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Abstract 

 

The predictive error in vapor pressure of limited-data Wagner constants relative to that of entire-curve constants is 

studied for eleven data intervals.  Good precision is assumed for data inputs, four digits in the mantissa of Ln Pv,r and 

five digits for Tr.  An algebraic solution for the fully-determined case based on only four data points is used to estimate 

Wagner constants.  Seventy-two species are used to assess the impact of the location of the two interior points and 

the location and width of the limited-data interval upon the error in predicted Pv,r due to data imprecision.  Hydrogen, 

helium, R152a, and water are used to assess error due to Wagner imperfection and compare predictive capability of 

the algebraic fully-determined and regressed over-determined approaches.  The results indicate that limited VLE data 

of good precision from reduced temperature intervals with a width ≥ 0.1 and a lower bound ≤ 0.6 can generally 

provide reasonable VLE predictions over the entire two-phase curve for pure substances, with average error of 

approximately 1%.  It is shown that the algebraic, fully-determined solution presented is a viable tool for investigating 

the extensibility of limited-data Wagner constants. 
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1. Introduction 

Much vapor-liquid equilibrium (VLE) data needs in 

industry are for multi-component solutions, and accurate 

characterization of the pure species are required before a 

reliable VLE model of the multi-component solution can be 

expected.  The broad intent of our ongoing research is to 

provide the practitioner with a qualitative and quantitative 

assessment of using limited VLE data, either experimental or 

analytic from a regressed correlation, to predict VLE for a 

pure substance over the entire two-phase curve. 

The Wagner equation has been shown to be successful at 

accurately representing phase equilibrium along the entire 

co-existence curve for many substances [1]–[5].  It is 

generally not considered to be predictive because the 

constants are not known apriori; being unique for each 

substance, the four constants are determined by data 

regression.  Our work explores the ability of the Wagner 

equation to become predictive for the entire two-phase 

region by estimating the constants from limited VLE data. 

Since Wagner [6] developed his original vapor pressure 

equation with species-dependent constants, slightly different 

forms have been used by researchers, some with an 

additional term, and some with different exponents.  The 

form of the Wagner equation used in this work is 

 

𝐿𝑛 𝑃v,r = (𝑎𝜏 + 𝑏𝜏1.5 + 𝑐𝜏2.5 + 𝑑𝜏5)/𝑇r  (1) 

  

where Ln refers to natural logarithm, P refers to pressure, and 

T represents absolute temperature.  The subscript v indicates 

the pressure corresponds to the vapor-liquid equilibrium 

curve, and r indicates that the parameter is reduced with 

respect to the critical point (i.e., Tr = T/Tc and Pr = P/Pc, where 

the subscript c refers to the critical point). The parameter τ 

equals 1-Tr.  The four-term form given in Eq. (1) is chosen 

for this work because a fifth term is not justified except in 

the cases of a few species [4], and the four-term  Eq. (1) is 

recommended by Poling et al. [5] for general application.  

  

2. Investigative Approach 

Constants for the Wagner equation applicable to the 

entire two-phase VLE curve for many pure substances are 

reported in the literature.  These are referred to here as 

“entire-curve” constants, and their predicted vapor pressures 

are referred to as “entire-curve analytic” data.  Entire-curve 

constants for sixty-seven substances are taken from The 

Properties of Gases and Liquids [5]. Additionally, least-

squares regression is used to determine entire-curve Wagner 

constants for helium, hydrogen, argon, water, and R152a 

using NIST data [7] for which the results are shown in Table 

1. The species are selected to provide a broad representation 

of species families (e.g., alcohol, organic acid, ketone, 

quantum gas, noble gas, refrigerant) across different types 

(e.g. polar, normal, organic, inorganic, associating, non-

associating). 

Several researchers have used limited VLE data to 

estimate Wagner constants that were then used to extend 

VLE predictions.  In some cases only VLE data is used [8]–

[10], and in other cases researchers use thermal data in the 

intervals where VLE data are lacking and simultaneously 

regress thermal property and VLE models in an attempt to 

extend the range of VLE prediction into the temperature and 

pressure range of the thermal data [3], [11]–[15].  The 

extension from limited VLE data is generally in one 

direction, either above or below the original data interval.  

The leveraging of thermal data is usually used when trying 

to extrapolate VLE down towards the triple point.  
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Table 1.  Summary of Wagner Constant Regressions Using NIST Data. 

 

Species 

NIST Data 
Regression 

# of Points Wagner Constants A%Err in Pv,r 

Tc (K) Pc (bar)  a b c d Ave Max Tr of Max 

H2 33.145 12.964 233 -4.902616 1.065004 0.737305 0.053125 0.005 0.030 0.42411 

He 5.1953 2.2746 203 -4.265233 1.571259 0.479795 0.751271 0.105 0.612 0.41961 

Ar 150.687 48.63 329 -5.926538 1.208266 -0.509886 -1.590893 0.009 0.030 0.99756 

H2O 647.096 220.64 239 -7.861942 1.879246 -2.266807 -2.128615 0.019 0.170 0.42213 

R152a 386.411 45.1675 200 -7.433439 1.755544 -2.169951 -2.774693 0.023 0.080 0.39999 

A%Err is absolute percent error: 100 * | (Pv,r actual - Pv,r predicted)/ Pv,r actual | 

 

    

Researchers such as these use non-linear, over-determined 

regression algorithms to parameterize the Wagner equation. 

Because the Wagner equation has four species-specific 

constants, accurate values of these constants can be 

calculated algebraically from any four VLE data points 

provided that: 1) the Wagner equation’s functional form 

allows for perfect characterization of the species’ VLE over 

the entire two-phase curve, and 2) the four data points have 

perfect precision.  Neither of these two conditions is ever 

satisfied completely.  Consequently, when using the Wagner 

equation to correlate VLE data, there will exist some level of 

equation imperfection error corresponding to the degree to 

which condition one is not satisfied and some level of data 

imprecision error corresponding to the degree to which 

condition two is not satisfied.  Naturally, researchers using 

the Wagner equation try to maximize the data precision and 

the number of data points in an attempt to mitigate error due 

to imperfection and imprecision. 

Although correlative power within the data interval from 

which a correlation is parameterized is usually proportional 

to the number of data points used, a dependency of similar 

strength upon the number of points does not necessarily exist 

for the predictive power when using the correlation to 

extrapolate outside the data interval.  That is because 

extrapolation can involve considerable error [16], and an 

increase in the amount of parameterization points within the 

data interval itself may not lessen the extrapolation error.  

The Antoine equation is a good example of this behavior 

because it is a linear approximation to a nonlinear vapor 

pressure curve.  It is well known that the Antoine equation is 

unreliable for extrapolation of vapor pressure outside the 

data range from which it is parameterized [5].  Increasing the 

number of data points within the parameterization interval 

will not necessarily increase its predictive power outside the 

interval. 

Because the curvature of the vapor pressure curve is not 

constant, even robust nonlinear equations such as Wagner 

can experience the dangers of extrapolation, where the 

predictive error outside the interval has diminished 

dependency upon the amount of regressed data points.  Such 

extrapolation error for a given interval can be influenced by 

both data imprecision and equation imperfection.  

Consequently, it is hypothesized that a fully-determined 

parameterization of the Wagner equation can be a useful 

error assessment tool when extending predictions of the 

Wagner equation beyond the data interval from which it is 

parameterized.  Four data points, i.e., a fully-determined 

solution, are used to algebraically estimate Wagner constants 

in a controlled and methodical manner to estimate the 

dependency of the imperfection and imprecision errors upon 

the interval covered by the four points and the interval’s 

location on the VLE curve. 

The work presented here is unique from other researchers 

in several ways.  First, a relatively simple, algebraic, fully-

determined solution using only four points is used instead of 

complex, over-determined regression.  Second, only VLE 

data is used to extend predictive capability to the entire two-

phase curve, no thermal data is utilized to bridge gaps.  Third, 

the extension is bi-directional, both extrapolating down 

towards the critical point and extending upward to the critical 

point.  Fourth, an error segmentation is presented that has 

never before been attempted – error due to data imprecision 

and equation imperfection is separated, and the dependency 

of predictive error upon the data interval’s width and location 

is assessed.  The research literature is largely silent on these 

elements of Wagner parameterization and predictive power. 

Although no inherent accuracy is assumed for NIST data 

or VLE predictions of literature entire-curve Wagner 

constants, a reasonable data precision level has to be fixed 

for reduced temperature and vapor pressure to force the 

emergence of imprecision error. Rounding off is not done for 

internal calculations, but rounding off to the precision 

summarized in Table 2 is performed when parameters are 

used as inputs to calculations and when generated as final 

outputs. 

Wagner constants estimated from the fully-determined 

case using four of the entire-curve Wagner analytics from a 

limited-data interval are used to predict VLE. The 

contribution of imprecision error is estimated by comparing 

these predictions along the entire two-phase curve with the 

entire-curve Wagner analytics. 

 

Table 2.  Assumed Precision for Parameters as Inputs and Outputs. 

Parameter Round Off 

Tr and τ 5 significant digits 

Ln Pv,r 4 significant digits in the mantissa, except 5 significant digits for Ln Pv,r,b 

Wagner Constants a, b, c, and d Six digits to the right of the decimal point 

ηji  in Fw,j function (Eqs. (2a)-(2d) Seven digits to the right of the decimal point 
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Since the limited-data constants are based upon four 

entire-curve analytics, the difference between their 

predictions over the entire two-phase curve and the entire-

curve analytics is primarily due to round-off error, or 

imprecision error.  A reliable point distribution is determined 

from a statistical analysis of the imprecision error of three 

distributions.  An assessment of the impact of data interval 

width and location upon imprecision error is then performed 

using the selected point distribution.   

Subsequently, Wagner constants are algebraically 

determined for four species (hydrogen, helium, R152a, and 

water) for which the data used to generate the entire-curve 

Wagner constants are known.  The constants are estimated 

using four underlying data points from a limited interval.  

The predictions from the limited-data constants over the 

entire two-phase curve are compared with the entire-curve 

Wagner analytics.  The imprecision error is subtracted from 

this total error to estimate the imperfection error for several 

data intervals for the four species.  Lastly, these same four 

species are used to compare the predictive capability of the 

fully-determined case vs. that of the over-determined case 

(using more than four points). 

