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G. C. L. Brümmer (Topology, gcl.brummer@uct.ac.za)
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Ağacık Zafer (Appl. Math., zafer@metu.edu.tr)

Published by Hacettepe University
Faculty of Science





CONTENTS

Mathematics

F. Ali and J. Moori

The Fischer-Clifford matrices and character table of
the split extension 26:S8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

F.M. Al-Oboudi

Generalized uniformly close-to-convex functions of order γ and type β . . . . . . . 173

Y. Chen and Y. Wang

Orientable small covers over the product of 2-cube with n-gon . . . . . . . . . . . . . . . 183
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The Fischer-Clifford matrices and character table
of the split extension 26:S8

Faryad Ali∗
Jamshid Moori†

Abstract

The sporadic simple group Fi22 is generated by a conjugacy class D of
3510 Fischer’s 3-transpositions. In Fi22 there are 14 classes of maximal
subgroups up to conjugacy as listed in the ATLAS [10] and Wilson
[31]. The group E = 26:Sp6(2) is maximal subgroup of Fi22 of index
694980. In the present article we compute the Fischer-Clifford matrices
and hence character table of a subgroup of the smallest Fischer group
Fi22 of the form 26:S8 which sits maximally in E. The computations
were carried out using the computer algebra systems MAGMA [9] and
GAP [29].

Keywords: Fischer-Clifford matrix, extension, Fischer group Fi22.

2000 AMS Classification: 20C15, 20D08.

1. Introduction

In recent years there has been considerable interest in the Fischer-Clifford theory
for both split and non-split group extensions. Character tables for many maximal
subgroups of the sporadic simple groups were computed using this technique. See
for instance [1, 3, 4, 5, 7, 6], [11], [12], [16], [19], [20], [22, 23, 24] and [28]. In
the present article we follow a similar approach as used in [1, 3, 4, 5, 7], [22] and
[24] to compute the Fischer-Clifford matrices and character tables for many group
extension.

Let Ḡ = N :G be the split extension of N = 26 by G = S8 where N is the vector
space of dimension 6 over GF (2) on which G acts naturally. Let E = 26:Sp6(2)
be a maximal subgroup of Fi22. The group Ḡ sits maximally inside the group E.
In the present article we aim to construct the character table of Ḡ by using the
technique of Fischer-Clifford matrices. The character table of Ḡ can be constructed
by using the Fischer-Clifford matrix M(g) for each class representative g of G and

∗Department of Mathematics and Statistics, College of Sciences, Al Imam Mohammad

Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia Email:
FaryadA@hotmail.com
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the character tables of Hi’s which are the inertia factor groups of the inertia groups
H̄i = 26:Hi. We use the properties of the Fischer-Clifford matrices discussed in
[1], [2], [3], [4], [5] and [22] to compute entries of these matrices.

The Fischer-Clifford matrix M(g) will be partioned row-wise into blocks, where
each block corresponds to an inertia group H̄i. Now using the columns of character
table of the inertia factor Hi of H̄i which correspond to the classes of Hi which fuse
to the class [g] in G and multiply these columns by the rows of the Fischer-Clifford
matrix M(g) that correspond to H̄i. In this way we construct the portion of the
character table of Ḡ which is in the block corresponding to H̄i for the classes of Ḡ
that come from the coset Ng. For detailed information about this technique the
reader is encouraged to consult [1], [3], [4], [5], [16] and [22].

We first use the method of coset analysis to determine the conjugacy classes
of Ḡ. For detailed information about the coset analysis method, the reader is
referred to again [1], [4], [5] and [22]. The complete fusion of Ḡ into Fi22 will be
fully determined.

The character table of Ḡ will be divided row-wise into blocks where each block
corresponds to an inertia group H̄i = N :Hi. The computations have been carried
out with the aid of computer algebra systems MAGMA [9] and GAP [29]. We
follow the notation of ATLAS [10] for the conjugacy classes of the groups and
permutation characters. For more information on character theory, see [15] and
[17].

Recently, the representation theory of Hecke algebras of the generalized sym-
metric groups has received some special attention [8], and the computation of the
Fischer-Clifford matrices in this context is also of some interest.

2. The Conjugacy Classes of 26:S8

The group S8 is a maximal subgroup of Sp6(2) of index 36. From the conjugacy
classes of Sp6(2), obtained using MAGMA [9], we generated S8 by two elements
α and β of Sp6(2) which are given by

α =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




and β =




0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 0 1 0




where o(α) = 2 and o(β) = 7.
Using MAGMA, we compute the conjugacy classes of S8 and observed that S8

has 22 conjugacy classes of its elements. The action of S8 on 26 gives rise to three
orbits of lengths 1, 28 and 35 with corresponding point stabilizers S8, S6 × 2 and
(S4 × S4):2 respectively. Let φ1 and φ2 be the permutation characters of S8 of
degrees 28 and 35. Then from ATLAS [10], we obtained that χφ1

= 1a+ 7a+ 20a
and χφ2 = 1a+ 14a+ 20a.

Suppose χ = χ(S8|26) is the permutation character of S8 on 26. Then we obtain
that

χ = 1a+ 1S8

S6×2 + 1S8

(S4×S4):2 = 3× 1a+ 7a+ 14a+ 2× 20a,

where 1S8

S6×2 and 1S8

(S4×S4):2 are the characters of S8 induced from identity charac-

ters of S6×2 and (S4×S4):2 respectively. For each class representative g ∈ S8, we
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calculate k = χ(S8|26)(g), which is equal to the number of fixed points of g in 26.
We list these values in the following table:

[g]S8
1A 2A 2B 2C 2D 3A 3B 4A 4B 4C 4D

χφ1
28 16 8 4 4 10 1 6 2 0 2

χφ2
35 15 7 11 3 5 2 1 5 3 1

k 64 32 16 16 8 16 4 8 8 4 4
[g]S8 5A 6A 6B 6C 6D 6E 7A 8A 10A 12A 15A
χφ1

3 1 4 2 1 1 0 0 1 0 0

χφ2 0 0 3 1 0 2 0 1 0 1 0

k 4 2 8 4 2 4 1 2 2 2 1

We use the method of coset analysis, developed for computing the conjugacy
classes of group extensions, to obtain the conjugacy classes of 26:S8. For detailed
information and background material relating to coset analysis and the description
of the parameters fj , we encourage the readers to consult once again [1], [4], [5]
and [22].

Now having obtained the values of the k’s for each class representative g ∈
S8, we use a computer programme for 26:S8 (see Programme A in [1]) written
for MAGMA [9] to find the values of fj ’s corresponding to these k’s. From the
programme output, we calculate the number fj of orbits Qi’s (1 ≤ i ≤ k) of the
action of N = 26 on Ng, which have come together under the action of CS8

(g) for
each class representative g ∈ S8. We deduce that altogether we have 64 conjugacy
classes of the elements of Ḡ = 26:S8, which we list in Table 1. We also list the
order of CḠ(x) for each [x]Ḡ in the last column of Table 1.
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Table 1: The conjugacy classes of Ḡ = 26:S8

[g]S8
k fj [x]26:S8

|[x]26:S8
| |C26:S8

(x)|
1A 64 f1 = 1 1A 1 2580480

f2 = 28 2A 28 92160
f3 = 35 2B 35 73728

2A 32 f1 = 1 2C 56 46080
f2 = 6 4A 336 7680
f3 = 10 4B 560 4608
f4 = 15 2D 840 3072

2B 16 f1 = 1 2E 420 6144
f2 = 1 2F 420 6144
f3 = 2 2G 840 3072
f4 = 12 4C 5040 512

2C 16 f1 = 1 2H 840 3072
f2 = 1 4D 840 3072
f3 = 3 2I 2520 1024
f4 = 3 4E 2520 1024
f5 = 8 4F 6720 384

2D 8 f1 = 1 2J 3360 768
f2 = 1 4G 3360 768
f3 = 3 4H 10080 256
f4 = 3 4I 10080 256

3A 16 f1 = 1 3A 448 5760
f2 = 5 6A 2240 1152
f3 = 10 6B 4480 576
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Table 1: The conjugacy classes of Ḡ (continued)

[g]S8
k fj [x]26:S8

|[x]26:S8
| |C26:S8

(x)|
3B 4 f1 = 1 3B 17920 144

f2 = 1 6C 17920 144
f3 = 2 6D 35840 72

4A 8 f1 = 1 4J 3360 768
f2 = 3 4K 10080 256
f3 = 4 8A 13440 192

4B 8 f1 = 1 4L 10080 256
f2 = 1 4M 10080 256
f3 = 2 4N 20160 128
f4 = 4 8B 40320 64

4C 4 f1 = 1 4O 20160 128
f2 = 1 4P 20160 128
f3 = 2 4Q 40320 64

4D 4 f1 = 1 4R 40320 64
f2 = 1 8C 40320 64
f3 = 1 8D 40320 64
f4 = 1 4S 40320 64

5A 4 f1 = 1 5A 21504 120
f2 = 3 10A 64512 40

6A 2 f1 = 1 6E 35840 72
f2 = 1 12A 35840 72

6B 8 f1 = 1 6F 8960 288
f2 = 1 12B 8960 288
f3 = 3 12C 26880 96
f4 = 3 6G 26880 96

6C 4 f1 = 1 6H 26880 96
f2 = 1 12D 26880 96
f3 = 2 12E 53760 48

6D 2 f1 = 1 6I 107520 24
f2 = 1 12F 107520 24

6E 4 f1 = 1 6J 53760 48
f2 = 1 6K 53760 48
f3 = 2 6L 107520 24

7A 1 f1 = 1 7A 368640 7

8A 2 f1 = 1 8E 161280 16
f2 = 1 8F 161280 16

10A 2 f1 = 1 10B 129024 20
f2 = 1 20A 129024 20

12A 2 f1 = 1 12G 107520 24
f2 = 1 24A 107520 24

15A 1 f1 = 1 15A 172032 15

3. The Inertia Groups of Ḡ

The action of G on N produces three orbits of lengths 1, 28 and 35. Hence by
Brauer’s theorem (see Lemma 4.5.2 of [14]) G acting on Irr(N) will also produce
three orbits of lengths 1, s and t such that s+ t = 63. From ATLAS, by checking
the indices of maximal subgroups of S8, we can see that the only possibility is
that s = 28 and t = 35. We deduce that the three inertia groups are H̄i = 26:Hi

of indices 1, 28 and 35 in Ḡ respectively where i ∈ {1, 2, 3} and Hi ≤ S8 are the
inertia factors. We also observe that H1 = S8, H2 = S6×2 and H3 = (S4×S4):2.
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The character tables and power maps of the elements of H1, H2 and H3 are given
in the GAP [29]. Using the permutation characters of S8 on H2 and H3 of degrees
28 and 35 respectively we are able to obtain partial fusions of H2 and H3 into
H1 = S8. We completed the fusions by using direct matrix conjugation in S8. The
complete fusion of H2 and H3 into H1 are given in Tables 2 and 3 respectively.

Table 2: The fusion of H2 into H1

[g]S6×2 −→ [h]S8
[g]S6×2 −→ [h]S8

1A 1A 2A 2A
2B 2A 2C 2D
2D 2B 2E 2C
2F 2C 2G 2D
3A 3A 3B 3B
4A 4D 4B 4A
4C 4B 4D 4D
5A 5A 6A 6B
6B 6A 6C 6B
6D 6E 6E 6D
6F 6C 10A 10A

Table 3: The fusion of H3 into H1

[g]S4×S4
−→ [h]S8

[g]S4×S4
−→ [h]S8

1A 1A 2A 2C
2B 2B 2C 2A
2D 2B 2E 2C
2F 2D 3A 3A
3B 3B 4A 4A
4B 4C 4C 4B
4D 4C 4E 4D
4F 4B 6A 6C
6B 6B 6C 6E
8A 8A 12A 12A

4. The Fischer-Clifford Matrices of Ḡ

For each conjugacy class [g] of G with representative g ∈ G, we construct the
corresponding Fischer-Clifford matrix M(g) of Ḡ = 26:S8. We use properties of
the Fischer-Clifford matrices (see [1], [3], [4], [5], [22]) together with fusions of H2

and H3 into H1 (Tables 2 and 3) to compute the entries of the these matrices. The
Fischer-Clifford matrix M(g) will be partitioned row-wise into blocks, where each
block corresponds to an inertia group H̄i. We list the Fischer-Clifford matrices of
Ḡ in Table 4.
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Table 4: The Fischer-Clifford matrices of Ḡ

M(g) M(g) M(g)

M(1A) =




1 1 1
28 4 −4
35 −5 3


 M(2A) =




1 1 1 1
1 −1 −1 1

15 5 −3 −1
15 −5 3 −1


 M(2B) =




1 1 1 1
4 4 −4 0
3 3 3 −1
8 −8 0 0




M(2C) =




1 1 1 1 1
2 −2 −2 2 0
6 6 −2 −2 0
1 1 1 1 −1
6 −6 2 −2 0


 M(2D) =




1 1 1 1
1 −1 −1 1
3 −3 1 −1
3 3 −1 −1


 M(3A) =




1 1 1
10 2 −2
5 −3 1




M(3B) =




1 1 1
1 1 −1
2 −2 0


 M(4A) =




1 1 1
6 −2 0
1 1 −1


 M(4B) =




1 1 1 1
2 2 −2 0
1 1 1 −1
4 −4 0 0




M(4C) =




1 1 1
1 1 −1
2 −2 0


 M(4D) =




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


 M(5A) =

(
1 1
3 −1

)

M(6A) =

(
1 1
1 −1

)
M(6B) =




1 1 1 1
1 −1 −1 1
3 3 −1 −1
3 −3 1 −1


 M(6C) =




1 1 1
2 −2 0
1 1 −1




M(6D) =

(
1 1
1 −1

)
M(6E) =




1 1 1
1 1 −1
2 −2 0


 M(7A) =

(
1
)

M(8A) =

(
1 1
1 −1

)
M(10A) =

(
1 1
1 −1

)
M(12A) =

(
1 1
1 −1

)

M(15A) =
(

1
)

We use the above Fischer-Clifford matrices (Table 4) and the character tables
of inertia factor groups H1 = S8, H2 and H3, together with the fusion of H2 and
H3 into S8, to obtain the character table of Ḡ. The set of irreducible characters
of Ḡ = 26:S8 will be partitioned into three blocks B1, B2 and B3 corresponding
to the inertia factors H1, H2 and H3 respectively. In fact B1 = {χi| 1 ≤ i ≤ 22},
B2 = {χi| 23 ≤ i ≤ 44} and B3 = {χi| 45 ≤ i ≤ 64}, where Irr(26:S8) =

⋃3
i=1Bi.

The character table of Ḡ is displayed in Table 5. Note that the centralizers of the
elements of Ḡ are listed in the last column of Table 1.

The character table of Ḡ = 26:S8, which we computed in this paper and dis-
played in Table 5, has been incorporated into and available in the latest version
of GAP [29] as well.
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Table 5: The character table of Ḡ

[g]S8
1A 2A 2B 2C

[x]26:S8
1A 2A 2B 2C 4A 4B 2D 2E 2F 2G 4C 2H 4D 2I 4E 4F

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1
χ3 7 7 7 5 5 5 5 -1 -1 -1 -1 3 3 3 3 3
χ4 7 7 7 -5 -5 -5 -5 -1 -1 -1 -1 3 3 3 3 3
χ5 14 14 14 4 4 4 4 4 6 6 6 6 2 2 2 2
χ6 14 14 14 -4 -4 -4 -4 4 6 6 6 6 2 2 2 2
χ7 20 20 20 10 10 10 10 4 4 4 4 4 4 4 4 4
χ8 20 20 20 -10 -10 -10 -10 4 4 4 4 4 4 4 4 4
χ9 21 21 21 9 9 9 9 -3 -3 -3 -3 1 1 1 1 1
χ10 21 21 21 -9 -9 -9 -9 -3 -3 -3 -3 1 1 1 1 1
χ11 42 42 42 0 0 0 0 -6 -6 -6 -6 2 2 2 2 2
χ12 28 28 28 10 10 10 10 -4 -4 -4 -4 4 4 4 4 4
χ13 28 28 28 -10 -10 -10 -10 -4 -4 -4 -4 4 4 4 4 4
χ14 35 35 35 5 5 5 5 3 3 3 3 -5 -5 -5 -5 -5
χ15 35 35 35 -5 -5 -5 -5 3 3 3 3 -5 -5 -5 -5 -5
χ16 90 90 90 0 0 0 0 -6 -6 -6 -6 -6 -6 -6 -6 -6
χ17 56 56 56 4 4 4 4 8 8 8 8 0 0 0 0 0
χ18 56 56 56 -4 -4 -4 -4 8 8 8 8 0 0 0 0 0
χ19 64 64 64 16 16 16 16 0 0 0 0 0 0 0 0 0
χ20 64 64 64 -16 -16 -16 -16 0 0 0 0 0 0 0 0 0
χ21 70 70 70 10 10 10 10 -2 -2 -2 -2 2 2 2 2 2
χ22 70 70 70 -10 -10 -10 -10 -2 -2 -2 -2 2 2 2 2 2
χ23 28 4 -4 16 4 -4 0 4 4 -4 0 8 4 0 -4 0
χ24 28 4 -4 14 6 -2 -2 -4 -4 4 0 4 8 -4 0 0
χ25 28 4 -4 -16 -4 4 0 4 4 -4 0 8 4 0 -4 0
χ26 28 4 -4 -14 -6 2 2 -4 -4 4 0 4 8 -4 0 0
χ27 140 20 -20 -40 -20 4 8 4 4 -4 0 0 12 -8 4 0
χ28 140 20 -20 40 20 -4 -8 4 4 -4 0 0 12 -8 4 0
χ29 140 20 -20 50 10 -14 2 -4 -4 4 0 12 0 4 -8 0
χ30 140 20 -20 -50 -10 14 -2 -4 -4 4 0 12 0 4 -8 0
χ31 140 20 -20 20 0 -8 4 -12 -12 12 0 8 4 0 -4 0
χ32 140 20 -20 -20 0 8 -4 -12 -12 12 0 8 4 0 -4 0
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Table 5: The character table of Ḡ (continued)

[g]S8
2D 3A 3B 4A 4B

[x]26:S8
2J 4G 4H 4I 3A 6A 6B 3B 6C 6D 4J 4K 8A 4L 4M 4N 8B

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 -1 -1 -1 -1 1 1 1 1 1 1 -4 -4 -4 -4 -4 -4 -4
χ3 1 1 1 1 4 4 4 1 1 1 3 3 3 -1 -1 -1 -1
χ4 -1 -1 -1 -1 4 4 4 1 1 1 -3 -3 -3 1 1 1 1
χ5 0 0 0 0 -1 -1 -1 2 2 2 -2 -2 -2 2 2 2 2
χ6 0 0 0 0 -1 -1 -1 2 2 2 2 2 2 -2 -2 -2 -2
χ7 2 2 2 2 5 5 5 -1 -1 -1 2 2 2 2 2 2 2
χ8 -2 -2 -2 -2 5 5 5 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2
χ9 -3 -3 -3 -3 6 6 6 0 0 0 3 3 3 -1 -1 -1 -1
χ10 3 3 3 3 6 6 6 0 0 0 -3 -3 -3 1 1 1 1
χ11 0 0 0 0 -6 -6 -6 0 0 0 0 0 0 0 0 0 0
χ12 2 2 2 2 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2
χ13 -2 -2 -2 -2 1 1 1 1 1 1 2 2 2 2 2 2 2
χ14 -3 -3 -3 -3 5 5 5 2 2 2 1 1 1 1 1 1 1
χ15 3 3 3 3 5 5 5 2 2 2 -1 -1 -1 -1 -1 -1 -1
χ16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ17 4 4 4 4 -4 -4 -4 -1 -1 -1 0 0 0 0 0 0 0
χ18 -4 -4 -4 -4 -4 -4 -4 -1 -1 -1 0 0 0 0 0 0 0
χ19 0 0 0 0 4 4 4 -2 -2 -2 0 0 0 0 0 0 0
χ20 0 0 0 0 4 4 4 -2 -2 -2 0 0 0 0 0 0 0
χ21 -2 -2 -2 -2 -5 -5 -5 1 1 1 -4 -4 -4 0 0 0 0
χ22 2 2 2 2 -5 -5 -5 1 1 1 4 4 4 0 0 0 0
χ23 4 -4 0 0 10 2 -2 1 1 -1 6 -2 0 2 2 -2 0
χ24 -2 2 -2 2 10 2 -2 1 1 -1 6 -2 0 -2 -2 2 0
χ25 -4 4 0 0 10 2 -2 1 1 -1 -6 2 0 -2 -2 2 0
χ26 2 -2 2 -2 10 2 -2 1 1 -1 -6 2 0 2 2 -2 0
χ27 4 -4 0 0 20 4 -4 -1 -1 1 -6 2 0 -2 -2 2 0
χ28 -4 4 0 0 20 4 -4 -1 -1 1 6 -2 0 2 2 -2 0
χ29 2 -2 2 -2 20 4 -4 -1 -1 1 6 -2 0 -2 -2 2 0
χ30 -2 2 -2 2 20 4 -4 -1 -1 1 -6 2 0 2 2 -2 0
χ31 0 0 4 -4 -10 -2 2 2 2 -2 -6 2 0 -2 -2 2 0
χ32 0 0 -4 4 -10 -2 2 2 2 -2 6 -2 0 2 2 -2 0
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Table 5: The character table of Ḡ (continued)

[g]S8
4C 4D 5A 6A 6B

[x]26:SS8
4O 4P 4Q 4R 8C 8D 4S 5A 10A 6E 12A 6F 12B 12C 6G

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
χ3 -1 -1 -1 1 1 1 1 2 2 -1 -1 2 2 2 2
χ4 -1 -1 -1 1 1 1 1 2 2 1 1 -2 -2 -2 -2
χ5 2 2 2 0 0 0 0 -1 -1 -2 -2 1 1 1 1
χ6 2 2 2 0 0 0 0 -1 -1 2 2 -1 -1 -1 -1
χ7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
χ8 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1
χ9 1 1 1 -1 -1 -1 -1 1 1 0 0 0 0 0 0
χ10 1 1 1 -1 -1 -1 -1 1 1 0 0 0 0 0 0
χ11 2 2 2 -2 -2 -2 -2 2 2 0 0 0 0 0 0
χ12 0 0 0 0 0 0 0 -2 -2 1 1 1 1 1 1
χ13 0 0 0 0 0 0 0 -2 -2 -1 -1 -1 -1 -1 -1
χ14 -1 -1 -1 -1 -1 -1 -1 0 0 2 2 -1 -1 -1 -1
χ15 -1 -1 -1 -1 -1 -1 -1 0 0 -2 -2 1 1 1 1
χ16 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
χ17 0 0 0 0 0 0 0 1 1 1 1 -2 -2 -2 -2
χ18 0 0 0 0 0 0 0 1 1 -1 -1 2 2 2 2
χ19 0 0 0 0 0 0 0 -1 -1 -2 -2 -2 -2 -2 -2
χ20 0 0 0 0 0 0 0 -1 -1 2 2 2 2 2 2
χ21 -2 -2 -2 0 0 0 0 0 0 1 1 1 1 1 1
χ22 -2 -2 -2 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1
χ23 0 0 0 2 0 0 -2 3 -1 1 -1 4 2 -2 0
χ24 0 0 0 0 -2 2 0 3 -1 -1 1 2 4 0 -2
χ25 0 0 0 2 0 0 -2 3 -1 -1 1 -4 -2 2 0
χ26 0 0 0 0 -2 2 0 3 -1 1 -1 -2 -4 0 2
χ27 0 0 0 -2 0 0 2 0 0 -1 1 2 -2 -2 2
χ28 0 0 0 -2 0 0 2 0 0 1 -1 -2 2 2 -2
χ29 0 0 0 0 2 -2 0 0 0 -1 1 2 -2 -2 2
χ30 0 0 0 0 2 -2 0 0 0 1 -1 -2 2 2 -2
χ31 0 0 0 -2 0 0 -2 0 0 2 -2 2 4 0 -2
χ32 0 0 0 -2 0 0 -2 0 0 -2 2 -2 -4 0 2
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Table 5: The character table of Ḡ (continued)

[g]S8
6C 6D 6E 7A 8A 10A 12A 15A

[x]26:SS8
6H 12D 12E 6I 12F 6J 6K 6L 7A 8E 8F 10B 20A 12G 24A 15A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
χ3 0 0 0 1 1 -1 -1 -1 0 -1 -1 0 0 0 0 -1
χ4 0 0 0 -1 -1 -1 -1 -1 0 1 1 0 0 0 0 -1
χ5 -1 -1 -1 0 0 0 0 0 0 0 0 -1 -1 1 1 -1
χ6 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 -1 -1 -1
χ7 1 1 1 -1 -1 1 1 1 -1 0 0 0 0 -1 -1 0
χ8 1 1 1 1 1 1 1 1 -1 0 0 0 0 1 1 0
χ9 -2 -2 -2 0 0 0 0 0 0 1 1 -1 -1 0 0 1
χ10 -2 -2 -2 0 0 0 0 0 0 -1 -1 1 1 0 0 1
χ11 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 -1
χ12 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1
χ13 1 1 1 1 1 -1 -1 -1 0 0 0 0 0 -1 -1 1
χ14 1 1 1 0 0 0 0 0 0 -1 -1 0 0 1 1 0
χ15 1 1 1 0 0 0 0 0 0 1 1 0 0 -1 -1 0
χ16 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
χ17 0 0 0 1 1 -1 -1 -1 0 0 0 -1 -1 0 0 1
χ18 0 0 0 -1 -1 -1 -1 -1 0 0 0 1 1 0 0 1
χ19 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 -1
χ20 0 0 0 0 0 0 0 0 1 0 0 -1 -1 0 0 -1
χ21 -1 -1 -1 1 1 1 1 1 0 0 0 0 0 -1 -1 0
χ22 -1 -1 -1 -1 -1 1 1 1 0 0 0 0 0 1 1 0
χ23 2 -2 0 1 -1 1 1 -1 0 0 0 1 -1 0 0 0
χ24 -2 2 0 1 -1 -1 -1 1 0 0 0 -1 1 0 0 0
χ25 2 -2 0 -1 1 1 1 -1 0 0 0 -1 1 0 0 0
χ26 -2 2 0 -1 1 -1 -1 1 0 0 0 1 -1 0 0 0
χ27 0 0 0 1 -1 1 1 -1 0 0 0 0 0 0 0 0
χ28 0 0 0 -1 1 1 1 -1 0 0 0 0 0 0 0 0
χ29 0 0 0 -1 1 -1 -1 1 0 0 0 0 0 0 0 0
χ30 0 0 0 1 -1 -1 -1 1 0 0 0 0 0 0 0 0
χ31 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ32 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5: The character table of Ḡ (continued)

[g]S8
1A 2A 2B 2C

[x]26:S8
1A 2A 2B 2C 4A 4B 2D 2E 2F 2G 4C 2H 4D 2I 4E 4F

χ33 140 20 -20 10 10 2 -6 12 12 -12 0 4 8 -4 0 0
χ34 140 20 -20 -10 -10 -2 6 12 12 -12 0 4 8 -4 0 0
χ35 452 36 -36 -36 -24 0 12 -12 -12 12 0 0 12 -8 4 0
χ36 452 36 -36 36 24 0 -12 -12 -12 12 0 0 12 -8 4 0
χ37 452 36 -36 54 6 -18 6 12 12 -12 0 12 0 4 -8 0
χ38 452 36 -36 -54 -6 18 -6 12 12 -12 0 12 0 4 -8 0
χ39 280 40 -40 40 0 -16 8 -8 -8 8 0 -8 -16 8 0 0
χ40 280 40 -40 -40 0 16 -8 -8 -8 8 0 -8 -16 8 0 0
χ41 280 40 -40 20 20 4 -12 8 8 -8 0 -16 -8 0 8 0
χ42 280 40 -40 -20 -20 -4 12 8 8 -8 0 -16 -8 0 8 0
χ43 448 64 -64 16 -16 -16 16 0 0 0 0 0 0 0 0 0
χ44 448 64 -64 -16 16 16 -16 0 0 0 0 0 0 0 0 0
χ45 35 -5 3 15 -5 3 -1 11 -5 3 -1 7 -5 -1 3 -1
χ46 35 -5 3 -15 5 -3 1 -5 11 3 -1 7 -5 -1 3 -1
χ47 35 -5 3 -15 5 -3 1 11 -5 3 -1 7 -5 -1 3 -1
χ48 35 -5 3 15 -5 3 -1 -5 11 3 -1 7 -5 -1 3 -1
χ49 70 -10 6 0 0 0 0 6 6 6 -2 -10 14 6 -2 -2
χ50 140 -20 12 -30 10 -6 2 12 12 12 -4 4 4 4 4 -4
χ51 140 -20 12 30 -10 6 -2 12 12 12 -4 4 4 4 4 -4
χ52 140 -20 12 0 0 0 0 -4 28 12 -4 4 4 4 4 -4
χ53 140 -20 12 0 0 0 0 28 -4 12 -4 4 4 4 4 -4
χ54 210 -30 18 -30 10 -6 2 -6 -6 -6 2 -10 14 6 -2 -2
χ55 210 -30 18 30 -10 6 -2 -6 -6 -6 2 -10 14 6 -2 -2
χ56 210 -30 18 -60 20 -12 4 -6 -6 -6 2 14 -10 -2 6 -2
χ57 210 -30 18 60 -20 12 -4 -6 -6 -6 2 14 -10 -2 6 -2
χ58 315 -45 27 -45 15 -9 3 -21 27 3 -1 3 -9 -5 -1 3
χ59 315 -45 27 -45 15 -9 3 27 -21 3 -1 3 -9 -5 -1 3
χ60 315 -45 27 45 -15 9 -3 -21 27 3 -1 3 -9 -5 -1 3
χ61 315 -45 27 45 -15 9 -3 27 -21 3 -1 3 -9 -5 -1 3
χ62 420 -60 36 -30 10 -6 2 -12 -12 -12 4 4 4 4 4 -4
χ63 420 -60 36 30 -10 6 -2 -12 -12 -12 4 4 4 4 4 -4
χ64 630 -90 54 0 0 0 0 6 6 6 -2 -18 6 -2 -10 6
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Table 5: The character table of Ḡ (continued)

[g]S8
2D 3A 3B 4A 4B

[x]26:S8
2J 4G 4H 4I 3A 6A 6B 3B 6C 6D 4J 4K 8A 4L 4M 4N 8B

χ33 -6 6 2 -2 -10 -2 2 2 2 -2 -6 2 0 2 2 -2 0
χ34 6 -6 -2 2 -10 -2 2 2 2 -2 6 -2 0 -2 -2 2 0
χ35 0 0 4 -4 0 0 0 0 0 0 6 -2 0 2 2 -2 0
χ36 0 0 -4 4 0 0 0 0 0 0 -6 2 0 -2 -2 2 0
χ37 6 -6 -2 2 0 0 0 0 0 0 -6 2 0 2 2 -2 0
χ38 -6 6 2 -2 0 0 0 0 0 0 6 -2 0 -2 -2 2 0
χ39 -8 8 0 0 10 2 -2 1 1 -1 0 0 0 0 0 0 0
χ40 8 -8 0 0 10 2 -2 1 1 -1 0 0 0 0 0 0 0
χ41 4 -4 4 -4 10 2 -2 1 1 -1 0 0 0 0 0 0 0
χ42 -4 4 -4 4 10 2 -2 1 1 -1 0 0 0 0 0 0 0
χ43 0 0 0 0 -20 -4 4 -2 -2 2 0 0 0 0 0 0 0
χ44 0 0 0 0 -20 -4 4 -2 -2 2 0 0 0 0 0 0 0
χ45 3 3 -1 -1 5 -3 1 2 -2 0 1 1 -1 5 -3 1 -1
χ46 -3 -3 1 1 5 -3 1 2 -2 0 -1 -1 1 3 -5 -1 1
χ47 -3 -3 1 1 5 -3 1 2 -2 0 -1 -1 1 -5 3 -1 1
χ48 3 3 -1 -1 5 -3 1 2 -2 0 1 1 -1 -3 5 1 -1
χ49 0 0 0 0 10 -6 2 4 -4 0 0 0 0 0 0 0 0
χ50 -6 -6 2 2 5 -3 1 -4 4 0 -2 -2 2 -2 -2 -2 2
χ51 6 6 -2 -2 5 -3 1 -4 4 0 2 2 -2 2 2 2 -2
χ52 0 0 0 0 -10 6 -2 2 -2 0 0 0 0 0 0 0 0
χ53 0 0 0 0 -10 6 -2 2 -2 0 0 0 0 0 0 0 0
χ54 6 6 -2 -2 15 -9 3 0 0 0 -4 -4 4 0 0 0 0
χ55 -6 -6 2 2 15 -9 3 0 0 0 4 4 -4 0 0 0 0
χ56 0 0 0 0 15 -9 3 0 0 0 -2 -2 2 2 2 2 -2
χ57 0 0 0 0 15 -9 3 0 0 0 2 2 -2 -2 -2 -2 2
χ58 3 3 -1 -1 0 0 0 0 0 0 3 3 -3 3 -5 -1 1
χ59 3 3 -1 -1 0 0 0 0 0 0 3 3 -3 -5 3 -1 1
χ60 -3 -3 1 1 0 0 0 0 0 0 -3 -3 3 -3 5 1 -1
χ61 -3 -3 1 1 0 0 0 0 0 0 -3 -3 3 5 -3 1 -1
χ62 -6 -6 2 2 -15 9 -3 0 0 0 2 2 -2 2 2 2 -2
χ63 6 6 -2 -2 -15 9 -3 0 0 0 -2 -2 2 -2 -2 -2 2
χ64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5: The character table of Ḡ (continued)

[g]S8
4C 4D 5A 6A 6B

[x]26:SS8
4O 4P 4Q 4R 8C 8D 4S 5A 10A 6E 12A 6F 12B 12C 6G

χ33 0 0 0 0 2 -2 0 0 0 -2 2 4 2 -2 0
χ34 0 0 0 0 2 -2 0 0 0 2 -2 -4 -2 2 0
χ35 0 0 0 2 0 0 -2 -3 1 0 0 0 0 0 0
χ36 0 0 0 2 0 0 -2 -3 1 0 0 0 0 0 0
χ37 0 0 0 0 -2 2 0 -3 1 0 0 0 0 0 0
χ38 0 0 0 0 -2 2 0 -3 1 0 0 0 0 0 0
χ39 0 0 0 0 0 0 0 0 0 1 -1 -2 -4 0 2
χ40 0 0 0 0 0 0 0 0 0 -1 1 2 4 0 -2
χ41 0 0 0 0 0 0 0 0 0 -1 1 -4 -2 2 0
χ42 0 0 0 0 0 0 0 0 0 1 -1 4 2 -2 0
χ43 0 0 0 0 0 0 0 3 -1 -2 2 -2 2 2 -2
χ44 0 0 0 0 0 0 0 3 -1 2 -2 2 -2 -2 2
χ45 3 -1 -1 1 -1 -1 1 0 0 0 0 3 -3 1 -1
χ46 -1 3 -1 1 -1 -1 1 0 0 0 0 -3 3 -1 1
χ47 3 -1 -1 1 -1 -1 1 0 0 0 0 -3 3 -1 1
χ48 -1 3 -1 1 -1 -1 1 0 0 0 0 3 -3 1 -1
χ49 -2 -2 2 -2 2 2 -2 0 0 0 0 0 0 0 0
χ50 0 0 0 0 0 0 0 0 0 0 0 3 -3 1 -1
χ51 0 0 0 0 0 0 0 0 0 0 0 -3 3 -1 1
χ52 -4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
χ53 4 -4 0 0 0 0 0 0 0 0 0 0 0 0 0
χ54 2 2 -2 0 0 0 0 0 0 0 0 3 -3 1 -1
χ55 2 2 -2 0 0 0 0 0 0 0 0 -3 3 -1 1
χ56 -2 -2 2 0 0 0 0 0 0 0 0 -3 3 -1 1
χ57 -2 -2 2 0 0 0 0 0 0 0 0 3 -3 1 -1
χ58 3 -1 -1 -1 1 1 -1 0 0 0 0 0 0 0 0
χ59 -1 3 -1 -1 1 1 -1 0 0 0 0 0 0 0 0
χ60 3 -1 -1 -1 1 1 -1 0 0 0 0 0 0 0 0
χ61 -1 3 -1 -1 1 1 -1 0 0 0 0 0 0 0 0
χ62 0 0 0 0 0 0 0 0 0 0 0 3 -3 1 -1
χ63 0 0 0 0 0 0 0 0 0 0 0 -3 3 -1 1
χ64 -2 -2 2 2 -2 -2 2 0 0 0 0 0 0 0 0
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Table 5: The character table of Ḡ (continued)

[g]S8
6C 6D 6E 7A 8A 10A 12A 15A

[x]26:SS8
6H 12D 12E 6I 12F 6J 6K 6L 7A 8E 8F 10B 20A 12G 24A 15A

χ33 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ34 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ35 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
χ36 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0
χ37 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
χ38 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0
χ39 -2 2 0 1 -1 1 1 -1 0 0 0 0 0 0 0 0
χ40 -2 2 0 -1 1 1 1 -1 0 0 0 0 0 0 0 0
χ41 2 -2 0 1 -1 -1 -1 1 0 0 0 0 0 0 0 0
χ42 2 -2 0 -1 1 -1 -1 1 0 0 0 0 0 0 0 0
χ43 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0
χ44 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
χ45 1 1 -1 0 0 2 -2 0 0 1 -1 0 0 1 -1 0
χ46 1 1 -1 0 0 -2 2 0 0 1 -1 0 0 -1 1 0
χ47 1 1 -1 0 0 2 -2 0 0 -1 1 0 0 -1 1 0
χ48 1 1 -1 0 0 -2 2 0 0 -1 1 0 0 1 -1 0
χ49 2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0
χ50 1 1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0
χ51 1 1 -1 0 0 2 -2 0 0 1 -1 0 0 -1 1 0
χ52 -2 -2 2 0 0 2 -2 0 0 0 0 0 0 0 0 0
χ53 -2 -2 2 0 0 -2 2 0 0 0 0 0 0 0 0 0
χ54 -1 -1 1 0 0 0 0 0 0 0 0 0 0 -1 1 0
χ55 -1 -1 1 0 0 0 0 0 0 0 0 0 0 1 -1 0
χ56 -1 -1 1 0 0 0 0 0 0 0 0 0 0 1 -1 0
χ57 -1 -1 1 0 0 0 0 0 0 0 0 0 0 -1 1 0
χ58 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0
χ59 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0
χ60 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0
χ61 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0
χ62 1 1 -1 0 0 0 0 0 0 0 0 0 0 -1 1 0
χ63 1 1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0
χ64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5. The Fusion of Ḡ into Fi22

We use the results of the conjugacy classes of Ḡ which are given in Section 2,
to compute the power maps of the elements of Ḡ which we list in Table 6.
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Table 6: The power maps of the elements of Ḡ

[g]S8
[x]26:S8

2 3 5 7 [g]S8
[x]26:S8

2 3 5 7

1A 1A 2A 2C 1A
2A 1A 4A 2A
2B 1A 4B 2A

2D 1A
2B 2E 1A 2C 2H 1A

2F 1A 4D 2B
2G 1A 2I 1A
4C 2B 4E 2B

4F 2A
2D 2J 1A 3A 3A 1A

4G 2A 6A 3A 2B
4H 2A 6B 3A 2A
4I 2B

3B 3B 1A 4A 4J 2H
6C 3B 2A 4K 2H
6D 3B 2B 8A 4D

4B 4L 2H 4C 4O 2E
4M 2H 4P 2F
4N 2H 4Q 2G
8B 4E

4D 4R 2H 5A 5A 1A
8C 4D 10A 5A 2A
8D 4E
4S 2I

6A 6E 3B 2D 6B 6F 3A 2C
12A 6C 4B 12B 6B 4B

12C 6B 4A
6G 3A 2D

6C 6H 3A 2H 6D 6I 3B 2J
12D 6A 4D 12F 6C 4G
12E 6B 4F

6E 6J 3B 2E 7A 7A 1A
6K 3B 2F
6L 3B 2G

8A 8E 4O 10A 10B 5A 2C
8F 4P 20A 10A 4A

12A 12G 6H 4J 15A 15A 5A 3A
24A 12D 8A

Our group Ḡ = 26:S8 sits maximally inside the group E = 26:Sp6(2). Moori
and Mpono in [22] computed the character table of E, which is also available in
GAP [29]. The fusion of Ḡ into E will help us to determine the fusion of Ḡ into
Fi22. We give the fusion map of Ḡ into E in Table 7.

