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ÖZ 

Sabit bir iç açı datasına sahip her düz diskler ailesinin bilardo akışı topolojik geçişli olan yoğun bir Gδ kümesi içerdiğini 

gösteriyoruz. 
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Topological Transitivity of Billiard Flows in Flat Disks 

 

 

ABSTRACT 

 We show that any space of flat disks having a fixed integral interior angle data and a fixed number of singular points 

contains a dense Gδ set so that for each element of this set billiard flow is topologically transitive. 

Keywords-  Topological transitivity, Flat disk, Billiard flow 
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I. INTRODUCTION 

Dynamics of billiard flows on polygonal billiard tables is a highly active research area. Ergodicity and 

minimality of billiard flows, existence of periodic orbits of billiard flows, number of periodic orbits, topological 

transitivity of billiard flows are among the topics which are studied in the area [1-5]. 

A flat disk is a topological disk with a flat metric on it. Polygons are examples of flat disks with non-

singular interiors. It is curious that which properties of billiard flows on polygons are valid for flat disks. It is 

known that space of polygons with n vertices has a Gδ dense set consisting of polygons with topologically 

transitive billiard flows. Now fix an angle data  Θ = (2πk1, . . . , 2πkn) and an integer m ≥ 0, where each ki is a 

natural number greater than or equal to 2. Consider the space of flat disks whose singular interior points have 

angle data  Θ  and which has m singular boundary points. In this work, we prove that this space has a dense Gδ 

set so that each element of the set has topologically transitive billiard flow. 

It is easy to parametrize spaces of polygons since each polygon is a subset of the Euclidean plane. 

However it is not straight forward to identify the spaces of certain flat metrics on a surface with a manifold. We 

start by stating a result about moduli space of flat metrics on the sphere with a prescribed angle data. Then we 

use this result to parametrize moduli space of flat disks with prescribed curvature data. After that, we obtain a 

manifold structure for the space of flat metrics with prescribed interior angle data. 

A closed surface is called really flat if it has a finite holonomy group, and it is very flat if it has trivial 

holonomy group. We state a theorem proven in [6] which says that any really flat surface can be covered by a 

very flat surface. We then prove the main result. Two proofs of this statement for the case of the polygons are 

given in [5,7]. Our proof is similar to them. 

 

                                              II.  FLAT SURFACES AND FLAT DISKS 

In this section we give some generalities about flat surfaces and introduce the families of the flat disks 

that we consider. We define flatness for only compact surfaces since we are interested only in these surfaces. 

Flat Surfaces and Gauss-Bonnet Formula 

A compact surface is flat if it has a metric obtained by gluing finitely many triangles along its edges by 

Euclidean isometries. See [6-11] for more information about flat surfaces. Note that we can talk about the angle 

at a point of a flat surface. If  is flat surface and , we denote the angle at  by . If  is interior point 

and angle at  is not , we call  singular. If  is a boundary point and angle at  is not , we call it singular. A 

point which is not singular is called non-singular. Let  be the interior of  and  be the boundary of . 

Here is the famous Gauss-Bonnet Formula: 

 

where  is the Euler characteristics of . 

 

Flat Disks 

A flat disk is an oriented topological disk together with a flat metric on it. We assume that singular 

points of a flat disk are labeled. Two flat metrics are equivalent if there is an orientation preserving isometry 

between some representatives of their homothety classes such that this isometry respects the labellings. Let 

 be a finite sequence of positive numbers so that each . We call  interior angle data. Let 

 be an integer. Let  denote set of equivalence classes of flat disks with  labeled singular 
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boundary points and  labeled interior points having angles . We know that the space of the flat disks 

with prescribed angle data is nonempty if the data satisfies Gauss-Bonnet condition for disks (1). From this we 

see that  is nonempty if and only if there exists positive real numbers  such that 

      (1) 

Therefore  is nonempty if and only if 

 

    1.   and ,  

    2.   and , or  

    3.   then   

From now on we assume  is not empty. Now we introduce another type of families of flat diks. 

Fix an interior angle data  and let  such that each ,  and  

satisfy Gauss-Bonnet condition 1. We call such a pair  a good pair. Now let  be the set of 

equivalence classes of labeled flat disks having angle data , where two flat metrics are equivalent if there 

is an orientation preserving isometry between some representatives of their homothety classes such that this 

isometry respects the labellings. 