Regression algorithms for an over-determined system 

can involve characteristics that will influence the results and 

whose influence may be species-dependent (e.g., data 

spacing, data weighting, method for estimating initial values 

of the constants, and the error minimization scheme 

employed).  Using a consistent algebraic method 

independent of species and regression algorithm 

characteristics allows for accurate relative error 

comparisons.  

2.1 Estimating Wagner Constants Algebraically (Fully-

Determined Case) 

Algebraic manipulation of the Wagner equation written 

for the four data points yields the following equations for the 

four Wagner constants: 

 

𝑎 = 𝐹w,a = 𝜂a1𝐿𝑛 𝑃v,r,Tr1  + 𝜂a2𝐿𝑛 𝑃v,r,Tr2  +
𝜂a3𝐿𝑛 𝑃v,r,Tr3  + 𝜂a4𝐿𝑛 𝑃v,r,Tr4  (2a) 

  

 

𝑏 = 𝐹w,b = 𝜂b1𝐿𝑛 𝑃v,r,Tr1  + 𝜂𝑏2𝐿𝑛 𝑃v,r,Tr2  +
𝜂b3𝐿𝑛 𝑃v,r,Tr3  + 𝜂b4𝐿𝑛 𝑃v,r,Tr4 (2b) 

 

𝑐 = 𝐹w,c = 𝜂c1𝐿𝑛 𝑃v,r,Tr1 + 𝜂c2𝐿𝑛 𝑃v,r,Tr2 +
𝜂c3𝐿𝑛 𝑃v,r,Tr3 + 𝜂c4𝐿𝑛 𝑃v,r,Tr4  (2c) 

 

𝑑 = 𝐹w,d = 𝜂d1𝐿𝑛 𝑃v,r,Tr1  + 𝜂d2𝐿𝑛 𝑃v,r,Tr2  +
𝜂d3𝐿𝑛 𝑃v,r,Tr3  + 𝜂d4𝐿𝑛 𝑃v,r,Tr4. (2d) 

 

The reduced temperature subscript on Ln Pv,r indicates 

the corresponding data point of the four selected VLE points.  

The only species-dependent variables of the universal Fw,j 

function are the four Ln Pv,r values.  Each ηji coefficient is a 

function only of the four reduced temperatures and is the 

same for all species for any chosen set of four reduced 

temperatures.  The equations for the ηji coefficients are 

shown in Table 3.  Their values are rounded off to seven 

significant digits right of the decimal point to ensure the 

chosen precision of the Wagner constants. 

 

Table 3.  Expressions for Calculation of ηji Coefficients in Fw,j Function. 

𝜂a1 = [𝜀a2 − 𝜀a4𝜀c2 − (𝜀a5 + 𝜀a4𝜀c4)
𝜀d1

𝜀d
] 𝑇r1  |  𝜂a2 = − [𝜀a3 + 𝜀a4𝜀c3 + (𝜀a5 + 𝜀a4𝜀c4)

𝜀d2

𝜀d
] 𝑇𝑟2 

ηa3 = − [εa4εc1 + (εa5 + εa4εc4)
εd3

εd
] 𝑇r3  |  ηa4 = − (

εa5+εa4εc4

τ4
5εd

) 𝑇r4 

ηb1 = [εb3εc2 − εb1 + (εb3εc4 + εb4)
εd1

εd
] 𝑇r1   |   ηb2 = [εb3εc3 + εb2 + (εb3εc4 + εb4)

εd2

εd
] 𝑇r2 

ηb3 = [εb3εc1 + (εb3εc4 + εb4)
εd3

εd
] 𝑇r3  |    ηb4 =

εb3εc4+εb4

τ4
5εd

𝑇r4 

ηc1 = εc2 + εc4
εd1

εd
𝑇r1  |  ηc2 = εc3 + εc4

εd2

εd
𝑇r2  |  ηc3 = εc1 + εc4

εd3

εd
𝑇r3  |  ηc4 =

εc4

τ4
5εd

𝑇r4 

ηd1 =
εd1

εd
𝑇r1  |  ηd2 =

εd2

εd
𝑇r2  |  ηd3 =

εd3

εd
𝑇r3  |  ηd4 =

𝑇r4

τ4
5εd

 

εa = 1 − (
τ1

τ2
)

0.5
  |  εa1 =

τ1
0.5

εa
  |  εa2 =

1

τ1
(1 +

εa1

τ2
0.5)  |  εa3 =

εa1

τ2
1.5   |   εa4 = τ1

1.5 + εa1 (
τ1

1.5

τ2
0.5 − τ2) 

εa5 = τ1
4 + εa1 (

τ1
4

τ2
0.5 − τ2

3.5)  |  εb1 =
1

εaτ1τ2
0.5  |  εb2 =

1

εaτ2
1.5  |  εb3 =

(
τ1

1.5

τ2
0.5)−τ2

εa
  |  εb4 =

(
τ1

4

τ2
0.5)−τ2

3.5

εa
 

εc = 1 +
εb3

τ3
−

εa4

τ3
1.5  |  εc1 =

1

εcτ3
2.5  |  εc2 =

εb1
τ3

−
εa2

τ3
1.5

εc
  |  εc3 =

εa3

τ3
1.5−

εb2
τ3

εc
  |  εc4 =

εa5

τ3
1.5−

εb4
τ3

−τ3
2.5

εc
 

εd = 1 −
εa5+εa4εc4

τ4
4 +

εb3εc4+εb4

τ4
3.5 +

εc4

τ4
2.5   |   εd1 = −

εa2−εa4εc2

τ4
4 −

εb3εc2−εb1

τ4
3.5 −

εc2

τ4
2.5 

εd2 =
εa3+εa4εc3

τ4
4 −

εb3εc3+εb2

τ4
3.5 −

εc3

τ4
2.5    |   εd3 =

εa4εc1

τ4
4 −

εb3εc1

τ4
3.5 −

εc1

τ4
2.5 

Subscripts of ε are unique identifiers and are not meant to correspond to specific Wagner constants or data points. 

Tr1,  Tr2, Tr3, and Tr4 correspond to the four data points used in the fully-determined case. 
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3. Results and Discussion 

3.1 Determination of Reasonable Point Distribution 

Analytic Ln Pv,r values predicted from entire-curve 

Wagner constants from eleven limited-reduced-temperature 

intervals are rounded-off to the fourth significant digit in the 

mantissa.  The analytic data are then used to estimate 

“limited-data” Wagner constants using Eqs. (2a) – (2d).  

Such a function is referred to as Fw,j[WA],  where “[WA]” 

has been added to indicate that the four Ln Pv,r values used 

are entire-curve Wagner analytic values. The difference 

between the predicted reduced pressures from these limited-

data constants over the entire two-phase curve relative to the 

entire-curve analytic reduced vapor pressure values isolates 

the part of the predictive error of the Wagner equation that is 

due primarily to imprecision of the limited data (the rounding 

off stated in Table 2). 

The property values used for each of the seventy-two 

species are shown in Table 4.  The values of the normal 

boiling point temperature are those that are back calculated 

from the Wagner equation using the given entire-curve 

Wagner constants.  The critical properties shown in Table 4 

for hydrogen, helium, argon, R152a, and water are from 

NIST [7]. The critical properties for the other species, and the 

normal fusion point temperature for all species, are from 

Appendix A of Ref. [5].  The vapor pressure at the normal 

fusion point is calculated from the entire-curve Wagner 

constants. 

The entire-curve Wagner constants are shown in Table 5, 

which are from Appendix A of Ref. [5] for all species except 

the five NIST species shown in Table 1.  Eleven limited-data 

intervals with reduced-temperature widths ranging from 0.05 

to 0.4 are selected.  The intervals are representative of the 

applicable temperature ranges for the Antoine and Extended-

Antoine equations provided in Ref. [5]. 

An interval is defined by the lowest and the highest points 

used in the calculation of the Wagner constants.  There are 

an infinite number of possible arrangements for the 

remaining two internal data points.  The three following 

distributions for the two internal points are investigated: 1) 

the “even” distribution where the interval is divided into 

thirds, and the two points are equally spaced within the 

interval at 1/3 and 2/3 of the interval width; 2) the "quarter" 

distribution where the interval is divided into fourths, and the 

two internal data points are located at the 1/4 and 3/4 

positions; and 3) the "eighth" distribution, dividing the 

interval into eighths, and the two internal data points are 

located at the 1/8 and 7/8 positions. 

 

Table 4.  Physical Properties. 

 

Species Tf (K) Tb (K) Tc (K) Pc (bars) Tr,f  (1) Tr,b Pv,r,f Pv,r,b 

2-Methyl propanoic acid (C4H8O2) 227.05 427.58 605.00 37.00 0.37529 0.70674 3.06E-08 2.74E-02 

3-Methyl butanoic acid (C5H10O2) 243.85 449.68 629.00 34.00 0.38768 0.71491 3.81E-08 2.98E-02 

Acetic Acid (C2H4O2) 289.77 391.04 592.71 57.86 0.48889 0.65975 2.18E-04 1.75E-02 

Butanoic acid (C4H8O2) 267.97 436.87 624.00 40.30 0.42944 0.70011 1.65E-06 2.51E-02 

Decanoic acid (C10H20O2) 305.15 541.92 726.00 22.30 0.42032 0.74644 5.41E-08 4.54E-02 

Formic acid (CH2O2) 281.50 374.04 588.00 58.07 0.47874 0.63612 4.23E-04 1.75E-02 

Octanoic acid (C8H16O2) 289.45 512.01 695.00 26.40 0.41647 0.7367 6.68E-08 3.84E-02 

Pentanoic acid (C5H10O2) 239.45 459.31 643.00 35.80 0.3724 0.71432 5.58E-09 2.83E-02 

Propanoic acid (C3H6O2) 252.31 414.31 604.00 45.30 0.41773 0.68595 2.06E-06 2.24E-02 

1-butanol (C4H10O) 183.35 390.88 563.05 44.24 0.32564 0.69422 3.59E-08 4.20E-02 

1-Decanol (C10H22O) 280.05 504.25 689.00 24.10 0.40646 0.73186 4.12E-08 4.87E-02 

1-dodecanol (C12H26O) 297.10 537.78 720.00 20.80 0.41264 0.74692 1.13E-08 7.79E-02 

