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Abstract
In this article, the relationships between the S-spectra, the S-spectral radius, the ϵ-S-
essential pseudospectra, and the ϵ-S-essential pseudospectral radius of the diagonal block
operator matrices in the direct sum of Banach spaces and their block coordinate operators
are studied. Then, the results are supported by applications.
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1. Introduction
Recently, there have been a lot of interest in the characterizing of the essential spectra,

as there are plenty of practical applications that help scientists to deal with information
overload.

The theory of the essential spectra of linear operators in Banach spaces, which has nu-
merous applications in many parts of mathematics and physics including function theory,
matrix theory, differential and integral equations, complex analysis and control theory is
one of the modern parts of the spectral analysis.

The original definition of the essential spectrum has given by Weyl [16] around 1909.
He defined the essential spectrum for a self-adjoint operator T on a Hilbert space as the
set of all points of the spectrum of T that are not isolated eigenvalues of finite algebraic
multiplicity. He proved that the addition of a compact operator to T does not affect the
essential spectrum. Whether T is bounded or is not on a Banach space X, there are many
ways to define the essential spectrum. Most of them are enlargement of the continuous
spectrum. In the literature, we can find several definitions of the essential spectrum, which
coincide the self-adjoint operators on Hilbert spaces (see, e.g [3, 13]).

Also, the concept of essential spectra was introduced and studied by many mathe-
maticians. We can refer to the contributions of Weyl and his collaborators (see, e.g.
[4,8,11,15,16]. Moreover, further important characterizations concerning essential spectra
and their applications to transport operators are in [1, 4].
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It is very important to determine the spectra of linear bounded operators in mathemat-
ical physics in particular in quantum mechanics which is both relativistic and nonrelativis-
tic. However, it is necessary to express the importance of non-selfadjoint operators and
their spectra. The growing interest in non-Hermitian quantum mechanics, nonselfadjoint
differential operators and in generally nonnormal phenomena has increased the impor-
tance of nonselfadjoint operators and pseudospectral theory. Our aim in this article is to
show that there are ways to determine spectrum of some linear operators. Thus, we fill an
important gap in the computational spectral theory. The arithmetic operations are not
certain, when we compute the spectrum using a computer. So we can get the real solution
of a lightly perturbed problem. The problem above does not occur, when we consider the
pseudospectrum in bounded case.

In the mathematical literature, it is known that the spectral theory of linear operators in
direct sum of Banach spaces should be examined in order to solve many physical problems
in life sciences. These and other similar reasons led to the emergence of the topic examined
in the current paper.

There are numerous physical problems arising in the modelling of proceses the physics of
rigid bodies, multiparticle quantum mechanics and quantum field theory. These problems
support to study the theory of linear operators in the direct sum of Banach spaces (see
[6, 9, 14,17] and references in them).

In this article, one of the basic questions consists in characterizing the S-spectra and
the ϵ-S-essential pseudospectra of all the diagonal block operator matrices in the direct
sum of Banach spaces. Namely, we show some relationships between the S-spectra, the
S-spectral radius, the ϵ-S-essential pseudospectra, and the ϵ-S-essential pseudospectral
radius of the diagonal block operator matrices in the direct sum of Banach spaces and
their block coordinate operators (see, Theorem 3.1, 3.2 and 3.3). Finally, we give some
remarkable examples as applications of our results.

2. Auxiliary definitions and results
In this section, we will give auxiliary definitions and results that we will need later.

Definition 2.1. [10] The infinite direct sum of Banach spaces Bn, n ≥ 1 in the sense of
lp, 1 ≤ p < ∞ and the infinite direct sum of linear densely defined closed operators An in
Bn, n ≥ 1 are defined as

B =
( ∞⊕

n=1
Bn

)
p

=

x = (xn) : xn ∈ Bn, n ≥ 1, ∥x∥p =
( ∞∑

n=1
∥xn∥p

Bn

)1/p

< ∞


and

A =
∞⊕

n=1
An, A : D(A) ⊂ B → B,

D(A) = {x = (xn) ∈ B : xn ∈ D(An), n ≥ 1, Ax = (Anxn) ∈ B} ,

respectively.

