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Abstract 

The high-speed railways require more viaducts than conventional railways. The dynamic interaction 

effect between train and viaduct are important issue due to the risk of derailment, structural safety 

and deterioration of the passenger comfort. In this study, viaduct is modelled as a multi-bay frame. 

The multi-bay frame is modelled by finite element method. The train is idealized as a two-axle system 

with 4 degrees of freedom. The equations of motions of the coupled vehicle-structure system are 

determined via generalized Lagrange's equation. The Wilson-theta time integration method is 

employed to determine the dynamic response of the system. The effective mode shapes are 

investigated using 3D frequency-velocity-amplitude graphs. The resonant response has been 

determined at first and second modes of 1 and 2-bay frames.  

Keywords:  viaduct, mode shape, finite element method, Wilson-theta method, train 

 

Öz 

Yüksek hızlı demiryolları, geleneksel demiryollarından daha fazla viyadük gerektirir. Tren ve viyadük 
arasındaki dinamik etkileşim etkisi, raydan çıkma, yapısal güvenlik ve yolcu konforunun bozulması 
nedeniyle önemli bir konudur. Bu çalışmada viyadük çok bölmeli bir çerçeve olarak düşünülmüştür. 
Çok bölmeli çerçeve sonlu elemanlar yöntemi ile modellenmiştir. Tren, 4 serbestlik dereceli iki akslı 
sistem olarak idealize edilmiştir. Birleştirilmiş araç-yapı sisteminin hareket denklemleri 
genelleştirilmiş Lagrange denklemi ile belirlenmiştir. Sistemin dinamik yanıtını belirlemek için 
Wilson-teta zaman integrasyonu yöntemi kullanılmıştır. Etkin mod şekilleri, 3D frekans-hız-genlik 
grafikleri kullanılarak araştırılmıştır. 1 ve 2 bölmeli çerçevelerin birinci ve ikinci modlarının,   yapının 
rezonans cevabında baskın olduğu belirlenmiştir.  
Anahtar Kelimeler: viyadük, mod şekli, sonlu elemanlar metodu, Wilson-theta metodu, tren 
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1.Introduction 

Dynamic responses of structures, such as 
bridges, viaducts, under the action of train loads 
have seen considerable interests in the field of 
civil engineering. With the development of high-
speed trains, dynamic analysis of railway bridges 
has become important.  

Viaducts are used mainly for the purpose of 
connecting two points of the terrain which are 
similar in height in order to carry mostly rail and 
road traffic. Su et al. studied  the dynamic 
responses of a viaduct subject to high speed 
train[1]. Lou et al. have been presented modal 
coordinate formulation for analysing the 
dynamic interaction between a simply 
supported bridge and a moving train. Train is 
modelled as two-stage suspension vehicles with 
10 DOF. Bridge is modelled as a uniform simply 
supported beam, based on Euler-Bernoulli beam 
theory. Rayleigh damping is assumed for the 
bridge[2]. In the literature, the dynamic behavior 
of structures subjected to four-axle two-bogie 
train with 10 unconstrained degrees of freedom 
is investigated by authors [3-7]. Other train 
models have been studied, such as those  2-axle 
6 DOF by [8] , 4 DOF by  [9] ; moving suspension 
mass model [10]. 

The resonant response of the train-bridge 
system is of particular interest due to the 
structural safety of the bridge, risk of derailment 
and deterioration of passenger comfort. 
Resonance occurs if one of the dominant 
frequencies of the train load equals to a multiple 

of one of the natural frequencies of the structure. 
The lower natural frequencies of the structures 
used in high speed train lines means that the 
structure can resonate at a smaller speed value. 
3D frequency-speed-amplitude graphs are 
plotted for this purpose. It was determined 
whether the peaks in this graph force the 
structure under resonance conditions. 

The study on the dynamic analyses of the 
viaduct-like structures modelled as a multi-bay 
frame under the effects of moving vehicles are 
rare. There are not many studies on this subject 
in the existing literature. In this study, the 
viaduct is considered to be modelled as a multi-
bay frame. The multi-bay frame, based on 
Bernoulli-Euler beam theory, has the boundary 
conditions of zero horizontal and vertical 
displacements and zero rotations at the bases of 
columns. Also, the train is idealized as a 2-axle 
system with 4 DOF. 