1-eicosanol (C20H42O) 339.00 647.69 809.00 13.00 0.41904 0.80061 2.55E-08 6.75E-02 

1-heptadecanol (C17H36O) 327.00 611.12 780.00 15.00 0.41923 0.78349 4.83E-09 3.23E-02 

1-Heptanol (C7H16O) 239.20 449.70 632.50 31.35 0.37818 0.71099 3.33E-08 6.29E-02 

1-hexadecanol (C16H34O) 322.45 597.53 770.00 16.10 0.41877 0.77601 5.35E-09 2.92E-02 

1-Hexanol (C6H14O) 229.20 430.44 610.70 34.70 0.37531 0.70483 2.41E-08 3.85E-02 

1-Nonanol (C9H20O) 268.15 486.52 671.50 26.30 0.39933 0.72453 1.86E-08 7.04E-02 

1-octadecanol (C18H38O) 331.00 623.56 790.00 14.40 0.41899 0.78932 2.12E-08 3.54E-02 

1-Octanol (C8H18O) 257.65 468.33 652.50 28.60 0.39487 0.71774 5.54E-11 2.59E-02 

1-Pentanol (C5H12O) 194.25 411.16 588.15 39.09 0.33027 0.69907 1.35E-13 2.41E-02 

2-butanol (C4H10O) 158.50 372.67 536.01 41.98 0.2957 0.69526 9.32E-13 3.62E-02 

2-ethyl-1-hexanol (C8H18O) 203.20 457.77 640.50 27.99 0.31725 0.71471 6.34E-09 3.51E-02 

2-Octanol (C8H18O) 241.15 453.03 638.00 28.90 0.37798 0.71008 3.43E-08 2.36E-02 

Benzyl alcohol (C7H8O)  257.80 478.46 715.00 43.00 0.36056 0.66917 7.02E-11 2.29E-02 

Cyclohexanol (C6H12O) 297.65 433.99 650.00 42.60 0.45792 0.66767 1.95E-05 2.38E-02 

Ethanol (C2H6O) 159.05 351.44 513.92 61.32 0.30948 0.68384 1.48E-10 1.65E-02 

Isopropyl alcohol (C3H8O) 183.65 355.39 508.30 47.62 0.3613 0.69917 6.57E-09 2.13E-02 

Methanol (CH4O) 175.49 337.69 512.64 80.92 0.34233 0.65872 2.14E-08 1.25E-02 
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Species Tf (K) Tb (K) Tc (K) Pc (bars) Tr,f  (1) Tr,b Pv,r,f Pv,r,b 

Propanol (C3H8O) 147.00 370.30 536.78 51.68 0.27386 0.68985 3.60E-13 1.96E-02 

Tert-butanol (C4H10O) 298.55 355.49 506.20 39.73 0.58979 0.70227 1.45E-03 2.55E-02 

Acetone (C3H6O) 178.50 329.22 508.10 47.02 0.35131 0.64795 4.93E-07 2.15E-02 

Cyclopentanone (C5H8O) 222.50 403.72 624.50 46.00 0.35629 0.64647 7.16E-07 2.20E-02 

Methyl isobutyl ketone (C6H12O) 189.15 389.15 574.60 32.70 0.32919 0.67726 2.34E-08 3.10E-02 

Benzene (C6H6) 278.68 353.24 562.16 48.98 0.49573 0.62836 9.77E-04 2.07E-02 

Ethylbenzene (C8H10) 178.18 409.36 617.20 36.00 0.28869 0.66325 9.82E-10 2.81E-02 

Naphthalene (C10H8) 351.35 491.16 748.40 40.50 0.46947 0.65628 2.22E-04 2.50E-02 

Toluene (C7H8) 178.16 383.79 591.80 41.06 0.30105 0.64851 8.58E-09 2.47E-02 

Pentafluorobenzene (C6HF5) 225.85 358.89 530.97 35.37 0.42535 0.67591 1.60E-05 2.86E-02 

Pentafluorotoluene (C7H3F5) 243.35 390.66 566.52 31.24 0.42955 0.68958 1.49E-05 3.24E-02 

m-Xylene (C8H10) 225.28 412.34 617.05 35.38 0.36509 0.66825 7.77E-07 2.86E-02 

o-Xylene (C8H10) 247.97 417.59 630.33 37.35 0.3934 0.6625 5.80E-06 2.71E-02 

p-Xylene (C8H10) 286.41 411.52 616.23 35.16 0.46478 0.66781 1.64E-04 2.88E-02 

Acetic  Anhydride (C4H6O3) 199.00 412.69 606.00 40.00 0.32838 0.68101 4.44E-09 2.53E-02 

Butane (C4H10) 134.79 272.67 425.25 37.92 0.31697 0.64119 1.76E-07 2.67E-02 

Diethyl ether (C4H10O) 156.86 307.58 466.74 36.50 0.33608 0.659 1.50E-07 2.78E-02 

Decane (C10H22) 243.49 447.30 617.65 21.05 0.39422 0.7242 6.69E-07 4.81E-02 

Dodecane (C12H26) 263.57 489.22 658.00 18.20 0.40056 0.7435 3.76E-07 5.57E-02 

Eicosane (C20H42) 309.95 616.84 769.00 11.60 0.40306 0.80213 9.64E-09 8.73E-02 

Ethane (C2H6) 90.35 184.55 305.33 48.71 0.29591 0.60444 2.30E-07 2.08E-02 

Heptadecane (C17H36) 295.13 574.56 735.00 13.70 0.40154 0.78171 3.79E-08 7.40E-02 

n-Heptane (C7H16) 182.59 371.57 540.15 27.35 0.33804 0.6879 6.37E-08 3.70E-02 

Hexadecane (C16H34) 291.32 559.94 722.00 14.35 0.40349 0.77554 6.66E-08 7.05E-02 

n-Hexane (C6H14) 177.84 341.88 507.90 30.35 0.35015 0.67313 3.87E-07 3.34E-02 

Methane (CH4) 90.69 111.66 190.55 45.99 0.47594 0.58597 2.55E-03 2.20E-02 

Nonadecane (C19H40) 305.25 602.34 758.00 12.30 0.4027 0.79464 1.67E-08 8.24E-02 

Nonane (C9H20) 219.66 423.97 594.90 22.90 0.36924 0.71267 1.95E-07 4.42E-02 

Octadecane (C18H38) 301.32 588.30 746.00 13.00 0.40391 0.78861 2.94E-08 7.79E-02 

Octane (C8H18) 216.39 398.82 568.95 24.90 0.38033 0.70097 8.24E-07 4.07E-02 

Pentadecane (C15H32) 283.08 543.82 708.00 15.15 0.39983 0.76811 8.03E-08 6.69E-02 

n-Pentane (C5H12) 143.43 309.22 469.80 33.75 0.3053 0.65819 2.09E-08 3.00E-02 

Propane (C3H8)  85.47 231.00 369.83 42.48 0.23111 0.62462 4.26E-11 2.39E-02 

R152a (C2H4F2) 156.15 249.13 386.41 45.17 0.4041 0.64472 1.75E-05 2.24E-02 

n-Tetradecane (C14H30) 279.01 526.76 693.00 16.10 0.40261 0.76012 1.65E-07 6.29E-02 

Tridecane (C13H28) 267.76 508.64 676.00 17.10 0.39609 0.75242 1.56E-07 5.93E-02 

Undecane (C11H24) 247.57 469.08 638.85 19.55 0.38752 0.73425 2.35E-07 5.18E-02 

Argon (Ar) 83.80 87.30 150.69 48.63 0.55612 0.57936 1.42E-02 2.08E-02 

Nitrogen (N2) 63.15 77.35 126.20 34.00 0.5004 0.61289 3.68E-03 2.98E-02 

Ammonia (NH3) 195.41 239.82 405.50 113.53 0.4819 0.59141 5.29E-04 8.93E-03 

Water (H2O) 273.15 373.13 647.10 220.64 0.42212 0.57663 2.77E-05 4.59E-03 

Helium (He normal) 2.15 4.23 5.20 2.27 0.41384 0.81444 2.01E-02 4.45E-01 

Hydrogen (H2 normal) 13.56 20.37 33.15 12.96 0.40911 0.61453 4.49E-03 7.82E-02 
 

(1) Propane is the only species with Tr,f  <0.25.  Error at Tr=0.25 is not included in error statistics for propane because its reduced Tr,f   value 
of  0.23 is sufficiently close to 0.25. 
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Table 5.  Entire-Curve Wagner Constants. 