Throughout the current paper, the norms ∥ . ∥p in B and ∥ . ∥Bn in Bn, n ≥ 1 will
be denoted by ∥ . ∥ and ∥ . ∥n, n ≥ 1, respectively. Also, the classes of linear bounded
operators, compact operator, and linear closed densely defined operators from any Banach
space X1 to another Banach space X2 are denoted by L (X1,X2), C (X1,X2), and C (X1,X2),
respectively. If X1 = X2 = X, they are denoted by L (X) = L (X,X), C (X) = C (X,X),
and C (X) = C (X,X). The identity operator in a Banach space X is denoted by I.

With the use of the techniques of the Banach spaces lp, 1 ≤ p < ∞ and the operator
theory we can obtain the following proposition (see [7]).
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Theorem 2.2. Let An ∈ L (Bn) , n ≥ 1 and A =
∞⊕

n=1
An : B → B. In order to

A ∈ L (B) the necessary and sufficient condition is sup
n≥1

∥An∥ < ∞. Moreover, in the case

of A ∈ L (B), the norm of A is of the form ∥A∥ = sup
n≥1

∥An∥.

By the definition of compactness of an operator in [2], we have that if A ∈ C (B) , then
An ∈ C (Bn) for n ≥ 1.

Now, let us give the following theorem about the compactness of the operator A.

Theorem 2.3. Let An ∈ C (Bn) for each n ≥ 1 and A =
∞⊕

n=1
An : B → B. A ∈ C (B) if

and only if
lim

n→∞
∥An∥ = 0.

Definition 2.4. [2] The spectrum and resolvent sets of an operator T ∈ C (X) in any
Banach space X are defined as

σ(T ) = {λ ∈ C : λI − T does not have an inverse in L (X)}

and
ρ(T ) = C \ σ(T ),

respectively.

Now, let us give some definitions from [5].

Definition 2.5. Let X1 and X2 be two Banach spaces, T ∈ C (X1,X2) and S ∈ L (X1,X2)
such that T ̸= S and S ̸= 0. The S-resolvent set of the operator T is defined as

ρS(T ) =
{

λ ∈ C : (λS − T )−1 ∈ L (X2,X1)
}

.

The S-resolvent operator of the operator T is defined as

RS(λ, T ) = (λS − T )−1 .

The S-spectrum set of the operator T is denoted by

σS(T ) = C \ ρS(T ).

In the case of T ∈ L (X1,X2), the S−spectral radius of the operator T is defined as

rS(T ) = sup{|λ| : λ ∈ σS(T )}.

Definition 2.6. Let X be a Banach space, T ∈ C(X) and S ∈ L(X) such that T ̸= S and
S ̸= 0. We define the following set:
(i) The S-point spectrum of T is denoted by

σp,S(T ) = {λ ∈ C such that λS − T is not one-to-one} .

(ii) The S-continuous spectrum of T is denoted by

σc,S(T ) ={
λ ∈ C : λS − T is one-to-one, (λS − T ) (D(T )) = X, and (λS − T )−1 is unbounded

}
.

(iii) The S-residual spectrum of T is denoted by

σr,S(T ) =
{

λ ∈ C : λS − T is one-to-one, (λS − T ) (D(T )) ̸= X
}

.
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Definition 2.7. Let X be a Banach space, T ∈ C(X) and S ∈ L(X) such that T ̸= S, S ̸= 0
and ϵ > 0. The ϵ-S-essential pseudospectrum set of the operator T is defined as

σS,ϵ(T ) = σS(T ) ∪
{

λ ∈ ρS(T ) : ∥RS(λ, T )∥ >
1
ϵ

}
.

In the case of T ∈ L (X), the non-negative number

rS,ϵ(T ) = sup{|λ| : λ ∈ σS,ϵ(T )}
is called the ϵ-S-essential pseudospectral radius of the operator T.

3. S-spectra and ϵ-S-essential pseudospectra of the diagonal block oper-
ator matrices

In this section, we will investigate the S-spectra, the S-spectral radius, the ϵ-S-essential
pseudospectra, and the ϵ-S-essential pseudospectral radius of the diagonal block operator
matrices in the infinite direct sum of Banach spaces.

Let us present our main results.