 

2. Theory 

2.1. System description 

The problem to be dealt with in the present study 
is a multi-bay frame subjected to moving train, 
shown in Fig. 1. Bernoulli-Euler beams forming 
the frame have beam (column) length L, elastic 
modulus Ebe, area moment of inertia Ibe, mass 
per unit length mbe. Points p1 and p2 are 
corresponding to midpoint of the column and 
top beam, respectively. 

 

 
(a) 
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(b) 

Figure 1. Vehicle-structure system: (a)structure model (b) vehicle model 

The vehicle considered to be as a model of the 
train consist of suspension system having 
stiffness k and damping c.  The mw and mv are the 
respective, the mass of a wheelset and mass of a 
vehicle body. Jv is the corresponding mass 
moment of inertia of a bogie and vehicle body. Ld 
is the longitudinal distance between the centre of 
gravity of bogie and nearest side of vehicle body. 
d1 (d2) is the horizontal distance between the 
centre of gravity of vehicle body and of rear 
(front) bogie. G is the center of gravity of the 

vehicle body. 

As seen Fig. 1 (b), ywi (t) (i=1,2) denote the 
vertical displacement of the ith wheelset. yv is 
vertical displacement of the vehicle body. Also, 
Ɵv is rotation of vehicle body.  The vehicle has 
four unconstrained degrees of freedom. It is 
assumed that the upward vertical displacements 
are taken as positive and that they are measured 
from the respective static equilibrium positions. 
 

2.2. Vehicle-structure interaction dynamics  

In this study, a two-axle vehicle travelling at a 
uniform speed V on a frame was investigated, 
shown in Fig. 2. xi (t)(i=1,2) is the contact point 
between the frame and ith axle measured from 
the left end of the top beam. It is assumed that 
two wheelsets and frame are in contact with 
elements ei (i=1,2) at a time t.  q1ei and q4ei (i=1,2) 
denote the vertical displacements at nodes of 
element ei. 

 

The equation of motion of the frame and vehicle 
are derived from the following generalized 
Lagrange’s equation: 

, 1,2,... (1)k

k k k k

d T T V D
f k

dt u u u u

    
     

    

   

 
Figure 2. A vehicle travelling on a 1-bay frame 
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   The kinetic, potential energy and dissipation 
function of the integrated system can be written 
as 
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where Mf and Kf are the mass and stiffness 
matrices of the frame[11]. 𝐪f and �̇�f are the 
vectors of nodal displacement and velocity of the 
frame, respectively. 

The total number of degrees of freedom of 
vehicle is four. It is assumed that the wheels 
always keep in contact with the structure. This 
indicates that the structure and wheelsets do not 
move independently of each other. Therefore, 
the vertical displacement/velocity of each 
wheelset is equal to the vertical 
displacement/velocity of the point where it 
contacts the frame: 
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where the derivative of a function f(x) with 
respect to x is denoted by f(x),x , ξ= x/l (see Fig. 3) 
and Ni (i=1,2) are interpolation functions: 

2 3 2 3

1 21 3 2 , 3 2 (4)N N       

 

Figure 3. Nodal degrees of freedom of the beam 
element ei 

Nodal degrees of freedom of the element ei is 
shown in Fig. 3 and nodal displacement vector 
are as follows: 

1 2 3 4 5 6{ , , , , , }, 1,2,3,4 (5)i i i i i i ie e e e e e e

f q q q q q q i q  

and displacement vector of vehicle and 
combined vehicle-structure system are 
following: 
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After some algebraic manipulations, the 
following equations of motion for the system can 
be obtained 
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(7) where the subscripts v and f represent the 
vehicle and the frame, respectively. The index vf 
(or fv) in matrices is the result of the interaction 
between the structure and the vehicle. Mfv and 
Kfv are the NxN matrices and 𝐂𝐯𝐟  and �̅�𝐯𝐟   are 
Nx2 matrices. The non-zero columns of these 
matrices are given in appendix.      

When the vehicle runs on the structure, matrices 
with double subscript and the vector of f are 
always changing. As a consequence of this, Eq. 
(7) becomes a second-order differential 
equation with variable coefficients. Those time-
variable coefficients should be updated every 
time interval before numerical integration 
process apply. Eq. (7) can then be solved by using 
the Wilson-theta time integration scheme with 
theta=1.4 [12]. 

 
2.2.1.  Validation 

A simply supported beam subjected to a single 
vehicle is considered. The example model has 
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been studied by [13]. Fig. 4 show good 
agreement between present model and model in 
Ref. [13]. 