Species a b c d 

2-Methyl propanoic acid (C4H8O2) -8.53258 1.30605 -5.2242 -2.05813 

3-Methyl butanoic acid (C5H10O2) -8.67381 1.62939 -6.51756 -2.08757 

Acetic Acid (C2H4O2) -8.29430 0.97928 -0.21745 -5.72367 

Butanoic acid (C4H8O2) -8.42953 1.34333 -5.37332 -2.74438 

Decanoic acid (C10H20O2) -9.07060 2.77535 -11.1014 -2.43545 

Formic acid (CH2O2) -7.24917 0.44255 -0.35558 -0.96906 

Octanoic acid (C8H16O2) -9.04015 2.16529 -8.66117 -4.69516 

Pentanoic acid (C5H10O2) -8.76701 1.54990 -6.19961 -4.21927 

Propanoic acid (C3H6O2) -8.14882 0.79590 -3.1836 -3.81338 

1-butanol (C4H10O) -8.40615 2.23010 -8.2486 -0.7110 

1-Decanol (C10H22O) -9.75478 4.18634 -7.0572 -15.980 

1-dodecanol (C12H26O) -9.91901 3.61884 -5.8537 -18.204 

1-eicosanol (C20H42O) -11.23154 3.66900 -7.0775 -14.321 

1-heptadecanol (C17H36O) -10.73125 3.55515 -6.3591 -15.696 

1-Heptanol (C7H16O) -9.68778 5.35716 -10.1672 -8.0100 

1-hexadecanol (C16H34O) -10.54087 3.47260 -6.0770 -15.939 

1-Hexanol (C6H14O) -9.49034 5.13288 -10.5817 -5.1540 

1-Nonanol (C9H20O) -9.91542 5.13670 -8.8075 -12.497 

1-octadecanol (C18H38O) -10.91637 3.57835 -6.6199 -15.060 

1-Octanol (C8H18O) -10.01437 5.90629 -10.4026 -9.0480 

1-Pentanol (C5H12O) -8.98005 3.91624 -9.9081 -2.1910 

2-butanol (C4H10O) -8.09820 1.64406 -7.4900 -5.27355 

2-ethyl-1-hexanol (C8H18O) -9.61812 5.17861 -9.1144 -11.004 

2-Octanol (C8H18O) -9.37352 4.73760 -8.3382 -11.646 

Benzyl alcohol (C7H8O)  -7.29099 1.17084 -4.7167 -5.5300 

Cyclohexanol (C6H12O) -7.12838 1.40189 -5.60756 -9.57158 

Ethanol (C2H6O) -8.68587 1.17831 -4.8762 1.5880 

Isopropyl alcohol (C3H8O) -8.73656 2.16240 -8.70785 4.77927 

Methanol (CH4O) -8.63571 1.17982 -2.4790 -1.0240 

Propanol (C3H8O) -8.53706 1.96214 -7.6918 2.9450 

Tert-butanol (C4H10O) -8.47927 2.47845 -9.27918 -2.53992 

Acetone (C3H6O) -7.55098 1.60784 -1.9944 -3.2002 

Cyclopentanone (C5H8O) -7.36589 1.54092 -2.28143 -3.0514 

Methyl isobutyl ketone (C6H12O) -7.70040 1.69968 -2.80448 -3.81623 

Benzene (C6H6) -7.01433 1.55256 -1.8479 -3.7130 

Ethylbenzene (C8H10) -7.53139 1.75439 -2.42012 -3.57146 

Naphthalene (C10H8) -7.61444 1.91553 -2.5075 -3.2300 

Toluene (C7H8) -7.31600 1.59425 -1.93165 -3.72220 

Pentafluorobenzene (C6HF5) -7.86799 1.71659 -2.53582 -4.59937 

Pentafluorotoluene (C7H3F5) -8.08717 1.76131 -2.72838 -4.13797 

m-Xylene (C8H10) -7.67717 1.80240 -2.47745 -3.66068 

o-Xylene (C8H10) -7.60491 1.75383 -2.27531 -3.73771 

p-Xylene (C8H10) -7.71694 1.89119 -2.39695 -3.63026 

Acetic  Anhydride (C4H6O3) -8.35130 1.89050 -2.8357 -5.1156 

Butane (C4H10) -7.01763 1.67770 -1.9739 -2.1720 

Diethyl ether (C4H10O) -7.43301 1.78847 -2.4793 -3.2811 

Decane (C10H22) -8.60643 2.44659 -4.2925 -3.9080 

Dodecane (C12H26) -9.08593 2.77846 -5.1985 -4.1730 

Eicosane (C20H42) -10.97958 4.25588 -8.9573 -5.0430 
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Species a b c d 

Ethane (C2H6) -6.47500 1.41071 -1.1440 -1.8590 

Heptadecane (C17H36) -10.23600 3.54177 -7.1898 -5.0000 

n-Heptane (C7H16) -7.77404 1.85614 -2.8298 -3.5070 

Hexadecane (C16H34) -10.03664 3.41426 -6.8627 -4.8630 

n-Hexane (C6H14) -7.53998 1.83759 -2.5438 -3.1630 

Methane (CH4) -6.02242 1.26652 -0.5707 -1.366 

Nonadecane (C19H40) -10.68217 3.98054 -8.3030 -4.9950 

Nonane (C9H20) -8.32886 2.25707 -3.8257 -3.7320 

Octadecane (C18H38) -10.47230 3.69655 -7.5779 -5.1090 

Octane (C8H18) -8.04937 2.03865 -3.3120 -3.6480 

Pentadecane (C15H32) -9.80239 3.29217 -6.5317 -4.5840 

n-Pentane (C5H12) -7.30698 1.75845 -2.1629 -2.9130 

Propane (C3H8) -6.76368 1.55481 -1.5872 -2.024 

R152a (C2H4F2) -7.433439 1.755544 -2.16995 -2.774693 

n-Tetradecane (C14H30) -9.54470 3.06637 -6.0070 -4.5300 

Tridecane (C13H28) -9.32959 2.89925 -5.5550 -4.4700 

Undecane (C11H24) -8.85076 2.60205 -4.7305 -4.0810 

Argon (Ar) -5.926538 1.20826 -0.50988 -1.590893 

Nitrogen (N2) -6.11102 1.2189 -0.69366 -1.89893 

Ammonia (NH3) -7.28322 1.5716 -1.85672 -2.39312 

Water (H2O) -7.861942 1.87924 -2.26680 -2.128615 

Helium (He normal) -4.265233 1.57125 0.479795 0.751271 

Hydrogen (H2 normal) -4.902616 1.06500 0.737305 0.053125 

 

Note: All constants are from Section D of Appendix A Ref. [5], except for the five NIST species (hydrogen, helium, 

argon, water, and R152a), which are from Table 1 of this work. 

 

The absolute percent error (A% Err) of the predicted Pv,r 

relative to the analytic values for the various intervals are 

calculated for each species at the normal fusion point, normal 

boiling point, and for all points at 0.05 reduced temperature 

increments from Tr = 0.95 down to the normal fusion point.  

A%Err represents 100 * | (Pv,r analytic – Pv,r predicted)/ Pv,r 

analytic |.  For each interval|distribution combination, the 

average error for all seventy-two species in aggregate is 

calculated at the normal fusion and boiling points and for 

three temperature segments: 1) the lower region, the “Tr ≤ 

0.6” segment, contains all the reduced temperature values 

ranging from 0.6 down to the normal fusion point, calculated 

in 0.05 reduced temperature increments; 2) the upper region, 

the “Tr > 0.6”  segment, contains the points from 0.65 up to 

and including 0.95, also calculated in 0.05 reduced 

temperature increments; and 3) the entire two-phase curve is 

represented by the “All Trs” segment and includes all the 

calculated points from the normal fusion point up to the 

reduced temperature of 0.95. The normal boiling point is 

included in the “All Trs” rather than the other two segments. 

Because not all species have the same number of points 
in each segment, for any given interval the average error for 

a segment is the average of all the points for all species in 

that segment rather than the average of species-specific 

segment averages.  Similarly, the maximum error for a 

segment is the largest error of all the points for all 72 species 

in that segment. 

The error at each of an interval's four data points used in 

the Fw,j[WA] function is zero by algebraic definition; 

consequently, such points are excluded from the error 

statistics to avoid skewing the average error values and 

giving an artificial advantage or disadvantage to an interval. 

Obviously, the most statistically significant aggregate error 

is for “All Trs” because it involves the most points. 

It is assumed that the population variance of the average 

error for the three distributions (“even,” “quarter” and 

“eighth”) for a given interval are unknown and unequal.  The 

well-known t* test statistic with ν degrees of freedom is used 

for hypothesis testing [17].  The 𝑡0
∗ test is performed to 

compare the “even” distribution with the other two.  The null 

hypotheses and corresponding alternative hypotheses are 

 μe vs. μ4  μe vs. μ8  

H0: μe = μ4  μe = μ8  

H1: μe > μ4  μe > μ8 if t0
* > tα,ν 

H2: μe < μ4  μe < μ8 if t0
* < -tα,ν 

 

where the population mean of an average error is indicated 

by μ, and the subscripts "e," "4," and "8" indicate the "even," 

"quarter," and "eighth" distribution, respectively.  The value 

of 0.05 is used for α, the probability of type I error. 

The results of the two 𝑡0
∗ tests for each of the eleven 

intervals for five average A%Errs - Tr,f, Tr,b, Tr ≤ 0.6, Tr > 0.6, 

and “All Trs” - are shown in Table 6.  The accepted one-sided 

alternative hypothesis is indicated when the null hypothesis 

is rejected.  Absence of an alternative hypothesis means the 

corresponding null hypothesis is not rejected. 

The accepted alternative hypotheses shown in Table 6 

that pertain to the "eighth" distribution are in normal font.  

The null hypothesis H0: μe = μ8 cannot be rejected for twenty- 

seven of the cells in the table.  For the remaining twenty-

eight cells, the H2: μe < μ8 alternative hypothesis is accepted 
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Table 6.  Results of t0* Test.  Accepted Alternative Hypothesis is Indicated When Null Hypothesis Is Rejected.  Sorted by 

Ascending Interval Width. 

 

Tr Interval Interval Width Tr,f Tr,b Tr ≤ 0.6 Tr > 0.6 All Trs  

0.5-0.9 0.4 
H1: μe > μ4 
H1: μe > μ8 

H2: μe < μ4 
H2: μe < μ8 

H1: μe > μ4 

H2: μe < μ8 
H2: μe < μ4 
H2: μe < μ8 

H1: μe > μ4 

H2: μe < μ8 
 

0.55-0.9 0.35 

H2: μe < μ4 

H2: μe < μ8 

H1: μe > μ4 

H2: μe < μ8 

H2: μe < μ4 

H2: μe < μ8 

H2: μe < μ4 

H2: μe < μ8 

H2: μe < μ4 

H2: μe < μ8 

 

0.6-0.9 0.3   H2: μe < μ8 

H1: μe > μ4 

H2: μe < μ8 

H2: μe < μ4 

H2: μe < μ8 

H1: μe > μ4 

 

 

0.50-0.70 0.2 

 H1: μe > μ4 

 

H2: μe < μ4 

H2: μe < μ8 

H2: μe < μ4 

 

H2: μe < μ4 

H2: μe < μ8 

H2: μe < μ4 

 

 

0.7-0.9 0.2   

H1: μe > μ4 

  

H2: μe < μ4 

H2: μe < μ8  

 

0.55-0.7 0.15   
H2: μe < μ4 
H2: μe < μ8 

H1: μe > μ4 

 
H1: μe > μ4 
H2: μe < μ8 

H1: μe > μ4 

 
 

0.50-0.60 0.1   

H1: μe > μ4 

H2: μe < μ8 

H1: μe > μ 

 

H1: μe > μ4 

 

H1: μe > μ4 

 

 

0.55-0.65 0.1   

H2: μe < μ4 

H2: μe < μ8  

H2: μe < μ4 

H2: μe < μ8 H2: μe < μ8 

 

0.6-0.7 0.1   

H2: μe < μ4 

H2: μe < μ8  

H2: μe < μ4 

H2: μe < μ8  

 

0.55-0.6 0.05   

H1: μe > μ4 

H2: μe < μ8  

H1: μe > μ4 

H2: μe < μ8  

 

0.6-0.65 0.05   
 
H2: μe < μ8  H2: μe < μ8  

 

Summary  

H0: µe = µ4 Not Rejected 8 2 5 1 5 =21 

 H1: μe > μ4 2 4 4 3 4 =17 

 H2: μe < μ4 1 5 2 7 2 =17 

  
      

H0: µe = µ8 Not Rejected 9 1 8 1 8 =27 

 H1: μe > μ8 1 0 0 0 0 =  1 

 H2: μe < μ8 1 10 3 10 3 =27 

 

 

for twenty-seven while only one cell (Tr,f  in the 0.5-0.9 
interval) shows the H1: μe > μ8 alternative hypothesis being 

accepted; the "eighth" distribution provides an advantage for 

only one out of the fifty-five cells in the table.  Consequently, 

a point distribution heavily favoring the ends doesn’t appear 

to provide an advantage over the “even” distribution. 