The power maps of Fi22 are given in the ATLAS and GAP. In order to complete
the fusion of Ḡ into Fi22 we sometimes use the technique of set intersection. For
detailed information regarding the technique of set intersection we refer to [1], [4],
[5], [21] and [25]. We give the complete list of class fusions of Ḡ into Fi22 in Table
8.

168



Table 7: The fusion of Ḡ into E

[g]Ḡ −→ [h]E [g]Ḡ −→ [h]E [g]Ḡ −→ [h]E [g]Ḡ −→ [h]E
1A 1A 2A 2A 2B 2A 2C 2B
4A 4A 4B 4A 2D 2C 2E 2D
2F 2E 2G 2E 4C 4B 2H 2F
4D 4C 2I 2G 4E 4C 4F 4D
2J 2H 4G 4E 4H 4F 4I 4G
3A 3A 6A 6A 6B 6A 3B 3C
6C 6B 6D 6B 4J 4L 4K 4M
8A 8B 4L 4J 4M 4K 4N 4K
8B 8A 4O 4N 4P 4O 4Q 4P
4R 4Q 8C 8D 8D 8C 4S 4R
5A 5A 10A 10A 6E 6H 12A 12E
6F 6D 12B 12B 12C 12B 6G 6E
6H 6G 12D 12C 12E 12D 6I 6I
12F 12F 6J 6J 6K 6K 6L 6K
7A 7A 8E 8E 8F 8F 10B 10B
20A 20A 12G 12H 24A 24B 15A 15A

Table 8: The fusion of Ḡ into Fi22

[g]S8
[x]26:S8

−→ [h]Fi22
[g]S8

[x]26:S8
−→ [h]Fi22

1A 1A 1A 2A 2C 2A
2A 2B 4A 4B
2B 2B 4B 4B

2D 2C
2B 2E 2B 2C 2H 2B

2F 2C 4D 4A
2G 2B 2I 2C
4C 4A 4E 4A

4F 4E

2D 2J 2C 3A 3A 3A
4G 4B 6A 6D
4H 4E 6B 6D
4I 4C

3B 3B 3C 4A 4J 4B
6C 6I 4K 4E
6D 6I 8A 8A

4B 4L 4B 4C 4O 4A
4M 4E 4P 4D
4N 4B 4Q 4E
8B 8B

4D 4R 4E 5A 5A 5A
8C 8B 10A 10B
8D 8A
4S 4D

6A 6E 6E 6B 6F 6A
12A 12J 12B 12D

12C 12D
6G 6F

6C 6H 6D 6D 6I 6J
12D 12B 12F 12J
12E 12I

6E 6J 6I 7A 7A 7A
6K 6H
6L 6I

8A 8E 8B 10A 10B 10A
8F 8D 20A 20A

12A 12G 12D 15A 15A 15A
24A 24B
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Generalized uniformly close-to-convex functions
of order γ and type β

F.M. Al-Oboudi∗

Abstract

In this paper, a class of analytic functions f defined on the open unit
disc satisfying

Re

{
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

}
> β

∣∣∣∣
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

∣∣∣∣ + γ,

is studied, where β ≥ 0, −1 ≤ γ < 1, β + γ ≥ 0. and g is a certain
analytic function associated with conic domains.
Among other results, inclusion relations and the coefficients bound are
studied. Various known special cases of these results are pointed out.
A subclass of uniformly quasi-convex functions is also studied.

Keywords: Univalent functions, uniformly close-to-convex, uniformly quasi-
convex, fractional differential operator.

2000 AMS Classification: 30C45.

1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k,

analytic in the unit disc E = {z ∈ C : |z| < 1}, and let S denote the class of
functions f ∈ A which are univalent on E. Denote by CV (γ), ST (γ), CC(γ),
and QC(γ), where 0 ≤ γ < 1, the well-known subclasses of S which are convex,
starlike, close-to-convex and quasi-convex functions of order γ, respectively, and
by CV, ST,CC, and QC, the corresponding classes when γ = 0.

Define the function ϕ(a, c; z) by

ϕ(a, c; z) = z2F1(1, a; c; z) =
∞∑

k=0

(a)k
(c)k

zk−1, c 6= 0,−1,−2, . . . , z ∈ E,

where (σ)k is Pochhammer symbol defined in terms of Gamma function.

∗Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrah-
man University, Riyadh, Saudi Arabia, Email: fmaloboudi@pnu.edu.sa



Owa and Srivastava [18] introduced the operator Ωα : A→ A where

Ωαf(z) = Γ(2− α)zαDα
z f(z), α 6= 2, 3, . . .

= z +
∞∑

k=2

Γ(k + 1)Γ(2− α)

Γ(k + 1− α)
akz

k,(1.2)

= ϕ(2, 2− α; z) ∗ f(z).(1.3)

Note that Ω0f(z) = f(z).
The linear fractional differential operator Dn,α

λ f : A → A, 0 ≤ α < 1, λ ≥
0, n ∈ N0 = N ∪ {0} is defined [5] as follows

(1.4) Dn,α
λ f(z) = z +

∞∑

k=2

ψk,n(α, λ)akz
k, n ∈ N0,

where

ψk,n(α, λ) =

[
Γ(k + 1)Γ(2− α)

Γ(k + 1− α)
(1 + λ(k − 1))

]n
.

From (1.3), and (1.4), Dn,α
λ f(z) can be written, in terms of convolution, as

(1.5) Dn,α
λ f(z) = [ϕ(2, 2− α; z) ∗ hλ(z) ∗ · · · ∗ ϕ(2, 2− α; z) ∗ hλ(z)]︸ ︷︷ ︸

n-times

∗f(z),

where

hλ(z) =
z − (1− λ)z2

(1− z)2
= z +

∞∑

k=2

[1 + λ(k − 1)]zk.

Note that Dn,0
λ = Dn

λ (Al-Oboudi differential operator [4]), Dn,0
1 = Dn (Salagean

differential operator [23]) and D1,α
0 = Ωα (Owa-Srivastava fractional differential

operator [18]).
Using the operator Dn,α

λ , the following classes are defined [5].
The classes UCV n,αλ (β, γ), β ≥ 0, −1 ≤ γ < 1, β + γ ≥ 0, and SPn,αλ (β, γ),

satisfying

f ∈ UCV n,αλ (β, γ) if and only if zf ′ ∈ SPn,αλ (β, γ).

Note that f ∈ UCV n,αλ (β, γ)(SPn,αλ (β, γ)) if and only ifDn,α
λ f ∈ UCV (β, γ)(SP (β, γ)),

where UCV (β, γ), is the class of uniformly convex functions of order β and type γ
and SP (β, γ), is the class of functions of conic domains and related withUCV (β, γ)
by Alexander-type relation [7].

These classes generalize various other classes investigated earlier by Goodman
[9], Ronning [20], [21], Kanas and Wisniowska [10], [11] Srivastava and Mishra [26]
and others. Several basic and interesting results have been studied for these classes
[5], [6], such as inclusion relations, convolution properties, coefficient bounds, sub-
ordination results.

The class UCC(β, γ), of uniformly close-to-convex functions of order γ and type
β is defined [3] as

Re

{
zf ′(z)
g(z)

}
> β

∣∣∣∣
zf ′(z)
g(z)

− 1

∣∣∣∣+ γ,
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where g ∈ SP (β, γ), β ≥ 0,−1 ≤ γ < 1, and β + γ ≥ 0. It is clear that
UCC(0, γ) = CC(γ).

Since these functions are related to the uniformly convex functions UCV and
with the class SP , they are called uniformly close-to-convex functions [8].

Denote by UQC(β, γ), the class of uniformly quasi-convex functions of order γ
and type β [3], where

f ∈ UQC(β, γ), if and only if zf ′ ∈ UCC(β, γ).

Note that

UCV (β, γ) ⊂ UQC(β, γ) ⊂ UCC(β, γ).

The classes of uniformly close-to-convex and quasi-convex functions of order γ
and type β had been studied by a number of authors under different operators,
for example Acu [1], Acu and Blezu [2], Blezu [8], Kumar and Ramesha [13], Noor
et al [16], Srivastava and Mishra [25] and Srivastava et al [26].

In the following, we use the operator Dn,α
λ to define generalized classes of uni-

formly close-to-convex functions and uniformly quasi-convex functions of order γ
and type β.

1.1. Definition. A function f ∈ A is in the class UCCn,αλ (β, γ) if and only if,
there exist a function g ∈ SPn,αλ (β, γ) such that z ∈ E,

(1.6) Re

{
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

}
> β

∣∣∣∣
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

∣∣∣∣+ γ,

where β ≥ 0, −1 ≤ γ < 1, β + γ ≥ 0. Note that Dn,α
λ f ∈ UCC(β, γ), and that

SPn,αλ (β, γ) ⊂ UCCn,αλ (β, γ).

1.2. Definition. A function f ∈ A is in the class Un,αλ QC(β, γ) if and only if,
there exists a function g ∈ UCV n,αλ (β, γ) such that for z ∈ E,

(1.7) Re

{
(z(Dn,α

λ f(z))′)′

(Dn,α
λ g(z))′

}
> β

∣∣∣∣
(z(Dn,α

λ f(z))′)′

(Dn,α
λ g(z)

− 1

∣∣∣∣+ γ,

where β ≥ 0, −1 ≤ γ < 1, β + γ ≥ 0. Note that Dn,α
λ f ∈ UQC(β, γ).

It is clear that

(1.8) f ∈ UQCn,αλ (β, γ) if and only if zf́ ∈ UCCn,αλ (β, γ),

and that

(1.9) UCV n,αλ (β, γ) ⊂ UQCn,αλ (β, γ) ⊂ UCCn,αλ (β, γ).

We may rewrite the condition (1.6)((1.7)), in the form

(1.10) p ≺ Pβ,γ ,

where p(z) =
z(Dn,αλ f(z))′

Dn,αλ g(z)
(

(z(Dn,αλ f(z))′)′

D(n,αλ g(z))′ ) and the function Pβ,γ is given in [5].

By virtue of (1.6), (1.7) and the properties of the domain Rβ,γ , we have respec-
tively

(1.11) Re

{
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

}
>
β + γ

1 + β
,
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and

(1.12) Re

{
(z(Dn,α

λ f(z))′)′

D(n,αλ g(z))′

}
>
β + γ

1 + β
,

which means that

f ∈ UCC(β, γ) implies Dn,α
λ f ∈ CC

(
β + γ

1 + β

)
⊆ CC,

and

f ∈ UQC(β, γ) implies Dn,α
λ f ∈ QC

(
β + γ

1 + β

)
⊆ QC.

Definitions 1.1, and 1.2, includes various classes introduced earlier by Al-Oboudi
and Al-Amoudi [4], Blezu [8], Acu and Bezu [2], Aghalary and Azadi [3], Subra-
manian et al [27],.Kumar and Ramesha [13],.Kaplan [12], and Noor and Thomas
[15]

In this paper, basic results for the classes UCCn,αλ (β, γ) and UQCn,αλ (β, γ)
such as inclusion relations, the coefficients bound and sufficient condition, will be
studied. Various known special cases of these results are pointed out.

2. Inclusion Relations

The inclusion relations of the classes UCCn,αλ (β, γ) and UQCn,αλ (β, γ) for dif-
ferent values of the parameters n, α, β and γ will be studied. It will also be shown
that the classes UQCn,αλ (β, γ) and SPn,αλ (β, γ) are not related with set inclusion.
To derive our results we need the following.

2.1. Lemma. [22] Let f, g ∈ A be univalent starlike of order
1

2
. Then, for every

function F ∈ A, we have

f(z) ∗ g(z)F (z)

f(z) ∗ g(z)
∈ coF (z), z ∈ E,

where co denotes the closed convex hull.

2.2. Lemma. [14] Let P be analytic function in E, with Re P (z) > 0 for z ∈ E,
and let h be a convex function in E. If p is analytic in E, with p(0) = h(0) and if
p(z) + P (z)zp′(z) ≺ h(z), then p(z) ≺ h(z).

Following the same method of [5, Lemma 2.5], we obtain.

2.3. Lemma. Let Ωαf be in the class UCCn,αλ (β, γ)(UQCn,αλ (β, γ)), then so is
f .

2.4. Theorem. Let 0 ≤ λ ≤ 1 + β

1− γ . Then

UCCn+1,α
λ (β, γ) ⊂ UCCn,αλ (β, γ).

Proof. Let f ∈ UCCn+1,α
λ (β, γ). Then by (1.10)

(2.1)
z(Dn+1,α

λ f(z))′

Dn+1,α
λ g(z)

≺ Pβ,γ(z),
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where the function Pβ,γ is given in [5], and g ∈ SPn+1,α
λ (β, γ). From [5, proof of

Theorem 2.4], Ωαg(z) ∈ SPn,αλ (β, γ), for 0 ≤ λ < 1 + β

1− γ . Hence

(2.2)
z(Dn,α

λ Ωαg(z))′

Dn,α
λ Ωαg(z)

= q(z),

where q(z) ≺ Pβ,γ(z).
By the definition of Dn,α

λ f , we get

Dn+1,α
λ f(z) = (1− λ)Dn,α

λ Ωαf(z) + λz(Dn,α
λ Ωαf(z))′

and

Dn+1,α
λ g(z) = (1− λ)Dn,α

λ Ωαg(z) + λz(Dn,α
λ Ωαg(z))′.

Using (2.1), (2.2) and the above equalities, with the notation p(z) =
z(Dn,α

λ Ωαf(z))′

Dn,α
λ Ωαg(z)

,

we obtain

(2.3)
z(Dn+1,α

λ f(z))′

Dn+1,α
λ g(z)

= p(z) +
λzp′(z)

(1− λ)q(z)
.

For λ = 0, Ωαf ∈ UCCn,αλ (β, γ), from (2.1) and (2.3). Hence by Lemma 2.2
f ∈ UCCn,αλ (β, γ).

For λ 6= 0, (2.3) can be written, using (2.1), as

(2.4) p(z) +
zp′(z)

(1−λ)
λ q(z)

≺ Pβ,γ .

Hence by Lemma 2.2 and (1.11), we have p(z) ≺ Pβ,γ(z) for 0 < λ ≤ 1 + β

1− γ .

Thus Ωαf ∈ UCCn,αλ (β, γ), which implies that f ∈ UCCn,αλ (β, γ), using Lemma
2.3. �

2.5. Corollary. Let 0 ≤ λ ≤ 1 + β

1− γ . Then

UQCn+1,α
λ (β, γ) ⊂ UQCn,αλ (β, γ).

Proof. Let f ∈ UQCn+1,α
λ (β, γ), 0 ≤ λ ≤ 1 + β

1− γ . Then by (1.8) zf´∈ UCCn+1,α
λ (β, γ).

Which implies, by Theorem 2.4, that

zf´∈ UCCn,αλ (β, γ)

Hence, by (1.8), f ∈ UQCn,αλ (β, γ). �

2.6. Corollary. Let 0 ≤ λ ≤ 1 + β

1− λ . Then

UCCn,αλ (β, γ) ⊂ UCC0,α
λ (β, γ) ≡ UCC(β, γ) ⊂ CC,

and

UQCn,αλ (β, γ) ⊂ UQC0,α
λ (β, γ) ≡ UQC(β, γ) ⊂ CC.
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This means that, for 0 < λ ≤ 1 + β

1− γ functions in UCCn,αλ (β, γ) and UQCn,αλ (β, γ),

are close-to-convex and hence univalent.

2.7. Remark. If we put λ = 1 and α = 0, in Theorem 2.4, then we get the result
of Blezu [8].

In view of the relations

UCV n,αλ (β, γ) ⊂ SPn,αλ (β, γ) ⊂ UCCn,αλ (β, γ),

and

UCV n,αλ (β, γ) ⊂ UQCn,αλ (β, γ) ⊂ UCCn,αλ (β, γ),

one may ask whether the classes SPn,αλ (β, γ) and UQCn,αλ (β, γ) are related with
set inclusion? The answer is negative. The function f0, defined by

f0(z) =
1− i

2

z

1− z −
1 + i

2
log(1− z).

belongs to UQCn,αλ (β, γ), but not to SPn,αλ (β, γ). In fact, Silverman and Telage

[24], have shown that f0 6∈ ST ≡ SP 0,α
λ (1, 0) and that f0 ∈ QC ≡ UQC0,α

λ (1, 0)..Also,

the Koebe function K(z) =
z

(1− z)2
∈ SP 0,α

λ (1, 0) and K(z) 6∈ UQC0,α
λ (1, 0).

In the following we prove the inclusion relation with respect to α.

2.8. Theorem. Let 0 ≤ µ ≤ α < 1. Then

UCCn,αλ (β, γ) ⊂ UCCn,µλ (β, γ),

where

(
0 ≤ β < 1 and

1

2
≤ γ < 1

)
or (β ≥ 1 and 0 ≤ γ < 1).

Proof. Let f ∈ UCCn,αλ (β, γ). Then by (1.5) and the convolution properties, we
have

z(Dn,µ
λ f(z))′ = ϕ(2− α, 2− µ; z) ∗ · · · ∗ ϕ(2− α, 2− µ; z)︸ ︷︷ ︸

n-times

∗z(Dn,α
λ f(z))′.

Hence

z(Dn,µ
λ f(z))′

Dn,µ
λ g(z)

=

ϕ(2− α, 2− µ; z) ∗ · · · ∗ ϕ(2− α, 2− µ; z)︸ ︷︷ ︸
n-times

∗z(D
n,α
λ f(z))′

Dn,α
λ g(z)

Dn,α
λ g(z)

ϕ(2− α, 2− µ; z) ∗ · · · ∗ ϕ(2− α, 2− µ; z)︸ ︷︷ ︸
n-times

∗Dn,α
λ g(z)

.

It has been shown [5] that the function ϕ(2− α, 2− µ; z) ∗ · · · ∗ ϕ(2− α, 2− µ; z)︸ ︷︷ ︸
n-times

∈

ST

(
1

2

)
andDn,α

λ g(z) is a starlike function of order
1

2
for

(
0 ≤ β < 1 and

1

2
≤ γ < 1

)

or (β ≥ 1 and 0 ≤ γ < 1). Applying Lemma 2.1, we get the required result. �
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The next result follows using (1.8).

2.9. Corollary. Let 0 ≤ µ ≤ α < 1. Then

UQCn,αλ (β, γ) ⊂ UQCn,µλ (β, γ),

where

(
0 ≤ β < 1 and

1

2
≤ γ < 1

)
or (β ≥ 1 and 0 ≤ γ < 1).

The inclusion relation with respect to β and γ follows directly by (1.6) and
(1.7).

2.10. Theorem. Let β1 ≥ β2, and γ1 ≥ γ2. Then

(i) UCCn,αλ (β1, γ1) ⊂ UCCn,αλ (β2, γ2).
(ii) UQCn,αλ (β1, γ1) ⊂ UQCn,αλ (β2, γ2).

2.11. Remark. If we put λ = 1 and α = 0, in Theorem 2.10 (i), we get the result
of Blezu [8].

3. Coefficients Bound

To derive our results we need the folowing.

3.1. Lemma. [5] If a function f ∈ A, of the form (1.1) is in SPn,αλ (β, γ), then

|ak| ≤
1

ψk,n(α, λ)
· (P1)k−1

(1)k−1
, k ≥ 2,

where

(3.1) P1 = P1(β, γ) =





8(1− γ)(cos−1 β)2

π2(1− β2)
, 0 ≤ β < 1,

8

π2
(1− γ) , β = 1

π2(1− γ)

4 ⊆ t(β2 − 1)k2(t)(1 + t)
, β > 1, 0 < t < 1,

3.2. Lemma. [19] Let h(z) = 1 +

∞∑

k=1

ckz
k be subordinate to H(z) = 1 +

∞∑

k=1

Ckz
k

in E. If H(z) is univalent in E and H(E) is convex, then |ck| ≤ |C1|, k ≥ 1.

3.3. Theorem. Let f ∈ UCCn,αλ (β, γ), and given by (1.1). Then

|ak| ≤
1

ψk,n(α, λ)
· (P1)k−1

(1)k−1
, k ≥ 2,

where P1 is given by (3.1).

Proof. Since f ∈ UCCn,αλ (β, γ), then

(3.2)
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

= p(z) ≺ Pβ,γ ,

179



where p(z) = 1 +
∞∑

k=1

ckz
k, g ∈ SPn,αλ (β, γ), and g(z) = z +

∞∑

k=2

bkz
k. The

function Pβ,γ is univalent in E and Pβ,γ(E), the conic domain is a convex domain,
hence, applying Lemma 3.2, we obtain

|ck| ≤ P1, k ≥ 1.

where P1 is given by (3.1).
From (3.2) and (1.4), we get

(3.3) z +

∞∑

k=2

ψk,n(α, λ)kakz
k =

(
z +

∞∑

k=2

ψk,n(α, λ)bkz
k

)(
1 +

∞∑

k=1

ckz
k

)
.

Equating the coefficients of zk in (3.3), we get

ψk,n(α, λ)kak =
k−1∑

j=1

[ck−jbjψj,n(α, λ)] + bkψk,n(α, λ), c0 = 1

= ck−1 +
k−1∑

j=2

[ck−jbjψj,n(α, λ)] + bkψk,n(α, λ), b1 = ψ1,n(α, λ) = 1.

Hence

ψk,n(α, λ)k|ak| ≤ |ck−1|+
k−1∑

j=2

[|ck−j | |bj |ψj,n(α, λ)] + |bk|ψk,n(α, λ).

Using Lemmas 3.1 and 3.2, we obtain

(3.4) ψk,n(α, λ)k|ak| ≤ P1



1 +

k−1∑

j=2

[
(P1)j−1

(1)j−1

]
+

(P1)k−1

(1)k−1
.

Applying mathematical induction, we can see that

(3.5) 1 +
k−1∑

j=2

[
(P1)j−1

(1)j−1

]
=

(P1)k−1

P1(1)k−2
.

Using (3.5) in (3.4), we get

ψk,n(α, λ)k|ak| ≤
(P1)k−1

(1)k−2
+

(P1)k−1

(1)k−1

=
(P1)k−1

(1)k−1
k ,

which is the required result. �
From (1.8) and Theorem 3.3, we immediately have

3.4. Corollary. Let f ∈ UQCn,αλ (β, γ). Then

|ak| ≤
1

ψk,n(α, λ)
· (P1)k−1

(1)k
, k ≥ 2,

where P1 is given by (3.1).

3.5. Remark. The results of Theorem 3.3 and Corollary 3.4 are sharp for k = 2.
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3.6. Remark. In special cases, Theorem 3.1 reduces to the results of Acu and
Blezu [2], Subramanian et al [27], Kaplan [12] and Noor and Thomas [15].

Next we give a sufficient condition for a function to be in the class UCCn,αλ (β, γ).

3.7. Theorem. If

(3.6)

∞∑

k=2

k|ak|ψk,n(α, λ) ≤ (1− γ)

1 + β
,

then a function f , given by (1.1), is in UCCn,αλ (β, γ).

Proof. Let g(z) = z. Then Dn,α
λ g(z) = z, and

z(Dn,α
λ f(z))′

Dn,α
λ g(z)

= z(Dn,α
λ f(z))′ =

∞∑

k=2

kψk,n(α, λ)akz
k.

It is sufficient to show that

β

∣∣∣∣
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

∣∣∣∣− Re

{
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

}
< (1− γ).

Now

β

∣∣∣∣
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

∣∣∣∣− Re

{
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

}

≤ (1 + β)

∣∣∣∣
z(Dn,α

λ f(z))′

Dn,α
λ g(z)

− 1

∣∣∣∣

≤ (1 + β)

∣∣∣∣∣
∞∑

k=2

kψk,n(α, λ)akz
k−1

∣∣∣∣∣

≤ (1 + β)
∞∑

k=2

kψk,n(α, λ)ak.

The last expression is bounded above by (1− γ), if (3.6) is satisfied. �
From (1.8) and Theorem 3.7, we get

3.8. Corollary. A function f of the form (1.1) is in UQCn,αλ (β, γ) if
∞∑

k=2

k2|ak|ψk,n(α, λ) ≤ (1− γ)

1 + β
.

3.9. Remark. Theorem 3.7 and Corollary 3.8, reduces to a result of Subramanian
et al [27].
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Abstract

We calculate the number of D-J equivalence classes and equivariant
homeomorphism classes of all orientable small covers over the product
of 2-cube with n-gon.
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1. Introduction

As defined by Davis and Januszkiewicz [5], a small cover is a smooth closed
manifold Mn with a locally standard (Z2)n−action such that its orbit space is a
simple convex polytope. For instance, the real projective space RPn with a natural
(Z2)n−action is a small cover over an n-simplex. This gives a direct connection
between equivariant topology and combinatorics, making research on the topology
of small covers possible through the combinatorial structure of quotient spaces.

Lü and Masuda [7] showed that the equivariant homeomorphism class of a
small cover over a simple convex polytope Pn agrees with the equivalence class of
its corresponding (Z2)n−coloring under the action of the automorphism group of
the face poset of Pn. This finding also holds true for orientable small covers by
the orientability condition in [8] (see Theoerem 2.5). However, general formulas
for calculating the number of equivariant homeomorphism classes of (orientable)
small covers over an arbitrary simple convex polytope do not exist.

In recent years, several studies have attempted to enumerate the number of
equivalence classes of all small covers over a specific polytope. Garrison and Scott
[6] used a computer program to calculate the number of homeomorphism classes
of all small covers over a dodecahedron. Cai, Chen and Lü [2] calculated the
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number of equivariant homeomorphism classes of small covers over prisms (an n-
sided prism is the product of 1-cube and n-gon). Choi [3] determined the number
of equivariant homeomorphism classes of small covers over cubes. However, little
is known about orientable small covers. Choi [4] calculated the number of D-
J equivalence classes of orientable small covers over cubes. This paper aims to
determine the number of D-J equivalence classes and equivariant homeomorphism
classes of all orientable small covers over I2 × Pn (see Theorem 3.1 and Theorem
4.1), where I2 and Pn denote 2-cube and n-gon, respectively.

The paper is organized as follows. In Section 2, we review the basic theory on
orientable small covers and calculate the automorphism group of the face poset
of I2 × Pn. In Section 3, we determine the number of D-J equivalence classes
of orientable small covers over I2 × Pn. In Section 4, we obtain a formula for
the number of equivariant homeomorphism classes of orientable small covers over
I2 × Pn.

2. Preliminaries

A convex polytope Pn of dimension n is simple if every vertex of Pn is the
intersection of n facets (i.e., faces of dimension (n − 1)) [9]. An n-dimensional
smooth closed manifold Mn is a small cover if it admits a smooth (Z2)n−action
such that the action is locally isomorphic to a standard action of (Z2)n on Rn and
the orbit space Mn/(Z2)n is a simple convex polytope of dimension n.

Let Pn be a simple convex polytope of dimension n and F(Pn) = {F1, · · · , F`}
be the set of facets of Pn. Assuming that π : Mn → Pn is a small cover over Pn,
then there are ` connected submanifolds π−1(F1), · · · , π−1(F`). Each submani-
fold π−1(Fi) is fixed pointwise by a Z2−subgroup Z2(Fi) of (Z2)n. Obviously,
the Z2−subgroup Z2(Fi) agrees with an element νi in (Z2)n as a vector space.
For each face F of codimension u, given that Pn is simple, there are u facets
Fi1 , · · · , Fiu such that F = Fi1 ∩ · · · ∩Fiu . Then, the corresponding submanifolds

π−1(Fi1), · · · , π−1(Fiu) intersect transversally in the (n−u)-dimensional subman-
ifold π−1(F ), and the isotropy subgroup Z2(F ) of π−1(F ) is a subtorus of rank u
generated by Z2(Fi1), · · · ,Z2(Fiu) (or is determined by νi1 , · · · , νiu in (Z2)n). This
gives a characteristic function [5]

λ : F(Pn) −→ (Z2)n

which is defined by λ(Fi) = νi such that whenever the intersection Fi1 ∩· · ·∩Fiu is
non-empty, λ(Fi1), · · · , λ(Fiu) are linearly independent in (Z2)n. Assuming that
each nonzero vector of (Z2)n is a color, then the characteristic function λ means
that each facet is colored. Hence, we also call λ a (Z2)n-coloring on Pn.

In fact, Davis and Januszkiewicz gave a reconstruction process of a small cover
by using a (Z2)n-coloring λ : F(Pn) −→ (Z2)n. Let Z2(Fi) be the subgroup of
(Z2)n generated by λ(Fi). Given a point p ∈ Pn, we denote the minimal face
containing p in its relative interior by F (p). Assuming that F (p) = Fi

1
∩ · · · ∩ Fiu

and Z2(F (p)) =
⊕u

j=1 Z2(Fij ), then Z2(F (p)) is a u-dimensional subgroup of

(Z2)n. Let M(λ) denote Pn × (Z2)n/ ∼, where (p, g) ∼ (q, h) if p = q and g−1h ∈
Z2(F (p)). The free action of (Z2)n on Pn × (Z2)n descends to an action on M(λ)
with quotient Pn. Thus, M(λ) is a small cover over Pn [5].
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Two small covers M1 and M2 over Pn are called weakly equivariantly homeo-
morphic if there is an automorphism ϕ : (Z2)n → (Z2)n and a homeomorphism
f : M1 →M2 such that f(t ·x) = ϕ(t) ·f(x) for every t ∈ (Z2)n and x ∈M1. If ϕ is
an identity, then M1 and M2 are equivariantly homeomorphic. Following [5], two
small covers M1 and M2 over Pn are called Davis-Januszkiewicz equivalent (or sim-
ply, D-J equivalent) if there is a weakly equivariant homeomorphism f : M1 →M2

covering the identity on Pn.
By Λ(Pn), we denote the set of all (Z2)n-colorings on Pn. We have

2.1. Theorem. ([5]) All small covers over Pn are given by {M(λ)|λ ∈ Λ(Pn)},
i.e., for each small cover Mn over Pn, there is a (Z2)n-coloring λ with an equi-
variant homeomorphism M(λ) −→Mn covering the identity on Pn.

Nakayama and Nishimura [8] found an orientability condition for a small cover.

2.2. Theorem. For a basis {e1, · · · , en} of (Z2)n, a homomorphism ε : (Z2)n −→
Z2 = {0, 1} is defined by ε(ei) = 1(i = 1, · · · , n). A small cover M(λ) over a simple
convex polytope Pn is orientable if and only if there exists a basis {e1, · · · , en} of
(Z2)n such that the image of ελ is {1}.

A (Z2)n-coloring that satisfies the orientability condition in Theorem 2.2 is an
orientable coloring of Pn. We know that there exists an orientable small cover over
every simple convex 3-polytope [8]. Similarly, we know the existence of orientable
small cover over I2×Pn by the existence of orientable colorings and determine the
number of D-J equivalence classes and equivariant homeomorphism classes.

By O(Pn), we denote the set of all orientable colorings on Pn. There is a
natural action of GL(n,Z2) on O(Pn) defined by the correspondence λ 7−→ σ ◦ λ,
and the action on O(Pn) is free. We assume that F1, · · · , Fn of F(Pn) meet at
one vertex p of Pn. Let e1, · · · , en be the standard basis of (Z2)n and B(Pn) =
{λ ∈ O(Pn)|λ(Fi) = ei, i = 1, · · · , n}. Then B(Pn) is the orbit space of O(Pn)
under the action of GL(n,Z2).

2.3. Remark. We have B(Pn) = {λ ∈ O(Pn)|λ(Fi) = ei, i = 1, · · · , n and
for n+1 ≤ j ≤ `, λ(Fj) = ej1 +ej2 + · · ·+ej2hj+1

, 1 ≤ j1 < j2 < · · · < j2hj+1 ≤ n}.
Below, we show that λ(Fj) = ej1 + ej2 + · · · + ej2hj+1

for n + 1 ≤ j ≤ `. If λ ∈
O(Pn), there exists a basis {e′1, · · · , e′n} of (Z2)n such that for 1 ≤ i ≤ `, λ(Fi) =
e′i1 + · · · + e′i2fi+1

, 1 ≤ i1 < · · · < i2fi+1 ≤ n. Given that λ(Fi) = ei, i = 1, · · · , n,

then ei = e′i1 + · · · + e′i2fi+1
. Thus, for n + 1 ≤ j ≤ `, λ(Fj) is not of the form

ej1 + · · ·+ ej2k , 1 ≤ j1 < · · · < j2k ≤ n.
Given that B(Pn) is the orbit space of O(Pn), then we have

2.4. Lemma. |O(Pn)| = |B(Pn)| × |GL(n,Z2)|.

Note that |GL(n,Z2)| =
n∏
k=1

(
2n − 2k−1

)
[1]. Two orientable small coversM(λ1)

and M(λ2) over Pn are D-J equivalent if and only if there is σ ∈ GL(n,Z2) such
that λ1 = σ ◦ λ2. Thus the number of D-J equivalence classes of orientable small
covers over Pn is |B(Pn)|.

Let Pn be a simple convex polytope of dimension n. All faces of Pn form a
poset (i.e., a partially ordered set by inclusion). An automorphism of F(Pn) is a
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bijection from F(Pn) to itself that preserves the poset structure of all faces of Pn.
By Aut(F(Pn)), we denote the group of automorphisms of F(Pn). We define the
right action of Aut(F(Pn)) on O(Pn) by λ × h 7−→ λ ◦ h, where λ ∈ O(Pn) and
h ∈ Aut(F(Pn)). By improving the classifying result on unoriented small covers
in [7], we have

2.5. Theorem. Two orientable small covers over an n-dimensional simple convex
polytope Pn are equivariantly homeomorphic if and only if there is h ∈ Aut(F(Pn))
such that λ1 = λ2◦h, where λ1 and λ2 are their corresponding orientable colorings
on Pn.

Proof. Theorem 2.5 is proven true by combining Lemma 5.4 in [7] with Theorem
2.2. �

According to Theorem 2.5, the number of orbits of O(Pn) under the action
of Aut(F(Pn)) is the number of equivariant homeomorphism classes of orientable
small covers over Pn. Thus, we count the number of orbits. Burnside Lemma is
very useful in enumerating the number of orbits.

Burnside Lemma Let G be a finite group acting on a set X. Then the number of
orbits X under the action of G equals 1

|G|
∑
g∈G |Xg|, where Xg = {x ∈ X|gx = x}.

Burnside Lemma suggests that, to determine the number of the orbits of O(Pn)
under the action of Aut(F(Pn)), the structure of Aut(F(Pn)) should first be un-
derstood. We shall particularly be concerned when the simple convex polytope is
I2 × Pn.

For convenience, we introduce the following marks. By F ′1, F
′
2, F

′
3, and F ′4 we

denote four edges of the 2-cube I2 in their general order (here I2 is considered
as a 4-gon). Similarly, by F ′5, F

′
6, · · · , and F ′n+4, we denote all edges of n-gon Pn

in their general order. Set F′ = {Fi = F ′i × Pn|1 ≤ i ≤ 4}, and F′′ = {Fi =
I2 × F ′i |5 ≤ i ≤ n+ 4}. Then F(I2 × Pn) = F′

⋃
F′′.

Next, we determine the automorphism group of face poset of I2 × Pn.
2.6. Lemma. When n=4, the automorphism group Aut(F(I2×Pn)) is isomorphic
to (Z2)4 × S4, where S4 is the symmetric group on four symbols. When n 6= 4,
Aut(F(I2 × Pn)) is isomorphic to D4 × Dn, where Dn is the dihedral group of
order 2n.

Proof. When n=4, I2 × Pn is a 4-cube I4. Obviously, the automorphism group
Aut(F(I4)) contains a symmetric group S4 because there is exactly one auto-
morphism for each permutation of the four pairs of opposite sides of I4. All ele-
ments of Aut(F(I4)) can be written in a simple form as χe11 χ

e2
2 χ

e3
3 χ

e4
4 · u, where

e1, e2, e3, e4 ∈ Z2, with reflections χ1, χ2, χ3, χ4 and u ∈ S4. Thus, the automor-
phism group Aut(F(I4)) is isomorphic to (Z2)4 × S4.

