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Abstract: One of the most important problems in statistics and related fields is 
that finding an appropriate representation of multivariate data. Here is meant by 
representation; to transform the data into a more visible (accessible) form. 
Independent Components Analysis (ICA) is a statistical method used to find the 
underlying components of multivariate data and makes its main structure more 
visible. In this respect, ICA can also be seen as an extension of the Principal 
Components Analysis (PCA). However, ICA, contrary to PCA, is based on statistical 
independence rather than unrelatedness and statistical independence is a much 
stronger feature than unrelatedness. In addition, while the normal distribution of 
the components obtained in PCA is desired, the independent components of ICA 
are requested not to distribute normally. In the study, although it is a multivariate 
statistical method, the subject of ICA, which is not well known in the field of 
statistics and which is mostly used in engineering, was discussed in detail and 
contributed to the limited statistical literature on the subject. In the application 
part, ICA was compared with a similar method, PCA. Both analyzes were applied to 
an artificial dataset and it was concluded that ICA was much more successful than 
PCA in detecting non-normal components. 

  
  

Bağımsız Bileşenler Analizinin İstatistiksel Bakış Açısıyla Değerlendirilmesi ve Temel 
Bileşenler Analizi ile Karşılaştırılması 

 
 

Anahtar Kelimeler 
Bağımsız bileşenler analizi, 
Çok değişkenli istatistiksel 
yöntemler,  
Kör kaynak ayrıştırma 
problemi,  
Temel bileşenler analizi 
 

Özet: İstatistik ve ilgili alanlardaki en önemli problemlerden biri, çok değişkenli 
verinin uygun bir temsilinin bulunmasıdır. Burada temsilden kasıt; veriyi, esas 
yapısı daha görünür (ulaşılır) bir şekle dönüştürmektir. Bağımsız Bileşenler 
Analizi (BBA); çok değişkenli verinin altında yatan bileşenleri bularak esas yapısını 
daha görünür hale getiren istatistiksel bir yöntemdir.  Bu açıdan BBA, Temel 
Bileşenler Analizi’nin (TBA) bir uzantısı olarak da görülebilir. Ancak BBA, TBA’nın 
aksine ilişkisizlik yerine istatistiksel bağımsızlığı temel alır ve istatistiksel 
bağımsızlık, ilişkisizliğe göre çok daha güçlü bir özelliktir. Ayrıca TBA’da elde 
edilen bileşenlerin normal dağılması istenirken, BBA’da tam tersi bağımsız 
bileşenlerin normal dağılmaması istenmektedir. Çalışmada, çok değişkenli 
istatistiksel bir yöntem olmasına rağmen istatistik alanında pek fazla bilinmeyen 
ve daha çok mühendislik alanında kullanılan BBA konusu ayrıntılı bir şekilde ele 
alınmış ve konuyla ilgili kısıtlı istatistik literatürüne katkıda bulunulmuştur. 
Uygulama bölümünde BBA, benzer bir yöntem olan TBA ile karşılaştırılmıştır. Her 
iki analiz yapay bir veri kümesine uygulanmış ve BBA’nın normal olmayan 
bileşenleri ortaya çıkarmada TBA’dan çok daha başarılı olduğu sonucuna 
ulaşılmıştır. 

  

 
1. Introduction 
 
Independent Components Analysis (ICA) is a 
statistical method that transforms the underlying 
structure of multivariate data into a more visible 
form.  Thanks to ICA, multivariate data is expressed 

as linear or nonlinear combinations of statistically 
independent components [1].  
 
Especially in recent years, ICA has become a standard 
statistical data analysis method that has been applied 
to many problems in signal processing and machine 

*Corresponding author: nurbanubursa@hacettepe.edu.tr 

Süleyman Demirel University 
Journal of Natural and Applied Sciences 

Volume 24, Issue 2, 474-486, 2020 
 
 

 

Süleyman Demirel Üniversitesi 
Fen Bilimleri Enstitüsü Dergisi 
Cilt 24, Sayı 2, 474-486, 2020 

 

 

https://orcid.org/0000-0003-3747-5870
https://orcid.org/0000-0002-0877-0304
mailto:nurbanubursa@hacettepe.edu.tr


N. Bursa and H. Tatlıdil / Evaluation of Independent Components Analysis from Statistical Perspective and Its Comparison with Principal Components Analysis 

475 
 

learning, as it effectively finds solutions for many 
real-life problems [2]. Although it is a multivariate 
statistical method, ICA is widely used in fields such as 
signal processing and machine learning, which are 
the sub-branches of engineering, but it is still not 
much known in the field of statistics. For this reason, 
ICA is not widely used in studies as much as a similar 
analysis, Principal Components Analysis (PCA). 
Particularly, when the Turkish statistical literature in 
the field of statistics related to the subject is 
examined, it is noteworthy that there is no study 
except the study of Ozdamar [3] in which he analyzed 
EEG signals with ICA and that Bursa [4] proposed a 
new approach using ICA to solve the multicollinearity 
problem. It is considered that this situation occurs, 
due to the fact that, 
 

 In the current studies, mostly in the field of 
engineering, the statistical structure behind 
ICA is not brought to the fore in full sense,  

 Its differences and strengths are not 
explained well enough with respect to 
similar statistical methods like PCA and 
therefore it is perceived as an analysis used 
only in the field of engineering. 

 
For this purpose, the study is based on ICA in order to 
overcome the shortcomings listed above and 
contribute to the limited statistical literature on ICA. 
In this study, it is aimed to provide the researchers 
with detailed information that may be required about 
the usage of ICA in other fields such as signal 
processing and machine learning, in addition to 
increasing the awareness of ICA, especially in 
statistics. 
 