The H2: μe < μ4 entries in Table 6 are in bold-face font, 

and the font for H1: μe > μ4 entries are italicized.  The null 

hypothesis (H0: μe = μ4) cannot be rejected for twenty-one of 

the fifty-five cells, while the remaining cells are split evenly 

between the H1: μe > μ4 and the H2: μe < μ4 alternative 

hypotheses at seventeen apiece. 

Looking at the Summary section of Table 6, one can see 

that the H1: μe > μ4 alternative hypothesis is accepted twice 

as often as H2: μe < μ4 at Tr,f, and subsequently in the Tr ≤ 0.6 

and “All Trs” segments. The “even” distribution makes up 

the difference in the Tr > 0.6 segment.  The differences in 

average errors between the “even” and “quarter” 

distributions when an alternative hypothesis is accepted is 

small, in the hundredths of percent. 

The error for which hypothesis testing is performed in 

this exercise is not total predictive error but solely that due 

to the chosen data imprecision.  Equation imperfection will 

subsequently be seen to generally exert a greater influence 

upon total error than data imprecision, diminishing potential 

differences between the “even” and "quarter" distributions.  

Consequently, the intuitively appealing “even” distribution 

is used in the rest of this work. 

 

3.2 Dependency of Imprecision Error Upon Interval 

Width and Location 

The error statistics of the predicted Pv,r relative to the 

entire-curve analytic values for the various intervals are 

displayed in Table 7 for the “even” distribution, sorted by 

ascending order in the average A%Err at the normal fusion 

point.  Maximum errors are not shown for the Tr ≤ 0.6 and 

“All Trs” segments because they mirror that of the normal 

fusion point.  Looking at the Tr,f  and Tr ≤ 0.6 columns of 

Table 7, one can see that the error at the low-temperature end 

of the VLE curve increases as the interval width decreases 

and as the interval location moves up the reduced 

temperature scale.  The Tr > 0.6 column shows that the error 

in the upper portion of the VLE curve also increases as the 

interval decreases, but the error decreases instead of 

increasing as the interval location moves up the reduced 

temperature scale.  One can see that the average entire-curve 

(“All Trs”) error due to data imprecision does not exceed 1% 

until the interval width approaches 0.05. 

These trends are more easily seen in Table 8 where the 

lower end point of the interval is given vertically and the 

interval width listed horizontally.  For every row (lower 

bound) with multiple cells, the average and maximum errors 

at the normal fusion point decrease with increasing interval 

width.  In every column (width) with multiple cells, the 

errors decrease as the interval location moves down the VLE 

curve.  These two trends are logical.  The maximum and 

average errors are strongly tied because they both follow the 

same trends. 
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For example, the gray highlight in the maximum error 

section suggests that the maximum error at the normal fusion 

point would be 6% if one restricted himself to the shaded 

intervals.  The corresponding cells in the average error 

section indicate that the average error would be less than 1% 

if one restricted himself to those same intervals. 

Moving to the average and maximum errors for the Tr > 

0.6 segment, one can see that the errors in every row with 

multiple cells decrease as the interval width increases, just as 

in the low-temperature region.  However, contrary to that of 

the low region, the errors decrease as the interval location 

moves up the VLE curve.  Again, these two trends are 

logical, and the maximum and average errors are strongly 

tied because they both follow the same trends.  The gray 

highlight in the maximum error section of this segment’s 

results indicate the location-width combinations for which 

these two trends suggest that both the maximum and average 

errors would be less than 1%.  Essentially, for most intervals 

given in the literature with temperature and vapor pressure 

data of the precision given in Table 2, relatively little error 

will be produced from data imprecision when extending up 

the VLE curve as long as the reduced temperature width is 

not less than 0.1. 

It is obvious from Table 8 that the error reduction in the 

low-temperature region is more than an order of magnitude 

greater than the error increase in the upper region as the 

interval location is moved down the VLE curve.  The error 

analysis thus far is strictly applicable to only when the 

Wagner equation can be assumed to provide a perfect fit, and 

when the temperature and vapor pressure data precision 

corresponds to that given in Table 2.  However, Table 8 

shows quantitatively, in relative terms, the disproportionate 

impact the interval width and location have when 

extrapolating below the interval down towards the triple 

point compared to interpolation above the interval towards 

the critical point.  It also suggests that the predictive error 

due to data imprecision increases significantly once the 

interval width gets smaller than 0.1. 

Returning to Table 7, the importance of reducing the 

error at the low-temperature end in order to decrease that for 

the entire two-phase curve in aggregate is shown.  One can 

see that the average error for the Tr ≤ 0.6 segment follows the 

same ascending order as the average error at the normal 

fusion point.  The error for the entire two-phase region ("All 

Trs") follows the same trend, the one exception being the 

0.55-0.7 interval, where error is less than that for the 0.5-0.6 

interval.  This reinforces the intuitive assumption that the 

extrapolation error at the very-low-temperature end of the 

VLE curve is sufficiently larger than the predictive error over 

the rest of the VLE curve, to such an extent that the very-

low-end errors dominate the statistics in aggregate to the 

overall VLE curve. 

The statistics in Table 8 are averages for the entire set of 

72 species; however, such trends evidenced by the averages 

cannot be assumed to strictly apply to every species.  This is 

shown in Table 9 for hydrogen, R152a, helium, and water.  

The “even” distribution will rarely be exactly met with 

experimental data, so four reduced temperatures for selected 

intervals are chosen from the data originally downloaded 

from NIST that are closest to the “even” distribution.  The 

Fw,j[WA] function is used to estimate Wagner constants for 

four intervals.  Although the four reduced temperatures are 

dictated by our NIST download, the four reduced vapor 

pressures are calculated entire-curve analytics.  Two 

intervals with large widths and the same lower bound of 0.5, 

as well as two other intervals with small widths having the 

same lower bound of 0.6, are selected to see how the error 

trends for individual species compare with those trends 

represented by interval averages in Table 8. 

Table 9 shows the error in Wagner constants and for 

reduced vapor pressure at the three temperature segments for 

the four species.  Cells shaded indicate deviations from the 

average trends displayed in Table 8.  One can see that for 

helium the average error in the reduced vapor pressure for 

the low-temperature region and entire curve in aggregate is 

smaller for the 0.5-0.7 interval than for the 0.5-0.9 interval.  

Having the same lower bound of 0.50086, the errors would 

be expected to be greater for the smaller width interval of 

0.5-0.7. 

The 0.5-0.7 interval is an exception for hydrogen as well, 

the vapor pressure in the low-temperature region being less 

than that in the wider 0.5-0.9 interval.  The VLE curves for 

both helium and hydrogen encompass a very small 

temperature range, less than 4 K and 20 K, respectively.  

Perhaps the average location and width trends for 

imprecision error are less applicable for species whose 

entire-curve reduced temperature range occurs over a small 

absolute temperature range, i.e., have small values for the 

difference Tc – Tt. 

 

Table 7. A%Err in Pv,r Predictions of Fw,j[WA] Function vs. Entire-Curve Analytic Data.  Sorted in Ascending Order of 

Average A%Err at Tr,f .  “Even” Distribution. 

Tr Interval 4 Points 

Interval 

Width 

Average A%Err Maximum A%Err 

Tr,f Tr,b Tr ≤ 0.6 Tr > 0.6 All Trs Tr,f Tr,b 

Ave 

Tr > 0.6 

0.5-0.9 0.5,0.63333,0.76667,0.9 0.4 0.087 0.005 0.037 0.002 0.017 0.461 0.011 0.010 

0.55-0.9 0.55,0.66667,0.78333,0.9 0.35 0.173 0.005 0.077 0.002 0.032 1.064 0.014 0.010 

0.50-0.70 0.5,0.56667,0.63333,0.7 0.2 0.187 0.008 0.078 0.021 0.043 1.735 0.035 0.090 

0.6-0.9 0.6, 0.7, 0.8, 0.9 0.3 0.462 0.005 0.217 0.003 0.105 3.709 0.013 0.010 

0.50-0.60 0.5,0.5333,0.56667,0.6 0.1 0.625 0.088 0.292 0.203 0.222 5.707 0.384 0.833 

0.55-0.7 0.55,0.6,0.65,0.7 0.15 0.695 0.010 0.377 0.044 0.168 5.134 0.091 0.180 

0.55-0.65 0.55, 0.58333,0.61667,0.65 0.1 1.443 0.041 0.575 0.143 0.308 12.637 0.274 0.763 

0.6-0.7 0.6, 0.63333, 0.66667, 0.7 0.1 2.897 0.012 1.282 0.077 0.550 24.058 0.090 0.489 

0.7-0.9 0.7, 0.76667, 0.83333, 0.9 0.2 4.512 0.025 1.894 0.009 0.921 47.550 0.344 0.070 

0.55-0.6 0.55,0.56667,0.58333,0.6 0.05 8.257 0.472 4.244 1.191 2.098 86.302 2.239 5.802 

0.6-0.65 0.6,0.61667,0.63333,0.65 0.05 16.784 0.160 7.681 0.884 3.521 203.861 1.459 4.227 
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Table 8.  Error Due to Data Imprecision Relative to Interval Location and Width. 