Theorem 3.1. Let Bn be a Banach space, An ∈ C (Bn) and Sn ∈ L (Bn) for n ≥
1. Moreover, let B =

∞⊕
n=1

Bn be the direct sum of Bn, n ≥ 1, A =
∞⊕

n=1
An ∈ C(B),

sup
n≥1

∥Sn∥ < ∞ and S :=
∞⊕

n=1
Sn. Then, the parts of S-spectrum, the S-spectrum, and the

S-resolvent sets of the operator A are of the forms

σp,S(A) =
∞∪

n=1
σp,Sn(An),

σc,S(A) =
{( ∞∪

n=1
σp,Sn(An)

)c

∩
( ∞∪

n=1
σr,Sn(An)

)c

∩
( ∞∪

n=1
σc,Sn(An)

)}

∪
{

λ ∈
∞∩

n=1
ρSn(An) : sup

n≥1
∥RSn(λ, An)∥ = ∞

}
,

σr,S(A) =
( ∞∪

n=1
σp,Sn(An)

)c

∩
( ∞∪

n=1
σr,Sn(An)

)
,

σS(A) =
∞∪

n=1
σSn(An) ∪

{
λ ∈

∞∩
n=1

ρSn(An) : sup
n≥1

∥RSn(λ, An)∥ = ∞
}

,

ρS(A) =
{

λ ∈
∞∩

n=1
ρSn(An) : sup

n≥1
∥RSn(λ, An)∥ < ∞

}
,

respectively.
In the case of An ∈ L (Bn) , n ≥ 1 and A ∈ L (B), the S-spectral radius of the operator

A is of the form
rS(A) = sup

n≥1
rSn (An) .

In the special case, if the number of the operators Sn and An, 1 ≤ n ≤ m, m ∈ N is
finite, the following equalities hold

σS(A) =
m∪

n=1
σSn(An),

ρS(A) =
m∩

n=1
ρSn(An).
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In the case of An ∈ L (Bn) , 1 ≤ n ≤ m and A ∈ L (B), the S−spectral radius of the
operator A is of the form

rS(A) = max
1≤n≤m

rSn (An) .

Proof. Note that the validity of the first relation is clear. Also, it is easy to prove the
fifth equality using Theorem 2.2.

Now, let us prove the second relation on the S−continuous spectrum. By the definition
of the S−continuous spectrum, λS − A is one-to-one operator, Im(λS − A) ̸= B and
Im(λS − A) is dense in B. Because for any n ≥ 1 the operator λSn − An is one-to-one
operator in Bn, there is m ∈ N such that Im(λSm − Am) ̸= Bm and for any n ≥ 1
the linear manifold Im(λSn − An) is dense in Bn or for each n ≥ 1, λ ∈ ρS(An) but
sup
n≥1

∥RSn(λ, An)∥ = ∞. Consequently, we have

λ ∈
{( ∞∩

n=1
[σc,Sn(An) ∪ ρSn(An)]

)
∩
( ∞∪

n=1
σc,Sn(An)

)}

∪
{

λ ∈
∞∩

n=1
ρSn(An) : sup

n≥1
∥RSn(λ, An)∥ = ∞

}
.

Conversely, assume that the above relation is satisfied for the point λ ∈ C. Conse-
quently, for any n ≥ 1, it is either

λ ∈ σc,Sn(An) ∪ ρSn(An)

or

λ ∈
{ ∞∩

n=1
ρSn(An) : sup

n≥1
∥RSn(λ, An)∥ = ∞

}
and there is m ∈ N such that λ ∈ σc,Sm(Am). Namely, for any n ≥ 1, λSn − An is one-
to-one operator, Im(λSn − An) = Bn and Im(λSn − An) ̸= Bn. Hence, we have that the
operator λS−A is one-to-one operator, Im(λS − A) = B and Im(λS−A) ̸= B. Therefore,
we get λ ∈ σc,S(A).

On the other hand, the simple calculations show that( ∞∩
n=1

[σc,Sn(An) ∪ ρSn(An)]
)

∩
( ∞∪

n=1
σc,Sn(An)

)

=
( ∞∪

n=1
σp,Sn(An)

)c

∩
( ∞∪

n=1
σr,Sn(An)

)c

∩
( ∞∪

n=1
σc,Sn(An)

)
.

By using the same technique, we can prove the validity of the third relation of the
theorem.

Now, let us prove that
rS(A) = sup

n≥1
rSn (An) .

We have already proved that the S-spectrum of the operator A is of the form

σS(A) =
∞∪

n=1
σSn(An) ∪

{
λ ∈

∞∩
n=1

ρSn(An) : sup
n≥1

∥RSn(λ, An)∥ = ∞
}

.

Since σSn(An) ⊂ σS(A), n ≥ 1, we have

rSn(An) ≤ rS(A).