In the second section of the study, comprehensive 
information and examples about the development 
process and application areas of ICA are given. Then, 
in order to better understand the reason for the 
emergence of ICA, a problem that ICA offers solutions 
in the field of statistics is examined. In the third 
section, ICA model is known as the basic ICA model 
and the characteristics of this model are discussed. In 
the fourth section, algorithms and software used for 
the solution of ICA model are given. In the fifth 
section, PCA, which is one of the multivariate 
statistical methods and similar to ICA in terms of 
operation, is compared with ICA and an exemplary 
application is carried out on an artificial dataset, in 
which ICA performed better. Finally, in the sixth and 
last section, general evaluations are carried out and 
the contributions of the study are mentioned. 
 
2.  Development Process and Application Areas of 
Independent Components Analysis 
 
This method, which was not known as ICA in the first 
years of its use, was used for the first time to encode 
the movements of the contracted muscles by Hérault, 
Jutten and Ans [5]. In the aforementioned study, it 

has been shown that the nervous system determines 
the angle and speed of the stimulus coming from the 
muscle by realizing an unsupervised learning with 
the contraction of the muscles. However, the 
publication of the results in French caused the subject 
to not become widespread in the international 
literature at that time and its effect was limited to 
French researchers only.  This method was used as 
the Hérault-Jutten model in studies published in the 
following years by French researchers working on 
signal processing and artificial neural networks. 
Thanks to the studies published by Jutten and Hérault 
[6-8] in English in the following years, the subject has 
gradually become known worldwide. 
 
The name ICA was firstly used in a study published by 
Comon [9]. Also, in this study, a comprehensive 
mathematical formulation of ICA is presented for the 
first time. Since the mid-1990s, the interest in ICA has 
increased; different ICA models and new algorithms 
to be used in solving these models have been 
developed and it has started to be shown that ICA can 
be used for different purposes other than blind 
source separation problem. As of the beginning of the 
2000s, books about ICA have been published and 
special congresses have been organized on this 
subject.  
 
Nowadays, ICA is widely used in,  
 

 Medical imaging (Determining the sources of 
the signals emitted by the brain and 
separating the ultrasonography signals [10-
12]), 

 Geology (Investigating seismic waves and 
geological mapping [13-15]), 

 Fault detection (Detecting faults encountered 
in quality control processes [16-18]), 

 Image processing (Revealing the attributes of 
the images and deblurring the images [19-
21]), 

 Telecommunications (Separating radio 
waves or audio signals [22-24]), 

 Econometrics (Determining the components 
that play a role in the formation of financial 
series [25-27]), 

 Data and text mining (Reducing size [28-
30]), 

 Bioinformatics and genetics (Ascertaining 
essential components in gene expression 
[31-33]), 

 Chemistry (Analyzing the components in the 
NIR spectroscopy used in the production and 
break down of foods [34-36]). 

 

2.1. Statistical Problem Playing a Role in 
Independent Components Analysis: Linear 
Representation of Multivariate Data 
 
The most important feature of ICA that differs from 
other methods is that it searches both statistically 
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independent and non-normal components in 
multivariate data. Although the main starting point of 
ICA seems to be to find a solution to the blind source 
separation problem, it is essential to have a better 
representation of multivariate data [1, 4].  
 
How to find a suitable representation of multivariate 
data is one of the most important problems in 
statistics and other related fields. Here, what is meant 
by the expression of representation is the 
transformation of the main structure of the data into 
a more visible (accessible) form. Good representation 
is the main goal of many methods such as data 
mining, descriptive data analysis and signal 
processing [1, 4]. 
 
To explain the problem of linear representation of 
multivariate data on an example, consider a set of 
data that is observed together and consists of several 
variables. The number of variables is denoted by 
𝑝, the number of observations; 𝑇 , data; 𝑥𝑖(𝑡), 𝑖 =
1, … , 𝑝 and 𝑡 = 1,… , 𝑇. The answer of the question 
"What could be the linear function that provides the 
conversion of the dataset, provided that 𝑘 ≤ 𝑝 from 𝑝 
dimensional space to 𝑘 dimensional space and where 
the transformed variables (underlying factors or 
components that show the main structure in the 
data) give the hidden information in the data?" will 
give a good representation of multivariate data. 
Equation 1 can be used to express this question 
mathematically: 
 
   𝑦𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑘; 𝑗 = 1, … , 𝑝𝑗             (1) 

 
In Equation 1, 𝑤𝑖𝑗s are weight coefficients that state 

the representation of observed variables. It is 
possible to express the same problem with the 
matrix-vector representation as in Equation 2: 
 

                          

[
 
 
 
𝑦1(𝑡)

𝑦2(𝑡)
⋮

𝑦𝑝(𝑡)]
 
 
 
= 𝐖 

[
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)
⋮

𝑥𝑝(𝑡)]
 
 
 
                 (2) 

 

Each 𝑥𝑖(𝑡), 𝑖 = 1,… , 𝑇 in Equation 2 is a sample of a 
random variable and 𝐖 matrix, can be determined 
using the statistical properties of 𝑦𝑖  transformed 
components [1]. 
 

One of the methods used to determine the 𝐖 matrix 
is to limit the number of the components of 𝑦𝑖 and to 
determine 𝑦𝑖  so that 𝑦𝑖  contains the information 
contained in the data as much as possible. This 
method also pioneers PCA and Factor Analysis (FA) 
[1]. 
 