 
           Width → 

↓Lower Bound  

0.05 0.1 0.15 0.2 0.3 0.35 0.4 

 Average A%Err at Tr,f 

0.5  0.63  0.19   0.09 

0.55 8.26 1.44 0.70   0.17  

0.6 16.78 2.90   0.46   

0.7    4.51    

 Maximum A%Err at Tr,f 

0.5  5.71   1.74     0.46 

0.55 86.30 12.64 5.13     1.06   

0.6 203.86 24.06   3.71     

0.7    47.55    

At Tr,f, error ↓ as Lower Bound ↓ and Width ↑ 

 Average A%Err for Tr > 0.6 Segment 

0.5  0.203  0.021   0.002 

0.55 1.191 0.143 0.044   0.002  

0.6 0.884 0.077   0.003   

0.7    0.009    

 Maximum A%Err in Tr > 0.6 Segment 

0.5  0.83   0.09     0.01 

0.55 5.80 0.76 0.18     0.01   

0.6 4.23 0.49     0.01     

0.7      0.07     

For Tr > 06 segment, error ↓ as Lower Bound ↑ and Width ↑ 

 

 

Except for the two instances discussed above, the error in 

vapor pressure increases with decreasing interval width, 

consistent with the interval averages shown in Table 8.  

Similarly, the width of 0.1 appears to be a cliff point for these 

four species.  The error in vapor pressure for hydrogen, 

R152a, and helium increases by about an order of magnitude 

when going from the width of 0.1 down to 0.05, and the 

small-width interval of 0.60-0.65 is where the average vapor 

pressure percent error for the temperature segments increases 

from tenths into single digits.  The cliff, however, is less 

pronounced for water.  The data in Tables 8 and 9 suggest 

that vapor pressure imprecision error exhibits consistent 

trends with respect to interval width and location.  Unless 

one is focused on solely minimizing error in the upper 

region, one should generally try to use a data interval with 

the lowest temperature possible and of reduced width of at 

least 0.1 to reduce imprecision error. 

The error between the Wagner constants estimated from 

the limited-data intervals and their entire-curve counter parts 

displayed in Table 9 affirms two interesting points: First, 

differences in percent error of Wagner constants between 

species cannot be used to estimate their relative capability 

for predicting vapor pressure.  Both R152a and helium have 

similar vapor pressure errors for the 0.60-0.65 interval, but 

the percent errors in Wagner constants a, c, and d for helium 

are several times those for R152a.  Second, even for a single 

species, differences in error in Wagner constants will not 

always indicate corresponding differences in vapor pressure 

predictive capability.  The absolute percent errors for all four 

Wagner constants for hydrogen, for example, are larger for 

the 0.5-0.7 interval than for the 0.5-0.9 interval, but the 

average error in reduced vapor pressure for the Tr ≤ 0.6 

segment using the 0.5-0.7 interval is less than that of the 0.5-

0.9 interval.  

 

3.3 Error Due to Imperfection of Wagner’s Functional 

Form 

The previous exercise with hydrogen, R152a, helium, 

and water is repeated, but the four vapor pressures used to 

estimate Wagner constants are taken from the data originally 

downloaded from NIST rather than using entire-curve 

Wagner analytic vapor pressures.  “[RD]” is added to the Fw,j 

function name to indicate that raw data is used rather than 

analytic values of Ln Pv,r .  If precision of data is perfect, and 

the functional form of the Wagner equation is perfect, the 

VLE predictions of Wagner constants estimated by the 

limited-data Fw,j[RD] function would exactly match the 

entire-curve Wagner analytic values.  This ideal total errorof 

zero would be a consequence of the four raw data points used 

in each limited-data interval being part of the full-range data 

set used to regress the entire-curve Wagner constants.
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Table 9.  Error Statistics for Fw,j[WA]  Function Relative to Entire-Curve Wagner Analytics for Four Species. 

Generic Tr 

Interval 
4 Points 

Actual 

Width 

A%Err in Wagner Constants Average A%Err in Predicted Pv,r 

a    b    c     d 

Tr ≤ 0.6 

(5) 

Tr > 0.6 

(7) 

All Trs 

(13) 

Hydrogen 

0.50-0.90 

0.50255, 0.63228, 

0.76805, 0.89778 0.39523 0.012 0.242 0.666 16.599 0.014 0.003 0.007 

0.50-0.70 

0.50255, 0.56591, 

0.63530, 0.69866 0.19611 0.151 1.901 3.177 39.983 0.004 0.011 0.008 

0.6-0.7 
0.60211, 0.63228, 
0.66849, 0.69866 0.09655 1.958 26.004 49.398 956.463 0.633 0.103 0.299 

0.60-0.65 

0.60211, 0.61418, 

0.63530, 0.64737 0.04526 25.472 327.541 585.696 9,929.779 5.578 1.568 2.990 

R152a 

0.50-0.90 

0.50198, 0.63099, 

0.769, 0.89801 0.39603 0.017 0.212 0.261 0.334 0.010 0.001 0.005 

0.50-0.70 

0.50198, 0.56499, 

0.63399, 0.697 0.19502 0.178 2.073 1.990 1.642 0.030 0.017 0.021 

0.6-0.7 

0.60099, 0.63099, 

0.66698, 0.697 0.09601 0.812 10.333 11.882 15.378 0.712 0.053 0.302 

0.60-0.65 
0.60099, 0.616, 
0.63399, 0.649 0.04801 11.801 139.619 139.928 133.977 4.137 1.106 2.187 

Helium 

0.50-0.90 

0.50086, 0.63146, 

0.76785, 0.89843 0.39757 0.040 0.357 1.745 1.408 0.006 0.001 0.003 

0.50-0.70 

0.50086, 0.56470, 

0.63436, 0.69819 0.19733 0.034 0.232 0.837 0.546 0.000 0.001 0.001 

0.6-0.7 

0.60243, 0.63146, 

0.66918, 0.69819 0.09576 2.228 17.853 80.400 79.393 0.842 0.093 0.381 

0.60-0.65 

0.60243, 0.61404, 

0.63436, 0.64886 0.04643 20.568 157.105 646.220 522.614 4.170 1.072 2.281 

Water 

0.50-0.90 
0.50014, 0.63306, 
0.76885, 0.89888 0.39874 0.030 0.406 0.513 0.785 0.008 0.001 0.005 

0.50-0.70 

0.50014, 0.56659, 

0.63595, 0.69951 0.19937 0.154 1.784 1.767 1.939 0.018 0.014 0.015 

0.6-0.7 
0.60127, 0.63306, 
0.66772, 0.69951 0.09824 1.146 14.003 15.646 24.786 0.646 0.094 0.300 

0.60-0.65 

0.60127, 0.61572, 

0.63595, 0.64751 0.04624 4.099 47.986 49.350 63.955 1.136 0.402 0.654 

 

The number of data points in each temperature segment is given in parenthesis.  Points are taken at 0.05 reduced temperature increments, 
except for the normal fusion point which is included in the Tr ≤ 0.6 segment and the normal boiling point which is included in the “All Trs” 

segment. 

Cells shaded indicate deviations from the average trend with respect to interval width displayed in Table 8.  

The actual total error, however, between the VLE 

predictions using the Fw,j[RD] function and the entire-curve 

Wagner analytics is the sum of the error due to data 

imprecision and the error due to imperfection of the Wagner 

equation.  Having already estimated the imprecision error, 

the equation imperfection error can be estimated by 

subtracting the imprecision error from the total error.  This 

exercise does not provide statistical inferences because only 

four species are used, but it does provide quantitative 

examples of the error due to imperfection of the Wagner 

equation.  The results for VLE predictions of the Fw,j[RD] 

function are shown in Table 10.  The same reduced 

temperature points are used as for the Fw,j[WA] function 

shown in Table 9.  The “4 Points” and “Width” columns are 

not shown in Table 10 because they are the same as shown 

in Table 9. 

For all four species, the errors in predicted reduced vapor 

pressure for the smallest interval (0.6-0.65) are greater than 

those for the larger 0.5-0.7 and 0.5-0.9 intervals, generally 

consistent with the trend of data imprecision error vs. 

interval width.  As a group the summary statistics shown at 

the bottom of Table 10 mostly follow the same trend with 

respect to interval width as those shown in Table 8; however, 

one can see that each species has at least one inconsistent 

interval.  The most prominent inconsistency is that water 

doesn’t exhibit the cliff between the 0.6-0.7 and 0.6-0.65 

intervals.  Consistent with Table 7, the average total “All 

Trs” error for all four species combined does not exceed 1% 

until the interval width gets below 0.1, and the average for a 

single species does not exceed 2% until the interval width 

approaches 0.05. 

Logically, one would expect the total error represented 

by the Fw,j[RD] function to be less consistent than data 

imprecision error because the Fw,j[RD] function 

incorporates Wagner imperfection, and imperfection error 

can be species-dependent.  Despite less consistency, the 

results of Table 10 suggest that limited data of good 

precision from intervals of 0.1 or greater in reduced 

temperature width have the potential to provide reasonable 

VLE predictions outside of the interval. 

Given that the error in predicted reduced vapor pressures 

shown in Table 9 for the Fw,j[WA]  function represents an 

estimate of the error due to data imprecision, the data due to 

Wagner imperfection is estimated as the error of the 

Fw,j[WA] function subtracted from the total error 

represented by the Fw,j[RD] function shown in Table 10.  

That difference, and its ratio to the data imprecision error, is 

shown in Table 11.  The average errors for the Fw,j[RD] and 

Fw,j[WA]  functions are included in the table for reference. 
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Table 10.  Error Statistics for Fw,j[RD] Function Relative to Entire-Curve Wagner Analytics for Four Species. 