Whenn 6= 4, the facets of F′ and F′′ are mapped to F′ and F′′, respectively,
under the automorphisms of Aut(F(I2×Pn)). Given that the automorphism group
Aut(F(I2)) is isomorphic to D4 and Aut(F(Pn)) is isomorphic to Dn, Aut(F(I2×
Pn)) is isomorphic to D4 ×Dn. �
2.7. Remark. Let x, y, x′, y′ be the four automorphisms of Aut(F(I2×Pn)) with
the following properties:
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(a) x(Fi) = Fi+1(1 ≤ i ≤ 3), x(F4) = F1, x(Fj) = Fj , 5 ≤ j ≤ n+ 4;

(b) y(Fi) = F5−i(1 ≤ i ≤ 4), y(Fj) = Fj , 5 ≤ j ≤ n+ 4;

(c) x′(Fi) = Fi(1 ≤ i ≤ 4), x′(Fj) = Fj+1(5 ≤ j ≤ n+ 3), x′(Fn+4) = F5;

(d) y′(Fi) = Fi(1 ≤ i ≤ 4), y′(Fj) = Fn+9−j , 5 ≤ j ≤ n+ 4.

Then, when n 6= 4, all automorphisms of Aut(F(I2 × Pn)) can be written in a
simple form as follows:

(1) xuyvx′u
′
y′v
′
, u ∈ Z4, u

′ ∈ Zn, v, v′ ∈ Z2

with x4 = y2 = x′n = y′2 = 1, xuy = yx4−u, and x′u
′
y′ = y′x′n−u

′
.

3. Orientable colorings on I2 × Pn

This section is devoted to calculating the number of all orientable colorings on
I2 × Pn. We also determine the number of D-J equivalence classes of orientable
small covers over I2 × Pn.

3.1. Theorem. By N, we denote the set of natural numbers. Let a, b, c be the
functions from N to N with the following properties:

(1) a(j) = 2a(j − 1) + 8a(j − 2) with a(1) = 1, a(2) = 2;

(2) b(j) = b(j − 1) + 4b(j − 2) with b(1) = b(2) = 1;

(3) c(j) = 2c(j−1)+4c(j−2)−6c(j−3)−3c(j−4)+4c(j−5) with c(1) = c(2) = 1,
c(3) = 3, c(4) = 7, c(5) = 17.

Then, the number of all orientable colorings on I2 × Pn is

|O(I2×Pn)| =
4∏
k=1

(
24 − 2k−1

)
·[a(n−1)+4b(n−1)+2c(n−1)+5· 1+(−1)n

2 ].

Proof. Let e1, e2, e3, e4 be the standard basis of (Z2)4, then (Z2)4 contains 15
nonzero elements (or 15 colors). We choose F1, F2 from F′ and F5, F6 from F′′

such that F1, F2, F5, F6 meet at one vertex of I2 × Pn. Then

B(I2×Pn) = {λ ∈ O(I2×Pn)|λ(F1) = e1, λ(F2) = e2, λ(F5) = e3, λ(F6) =e4}.
By Lemma 2.4, we have

|O(I2 × Pn)| = |B(I2 × Pn)| × |GL(4,Z2)| =
4∏
k=1

(
24 − 2k−1

)
· |B(I2 × Pn)|.

Write

B0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, e1 + e3 + e4},
B1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e3, e1 + e2 + e4}.
By the definition of B(Pn) and Remark 2.3, we have |B(I2 × Pn)| = |B0(I2 ×

Pn)|+ |B1(I2 × Pn)|. Then, our argument proceeds as follows.

(I) Calculation of |B0(I2 × Pn)|.

In this case, no matter which value of λ(F3) is chosen, λ(F4) = e2, e2 + e1 +
e3, e2 + e1 + e4, e2 + e3 + e4. Write

B0
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2},
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B1
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2 + e1 + e3},

B2
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2 + e1 + e4},

B3
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1, λ(F4) = e2 + e3 + e4},

B4
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2},

B5
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e3},

B6
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e4},

B7
0(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e3 + e4}.

By the definition of B0(I2 × Pn) and Remark 2.3, we have |B0(I2 × Pn)| =
7∑
i=0

|Bi0(I2 × Pn)|. Then, our argument is divided into the following cases.

Case 1. Calculation of |B0
0(I2 × Pn)|.

By the definition of B(Pn) and Remark 2.3, we have λ(Fn+4) = e4, e4 + e1 +

e2, e4 + e1 + e3, e4 + e2 + e3. Set B0,0
0 (I2 × Pn) = {λ ∈ B0

0(I2 × Pn)|λ(Fn+3) =

e3, e1+e2+e3} and B0,1
0 (I2×Pn) = B0

0(I2×Pn)−B0,0
0 (I2×Pn). Take an orientable

coloring λ in B0,0
0 (I2 × Pn). Then, λ(Fn+2), λ(Fn+4) ∈ {e4, e4 + e1 + e2, e4 + e1 +

e3, e4+e2+e3}. In this case, the values of λ restricted to Fn+3 and Fn+4 have eight

possible choices. Thus, |B0,0
0 (I2 × Pn)| = 8|B0

0(I2 × Pn−2)|. Take an orientable

coloring λ in B0,1
0 (I2×Pn). Then, λ(Fn+3) = e4, e4+e1+e2, e4+e1+e3, e4+e2+e3.

If we fix any value of λ(Fn+3), then λ(Fn+4) has only two possible values. Thus,

|B0,1
0 (I2 × Pn)| = 2|B0

0(I2 × Pn−1)|. Furthermore, we have that

|B0
0(I2 × Pn)| = 2|B0

0(I2 × Pn−1)|+ 8|B0
0(I2 × Pn−2)|.

A direct observation shows that |B0
0(I2 × P2)| = 1 and |B0

0(I2 × P3)| = 2. Thus,
|B0

0(I2 × Pn)| = a(n− 1).

Case 2. Calculation of |B1
0(I2 × Pn)|.

Set B1,0
0 (I2 × Pn) = {λ ∈ B1

0(I2 × Pn)|λ(Fn+3) = e3} and B1,1
0 (I2 × Pn) =

B1
0(I2 × Pn) − B1,0

0 (I2 × Pn). Take an orientable coloring λ in B1,0
0 (I2 × Pn).

Then, λ(Fn+2), λ(Fn+4) ∈ {e4, e4 +e1 +e2, e4 +e1 +e3, e4 +e2 +e3}, so |B1,0
0 (I2×

Pn)| = 4|B1
0(I2 × Pn−2)|. Take an orientable coloring λ in B1,1

0 (I2 × Pn). Then,
λ(Fn+3) = e4, e4 +e1 +e2, e4 +e1 +e3, e4 +e2 +e3. However, λ(Fn+4) has only one
possible value whichever of the four possible values of λ(Fn+3) is chosen. Thus,

|B1,1
0 (I2 × Pn)| = |B1

0(I2 × Pn−1)|. We easily determine that |B1
0(I2 × P2)| =

|B1
0(I2 × P3)| = 1. Thus, |B1

0(I2 × Pn)| = b(n− 1).

Case 3. Calculation of |B2
0(I2 × Pn)|.

If we interchange e3 and e4, then the problem is reduced to Case 2. Thus,
|B2

0(I2 × Pn)| = b(n− 1).

Case 4. Calculation of |B3
0(I2 × Pn)|.

In this case, λ(Fn+4) = e4, e4 + e1 + e3. Set B3,0
0 (I2 × Pn) = {λ ∈ B3

0(I2 ×
Pn)|λ(Fn+3) = e3}, B3,1

0 (I2×Pn) = {λ ∈ B3
0(I2×Pn)|λ(Fn+3) = e4, e4 +e1 +e3},

and B3,2
0 (I2 × Pn) = {λ ∈ B3

0(I2 × Pn)|λ(Fn+3) = e1 + e2 + e3, e1 + e2 + e4}.
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Then, |B3
0(I2×Pn)| = |B3,0

0 (I2×Pn)|+ |B3,1
0 (I2×Pn)|+ |B3,2

0 (I2×Pn)|. An easy

argument shows that |B3,0
0 (I2 × Pn)| = 2|B3

0(I2 × Pn−2)| and |B3,1
0 (I2 × Pn)| =

|B3
0(I2 × Pn−1)|. Thus,

(2) |B3
0(I2 × Pn)| = |B3

0(I2 × Pn−1)|+ 2|B3
0(I2 × Pn−2)|+ |B3,2

0 (I2 × Pn)|.
Set B(n) = {λ ∈ B3,2

0 (I2 × Pn)|λ(Fn+2) = e1 + e3 + e4}. Then,

(3) |B3,2
0 (I2 × Pn)| = |B3,2

0 (I2 × Pn−1)|+ |B(n)|
and

(4) |B(n)| = 2|B3
0(I2 × Pn−4)|+ 2|B3

0(I2 × Pn−5)|+ |B(n− 2)|+ 2|B3,2
0 (I2 ×

Pn−2)|.
Combining Eqs. (2), (3) and (4), we obtain

|B3
0(I2 × Pn)| = 2|B3

0(I2 × Pn−1)|+ 4|B3
0(I2 × Pn−2)| − 6|B3

0(I2 × Pn−3)|−
3|B3

0(I2 × Pn−4)|+ 4|B3
0(I2 × Pn−5)|.

A direct observation shows that |B3
0(I2 × P2)| = |B3

0(I2 × P3)| = 1, |B3
0(I2 ×

P4)| = 3, |B3
0(I2×P5)| = 7, and |B3

0(I2×P6)| = 17. Thus, |B3
0(I2×Pn)| = c(n−1).

Case 5. Calculation of |B4
0(I2 × Pn)|.

If we interchange e1 and e2, then the problem is reduced to Case 4; thus,
|B4

0(I2 × Pn)| = c(n− 1).

Case 6. Calculation of |B5
0(I2 × Pn)|.

In this case, λ(F7) = e3, λ(F8) = e4, · · · , λ(F7+2i) = e3, λ(F7+2i+1) = e4, · · · .
Thus, |B5

0(I2 × Pn)| = 1+(−1)n

2 .

Case 7. Calculation of |B6
0(I2 × Pn)|.

Similar to Case 6, we have |B6
0(I2 × Pn)| = 1+(−1)n

2 .

Case 8. Calculation of |B7
0(I2 × Pn)|.

Similar to Case 6, we have |B7
0(I2 × Pn)| = 1+(−1)n

2 .

Thus, |B0(I2 × Pn)| = a(n− 1) + 2b(n− 1) + 2c(n− 1) + 3 · 1+(−1)n

2 .

(II) Calculation of |B1(I2 × Pn)|.
In this case, no matter which value of λ(F3) is chosen, λ(F4) = e2, e2 + e3 + e4.

Write

B0
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e3, λ(F4) = e2},

B1
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e3, λ(F4) = e2 + e3 + e4},

B2
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e4, λ(F4) = e2},

B3
1(I2 × Pn) = {λ ∈ B(I2 × Pn)|λ(F3) = e1 + e2 + e4, λ(F4) = e2 + e3 + e4}.

By the definition of B1(I2 × Pn) and Remark 2.3, we have |B1(I2 × Pn)| =
3∑
i=0

|Bi1(I2 × Pn)|. Then, our argument is divided into the following cases.

Case 1. Calculation of |B0
1(I2 × Pn)|.
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If we interchange e1 and e2, then the problem is reduced to Case 2 in (I); thus,
|B0

1(I2 × Pn)| = b(n− 1).

Case 2. Calculation of |B1
1(I2 × Pn)|.

Similar to Case 6 in (I), we have |B1
1(I2 × Pn)| = 1+(−1)n

2 .

Case 3. Calculation of |B2
1(I2 × Pn)|.

If we interchange e1 and e2, then the problem is reduced to Case 3 in (I); thus
|B2

1(I2 × Pn)| = b(n− 1).

Case 4. Calculation of |B3
1(I2 × Pn)|.

Similar to Case 6 in (I), we have |B3
1(I2 × Pn)| = 1+(−1)n

2 .

Thus, |B1(I2 × Pn)| = 2b(n− 1) + 1 + (−1)n. �

3.2. Remark. By using the above method, we prove that

|O(P2 × Pn)| =
4∏

k=1

(
24 − 2k−1

)
· a(n− 1).

Based on Theorem 3.1, we know that the number of D-J equivalence classes of

orientable small covers over I2×Pn is a(n−1)+4b(n−1)+2c(n−1)+5 · 1+(−1)n

2 .

4. Number of equivariant homeomorphism classes

In this section, we determine the number of equivariant homeomorphism classes
of all orientable small covers over I2 × Pn.

Let ϕ denote the Euler’s totient function, i.e., ϕ(1) = 1, ϕ(N) for a positive
integer N (N ≥ 2) is the number of positive integers both less than N and coprime
to N . We have

4.1. Theorem. Let Eo(I
2×Pn) denote the number of equivariant homeomorphism

classes of orientable small covers over I2 × Pn. Then, Eo(I
2 × Pn) is equal to

(1) 1
16n{

∑
t′>1,t′|n

ϕ( nt′ )[|O(P2 × Pt′)|+ |O(P4 × Pt′)|] + 40320
∑

t′>1,t′|n
ϕ( nt′ )[a(t′−

1) + 2b(t′ − 1) + c(t′ − 1)]} for n odd,

(2) 1
16n{

∑
t′>1,t′|n

ϕ( nt′ )[|O(P2 × Pt′)|+ |O(P4 × Pt′)|] + 40320
∑

t′>1,t′|n
ϕ( nt′ )[a(t′−

1) + 2b(t′ − 1) + c(t′ − 1)] + 40320n[ã(n) + c̃(n) + d̃(n) + ẽ(n) + 5
4 ]} for n

even and n 6= 4,

(3) 12180 for n = 4,

where ã(j), b̃(j), c̃(j), d̃(j), and ẽ(j) are defined as follows

ã(j) =





0, j odd,

1, j = 2,

4, j = 4,

2ã(j − 2) + 8ã(j − 4), j even and j ≥ 6,
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b̃(j) =





4, j = 6,

8, j = 8,

b̃(j − 2) + 4b̃(j − 4), j even and j ≥ 10,

0, otherwise,

c̃(j) =





0, j odd,

1, j = 2,

2, j = 4,

6, j = 6,

b̃(j) + b̃(j − 2) + c̃(j − 4), j even and j ≥ 8,

d̃(j) =





0, j odd,

1, j = 2,

4, j = 4,

d̃(j − 2) + 4d̃(j − 4), j even and j ≥ 6,

and

ẽ(j) =





0, j odd,

1, j = 2,

2, j = 4,

6, j = 6,

14, j = 8,

38, j = 10,

2ẽ(j − 2) + 4ẽ(j − 4)− 6ẽ(j − 6)− 3ẽ(j − 8) + 4ẽ(j − 10),
j even and j ≥ 12.

Proof. Based on Theorem 2.5, Burnside Lemma, and Lemma 2.6, we have

Eo(I
2 × Pn) =

{ 1
16n

∑
g∈Aut(F(I2×Pn)) |Λg|, n 6= 4,

1
384

∑
g∈Aut(F(I4)) |Λg|, n = 4,

where Λg = {λ ∈ O(I2 × Pn)|λ = λ ◦ g}.
The argument is divided into three cases: (I) n odd, (II) n even and n 6= 4,

(III) n = 4.

(I) n odd

Given that n is odd, by Remark 2.7, each automorphism g of Aut(F(I2 × Pn))

can be written as xuyvx′u
′
y′v
′
.

Case 1. g = xux′u
′
.
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Let t = gcd(u, 4) (the greatest common divisor of u and 4) and t′ = gcd(u′, n).
Then all facets of F′ are divided into t orbits under the action of g, and each orbit
contains 4

t facets. Thus, each orientable coloring of Λg gives the same coloring on

all 4
t facets of each orbit. Similarly, all facets of F′′ are divided into t′ orbits under

the action of g, and each orbit contains n
t′ facets. Thus, each orientable coloring of

Λg gives the same coloring on all nt′ facets of each orbit. Hence, if t 6= 1 and t′ 6= 1,
then |Λg| = |O(Pt × Pt′)|. If t=1 (or t′ = 1), then all facets of F′ (or F′′) have the
same coloring, which is impossible by the definition of orientable colorings. For
every t > 1, there are exactly ϕ( 4

t ) automorphisms of the form xu, each of which
divides all facets of F′ into t orbits. Similarly, for every t′ > 1, there are exactly
ϕ( nt′ ) automorphisms of the form x′u

′
, each of which divides all facets of F′′ into

t′ orbits. Thus, when g = xux′u
′
,

∑
g=xux′u′

|Λg| =
∑

t,t′>1,t|4,t′|n
ϕ( 4

t )ϕ( nt′ )|O(Pt × Pt′ |

=
∑

t′>1,t′|n
ϕ( nt′ )[|O(P2 × Pt′)|+ |O(P4 × Pt′)|].

Case 2. g = xux′u
′
y′ or xuyx′u

′
y′.

Given that n is odd, each automorphism always gives an interchange between
two neighborly facets of F′′. Thus, the two neighborly facets have the same color-
ing, which contradicts the definition of orientable colorings. Hence, Λg is empty.

Case 3. g = xuyx′u
′

with u even.

Let l = 4−u
2 . Such an automorphism gives an interchange between two neigh-

borly facets Fl and Fl+1. Hence, both facets Fl and Fl+1 have the same coloring,
which contradicts the definition of orientable colorings. Thus, in this case Λg is
also empty.

Case 4. g = xuyx′u
′

with u odd.

Let t′ = gcd(u′, n). All facets of F′′ are divided into t′ orbits under the action
of g, and each orbit contains n

t′ facets. Hence, each orientable coloring of Λg gives
the same coloring on all n

t′ facets of each orbit. If we choose an arbitrary facet
from each orbit, it suffices to color t′ chosen facets for F′′. Moreover, given that
each automorphism g = xuyx′u

′
contains y as its factor and u is odd, it suffices

to color only three neighborly facets of F′ for F′ . In fact, it suffices to consider
the case g = xyx′u

′
because there is no essential difference between this case and

other cases. Based on the argument of Theorem 3.1, we have

|Λg| = 20160[a(t′ − 1) + 2b(t′ − 1) + c(t′ − 1)],

where a(t′−1), b(t′−1) and c(t′−1) are stated as in Theorem 3.1. Given that u is
odd and u ∈ Z4, u=1, 3. For every t′ > 1, there are exactly ϕ( nt′ ) automorphisms

of the form x′u
′
, each of which divides all facets of F′′ into t′ orbits. Thus, when

g = xuyx′u
′
,
∑

g=xuyx′u′
|Λg| = 2

∑
t′>1,t′|n

ϕ( nt′ )20160[a(t′ − 1) + 2b(t′ − 1) + c(t′ − 1)].
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Combining Cases 1 to 4, we complete the proof in (I).

(II) n even and n 6= 4

Given that n 6= 4, by Remark 2.7, each automorphism g of Aut(F(I2 × Pn))

can be written as xuyvx′u
′
y′v
′
.

Case 1. g = xux′u
′
.

Similar to Case 1 in (I), we have
∑

g=xux′u′
|Λg| =

∑
t′>1,t′|n

ϕ( nt′ )[|O(P2 × Pt′)| +

|O(P4 × Pt′)|].
Case 2. g = xuyx′u

′
with u even.

Similar to Case 3 in (I), Λg is empty.

Case 3. g = xuyx′u
′

with u odd.

Similar to Case 4 in (I),
∑

g=xuyx′u′
|Λg| = 2

∑
t′>1,t′|n

ϕ( nt′ )20160[a(t′− 1) + 2b(t′−

1) + c(t′ − 1)].

Case 4. g = xux′u
′
y′ with u′ even.

Similar to Case 3 in (I), Λg is also empty.

Case 5. g = xux′u
′
y′ with u′ odd.

Let t = gcd(u, 4). Then, all facets of F′ are divided into t orbits under the action
of g, and each orbit contains 4

t facets. Thus, each orientable coloring of Λg gives the

same coloring on all 4
t facets of each orbit. If we choose an arbitrary facet from each

orbit, it suffices to color t chosen facets for F′. When t=1 (i.e., u=1, 3), all facets
of F′ have the same coloring, which is impossible by the definition of orientable
colorings. Moreover, given that each automorphism g = xux′u

′
y′ contains y′ as its

factor and u′ is odd, it suffices to color only n
2 + 1 neighborly facets of F′′ for F′′.

First, we consider the case t=4 (i.e., u=4).

The argument of Theorem 3.1 can still be carried out. It suffices to consider
the case g = x′y′ because no essential difference exists between this case and other
cases. Set

C(n) = {λ ∈ Λg|λ(F1) = e1, λ(F2) = e2, λ(F5) = e3, λ(F6) = e4}.
We have |Λg| = 20160|C(n)|. Write

C0(n) = {λ ∈ C(n)|λ(F3) = e1, e1 + e3 + e4},
C1(n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e3, e1 + e2 + e4}.
Based on the definition of B(Pn) and Remark 2.3, we have |C(n)| = |C0(n)|+

|C1(n)|. Next, we calculate |C0(n)| and |C1(n)|.
(5.1). Calculation of |C0(n)|.

Write

C0
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2},
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C1
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2 + e1 + e3},

C2
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2 + e1 + e4},

C3
0 (n) = {λ ∈ C(n)|λ(F3) = e1, λ(F4) = e2 + e3 + e4},

C4
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2},

C5
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e3},

C6
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e1 + e4},

C7
0 (n) = {λ ∈ C(n)|λ(F3) = e1 + e3 + e4, λ(F4) = e2 + e3 + e4}.

By the definition of C0(n) and Remark 2.3, we have |C0(n)| =
7∑
i=0

|Ci0(n)|.
Then, our argument proceeds as follows.

(5.1.1). Calculation of |C0
0 (n)|.

Using a similar argument of Case 1 in (I) of Theorem 3.1, we have |C0
0 (n)| =

2|C0
0 (n − 2)| + 8|C0

0 (n − 4)| with initial values of |C0
0 (2)| = 1 and |C0

0 (4)| = 4.
Thus, |C0

0 (n)| = ã(n), where ã(n) is stated in Theorem 4.1.

(5.1.2). Calculation of |C1
0 (n)|.

In this case, λ(F7) = e3, e3 +e1 +e4. Set C1,0
0 (n) = {λ ∈ C1

0 (n)|λ(F7) = e3} and

C1,1
0 (n) = C1

0 (n)−C1,0
0 (n). Using a similar argument of Case 2 in (I) of Theorem

3.1, when n ≥ 10, |C1,0
0 (n)| = |C1,0

0 (n − 2)| + 4|C1,0
0 (n − 4)| with initial values of

|C1,0
0 (6)| = 4 and |C1,0

0 (8)| = 8. Thus, |C1,0
0 (n)| = b̃(n) for n ≥ 6, where b̃(n) is

stated in Theorem 4.1.
Take an orientable coloring λ in C1,1

0 (n). Then λ(F8) = e3, e4 and |C1,1
0 (n)| =

b̃(n − 2) + |C1
0 (n − 4)| for n ≥ 8. Therefore, when n ≥ 8, |C1

0 (n)| = b̃(n) + b̃(n −
2) + |C1

0 (n − 4)| with initial values of |C1
0 (2)| = 1, |C1

0 (4)| = 2 and |C1
0 (6)| = 6.

Thus, |C1
0 (n)| = c̃(n).

(5.1.3). Calculation of |C2
0 (n)|.

Similar to Case 2 in (I) of Theorem 3.1, we have |C2
0 (n)| = |C2

0 (n−2)|+4|C2
0 (n−

4)| with initial values of |C2
0 (2)| = 1 and |C2

0 (4)| = 4. Thus, |C2
0 (n)| = d̃(n).

(5.1.4). Calculation of |C3
0 (n)|.

Similar to Case 4 in (I) of Theorem 3.1, we have |C3
0 (n)| = 2|C3

0 (n − 2)| +
4|C3

0 (n− 4)| − 6|C3
0 (n− 6)| − 3|C3

0 (n− 8)|+ 4|C3
0 (n− 10)|. A direct observation

shows that |C3
0 (2)| = 1, |C3

0 (4)| = 2, |C3
0 (6)| = 6, |C3

0 (8)| = 14, and |C3
0 (10)| = 38.

Thus, |C3
0 (n)| = ẽ(n).

(5.1.5). Calculation of |C4
0 (n)|.

If we interchange e1 and e2, then the problem is reduced to (5.1.4). Thus,
|C4

0 (n)| = ẽ(n).

(5.1.6). Calculation of |C5
0 (n)|.

In this case, λ(F7) = e3, λ(F8) = e4, · · · , λ(Fn+10
2

) =

{
e3, n = 4k,

e4, n = 4k + 2.
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Thus, |C5
0 (n)| = 1.

(5.1.7). Calculation of |C6
0 (n)|.

Similar to (5.1.6), |C6
0 (n)| = 1.

(5.1.8). Calculation of |C7
0 (n)|.

Similar to (5.1.6), |C7
0 (n)| = 1.

Thus, |C0(n)| = ã(n) + c̃(n) + d̃(n) + 2ẽ(n) + 3.

(5.2). Calculation of |C1(n)|.
Set

C0
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e3, λ(F4) = e2},

C1
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e3, λ(F4) = e2 + e3 + e4},

C2
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e4, λ(F4) = e2},

C3
1 (n) = {λ ∈ C(n)|λ(F3) = e1 + e2 + e4, λ(F4) = e2 + e3 + e4}.

Based on the definition of C1(n) and Remark 2.3, we have |C1(n)| =
3∑
i=0

|Ci1(n)|.
Then, the argument proceeds as follows.

(5.2.1). Calculation of |C0
1 (n)|.

If we interchange e1 and e2, then the problem is reduced to (5.1.2). Thus,
|C0

1 (n)| = c̃(n).

(5.2.2). Calculation of |C1
1 (n)|.

Similar to (5.1.6), |C1
1 (n)| = 1.

(5.2.3). Calculation of |C2
1 (n)|.

If we interchange e1 and e2, then the problem is reduced to (5.1.3). Thus,

|C2
1 (n)| = d̃(n).

(5.2.4). Calculation of |C3
1 (n)|.

Similar to (5.1.6), |C3
1 (n)| = 1.

Thus, |C1(n)| = c̃(n) + d̃(n) + 2.

Hence, the number of all orientable colorings in Λg is just

|Λg| = 20160[ã(n) + 2c̃(n) + 2d̃(n) + 2ẽ(n) + 5].

There are exactly n
2 such automorphisms g = x′u

′
y′ because n is even and u′ is

odd. Thus,
∑

g=x′u′y′
|Λg| = 20160 · n2 [ã(n) + 2c̃(n) + 2d̃(n) + 2ẽ(n) + 5].

When t=2 (i.e., u=2), we have
∑

g=x2x′u′y′
|Λg| = 20160 · n2 ã(n).

195



Thus,
∑

g=xux′u′y′
|Λg| = 20160[nã(n) + nc̃(n) + nd̃(n) + nẽ(n) + 5

2n].

Case 6. g = xuyx′u
′
y′ with u even or u′ even.

Similar to Case 3 in (I), Λg is empty.

Case 7. g = xuyx′u
′
y′ with u odd and u′ odd.

Similar to Case 5 , we have
∑

g=xuyx′u′y′
|Λg| = 20160n[ã(n) + c̃(n) + d̃(n) + ẽ(n)].

Combining Cases 1 to 7, we complete the proof in (II).

(III) n=4

When n=4, I2 × Pn is a 4-cube I4, and the automorphism group Aut(F(I4))
is isomorphic to Z2 × Z2 × Z2 × Z2 × S4. As before, let χ1, χ2, χ3, and χ4 denote
generators of the first subgroup Z2, the second subgroup Z2, the third subgroup Z2,
and the fourth subgroup Z2 of Aut(F(I4)) respectively. If g = χ1 and λ ∈ Λg, then
λ(F1) = λ(F3). Based on Theorem 3.1, we have |Λg| = 20160[a(3) + 2b(3) + c(3)].
Similarly, we also have |Λg| = 20160[a(3) + 2b(3) + c(3)] for g = χ2, χ3 or χ4.
If g=χ1χ2 and λ ∈ Λg, then λ(F1) = λ(F3) and λ(F2) = λ(F4). Based on Case
1 in (I) of Theorem 3.1, we obtain |Λg| = 20160a(3). Similarly, we also obtain
|Λg| = 20160a(3) for g = χ1χ3, χ1χ4, χ2χ3, χ2χ4 or χ3χ4. If g=χ1χ2χ3 and λ ∈ Λg,
then λ(Fi) = λ(Fi+2) for i = 1, 2, 5. We obtain |Λg| = 20160 · 4. Similarly, we also
obtain |Λg| = 20160 · 4 for g = χ1χ2χ4, χ1χ3χ4 or χ2χ3χ4. If g=χ1χ2χ3χ4 and
λ ∈ Λg, then λ(Fi) = λ(Fi+2) for i = 1, 2, 5, 6. We obtain |Λg| = 20160. Thus

Eo(I
4) = 1

384{20160 · 4[a(3) + 2b(3) + c(3)] + 20160 · 6a(3) + 20160 · 16 + 20160+

20160[a(3) + 4b(3) + 2c(3) + 5]}
= 12180. �
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An introduction to fuzzy soft topological spaces

Abdülkadir Aygünoǧlu∗ Vildan Çetkin† Halis Aygün‡§

Abstract

The aim of this study is to define fuzzy soft topology which will be
compatible to the fuzzy soft theory and investigate some of its funda-
mental properties. Firstly, we recall some basic properties of fuzzy soft
sets and then we give the definitions of cartesian product of two fuzzy
soft sets and projection mappings. Secondly, we introduce fuzzy soft
topology and fuzzy soft continuous mapping. Moreover, we induce a
fuzzy soft topology after given the definition of a fuzzy soft base. Also,
we obtain an initial fuzzy soft topology and give the definition of prod-
uct fuzzy soft topology. Finally, we prove that the category of fuzzy
soft topological spaces FSTOP is a topological category over SET.

Keywords: fuzzy soft set, fuzzy soft topology, fuzzy soft base, initial fuzzy soft
topology, product fuzzy soft topology.
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1. Introduction

Most of the existing mathematical tools for formal modeling, reasoning and
computing are crisp, deterministic, and precise in character. But, in real life situ-
ation, the problems in economics, engineering, environment, social science, medical
science etc. do not always involve crisp data. For this reason, we cannot success-
fully use the traditional classical methods because of various types of uncertainties
presented in these problems. To exceed these uncertainties, some kinds of theories
were given like theory of fuzzy sets [21], intuitionistic fuzzy sets [4], rough sets
[16],i.e., which we can use as mathematical tools for dealing with uncertainties.
But all these theories have their inherent difficulties as what were pointed out by
Molodtsov in [15]. The reason for these difficulties is, possibly, the inadequacy
of the parametrization tool of the theories. Consequently, Molodtsov [15] initi-
ated the concept of soft set theory as a new mathematical tool for dealing with
vagueness and uncertainties which is free from the above difficulties.
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Applications of Soft Set Theory in other disciplines and real life problems are
now catching momentum. Molodtsov [15] successfully applied the soft set theory
into several directions, such as smoothness of functions, game theory, Riemann
integration, Perron integration, theory of measurement, and so on. Maji et al. [14]
gave first practical application of soft sets in decision making problems. They have
also introduced the concept of fuzzy soft set, a more generalized concept, which
is a combination of fuzzy set and soft set and also studied some of its properties.
Ahmad and Kharal [2, 11] also made further contributions to the properties of
fuzzy soft sets and fuzzy soft mappings. Soft set and fuzzy soft set theories have
a rich potential for applications in several directions, a few of which have been
shown by some authors [15, 18].

The algebraic structure of soft set and fuzzy soft set theories dealing with un-
certainties has also been studied by some authors. Aktaş and Çağman [3] have
introduced the notion of soft groups. Jun [7] applied soft sets to the theory of
BCK/BCI-algebras, and introduced the concept of soft BCK/BCI algebras. Jun
and Park [8] and Jun et al. [9, 10] reported the applications of soft sets in ideal
theory of BCK/BCI-algebras and d-algebras. Feng et al. [6] defined soft semirings
and several related notions to establish a connection between soft sets and semir-
ings. Sun et al. [20] presented the definition of soft modules and construct some
basic properties using modules and Molodtsov’s definition of soft sets. Aygünoğlu
and Aygün [5] introduced the concept of fuzzy soft group and in the meantime,
discussed some properties and structural characteristic of fuzzy soft group.

In this study, we consider the topological structure of fuzzy soft set theory. First
of all, we give the definition of fuzzy soft topology τ which is a mapping from the

parameter set E to [0, 1](̃X,E) which satisfies the three certain conditions. With
respect to this definition the fuzzy soft topology τ is a fuzzy soft set on the family

of fuzzy soft sets (̃X,E). Also, since the value of a fuzzy soft set fA under the
mapping τe gives the degree of openness of the fuzzy soft set with respect to the
parameter e ∈ E, τe can be thought as a fuzzy soft topology in the sense of Šostak
[19]. In this manner, we introduce fuzzy soft cotopology and give the relations
between fuzzy soft topology and fuzzy soft cotopology. Then we define fuzzy soft
base. Moreover, we induce a fuzzy soft topology by using a fuzzy soft base on
the same set. Also, we obtain an initial fuzzy soft topology and then we give the
definition of product fuzzy soft topology. Finally, we show that the category of
fuzzy soft topological spaces FSTOP is a topological category over SET with
respect to the forgetful functor.

2. Preliminaries

Throughout this paper, X refers to an initial universe, E is the set of all pa-
rameters for X, IX is the set of all fuzzy sets on X (where, I = [0, 1]) and for
λ ∈ [0, 1], λ(x) = λ, for all x ∈ X.
2.1. Definition. [2, 13] fA is called a fuzzy soft set on X, where f is a mapping

from E into IX ,i.e., fe , f(e) is a fuzzy set on X, for each e ∈ A and fe = 0, if
e 6∈ A, where 0 is zero function on X. fe, for each e ∈ E, is called an element of
the fuzzy soft set fA.
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(̃X,E) denotes the collection of all fuzzy soft sets on X and is called a fuzzy
soft universe ([13]).

Figure 1. A fuzzy soft set fE

2.2. Definition. [13] For two fuzzy soft sets fA and gB on X, we say that fA is
a fuzzy soft subset of gB and write fA v gB if fe ≤ ge, for each e ∈ E.

2.3. Definition. [13] Two fuzzy soft sets fA and gB on X are called equal if
fA v gB and gB v fA.

2.4. Definition. [13] Union of two fuzzy soft sets fA and gB on X is the fuzzy
soft set hC = fA t gB , where C = A ∪ B and he = fe ∨ ge, for each e ∈ E. That
is, he = fe ∨ 0 = fe for each e ∈ A− B, he = 0 ∨ ge = ge for each e ∈ B − A and
he = fe ∨ ge, for each e ∈ A ∩B.

2.5. Definition. [2, 13] Intersection of two fuzzy soft sets fA and gB on X is the
fuzzy soft set hC = fA u gB , where C = A ∩B and he = fe ∧ ge, for each e ∈ E.

2.6. Definition. The complement of a fuzzy soft set fA is denoted by f cA, where
f c : E −→ IX is a mapping given by f ce = 1− fe, for each e ∈ E.

Clearly (f cA)
c

= fA.

2.7. Definition. [13] (Null fuzzy soft set) A fuzzy soft set fE on X is called a
null fuzzy soft set and denoted by Φ, if fe = 0, for each e ∈ E.

2.8. Definition. (Absolute fuzzy soft set) A fuzzy soft set fE on X is called an

absolute fuzzy soft set and denoted by Ẽ, if fe = 1, for each e ∈ E. Clearly

(Ẽ)c = Φ and Φc = Ẽ.

2.9. Definition. (λ-absolute fuzzy soft set) A fuzzy soft set fE on X is called a

λ-absolute fuzzy soft set and denoted by Ẽλ, if fe = λ, for each e ∈ E. Clearly,

(Ẽλ)c = Ẽ1−λ.

2.10. Proposition. [2] Let ∆ be an index set and fA, gB , hC , (fA)i , (fi)Ai
, (gB)i ,

(gi)Bi
∈ (̃X,E) ,∀i ∈ ∆, then we have the following properties:
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(1) fA u fA = fA, fA t fA = fA.
(2) fA u gB = gB u fA, fA t gB = gB t fA.
(3) fA t (gB t hC) = (fA t gB) t hC , fA u (gB u hC) = (fA u gB) u hC .
(4) fA = fA t (fA u gB), fA = fA u (fA t gB).
(5) fA u

(⊔
i∈∆(gB)i

)
=
⊔
i∈∆ (fA u (gB)i).

(6) fA t
(d

i∈∆(gB)i
)

=
d
i∈∆ (fA t (gB)i).

(7) Φ v fA v Ẽ.
(8) (f cA)

c
= fA.

(9)
(d

i∈∆(fA)i
)c

=
⊔
i∈∆(fA)ci .

(10)
(⊔

i∈∆(fA)i
)c

=
d
i∈∆(fA)ci .

(11) If fA v gB, then gcB v f cA.

2.11. Definition. [5, 11] Let ϕ : X −→ Y and ψ : E −→ F be two mappings,
where E and F are parameter sets for the crisp sets X and Y , respectively. Then

the pair ϕψ is called a fuzzy soft mapping from (̃X,E) into (̃Y, F ) and denoted by

ϕψ : (̃X,E) −→ (̃Y, F ).

2.12. Definition. [5, 11] Let fA and gB be two fuzzy soft sets over X and Y ,

respectively and let ϕψ be a fuzzy soft mapping from (̃X,E) into (̃Y, F ).
(1) The image of fA under the fuzzy soft mapping ϕψ, denoted by ϕψ(fA), is

the fuzzy soft set on Y defined by ϕψ(fA) = ϕ(f)ψ(A), where

ϕ(f)k(y) =





∨

x∈ϕ−1(y)


 ∨

a∈ψ−1(k)∩A
fa(x)


 , if ϕ−1(y) 6= ∅, ψ−1(k) ∩A 6= ∅;

0, otherwise.

,

∀k ∈ F , ∀y ∈ Y .
(2) The pre-image of gB under the fuzzy soft mapping ϕψ, denoted by ϕ−1

ψ (gB),

is the fuzzy soft set on X defined by ϕ−1
ψ (gB) = ϕ−1(g)ψ−1(A), where

ϕ−1(g)a(x) =

{
gψ(a)(ϕ(x)), if ψ(a) ∈ B;

0, otherwise.
, ∀a ∈ E, ∀x ∈ X.

If ϕ and ψ is injective (surjective), then ϕψ is said to be injective (surjective).