Consequently,
sup
n≥1

rSn (An) ≤ rS(A).
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On the contrary, in the case of sup
n≥1

rSn (An) < rS(A), we must obtain at least one

element λ∗ ∈ σS(A) such that

sup
n≥1

rSn (An) < |λ∗| ≤ rS(A).

Thus, there is an integer n∗ ≥ 1 such that

λ∗ ∈ σSn∗ (An∗) .

Hence, we have
rSn∗ (An∗) < |λ∗|.

However, this is a contradiction. Thus, we have that

rS(A) = sup
n≥1

rSn (An) .

The similar results can be proved when the number of the operators Sn and An,
1 ≤ n ≤ m, m ∈ N is finite. �

In the case of Sn = In, n ≥ 1, the similar results have been obtained in [12].

Theorem 3.2. Let Bn be a Banach space, An ∈ C (Bn) and Sn ∈ L (Bn) for n ≥
1. Moreover, let B =

∞⊕
n=1

Bn be the direct sum of Bn, n ≥ 1, A =
∞⊕

n=1
An ∈ C(B),

sup
n≥1

∥Sn∥ < ∞ and S :=
∞⊕

n=1
Sn. Then, for each ϵ > 0 the ϵ-S-essential pseudospectrum set

of the operator A is of the form

σS,ϵ(A) =
∞∪

n=1
σSn,ϵ(An).

In the case of An ∈ L (Bn) , n ≥ 1 and A ∈ L (B), the ϵ-S-essential pseudospectral
radius of the operator A is of the form

rS,ϵ(A) = sup
n≥1

rSn,ϵ (An) .

Proof. By Theorem 2.2 it is known that

∥ (λS − A)−1 ∥ = sup
n≥1

∥ (λSn − An)−1 ∥.

Let λ ∈ σS,ϵ(A). Then, for any ϵ > 0 we have

sup
n≥1

∥ (λSn − An)−1 ∥ >
1
ϵ

.

Thus, there exists n0 ∈ N such that

∥ (λSn0 − An0)−1 ∥ >
1
ϵ

.

This means that
λ ∈ σSn0 ,ϵ(An0).

Consequently,

σS,ϵ(A) ⊂
∞∪

n=1
σSn,ϵ(An).

Conversely, if λ ∈ σSn0 ,ϵ(An0) for any n0 ∈ N, then for ϵ > 0 we have

∥ (λSn0 − An0)−1 ∥ >
1
ϵ

.
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From the last relation we get

sup
n≥1

∥ (λSn − An)−1 ∥ >
1
ϵ

.

Then, by Theorem 2.2 it is established that
∞∪

n=1
σSn,ϵ(An) ⊂ σS,ϵ(A).

Finally, for ϵ > 0 we obtain

σS,ϵ(A) =
∞∪

n=1
σSn,ϵ(An).

Now, let us prove rS,ϵ(A) = sup
n≥1

rSn,ϵ (An) . We have already proved that the ϵ-S-essential

pseudospectrum of the operator A is of the form

σS,ϵ(A) =
∞∪

n=1
σSn,ϵ(An).

Since σSn,ϵ(An) ⊂ σS,ϵ(A), n ≥ 1, we have
rSn,ϵ(An) ≤ rS,ϵ(A).

Consequently,
sup
n≥1

rSn,ϵ (An) ≤ rS,ϵ(A).

On the contrary, in the case of sup
n≥1

rSn,ϵ (An) < rS,ϵ(A), we must obtain at least one

element λ∗ ∈ σS,ϵ(A) such that
sup
n≥1

rSn,ϵ (An) < |λ∗| ≤ rS,ϵ(A).

In this case, there is an integer n∗ ≥ 1 such that
λ∗ ∈ σSn∗ ,ϵ (An∗) .

Hence, we have
rSn∗ ,ϵ (An∗) < |λ∗|.

However, this is a contradiction. Thus, we have that
rS,ϵ(A) = sup

n≥1
rSn,ϵ (An) .

�
In Theorems 3.1 and 3.2, even if the location of A and S blocks changes as desired, the

results do not change. Thus, we can give the following theorem.

Theorem 3.3. Let f : N → N be one-to-one and onto function. Also, let Bn be a Banach
space, An ∈ C (Bn) and Sn ∈ L (Bn) for n ≥ 1. Moreover, let B =

∞⊕
n=1

Bn be the direct

sum of Bn, n ≥ 1, A =
∞⊕

n=1
Af(n) ∈ C(B), sup

n≥1
∥Sf(n)∥ < ∞ and S :=

∞⊕
n=1

Sf(n). Then, for

each ϵ > 0 the ϵ-S-essential pseudospectrum set is of the form

σS,ϵ(A) =
∞∪

n=1
σSn,ϵ(An).