Generic Tr 

Interval 

A%Err in Wagner Constants Average A%Err in Predicted Pv,r 

a b c d 

Tr ≤ 0.6 

(5) 

Tr > 0.6 

(7) 

All Trs 

(13) 

Hydrogen 

0.50-0.90 0.053 0.907 2.362 59.859 0.034 0.001 0.014 

0.50-0.70 0.534 6.680 11.048 139.706 0.022 0.036 0.028 

0.6-0.7 1.958 26.004 49.398 956.463 0.633 0.103 0.299 

0.60-0.65 20.035 256.822 456.237 7,602.573 3.690 1.275 2.106 

R152a 

0.50-0.90 0.160 2.289 2.939 3.279 0.060 0.013 0.030 

0.50-0.70 0.537 5.744 4.610 2.494 0.046 0.074 0.058 

0.6-0.7 7.346 89.366 94.525 102.767 3.992 0.604 1.861 

0.60-0.65 80.221 949.422 952.358 915.202 39.486 7.141 19.033 

Helium 

0.50-0.90 0.124 0.269 13.450 34.717 0.515 0.046 0.227 

0.50-0.70 3.593 26.578 97.785 47.004 0.188 0.213 0.206 

0.6-0.7 0.113 0.749 20.572 60.444 1.205 0.053 0.496 

0.60-0.65 31.190 234.895 934.678 684.696 3.911 1.742 2.607 

Water 

0.50-0.90 0.101 1.583 2.494 5.553 0.146 0.007 0.063 

0.50-0.70 0.621 7.813 9.037 13.494 0.219 0.043 0.111 

0.6-0.7 4.317 51.888 56.219 83.682 2.096 0.375 1.016 

0.60-0.65 1.028 13.350 16.256 27.249 0.598 0.063 0.267 

Summary Statistics: Averages For all Four Species 

0.50-0.90 0.110 1.262 5.311 25.852 0.189 0.017 0.084 

0.50-0.70 1.321 11.704 30.620 50.674 0.119 0.092 0.101 

0.6-0.7 3.433 42.002 55.178 300.839 1.982 0.284 0.918 

0.60-0.65 33.118 363.622 589.882 2,307.430 11.921 2.555 6.003 

 

Cells shaded  indicate deviations from the average trend with respect to interval width displayed in Table 8.  

 

One can see that in several cases the average A%Err error 

due to Wagner imperfection has a negative value, i.e., the 

error from Wagner imperfection partially cancels out that 

due to data imprecision. These cells are shaded, and their 

absolute values represent the magnitude of the total percent 

error reduction caused by the cancellation effect. 

Hydrogen shows a value of zero for Wagner imperfection 

error for all three temperature segments for the 0.6-0.7 

interval because in that case the raw vapor pressures are 

equal to those of the entire-curve analytic values (when 

rounded off to four digits in the mantissa of Ln Pv,r) for the 

four reduced temperatures, causing both the Fw,j[RD] and 

Fw,j[WA]  functions to calculate the same values for the four 

Wagner constants, which results in the Fw,j[RD] function 

not introducing any error above that of the Fw,j[WA]  

function.  Of the nine cells where Wagner imperfection 

reduces total error, seven correspond to the small interval 

0.6-0.65.  The interval with the largest Wagner imperfection 

errors is also 0.6-0.65, for R152a.  Perhaps the greatest 

impact of Wagner imperfection occurs with data intervals of 

small width, either helping to cancel out error or adding to 

total error. 

The last three columns of Table 11 show the ratio of the 

Wagner imperfection error to that of data imprecision.  The 

absolute value of negative ratios, also shaded, represent the 

fraction of the data imprecision error canceled out by 

opposing Wagner imperfection error.  Of the thirty-nine ratio 

cells with non-negative values, i.e., Wagner imperfection 

does not reduce total error, one cell is undefined because data 

imprecision error is zero, three cells have a value of zero, six 

cells have a non-zero ratio of less than 1.0, twenty cells have 

ratios in single digits, and nine have ratios in double digits.  

In comparison, not a single shaded cell has a ratio even in 

single digits; their absolute values are all less than 1. 

Based on this sample of four species, error due to Wagner 

imperfection generally adds to vapor pressure predictive 

error much more than it diminishes.  As is total error (i.e., 

error of the Fw,j[RD] function), Table 11 shows that Wagner 

imperfection error is less consistent and more species-

dependent than data imprecision error.  These characteristics 

of imperfection error relative to imprecision error - 1) being 

generally much larger, 2) displaying less consistent 

dependency upon the interval, and 3) being more species-

dependent – suggest that small differences in imprecision 

error between point distributions have only minor impact to 

total predictive error. 

 

3.4 Fully- vs. Over-Determined Solution 

The same four species are used to perform a preliminary 

study of the influence of the number of parameterization 

points upon the predictive error when extending outside the 

interval.  Using raw data, the predictive capability of the 

algebraic fully-determined case and the regressed over- 

determined case are compared.  The over-determined case 

involves least-squares regression of all the data points 

originally downloaded from NIST that fall within the data 

intervals. These data points are subsets of the data used to 

regress the entire-curve Wagner constants shown in Table 1.  

The 0.5-0.7 and 0.6-0.65 intervals are selected to allow for 

any potential dependency upon interval width to be revealed.   
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 Table 11.  Comparison of Data Imprecision and Wagner Imperfection Errors. 

 

The number of data points used for the over-determined case 

is much more than experimentally practical for the limited-

data intervals, thus providing an extreme condition for the 

many-points scenario, as is the fully-determined case of only 

four points an extreme condition for the few-points scenario. 

The results are shown in Table 12.  Over-determined 

cells in bold font have greater error than their Fw,j[RD] 

counterpart while those shaded gray have less error.  For all 

four species, the over-determined cases are consistent with 

the general trend of error increasing as interval width 

decreases displayed by the Fw,j[WA] function, i.e., errors for 

the smaller 0.6-0.65 interval are greater than those for the 

0.5-0.7.  Except for hydrogen with the 0.60-0.65 interval, the 

difference in predicted error between the fully- and over-

determined cases is relatively small.  Two other general 

patterns are evident from Table 12.  One, the magnitude of 

the difference in error between the two methods for the four 

species diminishes as the interval width increases – the 

differences for the 0.5-0.7 interval are generally in 

hundredths of percent, while differences for the 0.6-0.65 

interval are in the tens of percent or single digit percentage 

points.  Two, with the small interval 0.6-0.65, the over-

determined solution has split results – it produces less error 

for half of the species (hydrogen and helium) and greater 

error for the other two species (R152a and water). 

One can see that of the 24 cells for the over-determined 

case, 15 result in less average segment error, while 9 result 

in greater error, equating to 62.5% and 37.5%, respectively.  

Table 12 shows that using many high-precision points in a 

limited-data interval does not necessarily provide better 

vapor pressure predictability outside the interval than using 

fewer points.  Eight of the nine cells with greater error belong 

to R152a and water.  The only two cells for “All Trs” with 

bold face font belong to the over-determined case for these 

two species using the 0.6-0.65 interval. 

Hydrogen and helium showed interesting behavior for 

the 0.5-0.7 interval for imprecision error (Table 9).  As noted 

previously, besides being quantum gases, hydrogen and 

helium have small temperature ranges between their triple 

and critical points.  Besides being polar, R152a and water, 

on the other hand, have hundreds of degrees Kelvin 

separating their triple points from their critical points.  When 

logarithmic vapor pressure is plotted versus the reciprocal 

thermodynamic temperature, Thodos [18] showed that the 

curvature for a pure species generally changes at the normal 

boiling point.  Consequently, we choose to focus on the 

portion of the saturation curve below the normal boiling 

point to define what we refer to as “extrapolation burden.”  

The difference between the logarithm base 10 of the 

reduced vapor pressure at the normal fusion and boiling 

points quantifies the extent of vapor pressure downward 

extrapolation in decades required below the normal boiling 

point (Log Pv,r,b - Log Pv,r,f  = ΔLog Pv,r).  The difference 

between the reduced temperature of the normal fusion and 

boiling points quantifies the reduced temperature range over 

which the vapor pressure extrapolation spans (Tr,b - Tr,f  = 

ΔTr).  The ratio of the decades of reduced pressure divided 

Generic 

Tr 

Interval 

Average A%Err in Predicted Pv,r Ratio of Average A%Err 

Total: Fw,j[RD]   (1) 

(Wagner Imperfection + Data 

Imprecision) 

Fw,j[WA]    (2) 

(Data Imprecision) 

Fw,j[RD] - Fw,j[WA]   (3) 

(Wagner Imperfection) 

(Fw,j[RD] - Fw,j[WA]) / 

Fw,j[WA]    (4) 

(Wagner Imperfection/Data 

Imprecision) 

Tr ≤ 0.6 Tr > 0.6 All Trs Tr ≤ 0.6 Tr > 0.6 All Trs Tr ≤ 0.6 Tr > 0.6 All Trs Tr ≤ 0.6 Tr > 0.6 All Trs 

Hydrogen 

0.50-0.90 0.034 0.001 0.014 0.014 0.003 0.007 0.020 -0.001 0.007 1.43 -0.50 0.97 

0.50-0.70 0.022 0.036 0.028 0.004 0.011 0.008 0.018 0.024 0.021 4.50 2.13 2.66 

0.6-0.7 0.633 0.103 0.299 0.633 0.103 0.299 0.000 0.000 0.000 0.00 0.00 0.00 

0.60-0.65 3.690 1.275 2.106 5.578 1.568 2.990 -1.889 -0.293 -0.884 -0.34 -0.19 -0.30 

R152a 

0.50-0.90 0.060 0.013 0.030 0.010 0.001 0.005 0.050 0.011 0.025 5.00 8.00 5.34 

0.50-0.70 0.046 0.074 0.058 0.030 0.017 0.021 0.016 0.057 0.037 0.53 3.33 1.77 

0.6-0.7 3.992 0.604 1.861 0.712 0.053 0.302 3.280 0.551 1.559 4.61 10.42 5.15 

0.60-0.65 39.486 7.141 19.033 4.137 1.106 2.187 35.350 6.035 16.846 8.55 5.46 7.70 

Helium 

0.50-0.90 0.515 0.046 0.227 0.006 0.001 0.003 0.509 0.044 0.224 84.79 31.00 70.87 

0.50-0.70 0.188 0.213 0.206 0.000 0.001 0.001 0.188 0.212 0.204 - 148.20 177.16 

0.6-0.7 1.205 0.053 0.496 0.842 0.093 0.381 0.363 -0.040 0.115 0.43 -0.43 0.30 

0.60-0.65 3.911 1.742 2.607 4.170 1.072 2.281 -0.259 0.669 0.326 -0.06 0.62 0.14 

Water 

0.50-0.90 0.146 0.007 0.063 0.008 0.001 0.005 0.138 0.006 0.058 17.22 4.00 11.95 

0.50-0.70 0.219 0.043 0.111 0.018 0.014 0.015 0.201 0.029 0.096 11.19 2.00 6.23 

0.6-0.7 2.096 0.375 1.016 0.646 0.094 0.300 1.450 0.280 0.716 2.25 2.97 2.38 

0.60-0.65 0.598 0.063 0.267 1.136 0.402 0.654 -0.538 -0.339 -0.387 -0.47 -0.84 -0.59 
 

(1) Total error from Table 10.  Shaded cells indicate inconsistency with error trend for intervals given in Table 8. 
(2) Data imprecision error from Table 9.  Shaded cells indicate inconsistency with error trend for intervals given in Table 8. 
(3) Shaded cells indicate that the error due to Wagner imperfection cancels out to some degree the error due to data imprecision.. 
(4) Absolute value of shaded cells represents the fraction of the data imprecision error that is cancelled out by Wagner imperfection error. 