2.13. Definition. Let ϕψ be a fuzzy soft mapping from (̃X,E) into (̃Y, F ) and ϕ∗ψ∗

be a fuzzy soft mapping from (̃Y, F ) into (̃Z,K). Then the composition of these

mappings from (̃X,E) into (̃Z,K) is defined as follows: ϕ∗ψ∗ ◦ ϕψ , (ϕ∗ ◦ ϕ)ψ∗◦ψ,
where ψ : E −→ F and ψ∗ : F −→ K.

2.14. Proposition. [11] Let X and Y be two universes fA, (fA)1, (fA)2, (fA)i ∈
(̃X,E), gB , (gB)1, (gB)2, (gB)i ∈ (̃Y, F ) ∀i ∈ ∆, where ∆ is an index set, and ϕψ

be a fuzzy soft mapping from (̃X,E) into (̃Y, F ).

(1) If (fA)1 v (fA)2, then ϕψ((fA)1) v ϕψ((fA)2).

(2) If (gB)1 v (gB)2, then ϕ−1
ψ ((gB)1) v ϕ−1

ψ ((gB)2).

(3) fA v ϕ−1
ψ (ϕψ(fA)), the equality holds if ϕψ is injective.

(4) ϕψ

(
ϕ−1
ψ (fA)

)
v fA, the equality holds if ϕψ is surjective.
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(5) ϕψ
(⊔

i∈∆(fA)i
)

=
⊔
i∈∆ ϕψ((fA)i).

(6) ϕψ
(d

i∈∆(fA)i
)
v d

i∈∆ ϕψ((fA)i), the equality holds if ϕψ is injective.

(7) ϕ−1
ψ

(⊔
i∈∆(gB)i

)
=
⊔
i∈∆ ϕ−1

ψ ((gB)i).

(8) ϕ−1
ψ

(d
i∈∆(gB)i

)
=

d
i∈∆ ϕ−1

ψ ((gB)i).

(9) ϕ−1
ψ (gcB) =

(
ϕ−1
ψ (gB)

)c
.

(10) ϕ−1
ψ

(
ẼY

)
= ẼX , ϕ−1

ψ (ΦY ) = ΦX .

(11) ϕψ

(
ẼX

)
= ẼY if ϕψ is surjective.

(12) ϕψ (ΦX) = ΦY .

2.15. Definition. (Cartesian product of two fuzzy soft sets) Let X1 and X2 be

nonempty crisp sets. fA ∈ ˜(X1, E1) and gB ∈ ˜(X2, E2). The cartesian product
fA × gB of fA and gB is defined by (f × g)A×B , where, for each (e, f) ∈ E1 × E2,

(f × g)(e,f)(x, y) = fe(x) ∧ gf(y), for all (x, y) ∈ X × Y .
According to this definition the fuzzy soft set (f × g)A×B is a fuzzy soft set on

X1 ×X2 and the universal parameter set is E1 × E2.

2.16. Definition. Let (fA)1×(fA)2 be a fuzzy soft set on X1×X2. The projection
mappings (pq)i, i ∈ {1, 2}, are defined as follows:

(pq)i((fA)1 × (fA)2) = pi(f1 × f2)qi(A1×A2) = (fA)i where pi : X1 ×X2 −→ Xi

and qi : E1 × E2 −→ Ei are projection mappings in classical meaning.

3. Fuzzy soft topological spaces

To formulate our program and general ideas more precisely, recall first the
concept of fuzzy topological space, that is of a pair (X, τ) where X is a set and
τ : IX −→ I is a mapping (satisfying some axioms) which assigns to every fuzzy
subset of X the real number, which shows “to what extent” this set is open.
According to this idea a fuzzy topology τ is a fuzzy set on IX . This approach has
lead us to define fuzzy soft topology which is compatible to the fuzzy soft theory.
By our definition, a fuzzy soft topology is a fuzzy soft set on the set of all fuzzy

soft sets (̃X,E) which denotes “to what extent” this set is open according to the
parameter set.

3.1. Definition. A mapping τ : E −→ [0, 1](̃X,E) is called a fuzzy soft topology
on X if it satisfies the following conditions for each e ∈ E.

(O1) τe(Φ) = τe(Ẽ) = 1.

(O2) τe(fA u gB) ≥ τe(fA) ∧ τe(gB), ∀fA, gB ∈ (̃X,E).

(O3) τe(
⊔
i∈∆(fA)i) ≥

∧
i∈∆ τe((fA)i),∀(fA)i ∈ (̃X,E), i ∈ ∆.

A fuzzy soft topology is called enriched if it provides that

(O1)′ τe(Ẽλ) = 1.
Then the pair (X, τE) is called a fuzzy soft topological space. The value τe(fA)

is interpreted as the degree of openness of a fuzzy soft set fA with respect to
parameter e ∈ E.
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Let τ1
E and τ2

E be fuzzy soft topologies on X. We say that τ1
E is finer than

τ2
E (τ2

E is coarser than τ1
E), denoted by τ2

E v τ1
E , if τ2

e (fA) ≤ τ1
e (fA) for each

e ∈ E, fA ∈ (̃X,E).

Example Let T be a fuzzy topology on X in Šostak’s sense, that is, T is a
mapping from IX to I. Take E = I and define T : E −→ IX as T(e) , {µ :
T(µ) ≥ e} which is levelwise fuzzy topology of T in Chang’s sense, for each e ∈ I.
However, it is well known that each Chang’s fuzzy topology can be considered
as Šostak fuzzy topology by using fuzzifying method. Hence, T(e) satisfies (O1),
(O2) and (O3).

According to this definition and by using the decomposition theorem of fuzzy
sets [12], if we know the resulting fuzzy soft topology, then we can find the first
fuzzy topology. Therefore, we can say that a fuzzy topology can be uniquely
represented as a fuzzy soft topology.

3.2. Definition. Let (X, τ) and (Y, τ∗) be fuzzy soft topological spaces. A fuzzy

soft mapping ϕψ from (̃X,E) into (̃Y, F ) is called a fuzzy soft continuous map if

τe(ϕ
−1
ψ (gB)) ≥ τ∗ψ(e)(gB) for all gB ∈ (̃Y, F ), e ∈ E.

The category of fuzzy soft topological spaces and fuzzy soft continuous mappings
is denoted by FSTOP.

3.3. Proposition. Let {τk}k∈Γ be a family of fuzzy soft topologies on X. Then τ =∧
k∈Γ τk is also a fuzzy soft topology on X, where τe(fA) =

∧
k∈Γ (τk)e(fA),∀e ∈

E, fA ∈ (̃X,E).

Proof. It is straightforward and therefore is omitted. �

3.4. Definition. A mapping η : E −→ [0, 1](̃X,E) is called a fuzzy soft cotopology
on X if it satisfies the following conditions for each e ∈ E:

(C1) ηe(Φ) = ηe(Ẽ) = 1.

(C2) ηe(fA t gB) ≥ ηe(fA) ∧ ηe(gB), ∀fA, gB ∈ (̃X,E).

(C3) ηe(
d
i∈∆(fA)i) ≥

∧
i∈∆ ηe((fA)i),∀(fA)i ∈ (̃X,E), i ∈ ∆.

The pair (X, η) is called a fuzzy soft cotopological space.

Let τ be a fuzzy soft topology on X, then the mapping η : E −→ [0, 1](̃X,E)

defined by ηe(fA) = τe(f
c
A),∀e ∈ E is a fuzzy soft cotopology on X. Let η be a

fuzzy soft cotopology on X, then the mapping τ : E −→ [0, 1](̃X,E) defined by
τe(fA) = ηe(f

c
A),∀e ∈ E, is a fuzzy soft topology on X.

3.5. Definition. A mapping β : E −→ [0, 1](̃X,E) is called a fuzzy soft base on X
if it satisfies the following conditions for each e ∈ E:

(B1) βe(Φ) = βe(Ẽ) = 1.

(B2) βe(fA u gB) ≥ βe(fA) ∧ βe(gB), ∀fA, gB ∈ (̃X,E).

3.6. Theorem. Let β be a fuzzy soft base on X. Define a map τβ : E −→ [0, 1](̃X,E)

as follows:
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(τβ)e(fA) =
∨



∧

j∈Λ

βe((fA)j) | fA =
⊔

j∈Λ

(fA)j



, ∀e ∈ E.

Then τβ is the coarsest fuzzy soft topology on X for which (τβ)e(fA) ≥ βe(fA),

for all e ∈ E, fA ∈ (̃X,E).

Proof. (O1) It is trivial from the definition of τβ .
(O2) Let e ∈ E. For all families {(fA)j | fA =

⊔
j∈Λ(fA)j} and {(gB)k | gB =⊔

k∈Γ(gB)k}, there exists a family {(fA)j u (gB)k} such that

fA u gB =


⊔

j∈Λ

(fA)j


 u

(⊔

k∈Γ

(gB)k

)
=

⊔

j∈Λ,k∈Γ

((fA)j u (gB)k) .

It implies the followings:

(τβ)e(fA u gB) ≥
∧

j∈Λ,k∈Γ

βe((fA)j u (gB)k)

≥
∧

j∈Λ,k∈Γ

(βe((fA)j) ∧ βe((gB)k))

≥ (
∧

j∈Λ

βe((fA)j)) ∧ (
∧

k∈Γ

βe((gB)k))

≥ (τβ)e(fA) ∧ (τβ)e(gB).
(O3) Let e ∈ E and ℘i be the collection of all index sets Ki such that {(fA)ik ∈

(̃X,E) | (fA)i =
⊔

k∈Ki

(fA)ik} with fA =
⊔

i∈Γ

(fA)i =
⊔

i∈Γ

⊔

k∈Ki

(fA)ik . For each

i ∈ Γ and each Ψ ∈ Πi∈Γ℘i with Ψ(i) = Ki, we have (τβ)e(fA) ≥∧

i∈Γ

(
∧

k∈Ki

βe((fA)ik)).

Put ai,Ψi =
∧

k∈Ki

(βe((fA)ik)). Then we have the following:

(τβ)e(fA) ≥
∨

Ψ∈Πi∈Γ℘i

(∧

i∈Γ

ai,Ψ(i)

)

=
∧

i∈Γ


 ∨

Mi∈℘i

ai,Mi




=
∧

i∈Γ


 ∨

Mi∈℘i

( ∧

m∈Mi

(βe((fA)im))

)


=
∧

i∈Γ

(τβ)e((fA)i).

Thus, τβ is a fuzzy soft topology on X. Let τ w β, then for every e ∈ E and

fA =
⊔

j∈Λ

(fA)j , we have

τe(fA) ≥
∧

j∈Λ

τe((fA)j) ≥
∧

j∈Λ

βe((fA)j).
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If we take supremum over the family {(fA)j ∈ (̃X,E) | fA =
⊔

j∈Λ

(fA)j}, then

we obtain that τ w τβ . �

3.7. Lemma. Let τ be a fuzzy soft topology on X and β be a fuzzy soft base on

Y. Then a fuzzy soft mapping ϕψ from (̃X,E) into (̃Y, F ) is fuzzy soft continuous

if and only if τe(ϕ
−1
ψ (gB)) ≥ βψ(e)(gB), for each e ∈ E, gB ∈ (̃Y, F ).

Proof. (⇒) Let ϕψ : (X, τ) −→ (Y, τβ) be a fuzzy soft continuous mapping and

gB ∈ (̃Y, F ). Then,
τe(ϕ

−1
ψ (gB)) ≥ (τβ)ψ(e)(gB) ≥ βψ(e)(gB).

(⇐) Let τe(ϕ
−1
ψ (gB)) ≥ βψ(e)(gB), for each gB ∈ (̃Y, F ). Let hC ∈ (̃Y, F ). For

every family of {(hC)j ∈ (̃Y, F ) | hC =
⊔

j∈Γ

(hC)j}, we have

τe(ϕ
−1
ψ (hC)) = τe


ϕ−1

ψ


⊔

j∈Γ

(hC)j






= τe


⊔

j∈Γ

ϕ−1
ψ ((hC)j)




≥
∧

j∈Γ

τe(ϕ
−1
ψ ((hC)j))

≥
∧

j∈Γ

βψ(e)((hC)j).

If we take supremum over the family of {(hC)j ∈ (̃Y, F ) | hC =
⊔

j∈Γ

(hC)j}, we

obtain
τe(ϕ

−1
ψ (hC)) ≥ (τβ)ψ(e)(hC). �

3.8. Theorem. Let {(Xi, (τi)Ei
)}i∈Γ be a family of fuzzy soft topological spaces,

X be a set, E be a parameter set and for each i ∈ Γ, ϕi : X → Xi and ψi : E → Ei

be maps. Define β : E → [0, 1](̃X,E) on X by:

βe(fA) =
∨




n∧

j=1

(τkj )ψkj
(e)((fA)kj ) | fA =

nl

j=1

(ϕψ)−1
kj

((fA)kj )



 ,

where
∨

is taken over all finite subsets K = {k1, k2, ..., kn} ⊂ Γ. Then,
(1) β is a fuzzy soft base on X.
(2) The fuzzy soft topology τβ generated by β is the coarsest fuzzy soft topology

on X for which all (ϕψ)i, i ∈ Γ are fuzzy soft continuous maps.
(3) A map ϕψ : (Y, δF )→ (X, (τβ)E) is fuzzy soft continuous iff for each i ∈ Γ,

(ϕψ)i ◦ ϕψ : (Y, δF )→ (Xi, (τi)Ei
) is a fuzzy soft continuous map.

Proof. (1) (B1) Since fA = (ϕψ)−1
i (fA) for each fA ∈ {Φ, Ẽ}, βe(Φ) = βe(Ẽ) = 1,

for each e ∈ E.
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(B2) For all finite subsets K = {k1, k2, ..., kn} and J = {j1, j2, ..., jm} of Γ such

that fA =

nl

i=1

(ϕψ)−1
ki

((fA)ki) and gB =

ml

i=1

(ϕψ)−1
ji

((gB)ji), we have fA u gB =

(
nl

i=1

(ϕψ)−1
ki

((fA)ki)

)
u
(

ml

i=1

(ϕψ)−1
ji

((gB)ji)

)
.

Furthermore, we have for each k ∈ K ∩ J,

(ϕψ)−1
k ((fA)k) u (ϕψ)−1

k ((gB)k) = (ϕψ)−1
k ((fA)k u (gB)k).

Put fA u gB =
l

mi∈K∪J
(ϕψ)−1

mi
((hC)mi

) where

(hC)mi
=





(fA)mi
, if mi ∈ K − (K ∩ J);

(gB)mi , if mi ∈ J − (K ∩ J);

(fA)mi u (gB)mi , if mi ∈ (K ∩ J).
So we have
βe((fA) u (gB)) ≥

∧

j∈K∪J
(τj)ψj(e)((hC)j)

≥
(

n∧

i=1

(τki)ψki
(e)((fA)ki)

)
∧
(

m∧

i=1

(τji)ψji
(e)((gB)ji)

)
.

If we take supremum over the families {fA =
nl

i=1

(ϕψ)−1
ki

((fA)ki)} and {gB =

ml

i=1

(ϕψ)−1
ji

((gB)ji)}, then we have,

βe(fA u gB) ≥ βe(fA) ∧ βe(gB),∀e ∈ E.

(2) For each (fA)i ∈ ˜(Xi, Ei), one family {(ϕψ)−1
i ((fA)i)} and i ∈ Γ, we have

(τβ)e((ϕψ)−1
i ((fA)i)) ≥ βe((ϕψ)−1

i ((fA)i)) ≥ (τi)ψi(e)((fA)i), for each e ∈ E.

Therefore, for all i ∈ Γ, (ϕψ)i : (X, (τβ)E) −→ (Xi, (τi)Ei
) is fuzzy soft contin-

uous.
Let (ϕψ)i : (X, ζE) −→ (Xi, (τi)Ei

) be fuzzy soft continuous, that is, for each

i ∈ Γ and (fA)i ∈ ˜(Xi, Ei), ζe((ϕψ)−1
i ((fA)i)) ≥ (τi)ψi(e)((fA)i).

For all finite subsets K = {k1, ..., kn} of Γ such that fA =

nl

i=1

(ϕψ)−1
ki

((fA)ki)

we have

ζe(fA) ≥
n∧

i=1

ζe((ϕψ)−1
ki

((fA)ki)) ≥
n∧

i=1

(τki)ψki
(e)((fA)ki).

It implies ζe(fA) ≥ βe(fA), for all e ∈ E, fA ∈ (̃X,E). By Theorem 3.6, ζ w τβ .
(3) (⇒) Let ϕψ : (Y, δF )→ (X, (τβ)E) be fuzzy soft continuous. For each i ∈ Γ

and (fA)i ∈ ˜(Xi, Ei) we have
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δf((ϕi ◦ ϕ)−1
ψi◦ψ((fA)i)) = δf(ϕ

−1
ψ ((ϕψ)−1

i ((fA)i))) ≥ (τβ)ψ(f)((ϕψ)−1
i ((fA)i)) ≥

(τi)(ψi◦ψ)(f)((fA)i).

Hence, (ϕi ◦ ϕ)ψi◦ψ : (Y, δF )→ (Xi, (τi)Ei
) is fuzzy soft continuous.

(⇐) For all finite subsetsK = {k1, ..., kn} of Γ such that fA =
nl

i=1

(ϕψ)−1
ki

((fA)ki),

since
(ϕki◦ϕ)ψki

◦ψ : (Y, δF )→ (Xki , (τki)Eki
) is fuzzy soft continuous, δf(ϕ

−1
ψ ((ϕψ)−1

ki
((fA)ki))) ≥

(τki)(ψi◦ψ)(f)((fA)ki),∀ f ∈ F.
Hence we have

δf(ϕ
−1
ψ (fA)) = δf(ϕ

−1
ψ (

nl

i=1

(ϕψ)−1
ki

((fA)ki)))

= δf(

nl

i=1

(ϕ−1
ψ ((ϕψ)−1

ki
(((fA)ki)))))

≥
n∧

i=1

δf(ϕ
−1
ψ ((ϕψ)−1

ki
(((fA)ki))))

≥
n∧

i=1

(τki)(ψki
◦ψ)(f)((fA)ki).

This inequality implies that δf(ϕ
−1
ψ (fA)) ≥ βψ(f)(fA) for each fA ∈ (̃X,E), f ∈

F.
By Lemma 3.7, ϕψ : (Y, δF )→ (X, (τβ)E) is fuzzy soft continuous.
Let {(Xi, (τi)Ei)}i∈Γ be a family of fuzzy soft topological spaces, X be a set,

E be a parameter set and for each i ∈ Γ, ϕi : X → Xi and ψi : E → Ei be maps.
The initial fuzzy soft topology τβ on X is the coarsest fuzzy soft topology on X
for which all (ϕψ)i, i ∈ Γ are fuzzy soft continuous maps. �

3.9. Definition. [1] A category C is called a topological category over SET with
respect to the usual forgetful functor from C to SET if it satisfies the following
conditions:

(TC1) Existence of initial structures: For any X, any class J, and any family
((Xj , ξj))j∈J of C-object and any family (fj : X −→ Xj)j∈J of maps, there exists
a unique C-structure ξ on X which is initial with respect to the source (fj : X −→
(Xj , ξj))j∈J , this means that for a C-object (Y, η), a map g : (Y, η) −→ (X, ξ) is a
C-morphism if and only if for all j ∈ J, fj ◦g : (Y, η) −→ (Xj , ξj) is a C-morphism.

(TC2) Fibre smallness: For any set X, the C-fibre of X, i.e., the class of all
C-structure on X, which we denote C(X), is a set.

3.10. Theorem. The category FSTOP is a topological category over SET with
respect to the forgetful functor V : FSTOP−→ SET which is defined by V (X, τE) =
X and V (ϕψ) = ϕ.

Proof. The proof is straightforward and follows from Theorem 3.8. �

3.11. Definition. Let {(Xi, (τi)Ei
)}i∈Γ be a family of fuzzy soft topological

spaces, for each i ∈ Γ, Ei be parameter sets, X = Πi∈ΓXi and E = Πi∈ΓEi.
Let pi : X −→ Xi and qi : E −→ Ei be projection maps, for all i ∈ Γ. The product
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of fuzzy soft topologies (X, τE) with respect to parameter set E is the coarsest
fuzzy soft topology on X for which all (pq)i, i ∈ Γ, are fuzzy soft continuous maps.

4. Conclusion

In this paper, we have considered the topological structure of fuzzy soft set
theory. We have given the definition of fuzzy soft topology τ which is a mapping

from the parameter set E to [0, 1](̃X,E) which satisfy the three certain conditions.
Since the value of a fuzzy soft set fA under the mapping τe gives us the degree
of openness of the fuzzy soft set with respect to the parameter e ∈ E, τe can
be thought of as a fuzzy soft topology in the sense of Šostak. In this sense, we
have introduced fuzzy soft cotopology and given the relations between fuzzy soft
topology and fuzzy soft cotopology. Then we have defined fuzzy soft base and by
using a fuzzy soft base we have obtained a fuzzy soft topology on the same set.
Also, we have introduced an initial fuzzy soft topology and then we have given
the definition of product fuzzy soft topology. Further, we have proved that the
category of fuzzy soft topological spaces FSTOP is a topological category over
SET with respect to the forgetful functor.
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Convergence to common fixed points of
multi-step iteration process for generalized

asymptotically quasi-nonexpansive mappings in
convex metric spaces

G. S. Saluja∗

Abstract

In this paper, we study strong convergence of multi-step iterations
with errors for a finite family of generalized asymptotically quasi-
nonexpansive mappings in the framework of convex metric spaces. The
new iteration scheme includes modified Mann and Ishikawa iterations
with errors, the three-step iteration scheme of Xu and Noor as special
cases in Banach spaces. Our results extend and generalize many known
results from the current literature.

Keywords: Generalized asymptotically quasi-nonexpansive mapping, multi-step
iterations with errors, common fixed point, strong convergence, convex metric

2000 AMS Classification: 47H09, 47H10.

1. Introduction and Preliminaries

Let T be a self map on a nonempty subset C of a metric space (X, d). Denote
the set of fixed points of T by F (T ) = {x ∈ C : T (x) = x}. We say that T is:

(1) nonexpansive if

d(Tx, Ty) ≤ d(x, y)(1.1)

for all x, y ∈ C;

(2) quasi-nonexpansive if F (T ) 6= ∅ and

d(Tx, p) ≤ d(x, p)(1.2)

for all x ∈ C and p ∈ F (T );
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lege of Science, Raipur - 492010 (C.G.), India, Email: saluja 1963@rediffmail.com,
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(3) asymptotically nonexpansive [5] if there exists a sequence {rn} ⊂ [0,∞)
with limn→∞ rn = 0 such that

d(Tnx, Tny) ≤ (1 + rn)d(x, y),(1.3)

for all x, y ∈ C and n ≥ 1;

(4) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence
{rn} ⊂ [0,∞) with limn→∞ rn = 0 such that

d(Tnx, p) ≤ (1 + rn)d(x, p),(1.4)

for all x ∈ C, p ∈ F (T ) and n ≥ 1;

(5) generalized asymptotically quasi-nonexpansive [6] if F (T ) 6= ∅ and there
exist two sequences of real numbers {rn}, {sn} ⊂ [0,∞) with limn→∞ rn = 0 =
limn→∞ sn such that

d(Tnx, p) ≤ (1 + rn)d(x, p) + sn,(1.5)

for all x ∈ C, p ∈ F (T ) and n ≥ 1;

(6) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ L d(x, y),(1.6)

for all x, y ∈ C and n ≥ 1;

(7) semi-compact if for any bounded sequence {xn} in C with d(xn, Txn)→ 0
as n→∞, there is a convergent subsequence of {xn}.

Let {xn} be a sequence in a metric space (X, d), and let C be a subset of X.
We say that {xn} is:

(8) of monotone type [22] with respect to C if for each p ∈ C, there exist two
sequences {an} and {bn} of nonnegative real numbers such that

∑∞
n=1 an < ∞,∑∞

n=1 bn <∞ and

d(xn+1, p) ≤ (1 + an)d(xn, p) + bn. (∗)

1.1. Remark. (1) It is clear that the nonexpansive mappings with the nonempty
fixed point set F (T ) are quasi-nonexpansive.

(2) The linear quasi-nonexpansive mappings are nonexpansive, but it is eas-
ily seen that there exist nonlinear continuous quasi-nonexpansive mappings which
are not nonexpansive; for example, define T (x) = (x/2)sin(1/x) for all x 6= 0 and
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T (0) = 0 in R.

(3) It is obvious that if T is nonexpansive, then it is asymptotically nonexpan-
sive with the constant sequence {1}.

(4) If T is asymptotically nonexpansive, then it is uniformly Lipschitzian with
the uniform Lipschitz constant L = sup{1 + rn : n ≥ 1}. However, the converse of
this claim is not true.

(5) If in definition (5), sn = 0 for all n ≥ 1, then T becomes asymptoti-
cally quasi-nonexpansive, and hence the class of generalized asymptotically quasi-
nonexpansive maps includes the class of asymptotically quasi-nonexpansive maps.

In 1991, Schu [16, 17] introduced the following iterative scheme: let X be a
normed linear space, let C be a nonempty convex subset of X, and let T : C → C
be a given mapping. Then, for arbitrary x1 ∈ C, the modified Ishikawa iterative
scheme {xn} is defined by

yn = (1− βn)xn + βnT
nxn

xn+1 = (1− αn)xn + αnT
nyn, n ≥ 1,(1.7)

where {αn} and {βn} are some suitable sequences [0, 1]. With X, C, {αn}, and
x1 as above, the modified Mann iterative scheme {xn} is defined by

x1 ∈ C,

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1.(1.8)

In 1998, Xu [21] introduced the following iterative scheme: let X be a normed
linear space, let C be a nonempty convex subset of X, and let T : C → C be a
given mapping. Then, for arbitrary x1 ∈ C, the Ishikawa iterative scheme {xn}
with errors is defined by

yn = ānxn + b̄nTxn + c̄nvn

xn+1 = anxn + bnTyn + cnun, n ≥ 1,(1.9)

where {un}, {vn} are bounded sequences in C and {an}, {bn}, {cn}, {ān}, {b̄n},
{c̄n} are sequences [0, 1] with an + bn + cn = ān + b̄n + c̄n = 1. With X, C, {un},
{an}, {bn}, {cn}, and x1 as above, the Mann iterative scheme {xn} with errors is
defined by

x1 ∈ C,

xn+1 = anxn + bnTxn + cnun, n ≥ 1.(1.10)

Based on the iterative scheme with errors introduced by Xu [21], the follow-
ing iteration schemes have been used and studied by several authors (see [1, 3, 12]).
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Let X be a normed linear space, let C be a nonempty convex subset of X, and
let T : C → C be a given mapping. Then, for arbitrary x1 ∈ C, the modified
Ishikawa iteration scheme {xn} with errors is defined by

yn = ānxn + b̄nT
nxn + c̄nvn

xn+1 = anxn + bnT
nyn + cnun, n ≥ 1,(1.11)

where {un}, {vn} are bounded sequences in C and {an}, {bn}, {cn}, {ān}, {b̄n},
{c̄n} are sequences [0, 1] with an + bn + cn = ān + b̄n + c̄n = 1. With X, C, {un},
{an}, {bn}, {cn}, and x1 as above, the modified Mann iteration scheme {xn} with
errors is defined by

x1 ∈ C,
xn+1 = anxn + bnT

nxn + cnun, n ≥ 1.(1.12)

Recently, Imnang and Suantai [6] studied multi-step Noor iterations with errors
for a finite family of generalized asymptotically quasi-nonexpansive mappings and
established some strong convergence theorems in the framework of uniformly con-
vex Banach spaces. The scheme of [6] is as follows: Let Ti : C → C (i = 1, 2, . . . , k)

be mappings and F =
⋂k
i=1 F (Ti). For a given x1 ∈ C, and a fixed k ∈ N (N de-

note the set of all positive integers), compute the iterative sequences {xn} and
{yin} by

xn+1 = ykn = αknT
n
k y(k−1)n + βknxn + γknukn,

y(r−1)n = α(k−1)nT
n
k−1y(k−2)n + β(k−1)nxn + γ(k−1)nu(k−1)n,

...

y3n = α3nT
n
3 y2n + β3nxn + γ3nu3n,

y2n = α2nT
n
2 y1n + β2nxn + γ2nu2n,

y1n = α1nT
n
1 y0n + β1nxn + γ1nu1n, n ≥ 1.(1.13)

where y0n = xn and {u1n}, {u2n}, . . . , {ukn} are bounded sequences in C with
{αin}, {βin}, and {γin} are appropriate real sequences in [0, 1] such that αin +
βin + γin = 1 for all i = 1, 2, . . . , k and all n. This iteration scheme includes the
modified Mann iteration scheme (1.12), the modified Ishikawa iteration scheme
(1.11) and extends the three-step iteration by Xu and Noor [20].

One of the most interesting aspects of metric fixed point theory is to extend a
linear version of a known result to the nonlinear case in metric spaces. To achieve
this, Takahashi [18] introduced a convex structure in a metric space (X, d) and
the properties of the space.

1.2. Definition. Let (X, d) be a metric space and I = [0, 1]. A mapping W : X3×
I3 → X is said to be a convex structure on X if it satisfies the following condition:

d(u,W (x, y, z;α, β, γ)) ≤ αd(u, x) + βd(u, y) + γd(u, z),
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for any u, x, y, z ∈ X and for any α, β, γ ∈ I with α+ β + γ = 1.

If (X, d) is a metric space with a convex structure W , then (X, d) is called a
convex metric space and denotes it by (X, d,W ).

1.3. Remark. It is easy to prove that every linear normed space is a convex
metric space with a convex structure W (x, y, z;α, β, γ) = αx + βy + γz, for all
x, y, z ∈ X and α, β, γ ∈ I with α+β+γ = 1. But there exist some convex metric
spaces which can not be embedded into any linear normed spaces (see, Takahashi
[18]).

1.4. Example. Let X = {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0}. For
x = (x1, x2, x3), y = (y1, y2, y3) ∈ X and α, β, γ ∈ I with α+ β + γ = 1, we define
a mapping W : X3 × I3 → X by

W (x, y, z;α, β, γ) = (αx1 + βy1 + γz1, αx2 + βy2 + γz2, αx3 + βy3 + γz3)

and define a metric d : X ×X → [0,∞) by

d(x, y) = |x1y1 + x2y2 + x3y3|.

Then we can show that (X, d,W ) is a convex metric space, but it is not a normed
space.

Denote the indexing set {1, 2, . . . , k} by I. We now translate the scheme (1.13)
from the normed space setting to the more general setup of convex metric space
as follows:

x1 ∈ C, xn+1 = Un(k)xn, n ≥ 1,(1.14)

where

Un(0) = I, the identity map,

Un(1)x = W (Tn1 Un(0)x, x, un(1); αn(1), βn(1), γn(1)),

Un(2)x = W (Tn2 Un(1)x, x, un(2); αn(2), βn(2), γn(2)),

...

Un(k−1)x = W (Tnk−1Un(k−2)x, x, un(k−1); αn(k−1), βn(k−1), γn(k−1)),

Un(k)x = W (Tnk Un(k−1)x, x, un(k); αn(k), βn(k), γn(k)), n ≥ 1,

where {un(1)}, {un(2)}, . . . , {un(k)} are bounded sequences in C with {αn(i)}, {βn(i)},
and {γn(i)} are appropriate real sequences in [0, 1] such that αn(i)+βn(i)+γn(i) = 1
for all i ∈ I and all n.
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In a convex metric space, the scheme (1.14) provides analogues of:

(i) the scheme (1.12) if k = 1 and T1 = T ;

(ii) the scheme (1.11) if k = 2 and T1 = T2 = T .

This scheme becomes the scheme (1.13) if we choose a special convex metric
space, namely, a normed space.

In this paper, we establish strong convergence theorem for the iteration scheme
(1.14) to converge to common fixed point of a finite family of generalized asymp-
totically quasi-nonexpansive mappings in the framework of convex metric spaces.
Our result extends and as well as refines the corresponding results of [2], [4], [6]-
[17], [20] and many others.

We need the following useful lemma to prove our convergence results.

1.5. Lemma. (see [19]) Let {pn}, {qn}, {rn} be three sequences of nonnegative
real numbers satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,
∞∑

n=0

qn <∞,
∞∑

n=0

rn <∞.

Then

(1) limn→∞ pn exists.

(2) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

2. Main Results

In this section, we prove strong convergence theorems of multi-step iteration
scheme (1.14) for a finite family of generalized asymptotically quasi-nonexpansive
mappings in convex metric spaces.

2.1. Lemma. Let (X, d) be a complete convex metric space, and let C be a
nonempty closed convex subset of X. Let {Ti : i ∈ I} be a finite family of general-
ized asymptotically quasi-nonexpansive self-maps on C with sequences {rn(i)}, {sn(i)} ⊂
[0,∞) for each i ∈ I, respectively, such that

∑∞
n=1 rn(i) <∞ and

∑∞
n=1 sn(i) <∞.

Assume that F = ∩ki=1F (Ti) is a nonempty set. Let {xn} be the multi-step itera-
tion scheme defined by (1.14) with

∑∞
n=1 γn(i) <∞ for each i ∈ I. Then

(i)

d(xn+1, p) ≤ (1 +Bn(k))d(xn, p) +An(k),

with
∑∞
n=1Bn(k) <∞ and

∑∞
n=1An(k) <∞.
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(ii)

d(xn+m, p) ≤ Qd(xn, p) +Q

n+m−1∑

j=n

Aj(k),

for m ≥ 1, n ≥ 1, p ∈ F and for some Q > 0.

Proof. (i) For any p ∈ F , from (1.14), we have

d(Un(1)xn, p) = d(W (Tn1 xn, xn, un(1); αn(1), βn(1), γn(1)), p)

≤ αn(1)d(Tn1 xn, p) + βn(1)d(xn, p) + γn(1)d(un(1), p)

≤ αn(1)[(1 + rn(1))d(xn, p) + sn(1)] + βn(1)d(xn, p) + γn(1)d(un(1), p)

≤ [αn(1) + βn(1)](1 + rn(1))d(xn, p) + αn(1)sn(1) + γn(1)d(un(1), p)

= [1− γn(1)](1 + rn(1))d(xn, p) +An(1)

≤ (1 + rn(1))d(xn, p) +An(1),(2.1)

where An(1) = αn(1)sn(1) + γn(1)d(un(1), p), since by assumption
∑∞
n=1 sn(1) < ∞

and
∑∞
n=1 γn(1) <∞, it follows that

∑∞
n=1An(1) <∞.

Again from (1.14) and using (2.1), we have

d(Un(2)xn, p) = d(W (Tn2 Un(1)xn, xn, un(2); αn(2), βn(2), γn(2)), p)

≤ αn(2)d(Tn2 Un(1)xn, p) + βn(2)d(xn, p) + γn(2)d(un(2), p)

≤ αn(2)[(1 + rn(2))d(Un(1)xn, p) + sn(2)] + βn(2)d(xn, p) + γn(2)d(un(2), p)

≤ αn(2)(1 + rn(2))[(1 + rn(1))d(xn, p) +An(1)] + αn(2)sn(2) + βn(2)d(xn, p)

+γn(2)d(un(2), p)

≤ [αn(2) + βn(2)](1 + rn(1))(1 + rn(2))d(xn, p) + αn(2)(1 + rn(2))An(1)

+αn(2)sn(2) + βn(2)d(xn, p) + γn(2)d(un(2), p)

= [1− γn(2)](1 + rn(1) + rn(2) + rn(1)rn(2))d(xn, p) + αn(2)(1 + rn(2))An(1)

+αn(2)sn(2) + γn(2)d(un(2), p)

≤ (1 +Bn(2))d(xn, p) +An(2),(2.2)

where Bn(2) = rn(1) + rn(2) + rn(1)rn(2) and An(2) = αn(2)(1 + rn(2))An(1) +

αn(2)sn(2) + γn(2)d(un(2), p), since by assumptions
∑∞
n=1 rn(1) <∞,

∑∞
n=1 rn(2)

< ∞,
∑∞
n=1 sn(2) < ∞,

∑∞
n=1An(1) < ∞ and

∑∞
n=1 γn(2) < ∞, it follows that∑∞

n=1Bn(2) <∞ and
∑∞
n=1An(2) <∞.
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Further using (1.14) and (2.2), we have

d(Un(3)xn, p) = d(W (Tn3 Un(2)xn, xn, un(3); αn(3), βn(3), γn(3)), p)

≤ αn(3)d(Tn3 Un(2)xn, p) + βn(3)d(xn, p) + γn(3)d(un(3), p)

≤ αn(3)[(1 + rn(3))d(Un(2)xn, p) + sn(3)] + βn(3)d(xn, p) + γn(3)d(un(3), p)

≤ αn(3)(1 + rn(3))[(1 +Bn(2))d(xn, p) +An(2)] + αn(3)sn(3) + βn(3)d(xn, p)

+γn(3)d(un(3), p)

≤ [αn(3) + βn(3)](1 + rn(3))(1 +Bn(2))d(xn, p) + αn(3)(1 + rn(3))An(2)

+αn(3)sn(3) + βn(3)d(xn, p) + γn(3)d(un(3), p)

= [1− γn(3)](1 + rn(3) +Bn(2) + rn(3)Bn(2))d(xn, p) + αn(3)(1 + rn(3))An(2)

+αn(3)sn(3) + γn(3)d(un(3), p)

≤ (1 +Bn(3))d(xn, p) +An(3),(2.3)

where Bn(3) = rn(3) + Bn(2) + rn(3)Bn(2) and An(3) = αn(3)(1 + rn(3))An(2) +

αn(3)sn(3) + γn(3)d(un(3), p), since by assumptions
∑∞
n=1 rn(3) <∞,

∑∞
n=1Bn(2)

< ∞,
∑∞
n=1 sn(3) < ∞,

∑∞
n=1An(2) < ∞ and

∑∞
n=1 γn(3) < ∞, it follows that∑∞

n=1Bn(3) <∞ and
∑∞
n=1An(3) <∞. Continuing in this process, we get

d(xn+1, p) ≤ (1 +Bn(k))d(xn, p) +An(k),(2.4)

where Bn(k) = rn(k)+Bn(k−1)+rn(k)Bn(k−1) and An(k) = αn(k)(1+rn(k))An(k−1)+

αn(k)sn(k) + γn(k)d(un(k), p) with
∑∞
n=1Bn(k) <∞ and

∑∞
n=1An(k) <∞.

The conclusion (i) holds.

