
*Corresponding Author Vol. 21 (No. 1) / 27 

International Journal of Thermodynamics (IJoT) Vol. 21 (No. 1), pp. 27-36, 2018 
ISSN 1301-9724 / e-ISSN 2146-1511 doi: 10.5541/ijot.339904 
www.ijoticat.com  Published online: March 1, 2018 

 

 

Ternary Diagram of Bithermal Systems 
 

J. Ramousse* 
 

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LOCIE, 73000 Chambéry, France  

*E-mail: julien.ramousse@univ-smb.fr 

 

Received 25 September 2017, Accepted 30 January 2018 

 

Abstract  

 

This paper proposes an original and synthetic graphical representation of bithermal systems operation on a normed 

ternary diagram (𝑞ℎ , 𝑞𝑐 , 𝑤). Thanks to the normed axes, an intuitive graphical interpretation of the operating 

conditions is derived by using polar coordinates. The energy flow intensity involved in the system is directly linked 

to its distance 𝑟𝑀 to the origin and its efficiency is only related to the angle 𝛼 defined in this work. Thus, the potential 

operating modes depending on the energy flow directions, are distributed into sectors of angle /3. In addition to the 

potentially reversible operating modes (heat engine and heat pump modes), the two dissipative operating modes 

(forced heat transfer and thermal dissipation modes) are also described. Moreover, the characterization of the operating 

mode interfaces validates the physical continuity of the proposed description. According to the second law of 

thermodynamics, the operation of bithermal systems is restricted to the top half-plane bounded by the Carnot boundary 

(function of the reservoirs temperature ratio). Furthermore, the introduction of an unconventional definition of the 

energy efficiency when the hot reservoir is used as a heat sink leads to positive and below unity efficiencies in both 

reversible modes and negative efficiencies in both dissipative modes. In order to illustrate the use of the proposed 

representation, two examples are introduced: (i) operation of the classical thermodynamics cycles of Carnot, Stirling 

and Erricson is plotted for graphical interpretation, (ii) endoreversible (exo-irreversible) system representation helps 

to rediscover graphically the Chambadal/Novikov/Curzon-Ahlborn efficiency (constant energy efficiency at 

maximum work in heat engine mode).  
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1. Introduction  

Heat energy conversion into work energy (and inversely) 

is of high interest in engineering because it serves widely 

used applications (heat engines, heating and cooling 

devices…). In response to this challenge, the science of 

thermodynamics emerged in the nineteenth century [1-3] for 

the study of work-heat energy conversion systems. 

Bithermal systems are classically considered to describe 

machines allowing such energy conversions, as two distinct 

temperatures are needed to convert heat into work. A 

bithermal system is thus defined as a thermodynamic system 

operating in cycles or steady state exchanging heat with two 

distinct heat reservoirs at different temperature. As a rule, 

bithermal system operation is governed by the first law of 

thermodynamics, that links the energy interactions between 

the system and its environment, and the second law, that 

expresses the efficiency of the work-heat energy conversion. 

In order to ease the description and the interpretation of 

bithermal systems, several graphical tools have been 

suggested. Thermodynamic cycles are classically 

represented on 2D phase diagrams that plot the equilibrium 

states of the working fluid involved in the cycle depending 

on two independent thermodynamic properties (pressure P, 

temperature T, specific volume v, specific enthalpy h, 

specific entropy s). The most frequently used phase diagrams 

are the P-v Clapeyron diagram [4], the h-s Mollier diagram 

[5] and the T-s temperature-entropy diagram. These 

diagrams allow graphical description of thermodynamic 

cycles (Carnot, Stirling, Erricson, Rankine and others) by 

means of complementary transformations (see [6-10] for 

instance). The work and heat energy flows involved in each 

transformation of the cycle are computed with the help of 

thermodynamic relationships. The operating mode of the 

system is deduced from the sense of the cycle is operated 

(clockwise in heat engine mode or anti-clockwise for heat 

pump mode). Although these representations are highly 

useful for the description of thermodynamic cycles, further 

analyses are needed to evaluate the energy flows balance 

over the cycle and determine the corresponding energy 

conversion efficiency.  

On the other hand, more systemic representation has been 

proposed by means of the energy flows exchanged over a 

cycle by bithermal systems, thus focusing on their operating 

mode and efficiency. Through the literature, the following 

three main representations deserve a particular attention. 

Bejan [6] identified the wedge of minimum-Q in a 

temperature-energy diagram (also called the T-Q graphic 

method) by considering ideal (reversible) operation. As real 

(non-reversible) operation implies an increase of the heat 

released to the heat sink, its operation is deduced from the 

resulting deviation from reversible operation. It is worthy of 

note that the entropy generation (related to the 

irreversibilities) can be linked to the cotangent of the 

deviation. However, this representation only covers the two 

potentially reversible operating modes (heat engine and heat 

pump modes) by means of two distinct but similar 

representations as the heat energy flows are counted in 

absolute values.  
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Another interesting graphical representation was 

proposed by Borel and Favrat in [8]. The authors suggested 

plotting bithermal systems on a graph with the reservoirs 

temperature ratio and the work-heat energy ratio as 

orthogonal axes. The energy and exergy efficiencies were 

then extended to 3D plots. The different operating modes of 

bithermal systems (heat engine mode, heating and cooling 

heat pump modes and dissipative modes) were distinguished, 

but the two dissipative modes identified have not been 

qualified and discussed in details. Moreover, assuming that 

one heat reservoir is at ambient temperature (the ambient 

could either be the hot or the cold reservoir) introduces some 

operating mode discontinuities that are somehow confusing 

and vanish in the proposed representation.  

The last notable graphical representation was proposed 

by Raveau [9-11] where bithermal system operation is 

plotted with the hot and cold heat flows (Qh and Qc) as 

orthogonal axes. Alefeld and Radermarcher generalized this 

graphical approach to multi-heat reservoirs in [12]. Although 

the work exchanged can be deduced on the bisector of the Qh 

and Qc axes, the W-axis is not normed. Consequently, the use 

of polar coordinates is not adapted for further graphical 

interpretation. Even though the suggested representation 

introduced in [13] and detailed in this paper is close to that 

last one, significant improvements are obtained with the use 

of the proposed normed ternary diagram (𝑞ℎ , 𝑞𝑐 , 𝑤) and the 

introduction of polar coordinates. Mainly, the energy 

conversion efficiency is directly linked to the geometric 

angle introduced later in this work. This work thus aims to 

complement the above graphical representations for further 

understanding and easier graphical interpretation of 

bithermal systems operation.  

The first sections are dedicated to introduce the proposed 

representation of bithermal systems operation in a ternary 

diagram with a particular attention to highlight the 

differences with the previous studies. System energy 

conversion efficiency is discussed in section 4, leading to 

introduce a non-conventional energy efficiency definition 

when the hot heat reservoir is used as a sink. The benefit for 

graphical interpretation of the proposed normed ternary 

diagram is then discussed in section 5, with the introduction 

of polar coordinates. Finally, the paper concludes with two 

illustrative examples: (i) the exoreversible thermodynamic 

cycles of Carnot, Stirling and Erricson are plotted for a 

complete analysis and comparison of their operating 

conditions; (ii) endoreversible (exo-irreversible) cycles are 

plotted to rediscover graphically the energy efficiency of 

Novikov, Chambadal and Curzon-Ahlborn [14-16] at 

maximum work in heat engine mode.  

 

2. Bithermal Systems  

2.1 Definitions and Convention 

Let us consider a bithermal system, as presented in Figure 

1, exchanging heat energies with two heat reservoirs at 

different temperatures. Since a temperature difference is 

needed to convert heat into work, the reservoirs can be 

distinguished with respect to their relative thermal potential, 

so that the hot reservoir temperature is Th and the cold one is 

Tc, with 𝑇ℎ > 𝑇𝑐. Thermal reservoirs are assumed to be 

infinitely large compared to the amount of heat given to or 

released by the system (qh and qc), so that their respective 

temperatures Th and Tc remain constant. To generalize the 

proposed approach to bithermal systems operating in cycles 

or steady state, energy and entropy balances are written on a 

unit of mass involved in the process, thus considering the 

specific energy and specific entropy. Such systems are 

classically described using the first and second laws of 

thermodynamics, as detailed in the following. 

In order to keep the proposed description consistent, heat 

and work energy flows are counted algebraically according 

to the conventional approach in mechanics, i.e., positive 

when entering the system and negative when leaving the 

system (see Figure 1). The thermodynamic system 

considered could either work as a generator when work is 

extracted from the system (𝑤 < 0) or as a receptor when 

work has to be fed to the system (𝑤 > 0). Similarly, the 

reservoir operates as a heat source when heat is transferred 

from the reservoir to the system (𝑞 > 0) or as a heat sink 

when heat is released from the system to the reservoir (𝑞 <
0). 