Note: values in the table are rounded off for display, but the total and data imprecision errors are not rounded off when inputs to the calculations for the 
Wagner imperfection error and error ratio. 
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Table 12.  Comparison of Algebraic Fully-Determined Case and Over-Determined Least-squares Regression for Raw 

Data. 

Generic Tr Interval Method 
Average A%Err Predicted Pv,r 

Tr ≤ 0.6 Tr > 0.6 All Trs 

Hydrogen 

0.50-0.70 Fw,j[RD] 0.022 0.036 0.028 

0.50-0.70 Over-determined (all 66 NIST data points in 0.50255-0.69866 range) 0.012 0.017 0.015 

0.60-0.65 Fw,j[RD] 3.690 1.275 2.106 
0.60-0.65 Over-determined (all 16 NIST data points in 0.60211-0.64737 range) 0.446 0.110 0.232 

R152a 

0.50-0.70 Fw,j[RD] 0.046 0.074 0.058 

0.50-0.70 Over-determined (all 66 NIST data points in 0.50198-0.69700 range) 0.038 0.076 0.056 

0.60-0.65 Fw,j[RD] 39.486 7.141 19.033 
0.60-0.65 Over-determined (all 17 NIST data points in 0.60099-0.64900 range) 41.617 7.703 20.155 

Helium 

0.50-0.70 Fw,j[RD] 0.188 0.213 0.206 

0.50-0.70 Over-determined (all 69 NIST data points in 0.50086-0.69819 range) 0.214 0.177 0.193 

0.60-0.65 Fw,j[RD] 3.911 1.742 2.607 
0.60-0.65 Over-determined (all 17 NIST data points in 0.60243-0.64886 range) 3.283 1.268 2.064 

Water 

0.50-0.70 Fw,j[RD] 0.219 0.043 0.111 

0.50-0.70 Over-determined (all 70 NIST data points in 0.50014-0.69951 range) 0.124 0.080 0.094 

0.60-0.65 Fw,j[RD] 0.598 0.063 0.267 
0.60-0.65 Over-determined (all 17 NIST data points in 0.60127-0.64751 range) 1.288 0.144 0.575 

 

Error values for the Fw,j[RD] cases are the same as those given in Table 11. 

Over-determined cells shaded have less error than their Fw,j[RD] counterpart. 

Over-determined cells in bold font have greater error than their Fw,j[RD] counterpart. 

by the reduced temperature span (ΔLog Pv,r / ΔTr) provides 
a quantitative estimate of the extrapolation burden of a 

species, using the normal boiling point as the starting point 

for the downward extrapolation. 

For example, the difference in the reduced temperatures 

of the normal fusion and boiling points for helium is 0.4, but 

the breadth of the reduced vapor pressures between these two 

points is only 1.35 decades.  Water, on the other hand, only 

has a 0.15 reduced temperature span that has to account for 

2.22 decades in reduced vapor pressure.  The extrapolation 

burden ratio is 3.4 and 6.0 for helium and hydrogen, 

respectively, but 12.9 and 14.4 for R152a and water, 

respectively.  Because the Wagner equation is in reduced 

form, perhaps the extrapolation burden influences the 

importance that the number of parameterization points may 

have when extending VLE predictions outside of the 

parameterization interval.   

 

4. Summary 

 The investigation of imprecision error involves seventy-

two species.  The investigation of total error, imperfection 

error, and the role the number of parameterization points 

plays in the predictive error outside the parameterization 

interval involves four species.  There is ample room for more 

exhaustive study of these themes; however, the results 

presented here provide solid support for the following five 

propositions regarding the power of Wagner constants 

estimated from only limited VLE data to predict VLE outside 

of the parameterization interval, when the data is of good 

precision: 1) the predictive power of the VLE extension is 

dependent upon the parameterization interval’s width and 

location; 2) the contribution of equation imperfection to total 

error is generally larger than that due to data imprecision; 3) 

the difference in the average predictive error between the 

fully- and over-determined parameterizations diminish as the 

interval width increases, approaching less than one tenth of 

one percent for an interval width of 0.2; 4) the over-

determined solution has equal chance of producing either 

less or more error than the fully-determined approach when 

the interval is small (e.g., 0.05 width); and 5) the last two 

conclusions suggest that the relatively simple Fw,j function 
can be a valuable tool for investigating the extensibility of 

limited-data Wagner constants.  Conclusion #1 in 

quantitative terms is: limited VLE data of good precision 

from reduced temperature intervals with a width ≥ 0.1 and a 

lower bound ≤ 0.6 can generally provide reasonable VLE 

predictions over the entire two-phase curve for pure 

substances, with average error of approximately 1%. 

Ref. [19] provides further details of the least-squares 

regressions summarized in Table 1, the hypothesis testing for 

each interval | distribution combination shown in Table 6 

(e.g., the four reduced temperature points, average errors and 

variances, and η values), and the results of the fully- vs. over-

determined comparison summarized in Table 12. 

Given the results presented here that limited data of good 

precision can sometimes be used to predict VLE outside of 

the parameterization interval reasonably well, the logical 

next step is to investigate Wagner parameterization using 

analytic data from accurate correlations, such as the Antoine 

equation. Antoine analytics have been used for the 

parameterization of Wagner constants previously, but the 

verification of the predictive capability was relative to the 

data used for the original Antoine parameterization [10], or 

the verification utilized data only slightly below that of the 

parameterization interval – Ref. [20], for example, verified 

down to the minimum reduced temperature of 0.5 in some 

cases.  As can be seen from Tables 7 and 10 here, extension 

upward to the critical point (Tr > 0.6) has significantly less 

error because it involves pseudo extrapolation – although 

prediction is extended beyond the data interval’s upper limit, 

there is an element of interpolation because the critical point 

is used in the reduced formulation, and thus, is an upper 

bound anchor point.  

Except for our recent follow-on study [21], we are not 

aware of others attempting to use Antoine analytics to 

parameterize Wagner constants for the entire two-phase 

curve and testing their predictive capability down to the 

triple point.  The results here suggest that such Wagner 

constants should provide reasonable predictions when 

extrapolating down to the critical point if the Antoine 
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analytics are accurate.  However, we found [21] in many 

cases that there is sufficient discrepancy between a species’ 

best vapor pressure values and those of individual data sets, 

such that a practitioner doesn’t know apriori the confidence 

with which he can use a limited data set or Antoine constants 

provided in the literature to parameterize Wagner constants 

applicable for the entire two-phase curve. 

The authors of Ref. [20] pruned their data set of 839 VLE 

points down to 348, a reduction of 58.5%, when performing 

their validation of experimental data for use in their Antoine 

parameterizations, consistent with the general data 

deviations we saw [21].  Consequently, one can use limited 

data to parameterize Wagner constants valid for the entire-

two phase curve provided one is confident that the limited 

data represents the species’ best values, the reduced 

temperature width of the interval is ≥ 0.1, and the lower 

bound is ≤ 0.6. 

The results presented here are relevant to those 

researching methods to leverage limited VLE data of good 

precision to predict the VLE curve above and below the 

source data’s interval.  The applicability of the approach 

presented here to analyze and segment predictive error is not 

confined to the Wagner equation.  Researchers continue to 

develop new CSP vapor pressure correlations involving 

species-specific parameters. Park [22] developed a 

correlation incorporating three species-specific parameters 

to describe the VLE over the entire co-existence curve.  

Sanjari [23] developed a four-term equation that when 

applied to 75 species produced less error than the Wagner 

equation.  One could use a fully-determined solution and 

algebraically determine universal functions, similar to Fw,j, 

for the corresponding species-specific parameters of their 

equations, for example, and test the predictive power of 

different limited-data intervals and segment the error 

between that due to data imprecision and that due to equation 

imperfection. 

 

Nomenclature 

a, b, c, d Wagner constants 

A%Err  Absolute value of percent error 

Fw,j   Fully-determined function for Wagner constant 

Fw,j[RD] : use raw data 
Fw,j[WA]: use entire-curve Wagner analytic data 

H   Hypotheses for t* test 

H0 : Null 

H1 : Alternative 1 

H2 : Alternative 2 

Ln   Natural logarithm 

Log  Logarithm base ten 

P   Pressure (bar) 

Pc : Critical pressure 

Pv : Vapor pressure 

Pv,r : Reduced vapor pressure 

Pv,r,b : Reduced vapor pressure at normal boiling 

point 

Pv,r,Tri : Reduced vapor pressure of data point “i” 

t*   Statistical hypothesis test for sample means 

t0
*: The test statistic for t* 

T   Temperature (K) 

Tb : Normal boiling point temperature 

Tc : Critical temperature 

Tr : Reduced temperature  

Tt : Temperature at triple point 

 

Greek Letters 

ε Parameters used to calculate η coefficients, 

defined in Table 3. 

ηji   Coefficients in Fw,j function 

µ   Population mean of an average error in t* test 

µ4: using “quarter” distribution 

µ8: using “eighth” distribution 

µe: using “even” distribution 

τ   1-Tr 

ΔLog Pv,r = Log Pv,r,b - Log Pv,r,f   

ΔTr  = Tr,b - Tr,f   

 

Subscripts 

f   Normal fusion point 

i   Index notation for the four data points 

j   Index notation for the four Wagner constants 

ν   Degrees of freedom for t* test 

α   Probability of type I error for t* test 
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