Another method used to determine the 𝐖 matrix is 
independence. According to this method, the 𝐖 
matrix is determined provided that the components 
of 𝑦𝑖 are statistically independent. In other words, the 
value of any component does not provide information 
about the values of other components. In fact, the 

factors and components obtained in PCA and FA are 
also independent; however, this is partially true. 
Because these methods assume that the data is 
normally distributed. Independent components are 
easy to obtain if the data is normally distributed, as 
unrelated components are always independent in the 
normally distributed data. In reality, the data is not 
normally distributed usually. This constitutes the 
starting point of ICA [1, 4]. 
 

3. Independent Components Analysis 
 

In terms of signal processing and machine learning, 
the operation of ICA is best explained by the cocktail 
party problem, which is an example of blind source 
separation. In the cocktail party problem, to 
distinguish the voices of more than one person in the 
same room is aimed. For this purpose, suppose that 
two people are in the same room and two 
microphones record the voice of these two people. 
The aim of the problem is to reveal the speech of each 
person independently from the mixed sounds 
recorded by the microphones. Thanks to ICA, each 
person's speech, or in other words, two original 
sounds (source signal) can be obtained from the 
mixture of two signals (from the microphone). Since 
separating these mixtures is only possible when the 
source signals are independent of each other, the 
basic assumption of ICA is that the source signals are 
independent of each other. Mixtures can consist of 
sounds, as in the cocktail party problem, or radio 
waves, brain signals, or images [37]. 
 

 
Figure 1. Cocktail party problem [4] 
 

From a statistical point of view, ICA can be 
considered as a more advanced version of PCA and 
FA, which define the variability between the related 
variables in terms of fewer unobserved variables, 
which are called principal components and factors, 
respectively. While PCA and FA only use analysis of 
second-order statistics such as covariance or 
correlation matrix, ICA uses higher-order statistics of 
random variables such as kurtosis and skewness. 
Similar to FA, a hidden variable model is created in 
ICA too and it is assumed that the variables observed 
in this model are mixtures of variables that are 
mutually independent and not normally distributed 
[38]. 
 
3.1. Independent Components Analysis Model 
 
The basic ICA model is expressed as in Equation 3: 
 

            𝑥𝑖 = 𝑎𝑖1𝑠1 + 𝑎𝑖2𝑠2 + ⋯+ 𝑎𝑖𝑛𝑠𝑛 ,   𝑖 = 1, … , 𝑛   (3) 
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Here, 𝑥1, 𝑥2, … , 𝑥𝑛   are random variables with the 
number of observations 𝑛; provided that 𝑖, 𝑗 = 1,… , 𝑛 
are real coefficients, 𝑎𝑖𝑗 ’s are modeled as a linear 

combination of the random variables 𝑠1, 𝑠2, … , 𝑠𝑛  in 
number 𝑛.  In Equation 3, since 𝑠𝑗  independent 

components are hidden variables, they cannot be 
observed directly and by definition, they are 
statistically independent of each other. Also, 
𝑎𝑖𝑗  mixture coefficients (or weights) are also 

unknown. The purpose of ICA is to estimate mixture 
coefficients and independent components using 
random variables  𝑥𝑖  [1, 4]. 

 
It is also possible to express ICA model by vector-
matrix notation. In Equation 5, it is seen that 𝐱 
random vector consists of 𝑥1, 𝑥2, … , 𝑥𝑛  mixtures, 
while 𝐬 random vector consists of 𝑠1, 𝑠2, … , 𝑠𝑛 . Beside, 
𝐀 matrix consists of 𝑎𝑖𝑗 . In Equation 4, a𝑖 ’s 

correspond to the columns of the 𝐀  matrix. 
 

𝐱 = ∑ a𝑖𝑠𝑖
𝑛
𝑖=1                                 (4)                                    

 
𝐱 = 𝐀𝐬                                             (5) 

                                                     
For the case where 𝐱𝑇 random vectors in number 𝑝 
exist, ICA model is expressed as in Equation 6: 
 

 𝐗𝑝×𝑛 = 𝐀𝑝×𝑝𝐒𝑝×𝑛                            (6)                                       
 
As can be seen from the equations, there is no error 
term in the basic ICA model. For this reason, the basic 
ICA model is also called the noise-free ICA model by 
some researchers. The basic ICA model that has no 
error term is sufficient for most applications [1, 4]. 
 
In ICA model in Equation 6, 𝐀 and 𝐒 matrices are 
estimated only by using the 𝐗  matrix. For this, 
primarily 𝐖  is determined, which is the estimation 
of the inverse of the mixture matrix (𝐀−𝟏) and is 
called the decomposition matrix. Afterward, by using 
𝐖  matrix, 𝐔   matrix is obtained as Equation 7. 
Provided that 𝑘 ≤ 𝑝,  𝐔 ; is the estimation of 𝑘 × 𝑛 
dimensional 𝐒  matrix, in other words, is the 
estimation of the independent components matrix. 
 

𝐔 = 𝐖𝐗                              (7)                                          
 
While obtaining the mixture matrix and independent 
components, many different estimation methods such 
as maximization of non-normality, maximum 
likelihood method, minimization of mutual 
information, tensorial methods, and nonlinear PCA 
are used. 

 
3.2. Assumptions, Constraints and Uncertainties 
of the Independent Components Analysis Model 

 
The assumptions and constraints required to 
estimate ICA model and some uncertainties due to 
the structure of ICA model are listed below. 

 Independent components are assumed to be 
statistically independent of each other. 