 

Figure 1. Bithermal thermodynamic system representation 

(Figure is in color in the on-line version of the paper). 

 

2.2 First Law of Thermodynamics 

The first law of thermodynamics applied to a unit of mass 

involved in bithermal systems operating in cycles or steady 

state writes: 

𝑞ℎ + 𝑞𝑐 + 𝑤 = 0 (1) 

As this equation is representative of a plane equation, any 

bithermal system Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) can be plotted in the 

corresponding geometrical plane Ρ. This paper proposes to 

identify this plane Ρ for easier representation and 

interpretation of bithermal systems. 

 

2.3 Second Law of Tthermodynamics 

The second law of thermodynamics applied to a unit of 

mass involved in bithermal systems operating in cycles or 

steady state writes: 

𝑞ℎ

𝑇ℎ
+

𝑞𝑐

𝑇𝑐
+ 𝜎 = 0 (2) 

where σ is the specific entropy generation in the system, 

defined positive 𝜎 ≥ 0. This term is related to the 

irreversibilities occurring in the system. 

The second law of thermodynamics thus reduces the 

operating conditions reachable by bithermal systems, as it 

implies some impossible transformations (𝜎 < 0). 

Consequently, the realistic operating conditions of bithermal 

systems only cover a part of the plane Ρ, as detailed in the 

following. 

 

3. Graphical Representation  

3.1 Introduction to Ternary Diagram 

Any bithermal system Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) can be plotted in the 

geometric plane P defined by Eq. (1) (perpendicular to the 

trisectrice of the 3D orthonormal axes qh', qc' and w'). The 
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(non-orthogonal) normed axes qh, qc and w presented in 

Figure 2 are deduced from projection of the 3D orthonormal 

axes qh', qc' and w' in the plane P. Consequently, the normed 

axes qh, qc and w are linked by a 2𝜋
3⁄  in-plane rotation with 

𝛭°(0,0,0) as center of rotation. This representation allows 

plotting any bithermal thermodynamic system from the 

knowledge of only two of the three energies qh, qc and w 

exchanged between the system and its surroundings. The 

missing data is directly read on the diagram.   

 

Figure 2. Ternary diagram of bithermal systems. 

The representation proposed is closed to that introduced 

by Raveau (see [9-11] for instance), where bithermal systems 

are plotted on a graph defined with the orthonormal axes qh 

and qc. In that case, the work exchanged by the system w 

could be read on the bisector line of the axes qh and qc. 

However this axis is not normed, in contrary to the normed 

axis w introduced in the proposed ternary diagram. Even if 

the work exchanged by the system can be easily deduced 

numerically thanks to Eq. (1), it is relevant to retrieve it 

graphically for a complete graphical interpretation. 

 

3.2 Operating Modes 

As shown in Figure 3, six different regions (sextants) can 

be distinguished on plane Ρ, depending on the sign of the 

energy flows qh, qc and w. To each region corresponds a 

different operating mode, as detailed in the following. The 

region numbering is arbitrary and is only given for 

interpretation purposes. 

 

Figure 3. Operating mode representation in plane Ρ. The 

Carnot boundary is plotted for 𝜃 = 1
3⁄  (Figure is in color 

in the on-line version of the paper). 

• Region I: Heat engine  𝑤 < 0, 𝑞ℎ > 0, 𝑞𝑐 < 0 

This mode is highly advantageous for scientists because 

it is the only mode in which the system works as a generator 

(𝑤 < 0). In this mode the system produces work from heat 

transfer from the high-temperature heat source to the low-

temperature heat sink. In other words, the system converts a 

part of high thermal exergy taken from the hot heat source 

into work exergy and low thermal exergy released to the cold 

heat sink. 

• Region II: Forced heat transfer 𝑤 > 0, 𝑞ℎ > 0, 𝑞𝑐 < 0 

When operating in this mode, the system uses the work 

received to intensify the heat transfer from the hot heat 

source to the cold heat sink. This mode is currently used in 

heat exchangers in forced convection: heat transfer is 

increased thanks to the work given to the system to make up 

for the pressure drops of the flowing fluids. From the exergy 

point of view, work exergy and high thermal exergy from the 

hot heat source are dissipated to low thermal exergy at the 

cold heat sink. 

• Region III: Thermal dissipation  𝑤 > 0, 𝑞ℎ < 0, 𝑞𝑐 < 0 

In this operating mode, the system converts the work 

energy received into thermal energy to the hot and the cold 

heat sinks. No heat source is connected to the system. The 

work exergy transferred to the system is fully dissipated as 

low and high thermal exergies to the heat sinks. 

If the hot and cold heat sinks are thermally connected, 

bithermal systems operating in this mode could be 

assimilated to monothermal systems exchanging heat qm 

with a reservoir at mean temperature Tm, so that: 

𝑞𝑚 = 𝑞ℎ + 𝑞𝑐 = −𝑤 ≤ 0 and  
𝑞𝑚

𝑇𝑚
=

𝑞ℎ

𝑇ℎ
+

𝑞𝑐

𝑇𝑐
= −𝜎 (3) 

Given that the heat energy flows exchanged qh, qc, and qm 

are all negative, the equivalent mean temperature is bounded 

by the hot and cold heat sink temperatures: 𝑇ℎ ≥ 𝑇𝑚 ≥ 𝑇𝑐. 

• Region IV: Heat pump  w > 0, qh < 0, qc > 0 

In this mode, the system runs as a receptor to transfer heat 

from the low-temperature heat source to the hot heat sink 

thanks to the work received. In terms of exergy, work exergy 

is used to transfer thermal exergy from a low thermal level 

to a higher thermal level. Systems  operating in this mode are 

most of the time qualified of either heat pump or refrigerator 

depending on the useful effect expected (heating or cooling), 

even though both effects occur simultaneously. 

• Region V: Impossible  w < 0, qh < 0, qc > 0 

According to the second law (Eq. (2)), this region is not 

attainable because the reservoirs temperature are distinct and 

positive (𝑇ℎ ≥ 𝑇𝑐 ≥ 0). Indeed, heat cannot spontaneously 

flow from the cold heat source to the hot heat sink without 

external work supplied to the system. 

• Region VI: Impossible  𝑤 < 0, 𝑞ℎ > 0, 𝑞𝑐 > 0 

Once again, this region is not attainable according to the 

second law (Eq. (2)), since the reservoirs temperature are 

positive (𝑇ℎ ≥ 𝑇𝑐 ≥ 0). Indeed, a cold heat sink is needed to 

convert heat energy from a hot heat source into work energy. 

Note that, in accordance with Eq. (1), no region 

corresponds to the following operating conditions (not 

included in plane Ρ): 

• 𝑤 > 0, 𝑞ℎ > 0, 𝑞𝑐 > 0 

•  𝑤 < 0, 𝑞ℎ < 0, 𝑞𝑐 < 0 

Consequently, the realistic operating modes of bithermal 

systems reduce to regions I–IV. In addition to the potentially 

reversible operating modes (heat engine and heat pump 

modes) mostly studied, two dissipative operating modes can 

be encountered: forced heat transfer (Region II) and thermal 
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dissipation (Region III) modes. The operating mode of any 

bithermal system Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) is thus directly deduced from 

its location in plane Ρ with respect to the above-detailed 

regions. 

 

3.3 Operating Modes Continuity 

The continuity between the different operating modes of 

the proposed representation appears naturally in Figure 3. 

Operating mode interfaces are therefore qualified as follows: 

• Region VI/Region I interface: This condition is reached 

when 𝑞𝑐 = 0 and 𝑤 = −𝑞ℎ, meaning that the thermal energy 

supplied by the hot heat source is fully converted into work 

energy. By passage to the limit, this operating condition can 

only be reached by an ideal1 heat engine. 

• Region I/Region II interface: This interface is reached 

when 𝑤 = 0, meaning 𝑞ℎ = −𝑞𝑐,. This operating condition 

is interpreted as passive heat transfer (conduction, radiation 

and free convection). 

• Region II/Region III interface: On this interface, 𝑞ℎ =
0, leading to 𝑤 = −𝑞𝑐. The work energy is fully transferred 

as thermal energy to the cold heat sink. This operating 

condition corresponds to low-temperature thermal 

dissipation. 

• Region III/Region IV interface: In this case, 𝑞𝑐 = 0 and 

𝑤 = −𝑞ℎ. The work energy supplied to the system is thus 

fully dissipated to the hot heat sink, resulting in high-

temperature thermal dissipation.  