In the case of An ∈ L (Bn) , n ≥ 1 and A ∈ L (B), the ϵ-S-essential pseudospectral
radius of the operator A is of the form

rS,ϵ(A) = sup
n≥1

rSn,ϵ (An) .
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4. Applications
In this section, we will provide some examples as applications of our theorems.

Example 4.1. Let Bn = C, n ≥ 1 one-dimensional Euclidian space, B =
( ∞⊕

n=1
C
)

p

,

1 ≤ p < ∞,

Sn = snI : C → C, sn ̸= 0, n ≥ 1, (sn) ∈ lp(C), 1 ≤ p < ∞,

An = anI : C → C, an ̸= 0, n ≥ 1, (an) ∈ lp(C), 1 ≤ p < ∞,

and S =
∞⊕

n=1
Sn, A =

∞⊕
n=1

An. In this case, S, A ∈ L (B) . For λ ∈ C, λ ̸= an

sn
and n ≥ 1

we have
(λSn − An)−1 = 1

λsn − an

and
∥ (λSn − An)−1 ∥ = 1

|λsn − an|
.

Consequently, for any n ≥ 1 we obtain

σSn(An) =
{

an

sn

}
and rSn(An) =

∣∣∣∣an

sn

∣∣∣∣ .
Hence, by Theorem 3.1 we have

σS(A) =
∞∪

n=1

{
an

sn

}
and rS(A) = sup

n≥1

∣∣∣∣an

sn

∣∣∣∣ .
On the other hand, for any n ≥ 1 and ϵ > 0

σSn,ϵ(An) = σSn(An) ∪
{

λ ∈ ρSn(An) : ∥RSn(λ, An)∥ >
1
ϵ

}
=
{

an

sn

}
∪
{

λ ∈ ρSn(An) : 1
|λsn − an|

>
1
ϵ

}
=
{

λ ∈ C :
∣∣∣∣λ − an

sn

∣∣∣∣ <
ϵ

|sn|

}
and

rSn,ϵ(An) = sup
{

|λ| : λ ∈ C and
∣∣∣∣λ − an

sn

∣∣∣∣ <
ϵ

|sn|

}
.

Hence, by Theorem 3.2 for ϵ > 0 we have

σS,ϵ(A) =
∞∪

n=1

{
λ ∈ C :

∣∣∣∣λ − an

sn

∣∣∣∣ <
ϵ

|sn|

}
and

rS,ϵ(A) = sup
n≥1

sup
{

|λ| : λ ∈ C and
∣∣∣∣λ − an

sn

∣∣∣∣ <
ϵ

|sn|

}
.

Example 4.2. Let Bn = C2, n ≥ 1 two-dimensional Euclidian space, B =
( ∞⊕

n=1
C2
)

p

,

1 ≤ p < ∞ and

Sn : C2 → C2, Sn =
(

0 αn

αn 0

)
, αn ∈ C, αn ̸= 0, n ≥ 1, sup

n≥1
|αn| < ∞,

An : C2 → C2, An =
(

0 βn

βn 0

)
, βn ∈ C, βn ̸= 0, n ≥ 1, sup

n≥1
|βn| < ∞.
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Then, S =
∞⊕

n=1
Sn and A =

∞⊕
n=1

An are the infinite diagonal block operator matrices. For
λ ∈ C and n ≥ 1 we have

λSn − An =
(

0 λαn − βn

λαn − βn 0

)
.

Thus, for λ ̸= βn

αn
and n ≥ 1 we get

(λSn − An)−1 =

 0 1
λαn − βn1

λαn − βn
0

 ∈ L
(
C2
)

and
∥ (λSn − An)−1 ∥ = 1

|λαn − βn|
.