 
In other words, the joint probability density function 
of the independent components should be written as 
𝑓(𝐬) = 𝑓(𝑠1, 𝑠2, … , 𝑠𝑝) = ∏ 𝑓(𝑠𝑗)𝑗 , which is the 

product of the marginal probability density functions. 
This is the main assumption for the model to be 
estimable. For some applications, independence can 
also be addressed physically. If components are 
created by physically separate and non-interacting 
objects, they can be considered statistically 
independent [39]. 
 

 The distribution of the independent 
components is not normal. 

 
It is the most important assumption that 
distinguishes ICA from other methods such as PCA 
and FA. Higher-order information is needed to 
estimate ICA model. However, as is known, the 
higher-order cumulant (such as kurtosis and 
skewness) of the normal distribution equals zero, and 
therefore it is not possible to apply ICA for normally 
distributed variables.  
 

 The mixture matrix is assumed to be an 
invertible square matrix. 

 
Although this assumption is not essential, it is 
generally preferred for ease of calculation [1]. 
 

 Variances of independent components cannot 
be calculated. 

 
The reason is that both 𝐒 and 𝐀  is not known in the 
model. Since the mixture matrix 𝐀 is unknown, when 
the independent component is multiplied by any 𝛼𝑖  
coefficient as in Equation 8, this coefficient will be 
neutralized by a𝑖  column of 𝐀 matrix. Consequently, 
the signs of the independent components are also 
indefinite. 
 

                          𝐱 = ∑(
1

𝛼𝑖
a𝑖) (𝑠𝑖𝛼𝑖)                             (8) 

 
 The order of importance of independent 

components cannot be determined. 
 
That is because the model has two unknowns. Any 
component obtained can be considered the first 
component [40]. 
 
4. Approaches and Algorithms Used in Obtaining 
Independent Components 
 
Most of ICA algorithms perform the estimation of the 
model in two stages: 'preprocessing' and 'estimation'. 
During the preprocessing stage, some 
transformations are applied to the data, thus, time is 
saved by providing ease of calculation. In the 
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estimation stage, independent components are 
revealed from the data prepared by using one of the 
selected optimization methods [41]. 
 
4.1. Preparation of Data to be Used Before 
Independent Components Analysis 
 
In algorithms to be used for ICA, it is desired that the 
observed (mixture) values and independent 
components have a zero mean for ease of operation. 
If this feature is not provided, it can be achieved 
through some preprocessing operations. For this, the 
values observed before applying ICA are subjected to 
0 mean by subtracting the differences from their 
means with Equation 9. 
 

                                       𝐱 = 𝐱 − E{𝐱}                              (9) 
 
In this way, independent components are made to 
have a mean of 0. The mixture matrix after this 
preprocessing operation remains the same as it is 
seen in Equation 10. 
 
                           E{𝐬} = E{𝐀−𝟏𝐱} = 𝐀−𝟏E{𝐱}              (10) 

 
If desired, after the mixture matrix and independent 
components are estimated from 0 mean data, it can 
be switched to the original independent components 
by adding the term 𝐀−𝟏E{𝐱}  to the 0 mean 
independent components [1, 3, 4].       
 
The whitening process is performed to make the data 
unrelated and have unit variance. If a random vector 
(𝐱)  with 𝟎  mean is white, its components are 
unrelated and the covariance matrix 𝚺 is equal to the 
unit matrix (𝐈).  
 
                                   𝚺 = E{𝐱𝐱𝐓} = 𝐈                              (11) 

 
It is possible to whiten non-white data using the 
transformation matrix, thereby freeing them from the 
effects of first and second-ordered statistics. For 
instance, an observed vector 𝐱  can be transformed 
into a white vector 𝐳 with a linear transformation [1]. 
 
                                              𝐳 = 𝐕𝐱                                   (12) 
      
There are many different transformations for 
whitening. The most used among these is the 
decomposition of the eigenvalues of the covariance 
matrix. In this method, 𝚲 is the orthogonal matrix of 
eigenvalues E{𝐱𝐱𝐓}, 𝐃 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑛) is a diagonal 
matrix consisting of eigenvalues. 
 
                                      E{𝐱𝐱𝐓} = 𝚲𝐃𝚲𝑇                         (13) 

 
In line with Equation 13, the whitening matrix 𝐕 can 
be created as in Equation 14. 
 

  V=𝚲𝐃−1 2⁄ 𝚲𝑇                              (14) 
  

Another method other than the decomposition of 
eigenvalues for whitening is to use ICA. After data in 
ICA model is whitened, it can be expressed as  
 
                           𝐳 = 𝐕𝐱 = 𝐕𝐀𝐬 = �̃�𝐬                              (15) 
 
The new mixture matrix  �̃� = 𝐕𝐀 which is obtained 
as a result of whitening is orthogonal. The 
orthogonality feature is seen in Equation 16. 
 
                    E{𝐳𝐳𝑇} =  �̃�E{𝐬𝐬𝑇}�̃�𝑇 = �̃��̃�𝑇 = 𝐈            (16)                                
 
Thanks to this feature, only the orthogonal matrix 
space will be explored while searching for the 
mixture matrix. In other words, instead of  𝑛2 
estimating elements of the original 𝐀 matrix, it will be 
sufficient to determine 𝑛(𝑛 − 1) 2⁄   elements of the 
orthogonal  �̃� matrix. In this way, the complexity of 
the problem will also be reduced for ICA algorithms 
[1]. 
 
4.2. Estimating Independent Components  
 
In ICA, the aim is to estimate the decomposition 
matrix (𝐖), which is the inverse of the mixture 
matrix, and then apply this matrix on whitened data 
to obtain independent components.  
 