• Region IV/Region V interface: As for the Region 

I/Region II interface, this can be interpreted as passive heat 

transfer (𝑤 = 0 and 𝑞ℎ = −𝑞𝑐,). By passage to the limit, it 

can also be understood as an ideal2 heat pump as the work 

supplied is null.  

At the origin Μ° (𝑞ℎ = 𝑞𝑐 = 𝑤 = 0), no energy flows 

through the system: the system is in thermodynamic 

equilibrium. 

 

3.4 Reversible Carnot Boundary 

Note that the graphical representation proposed in the 

above sections is kept valid regardless the reservoirs 

temperature. However, the second law of thermodynamics 

(Eq. (2)) restricts more the realistic operating conditions 

reachable by the bithermal system depending on the 

reservoirs’ thermal quality. Indeed, as the specific entropy 

generation is defined positive, Eq. (2) leads to the following 

inequality: 

𝑞ℎ

𝑇ℎ
+

𝑞𝑐

𝑇𝑐
≤ 0 (4) 

Hence, depending on the hot reservoir is a hot heat source 

or a hot heat sink, the thermal energy ratio exchanged by the 

system is bounded by the reservoirs temperature ratio 𝜃 =
𝑇𝑐

𝑇ℎ
⁄ : 

• Hot heat source (𝑞ℎ > 0): 
𝑞𝑐

𝑞ℎ
≤ −𝜃 

• Hot heat sink (𝑞ℎ < 0): 
𝑞𝑐

𝑞ℎ
≥ −𝜃 

In the case of a reversible Carnot system (𝜎 = 0), the 

above inequalities turns into the following equality, defining 

the Carnot boundary: 

                                                 
1 The term “ideal” refers to a reversible system (𝜎 = 0) working 
with ideal reservoirs temperature, i.e., 𝑇ℎ → +∞ and 𝑇𝑐 = 0 (𝜃 =
0) in heat engine mode and  𝑇ℎ = 𝑇𝑐  (𝜃 = 1) in heat pump mode. 

𝑞𝑐
𝐶

𝑞ℎ
𝐶 = −

𝑇𝑐

𝑇ℎ
= −𝜃 (5) 

with 0 ≤ 𝜃 ≤ 1.  

Graphically, the Carnot boundary results in a straight line 

passing through the origin Μ°(0,0,0) whose slope is a 

function of the reservoirs temperature ratio θ (see Figure 3). 

The slope is expressed in the following as a function of the 

angle α introduced in section 5.2. According to the 

inequalities given in Eq. (4), bithermal systems can only be 

plotted on the top half-plane bounded by the Carnot 

boundary. 

Since the reservoirs temperature are defined positive 

(𝑇ℎ ≥ 𝑇𝑐 ≥ 0, i.e. 0 ≤ 𝜃 ≤ 1), the Carnot boundary only 

plots in reversible modes (Regions I and IV), where −1 ≤
𝑞𝑐

𝑞ℎ
⁄ ≤ 0. As Regions II and III are related to dissipative 

operating modes, they cannot be described by an equivalent 

reversible Carnot system, otherwise it would imply 𝜃 > 1 in 

Region II (
𝑞𝑐

𝑞ℎ
⁄ ≤ −1) and 𝜃 < 0 in Region III (

𝑞𝑐
𝑞ℎ

⁄ ≥

0). 

 

3.5 Comparison to Graphical Representations of the 

Literature  

Based on reversible cycle considerations, the wedge of 

minimum heat exchanged in heat engine and heat pump 

modes (potentially reversible operating modes) can be 

plotted as a function of the reservoir temperatures in a Q-T 

diagram [6]. The corresponding reversible work energy 

(available in heat engine mode or needed in heat pump mode) 

is deduced from the reversible heat energies difference. Non-

reversible operation implies an increase of the heat energy 

released to the heat sink (either to the cold reservoir in case 

of heat engine operation or to the hot reservoir in case of heat 

pump operation). The work lost (i.e. decrease of the work 

available in heat engine mode or increase of the work needed 

in heat pump mode) could then be deduced from the 

deviation from the reversible operation. However, the 

operating mode considered, and thus the corresponding 

energy flow directions (given to or released by the system), 

have to be known a priori as the energy flows are plotted in 

absolute values. Consequently, this approach is restricted to 

the two potentially reversible operating modes (heat engine 

and heat pump modes) with distinct analysis. In contrast, the 

graphical representation introduced in this paper allows a 

general graphical analysis for all possible operating modes, 

including the two dissipative modes (forced heat transfer and 

thermal dissipation). 

Otherwise, the different operating modes of bithermal 

systems (i.e. heat engine mode, heating and cooling heat 

pump modes, dissipative modes and impossible operating 

modes) are highlighted in the adimensional representation 

suggested by Borel and Favrat [8]. However, the two 

dissipative operating modes have not been distinguished and 

discussed in detail. Furthermore, assuming that one heat 

reservoir is at ambient temperature Ta (meaning the ambient 

could either be the hot or the cold reservoir) leads to the 

following main differences from the proposed 

representation: 

• The single heat engine operating mode (Region I) is 

distributed in two distinct and non-adjacent regions, 
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depending on the reservoirs temperature (𝑇𝑎 = 𝑇ℎ > 𝑇𝑐 or 

𝑇ℎ > 𝑇𝑐 = 𝑇𝑎).  

• Similarly, the single heat pump mode (heating and 

cooling) is divided into two distinct but adjacent regions. 

Heating and cooling modes are distinguished with respect to 

the ambient temperature that could either play the role of a 

hot heat sink (cooling mode with 𝑇𝑎 = 𝑇ℎ > 𝑇𝑐) or a cold 

heat source (heating mode with 𝑇ℎ > 𝑇𝑐 = 𝑇𝑎). 

These discontinuities are somehow confusing and 

vanish in the proposed representation. However, the use of 

the reservoirs temperature ratio as ordinate axis sets a 

permanent reversible Carnot boundary limit, unlike the 

proposed representation that needs the slope of the Carnot 

boundary to be determined as a function of the reservoirs 

temperature.  

The proposed representation is close to the one 

introduced by Raveau in [9-11], where the bithermal systems 

are plotted on a graph defined with the orthonormal basis qh 

and qc. Although the work exchanged can be deduced on the 

bisector of the qh and qc axes, the w-axis is not normed. In 

contrast, the ternary diagram proposed in this study relies on 

the normed axes (qh, qc and w) that promote the introduction 

of polar coordinates for further graphical interpretation. As a 

consequence of the modified axes, the identified regions 

corresponding to the different operating modes are slightly 

altered. On the other hand, the energy conversion efficiency 

could be directly linked to the geometric angle introduced in 

the following. The interpretation of the different operating 

modes is thus improved, particularly for the two dissipative 

modes not thoroughly described.  

This paper thus aims to complement the above graphical 

representations for further understanding and easier 

graphical interpretation. 

 

4. System Efficiency 

To analyze the bithermal systems performance, this 

section discusses the system energy efficiencies, depending 

on the hot reservoir is whether used as a heat source (𝑞ℎ >
0) or a heat sink (𝑞ℎ < 0). 

 

4.1 Hot Heat Source 

With respect to the classical heat engine efficiency 

definition, the following expression is used when the hot 

reservoir is a heat source (𝑞ℎ > 0): 

𝜂𝑞ℎ+ =
−𝑤

𝑞ℎ
= 1 − 𝜃 −

𝜎𝑇𝑐

𝑞ℎ
 (6) 

Consequently, any bithermal system running in Region I 

(𝑤 < 0, 𝑞ℎ > 0, 𝑞𝑐 < 0) shows a positive and below-unity 

energy efficiency. The energy efficiency reaches unity for an 

ideal heat engine (Region VI/Region I interface) and 

decreases continuously to zero for passive thermal transfer 

(Region I/Region II interface). Then, systems running in 

Region II (𝑤 > 0, 𝑞ℎ > 0, 𝑞𝑐 < 0) show negative energy 

efficiency, as expected for this dissipative operating mode. It 

decreases from zero for passive thermal transfer (Region 

I/Region II interface) to negative infinity for low-

temperature thermal dissipation (Region II/Region III 

interface).  

For reversible operation, the Carnot efficiency (𝜎 = 0) of 

a system coupled to a hot heat source is given by: 

𝜂𝑞ℎ+
𝐶 = 1 −

𝑇𝑐

𝑇ℎ
= 1 − 𝜃 (7) 

so that 𝜂𝑞ℎ+ ≤ 𝜂𝑞ℎ+
𝐶. The additional term related to the 

entropy generation in Eq. (6) thus decreases the energy 

conversion efficiency as it expresses the deviation from 

reversible operation (
𝜎𝑇𝑐

𝑞ℎ
= −

𝑞𝑐

𝑞ℎ
−

𝑇𝑐

𝑇ℎ
). 