Figure 4: Vertical displacement of the midpoint 
of the beam 

 

3. Dominant Mode Shapes of the Multi-bay 

frame 

All the parameters which is used in subsequent 
computations have been given in Table 1. The 
values of physical properties are taken from 
[13]. 

 

3.1.  Modal Analysis of the Multi-bay Frame  

The first few natural frequencies are determined 
using both ANSYS and the developed MATLAB  
programs (present work). The beams and 
columns are modelled using BEAM54 element.  

ANSYS BEAM54 is used because it has the same  
nodal degrees of freedom with the model 
developed by present work. Element size is 
taken as 5m to generate same finite element  

Table 1: Parameters of vehicle, and of multi-bay frame    

Description Notation Unit Value 

Vehicle    

Mass of the vehicle body mv kg 48e3 

Mass of a wheelset mw kg 5e3 

Mass moment of inertia of vehicle body Jv kg 2500e3 

Horizontal distance between the centre of gravity of  car body and 
of rear suspension system 

d1 m 9 

Horizontal distance between the centre of gravity of  car body and 
of front suspension system 

d2 m 9 

Longitudinal distance between the centre of gravity of  suspension 
system and nearest side of vehicle body 

Ld m 3.5 

Stiffness of suspension system k N/m 1500e3 

Damping of suspension system c N.s/m 85e3 

Multi-bay frame    

Beam/column length of frame L m 30 

Moment of inertia Ibe m4 2.9 

Mass per unit length mbe kg/m 1.2e4 

Young’s modulus Ebe Pa 2.87 e9 
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mesh those of the developed model. Table 2 
shows the natural frequencies of i-bay 
frame(i=1,2).  

The mode shapes corresponding to natural 
frequencies given in Table 2 are plotted. The first 
modes of the structures shown in Figs. 5 are 
related to the first bending modes of the columns 
forming the frame.  

The vertical displacements of the top beam are 
negligible in these modes.  Due to train travelled 
on the top beam, it can be expected that mode 
shapes which vertical displacements of the top 
beam are effective are important on resonance 
response. Therefore, the 2nd and 4th modes of the 
1-bay frame and the 2nd and 3rd modes of the 2-
bay frame may be effective in resonance 
response of the structure. 

 

Figure 5: Mode shapes of i-bay frame(i=1,2) 
corresponding to the natural frequencies listed 
in Table 2 

3.2.  Velocity-Frequency-Amplitude Graphs  

3D relationship of velocity-frequency-amplitude 
graphs was plotted with respect to horizontal 
displacements of the point p1 and vertical 
displacements of the point p2 (see Fig. 1(a). The 
displacement-time history curves of the i-bay 
frame (i=1,2) was first determined at each 
velocity (V = 1,2, ..., 100). Then, frequency 
responses were obtained by applying the Fourier 
transform to free vibrations. It should be noted 
that the number of vehicles is taken as 5 when 
plotting 3D graphics. However, in order to better 
visualize resonance, the number of vehicles in 
the displacement-time history curves was 
selected as 10. 

3.2. 1. 1-bay frame  

The 3D views of the velocity-frequency-
amplitude plot is illustrated in Figs. 6. Three 
frequency peaks occur in Fig. 6(a). The 
resonance vibration may occur at those critical 
velocities corresponding to the peaks. Velocities 
and frequencies can be read as f1 =0.47 Hz, V=12 
m/s; f2 =1.847 Hz, V=47 m/s; and f3 =3.04 Hz, 
V=77 m/s. 

It is shown in Fig. 6(b) that there is a peak 
amplitude and its value can be extracted as 
f2=1.847 Hz, V=47 m/s. 
 
The displacement-time history curves for 
velocities determined from Fig. 6 are plotted, as 

Table 2: The first few natural frequencies (f) of i-bay frame (i=1,2) 

 1-bay frame 2-bay frame 

f(Hz) Present work ANSYS Present work ANSYS 

f1 0.4714 0.47135 0.4370 0.4370 

f2 1.8477 1.8442 1.7933 1.7898 

f3 3.0356 3.0267 2.2309 2.2265 

f4   3.0555 3.0469 
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seen in Figs. 7. Fig. 7 (a1) shows resonance 
behaviour in horizontal direction. From Figs.7 
(a1) and (b1), the velocity V=12 m/s has excited 
the first mode of vibrations. 