After the preprocessing stage of the data is 
completed, the 𝐖  matrix can be estimated using 
three different independence approaches. The first of 
these approaches is based on the assumption of 
normality and determines the independent 
components so as to maximize their non-normality. 
In the second approach, the aim is to minimize 
mutual information, while in the last approach the 
maximum likelihood estimate is used. After 
determining which approach to use when obtaining 
independent components, it is decided with which 
algorithm to provide the optimization of the 
approach. In the study, the method of maximizing 
non-normality is discussed only. In this method, 
independent components are revealed by maximizing 
their non-normality. Kurtosis and negentropy values 
are used to measure how far the variables are from 
normality. 
 

 Kurtosis 
 
In this method, independent components are 
determined so that their kurtosis values are at 
maximum. For example, assume that from ICA model 
denoted by 𝐗 = 𝐀𝐒, two independent components 𝐬𝟏 
and 𝐬𝟐  are revealed; and 𝐬𝟏 , 𝐬𝟐 and 𝐒  have unit 
variance. The kurtosis of the independent 
components can be written as in Equation 18, by 
using the addition property of the kurtosis 
coefficient: 
 

 𝐔 = 𝐖𝐗 = 𝐖𝐀𝐒 = 𝐐𝐒 = 𝐪1𝐬1 + 𝐪2𝐬2        (17) 
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𝑘𝑢𝑟𝑡(𝐒) = 𝑘𝑢𝑟𝑡(𝐪1𝐬1) + 𝑘𝑢𝑟𝑡(𝐪2𝐬2)

                    = 𝐪1
4𝑘𝑢𝑟𝑡(𝐬1) + 𝐪2

4𝑘𝑢𝑟𝑡(𝐬2)
            (18) 

                                                                            
Since independent components have unit variance, 
for 𝐪1  and 𝐪2 , there is also E(𝐔2) = 𝐪1

2 + 𝐪2
2 

constraint. This constraint means that 𝐐 should be a 
unit circle in two-dimensional space. So the goal of 
ICA turns into maximizing the equation 𝑘𝑢𝑟𝑡(𝐒) =
𝐪1

4𝑘𝑢𝑟𝑡(𝐬1) + 𝐪2
4𝑘𝑢𝑟𝑡(𝐬2) on the unit circle. The 

optimal, that is, the maximum solution is obtained 
when one of 𝐐 is 0 and the other is -1 or +1, and these 
optimal solutions give independent components ±𝐬i.  
 
If the data matrix is a white matrix (𝐙), then this time 
independent components are obtained by 
maximizing the kurtosis of the independent 
components in the equation 𝐔 = 𝐖𝐙. In this case, as 
𝐖  and 𝐙  have unit variance, the kurtosis of the 
independent components will be denoted by  
𝑘𝑢𝑟𝑡(𝐔) = E{(𝐖𝐙)4} − 3 [1, 41]. 
 
The most basic algorithm used to maximize kurtosis 
is the gradient algorithm. Kurtosis gradient value of 𝐔 

is 
𝜕|𝑘𝑢𝑟𝑡(𝐖𝑇𝐙)|

𝜕𝐖
= 𝑐E{𝐙(𝐖𝑇𝐙)3}  and here 𝑐  is a 

constant. At each iteration, the weight vector which 
was randomly determined at the beginning is 
renewed as 𝐰𝑛𝑒𝑤 = 𝐰𝑜𝑙𝑑 + 𝜂E(𝐙(𝐰𝑜𝑙𝑑𝐙)) . Here 𝜂 is 

the learning coefficient. Since the kurtosis is 
optimized on the unit circle, the obtained weight 
vector is then divided by its norm to update 𝐰𝑛𝑒𝑤

𝑛 =
𝐰𝑛𝑒𝑤 ‖𝐰𝑛𝑒𝑤‖⁄  . The algorithm continues to operate 
until convergence is achieved [41].  
 

 Negentropy 
 

As a measure of non-normality, because kurtosis is 
sensitive to outliers, negentropy is preferred instead 
of kurtosis, although it is often more complex and 
difficult to calculate. The most important reason 
behind the difficulty in calculating the negentropy is 
the necessity to have a nonparametric estimate of the 
probability density function. Therefore, different 
approaches have been introduced in which higher-
order cumulants are used to calculate the 
approximate value of negentropy. 
 

 𝐽(𝑢) ≈
1

12
E(𝑢3)2 +

1

48
𝑘𝑢𝑟𝑡(𝑢)2             (19) 

                                                                                                                                
In Equation 19, 𝑢 random variable is assumed to have 
0 mean and unit variance. However, since there is a 
kurtosis in this equation, another approach based on 
maximum entropy has been proposed by Hyvärinen 
[42] as it may be affected by outliers: 
 

 𝐽(𝑢) ≈ ∑ 𝑘𝑖
𝑝
𝑖=1 (E(𝐺𝑖(𝑢))) − E(𝐺𝑖(𝑣))

2
               (20)   

                                                                                                                            
In Equation 20, 𝑘𝑖  represents positive constants, 𝑣  
represents a randomly distributed random variable 
with zero mean and unit variance, and 𝐺𝑖  represents 
quadratic functions. As 𝐺𝑖  function, functions in 

Equation 21 are selected provided that 1 ≤ 𝑎1 ≤ 2 
(𝑎1 usually equals to 1). 
 

𝐺1(𝑢) =
1

𝑎1
logcosh𝑎1𝑢,  𝐺2(𝑢) = −exp(−𝑢2 2⁄ )     (21)                       

                                                                                                                          
Equation 20 can be maximized by using the gradient 
algorithm so as to maximize negentropy as it was in 
kurtosis. 
 