 

4.2 Hot Heat Sink 

Considering a system Σ𝐻𝑃operating in heat pump mode 

(𝑤𝐻𝑃 > 0, 𝑞ℎ
𝐻𝑃 < 0, 𝑞𝑐

𝐻𝑃 > 0), the energy flows 

exchanged with its surroundings can be counterbalanced by 

a complementary system Σ𝐻𝐸  operating in heat engine mode, 

so that: 𝑤𝐻𝐸 = −𝑤𝐻𝑃 < 0, 𝑞ℎ
𝐻𝐸 = −𝑞ℎ

𝐻𝑃 > 0 and 𝑞𝑐
𝐻𝐸 =

−𝑞𝑐
𝐻𝑃 < 0. These two complementary systems do not need 

external work and both heat reservoirs do not exchange any 

thermal energy. It therefore appears natural to define the 

energy efficiency of heat pump systems as the complement 

to unity to the heat engine energy efficiency. The energy 

conversion efficiency for a system coupled to a hot heat sink 

(𝑞ℎ < 0) could thus be written: 

𝜂𝑞ℎ− = 1 − 𝜂𝑞ℎ+ =
𝑞𝑐

−𝑞ℎ
= 𝜃 +

𝜎𝑇𝑐

𝑞ℎ
 (8) 

This coefficient could be interpreted as the energy 

efficiency of the system to extract heat from the cold source 

and transfer it to the hot heat sink. It remains positive and 

below unity in heat pump mode (Region IV: w > 0, qh < 0, 

qc > 0). It reaches unity for an ideal heat pump (Region 

VI/Region V interface) and decreases continuously to zero 

for high-temperature thermal dissipation (Region III/Region 

IV interface). Then, systems running in thermal dissipation  
 

 

Figure 4.a/ 3D plot of the energy efficiency of bithermal energy conversion systems. b/ 2D projection (Figure is in color in 

the on-line version of the paper). 
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mode (Region III: 𝑤 > 0, 𝑞ℎ < 0, 𝑞𝑐 < 0) have negative 

energy efficiency, decreasing from zero for high-temperature 

thermal dissipation (Region III/Region IV interface) to 

negative infinity for low-temperature thermal dissipation 

(Region II/Region III interface). 

For reversible operation, the Carnot efficiency (𝜎 = 0) of 

a system coupled to a hot heat sink is given by: 

𝜂𝑞ℎ−
𝐶 =

𝐶𝑂𝑃𝐶
𝑐

𝐶𝑂𝑃𝐶
ℎ

=
𝑇𝑐

𝑇ℎ
= 𝜃 (11) 

so that 𝜂𝑞ℎ− ≤ 𝜂𝑞ℎ−
𝐶 . Once again, the last term of Eq. (8) 

related to the entropy generation decreases the energy 

conversion efficiency (as 𝑞ℎ < 0) by meaning the deviation 

from reversible operation. 

 

4.3 Graphical Representation 

According to the above definitions, the energy 

efficiencies are plotted as a 3D plot on the ternary diagram 

proposed in Figure 4a. Projections in plane Ρ are shown in 

Figures 4b and 5 for easier interpretation. The energy 

efficiency definitions proposed leads to mirror symmetry 

whose axis of symmetry is perpendicular to axis qh. 

 

Figure 5. Schematic 2D plot of the energy efficiency of 

bithermal energy conversion systems in plane Ρ (Figure is in 

color in the on-line version of the paper). 

Among the above mentioned representations from 

literature, only the graphical illustration of Borel and Favrat 

[8] aims at the analysis of the energy conversion efficiency. 

Although this representation is close to the proposed 3D plot, 

they mainly differ from the energy efficiency definitions (in 

addition to the operating mode repartition discussed above). 

Indeed, the use of the conventional COP definitions in heat 

pump mode leads to energy efficiency values greater than 

unity. Furthermore, the energy efficiencies of the dissipative 

modes are not thoroughly discussed in [8] as they are just set 

to zero. With the unconventional energy efficiency 

definitions proposed herein, this coefficient remains 

bounded by unity in reversible operating modes and 

decreases continuously up to negative values in dissipative 

operating modes (Regions II and III). Hence, the above 

mentioned discontinuities vanish in the proposed 

representation. 

 

5. Graphical Interpretation Using Polar Coordinates 

Thanks to the normed axes, the system Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) 

operating condition can be easily described using polar 

coordinates, with the radial distance rM to the origin 

Μ°(0,0,0) and the angle α formed by the perpendicular to the 

axis qh and the point Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) of vertex Μ°(0,0,0), as 

introduced in Figure 6. 

 

Figure 6. Interpretation of bithermal thermodynamic 

systems using polar coordinates (Figure is in color in the on-

line version of the paper). 

5.1 Radius rM 

According to trigonometric analysis, the radius rM of a 

bithermal system Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) is given by: 

𝑟𝑀² = 𝑞ℎ² + (
𝑞𝑐−𝑤

√3
)

2
= 𝑞𝑐² + (

𝑤−𝑞ℎ

√3
)

2
= 𝑤² + (

𝑞ℎ−𝑞𝑐

√3
)

2
 

 (12) 

Whatever the operating mode considered, the specific energy 

flows can be distinguished with regards to their sign (i.e. inlet 

when positive and outlet when negative). The radius can thus 

be expressed in a general way as the quadratic sum of the 

inlet and outlet energy flows involved in the system: 

𝑟𝑀² = 𝑒𝑖𝑛² + 𝑒𝑜𝑢𝑡² (13) 

where 𝑒𝑖𝑛/𝑜𝑢𝑡 equals either the single energy flow involved 

in the direction considered or the energy flows difference 

divided by √3 when two energy flows are involved in the 

same direction. The √3 coefficient comes from the 2𝜋
3⁄  

angle between the energy axes. Therefore, the radius is 

linked to the energy intensity required for the bithermal 

system operation. The higher the radius is, the greater the 

energy amounts exchanged by the system.  

With respect to the second law of thermodynamics (Eq. 

(2)), the radius could also be written as a function of the hot 

heat flow, the reservoirs temperature ratio and the entropy 

generation: 

𝑟𝑀² =
4

3
𝑞ℎ² [1 − 𝜃 + 𝜃² −

𝑇𝑐𝜎

𝑞ℎ
(1 − 2𝜃 −

𝑇𝑐𝜎

𝑞ℎ
)] (14) 

As the irreversibilities influence the energy flows 

exchanged by the system, the corresponding radius could 

either increase or decrease depending on how the operating 

conditions evolve.  

For reversible Carnot operation (𝜎 = 0), the radius 

expression reduces to: 

𝑟𝑀
𝐶2

=
4

3
𝑞ℎ²(1 − 𝜃 + 𝜃²) (15) 
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5.2 Angle α 

Based on the angle α introduced above, classical 

trigonometric analysis leads to: 

sin 𝛼 =
𝑞ℎ

𝑟𝑀
 and cos 𝛼 =

𝑤−𝑞𝑐

√3𝑟𝑀
 (16) 

The operating mode of the system considered is thus 

directly deduced from the angle α: 

• 𝛼 ∈ [𝜋
3⁄ ; 2𝜋

3⁄ ] - Region I - Heat engine mode  

• 𝛼 ∈ [0; 𝜋
3⁄ ] - Region II - Forced heat transfer mode 

• 𝛼 ∈ [− 𝜋
3⁄ ; 0] - Region III - Thermal dissipation mode  

• 𝛼 ∈ [− 2𝜋
3⁄ ; − 𝜋

3⁄ ] - Region IV - Heat pump mode 

Furthermore, analytical development leads to the 

following expression: 

tan|𝛼| =
√3

1−2𝜂𝑖
 (17) 

With 𝜂𝑖 = 𝜂𝑞ℎ+ for 𝛼 ∈ [0; 2𝜋
3⁄ ] and 𝜂𝑖 = 𝜂𝑞ℎ− for 𝛼 ∈

[− 2𝜋
3⁄ ; 0]. 

This expression shows that the angle α only depends on 

the system energy efficiency (𝜂𝑞ℎ+ or 𝜂𝑞ℎ−) and highlights 

the mirror symmetry mentioned previously. It also expresses 

as a function of the specific entropy generation σ and the 

reservoirs temperature ratio θ as: 

tan 𝛼 =
√3

2𝜃−1+2
𝜎𝑇𝑐
𝑞ℎ

 (18) 

For Carnot systems (𝜎 = 0), the maximum angle 𝛼𝐶  is 

given by: 

tan 𝛼𝐶 =
√3

2𝜃−1
  (19) 

with 𝛼𝑞ℎ+
𝐶 ∈ [𝜋

3⁄ ; 2𝜋
3⁄ ] and 𝛼𝑞ℎ−

𝐶 ∈ [− 2𝜋
3⁄ ; − 𝜋

3⁄ ].  