(ii) Note that when x > 0, 1 + x ≤ ex. It follows from conclusion (i) that for
m ≥ 1, n ≥ 1 and p ∈ F , we have
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d(xn+m, p) ≤ (1 +Bn+m−1(k))d(xn+m−1, p) +An+m−1(k)

≤ eBn+m−1(k)d(xn+m−1, p) +An+m−1(k)

≤ eBn+m−1(k) [eBn+m−2(k)d(xn+m−2, p) +An+m−2(k)]

+An+m−1(k)

≤ e{Bn+m−1(k)+Bn+m−2(k)}d(xn+m−2, p)

+eBn+m−1(k) [An+m−2(k) +An+m−1(k)]

≤ . . .

≤
{
e
∑n+m−1

j=n Bj(k)

}
d(xn, p) +

{
e
∑n+m−1

j=n+1 Bj(k)

}( n+m−1∑

j=n

Aj(k)

)

≤
{
e
∑n+m−1

j=n Bj(k)

}
d(xn, p) +

{
e
∑n+m−1

j=n Bj(k)

}( n+m−1∑

j=n

Aj(k)

)
.

(2.5)

Let Q = e
∑n+m−1

j=n Bj(k) . Then 0 < Q <∞ and

d(xn+m, p) ≤ Qd(xn, p) +Q
( n+m−1∑

j=n

Aj(k)

)
.(2.6)

Thus, the conclusion (ii) holds.
�

We now state and prove the main theorem of this section.

2.2. Theorem. Let (X, d) be a complete convex metric space, and let C be
a nonempty closed convex subset of X. Let {Ti : i ∈ I} be a finite family
of generalized asymptotically quasi-nonexpansive self-maps on C with sequences
{rn(i)}, {sn(i)} ⊂ [0,∞) for each i ∈ I, respectively, such that

∑∞
n=1 rn(i) < ∞

and
∑∞
n=1 sn(i) < ∞. Assume that F = ∩ki=1F (Ti) is a nonempty set. Let {xn}

be the multi-step iteration scheme defined by (1.14) with
∑∞
n=1 γn(i) <∞ for each

i ∈ I. Then the iterative sequence {xn} converges strongly to a point in F if and
only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F {d(x, p)}.

Proof. If {xn} converges to p ∈ F , then lim infn→∞ d(xn, p) = 0. Since 0 ≤
d(xn, F ) ≤ d(xn, p), we have lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. From (2.4), we have that

d(xn+1, p) ≤ (1 +Bn(k))d(xn, p) +An(k)

with
∑∞
n=1Bn(k) <∞ and

∑∞
n=1An(k) <∞, which shows that the sequence {xn}

is of monotone type, so limn→∞ d(xn, F ) exists by Lemma 1.5. Now lim infn→∞ d(xn, F ) =
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0 reveals that limn→∞ d(xn, F ) = 0. Now, we show that {xn} is a Cauchy se-
quence. Let ε > 0. Since limn→∞ d(xn, F ) = 0, there exists an integer n0 such

that d(xn, F ) < ε/6Q and
∑n+m−1
j=n Aj(k) < ε/4Q for all n ≥ n0. So, we can find

p∗ ∈ F such that d(xn0
, p∗) < ε/4Q. Hence, for all n ≥ n0 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(xn, p

∗)

≤ Qd(xn0
, p∗) +Q

n+m−1∑

j=n0

Aj(k)

+Qd(xn0 , p
∗) +Q

n+m−1∑

j=n0

Aj(k)

= 2Q
(
d(xn0 , p

∗) +

n+m−1∑

j=n0

Aj(k)

)

≤ 2Q
( ε

4Q
+

ε

4Q

)
= ε.(2.7)

This proves that {xn} is a Cauchy sequence. Thus, the completeness of X implies
that {xn} must be convergent. Assume that limn→∞ xn = z. Since C is closed,
therefore z ∈ C. Next, we show that z ∈ F . Now, the following two inequalities:

d(z, p) ≤ d(z, xn) + d(xn, p) ∀p ∈ F, n ≥ 1,

(2.8)

d(z, xn) ≤ d(z, p) + d(xn, p) ∀p ∈ F, n ≥ 1,

give

−d(z, xn) ≤ d(z, F )− d(xn, F ) ≤ d(z, xn), n ≥ 1.(2.9)

That is,

|d(z, F )− d(xn, F )| ≤ d(z, xn), n ≥ 1.(2.10)

As limn→∞ xn = z and limn→∞ d(xn, F ) = 0, we conclude that z ∈ F , that is,
{xn} converges strongly to a point in F . This completes the proof.

�
We deduce some results from Theorem 2.2 as follows.

2.3. Corollary. Let (X, d) be a complete convex metric space, and let C be
a nonempty closed convex subset of X. Let {Ti : i ∈ I} be a finite family
of generalized asymptotically quasi-nonexpansive self-maps on C with sequences
{rn(i)}, {sn(i)} ⊂ [0,∞) for each i ∈ I, respectively, such that

∑∞
n=1 rn(i) < ∞
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and
∑∞
n=1 sn(i) < ∞. Assume that F = ∩ki=1F (Ti) is a nonempty set. Let {xn}

be the general iteration scheme defined by (1.14) with
∑∞
n=1 γn(i) < ∞ for each

i ∈ I. Then the sequence {xn} converges strongly to a point p in F if and only
there exists some subsequence {xnj

} of {xn} which converges to a point p ∈ F .

2.4. Corollary. Let (X, d) be a complete convex metric space, and let C be a
nonempty closed convex subset of X. Let {Ti : i ∈ I} be a finite family of asymptot-
ically quasi-nonexpansive self-maps on C with sequences {rn(i)} ⊂ [0,∞) for each

i ∈ I, such that
∑∞
n=1 rn(i) <∞. Assume that F = ∩ki=1F (Ti) is a nonempty set.

Let {xn} be the general iteration scheme defined by (1.14) with
∑∞
n=1 γn(i) < ∞

for each i ∈ I. Then the sequence {xn} converges strongly to a point in F if and
only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F {d(x, p)}.

Proof. Follows from Theorem 2.2 with sn(i) = 0 for each i ∈ I and for all n ≥ 1.
This completes the proof.

�

2.5. Theorem. Let (X, d) be a complete convex metric space, and let C be a
nonempty closed convex subset of X. Let {Ti : i ∈ I} be a finite family of uni-
formly L-Lipschitzian and generalized asymptotically quasi-nonexpansive self-maps
on C with sequences {rn(i)}, {sn(i)} ⊂ [0,∞) for each i ∈ I, respectively, such that∑∞
n=1 rn(i) <∞ and

∑∞
n=1 sn(i) <∞. Assume that F = ∩ki=1F (Ti) 6= ∅. Let {xn}

be the general iteration scheme defined by (1.14) with
∑∞
n=1 γn(i) < ∞ for each

i ∈ I and 0 < δ ≤ αn(i) < 1 − δ for some δ ∈ (0, 1
2 ). Then the sequence {xn}

converges to p ∈ F provided limn→∞ d(xn, Tixn) = 0, for each i ∈ I, and one
member of the family {Ti : i ∈ I} is semi-compact.

Proof. Without loss of generality, we assume that T1 is semi-compact. Then, there
exists a subsequence {xnj

} of {xn} such that xnj
→ q ∈ C. Hence, for any i ∈ I,

we have

d(q, Tiq) ≤ d(q, xnj ) + d(xnj , Tixnj ) + d(Tixnj , Tiq)

≤ (1 + L)d(q, xnj ) + d(xnj , Tixnj )→ 0.

Thus q ∈ F . By Lemma 1.5 and Theorem 2.2, xn → q. This completes the proof.
�

2.6. Theorem. Let (X, d) be a complete convex metric space, and let C be a
nonempty closed convex subset of X. Let {Ti : i ∈ I} be a finite family of uni-
formly L-Lipschitzian and generalized asymptotically quasi-nonexpansive self-maps
on C with sequences {rn(i)}, {sn(i)} ⊂ [0,∞) for each i ∈ I, respectively, such that∑∞
n=1 rn(i) <∞ and

∑∞
n=1 sn(i) <∞. Assume that F = ∩ri=1F (Ti) 6= ∅. Let {xn}

be the general iteration scheme defined by (1.14) with
∑∞
n=1 γn(i) < ∞ for each

i ∈ I and 0 < δ ≤ αn(i) < 1 − δ for some δ ∈ (0, 1
2 ). Suppose that the mappings
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{Ti : i ∈ I} for each i ∈ I satisfy the following conditions:

(i) limn→∞ d(xn, Tixn) = 0 for each i ∈ I;

(ii) there exists a constant K > 0 such that d(xn, Tixn) ≥ Kd(xn, F ), for each
i ∈ I and for all n ≥ 1.

Then {xn} converges strongly to a point in F .

Proof. From conditions (i) and (ii), we have limn→∞ d(xn, F ) = 0, it follows as
in the proof of Theorem 2.2, that {xn} must converges strongly to a point in F .
This completes the proof.

�

3. Application

In this section we give an application of Theorem 2.2.

3.1. Theorem. Let X be a Banach space, and let C be a nonempty closed con-
vex subset of X. Let {Ti : i ∈ I} be a finite family of generalized asymptotically
quasi-nonexpansive self-maps on C with sequences {rn(i)}, {sn(i)} ⊂ [0,∞) for each

i ∈ I, respectively, such that
∑∞
n=1 rn(i) < ∞ and

∑∞
n=1 sn(i) < ∞. Assume that

F = ∩ki=1F (Ti) is a nonempty set. Let {xn} be the multi-step iteration scheme
defined as

xn+1 = ynk = αnkT
n
k yn(k−1) + βnkxn + γnkunk,

yn(r−1) = αn(k−1)T
n
k−1yn(k−2) + βn(k−1)xn + γn(k−1)un(k−1),

...

yn3 = αn3T
n
3 yn2 + βn3xn + γn3un3,

yn2 = αn2T
n
2 yn1 + βn2xn + γn2un2,

yn1 = αn1T
n
1 yn0 + βn1xn + γn1un1, n ≥ 1,(3.1)

where yn0 = xn and {un1}, {un2}, . . . , {unk} are bounded sequences in C with
{αni}, {βni}, and {γni} are appropriate real sequences in [0, 1] such that αni +
βni + γni = 1 for all i = 1, 2, . . . , k and all n with

∑∞
n=1 γni < ∞ for each i ∈ I.

If lim infn→∞ d(xn, F ) = 0, then the iterative sequence {xn} converges strongly to
a point p ∈ F .

Proof. Since {uni, i = 1, 2, . . . , k, n ≥ 1} are bounded sequences in C, so we can
set

M = max

{
sup
n≥1
‖uni − p‖ , i = 1, 2, . . . , k

}
.
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Let p ∈ F , rn = max{rn(i) : i = 1, 2, . . . , k} and sn = max{sn(i) : i =

1, 2, . . . , k} for all n. Since
∑∞
n=1 rn(i) < ∞ and

∑∞
n=1 sn(i) < ∞, for all i =

1, 2, . . . , k, therefore
∑∞
n=1 rn < ∞ and

∑∞
n=1 sn < ∞. Then by using (3.1), we

have

‖yn1 − p‖ = ‖αn1T
n
1 xn + βn1xn + γn1un1 − p‖

≤ αn1 ‖Tn1 xn − p‖+ βn1 ‖xn − p‖+ γn1 ‖un1 − p‖
≤ αn1[(1 + rn1) ‖xn − p‖+ sn1] + βn1 ‖xn − p‖+ γn1 ‖un1 − p‖
≤

(
αn1 + βn1

)
(1 + rn1) ‖xn − p‖+ αn1sn1 + γn1 ‖un1 − p‖

≤
(
αn1 + βn1

)
(1 + rn) ‖xn − p‖+ αn1sn + γn1M

=
(

1− γn1

)
(1 + rn) ‖xn − p‖+ αn1sn + γn1M

≤ (1 + rn) ‖xn − p‖+ sn + γn1M

= (1 + rn) ‖xn − p‖+An1(3.2)

where An1 = sn+γn1M , since by assumptions
∑∞
n=1 sn <∞ and

∑∞
n=1 γn1 <∞,

it follows that
∑∞
n=1An1 <∞.

Again from (3.1) and (3.2), we obtain that

‖yn2 − p‖ ≤ (1 + rn)2 ‖xn − p‖+An2(3.3)

where An2 = (1 + rn)An1 + sn + γn2M , since by assumptions
∑∞
n=1 sn < ∞,∑∞

n=1 γn2 <∞ and
∑∞
n=1An1 <∞, it follows that

∑∞
n=1An2 <∞.
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Continuing the above process, using (3.1), we get

‖xn+1 − p‖ =
∥∥αnk(Tnk yn(k−1) − p) + βnk(xn − p) + γnk(unk − p)

∥∥
≤ αnk

∥∥Tnk yn(k−1) − p
∥∥+ βnk ‖xn − p‖+ γnk ‖unk − p‖

≤ αnk[(1 + rnk)
∥∥yn(k−1) − p

∥∥+ snk] + βnk ‖xn − p‖
+γnk ‖unk − p‖

≤ αnk[(1 + rn)
∥∥yn(k−1) − p

∥∥+ sn] + βnk ‖xn − p‖
+γnk ‖unk − p‖

≤ αnk(1 + rn)
∥∥yn(k−1) − p

∥∥+ αnksn + βnk ‖xn − p‖
+γnk ‖unk − p‖

≤ αnk(1 + rn)[(1 + rn)k−1 ‖xn − p‖+An(k−1)] + αnksn

+βnk ‖xn − p‖+ γnk ‖unk − p‖
≤

(
αnk + βnk

)
(1 + rn)k ‖xn − p‖+ αnk(1 + rn)An(k−1)

+αnksn + γnkM

=
(
1− γnk

)
(1 + rn)k ‖xn − p‖+ αnk(1 + rn)An(k−1)

+αnksn + γnkM

≤ (1 + rn)k ‖xn − p‖+ (1 + rn)An(k−1) + sn + γnkM

= (1 + rn)k ‖xn − p‖+Ank(3.4)

where Ank = (1 + rn)An(k−1) + sn + γnkM , since by assumptions
∑∞
n=1 rn <

∞,
∑∞
n=1 sn < ∞,

∑∞
n=1 γnk < ∞ and

∑∞
n=1An(k−1) < ∞, it follows that∑∞

n=1Ank < ∞. Therefore, by our assumptions, we know that the sequence
{xn} is of monotone type and so the conclusion follows from Theorem 2.2. This
completes the proof.

�

3.2. Remark. (1) If γn(i) = 0 for each i ∈ I and for all n ≥ 1, then the approxi-
mation results about

(i) modified Mann iterations in [16] in Hilbert spaces,

(ii) modified Mann iterations in [17] in uniformly convex Banach spaces,

(iii) modified Ishikawa iterations in Banach spaces [4, 9, 11], and

(iv) the three-step iteration scheme in uniformly convex Banach spaces from
[7, 20] are immediate consequences of our results.

(2) The approximation results about

(i) modified Ishikawa iterations with errors in Banach spaces [12], and
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(ii) the two-step and three-step iteration scheme with errors in uniformly con-
vex Banach spaces from [13, 15] are immediate consequences of our results.

(3) Our results also extend the results of Khan et al. [8] to the case of more
general class of asymptotically quasi-nonexpansive mappings and iteration scheme
with errors consider in this paper.

(4) Our results also generalize the results of [6] in the setup of convex metric
spaces.

(5) Our results also extend the corresponding results of [2, 10] to the case of
more general class of asymptotically nonexpansive and asymptotically nonexpan-
sive type mappings and multi-step iteration scheme with errors considered in this
paper.

3.3. Remark. Every uniformly convex Banach spaces are uniformly convex met-
ric spaces as shown in the following example:

3.4. Example. Let H be a Hilbert space and let X be a nonempty closed subset
of {x ∈ H : ‖x‖ = 1} such that if x, y ∈ X and α, β ∈ [0, 1] with α+ β = 1, then

(αx+ β y)/ ‖αx+ β y‖ ∈ X and δ(X) ≤
√

2/2; see [14], where δ is a modulus of
convexity of X. Let d(x, y) = cos−1{(x, y)} for every x, y ∈ X, where (., .) is the
inner product of H. When we define a convex structure W for (X, d) properly,
it is easily seen that (X, d) becomes a complete and uniformly convex metric space.

Also, the following example shows that the generalized asymptotically quasi-
nonexpansive mappings includes the class of asymptotically quasi-nonexpansive
mappings:

3.5. Example. Let E be the real line with the usual metric and K = [0, 1]. Define
T : K → K by

T (x) =

{
x/2, if x 6= 0,
0, if x = 0.

Obviously T (0) = 0, i.e., 0 is a fixed point of the mapping T . Thus, T is quasi-
nonexpansive. It follows that T is uniformly quasi-1 Lipschitzian and asymptot-
ically quasi-nonexpansive with the constant sequence {kn} = {1} for each n ≥ 1
and hence it is generalized asymptotically quasi-nonexpansive mapping with con-
stant sequences {kn} = {1} and {sn} = {0} for each n ≥ 1 but the converse is not
true in general.

Conclusion.

According to the Examples 3.4 and 3.5, we come to a conclusion that if the
results are true in uniformly convex Banach spaces then the results are also true
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in complete convex metric spaces. Thus our results are good improvement and
generalization of corresponding results of [2, 4, 6, 7, 9, 11, 12, 15, 16, 17, 20].

Acknowledgement. The author thank the referees for their valuable sugges-
tions and comments on the manuscript.
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1. Introduction

Smith normal forms and p-ranks of designs can help distinguish non-isomorphic
designs with the same parameters. So it is interesting to know their Smith normal
form explicitly. Smith normal forms of some designs were computed in [2],[3] and
[5]. In this article we give a shorter proof for the Smith normal form of skew-
hadamard matrices and their designs.

A Hadamard matrix H of order n is an n by n matrix whose elements are ±1
and which satisfies HHT = nIn. It is skew-Hadamard matrix if, it also satisfies
H + HT = 2In. For more information about the Hadamard matrices please see
[1], [9]. Similar definitions stated below can be found in [4], [5], [6], [7], [8], [9].

The incidence matrix of a Hadamard (4m− 1, 2m,m) design D is a 4m− 1 by
4m− 1 (0, 1)-matrix A that satisfies

AAT = ATA = mI +mJ.

The complementary design D is a (4m − 1, 2m − 1,m − 1) design with incidence
matrix J − A. A skew-hadamard (4m − 1, 2m,m) design is a hadamard design
that satisfies(after some row and column permutations)

A+AT = I + J
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Integral Equivalence: If A and B are matrices over the ring Z of integers,
A and B are called equivalent (A ∼ B) if there are Z−matrices P and Q, of
determinant ±1, such that

B = PAQ

which means that one can be obtained from the other by a sequence of the following
operations:

• Reorder the rows,
• Negate some row,
• Add an integer multiple of one row to another,

and the corresponding column operations.

Smith Normal Form: If A is any n by n, Z− matrix, then there is a unique
Z−matrix

S = diag(a1, a2, ..., an)

such that A ∼ S and

a1|a2|...|ar, ar+1 = . . . = an = 0,

where the ai are non-negative. The greatest common divisor of i by i subdetermi-
nants of A is

a1a2a3 . . . ai.

The ai are called invariants factors of A and S is the Smith normal form(SNF (A))
of A.
p-Rank: The p-rank of an n by n, Z− matrix A is the rank of A over a field

of characteristic p and is denoted by rankp(A). The p-rank of A is related to the
invariant factors a1, a2, ..., an by

rankp(A) = max{i : p does not divide ai}

2. Proof of the main theorem

2.1. Proposition. ([6] or [8]): Let H be a Hadamard matrix of order 4m with
invariant factors h1, ..., h4m. Then h1 = 1, h2 = 2, and hih4m+1−i = 4m (i =
1, . . . , 4m).

2.2. Theorem. ([7]): Let A, B, C = A+B, be n by n matrices over Z , with in-
variant factors h1(A)| . . . |hn(A), h1(B)| . . . |hn(B), h1(C)| . . . |hn(C), respectively.
Then

gcd(hi(A), hj(B))|hi+j−1(A+B)

for any indices i, j with 1 ≤ i, j ≤ n , i + j − 1 ≤ n , where gcd denotes greatest
common divisor.

2.3. Theorem. ([4]): Let D be a skew-Hadamard (4m−1, 2m,m) design. Suppose
that p divides m. Then rankp(D) = 2m− 1 and rankp(D) = 2m.

The author in [5] proves the following theorem by using completely different
method. Here we provide a shorter algebraic proof for this theorem and the corol-
lary following it.
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2.4. Theorem. A skew-Hadamard matrix of order 4m has Smith normal form

diag[1, 2, . . . , 2︸ ︷︷ ︸
2m−1

, 2m, . . . , 2m︸ ︷︷ ︸
2m−1

, 4m].

Proof. Applying Theorem 2.2 withA = H andB = HT we get gcd(hi(H), hj(H
T ))|2

which means that gcd(hi(H), hj(H
T )) = 1 or 2 where 1 ≤ i, j ≤ 4m , i+j−1 ≤ 4m.

If m = 1 then we have a skew-Hadamard matrix of order 4 and by proposition 1 the
result follows. Assume that m > 1 then by proposition 1 we know that h1(H) = 1,
h2(H) = 2, h4m−1(H) = 2m and h4m(H) = 4m. Since SNF (H) = SNF (HT )
assume that h2m(H) = 2k and h2m(HT ) = 2k where k 6= 1 and k is a divisor of
m. In this case i = j = 2m and Theorem 2.2 gives us gcd(hi(H), hj(H

T )) = 2k|2.
But this is a contradiction since k 6= 1. So k = 1 which means that h2m(H) =
h2m(HT ) = 2. So all the first 2m elements except the first one have to be 2.
Since we found the first 2m elements, using proposition 1 again we obtain the
remaining elements namely h2m+1(H) = h2m+2(H) = . . . = h4m−1(H) = 2m and
h4m(H) = 4m. �

2.5. Corollary. The Smith normal form of the incidence matrix of a skew-Hadamard
(4m− 1, 2m,m) design is

diag[1, . . . , 1︸ ︷︷ ︸
2m−1

,m, . . . ,m︸ ︷︷ ︸
2m−1

, 2m].

Proof. By [5] any skew-Hadamard matrix of order 4m is integrally equivalent to
[1] ⊕ (2A). This means that all the invariant factors of A are half of the corre-
sponding invariant factors of H except the first one. So the result follows. �

Note that we know from Theorem 2.3 that rankpA = 2m−1 which agrees with
our result.

By using similar techniques that we used above we get the Smith normal form
of the complementary skew-Hadamard design:

2.6. Corollary. The Smith normal form of the incidence matrix of a skew-Hadamard
(4m− 1, 2m− 1,m− 1) design is

diag[1, . . . , 1︸ ︷︷ ︸
2m

,m, . . . ,m︸ ︷︷ ︸
2m−2

,m(2m− 1)].
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In this paper, the concepts of the base and subbase in intuitionistic I-
fuzzy topological spaces are introduced, and use them to discuss fuzzy
continuous mapping and fuzzy open mapping. We also study the base
and subbase in the product of intuitionistic I-fuzzy topological spaces,
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1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was
first introduced by Atanassov [1]. From then on, this theory has been studied
and applied in a variety areas ([4, 14, 18], etc). Among of them, the research of
the theory of intuitionistic fuzzy topology is similar to the the theory of fuzzy
topology. In fact, Çoker [4] introduced the concept of intuitionistic fuzzy topo-
logical spaces, this concept is originated from the fuzzy topology in the sense of
Chang [3](in this paper we call it intuitionistic I-topological spaces). Based on
Çoker’s work [4], many topological properties of intuitionistic I-topological spaces
has been discussed ([5, 10, 11, 12, 13]). On the other hand, Šostak [17] proposed
a new notion of fuzzy topological spaces, and this new fuzzy topological structure
has been accepted widely. Influenced by Šostak’s work [17], Çoker [7] gave the
notion of intuitionistic fuzzy topological spaces in the sense of Šostak. By the
standardized terminology introduced in [16], we will call it intuitionistic I-fuzzy

∗Department of Mathematics, School of Science, Beijing Institute of Technology, Beijing

100081, PR China, Email: liangchengyu87@163.com
†Corresponding Author, Institute of Math., School oh Math. Sciences, Nanjing Normal Uni-

versity, Nanjing, Jiangsu 210023, PR China,



topological spaces in this paper. In [15], the authors studied the compactness in
intuitionistic I-fuzzy topological spaces.

Recently, Yan and Wang [19] generalized Fang and Yue′s work ([8, 21]) from
I-fuzzy topological spaces to intuitionistic I-fuzzy topological spaces. In [19], they
introduced the concept of intuitionistic I-fuzzy quasi-coincident neighborhood sys-
tems of intuitiostic fuzzy points, and construct the notion of generated intuition-
istic I-fuzzy topology by using fuzzifying topologies. As an important result, Yan
and Wang proved that the category of intuitionistic I-fuzzy topological spaces is
isomorphic to the category of intuitionistic I-fuzzy quasi-coincident neighborhood
spaces in [19].

It is well known that base and subbase are very important notions in classical
topology. They also discussed in I-fuzzy topological spaces by Fang and Yue [9].
As a subsequent work of Yan and Wang [19], the main purpose of this paper is
to introduce the concepts of the base and subbase in intuitionistic I-fuzzy topo-
logical spaces, and use them to discuss fuzzy continuous mapping and fuzzy open
mapping. Then we also study the base and subbase in the product of intuitionis-
tic I-fuzzy topological spaces, and T2 separation in product intuitionistic I-fuzzy
topological spaces. Finally, we obtain that the generated product intuitionistic
I-fuzzy topological spaces is equal to the product generated intuitionistic I-fuzzy
topological spaces.

Throughout this paper, let I = [0, 1], X a nonempty set, the family of all fuzzy
sets and intuitionistic fuzzy sets on X be denoted by IX and ζX , respectively.
The notation pt(IX) denotes the set of all fuzzy points on X. For all λ ∈ I, λ
denotes the fuzzy set on X which takes the constant value λ. For all A ∈ ζX, let
A =< µA, γA >. (For the relating to knowledge of intuitionistic fuzzy sets and
intuitionistic I-fuzzy topological spaces, we may refer to [1] and [19].)

2. Some preliminaries

2.1. Definition. ([20]) A fuzzifying topology on a set X is a function τ : 2X → I,
such that

(1) τ(∅) = τ(X) = 1;

(2) ∀A,B ⊆ X, τ(A ∧B) ≥ τ(A) ∧ τ(B);

(3) ∀At ⊆ X, t ∈ T , τ(
∨
t∈T At) ≥

∧
t∈T τ(At).

The pair (X, τ) is called a fuzzifying topological space.

2.2. Definition. ([1, 2]) Let a, b be two real numbers in [0, 1] satisfying the in-
equality a+ b ≤ 1. Then the pair < a, b > is called an intuitionistic fuzzy pair.

Let < a1, b1 >, < a2, b2 > be two intuitionistic fuzzy pairs, then we define

(1) < a1, b1 >≤< a2, b2 > if and only if a1 ≤ a2 and b1 ≥ b2;

(2) < a1, b1 >=< a2, b2 > if and only if a1 = a2 and b1 = b2;

(3) if < aj , bj >j∈J is a family of intuitionistic fuzzy pairs, then
∨
j∈J <

aj , bj >=<
∨
j∈J aj ,

∧
j∈J bj >, and

∧
j∈J < aj , bj >=<

∧
j∈J aj ,

∨
j∈J bj >;

(4) the complement of an intuitionistic fuzzy pair < a, b > is the intuitionistic
fuzzy pair defined by < a, b > =< b, a >;
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In the following, for convenience, we will use the symbols 1∼ and 0∼ denote the
intuitionistic fuzzy pairs < 1, 0 > and < 0, 1 >. The family of all intuitionistic
fuzzy pairs is denoted by A. It is easy to find that the set of all intuitionistic fuzzy
pairs with above order forms a complete lattice, and 1∼, 0∼ are its top element
and bottom element, respectively.

2.3. Definition. ([4]) Let X,Y be two nonempty sets and f : X → Y a function,
if B = {< y, µB(y), γB(y) >: y ∈ Y } ∈ ζY, then the preimage of B under f ,
denoted by f←(B), is the intuitionistic fuzzy set defined by

f←(B) = {< x, f←(µB)(x), f←(γB)(x) >: x ∈ X}.
Here f←(µB)(x) = µB(f(x)), f←(γB)(x) = γB(f(x)). (This notation is from
[16]).

If A = {< x, µA(x), γA(x) >: x ∈ X} ∈ ζX, then the image A under f , denoted
by f→(A) is the intuitionistic fuzzy set defined by

f→(A) = {< y, f→(µA)(y), (1− f→(1− γA))(y) >: y ∈ Y }.
Where

f→(µA)(y) =

{
supx∈f←(y) µA(x), if f←(y) 6= ∅,

0, if f←(y) = ∅.

1− f→(1− γA)(y) =

{
infx∈f←(y) γA(x), if f←(y) 6= ∅,

1, if f←(y) = ∅.

2.4. Definition. ([7]) Let X be a nonempty set, δ : ζX → A satisfy the following:

(1) δ(< 0, 1 >) = δ(< 1, 0 >) = 1∼;

(2) ∀A, B ∈ ζX , δ(A∧B) ≥ δ(A)
∧
δ(B);

(3) ∀At ∈ ζX , t ∈ T , δ(
∨
t∈T At) ≥

∧
t∈T δ(At).

Then δ is called an intuitionistic I-fuzzy topology on X, and the pair (X, δ)
is called an intuitionistic I-fuzzy topological space. For any A ∈ ζX, we always
suppose that δ(A) =< µδ(A), γδ(A) > later, the number µδ(A) is called the
openness degree of A, while γδ(A) is called the nonopenness degree of A. A
fuzzy continuous mapping between two intuitionistic I-fuzzy topological spaces
(ζX, δ1) and (ζY, δ2) is a mapping f : X → Y such that δ1(f←(A)) ≥ δ2(A). The
category of intuitionistic I-fuzzy topological spaces and fuzzy continuous mappings
is denoted by II-FTOP.

2.5. Definition. ([6, 11, 12]) Let X be a nonempty set. An intuitionistic fuzzy
point, denoted by x(α,β), is an intuitionistic fuzzy set A = {< y, µA(y), γA(y) >:
y ∈ X}, such that

µA(y) =

{
α, if y = x,
0, if y 6= x.

and

γA(y) =

{
β, if y = x,
1, if y 6= x.
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Where x ∈ X is a fixed point, the constants α ∈ I0, β ∈ I1 and α + β ≤ 1. The
set of all intuitionistic fuzzy points x(α,β) is denoted by pt(ζX).

2.6. Definition. ([12]) Let x(α,β) ∈ pt(ζX) and A, B ∈ ζX. We say x(α,β)

quasi-coincides with A, or x(α,β) is quasi-coincident with A, denoted x(α,β)q̂A, if
µA(x) + α > 1 and γA(x) + β < 1. Say A quasi-coincides with B at x, or say A
is quasi-coincident with B at x, Aq̂B at x, in short, if µA(x) + µB(x) > 1 and
γA(x) + γB(x) < 1. Say A quasi-coincides with B, or A is quasi-coincident with
B, if A is quasi-coincident with B at some point x ∈ X.
Relation“does not quasi-coincides with” or “is not quasi-coincident with ” is de-
noted by ¬q̂.

It is easily to know for ∀x(α,β) ∈ pt(ζX), x(α,β)q̂ < 1, 0 > and x(α,β)¬q̂ < 0, 1 >.

2.7. Definition. ([19]) Let (X, δ) be an intuitionistic I-fuzzy topological space.
For all x(α,β) ∈ pt(ζX), U ∈ ζX , the mapping Qδx(α,β)

: ζX → A is defined as

follows

Qδx(α,β)
(U) =

{ ∨
x(α,β)q̂ V≤U

δ(V ), x(α,β)q̂ U ;

0∼, x(α,β)¬q̂ U.
The set of Qδ = {Qδx(α,β)

: x(α,β) ∈ pt(ζX)} is called intuitionistic I-fuzzy quasi-

coincident neighborhood system of δ on X.

2.8. Theorem. ([19]) Let (X, δ) be an intuitionistic I-fuzzy topological space,
Qδ = {Qδx(α,β)

: x(α,β) ∈ pt(ζX)} of maps Qδx(α,β)
: ζX → A defined in Definition

2.7 satisfies: ∀U, V ∈ ζX ,

(1) Qδx(α,β)
(〈1, 0〉) = 1∼, Qδx(α,β)

(〈0, 1〉) = 0∼;

(2) Qδx(α,β)
(U) > 0∼ ⇒ x(α,β)q̂ U ;

(3) Qδx(α,β)
(U ∧ V ) = Qδx(α,β)

(U) ∧Qδx(α,β)
(V );

(4) Qδx(α,β)
(U) =

∨
x(α,β)q̂ V≤U

∧
y(λ,ρ)q̂ V

Qδy(λ,ρ)(V );

(5) δ(U) =
∧

x(α,β)q̂ U

Qδx(α,β)
(U).

2.9. Lemma. ([21]) Suppose that (X, τ) is a fuzzifying topological space, for each
A ∈ IX, let ω(τ)(A) =

∧
r∈I τ(σr(A)), where σr(A) = {x : A(x) > r}. Then ω(τ)

is an I-fuzzy topology on X, and ω(τ) is called induced I-fuzzy topology determined
by fuzzifying topology τ .

2.10. Definition. ([19]) Let (X, τ) be a fuzzifying topological space, ω(τ) is an
induced I-fuzzy topology determined by fuzzifying topology τ . For each A ∈ ζX, let
Iω(τ)(A) =< µτ (A), γτ (A) >, where µτ (A) = ω(τ)(µA) ∧ ω(τ)(1− γA), γτ (A) =
1−µτ (A).We say that (ζX, Iω(τ)) is a generated intuitionistic I-fuzzy topological
space by fuzzifying topological space (X, τ).

2.11. Lemma. ([19]) Let (X, τ) be a fuzzifying topological space, then

(1) ∀A ⊆ X, µτ (< 1A, 1Ac >) = τ(A).

(2) ∀A =< α, β >∈ ζX , Iω(τ)(A) = 1∼.
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2.12. Lemma. ([19]) Suppose that (ζX, δ) is an intuitionistic I-fuzzy topological
space, for each A ⊆ X, let [δ](A) = µδ(< 1A, 1Ac >). Then [δ] is a fuzzifying
topology on X.

2.13. Lemma. ([19]) Let (X, τ) be a fuzzifying topological space and (X, Iω(τ)) a
generated intuitionistic I-fuzzy topological space. Then [Iω(τ)] = τ .

3. Base and subbase in Intuitionistic I-fuzzy topological spaces

3.1. Definition. Let (X, τ) be an intuitionistic I-fuzzy topological space and
B : ζX → A. B is called a base of τ if B satisfies the following condition

τ(U) =
∨

∨
λ∈K

Bλ=U

∧

λ∈K
B(Bλ),∀ U ∈ ζX .

3.2. Definition. Let (X, τ) be an intuitionistic I-fuzzy topological space and
ϕ : ζX → A, ϕ is called a subbase of τ if ϕ(u) : ζX → A is a base, where
ϕ(u)(A) =

∨
u{Bλ:λ∈E}=A

∧
λ∈E

ϕ(Bλ), for all A ∈ ζX with (u) standing for “finite

intersection”.

3.3. Theorem. Suppose that B : ζX → A. Then B is a base of some intuitionistic
I-fuzzy topology, if B satisfies the following condition

(1) B(0∼) = B(1∼) = 1∼,

(2) ∀ U, V ∈ ζX , B(U ∧ V ) ≥ B(U) ∧B(V ).

Proof. For ∀ A ∈ ζX , let τ(A) =
∨

∨
λ∈K

Bλ=A

∧
λ∈K

B(Bλ). To show that B is a base

of τ , we only need to prove τ is an intuitionistic I-fuzzy topology on X. For all
U, V ∈ ζX ,

τ(U) ∧ τ(V ) =
( ∨

∨
α∈K1

Aα=U

∧

α∈K1

B(Aα)
)
∧
( ∨

∨
β∈K2

Bβ=V

∧

β∈K2

B(Bβ)
)

=
∨

∨
α∈K1

Aα=U,
∨

β∈K2

Bβ=V

(( ∧

α∈K1

B(Aα)
)
∧
( ∧

β∈K2

B(Bβ)
))

≤
∨

∨
α∈K1,β∈K2

(Aα∧Bβ)=U∧V

( ∧

α∈K1,β∈K2

B(Aα ∧Bβ)
)

≤
∨

∨
λ∈K

Cλ=U∧V

∧

λ∈K
B(Cλ)

= τ(U ∧ V ).

For all {Aλ : λ ∈ K} ⊆ ζX , Let Bλ = {{Bδλ : δλ ∈ Kλ} :
∨

δλ∈Kλ
Bδλ = Aλ}, then

τ(
∨

λ∈K
Aλ) =

∨
∨

δ∈K1

Bδ=
∨
λ∈K

Aλ

∧

δ∈K1

B(Bδ).
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For all f ∈ ∏
λ∈K

Bλ, we have

∨

λ∈K

∨

Bδλ∈f(λ)

Bδλ =
∨

λ∈K
Aλ.

Therefore,

µτ(
∨
λ∈K

Aλ) =
∨

∨
δ∈K1

Bδ=
∨
λ∈K

Aλ

∧

δ∈K1

µB(Bδ)

≥
∨

f∈ ∏
λ∈K

Bλ

∧

λ∈K

∧

Bδλ∈f(λ)

µB(Bδλ )

=
∧

λ∈K

∨

{Bδλ :δλ∈Kλ}∈Bλ

∧

δλ∈Kλ
µB(Bδλ )

=
∧

λ∈E
µτ(Aλ).

Similarly, we have

γτ(
∨
λ∈K

Aλ) ≤
∨

λ∈K
γτ(Aλ).

Hence

τ(
∨

λ∈K
Aλ) ≥

∧

λ∈K
τ(Aλ).

This means that τ is an intuitionistic I-fuzzy topology on X and B is a base of
τ . �

3.4. Theorem. Let (X, τ), (Y, δ) be two intuitionistic I-fuzzy topology spaces
and δ generated by its subbase ϕ. The mapping f : (X, τ) → (Y, δ) satisfies
ϕ(U) ≤ τ(f←(U)), for all U ∈ ζY . Then f is fuzzy continuous, i.e., δ(U) ≤
τ(f←(U)),∀ U ∈ ζY .