FastICA Algorithm 
 
The fast fixed-point algorithm or FastICA algorithm 
developed by Hyvärinen [42] reveals the 
independent components in ICA model. FastICA can 
be used to optimize all of the estimation methods, 
where non-normality is maximized, the amount of 
mutual information is minimized, or the maximum 
likelihood estimator is used.  
 
When obtaining independent components, other than 
FastICA algorithm, SOBI (Second-Order Blind 
Identification) which uses second-order statistics 
such as delayed correlation matrix, FOBI (Fourth-
Order Blind Identification) which uses fourth-
ordered statistics, Infomax which is based on 
maximization of entropy and JADE (Joint 
Approximation Diagonalization of Eigenmatrices) 
which is based on common diagonalization 
algorithms are also widely used [38]. Studies 
comparing the mentioned ICA algorithms in terms of 
efficiency and speed are available in the literature 
[43-46].  
 
FastICA has been preferred in the application section 
of the study since it is one of the most preferred 
algorithms in applications. There are packages that 
can be used in both MATLAB and R environment for 
applications of other algorithms and various 
variations of FastICA. (For R, see. JADE package [48], 
fICA package [49], ICA package (It is also the R 
package used in obtaining independent components 
in the application section of the study) [50], fastICA 
package [51]).  
 

FastICA is faster than gradient-based algorithms 
since it has a quadratic convergence rate. Also, it is 
very easy to apply since the algorithm does not 
contain any values that need to be determined 
beforehand, such as the learning coefficient. FastICA 
can estimate all independent components 
individually (deflation approach) or simultaneously 
(symmetric approach). While doing so, it usually uses 
the negentropy values [52]. Since FastICA, which is 
based on negentropy, is used in the application 
section of the study, only the algorithm steps of 
negentropy based FastICA are included in this 
section. 
 

 Steps of Negentropy Based FastICA Algorithm 
Regarding the Determination of Multiple 
Independent Components Simultaneously 
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Provided that 1 ≤ 𝑎1 ≤ 2 (𝑎1 usually equals to 1), 
derivatives of 𝐺 function depicted in Equation 21 is 
denoted by 𝑔 as in Equation 22 and Equation 23 and 
one of these functions is selected. 
 
 𝑔1(𝑢) = tanh𝑎1𝑢, 𝑔1

′(𝑢) = 𝑎1(1 − tanh𝑎1𝑢)         (22)                                                                                                                                     
               
𝑔2(𝑢) = 𝑢exp(−𝑢2 2⁄ ),   𝑔2

′ (𝑢) = (1−𝑢2)exp(−𝑢2 2⁄ )  (23) 
 
To estimate multiple independent components 
simultaneously, in each iteration 𝐰1, … , 𝐰𝑛  vectors 
need to be orthogonalized. The purpose of 
orthogonalizing vectors is to prevent different 
vectors from converging to the same maximum point. 
 
The steps of the algorithm are as follows [1]: 
 

1) By centralizing and then whitening the 
dataset, obtain 𝐳. 

2) Determine (𝑚), the number of independent 
components to be estimated. 

3) Randomly select a 𝐖 = (𝐰1,… ,𝐰𝑚)𝑇 
starting matrix consisting of vectors with 
unit norms. 

4) Calculate 𝐰𝑖 = 𝐸(𝐳𝑔(𝐰𝑖𝐳)) − 𝐸(𝑔′(𝐰𝑖𝐳))𝐰𝑖 ,

𝑖 = 1,… ,𝑚 by using Equation 23 or Equation 
24. 

5) Perform the orthogonalization 𝐖° =
(𝐖𝐖𝑇)−1 2⁄ 𝐖.  

6) Perform the normalization 𝐖𝑛 = 𝐖° ‖𝐖°‖⁄ . 
7) If convergence cannot be achieved, go back 

to step 4. 
 
5. Comparison of Independent Components 
Analysis with Principal Components Analysis and 
An Exemplary Application 
 

In the third part, it was mentioned that ICA can be 
considered as an advanced version of PCA which is 
widely used in the field of statistics. However, as it 
can be understood from what has been described so 
far, although there are similarities between the two 
analyzes, these analyses have many different aspects. 
In this context, similar and different aspects of these 
analyzes are gathered under this heading and listed 
as follows: 
 

 Both PCA and ICA is a statistical 
transformation technique. 

 PCA is based on normal distribution since it 
uses the information (covariance or 
correlation values) included in the second-
order statistics of the measured data. ICA, on 
the other hand, uses the information in its 
higher-order statistics (kurtosis) as it takes 
advantage of the non-normality features of 
the data. Therefore, PCA can only eliminate 
correlations between variables, but not 
higher-order dependencies. In contrast, ICA 
eliminates both correlations and high-level 

dependencies and is a stronger technique 
compared to PCA [4].  

 If the data is normally distributed, PCA is 
sufficient, but if the data is not normally 
distributed, the use of ICA is necessary 
because higher-order statistics will be 
required [4]. 

 The principal components obtained in PCA 
(eigenvectors of the correlation or 
covariance matrix) are orthogonal to each 
other. However, the components obtained in 
ICA are not orthogonal to each other as seen 
in Figure 2 [4]. 