This result confirms that the Carnot Boundary limit is 

represented as a line whose slope is set by the reservoirs 

temperature ratio (with 𝛼𝑞ℎ+
𝐶 = 𝛼𝑞ℎ−

𝐶 + 𝜋). As a 

consequence, any real bithermal system must verify the 

following condition: |𝛼| ≤ |𝛼𝐶| and the entropy generation 

is directly linked to difference between the angles 𝛼 and 𝛼𝐶 , 

as: 

𝜎𝑇𝑐

𝑞ℎ
=

√3

2
(

1

tan𝛼
−

1

tan 𝛼𝐶) (20) 

This result is consistent with the T-Q graphic method [6] 

where the entropy generation is linked to the cotangent of the 

deviation between the heat involved in non-reversible 

operation and the line of minimum-Q (related to reversible 

operation).  

As a conclusion, any bithermal system Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) can 

be interpreted graphically with the specific energy flow 

intensity related to the distance 𝑟𝑀 from the origin Μ°(0,0,0) 

and its performance linked to the angle 𝛼 only and bounded 

by 𝛼𝐶 . Thanks to the normed ternary diagram introduced in 

this paper, the graphical interpretation of bithermal systems 

is thus eased as it allows a direct visual comparison of the 

operating conditions of bithermal systems with the 

introduction of polar coordinates. This finding represents the 

main innovation compared to the representation of Raveau 

[9-11], as it allow a more intuitive graphical interpretation of 

bithermal systems operation. 

 

6. Illustrative Examples 

In order to illustrate the use of the proposed 

representation, bithermal systems operation of some 

exoreversible thermodynamics cycles (Carnot, Stirling, 

Erricson) using air perfect gas as working fluid are plotted in 

the proposed ternary diagram. Endoreversible (exo-

irreversible) bithermal systems operation in heat engine 

mode is also plotted on the graphical representation proposed 

in order to rediscover graphically the heat engine efficiency 

at maximum power revealed at the same time by Chambadal 

[14], Novikov [15] and Curzon-Ahlborn [16]. 

 

6.1 Exoreversible Cycles 

This section is dedicated to plot the operation of the 

Carnot, Stirling and Erricson (exoreversible) cycles for 

Laplace perfect gas on the proposed ternary diagram. The 

thermodynamic cycles considered are depicted in Figure 7 in 

a T-s diagram. 

  

Figure 7. Carnot, Stirling and Erricson thermodynamic 

cycles plotted in T-s diagram (Figure is in color in the on-

line version of the paper). 

Following the Laplace theory, the specific heat capacities 

at constant pressure and constant volume of perfect gases 

express as follows: 

𝑐𝑃 = 𝑟
𝛾

𝛾−1
 and 𝑐𝑉 =

𝑟

𝛾−1
 (21) 

Where 𝑟 = 𝑅
𝑀⁄  is the specific gas constant and 𝛾 = 𝑐𝑃

𝑐𝑉
⁄  

is the isentropic expansion factor. 

The energy balances over the cycles considered can be 

written as a function of the volume ratio 𝑉∗ =
𝑉𝑞ℎ

𝑖

𝑉𝑞ℎ

𝑓⁄ , 

defined as the ratio of the volumes at the initial and final 

states of the isothermal transformation at Th (highlighted 

with a triple line in Figure 7). The volume ratio 𝑉∗ is thus 

defined positive but could either be higher than unity in case 

of compression (𝑤 > 0, anti-clockwise cycle) or less than 

unity in case of expansion (𝑤 < 0, clockwise cycle).  

According to the abundant literature on classical 

thermodynamics cycles [6-10], the specific energy balances 

over the cycles considered writes: 
 

• Carnot cycle (two isothermal and two isentropic 

transformations) 
 

𝑞ℎ
𝐶 = −𝑟𝑇ℎ ln(𝑉∗) 

𝑞𝑐
𝐶 = 𝑟𝑇𝑐ln (𝑉∗) (22) 

𝑤𝐶 = 𝑟(𝑇ℎ − 𝑇𝑐) ln(𝑉∗)
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• Stirling cycle without regenerator (two isothermal and 

two isovolume transformations) 

Stirling cycle with perfect regenerator is strictly 

equivalent to a Carnot cycle [6-10]. Hence, Stirling 

cycle without regenerator is considered here. In this 

case, the specific energy balances over the cycle writes: 

 

𝑞ℎ
𝑆 = 𝑐𝑣(𝑇ℎ − 𝑇𝑐) − 𝑟𝑇ℎ ln(𝑉∗) 

𝑞𝑐
𝑆 = −𝑐𝑣(𝑇ℎ − 𝑇𝑐) + 𝑟𝑇𝑐ln (𝑉∗) (23) 

𝑤𝑆 = 𝑟(𝑇ℎ − 𝑇𝑐)ln (𝑉∗) 

 

• Ericsson cycle (two isothermal and two isobaric 

transformations) 

 

𝑞ℎ
𝐸 = 𝑐𝑝(𝑇ℎ − 𝑇𝑐) − 𝑟𝑇ℎ𝑙𝑛 (𝑉∗) 

𝑞𝑐
𝐸 = −𝑐𝑝(𝑇ℎ − 𝑇𝑐) + 𝑟𝑇𝑐ln (𝑉∗) (24) 

𝑤𝐸 = 𝑟(𝑇ℎ − 𝑇𝑐)ln (𝑉∗) 

 

The operating conditions of the considered 

thermodynamics cycles are plotted in the proposed ternary 

diagram with the volume ratio 𝑉∗ as parameter (Figure 8 for 

𝜃 = 1
3⁄ ). The different operating modes previously 

described are reached by each of the thermodynamic cycles 

considered depending on the volume ratio 𝑉∗. Obviously, 

any other bithermal thermodynamic cycles could also be 

plotted similarly in the proposed ternary diagram. The author 

restricts the analysis to the mentioned thermodynamic cycles 

only for sake of brevity.  

 

Figure 8. Operating conditions of bithermal thermodynamic 

systems for air perfect gas (𝛾 = 1.4 and 𝑟 =

286.7 𝐽. 𝑘𝑔−1. 𝐾−1) with 𝜃 = 1
3⁄  -  Carnot cycle: dotted 

black; Stirling cycle: green; Ericsson cycle: magenta 

(Figure is in color in the on-line version of the paper). 

In agreement with the Carnot boundary defined in section 

3.4, the Carnot cycle operation results in a straight line of 

angle 𝛼𝐶 = 1.761 𝑟𝑎𝑑 for 𝜃 = 1
3⁄ . Accordingly, the 

operation of the other irreversible thermodynamic cycles is 

restricted to the top half-plane.  

For 𝑉∗ = 1, no work is exchanged with the system (𝑤 =
0, see Eqs. (22)-(24)).  The corresponding bithermal cycle 

operations are thus plotted on the line perpendicular to the 

axis w (w=0-axis). For the Carnot cycle, this particular 

operating condition corresponds to the origin 𝛭°(0,0,0) as 

no heat is exchanged with the system (thermodynamic 

equilibrium). However, when considering the Stirling and 

Erricson cycles, the heat exchanged during the isovolume 

and isobaric transformations respectively results in passive 

heat transfer (𝑞ℎ = −𝑞𝑐, Region I/Region II interface). 

The heat engine mode (Region I) is reached for 𝑉∗ < 1 

for all the thermodynamic cycles considered. Under this 

condition, the cycle is operated clockwise resulting in 

generator operation, 𝑤 < 0.  

Inversely, for 𝑉∗ > 1, bithermal cycles operate anti-

clockwise as receptor, 𝑤 > 0 (forced heat transfer, thermal 

dissipation or heat pump modes: Regions II, III and IV) 

depending on the volume ratio 𝑉∗. Low volume ratio 

(𝑒𝑥𝑝[− 𝐶
𝑟⁄  (1 − 𝜃)] > 𝑉∗ > 1) implies the Stirling and 

Erricson cycles to operate in forced heat transfer mode 

(Region II), as passive heat transfer (from the hot reservoir 

to the cold one) during the isovolume or isobaric 

transformations respectively predominate (𝑞ℎ > 0 and 𝑞𝑐 <
0).  Thermal dissipation mode (Region III) is reached for 

𝑒𝑥𝑝[− 𝐶
𝑟⁄ . (1

𝜃⁄ − 1)] > 𝑉∗ > 𝑒𝑥𝑝[− 𝐶
𝑟⁄  . (1 − 𝜃)], 

when passive heat transfer is compensated by the isothermal 

transformation with the hot reservoir (𝑞ℎ < 0). Finally, 

higher volume ratio (𝑉∗ > 𝑒𝑥𝑝[− 𝐶
𝑟⁄ . (1

𝜃⁄ − 1)]) is 

needed to operate the Stirling and Erricson cycles in heat 

pump mode (Region IV) to struggle the passive heat transfer 

during the isothermal transformation with the cold reservoir 

(𝑞𝑐 > 0). 