Proof. ∀ U ∈ ζY ,

δ(U) =
∨

∨
λ∈K

Aλ=U

∧

λ∈K

∨

u{Bµ:µ∈Kλ}=Aλ

∧

µ∈Kλ
ϕ(Bµ)

≤
∨

∨
λ∈K

Aλ=U

∧

λ∈K

∨

u{Bµ:µ∈Kλ}=Aλ

∧

µ∈Kλ
τ(f←(Bµ))

≤
∨

∨
λ∈K

Aλ=U

∧

λ∈K
τ(f←(Aλ))

≤
∨

∨
λ∈K

Aλ=U

τ(f←(
∨

λ∈K
Aλ))

= τ(f←(U)).

This completes the proof. �
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3.5. Theorem. Suppose that (X, τ), (Y, δ) are two intuitionistic I-fuzzy topology
spaces and τ is generated by its base B. If the mapping f : (X, τ)→ (Y, δ) satisfies
B(U) ≤ δ(f→(U)), for all U ∈ ζX . Then f is fuzzy open, i.e., ∀ W ∈ ζX , τ(W ) ≤
δ(f→(W )).

Proof. ∀ W ∈ ζX ,

τ(W ) =
∨

∨
λ∈K

Aλ=W

∧

λ∈K
B(Aλ)

≤
∨

∨
λ∈K

Aλ=W

∧

λ∈K
δ(f→(Aλ))

≤
∨

∨
λ∈K

Aλ=W

δ(f→(
∨

λ∈K
Aλ))

= δ(f→(W )).

Therefore, f is open. �

3.5. Theorem. Let (X, τ), (Y, δ) be two intuitionistic I-fuzzy topology spaces
and f : (X, τ) → (Y, δ) intuitionistic I-fuzzy continuous, Z ⊆ X. Then f |Z :
(Z, τ |Z) → (Y, δ) is continuous, where (f |Z)(x) = f(x), (τ |Z)(A) = ∨{τ(U) :
U |Z = A}, for all x ∈ Z,A ∈ ζZ .

Proof. ∀ W ∈ ζZ , (f |Z)←(W ) = f←(W )|Z , we have

(τ |Z)((f |Z)←(W )) = ∨{τ(U) : U |Z = (f |Z)←(W )}
≥ τ(f←(W ))

≥ δ(W ).

Then f |Z is intuitionistic I-fuzzy continuous. �

3.6. Theorem. Let (X, τ) be an intuitionistic I-fuzzy topology space and τ gen-
erated by its base B, B|Y (U) = ∨{B(W ) : W |Y = U}, for Y ⊆ X,U ∈ ζY . Then
B|Y is a base of τ |Y .

Proof. For ∀ U ∈ ζX , (τ |Y )(U) =
∨

V |Y =U

τ(V ) =
∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧
λ∈K

B(Aλ). It

remains to show the following equality
∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧

λ∈K
B(Aλ) =

∨
∨
λ∈K

Bλ=U

∧

λ∈K

∨

W |Y =Bλ

B(W ).

In one hand, for all V ∈ ζX with V |Y = U, and
∨
λ∈K

Aλ = V, we have
∨
λ∈K

Aλ|Y = U. Put Bλ = Aλ|Y , clearly
∨
λ∈K

Bλ = U. Then

∨
∨
λ∈K

Bλ=U

∧

λ∈K

∨

W |Y =Bλ

B(W ) ≥
∧

λ∈K
B(Aλ).
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Thus, ∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧

λ∈K
B(Aλ) ≤

∨
∨
λ∈K

Bλ=U

∧

λ∈K

∨

W |Y =Bλ

B(W ).

On the other hand, ∀ a ∈ (0, 1], a <
∨

∨
λ∈K

Bλ=U

∧
λ∈K

∨
W |Y =Bλ

µB(W ), there exists a

family of {Bλ : λ ∈ K} ⊆ ζY , such that

(1)
∨
λ∈K

Bλ = U ;

(2) ∀ λ ∈ K, there exists Wλ ∈ ζX with Wλ|Y = Bλ such that a <
µB(Wλ).

Let V =
∨
λ∈E

Wλ, it is clear V |Y = U and
∧
λ∈K

µB(Wλ) ≥ a. Then

∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧

λ∈K
µB(Aλ) ≥ a.

By the arbitrariness of a, we have
∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧

λ∈K
µB(Aλ) ≥

∨
∨
λ∈K

Bλ=U

∧

λ∈K

∨

W |Y =Bλ

µB(W ).

Similarly, we may obtain that
∧

V |Y =U

∧
∨
λ∈K

Aλ=V

∨

λ∈K
γB(Aλ) ≤

∧
∨
λ∈K

Bλ=U

∨

λ∈K

∧

W |Y =Bλ

γB(W ).

So we have
∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧

λ∈K
B(Aλ) ≥

∨
∨
λ∈K

Bλ=U

∧

λ∈K

∨

W |Y =Bλ

B(W ).

Therefore,
∨

V |Y =U

∨
∨
λ∈K

Aλ=V

∧

λ∈K
B(Aλ) =

∨
∨
λ∈K

Bλ=U

∧

λ∈K

∨

W |Y =Bλ

B(W ).

This means that B|Y is a base of τ |Y . �

3.7. Theorem. Let {(Xα, τα)}α∈J be a family of intuitionistic I-fuzzy topology

spaces and Pβ :
∏
α∈J

Xα → Xβ the projection. For all W ∈ ζ

∏
α∈J

Xα
, ϕ(W ) =

∨
α∈J

∨
P←α (U)=W

τα(U). Then ϕ is a subbase of some intuitionistic I-fuzzy topology τ ,

here τ is called the product intuitionistic I-fuzzy topologies of {τα : α ∈ J} and
denoted by τ =

∏
α∈J

τα.
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Proof. We need to prove ϕ(u) is a subbase of τ .

ϕ(u)(1∼) =
∨

u{Bλ:λ∈E}=1∼

∧

λ∈E
ϕ(Bλ)

=
∨

u{Bλ:λ∈E}=1∼

∧

λ∈E

∨

α∈J

∨

P←α (U)=Bλ

τα(U)

= 1∼.

Similarly, ϕ(u)(0∼) = 1∼. For all U, V ∈ ζ
∏
α∈J

Xα
, we have

ϕ(u)(U) ∧ ϕ(u)(V ) =
( ∨

u{Bα:α∈E1}=U

∧

α∈E1

ϕ(Bα)
)
∧
( ∨

u{Cβ :β∈E2}=V

∧

β∈E2

ϕ(Cβ)
)

=
∨

u{Bα:α∈E1}=U

∨

u{Cβ :β∈E2}=V

(
(
∧

α∈E1

ϕ(Bα)) ∧ (
∧

β∈E2

ϕ(Cβ))
)

≤
∨

u{Bλ:λ∈E}=U∧V

∧

λ∈E
ϕ(Bλ)

= ϕ(u)(U ∧ V ).

Hence, ϕ(u)is a base of τ , i.e., ϕ is a subbase of τ . And by Theorem 3.3 we have

τ(A) =
∨

∨
λ∈K

Bλ=A

∧

λ∈K
ϕ(u)(Bλ)

=
∨

∨
λ∈K

Bλ=A

∧

λ∈K

∨

u{Cρ:ρ∈E}=Bλ

∧

ρ∈E
ϕ(Cρ)

=
∨

∨
λ∈K

Bλ=A

∧

λ∈K

∨

u{Cρ:ρ∈E}=Bλ

∧

ρ∈E

∨

α∈J

∨

P←α (V )=Cρ

τα(V ).

�

By the above discussions, we easily obtain the following corollary.

3.8. Corollary. Let (
∏
α∈J

Xα,
∏
α∈J

τα) be the product space of a family of intu-

itionistic I-fuzzy topology spaces {(Xα, τα)}α∈J . Then Pβ : (
∏
α∈J

Xα,
∏
α∈J

τα) →
(Xβ , τβ) is continuous, for all β ∈ J .

Proof. ∀ U ∈ ζXβ ,

τ(P←β (U)) =
∨

∨
λ∈K

Bλ=P←β (U)

∧

λ∈K

∨

u{Cρ:ρ∈E}=Bλ

∧

ρ∈E

∨

α∈J

∨

P←α (V )=Cρ

τα(V )

≥ τβ(U)

Therefore, Pβ is continuous. �
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4. Applications in product Intuitionistic I-fuzzy topological space

4.1. Definition. Let (X, τ) be an intuitionistic I-fuzzy topology space. The de-
gree to which two distinguished intuitionistic fuzzy points x(α,β), y(λ,ρ) ∈ pt(ζX)(x 6=
y) are T2 is defined as follows

T2(x(α,β), y(λ,ρ)) =
∨

U∧V=0∼

(Qx(α,β)
(U) ∧Qy(λ,ρ)(V )).

The degree to which (X, τ) is T2 is defined by

T2(X, τ) =
∧{

T2(x(α,β), y(λ,ρ)) : x(α,β), y(λ,ρ) ∈ pt(ζX), x 6= y
}
.

4.2. Theorem. Let (X, Iω(τ)) be a generated intuitionistic I-fuzzy topological

space by fuzzifying topological space (X, τ) and T2(X, Iω(τ)) , 〈µT2(X,Iω(τ)), γT2(X,Iω(τ))〉.
Then µT2(X,Iω(τ)) = T2(X, τ).

Proof. For all x, y ∈ X,x 6= y, and each a <
∧{ ∨

U∧V=0∼

(
µQx(α,β) (U)∧µQy(λ,ρ) (V )

)
:

x(α,β), y(λ,ρ) ∈ pt(ζX), x 6= y
}

, there exists U, V ∈ ζX with U ∧ V = 0∼ such that

a < µQx(1,0) (U), a < µQy(1,0) (V ). Then there exists U1, V1 ∈ ζX , such that

x(1,0)q̂ U1 ≤ U, a < ω(τ)(µU1
),

y(1,0)q̂ V1 ≤ V, a < ω(τ)(µV1).

Denote A = σ0(µU1
), B = σ0(µV1

), it is clear that x ∈ A, y ∈ B. From the fact
U ∧ V = 0∼, it implies µU1

∧ µV1
= 0. Then we have σ0(µU1

) ∧ σ0(µV1
) = ∅,

i.e.,A ∧B = ∅.
a < ω(τ)(µU1

) =
∧

r∈I
τ(σr(µU1

)) ≤ τ(σ0(µU1
)) = τ(A).

Thus
a <

∨

x∈U⊆A
τ(U) = Nx(A).

Similarly, we have a < Ny(B). Hence

a <
∨

A∩B=∅
(Nx(A) ∧Ny(B)).

Then
a ≤

∧{ ∨

A∩B=∅
(Nx(A) ∧Ny(B)) : x, y ∈ X,x 6= y

}
.

Therefore, ∧{ ∨
U∧V=0∼

(
µQx(α,β) (U) ∧ µQy(λ,ρ) (V )

)
: x(α,β), y(λ,ρ) ∈ pt(ζX), x 6= y

}

≤ ∧
{ ∨
A∩B=∅

(Nx(A) ∧Ny(B)) : x, y ∈ X,x 6= y
}
.

On the other hand, for all x(α,β), y(λ,ρ) ∈ pt(ζX), x 6= y, and a <
∧{ ∨

A∩B=∅
(Nx(A)∧

Ny(B)) : x, y ∈ X,x 6= y
}
, there exists A,B ∈ 2X , A ∧ B = ∅, such that

a < Nx(A), a < Ny(B). Then there exists A1, B1 ∈ 2X , such that

x ∈ A1 ⊆ A, a < τ(A1),
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y ∈ B1 ⊆ B, a < τ(B1).

Let U = 〈1A1
, 1Ac1〉, V = 〈1B1

, 1Bc1 〉, where Ac1 is the complement of A1, then
x(α,β)q̂ U, y(λ,ρ)q̂ V . In fact, 1A1(x) = 1 > 1 − α, 1Ac1(x) = 0 < 1 − β. Thus
x(α,β)q̂ U . Similarly, we have y(λ,ρ)q̂ V . By A∧B = ∅, we have A1∧B1 = ∅. Then
for all z ∈ X, we obtain

(1A1
∧ 1B1

)(z) = 1A1
(z) ∧ 1B1

(z) = 0,

(1Ac1 ∨ 1Bc1 )(z) = 1Ac1(z) ∨ 1Bc1 (z) = 1.

Hence

1A1
∧ 1B1

= 0, 1Ac1 ∨ 1Bc1 = 1.

Since ∀ r ∈ I1, σr(1A1) = A1, we have

ω(τ)(1A1
) =

∧

r∈I1
τ(σr(1A1

)) = τ(A1).

By 1− 1Ac1 = 1A1 , and a < τ(A1), we have

a < ω(τ)(1A1
) ∧ ω(τ)(1− 1Ac1)

= ω(τ)(µU ) ∧ ω(τ)(1− γU ).

So,

a <
∨

x(α,β)q̂ W⊆U
(ω(τ)(µW ) ∧ ω(τ)(1− γW )) = µQx(α,β) (U).

Similarly, we have a < µQy(λ,ρ) (V ). This deduces that

a <
∨

U∧V=0∼

(
µQx(α,β) (U) ∧ µQy(λ,ρ) (V )

)
.

Furthermore, we may obtain

a ≤
∧{ ∨

U∧V=0∼

(
µQx(α,β) (U) ∧ µQy(λ,ρ) (V )

)
: x(α,β), y(λ,ρ) ∈ pt(ζX), x 6= y

}
.

Hence ∧{ ∨
U∧V=0∼

(
µQx(α,β) (U) ∧ µQy(λ,ρ) (V )

)
: x(α,β), y(λ,ρ) ∈ pt(ζX), x 6= y

}

≥ ∧
{ ∨
A∩B=∅

(Nx(A) ∧Ny(B)) : x, y ∈ X,x 6= y
}
.

This means that
∧{ ∨

U∧V=0∼

(
µQx(α,β) (U)∧µQy(λ,ρ) (V )

)
: x(α,β), y(λ,ρ) ∈ pt(ζX), x 6=

y
}

=
∧{ ∨

A∩B=∅
(Nx(A) ∧Ny(B)) : x, y ∈ X,x 6= y

}
. Therefore we have

µT2(X,Iω(τ)) = T2(X, τ).

�

4.3. Lemma. Let (
∏
j∈J

Xj ,
∏
j∈J

τj) be the product space of a family of intuitionistic

I-fuzzy topology spaces {(Xj , τj)}j∈J . Then τj(Aj) ≤ (
∏
j∈J

τj)(P
←
j (Aj)), for all

j ∈ J,Aj ∈ ζXj .
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Proof. Let
∏
j∈J

τj = δ, x(α,β)q̂ f
←(U) ⇔ f→(x(α,β))q̂ U . Then for all j ∈ J,Aj ∈

ζXj , we have

δ(P←j (Aj)) =
∧

x(α,β)q̂ P
←
j (Aj)

Qδx(α,β)
(P←j (Aj))

≥
∧

x(α,β)q̂ P
←
j (Aj)

Q
τj
P→j (x(α,β))

(Aj)

=
∧

P→j (x(α,β))q̂ Aj

Q
τj
P→j (x(α,β))

(Aj)

≥
∧

xj
(α,β)

q̂ Aj

Q
τj

xj
(α,β)

(Aj)

= τj(Aj).

This completes the proof. �

4.4. Theorem. Let (
∏
j∈J

Xj ,
∏
j∈J

τj) be the product space of a family of intuitionis-

tic I-fuzzy topology spaces {(Xj , τj)}j∈J . Then
∧
j∈J

T2(Xj , τj) ≤ T2(
∏
j∈J

Xj ,
∏
j∈J

τj).

Proof. For all g(α,β), h(λ,ρ) ∈ pt(ζ

∏
j∈J

Xj
) and g 6= h. Then there exists j0 ∈ J such

that g(j0) 6= h(j0), where g(j0), h(j0) ∈ Xj0 .

For all Uj0 , Vj0 ∈ ζXj0 with Uj0 ∧ Vj0 = 0
Xj0∼ , we have

P←j0 (Uj0) ∧ P←j0 (Vj0) = P←j0 (Uj0 ∧ Vj0) = 0

∏
j∈J

Xj

∼ .

ThenQg(j0)(α,β)(Uj0) ≤ Qg(α,β)(P←j0 (Uj0)). In fact, if g(j0)(α,β)q̂ Uj0 , then g(α,β)q̂ P
←
j0

(Uj0).

For all V ≤ Uj0 , we have P←j0 (V ) ≤ P←j0 (Uj0). On account of Lemma 4.3, we have

∨

g(j0)(α,β)q̂ V≤Uj0

τj0(V ) ≤
∨

g(α,β)q̂ P
←
j0

(V )≤P←j0 (Uj0 )

(
∏

j∈J
τj)(P

←
j0 (V ))

≤
∨

g(α,β)q̂ G≤P←j0 (Uj0 )

(
∏

j∈J
τj)(G),

i.e., Qg(j0)(α,β)(Uj0) ≤ Qg(α,β)(P←j0 (Uj0)). Thus,
∨

U∧V=0
Xj0∼

(Qg(j0)(α,β)(U) ∧Qh(j0)(λ,ρ)(V ))

≤ ∨

P←j0 (U)∧P←j0 (V )=0

∏
j∈J

Xj

∼

(Qg(α,β)(P
←
j0

(U))∧Qh(λ,ρ)
(P←j0 (V )))

≤ ∨

G∧H=0

∏
j∈J

Xj

∼

(Qg(α,β)(G) ∧Qh(λ,ρ)
(H)).
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So we have

T2(g(j0)(α,β), h(j0)(λ,ρ)) ≤ T2(g(α,β), h(λ,ρ)).

Thus

T2(Xj0 , τj0) ≤ T2(
∏

j∈J
Xj ,

∏

j∈J
τj).

Therefore, ∧

j∈J
T2(Xj , τj) ≤ T2(

∏

j∈J
Xj ,

∏

j∈J
τj).

�

4.5. Lemma. Let (X, Iω(τ)) be a generated intuitionistic I-fuzzy topological space
by fuzzifying topological space (X, τ). Then

(1) Iω(τ)(A) = 1∼, for all A = 〈α, β〉 ∈ ζX ;

(2) ∀ B ⊆ X, τ(B) = µIω(τ)(〈1B , 1Bc〉).
Proof. By Lemma 2.11, 2.12 and 2.13, it is easy to prove it. �

4.6. Lemma. Let (X, δ) be a stratified intuitionistic I-fuzzy topological space (i.e.,
for all < α, β >∈ A, δ(< α, β >) = 1∼). Then for all A ∈ ζX

∧
r∈I

µδ(〈1σr(µA), 1(σr(µA))c〉) ≤ µδ(A).

Proof. For all A ∈ ζX , and for any a <
∧
r∈I

µδ(〈1σr(µA), 1(σr(µA))c〉), y(α,β) ∈

pt(ζX) with y(α,β)q̂ A, clearly µA(y) > 1 − α. Then there exists δ > 0 such that
µA(y) > 1− α+ δ. Thus y ∈ σ1−α+δ(µA). So we have

y(α,β)q̂ 〈1σ1−α+δ(µA), 1(σ1−α+δ(µA))c〉.
Then

a < µδ(〈1σ1−α+δ(µA), 1(σ1−α+δ(µA))c〉)

=
∧

z(α,β)q̂ 〈1σ1−α+δ(µA),1(σ1−α+δ(µA))c 〉
µ(Qz(α,β)(〈1σ1−α+δ(µA), 1(σ1−α+δ(µA))c〉)).

Therefore,

a < µ(Qy(α,β)(〈1σ1−α+δ(µA), 1(σ1−α+δ(µA))c〉)).

Since (X, δ) is a stratified intuitionistic I-fuzzy topological space, we have
Qy(α,β)(1− α+ δ, α− δ〉) = 1∼. Moreover, it is well known that the following
relations hold

1− α+ δ ∧ 1σ1−α+δ(µA) ≤ µA,

α− δ ∨ 1(σ1−α+δ(µA))c ≥ 1− µA ≥ γA.

So we have

a < µ(Qy(α,β)(〈1− α+ δ∧1σ1−α+δ(µA), α− δ∨1(σ1−α+δ(µA))c〉)) ≤ µ(Qy(α,β)(A)).
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Then a ≤ µδ(A). Therefore,
∧

r∈I
µδ(〈1σr(µA), 1(σr(µA))c〉) ≤ µδ(A).

�

4.7. Theorem. Let (
∏
α∈J

Xα,
∏
α∈J

τα) be the product space of a family of fuzzifying

topological space {(Xα, τα)}α∈J . Then (
∏
α∈J

Iω(τα))(A) = Iω(
∏
α∈J

τα)(A).

Proof. Let (
∏
α∈J

Iω(τα))(A) = 〈µ ∏
α∈J

Iω(τα))(A), γ ∏
α∈J

Iω(τα))(A)〉. For all a < µ ∏
α∈J

Iω(τα))(A),

there exists {Uaj }j∈K such that
∨
j∈K

Uaj = A, for each Uaj , there exists {Aaλ,j}λ∈E
such that

∧
λ∈E

Aaλ,j = Uaj , where E is an finite index set. In addition, for every

λ ∈ E, there exists α , α(λ) ∈ J and Wα ∈ ζXα with P←α (Wα) = Aaλ,j such that

a < µ(Iω(τα)(Wα)). Then we have

a < ω(τα)(µWα
),

a < ω(τα)(1− γWα
).

Thus for all r ∈ I, we have

a < τα(σr(µWα
))

≤ (
∏

α∈J
τα)(P←α (σr(µWα

)))

= (
∏

α∈J
τα)(σr(P

←
α (µWα

)))

= (
∏

α∈J
τα)(σr(µAaλ,j )).

Hence

a ≤ (
∏

α∈J
τα)(

∧

λ∈E
σr(µAaλ,j ))

= (
∏

α∈J
τα)(σr(

∧

λ∈E
µAaλ,j ))

= (
∏

α∈J
τα)(σr(µUaj )).

Furthermore

a ≤ (
∏

α∈J
τα)(

∨

j∈K
σr(µUaj ))

= (
∏

α∈J
τα)(σr(

∨

j∈K
µUaj ))

= (
∏

α∈J
τα)(σr(µA)).
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So

a ≤
∧

r∈I
(
∏

α∈J
τα)(σr(µA))

= ω(
∏

α∈J
τα)(µA).

Similarly, we have

a ≤ ω(
∏

α∈J
τα)(1− γA).

Hence a ≤ µ(Iω(
∏
α∈J

τα)(A)). By the arbitrariness of a, we have µ((
∏
α∈J

Iω(τα))(A)) ≤
µ(Iω(

∏
α∈J

τα)(A)).

On the other hand, for ∀ a < µ(Iω(
∏
α∈J

τα)(A)), we have

a < ω(
∏

α∈J
τα)(µA) =

∧

r∈I
(
∏

α∈J
τα)(σr(µA))

and

a < ω(
∏

α∈J
τα)(1− γA).

Then for all r ∈ I, we have

a < (
∏

α∈J
τα)(σr(µA)).

Thus there exists {Uaj,r}j∈K ⊆ X satisfies
∨
j∈K

Uaj,r = σr(µA), and for all j ∈ K,

there exists {Aaλ,j,r}λ∈E , where E is an finite index set, such that
∧
λ∈E

Aaλ,j,r = Uaj,r.

For all λ ∈ E, there exists α(λ) ∈ J,Wα ∈ ζXα , such that P←α (Wα) = Aaλ,j,r. By
Lemma 4.5 we have

a < τα(Wα) = µIω(τα)(〈1Wα , 1W c
α
〉)

≤ µ(
∏

α∈J
Iω(τα))(P←α (〈1Wα

, 1W c
α
〉))

= µ(
∏

α∈J
Iω(τα))(〈1P←α (Wα), 1P←α (W c

α)〉)

= µ(
∏

α∈J
Iω(τα))(〈1Aaλ,j,r , 1(Aaλ,j,r)c〉)

≤ µ(
∏

α∈J
Iω(τα))(〈

∧

λ∈E
1Aaλ,j,r ,

∨

λ∈E
1(Aaλ,j,r)c〉)

= µ(
∏

α∈J
Iω(τα))(〈1 ∧

λ∈E
Aaλ,j,r

, 1 ∨
λ∈E

(Aaλ,j,r)c〉)

= µ(
∏

α∈J
Iω(τα))(〈1Uaj,r , 1(Uaj,r)c〉).

245



Then

a ≤ µ(
∏

α∈J
Iω(τα))(〈1 ∨

j∈K
Uaj,r

, 1(
∨
j∈K

Uaj,r)c〉)

= µ(
∏

α∈J
Iω(τα))(〈1σr(µA), 1(σr(µA))c〉).

By Lemma 4.6 we have

a ≤
∧

r∈I
µ(
∏

α∈J
Iω(τα))(〈1σr(µA), 1(σr(µA))c〉)

≤ µ((
∏

α∈J
Iω(τα))(A)).

Then

µ((
∏

α∈J
Iω(τα))(A)) ≥ µ(Iω(

∏

α∈J
τα)(A)).

Hence

µ((
∏

α∈J
Iω(τα))(A)) = µ(Iω(

∏

α∈J
τα)(A)).

Then

γ((
∏

α∈J
Iω(τα))(A)) = γ(Iω(

∏

α∈J
τα)(A)).

Therefore,

(
∏

α∈J
Iω(τα))(A) = Iω(

∏

α∈J
τα)(A).

�

5. Further remarks

As we have shown, the notions of the base and subbase in intuitionistic I-fuzzy
topological spaces are introduced in this paper, and some important applications
of them are obtained. Specially, we also use the concept of subbase to study the
product of intuitionistic I-fuzzy topological spaces. In addition, we have proved
that the functor Iω preserves the product.

There are two categories in our paper, the one is the category FYTS of fuzzify-
ing topological spaces, and the other is the category IFTS of intuitionistic I-fuzzy
topological spaces. It is easy to find that Iω is the functor from FYTS to IFTS.
We discussed the property of the functor Iω in Theorem 4.7. A direction worthy of
further study is to discuss the the properties of the functor Iω in detail. Moreover,
we hope to point out that another continuation of this paper is to deal with other
topological properties of intuitionistic I-fuzzy topological spaces.
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[6] D. Çoker and M. Demirci, On intuitionistic fuzzy points, Notes on IFS, 1-2(1995), 79–84.
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[16] U. Höhle and S.E. Rodabaugh, eds., Mathematics of Fuzzy Sets: Logic, Topology, and
Measure Theory, The handbooks of Fuzzy Sets Series, Volume 3(1999), Kluwer Academic

Publishers (Dordrecht).
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Fuzzy integro-differential equations with
compactness type conditions
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Abstract

In the paper fuzzy integro-differential equations with almost continuous
right hand sides are studied. The existence of solution is proved under
compactness type conditions.
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2000 AMS Classification: 34A07, 34A12, 34L30.

1. Introduction

Many problems in modeling as well as in medicines are described by fuzzy
integro-differential equations, which are helpful in studying the observability of
dynamical control systems. This is the main reason to study these equations
extensively. We mention the papers [1] and [2], where nonlinear integro-differential
equations are studied in Banach spaces and in fuzzy space respectively. In [3],
existence result for nonlinear fuzzy Volterra-Fredholm integral equation is proved.
In [14], fuzzy Volterra integral equations are studied using fixed point theorem,
while in [10], the method of successive approximation is used, when the right hand
side satisfies Lipschitz condition. In [15] Kuratowski measure of noncompactness
as well as imbedding map from fuzzy to Banach space is used to prove existence
of solutions. In [11] existence and uniqueness result for fuzzy Volterra integral
equation with Lipschitz right hand side and with infinite delay is proved using
successive approximations method. We also refer to [4] where existence of solution
of functional integral equation under compactness condition is proved.

In the paper we study the following fuzzy integro-differential equation:

(1.1) ẋ(t) = F (t, x(t), (V x)(t)), x(0) = x0, t ∈ I = [0, T ],
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where (V x)(t) =
∫ t

0
K(t, s)x(s)ds is an integral operator of Volterra type.

2. Preliminaries

In this section we give our main assumptions and preliminary results needed in
the paper.

The fuzzy set space is denoted by En = {x : Rn → [0, 1]; x satisfies 1) – 4)}.
1) x is normal i.e. there exists y0 ∈ Rn such that x(y0) = 1,

2) x is fuzzy convex i.e. x(λy+ (1−λ)z) ≥ min{x(y), x(z)} whenever y, z ∈ Rn
and λ ∈ [0, 1],

3) x is upper semicontinuous i.e. for any y0 ∈ Rn and ε > 0 there exists
δ(y0, ε) > 0 such that x(y) < x(y0) + ε whenever |y − y0| < δ and y ∈ Rn,

4) The closure of the set {y ∈ Rn; x(y) > 0} is compact.

The set [x]α = {y ∈ Rn; x(y) ≥ α} is called α-level set of x.

It follows from 1) – 4) that the α-level sets [x]α are convex compact subsets of
Rn for all α ∈ (0, 1]. The fuzzy zero is

0̂(y) =

{
0 if y 6= 0,
1 if y = 0.

Evidently En is a complete metric space equipped with metric

D(x, y) = sup
α∈(0,1]

DH([x]α, [y]α),

where DH(A,B) = max{maxa∈A minb∈B |a − b|,maxb∈B mina∈A |a − b|} is the
Hausdorff distance between the convex compact subsets of Rn. From Theorem 2.1
of [7], we know that En can be embedded as a closed convex cone in a Banach
space X. The embedding map j : En → X is isometric and isomorphism.

The function g : I → En is said to be simple function if there exists a finite

number of pairwise disjoint measurable subsets I1, . . . , In of I with I =
n⋃

k=1

Ik such

that g(·) is constant on every Ik.

The map f : I → En is said to be strongly measurable if there exists a sequence
{fm}∞m=1 of simple functions fm : I → En such that lim

m→∞
D(fm(t), f(t)) = 0 for

a.a t ∈ I.

In the fuzzy set literature starting from [12] the integral of fuzzy functions is

defined levelwise, i.e. there exists g(t) ∈ En such that [g]α(t) =
∫ t

0
[f ]α(s)ds.

Now if g(·) : I → En is strongly measurable and integrable then j(g)(·) is
strongly measurable and Bochner integrable and

(2.1) j

(∫ t

0

g(s)ds

)
=

∫ t

0

j (g) (s)ds for all t ∈ I.

We recall some properties of integrable fuzzy set valued mapping from [7].
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2.1. Theorem. Let G,K : I → En be integrable and λ ∈ R then

(i)
∫
I

(G(t) +K(t))dt =
∫
I
G(t)dt+

∫
I
K(t)dt,

(ii)
∫
I
λG(t)dt = λ

∫
I
G(t)dt,

(iii) D(G,K) is integrable,
(iv) D(

∫
I
G(t)dt,

∫
I
K(t)dt) ≤

∫
I
D(G(t),K(t))dt.

A mapping F : I → En is said to be differentiable at t ∈ I if there exists

Ḟ (t) ∈ En such that the limits lim
h→0+

F (t+h)−F (t)
h and lim

h→0+

F (t)−F (t−h)
h exist, and

are equal to Ḟ (t). At the end point of I we consider only the one sided derivative.
Notice that En is not locally compact (cf. [13]). Consequently we need com-

pactness type assumptions to prove existence of solution, we refer the interested
reader to [5] and the references therein.

Let Y be complete metric space with metric %Y (·, ·). The Hausdorff measure of
noncompactness β : Y → R for the bounded subset A of Y is defined by

β(A) := inf{d > 0 : A can be covered by finite many balls with radius ≤ d}
and ”Kuratowski measure” of noncompactness ρ : Y → R for the bounded subset
A of Y is defined by

ρ(A) := inf{d > 0 : A can be covered by finite many sets with diameter ≤ d},
where for any bounded set A ⊂ Y , we denote diam(A) = sup

a,b∈A
%Y (a, b). It is well

known that ρ(A) ≤ β(A) ≤ 2ρ(A) (cf. [8] p.116).
Let γ(·) represent the both ρ(·) and β(·), then some properties of γ(·) are listed

below:

(i) γ(A) = 0 if and only if A is precompact, i.e. its closure Ā is compact,
(ii) γ(A+B) = γ(A) + γ(B) and γ(coA) = γ(A),
(iii) If A ⊂ B then γ(A) ≤ γ(B),
(iv) γ(A

⋃
B) = max(γ(A), γ(B)),

(v) γ(·) is continuous with respect to the Hausdorff distance.

The following theorem of Kisielewicz can be found e.g. in [8].

2.2. Theorem. Let X be separable Banach space and let {gn(·)}∞n=1 be an inte-
grally bounded sequence of measurable functions from I into X, then t→ β{gn(t), n ≥
1} is measurable and

(2.2) β

(∫ t+h

t

{ ∞⋃

i=1

gi(s)

}
ds

)
≤
∫ t+h

t

β

{ ∞⋃

i=1

gi(s)

}
ds,

where t, t+ h ∈ I.

The map t → {⋃∞i=1 gi(t)} is a set valued (multifunction). The integral is
defined in Auman sense, i.e. union of the values of the integrals of all (strongly)
measurable selections.

2.3. Remark. Since the imbedding map j : En → X is isometry and isomorphism,
one has that it preserve diameter of any closed subset i.e. ρ(A) = ρ(j(A)), for any
closed and bounded set A ∈ En.
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2.4. Theorem. Let {fn(·)}∞n=1 be a (integrally bounded) sequence of strongly mea-
surable fuzzy functions defined from I into En. Then t → ρ({fm(t),m ≥ 1}) is
measurable and

(2.3) ρ

(∫ b

a

∞⋃

m=1

fm(s)ds

)
≤ 2

∫ b

a

ρ

( ∞⋃

m=1

fm(s)

)
ds.

Proof. Since fm are strongly measurable, one has that j(fm)(·) are also strongly
measurable and hence almost everywhere separably valued.

Thus there exists a separable Banach space Y ⊂ X such that j(fm)(I \N) ⊂ Y,
where N ⊂ I is a null set.

Furthermore without loss of generality from Theorem 2.2 and Remark 2.3, we
have

ρ

(∫ b

a

( ∞⋃

m=1

fm(s)

)
ds

)
= ρ

(∫ b

a

( ∞⋃

m=1

j(fm(s))

)
ds

)

≤ β
(∫ b

a

( ∞⋃

m=1

j (fm(s))

)
ds

)
=

∫ b

a

β

( ∞⋃

m=1

j(fm(s))

)
ds

≤ 2

∫ b

a

ρ

( ∞⋃

m=1

j(fm(s))

)
ds = 2

∫ b

a

ρ

( ∞⋃

m=1

fm(s)

)
ds.

Consequently, we get (2.3). �

2.5. Remark. Evidently one can replace ρ(·) by β(·) in (2.3). It would be inter-
esting to see is it possible to replace 2 in the right hand side by smaller constant,
using the special structure of the fuzzy set space, i.e. is it true that

β

(∫ b

a

∞⋃

m=1

fm(s)ds

)
≤ C

∫ b

a

β

( ∞⋃

m=1

fm(s)

)
ds,

for some 1 ≤ C < 2?

3. Main Results

In this section we prove the existence of solution of (1.1). The following hy-
potheses will be used;

(H1) F : I × En × En → En is such that
(i) t→ F (t, x, y) is strongly measurable for all x, y ∈ En,
(ii) (x, y)→ F (t, x, y) is continuous for almost all t ∈ I.
Suppose there exist a(·), b(·) ∈ L1 (I,R+) such that:

(H2) ρ(F (t, A,B)) ≤ λ(t)(ρ(A)+ρ(B)), for all non empty bounded subsets A,B ∈
En and λ(·) ∈ L1(I,R+),

(H3) D
(
F (t, x, y), 0̂

)
≤ a(t) + b(t)

[
D(x, 0̂) +D(y, 0̂)

]
,

(H4) K : 4 = {(t, s); 0 ≤ s ≤ t ≤ a} → R+ is a continuous function.

3.1. Theorem. If (H1)– (H4) hold, then problem (1.1) has at least one solution
on [0, T ].
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Proof. First, we will show that a solution of (1.1) is bounded. Indeed, we have

D(x(t), 0̂) = D(x0, 0̂) +D

(∫ t

0

F (s, x(s), (V x)(s))ds, 0̂

)

≤ D(x0, 0̂) +

∫ t

0

D
(
F (s, x(s), (V x)(s)), 0̂

)
ds

≤ D(x0, 0̂) +

∫ t

0

(
a(s) + b(s)

[
D(x(s), 0̂) +D(

∫ s

0

K(s, τ)x(τ)dτ, 0̂)

])
ds

≤ D(x0, 0̂) +

∫ t

0

(
a(s) + b(s)D(x(s), 0̂) +K∆b(s)

∫ s

0

D(x(τ)dτ, 0̂)

)
ds,

where K∆ = max
(t,s)∈∆

|K(t, s)| .

Therefore, if we denote m(t) = D(x(t), 0̂), then we obtain

m(t) = m(0) +

∫ t

0

(
a(s) + b(s)m(s) +K∆b(s)

∫ s

0

m(τ)dτ

)
ds.

By Pachpatte’s inequality (see Theorem 1 in [9]), we get that there exists M0 > 0

such that m(t) = D(x(t), 0̂) ≤M0 for all t ∈ [0, T ].

Moreover, we obtain that

D((V x)(t), 0̂) = D(

∫ t

0

K(t, s)x(s)ds, 0̂)

≤
∫ t

0

D(K(t, s)x(s), 0̂)ds

≤ K∆

∫ t

0

D(x(s), 0̂)ds ≤ K∆M0T
.
= M1.

It follows that

D
(
F (t, x(t), (V x)(t)), 0̂

)
≤ a(t) +Mb(t)

.
= µ(t),

where M = M0 +M1. Since a(·), b(·) ∈ L1 (I,R+), one has that µ(·) ∈ L1 (I,R+)

Let c =
∫ T

0
µ(s)ds+ 1. We define

Ω =

{
x(·) ∈ C([0, T ],En) : sup

t∈[0,T ]

D(x(t), x0) ≤ c
}
.

Clearly, Ω closed, bounded and convex set. We also define the operator P :
C[[0, T ],En]→ C[[0, T ],En] by

(Px)(t) = x0 +

∫ t

0

F (s, x(s), (V x)(s))ds, t ∈ [0, T ].