 In PCA, the principal components that best 
explain the variance in the data are 
determined and the first principal 
component explains the greatest part of the 
variance. Then, the second principal 
component explains the second largest part 
of the variance. Moreover, since the first 
principal component and the second 
principal component are orthogonal to each 
other, they are unrelated. In other words, 
PCA maximizes the variance and therefore 
the principal components obtained in PCA 
correspond to the directions in which the 
variance is at maximum. On the other hand, 
ICA maximizes the non-normality of the 
components to be revealed and ensures that 
independent components are obtained. 
Therefore, ICA vectors correspond to the 
axes of the data as demonstrated in Figure 2 
[4]. 

 

            
Figure 2. An example for components obtained with 
Principal Components Analysis and Independent 
Components Analysis 

 
 As prioritization can be done for the 

principal components obtained in PCA, some 
components are more important than others. 
However, since such a ranking cannot be 
made in ICA, all the independent components 
obtained are considered to be of equal 
importance [4]. 

 While the main purpose of PCA is to provide 
the data representation in lower sizes, the 
main purpose of ICA is to ensure that the 
data is represented by independent 
orthogonal vectors as much as possible. In 
short, while PCA gathers and compresses the 
data, ICA enables the data to be decomposed 
[2].  
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This section also includes an exemplary application 
where PCA and ICA are compared on the same 
dataset and ICA yields better results. In application, 
six distinct and non-normally distributed series 
(signals) of 550 observations (𝑡 = 1,2,… ,550)  are 
generated in the R software [4, 47]. The functions 
that the series are produced are given below from 
Equation 24 to Equation 29. In addition, the graphics 
of these series can be seen from Figure 3 to Figure 8. 
Studies of Mutihac and Vun Helle [53] are taken as 
the basis for the functions used in the production of 
the series.  

 
𝑠1(𝑡) = 2𝑠𝑖𝑛(𝑡 180⁄ )𝑐𝑜𝑠(𝑡 12⁄ ) + 0.25(𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1])       (24) 
                                                                                                       
𝑠2(𝑡) = 𝑠𝑖𝑔𝑛 (𝑠𝑖𝑛(12𝑡 + 8𝑐𝑜𝑠(2 33⁄ ))) + 0.15(𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1]) (25) 

 
𝑠3(𝑡) = (𝑟𝑒𝑚(𝑡, 85) − 13) 32⁄ + 0.15(𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1])             (26) 
                                                                                      
𝑠4(𝑡) = ((𝑟𝑒𝑚(𝑡, 29) − 15) 11⁄ )5 + 0.20(𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1])        (27)  

 
𝑠5(𝑡) = 4𝑒𝑥𝑝(−𝑡 144⁄ )𝑐𝑜𝑠(38𝑡) + 0.15(𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1])          (28)                       

 
𝑠6(𝑡) = 3((𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1]) < 0.7)𝑙𝑜𝑔(𝑢𝑛𝑖𝑓𝑜𝑟𝑚~[0,1])             (29) 

 

The 𝐗  matrix observed by using these produced 
series as independent components is created as in 
Equation 30. While creating the observed 𝐗 matrix, 
the 𝐀  mixture matrix in Equation 31 is used. 
Observation graphs of the created 𝐗 matrix can be 
seen starting from Figure 9.   
 

                                           𝐗 = 𝐀𝐒                                    (30)   
                                                                                                                                                                                 

   𝐀 =

[
 
 
 
 
 
5.09 2.46 0.94 9.90 4.68 8.74
9.56 9.32 3.16 4.33 8.37 1.47
4.05 1.07 5.14 9.83 0.64 8.60
5.53 0.10 5.03 6.26 2.87 9.64
4.07 1.36 2.56 6.06 6.28 0.92
1.90 4.62 3.59 1.61 1.97 1.47]

 
 
 
 
 

      (31)             

 

                                                                                      
Figure 3. 𝐬1 series produced for 𝐒 matrix 
 

 
Figure 4. 𝐬2 series produced for 𝐒 matrix 

 

 
Figure 5. 𝐬3 series produced for 𝐒 matrix 

 

 
Figure 6. 𝐬4 series produced for 𝐒 matrix 

 

 
Figure 7. 𝐬5 series produced for 𝐒 matrix 

 

 
Figure 8. 𝐬6 series produced for 𝐒 matrix 

 

 
Figure 9. Observed 𝐱1 series in the generated 𝐗 matrix 

 

 
Figure 10. Observed 𝐱2  series in the generated  𝐗 matrix 
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Figure 11. Observed 𝐱3 series in the generated  𝐗 matrix 
 

 
Figure 12. Observed 𝐱4 series in the generated  𝐗 matrix 
 

 
Figure 13. Observed 𝐱5 series in the generated  𝐗 matrix 
 

 
Figure 14. Observed 𝐱6 series in the generated  𝐗 matrix 
 

These created observations are then tried to be 
decomposed into their original components by ICA 
and PCA. The estimates of the 𝐀 matrix obtained as a 
result of ICA using the FastICA algorithm and PCA are 
demonstrated in Equation 32 and Equation 33, 
respectively.  
 

 �̂�𝐈𝐂𝐀 =

[
 
 
 
 
 

9.83 9.40 3.51 4.74 8.41 2.05
5.02 2.08 0.87 9.78 4.52 8.67
3.73 0.80 4.87 9.22 0.36 8.08

−5.32 0.29 −4.64 −5.81 −2.67 −9.27
−4.65 −1.51 −3.13 −7.11 −7.34 −1.03
−2.59 −6.22 −4.99 −2.53 −2.53 −2.50]

 
 
 
 
 

   (32) 

              

�̂�𝐏𝐂𝐀 =

[
 
 
 
 
 
−0.44 −0.30 −0.32 −0.52 −0.35 −0.47
0.17 0.68 0.11 −0.29 0.32 −0.56

−0.25 0.31 0.65 −0.31 −0.48 0.31
0.60 −0.36 0.10 −0.65 0.17  0.21

−0.15 −0.48 0.67 0.17 0.30 −0.42
0.58 −0.04 0.08 0.28 −0.66 −0.38]

 
 
 
 
 

   (33)    

 

Original components estimated by ICA are given 
starting from Figure 15 and original components 
estimated by PCA are given starting from Figure 21. 
When the graphs are analyzed together, it is seen that 
ICA finds almost the same components (series) as the 
components of the 𝐒 matrix and therefore is more 
successful than PCA in the determination of original 
components that do not exhibit a normal distribution. 