Let  be the set of tuples  such that  is a good pair. 

 

 (2) 

 We know that  is not empty if . See [10] Thus  is not empty exactly when 

 is not empty.  

 

 
                         Moduli space of points on complex projective line and upper half-plane 

Our aim is to endow the families of flat metrics constructed above with differential structures. To do 

this, we introduce some of the manifolds that we need. Let 

  

    1.   be the Riemann sphere,  

    2.   be the upper half-plane,  

    3.  ,  

    4.  ,  

    5.  ,  

    6.  z=(z_1,z_2,,z_n),  z_i  H, z_i  z_j  if  i  j,x=(x_1,x_2,,x_m),  x_i    R , 

x_i  x_j  if  i  j   
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    7.  ,  

    8.  . 

 has dimension , and dimension of  is 3. Therefore, if , then the 

dimension of  is . Otherwise  is a finite set. The complex dimension of 

 is  if . Otherwise  is one point set. 

 

Flat Spheres and their moduli space 

Assume that  are positive real numbers which are not equal to  and satisfy Gauss-Bonnet 

condition for the sphere: 

 

 

Let . Let  and  be two oriented topological spheres with flat metrics having angle 

data . We say that  and  are equivalent if there are two isometric flat spheres in their homothety classes. Note 

that the isometries that we consider respect labeling and they are orientation preserving. We denote the set of 

equivalence classes of the flat spheres with angle data  by . 

Let . Then the metric given 

 

 (3) 

 

 is defined on  and flat, where . Also the angle at each  is  and the other points 

are non-singular. See [9] This means that there is a map  

 

 This map is surjective but not injective. Indeed,  

                                                     

See [8],[9]. We summarize the results of this section in the following lemma. 

Lemma 1  The map  sending  to the metric on  given by  

 (4) 

 is surjective. Moreover,  and  have the same image under  if and 

only if there is an element  in  such that . That is,  

 

Also, the map  is an isometry between the flat structures which correspond to  and   
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 A note: Indeed, if one of the coordinates  of  is , then the metric in (4) does not 

make sense. But in that case we may consider the following metric: 

 

 

Flat disks and their moduli spaces 

Let  and  so that  is a good pair. 

Proposition 1  The map  sending  to the flat disk  

together with the metric 

 

 (5) 

 is surjective, where , . Moreover,  and 

 have the same image under  if and only if there is an element  in 

 such that . That is,  

 

Proof. Let  be a representative for an element in . Glue two copies of  along their boundaries 

to get a flat sphere. This sphere is called the doubling of , and we denote it by . It has  singular points 

of angles  and  singular points of angles . Then, by Lemma 1, there is an element 

 in  such that  is isometric to , perhaps after scaling, where  

has the following metric: 

 

 where , . 

The reflection on  corresponds to an anti-holomorphic map of the form , and it fixes a 

circle  in  such that  and  for all . Let  be a Mobius transformation 

sending  to . By Lemma 1,  together with the metric 

 

 (6) 

is isometric to , perhaps after scaling. The reflection of  corresponds to the map . 

But  fixes  pointwise and therefore it is equal to the map . This shows that restriction of( 6) to 

 is the metric on . Now  

  

 that is  for all . Also 
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therefore  for all . Therefore . This proves that  is surjective. 

Now assume that the flat structures on  corresponding to 

 and  are isometric. Each metric can be 

naturally extended to a metric on  and the isometry extends to an isometry of . Therefore it is given by an 

element of  fixing upper half-plane. This element is necessarily in  and sends  to 

. 

Now fix . Since , we have 

Corollary 1 .  

An interior angle data  is called integral if each , where  is an integer greater 

than or equal to 2. In that case, if  is not empty, then . From now on we assume  is an integral 

interior angle data. For each good pair , we identify  with the set 

 (7) 

For each element  we have a metric induced by the 

metric (5) on . We denote this metric by  

 

These metrics form a complete set of representatives of the flat metrics on disk with angle data . 

Therefore from now on we should consider the set  if  is mentioned. We also identify  

with the manifold  

 

II. FLAT SURFACES WITH FINITE HOLONOMY GROUPS 

We will state the results obtained in [12].  