The speed of train having velocity of V=47 m/s is 
excited the 2nd mode of vibrations. It would the 
first dominant natural frequency which the 

resonant responses are encountered not only in 
the horizontal but also in the vertical direction.  
The maximum amplitude in the vertical direction 
has been determined when comparing with 
Figs7 (b1) and (b3). It clear that resonance 
response cannot be appear in 3rd mode (Figs. 7 
(a3), (b3)). 

 

(a) 

 
(b) 

Figure 6: 3D velocity-frequency-amplitude graphs for 1-bay frame: (a) horizontal 
displacement of the point 1, (b) vertical displacement of the point 2 
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(a1) V=12 m/s (b1) V=12 m/s 

  

(a2) V=47 m/s (b2) V=47 m/s 

  

(a3) V=77 m/s (b3) V=77 m/s 
Figure 7: Figs. (ai) and (bi) (i=1,2,3) are corresponding to displacements at points p1 in the 

horizontal direction and p2 in the vertical directions, respectively 

3.2. 1. 2-bay frame  

Figs. 8 shows the four possible resonance peaks. 
The velocity and frequency values 
corresponding to these peak amplitudes are as 
follows: f1= 0.437 Hz, V = 11 m/s; f2 = 1.79Hz, V 
= 42 m/s; f3= 2.23 Hz, V = 57 m/s and f4= 3.05 Hz, 
V = 74 m/s. It is clear that the largest amplitude 
occurs when f1= 0.437 Hz, V = 11 m/s. 

It is seen in Fig. 8 (b) that mode 2 is effective in 
vibrations in the vertical directions of the 
structure within the speed range of interest. The 

amplitudes peaks in the figure are: f2 = 1.79 Hz, 
V = 42 m/s and f3 = 2.23 Hz, V = 57 m/s.  
 
Fig. 9 (a1) shows the resonant response in 
horizontal direction. This means that the first 
mode can be the dominant mode in the 
vibrations of point p1 in the horizontal direction. 
The resonance responses in both the vertical and 
the horizontal directions are illustrated in Figs. 9 
(a2) and (b2). Those figures are associated with 
the 2nd mode. In Figs. 9(a3), (b3), (a4) and (b4), 
the resonant response does not occur at 
velocities of 57 m/s and 74 m/s. 
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(a) 

 
(b) 

Figure 8: 3D velocity-frequency-amplitude graphs for 2-bay frame: (a) horizontal 
displacement of the point 1, (b) vertical displacement of the point 2 
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(a1) V=11 m/s (b1) V=11 m/s 

  
(a2) V=43 m/s (b2) V=43 m/s 

 
 

(a3) V=59 m/s (b3) V=59 m/s 

 
 

(a4) V=79 m/s (b4) V=79 m/s 
Figure 9: Figs. (ai) and (bi) (i=1,2,3) are corresponding to displacements at points p1 in the 

horizontal direction and p2 in the vertical directions, respectively 
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4. Conclusions 

The study dealt with in this paper investigates 
effect of mode shapes on the dynamic response 
of the viaduct, based on the Bernoulli-Euler 
beam theory, subjected to train moving at 
velocity V.  The various aspects of this work are: 

 The first mode of the multi-bay 
frames is excited when the train is 
moving at low speed, etc. V=11 m/s 
= 39.6 km/h. 

 The dominant modes are 1st and 
2nd mode of 1-2 bay frames. 

 The amplitude of the resonance 
vibrations decreased as the 
number of bays of the frame 
increased. 

 Resonance vibrations were not 
encountered in the 3rd mode of the 
1-bay frame, the 4th mode of the 2-
bay frame, except for 1st mode of i-
bay frame (i=1,2), where vertical 
displacements were negligible. 
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Appendix 
 

In Eq. (7), the following abbreviations have been 
introduced: 
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where A<qjei> represents the jth column of the 
element ei in the matrix A.  Also,  
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where i=1,2.  f1ei and f4ei represent the vehicle 
loads exerted by each wheelset on the contacting 
element i and those are determined as follows: 

2
1 1

1 2

1
4 2

1 2

(A6)
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 

 

where g is the acceleration due to gravity. 
 

If A and a in matrices �̅�vf  and Av in Eq. (A5) are 
replaced by C and c (or K and k), matrices 𝐂vf  
and Cv (or matrices �̅�vf  and Kv) can be 
determined. 

 