 
Figure 15. Independent component-1 estimated by ICA 
(IC1) 

 

 
Figure 16. Independent component-2 estimated by ICA 
(IC2) 

 

 
Figure 17. Independent component-3 estimated by ICA 
(IC3) 
 

 
Figure 18. Independent component-4 estimated by ICA 
(IC4) 
 

 
Figure 19. Independent component-5 estimated by ICA 
(IC5) 
 

 
Figure 20. Independent component-6 estimated by ICA 
(IC6) 
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Figure 21. Principal component-1 estimated by PCA (PC1) 
 

 
Figure 22. Principal component-2 estimated by PCA (PC2) 
 

 
Figure 23. Principal component-3 estimated by PCA (PC3) 
 

Figure 24. Principal component-4 estimated by PCA (PC4) 

 

Figure 25. Principal component-5 estimated by PCA (PC5) 
 

Figure 26. Principal component-6 estimated by PCA (PC6) 

It is also seen in the correlation matrices in Table 1 
and Table 2 that ICA is more successful than PCA in 
the determination of original components.  
 
Table 1. Pearson correlation coefficients between the 
independent components and the original components 

 
   𝐬1    𝐬2    𝐬3    𝐬4    𝐬5    𝐬6 

IC1 -0.003  0.013 -0.038 -0.999 0.005  0.009 
IC2 0.005 0.999  0.009 -0.005 -0.001  0.004 
IC3 0.269 -0.001  0.993  0.002 0.045 -0.002 
IC4 0.009 -0.004 -0.019  0.041 -0.036 -0.999 
IC5 0.963 -0.007 -0.108 -0.006 -0.006 -0.013 
IC6 0.013 -0.001 -0.008 0.001 -0.998  0.019 

 
Table 2. Pearson correlation coefficients between the 
principal components and the original components 

     𝐬1    𝐬2     𝐬3    𝐬4    𝐬5    𝐬6 

PC1 -0.483 -0.423 -0.429 -0.499 -0.293 -0.354 
PC2 -0.313  0.617 -0.328 -0.470  0.108  0.503 

PC3 -0.333 -0.330  0.132  0.253 -0.473  0.660 
PC4 -0.449  0.354 -0.407  0.654 -0.157 -0.320 
PC5 -0.490 -0.306  0.079  0.126 -0.796  0.104 
PC6 -0.342  0.334  0.721 -0.146 -0.140 -0.269 

 
When Table 1 is examined, it is observed that the 
components estimated by ICA have almost 100% 
relationship with the components in the 𝐒 matrix. 
According to Table 1, the fifth independent 
component (IC5) estimated by ICA corresponds to 𝐬1, 
second independent component (IC2) corresponds 
to  𝐬2 , third independent component (IC3) 
corresponds to 𝐬3, first independent component (IC1) 
corresponds to 𝐬4 , sixth independent component 
(IC6) corresponds to  𝐬5 , and fourth independent 
component (IC4) corresponds to 𝐬6. In addition, it is 
obviously seen that Figure 15 is the opposite of 
Figure 6, since IC1 has a negative relationship with 
the corresponding component. Similar comments are 
also valid for IC4 and IC6.  
 
When Table 2 is examined, it is evident that the 
components estimated by PCA do not have very high 
level relations with the components in the 𝐒 matrix. 
For example, the first principal component (PC1) 
estimated by PCA; has almost the same amount of 
relationships with 𝐬1, 𝐬2, 𝐬3, and 𝐬4. For this reason, it 
cannot be determined which original components 
correspond to the basic components obtained as a 
result of PCA.  
 
6. Conclusion 
 
The main aim of the study is to increase the 
awareness of ICA, which is not known by statisticians 
although it is a multivariate statistical method and to 
contribute to the limited literature on the subject. In 
this context, firstly, the historical process and 
application areas of ICA are discussed in detail. 
Afterward, a comprehensive resource is created on 
the subject by including the reason for the emergence 
of ICA, the basic ICA model, the features of the model, 
the algorithms used in the solution of the model, and 
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related software. In the application part, the 
comparison of ICA and PCA, which is a method 
similar to ICA and is frequently used in statistics, is 
evaluated on an artificial dataset. As a result of the 
application, it is concluded that ICA is much more 
successful than PCA in finding original components 
(sources) that are not distributed normally. As is 
known, ICA is a powerful technique that gives better 
results in cases where PCA fails. This is because, 
unlike PCA, it is based on statistical independence 
rather than unrelatedness, and statistical 
independence is a much stronger technique than 
unrelatedness. 
 
When evaluated in general, it is thought that the 
study will meet the detailed resource needs of 
researchers on ICA who work or will work in a wide 
range of fields from telecommunications to 
chemistry, geology to the economy, lead new studies 
in the field of statistics related to ICA, and 
additionally, it will contribute to the widespread use 
of this alternative and stronger technique in 
researches that do not yield results with PCA. 
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