Definition 1   

    1.  A closed orientable flat surface is called really flat if it has finite holonomy group.  

    2.  An orientable, compact, flat surface with boundary is called really flat if its doubling is really flat.  

    3.  A non-orientable surface is really flat if the corresponding orientable double cover is really flat.  

    4.  A closed, orientable, flat surface is called very flat if  it has trivial holonomy group.  

Thus really flat surfaces are somewhere in between flat surfaces and very flat surfaces. Let  be a 

closed, orientable really flat surface. 

Theorem 1   

    1.  There exists a very flat surface  and a branched covering  such that  respects flat 

metrics on  and . Also this map corresponds to the kernel of the holonomy representation of .  

    2.   is a cyclic Galois covering. 
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    3.  If  has an angle , k, l are coprime natural numbers, then ramification index at each point 

in the fiber of  is . 

    4.  The degree of  is the order of the holonomy group. 

We call  canonical covering. Now let  be a rational flat sphere with. Let  be the singular 

interior points and  be the set of singular boundary points of . Assume that for each  the angle at  

is of the form , and the angle at each  is of the form , where  and  are coprime natural numbers, and 

so are  and . Let  be the canonical projection and  be the canonical covering 

of . 

Theorem 2 Let  be that least common multiple of .   

    1.  Then degree of  is .  

    2.  The ramification index of each point in the fiber of , or its mirror symmetry, is . The 

ramification index of each point in the fiber of  is is .  

 Indeed, if the interior of  is non-singular, then  is the surface constructed by Katok-Zemlyakov 

[11] which is associated to . 

III. DYNAMICS ON FLAT DISKS 

Let  be a flat disk. The billiard flow we consider is the flow obtained by frictionless motion of a point 

particle inside  which obeys the rule of optics on the boundary: the angle of incidence is equal to the angle of 

reflection. This means that collisions are elastic. The phase space of the flow is unit tangent bundle . The 

billiard flow has discontinuities corresponding to reflections in the boundary. 

Let  be an integral interior angle data and  be a number such that  is not 

empty. We are interested in the flat metrics on  which are of the form , where  is a good pair 

and .  together with the metric  will be denoted by . Therefore 

 is the unit tangent bundle of . 

Since  is integral, a flat disk having interior angle data  has trivial holonomy group. In particular, the 

parallel transport of a vector does not depend on the path chosen. For each , consider the directed 

edge joining the vertex  to the , where  is the vertex  after  with respect to the cyclic order on the 

boundary of . It is clear that  is constant on a connected component of . To each , 

we associate the vector in  which is based at  and has parallel transport equal to the vector 

making an angle of  with the directed edge that we chose above. This implies that 

 

Theorem 3 Let  be an integral angle data and  be an integer such that  is not empty. 

There exists a dense  subset in  such that for each element in this set, the billiard flow is topologically 

transitive. 

Proof. We identify  with , and for each  we 

consider the flat disk . Since  is a manifold, we can put a complete metric on it. 
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For each , consider the following metric on 

: 

 (8) 

  where  is the distance between  and  in . 

Note that the topologies induced by  and  on  are same. Let 

 be a dense subset of  and  be a sequence of positive numbers which converges 

to 0. Let  denote the ball in  with radius  and center  with respect to the metric (8). 

Then the set  form a basis for  for each . 

Let  be the set of  such that for each open set  in the phase space, there exists a 

billiard trajectory starting in  which visits  for each , in the phase space of the billiard 

flow in . Each  is open and  is a  set. 

We show that this intersection is dense. Let  be the space of all  such 

that ,  are coprime, and the least common multiple of ’s is greater than . For each 

element , the corresponding flat disk is really flat. Therefore for each , we can consider the 

canonical cover  of the doubling of . Since it is very flat, each trajectory of a 

geodesic is dense except for countably many directions. Such a trajectory induces an orbit of the flow on 

, and closure of this orbit is at most in a  distance from any point of the phase space, since the 

degree of the canonical cover is greater than or equal to . Therefore for each , there exists  such that for all 

 we have .  is dense in , hence  is dense also. Therefore Baire’s Category 

Theorem implies that  is dense. 

Now fix . We show that the flow on  has a dense orbit. Let  be a 

closed ball in  such that for each element in this ball the corresponding orbit intersects with 

. For each , let  be a closed ball such that for each element in this ball corresponding orbit 

intersects , for all .  is not empty. For each element  in this set, the orbit of the 

billiard flow which starts at  and has direction  is dense in the phase space. 
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