests are completed against more accurate workloads, this will provide overall PAS 

software resource usage information when a group of network elements with bulk configuration data 

are compared with network elements with key-value configuration data. This information is essential to 

the analysis of software architects as it can contribute to the simulation of a [particular] production 

environment. Second, graphs representing resource usage change for both CPU and memory can 

provide more precise results to analyze. Software architects can further investigate aspects of the 

resource usage behavior of this performance output software, such as resource usage pick points, etc. 
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DISC I/O Usage 

Disc I/O data-i.e., data transfer between the hard disc and RAM-are collected based on the total 

transactions for a selected cluster result of an audit. The correlation between the accuracy of a cluster 

and the disc I/O total transactions can be seen in the graphs below. As the cluster accuracy increases, the 

disc I/O usage difference between the clusters varies. The higher disc I/O usage difference situation 

occurs with the hierarchical clustering for three and four cluster instances. The disc I/O usage details are 

listed below. 

 

                            
(a)DISC I/O Transactions for Three Cluster Instances                                          (b)DISC I/O Transactions for Four Cluster Instances  

 
(c)DISC I/O Transactions for Five Cluster Instances 

Figure 6. Disc I/O transactions 
  

The hierarchical clustering workload model results have the highest difference between cluster 

instances. When compared with accuracy levels, this cannot be explained by characteristically close 

network elements being in the same cluster; this is the result of a higher number of network elements 

being members of the same hierarchical cluster instance. Figure 6.a shows the total transactions for the 

three-instance cluster results. Figure 6.b shows the four-instance cluster results. Since the K-means and 

density clustering show better accuracy, the total transaction values difference becomes higher for each 

cluster instance. The EM clustering workload models have less differentiated disc I/O usage patterns. 

The hierarchical cluster workload model results show disc I/O usage difference decreases as the cluster 

instance number increases. This result shows that prior hierarchical results are misleading due to the 

number of cluster members for each hierarchical cluster instance. The K-means and density clustering 

workload model results show a higher disc I/O usage variance between cluster instances as the accuracy 

of the cluster increases. The EM clustering workload results show very similar disc I/O usages between 

cluster instances. Figure 6.c shows the total transactions for the five-instance cluster results. The results 
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for total disc I/O transactions were related to the results seen for CPU and memory usages. The total 

transactions differed in relation to an increase in the accuracy of the cluster results value. When 

analyzing these performance outputs, the hierarchical clustering results seemed to constitute an 

exceptional case. The hierarchical clustering results showed a high level of differentiation between the 

total disc I/O transactions for the workload performance tests, despite low accuracy rates. This outcome 

can be interpreted in terms of a disadvantage of the hierarchical clustering method. In the hierarchical 

clustering method, previous steps cannot be undone, so once a network element has been assigned to a 

cluster member, it cannot be re-assigned. The degree/level of difference between the cluster members 

affects the total disc I/O transaction counts. These performance results show that, although there is a 

correlation between accuracy and performance, exceptional cases must be considered based on the 

performance metric. 

CONCLUSION 

In this study, we have described a workload characterization-based approach on telecom data for 

performance testing. To automate the process and create a simulation environment, a new workload-

based simulation tool is implemented. Network element data is collected and downloaded over a 

selected period. The tool's workload characterization is done on this data based on clustering algorithms 

including K-means, EM clustering, hierarchical and density-based algorithm. Depending on the 

accuracy results, the best workload model is defined for the PAS software and then trace-based network 

element simulators are configured.  

As shown in the case study, there is a high correlation between the performance characteristics and 

the accuracy of the cluster results. This outcome also shows accuracy of the workload models’ 

importance for predicting the performance of the system. The performance tests are also conducted on 

measured CPU usage, memory usage and total disc I/O transactions. The PAS software performance and 

resource consumption tests are reviewed, and results were obtained for the defined workload. Our 

performance results show that since the defined workload model-based simulation environment mimics 

the production behavior, the results can be used to predict the performance of the PAS software. As a 

future work, we plan to extend this study for other performance metrics such as network throughput, 

database-related metrics, etc. Additionally, the correlation of these performance characteristics may also 

be required to analyze with the accuracy of the cluster results. To the best of our knowledge, workload 

characterization methodologies have not yet been studied for software operating within the telecom 

domain. 
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