Therefore

D((Px)(t), x0) = D
(∫ t

0
F (s, x(s), (V x)(s))ds, 0̂

)

≤
∫ t

0
D
(
F (s, x(s), (V x)(s)), 0̂

)
ds

≤
∫ T

0
µ(s)ds < c

for x ∈ Ω and t ∈ [0, T ]. Thus P (Ω) ⊂ Ω and P (Ω) is uniformly bounded on [0, T ].
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Next we have to show that P is a continuous operator on Ω. For this, let xn(·) ∈ Ω
such that xn(·)→ x(·). Then

D((Pxn)(t), (Px)(t)) = D

(∫ t

0

F (s, xn(s), (V xn)(s))ds,

∫ t

0

F (s, x(s), (V x)(s))ds

)

≤
∫ t

0

D (F (s, xn(s), (V xn)(s)), F (s, x(s), (V x)(s))) ds.

Also, V : Ω→ En defined by (V x)(t) =
∫ t

0
K(t, s)x(s)ds is a continuous operator,

because

D((V xn)(t), (V x)(t)) = D

(∫ t

0

K(t, s)xn(s)ds,

∫ t

0

K(t, s)x(s)ds

)

≤
∫ t

0

D (K(t, s)xn(s),K(t, s)x(s)) ds

≤ K∆

∫ t

0

D(xn(s), x(s))ds→ 0 as n→∞.

Thus by (H1), it follows that D((Pxn)(t), (Px)(t)) → 0 as n → ∞ uniformly on
[0, T ], so P is a continuous operator on [0, T ].

The function t →
t∫

0

µ(·)ds is uniformly continuous on the closed set [0, T ], i.e.

there exist η > 0 such that
∣∣∣
∫ t
s
µ(τ)dτ

∣∣∣ ≤ ε
2 for all t, s ∈ [0, T ] with |t− s| < η.

Further, for each m ≥ 1, we divide [0, T ] into m subintervals [ti, ti+1] with
ti = iT

m .

xm(t) =

{
x0 if t ∈ [0, t1],
(Pxm)(t− ti) if t ∈ [ti, ti+1].

Then xm(·) ∈ Ω for every m ≥ 1. Moreover, for t ∈ [0, t1], we have

D ((Pxm)(t), xm(t)) = D

(∫ t

0

F (s, xm(s), (V xm)(s)), 0̂

)
ds

≤
∫ t1

0

D
(
F (s, xm(s), (V xm)(s)), 0̂

)
ds ≤

∫ t1

0

µ(s)ds,

and for t ∈ [ti, ti+1], we have t− ti ≤ T
m and hence

D ((Pxm)(t), xm(t)) = D ((Pxm)(t), (Pxm)(t− ti))

= D

(∫ t

0

F (s, xm(s), (V xm)(s))ds,

∫ ti

0

F (s, xm(s), (V xm)(s))ds

)

= D




t∫

t−ti

F (s, xm(s), (V xm)(s))ds, 0̂




≤
t∫

t−T/m

D
(
F (s, xm(s), (V xm)(s))ds, 0̂

)
ds
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≤
t∫

t−T/m

µ(s)ds.

Therefore lim
m→∞

D((Pxm)(t), xm(t)) = 0 on [0,T]. Let A = {xm(·);m ≥ 1}. We

claim that A is equicontinuous on [0, T ]. If t, s ∈ [0, T/m], then D(xm(t), xm(s)) =
0. If 0 ≤ s ≤ T/m ≤ t ≤ T , then

D (xm(t), xm(s)) = D

(
x0 +

∫ t−T/m

0

F (σ, xm(σ), (V xm)(σ))dσ, x0

)

≤
∫ t−T/m

0

D
(
F (σ, xm(σ), (V xm)(σ)), 0̂

)
dσ

≤
∫ t−T/m

0

µ(σ)dσ ≤
∫ t

0

µ(σ)dσ < ε/2,

for |t− s| < η. If T/m ≤ s ≤ t ≤ T , then

D (xm(t), xm(s)) < ε/2 when |t− s| < ε.

Therefore A is equicontinuous on [0,T]. Set A(t) = {xm(t);m ≥ 1} for t ∈ [0, T ].
We are to show that A(t) is precompact for each t ∈ [0, T ]. We have

ρ(A(t)) ≤ ρ
(∫ t−T/m

0

F (s,A(s), (V A)(s))ds

)
+ρ

(∫ t

t−T/m
F (s,A(s), (V A)(s))ds

)
.

Given ε > 0, we can find m(ε) > 0, such that
∫ t
t−T/m µ(s)ds < ε/2, for all t ∈ [0, T ]

and m ≥ m(ε). Hence

ρ

(∫ t

t−T/m
F (s,A(s), (V A)(s))ds

)

= ρ

({∫ t

t−T/m
F (s, xm(s), (V xm))ds;m ≥ n(ε)

})

≤ 2

∫ t

t−T/m
µ(s)ds < ε.

It follows that

ρ(A(t)) ≤ ρ
(∫ t

0

F (s,A(s), (V A)(s))ds

)
≤ 2

∫ t

0

ρ (F (s,A(s), (V A)(s))) ds

≤ 2

∫ t

0

λ(s)[ρ(A(s)) + ρ((V A)(s))]ds.
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However,

ρ(V A(s)) = ρ

(∫ t

0

K(t, s)A(s)ds

)
= ρ

({∫ t

0

K(t, s)xm(s)ds; m ≥ 1

})

≤ 2

∫ t

0

ρ ({K(t, s)xm(s); m ≥ 1}) ds ≤ 2

∫ t

0

K∆ρ ({xm(s); m ≥ 1}) ds

= 2

∫ t

0

K∆ρ(A(s))ds

and ∫ t

0

ρ (V A(s)) ds ≤
∫ t

0

2

∫ s

0

K∆ρ (A(τ)) dτ ds

= 2

∫ t

0

∫ t

τ

K∆ρ (A(τ)) dsdτ

= 2

∫ t

0

K∆(t− τ)ρ(A(τ))dτ ≤ K∆T

∫ t

0

ρ(A(τ))dτ.

Therefore we obtain that

ρ(A(t)) ≤ 2

∫ t

0

λ(s)[ρ (A(s)) +K∆Tρ (A(s))]ds.

Let R = e2(1+K∆T )
∫ T
0
λ(t)dt. Due to Gronwall inequality

ρ(A(t)) ≤ R
∫ t

0

ρ (A(s)) ds.

Therefore ρ(A(t)) = 0 and hence A(t) is precompact for every t ∈ [0, T ]. Since
A is equicontinuous and A(t) is precompact, one has that Arzela-Ascoli theorem
holds true in our case. Thus (passing to subsequences if necessary) the sequence
{xn(t)}∞n=1 converges uniformly on [0, T ] to a continuous function x(·) ∈ Ω. Due
to the triangle inequality

D ((Px)(t), x(t)) ≤ D ((Px)(t), (Pxn)(t))

+D ((Pxn)(t), xn(t)) +D (xn(t), x(t))→ 0,

we have (Px)(t) = x(t) for all t ∈ [0, T ], i.e. x(·) is a solution of (1.1). �
3.2. Remark. From Theorem 3.1 it is easy to see that the solution set of (1.1)
denoted by

Ω =

{
x(·) ∈ C([0, T ],En) : sup

t∈[0,T ]

D(x(t), x0) ≤ c
}

is compact.

4. Conclusion

We pay our attention to find existence of solution of fuzzy integro-differential
equations under mild assumption as compared with the already existing results
in the literature, To overcome some difficulties as lack of compactness and other
restrictive properties of fuzzy space En, we use Kuratowski measure of non com-
pactness, which enables us to use Arzela-Ascoli theorem.
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α-separation axioms based on  Lukasiewicz logic
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Abstract

In the present paper, we introduce topological notions defined by means
of α-open sets when these are planted into the framework of Ying’s
fuzzifying topological spaces (by  Lukasiewicz logic in [0, 1]). We in-
troduce Tα

0 −, Tα
1 −, Tα

2 (α- Hausdorff)-, Tα
3 (α-regular)- and Tα

4 (α-
normal)-separation axioms. Furthermore, the Rα

0− and Rα
1− separa-

tion axioms are studied and their relations with the Tα
1 − and Tα

2 −
separation axioms are introduced. Moreover, we clarify the relations
of these axioms with each other as well as the relations with other
fuzzifying separation axioms.

Keywords:  Lukasiewicz logic, semantics, fuzzifying topology, fuzzifying separa-
tion axioms, α-separation axioms.

2000 AMS Classification: 54A40

1. Introduction and Preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy
set theory, has been developed into a quite mature discipline [7-9, 14-15, 27]. In
contrast to classical topology, fuzzy topology is endowed with richer structure,
to a certain extent, which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [8], the kind of topologies defined by
Chang [4] and Goguen [5] is called the topologies of fuzzy subsets, and further is
naturally called L-topological spaces if a lattice L of membership values has been
chosen. Loosely speaking, a topology of fuzzy subsets (resp. an L-topological
space) is a family τ of fuzzy subsets (resp. L-fuzzy subsets) of nonempty set X,
and τ satisfies the basic conditions of classical topologies [11]. On the other hand,
Höhle in [6] proposed the terminology L-fuzzy topology to be an L-valued mapping
on the traditional powerset P (X) of X. The authors in [10, 23] defined an L-fuzzy
topology to be an L-valued mapping on the L-powerset LX of X.

In 1952, Rosser and Turquette [25] proposed emphatically the following prob-
lem: If there are many-valued theories beyond the level of predicates calculus,
then what are the detail of such theories ? As an attempt to give a partial answer

aDepartment of Mathematics, Faculty of Science, Assiut University, Assiut 71516, EGYPT
∗E–mail: o r sayed@yahoo.com
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to this problem in the case of point set topology, Ying in 1991-1993 [28-30] used a
semantical method of continuous-valued logic to develop systematically fuzzifying
topology. Briefly speaking, a fuzzifying topology on a set X assigns each crisp
subset of X to a certain degree of being open, other than being definitely open
or not. In fact, fuzzifying topologies are a special case of the L-fuzzy topologies
in [10, 23] since all the t-norms on I = [0, 1] are included as a special class of
tensor products in these paper. Ying uses one particular tensor product, namely
 Lukasiewicz conjunction. Thus his fuzzifying topologies are a special class of all
the I - fuzzy topologies considered in the categorical frameworks [10, 23]. Roughly
speaking, the semantical analysis approach transforms formal statements of in-
terest, which are usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation rules, and then
these inequalities are demonstrated in an algebraic way and the semantic validity
of conclusions is thus established. So far, there has been significant research on
fuzzifying topologies [12-13, 20-21, 26]. For example, Shen [26] introduced and
studied T0−, T1−, T2 (Hausdorff)-, T3(regular)- and T4(normal)- separation ax-
ioms in fuzzifying topology. In [13], the concepts of the R0− and R1− separation
axioms in fuzzifying topology were added and their relations with the T1− and T2−
separation axioms, were studied. Also, in [12] the concepts of fuzzifying α-open
set and fuzzifying α-continuity were introduced and studied. In classical topology,
α-separation axioms have been studied in [2-3, 16-17, 19, 22]. As well as, they
have been studied in fuzzy topology in [1,18, 24]. In the present paper, we explore
the problem proposed by Rosser and Turquette [25] in fuzzy α-separation axioms.

A basic structure of the present paper is as follows. First, we offer some def-
initions and results which will be needed in this paper. Afterwards, in Section
2, in the framework of fuzzifying topology, the concept of α-separation axioms
Tα0 −, Tα1 −, Tα2 (α-Hausdorff)-, Tα3 (α-regular)- and Tα4 (α-normal) are discussed.
In Section 3, on the bases of fuzzifying topology the Rα0− and Rα1− separation ax-
ioms are introduced and their relations with the Tα1 and Tα2−− separation axioms
are studied. Furthermore , we give the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms. Finally, in a conclu-
sion, we summarize the main results obtained and raise some related problems for
further study. Thus we fill a gap in the existing literature on fuzzifying topology.
We will use the terminologies and notations in [12-13, 26, 28, 29] without any
explanation. We will use the symbol ⊗ instead of the second ”AND” operation ∧

·
as dot is hardly visible. This mean that [α] ≤ [ϕ→ ψ]⇔ [α]⊗ [ϕ] ≤ [ψ].
A fuzzifying topology on a set X [6, 28] is a mapping τ ∈ =(P (X)) such that:

(1) τ(X) = 1, τ(φ) = 1;
(2) for any A,B, τ(A ∩B) ≥ τ(A) ∧ τ(B);

(3) for any {Aλ : λ ∈ Λ}, τ
( ⋃
λ∈Λ

Aλ

)
≥ ∧
λ∈Λ

τ (Aλ) .

The family of all fuzzifying α-open sets [12], denoted by τα ∈ =(P (X)), is defined
as
A ∈ τα := ∀x(x ∈ A→ x ∈ Int(Cl(Int(A)))), i. e., τα(A) =

∧
x∈A

Int(Cl(Int(A)))(x)

The family of all fuzzifying α-closed sets [12], denoted by Fα ∈ =(P (X)), is defined
as A ∈ Fα := X−A ∈ τα. The fuzzifying α-neighborhood system of a point x ∈ X
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[12] is denoted by Nα
x ∈ =(P (X)) and defined as Nα

x (A) =
∨

x∈B⊆A
τα(B).The

fuzzifying α-closure of a set A ⊆ X [12], denoted by Clα ∈ =(X), is defined as
Clα(A)(x) = 1−Nα

x (X −A).
Let (X, τ) be a fuzzifying topological space. The binary fuzzy predicatesK,H,M ∈
=(X×X), V ∈ =(X×P (X)) and W ∈ =(P (X)×P (X)) [13] are defined as follows:

(1) K(x, y) := ∃A((A ∈ Nx ∧ y /∈ A) ∨ (A ∈ Ny ∧ x /∈ A));
(2) H(x, y) := ∃B∃C((B ∈ Nx ∧ y /∈ B) ∧ (C ∈ Ny ∧ x /∈ C));
(3) M(x, y) := ∃B∃C(B ∈ Nx ∧ C ∈ Ny ∧B ∩ C ≡ ∅);
(4) V (x,D) := ∃A∃B(A ∈ Nx ∧B ∈ τ ∧D ⊆ B ∧A ∩B ≡ ∅);
(5) W (A,B) := ∃G∃H(G ∈ τ ∧H ∈ τ ∧A ⊆ G ∧B ⊆ H ∧G ∩H ≡ ∅).

Let Ω be the class of all fuzzifying topological spaces. The unary fuzzy predicates
Ti ∈ =(Ω), i = 0, 1, 2, 3, 4 [26] (see the rewritten form in [13]) and Ri ∈ =(Ω), i =
0, 1 [13] are defined as follows:

(1) (X, τ) ∈ T0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ K(x, y);
(2) (X, τ) ∈ T1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ H(x, y);
(3) (X, τ) ∈ T2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→M(x, y);
(4) (X, τ) ∈ T3 := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D) −→ V (x,D);
(5) (X, τ) ∈ T4 := ∀A∀B(A ∈ F ∧B ∈ F ∧A ∩B = ∅) −→W (A,B);
(6) (X, τ) ∈ R0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (K(x, y) −→ H(x, y));
(7) (X, τ) ∈ R1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (K(x, y) −→M(x, y)).

2. Fuzzifying α- separation axioms and their equivalents

For simplicity we give the following definition.

2.1. Definition. Let (X, τ) be a fuzzifying topological space. The binary fuzzy
predicates Kα, Hα,Mα ∈ =(X × X), V α ∈ =(X × P (X)) and Wα ∈ =(P (X) ×
P (X)) are defined as follows:

(1) Kα(x, y) := ∃A((A ∈ Nα
x ∧ y /∈ A) ∨ (A ∈ Nα

y ∧ x /∈ A));
(2) Hα(x, y) := ∃B∃C((B ∈ Nα

x ∧ y /∈ B) ∧ (C ∈ Nα
y ∧ x /∈ C));

(3) Mα(x, y) := ∃B∃C(B ∈ Nα
x ∧ C ∈ Nα

y ∧B ∩ C ≡ ∅);
(4) V α(x,D) := ∃A∃B(A ∈ Nα

x ∧B ∈ τα ∧D ⊆ B ∧A ∩B ≡ ∅);
(5) Wα(A,B) := ∃G∃H(G ∈ τα ∧H ∈ τα ∧A ⊆ G ∧B ⊆ H ∧G ∩H ≡ ∅).

2.2. Definition. Let Ω be the class of all fuzzifying topological spaces. The unary
fuzzy predicates Tαi ∈ =(Ω), i = 0, 1, 2, 3, 4 and Rαi ∈ =(Ω), i = 0, 1 are defined as
follows:

(1) (X, τ) ∈ Tα0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ Kα(x, y);
(2) (X, τ) ∈ Tα1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ Hα(x, y);
(3) (X, τ) ∈ Tα2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→Mα(x, y);
(4) (X, τ) ∈ Tα3 := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D) −→ V α(x,D);
(5) (X, τ) ∈ Tα4 := ∀A∀B(A ∈ F ∧B ∈ F ∧A ∩B = ∅) −→Wα(A,B);

(6) (X, τ) ∈ Tα′3 := ∀x∀D(x ∈ X ∧D ∈ Fα ∧ x /∈ D) −→ V (x,D);

(7) (X, τ) ∈ Tα′4 := ∀A∀B(A ∈ Fα ∧B ∈ Fα ∧A ∩B = ∅) −→W (A,B);
(8) (X, τ) ∈ Rα0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (Kα(x, y) −→ Hα(x, y));
(9) (X, τ) ∈ Rα1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (Kα(x, y) −→Mα(x, y)).

2.3. Theorem. Let (X, τ) be a fuzzifying topological space. Then we have
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|= (X, τ) ∈ Tα0 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧x 6= y −→ (¬(x ∈ Clα({y}))∨¬(y ∈
Clα({x})))).

Proof. Since for any x,A,B, |= A ⊆ B → (A ∈ Nα
x → B ∈ Nα

x ) (see [12, Theorem
4.2 (2)]), we have

[(X, τ) ∈ Tα0 ] =
∧

x 6=y
max(

∨

y/∈A
Nα
x (A),

∨

x/∈A
Nα
y (A))

=
∧

x 6=y
max(Nα

x (X − {y}), Nα
y (X − {x}))

=
∧

x 6=y
max(1− Clα({y})(x), 1− Clα({x})(y))

=
∧

x 6=y
(¬(Clα({y})(x)) ∨ ¬(Clα({x})(y)))

= [∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ (¬(x ∈ Clα({y})) ∨ ¬(y ∈ Clα({x}))))].

�

2.4. Theorem. For any fuzzifying topological space (X, τ) we have
|= ∀x({x} ∈ Fα)↔ (X, τ) ∈ Tα1 .

Proof. Since τα(A) =
∧
x∈A

Nα
x (A) (Corollary 4.1 in [12]), for any x1, x2 with x1 6=

x2, we have

[∀x({x} ∈ Fα)] =
∧

x∈X
Fα({x}) =

∧

x∈X
τα(X − {x}) ≤

∧

x∈X

∧

y∈X−{x}
Nα
y (X − {x})

≤
∧

y∈X−{x2}
Nα
y (X − {x2}) ≤ Nα

x1
(X − {x2}) =

∨

x2 /∈A
Nα
x1

(A).

Similarly, we have, [∀x({x} ∈ Fα)] ≤ ∨
x1 /∈B

Nα
x2

(B). Then

[∀x({x} ∈ Fα)] ≤
∧

x1 6=x2

min(
∨

x2 /∈A
Nα
x1

(A),
∨

x1 /∈B
Nα
x2

(B))

=
∧

x1 6=x2

∨

x1 /∈B, x2 /∈A
min(Nα

x1
(A), Nα

x2
(B))

= [(X, τ) ∈ Tα1 ].
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On the other hand

[(X, τ) ∈ Tα1 ] =
∧

x1 6=x2

min(
∨

x2 /∈A
Nα
x1

(A),
∨

x1 /∈B
Nα
x2

(B))

=
∧

x1 6=x2

min(Nα
x1

(X − {x2}), Nα
x2

(X − {x1}))

≤
∧

x1 6=x2

Nα
x1

(X − {x2}) =
∧

x2∈X

∧

x1∈X−{x2}
Nα
x1

(X − {x2})

=
∧

x2∈X
τα(X − {x2}) =

∧

x∈X
τα(X − {x})

= [∀x({x} ∈ Fα)].

Therefore [∀x({x} ∈ Fα)] = [(X, τ) ∈ Tα1 ]. �

2.5. Definition. Let (X, τ) be a fuzzifying topological space. The fuzzifying α-
derived set Dα(A) of A is defined as follows: x ∈ Dα(A) := ∀B(B ∈ Nα

x →
B ∩ (A− {x}) 6= φ).

2.6. Lemma. Dα(A)(x) = 1−Nα
x ((X −A) ∪ {x}).

Proof. From Theorem 4.2 (2) [12] we have

Dα(A)(x) = 1−
∨

B∩(A−{x})=φ
Nα
x (B) = 1−Nα

x ((X −A) ∪ {x}).

�

2.7. Theorem. For any finite set A ⊆ X, |= Tα1 (X, τ)→ Dα(A) ≡ φ.

Proof. From Theorem 4.2 (2) [12] we have

∧

y∈X−A
Nα
y ((X −A) ∪ {y}) ≥

∧

y∈X−A
Nα
y (X −A) =

∧

y∈X−A
Nα
y (
⋂

x∈A
(X − {x})

≥
∧

y∈X−A

∧

x∈A
Nα
y (X − {x}) ≥

∧

x 6=y
Nα
y (X − {x}).

Also

∧

y∈A
Nα
y ((X −A) ∪ {y}) =

∧

y∈A
Nα
y (X − (A− {y})) =

∧

y∈A
Nα
y (

⋂

x∈A−{y}
(X − {x})

≥
∧

y∈A

∧

x∈A−{y}
Nα
y (X − {x}) ≥

∧

x6=y
Nα
y (X − {x}).
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Therefore

[Dα(A) ≡ φ] =
∧

x∈X
Nα
x ((X −A) ∪ {x})

= min(
∧

y∈X−A
Nα
y ((X −A) ∪ {y}),

∧

y∈A
Nα
y ((X −A) ∪ {y}))

≥
∧

x6=y
Nα
y (X − {x}) =

∧

x∈X

∧

x∈X−{y}
Nα
y (X − {x})

=
∧

x∈X
τα(X − {x}) =

∧

x∈X
Fα({x}) = Tα1 (X, τ).

�

2.8. Definition. The fuzzifying α-local basis βαx of x is a function from P (X)
into I = [0, 1] satisfying the following conditions:

(1) |= βαx ⊆ Nα
x , and (2) |= A ∈ Nα

x −→ ∃B(B ∈ βαx ∧ x ∈ B ⊆ A).

2.9. Lemma. |= A ∈ Nα
x ←→ ∃B(B ∈ βαx ∧ x ∈ B ⊆ A).

Proof. From condition (1) in Definition 2.8 and Theorem 4.2 (2) in [12] we have
Nα
x (A) ≥ Nα

x (B) ≥ βαx (B) for each B ∈ P (X) such that x ∈ B ⊆ A. So Nα
x (A) ≥∨

x∈B⊆A
βαx (B). From condition (2) in Definition 2.8 we have Nα

x (A) ≤ ∨
x∈B⊆A

βαx (B).

Hence Nα
x (A) =

∨
x∈B⊆A

βαx (B). �

2.10. Theorem. If βαx is a fuzzifying α-local basis of x, then
|= (X, τ) ∈ Tα1 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃A(A ∈ βαx ∧ y /∈ A)).

Proof. For any x, y with x 6= y,
∨
y/∈A

βαx (A) ≤ ∨
y/∈A

Nα
x (A),

∨
x/∈B

βαy (B) ≤ ∨
x/∈B

Nα
y (B).

So min(
∨
y/∈A

βαx (A),
∨
x/∈B

βαy (B)) ≤ min(
∨
y/∈A

Nα
x (A),

∨
x/∈B

Nα
y (B)) =

∨
y/∈A,x/∈B

min(Nα
x (A), Nα

y (B)),

i.e.,
∧
x 6=y

∨
y/∈A

βαx (A) ≤ ∧
x 6=y

∨
y/∈A,x/∈B

min(Nα
x (A), Nα

y (B)) = [(X, τ) ∈ Tα1 ]. On the

other hand, for any B with x ∈ B ⊆ X − {y} we have y /∈ B. So
∨
y/∈A

βαx (A) ≥

βαx (B). According to Definition 2.8 we have
∨
y/∈A

βαx (A) ≥ ∨
x∈B⊆X−{y}

βαx (B) =

Nα
x (X − {y}). Furthermore, from Corollary 4.1 [12] we have

∧
x6=y

∨
y/∈A

βαx (A) ≥
∧
x6=y

Nx(X−{y}) =
∧
y∈X

∧
x∈X−{y}

Nx(X−{y}) =
∧
y∈X

τα(X−{y}) =
∧
y∈X

Fα({y}) =

[(X, τ) ∈ Tα1 ]. �

2.11. Theorem. If βαx is a fuzzifying α-local basis of x, then
|= (X, τ) ∈ Tα2 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃B(B ∈ βαx ∧ y ∈

¬(Clα(B)))).
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Proof.

[∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃B(B ∈ βαx ∧ y ∈ ¬(Clα(B))))]

=
∧

x 6=y

∨

B∈P (X)

min(βαx (B),¬(1−Nα
y (X −B)))

=
∧

x 6=y

∨

B∈P (X)

min(βαx (B), Nα
y (X −B))

=
∧

x 6=y

∨

B∈P (X)

∨

y∈C⊆X−B
min(βαx (B), βαy (C))

=
∧

x 6=y

∨

B∩C=∅

∨

x∈D⊆B, y∈E⊆C
min(βαx (D), βαy (E))

=
∧

x 6=y

∨

B∩C=∅
min(

∨

x∈D⊆B
βαx (D),

∨

y∈E⊆C
βαy (E))

=
∧

x 6=y

∨

B∩C=∅
min(Nα

x (B), Nα
y (C)) = [(X, τ) ∈ Tα2 ].

�

2.12. Definition. The binary fuzzy predicate �α ∈ =(N(X)×X), is defined as
S�α x := ∀A(A ∈ Nα

x −→ S ⊂∼ A), where N(X) is the set of all nets of X, [S�α x]
stands for the degree to which S α-converges to x and ” ⊂∼ ” is the binary crisp
predicates ”almost in ”.

2.13. Theorem. Let (X, τ) be a fuzzifying topological space and S ∈ N(X).
|= (X, τ) ∈ Tα2 ←→ ∀S∀x∀y((S ⊆ X)∧(x ∈ X)∧(y ∈ X)∧(S�αx)∧(S�α y) −→
x = y).

Proof. [(X, τ) ∈ Tα2 ] =
∧
x 6=y

∨
A∩B=∅

(Nα
x (A) ∧Nα

y (B)),

[∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S �α x) ∧ (S �α y) −→ x = y)]
=
∧
x6=y

∧
S⊆X

(
∨

S 6⊂∼ A
Nα
x (A) ∨ ∨

S 6⊂∼ B
Nα
y (B))

=
∧
x6=y

∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(Nα
x (A) ∨Nα

y (B)).

(1) If A∩B = ∅, then for any S ∈ N(X), we have S 6 ⊂∼ A or S 6 ⊂∼ B. Therefore,
we obtain Nα

x (A) ∧Nα
y (B) ≤ ∨

S 6⊂∼ A
Nα
x (A) or Nα

x (A) ∧Nα
y (B) ≤ ∨

S 6⊂∼ B
Nα
x (B).

Consequently,
∨

A∩B=∅
(Nα

x (A) ∧Nα
y (B)) ≤ ∧

S⊆X
(
∨

S 6⊂∼ A
Nα
x (A) ∨ ∨

S 6⊂∼ B
Nα
y (B)),

and
[(X, τ) ∈ Tα2 ] ≤ [∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S �α x) ∧ (S �α y) →
x = y)].

(2) First, for any x, y with x 6= y, if
∨

A∩B=∅
(Nα

x (A)∧Nα
y (B)) < t, then Nα

x (A) <

t or Nα
y (B) < t provided A∩B = ∅, i.e., A∩B 6= ∅ when A ∈ (Nα

x )t and B ∈ (Nα
y )t.

Now, set a net S∗ : (Nα
x )t × (Nα

y )t −→ X, (A,B) 7−→ x(A,B) ∈ A ∩ B. Then for
any A ∈ (Nα

x )t, B ∈ (Nα
y )t, we have S∗⊂∼ A and S∗⊂∼ B. Therefore, if S∗ 6 ⊂∼ A and
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S∗ 6 ⊂∼ B, then A /∈ (Nα
x )t, B /∈ (Nα

y )t, i.e., Nα
x (A) ∨ Nα

y (B)) < t. Consequently∨
S∗ 6⊂∼ A

∨
S∗ 6⊂∼ B

(Nα
x (A)∨Nα

y (B)) ≤ t. Moreover
∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(Nα
x (A)∨Nα

y (B)) ≤ t.

Second, for any positive integer i, there exists xi, yi with xi 6= yi, and
∨

A∩B=∅
(Nα

xi(A) ∧Nα
yi(B)) < [(X, τ) ∈ Tα2 ] + 1/i,

and hence
∧

S⊆X

∨

S 6⊂∼ A

∨

S 6⊂∼ B
(Nα

xi(A) ∨Nα
yi(B)) < [(X, τ) ∈ Tα2 ] + 1/i.

So we have

[∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S �α x) ∧ (S �α y) −→ x = y)]

=
∧

x 6=y

∧

S⊆X

∨

S 6⊂∼ A

∨

S 6⊂∼ B
(Nα

x (A) ∨Nα
y (B)) ≤ [(X, τ) ∈ Tα2 ].

�

2.14. Lemma. Let (X, τ) be a fuzzifying topological space.
(1) If D ⊆ B, then

∨
A∩B=∅

Nα
x (A) =

∨
A∩B=∅, D⊆B

Nα
x (A),

(2)
∨

A∩B=∅

∧
y∈D

Nα
y (X −A) =

∨
A∩B=∅, D⊆B

τα(B).

Proof. (1) Since D ⊆ B then
∨

A∩B=∅
Nα
x (A) =

∨

A∩B=∅
Nα
x (A)∧[D ⊆ B] =

∨

A∩B=∅, D⊆B
Nα
x (A).

(2) Let y ∈ D and A ∩B = ∅. Then
∨

A∩B=∅, D⊆B
τα(B) =

∨

A∩B=∅, D⊆B
τα(B) ∧ [y ∈ D]

=
∨

y∈D⊆B⊆X−A
τα(B) =

∨

y∈B⊆X−A
τα(B)

= Nα
y (X −A) =

∧

y∈D
Nα
y (X −A)

=
∨

A∩B=∅

∧

y∈D
Nα
y (X −A).

�

2.15. Definition. Let (X, τ) be a fuzzifying topological space.

αT
(1)
3 (X, τ) := ∀x∀D(x ∈ X∧D ∈ F∧x /∈ D −→ ∃A(A ∈ Nα

x ∧(D ⊆ X−Clα(A)))).

2.16. Theorem. |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (1)
3 .
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Proof.

αT
(1)
3 (X, τ) =

∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
(1− Clα(A)(y))))

=
∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X −A)))

and Tα3 (X, τ) =
∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))).

So, the result holds if we prove that
∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X −A)) =

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B)) (∗)

It is clear that, on the left-hand side of (∗) in the case of A∩D 6= ∅ there exists
y ∈ X such that y ∈ D and y /∈ X − A. So,

∧
y∈D

Nα
y (X − A) = 0 and thus (∗)

becomes

∨

A∈P (X), A∩B=∅
min(Nα

x (A),
∧

y∈D
Nα
y (X −A)) =

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B)),

which is obtained from Lemma 2.14. �

2.17. Definition. Let (X, τ) be a fuzzifying topological space.

αT
(2)
3 (X, τ) := ∀x∀B(x ∈ B ∧B ∈ τ −→ ∃A(A ∈ Nα

x ∧ Clα(A) ⊆ B)).

2.18. Theorem. |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (2)
3 .

Proof. From Theorem 2.16 we have

Tα3 (X, τ) =
∧

x/∈D
min(1, 1−τ(X−D)+

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X−A))).

Now,

αT
(2)
3 (X, τ) =

∧

x∈B
min(1, 1− τ(B) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈X−B
(1− Clα(A)(y))))

=
∧

x∈B
min(1, 1− τ(B) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈X−B
(1− (1−Nα

y (X −A)))))

=
∧

x∈B
min(1, 1− τ(B) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈X−B
Nα
y (X −A))).

Put B = X −D we have

αT
(2)
3 (X, τ) =

∧

x/∈D
min(1, 1− τ(X −D) +

∨

A∈P (X)

min(Nα
x (A),

∧

y∈D
Nα
y (X −A)))

= Tα3 (X, τ).

�
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2.19. Definition. Let (X, τ) be a fuzzifying topological space and ϕ be a subbase
of τ then

αT
(3)
3 (X, τ) := ∀x∀D(x ∈ D ∧D ∈ ϕ −→ ∃B(B ∈ Nα

x ∧ Clα(B) ⊆ D)).

2.20. Theorem. |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (3)
3 .

Proof. Since [ϕ ⊆ τ ] = 1, from Theorems 2.16 we have

αT
(3)
3 (X, τ) ≥ αT (2)

3 (X, τ) = Tα3 (X, τ).

So, it suffices to prove that αT
(3)
3 (X, τ) ≤ αT

(2)
3 (X, τ) and this is obtained if we

prove for any x ∈ A,

min(1, 1− τ(A)+
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X−B))) ≥ αT (3)

3 (X, τ).

Set αT
(3)
3 (X, τ) = δ. Then for any x ∈ X and any Dλi ∈ P (X), x ∈ Dλi , λi ∈ Iλ

(Iλ denotes a finite index set), λ ∈ Λ,
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A we have

1− ϕ(Dλi) +
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B)) ≥ δ > δ − ε,

where ε is any positive number. Thus

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B)) > ϕ(Dλi)− 1 + δ − ε.

Set γλi = {B : B ⊆ Dλi}. From the completely distributive law we have

∧

λi∈Iλ

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B))

=
∨

f∈Π{γλi :λi∈Iλ}

∧

λi∈Iλ
min(Nα

x (f(λi)),
∧

y∈X−Dλi

Nα
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}
min(

∧

λi∈Iλ
Nα
x (f(λi)),

∧

λi∈Iλ

∧

y∈X−Dλi

Nα
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}
min(

∧

λi∈Iλ
Nα
x (f(λi)),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X − f(λi)))

=
∨

B∈P (X)

min(
∧

λi∈Iλ
Nα
x (B),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

=
∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X −B)),
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where B = f(λi).
Similarly, we can prove

∧

λ∈Λ

∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

=
∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∪
λ∈Λ

∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

≤
∨

B∈P (X)

min(Nα
x (B),

∧

y∈ ∩
λ∈Λ

∪
λi∈Iλ

X−Dλi

Nα
y (X −B))

≤
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X −B)),

so we have
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X −B))

≥
∧

λ∈Λ

∧

λi∈Iλ

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−Dλi

Nα
y (X −B))

≥
∧

λ∈Λ

∧

λi∈Iλ
ϕ(Dλi)− 1 + δ − ε.

For any Iλ and Λ that satisfy
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A the above inequality is true. So,

∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X −B))

≥
∨

∪λ∈ΛDλ=A

∧

λ∈Λ

∨

∩λi∈IλDλi=Dλ

∧

λi∈Iλ
ϕ(Dλi)− 1 + δ − ε

= τ(A)− 1 + δ − ε.

i.e., min(1, 1−τ(A)+
∨

B∈P (X)

min(Nα
x (B),

∧

y∈X−A
Nα
y (X−B))) ≥ δ−ε.

Because ε is any arbitrary positive number, when ε −→ 0 we have

αT
(2)
3 (X, τ) ≥ δ = αT

(3)
3 (X, τ). So, |= (X, τ) ∈ Tα3 ←→ (X, τ) ∈ αT (3)

3 . �

2.21. Definition. Let (X, τ) be any fuzzifying topological space.

(1) α′T (1)
3 (X, τ) := ∀x∀D(x ∈ X ∧ D ∈ Fα ∧ x /∈ D −→ ∃A(A ∈ Nx ∧ (D ⊆

X − Cl(A))));

(2) α′T (2)
3 (X, τ) := ∀x∀B(x ∈ B ∧B ∈ τα −→ ∃A(A ∈ Nx ∧ Cl(A) ⊆ B));

(3) αT
(1)
4 (X, τ) := ∀A∀B(A ∈ τ ∧ B ∈ F ∧ A ∩ B ≡ ∅ → ∃G(G ∈ τ ∧ A ⊆

G ∧ Clα(G) ∩B ≡ φ));

(4) αT
(2)
4 (X, τ) := ∀A∀B(A ∈ F∧B ∈ τ∧A ⊆ B → ∃G(G ∈ τ∧A ⊆ G∧Clα(G) ⊆

B));

(5) α′T (1)
4 (X, τ) := ∀A∀B(A ∈ τ ∧ B ∈ Fα ∧ A ∩ B ≡ ∅ → ∃G(G ∈ τ ∧ A ⊆

G ∧ Cl(G) ∩B ≡ φ));
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(6) α′T (2)
4 (X, τ) := ∀A∀B(A ∈ F∧B ∈ τα∧A ⊆ B → ∃G(G ∈ τ∧A ⊆ G∧Cl(G) ⊆

B)).

By a similar proof of Theorem 2.16 and 2.18 we have the following theorem.

2.22. Theorem. Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ Tα′3 ←→ (X, τ) ∈ α′T (i)
3 ;

(2) |= (X, τ) ∈ Tα4 ←→ (X, τ) ∈ αT (i)
4 ;

(3) |= (X, τ) ∈ Tα′4 ←→ (X, τ) ∈ α′T (i)
4 , where i = 1, 2.

3. Relation among fuzzifying separation axioms

3.1. Lemma. (1) |= K(x, y)→ Kα(x, y),
(2) |= H(x, y)→ Hα(x, y),
(3) |= M(x, y)→Mα(x, y),
(4) |= V (x,D)→ V α(x,D),
(5) |= W (A,B)→Wα(A,B).

Proof. Since |= τ ⊆ τα, Nx(A) ≤ Nα
x (A) for any A ∈ P (X). Then the proof is

immediate. �
3.2. Theorem. |= (X, τ) ∈ Ti −→ (X, τ) ∈ Tαi , where i = 0, 1, 2, 3, 4.