As shown by Eqs. (22)-(24), the specific work over the 

Carnot, Stirling and Erricson cycles are identical, whereas 

the isovolume or isobaric transformations of the Stirling and 

Erricson cycles respectively results in an additional term for 

the hot and cold heat flows compared to the Carnot cycle. 

Consequently, Stirling and Erricson cycles operation are 

parallel to the Carnot cycle operation and the parametric 

curves are shifted along the w=0-axis because of this 

complementary term relative to passive heat transfer. Near 

reversible operation (𝛼 → 𝛼𝐶) could only be reached for 

𝑉∗ → 0 (heat engine mode) or 𝑉∗ → +∞ (heat pump mode), 

when passive heat transfer becomes negligible. 

 

6.2 Endoreversible Heat Engine Systems 

 

Figure 9. Endoreversible bithermal system (Figure is in 

color in the on-line version of the paper). 

Let us now consider an endoreversible (exo-irreversible) 

bithermal system, as presented in Figure 9. The system 

follows the Carnot cycle operation with the intermediary 

temperatures Tc
i and 𝑇ℎ

𝑖, which are linked to the reservoirs 
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temperature 𝑇𝑐 and 𝑇ℎ via the specific thermal conductances 

𝑢𝑐 and 𝑢ℎ such as: 

 

𝑞ℎ = 𝑞ℎ
𝐶 = 𝑢ℎ(𝑇ℎ − 𝑇ℎ

𝑖) (25) 

𝑞𝑐 = 𝑞𝑐
𝐶 = 𝑢𝑐(𝑇𝑐 − 𝑇𝑐

𝑖) 

 

Similarly to previously, the operating conditions of the 

endoreversible bithermal systems are plotted with the 

volume ratio 𝑉∗ as parameter for different conductance 

values (with 𝑢ℎ = 𝑢𝑐) in Figure 10. 

 

Figure 10. Endoreversible heat engine systems operation for 

air perfect gas (𝛾 = 1.4 and 𝑟 = 286.7 𝐽. 𝑘𝑔−1. 𝐾−1) for 

𝜃 = 1
3⁄ , for 𝑢ℎ = 𝑢𝑐 = 2.5 10−4 𝐽. 𝑘𝑔−1. 𝐾−1 - blue; 𝑢ℎ =

𝑢𝑐 = 5 10−4 𝐽. 𝑘𝑔−1. 𝐾−1 - red; 𝑢ℎ = 𝑢𝑐 =
1 10−3 𝐽. 𝑘𝑔−1. 𝐾−1 - green (Figure is in color in the on-line 

version of the paper). 

For each conductance value, the maximum work reachable 

(in absolute value) by the system in heat engine mode is 

highlighted with a large arrow. Independently of the 

conductance values, the energy efficiency at maximum work 

in heat engine mode is given by [14-16]: 

𝜂𝑞ℎ+
𝑁 = 1 − √𝜃 (26) 

And the corresponding maximum work is: 

𝑀𝑎𝑥|𝑊<0| = 𝑢ℎ𝑇ℎ
(1−√𝜃)

2

1+
𝑢ℎ

𝑢𝑐
⁄

 (27) 

These results are rediscovered graphically in Figure 10, as 

the operation conditions of maximum work are aligned on 

the dotted line of constant angle 𝛼𝑁 defined by: 

𝑡𝑎𝑛 𝛼𝑁 =
√3

1−2𝜂𝑞ℎ+
𝑁 =

√3

2√𝜃−1
 (28) 

In the example plotted in Figure 10 for 𝜃 = 1
3⁄ , the 

efficiency at maximum work is 𝜂𝑞ℎ+
𝑁 = 0.423 and the 

corresponding angle 𝛼𝑁 is 1.482 rad. The corresponding 

maximum specific work (in absolute value) are 2.14 105, 

1.07 105 and 5.36 104 J.kg-1 for the specific conductances 

equal to 103, 2 103 and 4 103 J.kg-1.K-1, respectively. 

 

7. Conclusions 

This paper introduces an original and synthetic 

representation of bithermal thermodynamic system operation 

on a ternary diagram (𝑞ℎ , 𝑞𝑐 , 𝑤). With respect to the energy 

flow directions, six different sectors (sextants) are identified 

and qualified: in addition to the two potentially reversible 

modes (heat engine and heat pump modes), two dissipative 

modes (forced heat transfer and thermal dissipation modes) 

are detailed. The two last sectors correspond to impossible 

operating modes, in accordance with the second law of 

thermodynamics. The qualification of the operating mode 

interfaces illustrates the physical continuity of the proposed 

representation.  

Discussion on the energy efficiency definitions leads to 

the introduction of an unconventional definition when the 

hot reservoir operates as a sink (𝑞ℎ < 0). This convenient 

definition results from the complementarity of systems 

operating in heat engine and heat pump modes. Accordingly, 

the energy efficiencies are kept positive and below unity for 

both reversible modes (heat engine and heat pump modes) 

and negative for both dissipative modes (thermal dissipation 

and forced heat transfer), leading to a mirror symmetry. 

Following, the system operation is interpreted using polar 

coordinates. The energy intensity involved in the system 

(related to the specific energy flows) is linked to the distance 

𝑟𝑀 of the system point Μ(𝑞ℎ , 𝑞𝑐 , 𝑤) to the origin 𝛭°(0,0,0) 

and its energy efficiency only depends on the angle 𝛼 defined 

in section 5. Reversible operation consideration leads to the 

introduction of the Carnot boundary that restricts the 

operation of any bithermal system to the top half-plane 

bounded by the corresponding maximum angle 𝛼𝐶  (function 

of the reservoirs temperature). 

Finally, the use of the proposed representation is 

illustrated with two simple cases: (i) exoreversible 

thermodynamic cycles (Carnot, Stirling, Ericcson) are 

plotted in the ternary diagram with the compression volume 

ratio of the isothermal transformation at Th as parameter, that 

allows comparing the operating conditions of these cycles 

within the different operating modes; (ii) endoreversible 

(exo-irreversible) cycles are plotted to rediscover graphically 

the energy efficiency of Chambadal, Novikov and Curzon-

Ahlborn at maximum work in heat engine mode (𝜂𝑁 = 1 −

√𝜃), as the corresponding operating points are aligned on a 

line of constant angle 𝛼𝑁. 

This original graphical representation may be highly 

advantageous for educational as well as research purposes, 

as it would help to compare and design bithermal systems 

with regards to the energies involved and its corresponding 

efficiency. Furthermore, the ternary diagram introduced 

herein could be generalized by analogy to thermochemical 

systems exchanging (thermal, potential, chemical or 

electrical…) energies with two reservoirs, one at low 

thermodynamic potential 𝜇− and the other at high 

thermodynamic potential 𝜇+. 
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Nomenclature 

𝑐𝑃  Specific heat capacity at constant pressure, J ∙ kg−1 ∙ K−1 

cV Specific heat capacity at constant volume, J ∙ kg−1 ∙ K−1 
COP Coefficient of performance, - 

M Molar mass, kg ∙ mol−1 

q Specific heat energy,  J ∙ kg−1
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rM Radius, J ∙ kg−1 

r Specific gas constant, J ∙ kg−1 ∙ K−1 

R Perfect gas constant, J ∙ mol−1 ∙ K−1 

T Temperature, K 

u Specific Thermal conductance, J ∙ kg−1 ∙ K−1 

V* Volume ratio, - 

w Specific work, J ∙ kg−1 

 

Greek symbols 

α Angle, rad 

∆T Temperature difference, K 

γ Isentropic expansion factor, - 

θ Reservoirs temperature ratio, - 

 Energy efficiency, - 

σ Specific entropy generation, J ∙ kg−1 ∙ K−1  

 