Consequently, for any n ≥ 1 we obtain

σSn(An) =
{

βn

αn

}
and rSn(An) =

∣∣∣∣βn

αn

∣∣∣∣ .
Hence, by Theorem 3.1 we have

σS(A) =
∞∪

n=1

{
βn

αn

}
and rS(A) = sup

n≥1

∣∣∣∣βn

αn

∣∣∣∣ .
On the other hand, for any n ≥ 1 and ϵ > 0

σSn,ϵ(An) = σSn(An) ∪
{

λ ∈ ρSn(An) : ∥RSn(λ, An)∥ >
1
ϵ

}
=

{
βn

αn

}
∪
{

λ ∈ ρSn(An) : 1
|λαn − βn|

>
1
ϵ

}
=

{
λ ∈ C :

∣∣∣∣λ − βn

αn

∣∣∣∣ <
ϵ

|αn|

}
and

rSn,ϵ(An) = sup
{

|λ| : λ ∈ C and
∣∣∣∣λ − βn

αn

∣∣∣∣ <
ϵ

|αn|

}
.

Hence, by Theorem 3.2 for ϵ > 0 we have

σS,ϵ(A) =
∞∪

n=1

{
λ ∈ C :

∣∣∣∣λ − βn

αn

∣∣∣∣ <
ϵ

|αn|

}
and

rS,ϵ(A) = sup
n≥1

sup
{

|λ| : λ ∈ C and
∣∣∣∣λ − βn

αn

∣∣∣∣ <
ϵ

|αn|

}
.

Example 4.3. Let Bn = C2, n ≥ 1 two-dimensional Euclidian space, B =
( ∞⊕

n=1
C2
)

p

,

1 ≤ p < ∞ and

Sn : C2 → C2, Sn =
(

αn −1
αn 0

)
, αn ∈ C, αn ̸= 0, n ≥ 1, sup

n≥1
|αn| < ∞,

An : C2 → C2, An =
(

βn 0
βn 0

)
, βn ∈ C, βn ̸= 0, n ≥ 1, sup

n≥1
|βn| < ∞.
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Then, S =
∞⊕

n=1
Sn and A =

∞⊕
n=1

An are the infinite diagonal block operator matrices. For
λ ∈ C and n ≥ 1 we have

λSn − An =
(

λαn − βn −λ
λαn − βn 0

)
.

Thus, for λ ̸= βn

αn
, λ ̸= 0 and n ≥ 1 we get

(λSn − An)−1 =

 0 1
λαn − βn

− 1
λ

1
λ

 ∈ L
(
C2
)

and

∥ (λSn − An)−1 ∥ =
(

1
|λ|2

+ 1
2|λαn − βn|2

+ 1
2

( 4
|λ|4

+ 1
|λαn − βn|4

)1/2
)1/2

.

Consequently, for any n ≥ 1 we obtain

σSn(An) =
{

0,
βn

αn

}
and rSn(An) =

∣∣∣∣βn

αn

∣∣∣∣ .
Hence, by Theorem 3.1 we have

σS(A) = {0} ∪
∞∪

n=1

{
βn

αn

}
and rS(A) = sup

n≥1

∣∣∣∣βn

αn

∣∣∣∣ .
On the other hand, for any n ≥ 1 and ϵ > 0

σSn,ϵ(An)

= σSn(An) ∪
{

λ ∈ ρSn(An) : ∥RSn(λ, An)∥ >
1
ϵ

}

=
{

0,
βn

αn

}
∪

λ ∈ ρSn(An) :
(

1
|λ|2

+ 1
2|λαn − βn|2

+ 1
2

( 4
|λ|4

+ 1
|λαn − βn|4

)1/2
)1/2

>
1
ϵ


=

λ ∈ C :
(

1
|λ|2

+ 1
2|λαn − βn|2

+ 1
2

( 4
|λ|4

+ 1
|λαn − βn|4

)1/2
)1/2

>
1
ϵ


and

rSn,ϵ(An)

= sup

|λ| : λ ∈ C and
(

1
|λ|2

+ 1
2|λαn − βn|2

+ 1
2

( 4
|λ|4

+ 1
|λαn − βn|4

)1/2
)1/2

>
1
ϵ

 .

Hence, by Theorem 3.2 for ϵ > 0 we have

σS,ϵ(A) =
∞∪

n=1

λ ∈ C :
(

1
|λ|2

+ 1
2|λαn − βn|2

+ 1
2

( 4
|λ|4

+ 1
|λαn − βn|4

)1/2
)1/2

>
1
ϵ


and

rS,ϵ(A)

= sup
n≥1

sup

|λ| : λ ∈ C and
(

1
|λ|2

+ 1
2|λαn − βn|2

+ 1
2

( 4
|λ|4

+ 1
|λαn − βn|4

)1/2
)1/2

>
1
ϵ

 .
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