Superscripts and subscripts 
C Carnot cycle 

c Cold reservoir 
E

 Erricson cycle 

h Hot reservoir 

m Equivalent monothermal system 
N

 Novikov (/Chambadal/Curzon-Ahlborn) system 

qc+
 Hot heat source 

qc-
 Hot heat sink 

S Stirling cycle 
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	1. Introduction
	Heat energy conversion into work energy (and inversely) is of high interest in engineering because it serves widely used applications (heat engines, heating and cooling devices…). In response to this challenge, the science of thermodynamics emerged in...
	In order to ease the description and the interpretation of bithermal systems, several graphical tools have been suggested. Thermodynamic cycles are classically represented on 2D phase diagrams that plot the equilibrium states of the working fluid invo...
	On the other hand, more systemic representation has been proposed by means of the energy flows exchanged over a cycle by bithermal systems, thus focusing on their operating mode and efficiency. Through the literature, the following three main represen...
	Another interesting graphical representation was proposed by Borel and Favrat in [8]. The authors suggested plotting bithermal systems on a graph with the reservoirs temperature ratio and the work-heat energy ratio as orthogonal axes. The energy and e...
	The last notable graphical representation was proposed by Raveau [9-11] where bithermal system operation is plotted with the hot and cold heat flows (Qh and Qc) as orthogonal axes. Alefeld and Radermarcher generalized this graphical approach to multi-...
	The first sections are dedicated to introduce the proposed representation of bithermal systems operation in a ternary diagram with a particular attention to highlight the differences with the previous studies. System energy conversion efficiency is di...
	2. Bithermal Systems
	2.1 Definitions and Convention
	Let us consider a bithermal system, as presented in Figure 1, exchanging heat energies with two heat reservoirs at different temperatures. Since a temperature difference is needed to convert heat into work, the reservoirs can be distinguished with res...
	In order to keep the proposed description consistent, heat and work energy flows are counted algebraically according to the conventional approach in mechanics, i.e., positive when entering the system and negative when leaving the system (see Figure 1)...
	2.2 First Law of Thermodynamics
	The second law of thermodynamics applied to a unit of mass involved in bithermal systems operating in cycles or steady state writes:
	The second law of thermodynamics thus reduces the operating conditions reachable by bithermal systems, as it implies some impossible transformations (𝜎<0). Consequently, the realistic operating conditions of bithermal systems only cover a part of the...
	3. Graphical Representation
	3.1 Introduction to Ternary Diagram
	As shown in Figure 3, six different regions (sextants) can be distinguished on plane Ρ, depending on the sign of the energy flows qh, qc and w. To each region corresponds a different operating mode, as detailed in the following. The region numbering i...
	 Region I: Heat engine  𝑤<0, ,𝑞-ℎ.>0, ,𝑞-𝑐.<0
	This mode is highly advantageous for scientists because it is the only mode in which the system works as a generator (𝑤<0). In this mode the system produces work from heat transfer from the high-temperature heat source to the low-temperature heat sin...
	 Region II: Forced heat transfer 𝑤>0, ,𝑞-ℎ.>0, ,𝑞-𝑐.<0
	When operating in this mode, the system uses the work received to intensify the heat transfer from the hot heat source to the cold heat sink. This mode is currently used in heat exchangers in forced convection: heat transfer is increased thanks to the...
	 Region III: Thermal dissipation  𝑤>0, ,𝑞-ℎ.<0, ,𝑞-𝑐.<0
	In this operating mode, the system converts the work energy received into thermal energy to the hot and the cold heat sinks. No heat source is connected to the system. The work exergy transferred to the system is fully dissipated as low and high therm...
	If the hot and cold heat sinks are thermally connected, bithermal systems operating in this mode could be assimilated to monothermal systems exchanging heat qm with a reservoir at mean temperature Tm, so that:
	Given that the heat energy flows exchanged qh, qc, and qm are all negative, the equivalent mean temperature is bounded by the hot and cold heat sink temperatures: ,𝑇-ℎ.≥,𝑇-𝑚.≥,𝑇-𝑐..
	 Region IV: Heat pump  w>0, ,q-h.<0, ,q-c.>0
	In this mode, the system runs as a receptor to transfer heat from the low-temperature heat source to the hot heat sink thanks to the work received. In terms of exergy, work exergy is used to transfer thermal exergy from a low thermal level to a higher...
	 Region V: Impossible  w<0, ,q-h.<0, ,q-c.>0
	According to the second law (Eq. (2)), this region is not attainable because the reservoirs temperature are distinct and positive (,𝑇-ℎ.≥,𝑇-𝑐.≥0). Indeed, heat cannot spontaneously flow from the cold heat source to the hot heat sink without externa...
	 Region VI: Impossible  𝑤<0, ,𝑞-ℎ.>0, ,𝑞-𝑐.>0
	Once again, this region is not attainable according to the second law (Eq. (2)), since the reservoirs temperature are positive (,𝑇-ℎ.≥,𝑇-𝑐.≥0). Indeed, a cold heat sink is needed to convert heat energy from a hot heat source into work energy.
	Note that, in accordance with Eq. (1), no region corresponds to the following operating conditions (not included in plane Ρ):
	 𝑤>0, ,𝑞-ℎ.>0, ,𝑞-𝑐.>0
	  𝑤<0, ,𝑞-ℎ.<0, ,𝑞-𝑐.<0
	The continuity between the different operating modes of the proposed representation appears naturally in Figure 3. Operating mode interfaces are therefore qualified as follows:
	 Region VI/Region I interface: This condition is reached when ,𝑞-𝑐.=0 and 𝑤=−,𝑞-ℎ., meaning that the thermal energy supplied by the hot heat source is fully converted into work energy. By passage to the limit, this operating condition can only be...
	 Region I/Region II interface: This interface is reached when 𝑤=0, meaning ,𝑞-ℎ.=−,𝑞-𝑐.,. This operating condition is interpreted as passive heat transfer (conduction, radiation and free convection).
	 Region II/Region III interface: On this interface, ,𝑞-ℎ.=0, leading to 𝑤=−,𝑞-𝑐.. The work energy is fully transferred as thermal energy to the cold heat sink. This operating condition corresponds to low-temperature thermal dissipation.
	 Region III/Region IV interface: In this case, ,𝑞-𝑐.=0 and 𝑤=−,𝑞-ℎ.. The work energy supplied to the system is thus fully dissipated to the hot heat sink, resulting in high-temperature thermal dissipation.
	 Region IV/Region V interface: As for the Region I/Region II interface, this can be interpreted as passive heat transfer (𝑤=0 and ,𝑞-ℎ.=−,𝑞-𝑐.,). By passage to the limit, it can also be understood as an ideal2 heat pump as the work supplied is nu...
	At the origin Μ  (,𝑞-ℎ.=,𝑞-𝑐.=𝑤=0), no energy flows through the system: the system is in thermodynamic equilibrium.
	3.4 Reversible Carnot Boundary
	Note that the graphical representation proposed in the above sections is kept valid regardless the reservoirs temperature. However, the second law of thermodynamics (Eq. (2)) restricts more the realistic operating conditions reachable by the bithermal...
	Hence, depending on the hot reservoir is a hot heat source or a hot heat sink, the thermal energy ratio exchanged by the system is bounded by the reservoirs temperature ratio 𝜃=,,𝑇-𝑐.-,𝑇-ℎ..:
	 Hot heat source (,𝑞-ℎ.>0): ,,𝑞-𝑐.-,𝑞-ℎ..≤−𝜃
	 Hot heat sink (,𝑞-ℎ.<0): ,,𝑞-𝑐.-,𝑞-ℎ..≥−𝜃
	In the case of a reversible Carnot system (𝜎=0), the above inequalities turns into the following equality, defining the Carnot boundary:
	with 0≤𝜃≤1.
	Graphically, the Carnot boundary results in a straight line passing through the origin Μ ,0,0,0. whose slope is a function of the reservoirs temperature ratio θ (see Figure 3). The slope is expressed in the following as a function of the angle α intro...
	Since the reservoirs temperature are defined positive (,𝑇-ℎ.≥,𝑇-𝑐.≥0, i.e. 0≤𝜃≤1), the Carnot boundary only plots in reversible modes (Regions I and IV), where −1≤,,𝑞-𝑐.-,𝑞-ℎ..≤0. As Regions II and III are related to dissipative operating modes...
	3.5 Comparison to Graphical Representations of the Literature
	Based on reversible cycle considerations, the wedge of minimum heat exchanged in heat engine and heat pump modes (potentially reversible operating modes) can be plotted as a function of the reservoir temperatures in a Q-T diagram [6]. The correspondin...
	Otherwise, the different operating modes of bithermal systems (i.e. heat engine mode, heating and cooling heat pump modes, dissipative modes and impossible operating modes) are highlighted in the adimensional representation suggested by Borel and Favr...
	 The single heat engine operating mode (Region I) is distributed in two distinct and non-adjacent regions, depending on the reservoirs temperature (,𝑇-𝑎.=,𝑇-ℎ.>,𝑇-𝑐. or ,𝑇-ℎ.>,𝑇-𝑐.=,𝑇-𝑎.).
	 Similarly, the single heat pump mode (heating and cooling) is divided into two distinct but adjacent regions. Heating and cooling modes are distinguished with respect to the ambient temperature that could either play the role of a hot heat sink (coo...
	These discontinuities are somehow confusing and vanish in the proposed representation. However, the use of the reservoirs temperature ratio as ordinate axis sets a permanent reversible Carnot boundary limit, unlike the proposed representation that nee...
	The proposed representation is close to the one introduced by Raveau in [9-11], where the bithermal systems are plotted on a graph defined with the orthonormal basis qh and qc. Although the work exchanged can be deduced on the bisector of the qh and q...
	This paper thus aims to complement the above graphical representations for further understanding and easier graphical interpretation.
	4. System Efficiency
	To analyze the bithermal systems performance, this section discusses the system energy efficiencies, depending on the hot reservoir is whether used as a heat source (,𝑞-ℎ.>0) or a heat sink (,𝑞-ℎ.<0).
	4.1 Hot Heat Source
	With respect to the classical heat engine efficiency definition, the following expression is used when the hot reservoir is a heat source (,𝑞-ℎ.>0):
	Consequently, any bithermal system running in Region I (𝑤<0, ,𝑞-ℎ.>0, ,𝑞-𝑐.<0) shows a positive and below-unity energy efficiency. The energy efficiency reaches unity for an ideal heat engine (Region VI/Region I interface) and decreases continuous...
	For reversible operation, the Carnot efficiency (𝜎=0) of a system coupled to a hot heat source is given by:
	so that ,𝜂-,𝑞-ℎ.+.≤,,𝜂-,𝑞-ℎ.+.-𝐶.. The additional term related to the entropy generation in Eq. (6) thus decreases the energy conversion efficiency as it expresses the deviation from reversible operation ,,𝜎,𝑇-𝑐.-,𝑞-ℎ..=−,,𝑞-𝑐.-,𝑞-ℎ..−,,𝑇...
	4.2 Hot Heat Sink
	Considering a system ,Σ-𝐻𝑃.operating in heat pump mode (,𝑤-𝐻𝑃.>0, ,,𝑞-ℎ.-𝐻𝑃.<0, ,,𝑞-𝑐.-𝐻𝑃.>0), the energy flows exchanged with its surroundings can be counterbalanced by a complementary system ,Σ-𝐻𝐸. operating in heat engine mode, so tha...
	This coefficient could be interpreted as the energy efficiency of the system to extract heat from the cold source and transfer it to the hot heat sink. It remains positive and below unity in heat pump mode (Region IV: w>0, ,q-h.<0, ,q-c.>0). It reache...
	mode (Region III: 𝑤>0, ,𝑞-ℎ.<0, ,𝑞-𝑐.<0) have negative energy efficiency, decreasing from zero for high-temperature thermal dissipation (Region III/Region IV interface) to negative infinity for low-temperature thermal dissipation (Region II/Region...
	For reversible operation, the Carnot efficiency (𝜎=0) of a system coupled to a hot heat sink is given by:
	so that ,𝜂-,𝑞-ℎ.−.≤,,𝜂-,𝑞-ℎ.−.-𝐶.. Once again, the last term of Eq. (8) related to the entropy generation decreases the energy conversion efficiency (as ,𝑞-ℎ.<0) by meaning the deviation from reversible operation.
	4.3 Graphical Representation
	According to the above definitions, the energy efficiencies are plotted as a 3D plot on the ternary diagram proposed in Figure 4a. Projections in plane Ρ are shown in Figures 4b and 5 for easier interpretation. The energy efficiency definitions propos...
	Among the above mentioned representations from literature, only the graphical illustration of Borel and Favrat [8] aims at the analysis of the energy conversion efficiency. Although this representation is close to the proposed 3D plot, they mainly dif...
	5. Graphical Interpretation Using Polar Coordinates
	Thanks to the normed axes, the system Μ,,𝑞-ℎ.,,𝑞-𝑐.,𝑤. operating condition can be easily described using polar coordinates, with the radial distance rM to the origin Μ ,0,0,0. and the angle α formed by the perpendicular to the axis qh and the poin...
	5.1 Radius rM
	According to trigonometric analysis, the radius rM of a bithermal system Μ,,𝑞-ℎ.,,𝑞-𝑐.,𝑤. is given by:
	Whatever the operating mode considered, the specific energy flows can be distinguished with regards to their sign (i.e. inlet when positive and outlet when negative). The radius can thus be expressed in a general way as the quadratic sum of the inlet ...
	where ,𝑒-𝑖𝑛/𝑜𝑢𝑡. equals either the single energy flow involved in the direction considered or the energy flows difference divided by ,3. when two energy flows are involved in the same direction. The ,3. coefficient comes from the ,2𝜋-3. angle b...
	With respect to the second law of thermodynamics (Eq. (2)), the radius could also be written as a function of the hot heat flow, the reservoirs temperature ratio and the entropy generation:
	As the irreversibilities influence the energy flows exchanged by the system, the corresponding radius could either increase or decrease depending on how the operating conditions evolve.
	For reversible Carnot operation (𝜎=0), the radius expression reduces to:
	5.2 Angle α
	Based on the angle α introduced above, classical trigonometric analysis leads to:
	The operating mode of the system considered is thus directly deduced from the angle α:
	 𝛼∈,,𝜋-3.;,2𝜋-3.. - Region I - Heat engine mode
	 𝛼∈,0;,𝜋-3.. - Region II - Forced heat transfer mode
	 𝛼∈,−,𝜋-3.;0. - Region III - Thermal dissipation mode
	 𝛼∈,−,2𝜋-3.;−,𝜋-3.. - Region IV - Heat pump mode
	Furthermore, analytical development leads to the following expression:
	This expression shows that the angle α only depends on the system energy efficiency (,𝜂-,𝑞-ℎ.+. or ,𝜂-,𝑞-ℎ.−.) and highlights the mirror symmetry mentioned previously. It also expresses as a function of the specific entropy generation σ and the re...
	6. Illustrative Examples
	In order to illustrate the use of the proposed representation, bithermal systems operation of some exoreversible thermodynamics cycles (Carnot, Stirling, Erricson) using air perfect gas as working fluid are plotted in the proposed ternary diagram. End...
	6.1 Exoreversible Cycles
	This section is dedicated to plot the operation of the Carnot, Stirling and Erricson (exoreversible) cycles for Laplace perfect gas on the proposed ternary diagram. The thermodynamic cycles considered are depicted in Figure 7 in a T-s diagram.
	The operating conditions of the considered thermodynamics cycles are plotted in the proposed ternary diagram with the volume ratio ,𝑉-∗. as parameter (Figure 8 for 𝜃=,1-3.). The different operating modes previously described are reached by each of t...
	In agreement with the Carnot boundary defined in section 3.4, the Carnot cycle operation results in a straight line of angle ,𝛼-𝐶.=1.761 𝑟𝑎𝑑 for 𝜃=,1-3.. Accordingly, the operation of the other irreversible thermodynamic cycles is restricted to ...
	For ,𝑉-∗.=1, no work is exchanged with the system (𝑤=0, see Eqs. (22)-(24)).  The corresponding bithermal cycle operations are thus plotted on the line perpendicular to the axis w (w=0-axis). For the Carnot cycle, this particular operating condition...
	The heat engine mode (Region I) is reached for ,𝑉-∗.<1 for all the thermodynamic cycles considered. Under this condition, the cycle is operated clockwise resulting in generator operation, 𝑤<0.
	Inversely, for ,𝑉-∗.>1, bithermal cycles operate anti-clockwise as receptor, 𝑤>0 (forced heat transfer, thermal dissipation or heat pump modes: Regions II, III and IV) depending on the volume ratio ,𝑉-∗.. Low volume ratio (𝑒𝑥𝑝,−,𝐶-𝑟.,1−𝜃..>,...
	As shown by Eqs. (22)-(24), the specific work over the Carnot, Stirling and Erricson cycles are identical, whereas the isovolume or isobaric transformations of the Stirling and Erricson cycles respectively results in an additional term for the hot and...
	Let us now consider an endoreversible (exo-irreversible) bithermal system, as presented in Figure 9. The system follows the Carnot cycle operation with the intermediary temperatures ,,T-c.-i. and ,,𝑇-ℎ.-𝑖., which are linked to the reservoirs tempera...
	Similarly to previously, the operating conditions of the endoreversible bithermal systems are plotted with the volume ratio ,𝑉-∗. as parameter for different conductance values (with ,𝑢-ℎ.=,𝑢-𝑐.) in Figure 10.
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