Proof. It is obtained from Lemma 3.1. �
3.3. Theorem. If T0(X, τ) = 1, then

(1) |= (X, τ) ∈ R0 −→ (X, τ) ∈ Rα0 ,
(2) |= (X, τ) ∈ R1 −→ (X, τ) ∈ Rα1 ,

Proof. Since T0(X, τ) = 1, for each x, y ∈ X and x 6= y, we have [K(x, y)] = 1 and
so [Kα(x, y)] = 1.

(1) Using Lemma 3.1 (1) and (2) we obtain

[(X, τ) ∈ R0] =
∧

x 6=y
[K(x, y)→ H(x, y)] ≤

∧

x6=y
[K(x, y)→ Hα(x, y)]

≤
∧

x 6=y
[Kα(x, y)→ Hα(x, y)] = Rα0 (X, τ).

(2) Using Lemma 3.1 (1) and (3) the proof is similar to (1). �
3.4. Lemma. (1) |= Mα(x, y) −→ Hα(x, y);

(2) |= Hα(x, y) −→ Kα(x, y);
(3) |= Mα(x, y) −→ Kα(x, y).

Proof. (1) Since {B,C ∈ P (X) : B∩C ≡ ∅} ⊆ {B,C ∈ P (X) : y /∈ B and x /∈ C},
then
[Mα(x, y)] =

∨
B∩C=∅

min(Nα
x (B), Nα

y (C))≤ ∨
y/∈B, x/∈C

min(Nα
x (B), Nα

y (C)) = [Hα(x, y)].

(2) [Kα(x, y)] = max(
∨
y/∈A

Nα
x (A),

∨
x/∈A

Nα
y (A))≥ ∨

y/∈A
Nα
x (A)≥ ∨

y/∈A, x/∈B
(Nα

x (A)∧

Nα
y (B))

= [Hα(x, y)].
(3) From (1) and (2) it is obvious. �
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3.5. Theorem. Let (X, τ) be a fuzzifying topological space. Then we have
(1) |= (X, τ) ∈ Tα1 −→ (X, τ) ∈ Tα0 ;
(2) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Tα1 ;
(3) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Tα0 .

Proof. The proof of (1) and (2) are obtained from Lemma 3.4 (2) and (1), respec-
tively.

(3) From (1) and (2) above the result is obtained. �

3.6. Theorem. |= (X, τ) ∈ Rα1 −→ (X, τ) ∈ Rα0 .

Proof. From Lemma 3.4 (2), the proof is immediate. �

3.7. Theorem. For any fuzzifying topological space (X, τ) we have
(1) |= (X, τ) ∈ Tα1 −→ (X, τ) ∈ Rα0 ;
(2) |= (X, τ) ∈ Tα1 −→ (X, τ) ∈ Rα0 ∧ (X, τ) ∈ Tα0 ;
(3) If Tα0 (X, τ) = 1, then |= (X, τ) ∈ Tα1 ←→ (X, τ) ∈ Rα0 ∧ (X, τ) ∈ Tα0 .

Proof. (1) Tα1 (X, τ) =
∧
x6=y[Hα(x, y)] ≤ ∧x 6=y[Kα(x, y) −→ Hα(x, y)] = Rα0 (X, τ).

(2) It is obtained from (1) and from Theorem 3.5 (1).
(3) Since Tα0 (X, τ) = 1, for every x, y ∈ X such that x 6= y, then we have

[Kα(x, y)] = 1. Therefore

[(X, τ) ∈ Rα0 ∧ (X, τ) ∈ Tα0 ] = [(X, τ) ∈ Rα0 ]

=
∧

x 6=y
min(1, 1− [Kα(x, y)] + [Hα(x, y)])

=
∧

x 6=y
[Hα(x, y)] = Tα1 (X, τ).

�

3.8. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 , and
(2) If Tα0 (X, τ) = 1, then |= (X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 ←→ (X, τ) ∈ Tα1 .

Proof. (1)

[(X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 ]

= max(0, Rα0 (X, τ) + Tα0 (X, τ)− 1)

= max(0,
∧

x 6=y
min(1, 1− [Kα(x, y)] + [Hα(x, y)]) +

∧

x 6=y
[Kα(x, y)]− 1)

≤ max(0,
∧

x 6=y
{min(1, 1− [Kα(x, y)] + [Hα(x, y)]) + [Kα(x, y)]} − 1)

=
∧

x 6=y
[Hα(x, y)] = Tα1 (X, τ).
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(2)

[(X, τ) ∈ Rα0 ⊗ (X, τ) ∈ Tα0 ] = [(X, τ) ∈ Rα0 ]

=
∧

x 6=y
min(1, 1− [Kα(x, y)] + [Hα(x, y)])

=
∧

x 6=y
[Hα(x, y)] = Tα1 (X, τ),

because Tα0 (X, τ) = 1, implies that for each x, y such that x 6= y we have
[Kα(x, y)] = 1.

�

3.9. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα0 −→ (X, τ) ∈ Tα1 ), and
(2) |= (X, τ) ∈ Rα0 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 ).

Proof. It obtained From Theorems 3.7 (1) and 3.8 (1) and the fact that [α] ≤
[ϕ→ ψ]⇔ [α]⊗ [ϕ] ≤ [ψ]. �

3.10. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Rα1 ;
(2) |= (X, τ) ∈ Tα2 −→ (X, τ) ∈ Rαi ∧ (X, τ) ∈ Tαi , where i = 0, 1;
(3) If Tα0 (X, τ) = 1, then
(i) |= (X, τ) ∈ Tα2 ←→ (X, τ) ∈ Rα1 ∧ (X, τ) ∈ Tα0 .
(ii) |= (X, τ) ∈ Tα2 ←→ (X, τ) ∈ Rα1 ∧ (X, τ) ∈ Tα1 .

Proof. It is similar to the proof of Theorem 3.7. �

3.11. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Rα1 ⊗ (X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα2 , and
(2) If Tα0 (X, τ) = 1, then |= (X, τ) ∈ Rα1 ⊗ (X, τ) ∈ Tα0 ←→ (X, τ) ∈ Tα2 .

Proof. It is similar to the proof of Theorem 3.8. �

3.12. Theorem. Let (X, τ) be a fuzzifying topological space.
(1) |= (X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα1 −→ (X, τ) ∈ Tα2 ), and
(2) |= (X, τ) ∈ Rα1 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα2 ).

Proof. It is similar to the proof of Theorem 3.9. �

3.13. Theorem. If Tα0 (X, τ) = 1, then
(1) |= ((X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Tα0 −→ ¬((X, τ) ∈ αα0 )));
(2) |= ((X, τ) ∈ Rα0 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Tα0 −→ ¬((X, τ) ∈ αα0 )));
(3) |= ((X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Rα0 −→ ¬((X, τ) ∈ Tα0 )));
(4) |= ((X, τ) ∈ Rα0 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα1 )) ∧ ((X, τ) ∈ Tα1 −→

¬((X, τ) ∈ Rα0 −→ ¬((X, τ) ∈ Tα0 ))).
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Proof. For simplicity we put, Tα0 (X, τ) = α, Rα0 (X, τ) = β and Tα1 (X, τ) = γ.
Now, applying Theorem 3.8 (2), the proof is obtained with some relations in fuzzy
logic as follows:

1 = (α⊗ β ←→ γ) = (α⊗ β −→ γ) ∧ (γ −→ α⊗ β)(1)

= ¬((α⊗ β)⊗ ¬γ) ∧ ¬(γ ⊗ ¬(α⊗ β))

= ¬(α⊗ ¬(¬(β ⊗ ¬γ))) ∧ ¬(γ ⊗ (α −→ ¬β))

= (α −→ ¬(β ⊗ ¬γ)) ∧ (γ −→ ¬(α −→ ¬β))

= (α −→ (β −→ γ) ∧ (γ −→ ¬(α −→ ¬β))),

since ⊗ is commutative one can have the proof of statements (2) - (4) in a similar
way as (1). �

By a similar procedure to Theorem 3.13 one can have the following theorem.

3.14. Theorem. If Tα0 (X, τ) = 1, then
(1) |= ((X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα1 −→ (X, τ) ∈ Tα2 )) ∧

((X, τ) ∈ Tα2 −→ ¬((X, τ) ∈ Tα0 −→ ¬((X, τ) ∈ Rα1 )));
(2) |= ((X, τ) ∈ Rα1 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα2 )) ∧ ((X, τ) ∈ Tα2 −→

¬((X, τ) ∈ Tα0 −→ ¬((X, τ) ∈ αα1 )));
(3) |= ((X, τ) ∈ Tα0 −→ ((X, τ) ∈ Rα1 −→ (X, τ) ∈ Tα2 )) ∧ ((X, τ) ∈ Tα2 −→

¬((X, τ) ∈ Rα1 −→ ¬((X, τ) ∈ Tα0 )));
(4) |= ((X, τ) ∈ Rα1 −→ ((X, τ) ∈ Tα0 −→ (X, τ) ∈ Tα2 )) ∧ ((X, τ) ∈ Tα2 −→

¬((X, τ) ∈ Rα1 −→ ¬((X, τ) ∈ Tα0 ))).

3.15. Lemma. For any α, β ∈ I we have, (1 ∧ (1− α+ β)) + α ≤ 1 + β.

3.16. Theorem. |= (X, τ) ∈ Tα3 ⊗ (X, τ) ∈ T1 −→ (X, τ) ∈ Tα2 .
Proof. From Theorem 2.2 [26] we have, T1(X, τ) =

∧
y∈X

τ(X − {y}) and applying

Lemma 3.5 we have

Tα3 (X, τ) + T1(X, τ)

=
∧

x/∈D
min

(
1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))

)
+
∧

y∈X
τ(X − {y})

≤
∧

x∈X, x 6=y

∧

y∈X
min

(
1, 1− τ(X − {y}) +

∨

A∩B=∅
min(Nα

x (A), Nα
y (B))

)
+
∧

y∈X
τ(X − {y})

=
∧

x∈X, x 6=y

( ∧

y∈X
min(1, 1− τ(X − {y}) +

∨

A∩B=∅
min(Nα

x (A), Nα
y (B))) +

∧

y∈X
τ(X − {y})

)

≤
∧

x∈X, x 6=y

∧

y∈X

(
min(1, 1− τ(X − {y}) +

∨

A∩B=∅
min(Nα

x (A), Nα
y (B))) + τ(X − {y})

)

≤
∧

x6=y

(
1 +

∨

A∩B=∅
min(Nα

x (A), Nα
y (B))

)

= 1 +
∧

x 6=y

∨

A∩B=∅
min(Nα

x (A), Nα
y (B)) = 1 + Tα2 (X, τ),
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namely, Tα2 (X, τ) ≥ Tα3 (X, τ) +T1(X, τ)− 1. Thus Tα2 (X, τ) ≥ max(0, Tα3 (X, τ) +
T1(X, τ)− 1). �

3.17. Theorem. |= (X, τ) ∈ Tα4 ⊗ (X, τ) ∈ T1 −→ (X, τ) ∈ Tα3 .

Proof. It is equivalent to prove that Tα3 (X, τ) ≥ Tα4 (X, τ) + T1(X, τ)− 1. In fact,

Tα4 (X, τ) + T1(X, τ)

=
∧

E∩D=∅
min

(
1, 1−min(τ(X − E), τ(X −D))

+
∨

A∩B=∅, E⊆A, D⊆B
min(τα(A), τα(B))

)
+
∧

z∈X
τ(X − {z})

≤
∧

x/∈D
min

(
1, 1−min(τ(X − {x}), τ(X −D))

+
∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))

)
+
∧

z∈X
τ(X − {z})

=
∧

x/∈D
min

(
1,max

(
1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B)), 1− τ(X − {x})

+
∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
))

+
∧

z∈X
τ(X − {z})

=
∧

x/∈D
max

(
min

(
1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
)
,min

(
1, 1− τ(X − {x})

+
∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
))

+
∧

z∈X
τ(X − {z})

≤
∧

x/∈D
max

(
min

(
1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
)

+ τ(X − {x}),

min
(

1, 1− τ(X − {x}) +
∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
)

+ τ(X − {x})
)

≤
∧

x/∈D
max

(
min

(
1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
)

+ τ(X − {x}), 1
)

≤
∧

x/∈D

(
min

(
1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))
)

+ 1

)

=
∧

x/∈D
min

(
1, 1− τ(X −D) +

∨

A∩B=∅, D⊆B
min(Nα

x (A), τα(B))

)
+ 1

= Tα3 (X, τ) + 1.

�
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By a similar procedures of Theorems 3.16 and 3.17 we have the following theo-
rems

3.18. Theorem. Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ Tα′3 ⊗ (X, τ) ∈ Tα1 −→ (X, τ) ∈ T2.

(2) |= (X, τ) ∈ Tα′4 ⊗ (X, τ) ∈ Tα1 −→ (X, τ) ∈ Tα′3 .

From the above discussion one can have the following diagram:

Tα
′

3 ⊗ Tα1

��

Tα
′

4 ⊗ Tα1oo

��
Tα
′

3

��

Tα
′

4
oo

��
T0

��

T1
oo

��

T2
oo

��

T3
oo

��

T4
oo

��
Tα0 Tα1oo Tα2oo Tα3oo Tα4oo

Conclusion: The present paper investigates topological notions when these
are planted into the framework of Ying’s fuzzifying topological spaces (in seman-
tic method of continuous valued-logic). It continue various investigations into
fuzzy topology in a legitimate way and extend some fundamental results in gen-
eral topology to fuzzifying topology. An important virtue of our approach (in
which we follow Ying) is that we define topological notions as fuzzy predicates
(by formulae of  Lukasiewicz fuzzy logic) and prove the validity of fuzzy implica-
tions (or equivalences). Unlike the (more wide-spread) style of defining notions
in fuzzy mathematics as crisp predicates of fuzzy sets, fuzzy predicates of fuzzy
sets provide a more genuine fuzzification; furthermore the theorems in the form of
valid fuzzy implications are more general than the corresponding theorems on crisp
predicates of fuzzy sets. The main contributions of the present paper are to study
α-separation axioms in fuzzifying topology and give the relations of these axioms
with each other as well as the relations with other fuzzifying separation axiom.
The role or the meaning of each theorem in the present paper is obtained from its
generalization to a corresponding theorem in crisp setting. For example: in crisp
setting, a topological space (X, τ) is Tα1 if and only if for each z ∈ X, z ∈ Fα,
where Fα is the family of α-closed sets. This fact can be rewritten as follows: the
truth value of a topological space (X, τ) to be Tα1 equal the infimum of the truth
values of its singletons to be α-closed, where the set of truth values is {0, 1}. Now,
is this theorem still valid in fuzzifying settings, i.e., if the set of truth values is
[0, 1]? The answer of this question is positive and is given in Theorem 2.4 above.

There are some problems for further study:
(1) One obvious problem is: our results are derived in the Lukasiewicz continuous
logic. It is possible to generalize them to more general logic setting, like residuated
lattice-valued logic considered in [31-32].
(2) What is the justification for fuzzifying α-separation axioms in the setting of
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(2, L) topologies.

(3) Obviously, fuzzifying topological spaces in [23] form a fuzzy category. Per-
haps, this will become a motivation for further study of the fuzzy category.
(4) What is the justification for fuzzifying α-separation axioms in (M,L)-topologies
etc.

References

[1] I. W. Alderton, α-compactness of fuzzy topological spaces: A categorical approach, Quas-

tiones Mathematicae, 20 (1997), 269-282.

[2] M. Caldas, D. N. Georgiou and S. Jafari, Characterizations of Low separation axioms via
α-open sets and α-closure operator, Bol. Soc. Paran. Mat., 21 (1-2)(2003), 1-14.

[3] M. Caldas, S. Jafari R. M. Latif and T. Noiri, Characterizations of functions with strongly

α-closed graphs, Scientific Studies and Research Series Mathematics and Informatics 19
(1)(2009), 49-58.

[4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

[5] J. A. Goguen, The fuzzy Tychonoff theorem, J. Math.Anal. Appl., 43 (1973), 182-190.
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The authors would like to write some notes and correct errors in the original
publication of the article [1]. The notes are given below:

0.1. Remark. In page 550, in Definition 3.1., (1) and (2) properties have to hold
in Nr (B)

∗
G. Sometimes they may be hold in O�Nr (B)

∗
G, then G is not a near

group on nearness approximation space.

Example 3.3. and 3.4. are nice examples of this case. In Example 3.3., if we
consider associative property (b · e) · b = b · (e · b) for b, e ∈ H ⊂ G, we obtain ı = ı,
but ı ∈ O�Nr (B)

∗
H. Hence, we can observe that if the associative property

holds in O�Nr (B)
∗
H, then H can not be a subnear group of near group G.

Consequently, Example 3.3. and 3.4. are incorrect, i.e., they are not subnear
groups of near group G.

0.2. Remark. Multiplying of finite number of elements in G may not always
belongs to Nr (B)

∗
G. Therefore always we can not say that xn ∈ Nr (B)

∗
G, for

all x ∈ G and some positive integer n. If
(
Nr (B)

∗
G, ·
)

is groupoid, then we can

say that xn ∈ Nr (B)
∗
G, for all x ∈ R and all positive integer n.

In Example 3.2., the properties (1) and (2) hold in Nr (B)
∗
G. Hence G is a

near group on nearness approximation space.
The corrections are given below:

In page 548, in subsection 2.4.1., definition of B-lower approximation of X ⊆ O

must be

B∗X =
⋃

[x]B⊆X [x]B .
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In page 554, Theorem 3.8. must be as in Theorem 0.3:

0.3. Theorem. Let G be a near group on nearness approximation space, H a
nonempty subset of G and Nr (B)

∗
H a groupoid. H ⊆ G is a subnear group of G

if and only if x−1 ∈ H for all x ∈ H.

Proof. Suppose that H is a subnear group of G. Then H is a near group and
so x−1 ∈ H for all x ∈ H. Conversely, suppose x−1 ∈ H for all x ∈ H. By the
hypothesis, since Nr (B)

∗
H is a groupoid and H ⊆ G, then closure and associative

properties hold in Nr (B)
∗
H. Also we have x · x−1 = e ∈ Nr (B)

∗
H. Hence H is

a subnear group of G. �

In page 554, Theorem 3.9. must be as in Theorem 0.4:

0.4. Theorem. Let H1 and H2 be two near subgroups of the near group G and
Nr (B)

∗
H1, Nr (B)

∗
H2 groupoids. If

(Nr (B)
∗
H1) ∩ (Nr (B)

∗
H2) = Nr (B)

∗
(H1 ∩H2) ,

then H1 ∩H2 is a near subgroup of near group G.

Proof. Suppose H1 and H2 be two near subgroups of the near group G. It
is obvious that H1 ∩ H2 ⊂ G. Since Nr (B)

∗
H1, Nr (B)

∗
H2 are groupoids

and
(
Nr (B)

∗
H1

)
∩
(
Nr (B)

∗
H2

)
= Nr (B)

∗
(H1 ∩H2), Nr (B)

∗
(H1 ∩H2) is a

groupoid. Consider x ∈ H1 ∩H2. Since H1 and H2 are near subgroups, we have
x−1 ∈ H1 and x−1 ∈ H2, i.e., x−1 ∈ H1 ∩H2. Thus from Theorem 0.3 H1 ∩H2 is
a near subgroup of G. �

In page 555, proof of Theorem 5.3. has some typos. It must be as in Theorem
0.5:

0.5. Theorem. Let G be a near group on nearness approximation space and N a
subnear group of G. N is a subnear normal group of G if and only if a ·n ·a−1 ∈ N
for all a ∈ G and n ∈ N .

Proof. Suppose N is a near normal subgroup of near group G. We have a·N ·a−1 =
N for all a ∈ G. For any n ∈ N , therefore we have a ·n · a−1 ∈ N . Suppose N is a
near subgroup of near group G. Suppose a · n · a−1 ∈ N for all a ∈ G and n ∈ N .
We have a ·N ·a−1 ⊂ N . Since a−1 ∈ G, we get a ·

(
a−1 ·N · a

)
·a−1 ⊂ a ·N ·a−1,

i.e., N ⊂ a · N · a−1. Since a · N · a−1 ⊂ N and N ⊂ a · N · a−1, we obtain
a ·N · a−1 = N . Therefore N is a subnear normal group of G. �

In page 556, Theorem 6.6. must be as in Theorem 0.6:

0.6. Theorem. Let G1 ⊂ O1,G2 ⊂ O2 be near groups that are near homomorphic,
N near homomorphism kernel and Nr (B)

∗
N a groupoid. Then N is a near normal

subgroup of G1.

In page 557, Theorem 6.7. must be as in Theorem 0.7:

0.7. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near homomorphic groups, H1 and N1

a near subgroup and a near normal subgroup of G1, respectively and Nr1 (B)
∗
H1

groupoid. Then we have the following.
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(1) If ϕ
(
Nr1 (B)

∗
H1

)
= Nr2 (B)

∗
ϕ (H1), then ϕ (H1) is a near subgroup of

G2.

(2) if ϕ (G1) = G2 and ϕ
(
Nr1 (B)

∗
N1

)
= Nr2 (B)

∗
ϕ (N1), then ϕ (N1) is a

near normal subgroup of G2.

In page 557, Theorem 6.8. must be as in Theorem 0.8:

0.8. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near homomorphic groups, H2 and N2

a near subgroup and a near normal subgroup of G2, respectively and Nr1 (B)
∗
H1

groupoid. Then we have the following.

(1) if ϕ
(
Nr1 (B)

∗
H1

)
= Nr2 (B)

∗
H2 , then H1 is a near subgroup of G1 where

H1 is the inverse image of H2.

(2) if ϕ (G1) = G2 and ϕ
(
Nr1 (B)

∗
N1

)
= Nr2 (B)

∗
N2, then N1 is a near

normal subgroup of G1 where N1 is the inverse image of N2.

We apologize to the readers for any inconvenience of these errors might have
caused.
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presence of censored data: overview of available

methods
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Abstract

This paper examines recent results presented on estimating population
parameters in the presence of censored data with a single detection limit
(DL). The occurrence of censored data due to less than detectable mea-
surements is a common problem with environmental data such as qual-
ity and quantity monitoring applications of water, soil, and air samples.
In this paper, we present an overview of possible statistical methods for
handling non-detectable values, including maximum likelihood, simple
substitution, corrected biased maximum likelihood, and EM algorithm
methods. Simple substitution methods (e.g. substituting 0, DL/2, or
DL for the non-detected values) are the most commonly used. It has
been shown via simulation that if population parameters are estimated
through simple substitution methods, this can cause significant bias
in estimated parameters. Maximum likelihood estimators may pro-
duce dependable estimates of population parameters even when 90% of
the data values are censored and can be performed using a computer
program written in the R Language. A new substitution method of
estimating population parameters from data contain values that are
below a detection limit is presented and evaluated. Worked examples
are given illustrating the use of these estimators utilizing computer
program. Copies of source codes are available upon request.

Keywords: detection limits, censored data, normal and lognormal distributions,
likelihood function, maximum likelihood estimators.

1. Introduction

Environmental data frequently contain values that are below detection limits.
Values that are below DL are reported as being less than some reported limit
of detection, rather than as actual values. A data set for which all observations
may be identified and counted, with some observations falling into the restricted
interval of measurements and the remaining observations being fully measured,
is said to be censored. A situation where observations may be censored would
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be chemical measurements where some observations have a concentration below
the detection limit of the analytical method. A sample for which some observa-
tions are known only to fall below a known detection limit, while the remaining
observations falling above the detection limit are fully measured and reported is
called left-singly censored or simply left censored. Detection limits are usually
determined and justified in terms of the uncertainties that apply to a single rou-
tine measurement. Left-censored data commonly arise in environmental contexts.
Left-censored observations (observations reported as < DL) can occur when the
substance or attribute being measured is either absent or exists at such low concen-
trations that the substance is not present above the DL. In type I censoring, the
detection limit is fixed a priori for all observations and the number of the censored
observations varies. In type II censoring, the number of censored observations is
fixed a priori, and the detection limit vary.

The estimation of the parameters of normal and lognormal populations in the
presence of censored data has been studied by several authors in the context of
environmental data. There has been a corresponding increase in the amount of
attention devoted to the most proper analysis of data which have been collected
in related to environmental issues such as monitoring water and air quality, and
monitoring groundwater quality. The lognormal is frequently the parametric prob-
ability distribution of choice used in fitting environmental data Gilbert (1987).
However, Shumway et al. (1989) examined transformations to normality from

among the Box and Cox (1964) family of transformations: Y = Xλ−1
λ for λ 6= 0,

and Y = ln(X) for λ = 0. The transformed variable Y is assumed to be normally
distributed with mean µ and standard deviation σ . Cohen (1959) used the method
of maximum likelihood to derive estimators for the µ and σ parameters from left
censored samples. Cohen (1959) also provided tables that are needed to report
these maximum likelihood estimates (MLEs). Aboueissa and Stoline (2004) in-
troduced a new algorithm for computing Cohen (1959) MLE estimators of normal
population parameters from censored data with a single detection limit. Estima-
tors obtained via this algorithm required no tables and more easily computed than
the (MLEs) of Cohen (1959). Hass and Scheff (1990) compared methodologies
for the estimation of the averages in truncated samples. Saw (1961) derived the
first-order term in the bias of the Cohen (1959) MLE estimators for µ and σ,
and proposed bias-corrected MLE estimators. Based on the bias-corrected tables
in Saw (1961b), Schneider (1984,1986) performed a least-squares fit to produce
computational formulas for normally distributed singly-censored data. Dempster
et. al. (1977) proposed an iterative method, called the expectation maximization
algorithm (EM algorithm), for obtaining the maximum likelihood estimates for
these censored normal samples. The procedure consists of alternately estimating
the censored observations from the current parameter estimates and estimating
the parameters from the actual and estimated observations.

In practice, probably due to computational ease, simple substitution methods
are commonly used in many environmental applications. One of the most com-
monly used replacement method is to substitute each left censored observation by
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half of the detection limit DL, Helsel et al. (1986) and Helsel et al. (1988). Two
simple substitution methods were suggested by Gilliom and Helsel (1986). In one
method, all left censored observations are replaced by zero. In the other method,
all left censored observations are replaced by the detection limit DL. Aboueissa
and Stoline (2004) developed closed form estimators for estimating normal popula-
tion parameters from singly-left censored data based on a new replacement method.
It has been shown that via simulation if left-censored observations are estimated
through these substitution methods, this can cause significant bias in estimated
parameters. In this article, a new substitution method, called weighted substi-
tution method, is introduced and examined. This method is based on assigning
different weights for each left-censored observation. These weights are estimated
from the sample data prior to computing estimates of population parameters. It
has been shown that via simulation if left-censored data are estimated through the
weighted substitution method, this will reduce the bias in estimated parameters.
Other suggested methods are discussed in Gibbons (1994), Gleit (1985), Schneider
(1986), Gupta (1952), Stoline (1993), El-Shaarawi A. H. and Dolan D. M. (1989),
El-Shaarawi and Esterby (1992), USEPA (1989), NCASI (1985, 1991), Gilliom
and Helsel (1986), Helsel and Gilliom (1986), Helsel and Hirsch (1988), Schmee et.
al. (1985), and Wolynetz (1979).

The objective of this article is to develop a new substitution method which
yield reliable estimates of population parameters from left-censored data, and also
to compare the performances of the various estimation procedures. In addition,
a simple-to-use computer program is introduced and described for estimating the
population parameters of normally or lognormally distributed left-censored data
sets with a single detection limit using the eight parameter estimation methods
described in this article. The authors of this article performed a simulation study
to asses the performance of various estimate procedures in terms of bias and mean
squared error (MSE). Several methods, including MLE, bias-corrected MLE
(UMLE), and EM algorithm (EMA), have been considered.

2. Methods Used for Estimation

To simplify the presentation in this section, the method is described and il-
lustrated by reference to the analysis of normally distributed data, though this
condition occurs infrequently in typical environmental data analysis. However,
it is frequently necessary to transform real environmental data before analysis;
typically the logarithmic transformation of xi = log(yi) is used, although other
transformations are possible. When the logarithmic or other transformation is
used prior to censored data set analysis, it is necessary to transform the analysis
results back to the original scale of measurement following parameter estimation.

Let

mc−observations︷ ︸︸ ︷
x1, ..., xmc︸ ︷︷ ︸
left−censored

,

m−observations︷ ︸︸ ︷
xmc+1, ..., xn︸ ︷︷ ︸
non−censored

be a random sample of n observations of which

mc are left-censored while m = n−mc are non-censored (or fully measured) from
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a normal population with mean µ and standard deviation σ . For censored obser-
vations, it is only known that xj < DL for j = 1, ...,mc.

Let

(2.1) x̄m =
1

m

n∑

i=mc+1

xi , and s2
m =

1

m

n∑

i=mc+1

(xi − x̄m)2

be the sample mean and sample variance of the m non-censored observations
xmc+1, ..., xn.

2.1. MLE Estimators of Cohen. Cohen (1959) employed the method of max-
imum likelihood to the normally distributed left-censored samples, and developed
the following MLE estimators for the mean and standard deviation in terms of a
tabulated function of two arguments:

(2.2) µ̂ = x̄m − λ̂(x̄m −DL) ,

(2.3) σ̂ =

√
s2
m + λ̂(x̄m −DL)2 ,

where

(2.4) λ̂ = λ(h, γ), h =
mc

n
and γ =

s2
m

(x̄m −DL)2

Cohen (1959) provided tables of the function λ̂ = λ(γ, h) restricted to values of
γ = 0.00(0.05)1.00, and values of h = 0.01(0.01)0.10(0.05)0.70(0.10)0.90. The Co-
hen (1959) method requires use of these tables. Schneider (1986) extended these
tables to include values of γ up to 1.48. Schmee et. al. (1985) extended these
tables further to include values of γ = 0.00(0.10)1.00(1.00)10.00 and values of
h = 0.10(0.10)0.90. However, interpolations for h and γ values are often required
for most applications.

2.2. Aboueissa and Stoline Algorithm for Computing MLE of Cohen.
Aboueissa and Stoline (2004) introduced an algorithm for computing the Cohen
MLE estimators. This algorithm is based on solving the estimating equation

(2.5) γ =

(
1− h

1−h
φ(ξ)
Φ(ξ) ( h

1−h
φ(ξ)
Φ(ξ) − ξ)

)

( h
1−h

φ(ξ)
Φ(ξ) − ξ)2

,

numerically for ξ (say ξ̂). With ξ̂ obtained via this algorithm, the exact value of
the λ-parameter is then given by:

(2.6) λ̂as = λ(h, ξ̂) =
Y (h, ξ̂)

Y (h, ξ̂)− ξ̂
,

where

Y = Y (h, ξ) =

(
h

1− h

)
Z(ξ),
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Z(ξ) =
φ(−ξ)

1− Φ(−ξ) , and h =
mc

n
= CL = censoring level .

The functions φ(ξ) and Φ(ξ) are the pdf and cdf of the standard unit normal.

with λ̂as obtained from (2.6), the MLE estimators obtained via this algorithm
are obtained from (2.2) and (2.3) as:

(2.7) µ̂as = x̄m − λ̂as(x̄m −DL) ,

and

(2.8) σ̂as =

√
s2
m + λ̂as(x̄m −DL)2 .

MLE estimators obtained via this method are labeled the ASAMLEOC method
in this article. It should be noted that the ASAMLEOC method can be used to
obtain the MLE estimators of population parameters from censored samples for
all values of h and γ without any restrictions, and for all censoring levels includ-
ing censoring levels greater than 0.90. The ASAMLEOC estimators µ̂as and σ̂as
given by (2.7) and (2.8) are essentially Cohen’s (1959) MLE estimators, which are
obtained without the use of any auxiliary tables. It should also be noted that Co-
hen’s (1959) method can not be used to obtain the maximum likelihood estimates
from censored samples that have a censoring level higher than 90% (h > 0.90).

2.3. Bias-Corrected MLE Estimators. Saw (1961) derived the first-order
term in the bias of the MLE estimators of µ and σ and proposed bias-corrected
MLE estimators. Based on the bias-corrected tables in Saw (1961), Schneider
(1986) performed a least-squares fit to produce computational formulas for the
unbiased MLE estimators of µ and σ from normally distributed singly-censored
data. These formulas, for the singly left-censored samples can be written as

(2.9) µ̂u = µ̂− σ̂Bu
n+ 1

, and σ̂u = σ̂ − σ̂Bσ
n+ 1

,

where µ̂ and σ̂ are the MLE estimators of Cohen (1959) or equivalently the
ASAMLE estimators µ̂as and σ̂as, and

(2.10) Bu = −e2.692− 5.439m
n+1 and Bσ = −

(
0.312 +

0.859m

n+ 1

)−2

.

This method will be referred to as the UMLE method in this paper.

2.4. Haas and Scheff Estimators(1990). Haas and Scheff (1990)developed a
power series expansion that fits the tabled values of the auxiliary function λ(γ, h)
to within 6% for Cohen’s (1959) estimates. This power series expansion is given
by:

(2.11)
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log λ = 0.182344− 0.3256

γ + 1
+ 0.10017γ + 0.78079ω − 0.00581γ2 − 0.06642ω2

− 0.0234γω + 0.000174γ3 + 0.001663γ2ω − 0.00086γω2 − 0.00653ω3,

where ω = log

(
h

1− h

)
.

This method will be referred to as the HS method in this paper.

2.5. Expectation Maximization Algorithm. Dempster et. al. (1977) pro-
posed an iterative method, called the expectation maximization algorithm, for
obtaining the MLE′s for the mean µ and the standard deviation σ of the normal
distribution from censored samples. The procedure used in expectation maximiza-
tion algorithm is based on replacing the censored observations and their squares
in the complete data likelihood function by their conditional expectations given
the data and the current estimates of µ and σ. This method will be referred to as
the EMA method here.

2.6. Substitution Methods. Replacement methods are easier to use and consist
of calculating the usual estimates of the mean and standard deviation by assigning
a constant value to observations that are less than the censoring limit. Two simple
substitution methods were suggested by Gilliom and Helsel (1986). In one method,
all censored observations are replaced by zero. This is the ZE method. In the
other method, all censored observations are replaced by the detection limit (DL).
This is the DL method. One of the most commonly used substitution method,
suggested by Helsel et.al. (1988), is to substitute each censored observations by
half of its detection limit (DL2 ). This is the HDL method.

3. Weighted Substitution Method for Left-Censored Data

The common replacement methods are based on replacing censored observations
that are less than DL by a single constant. Three existing substitution methods
were discussed in Section 2 based on replacing all left-censored observations with
a single value either 0, DL/2, or DL. To avoid tightly grouped replaced values in
cases where there are several left-censored values that share a common detection
limit, left-censored observations may be spaced from zero to the detection limit
according to some specified weights assigned for these left-censored observations.
In the suggested weighted substitution method left-censored observations that are
less than DL are replaced by non-constant different values based on assigning a
different weight for each left-censored observation.More details are now given in
the proposed weighted substitution method yielding estimates for µ and σ. The
following weights are assigned to the mc left-censored observations x1, ..., xmc :

(3.1) wj =

(
(m+ j − 1)

n

) j
j+1

(P (U ≥ DL))
ln(m+j−1)

, for j = 1, 2, ...,mc ,
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where the probability P (U ≥ DL) is estimated from the sample data by:

(3.2) ̂P (U ≥ DL) = 1− Φ

(
DL− x̄m

sm

)

An extensive simulation study was conducted on several weights. The simulation
results (shown in the appendix) indicate that the proposed estimators using (3.1)
are superior to those using the other weights in the sense of mean square error
(variance of the estimator plus the square of the bias) in addition to the ability
to recover the true mean and standard deviation as well as the existing methods
such as maximum likelihood and EM algorithm estimators.

Estimates of the weights given in (3.1) are given by:

(3.3) ŵj =

(
(m+ j − 1)

n

) j
j+1 (

̂P (U ≥ DL)
)ln(m+j−1)

.

where the distribution of U is approximated by a normal distribution with an es-
timated mean x̄m and an estimated variance s2

m.

These weights are selected on a trial and error basis by means of simulations
to yield estimators of population parameters that perform nearly as well as es-
timators obtained via the existing methods such as MLE estimators and EMA
method. Left-censored observations x1, x2, ..., xmc are then replaced by the follow-
ing weighted mc observations:

(3.4) (xw1 , x
w
2 , ..., x

w
mc) ≡ (ŵ1DL, ŵ2DL, ..., ŵmcDL)

Let

(3.5) x̄mc =
1

mc

mc∑

i=1

xwi , and s2
mc =

1

mc

mc∑

i=1

(xwi − x̄mc)2

be the sample mean and sample variance of the weightedmc observations xw1 , x
w
2 , ..., x

w
mc .

The corresponding weighted substitution method estimators µ̂w and σ̂w of µ and
σ are given by, respectively:

(3.6)
µ̂w =

1

n

(
mc∑

i=1

xwi +
n∑

i=mc+1

xi

)

= x̄m − λ̂µw (x̄m − x̄mc) ,
and

(3.7)

σ̂w =

√√√√ 1

n

(
mc∑

i=1

(xwi − µ̂w)2 +
n∑

i=mc+1

(xi − µ̂w)2

)

=

√
m s2

m +mc s2
mc

n
+ λ̂σw (x̄m − x̄mc)2 ,
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where

(3.8) λ̂µw =
mc

n
and λ̂σw =

m mc

n2
.

It should be noted that µ̂w in (3.6) can be written as:

(3.9) µ̂w =
m x̄m +mc x̄mc

n
,

which is the weighted average of the sample means x̄m and x̄mc of fully measured
and weighted observations, respectively. It should also be observed that σ̂w in
(3.7) can be written as:

(3.10) σ̂w =

√
s2
w + λ̂σw (x̄m − x̄mc)2

where s2
w =

m s2m+mc s
2
mc

n is the weighted average of the sample variances s2
m and

s2
mc of fully measured and weighted observations, respectively. Extensive simula-

tion results show that use of the WSM method leads to estimators that have the
ability to recover the true population parameters as well as the maximum likeli-
hood estimators, and are generally superior to the constant replacement methods.
In environmental sciences such as applied medical and environmental studies most
of the data sets include non-detected (or left-censored) data values. The use of
statistical methods such as the proposed one allows estimates of population pa-
rameters from data under consideration.

Asymptotic Variances of Estimates: The asymptotic variance-covariance ma-
trix of the maximum likelihood estimates (µ̂, σ̂) is obtained by inverting the
Fisher information matrix I with elements that are negatives of expected val-
ues of the second-order partial derivatives of the log-likelihood function with re-
spect to the parameters evaluated at the estimates µ̂ and σ̂. The asymptotic
variance-covariance matrix showed by Cohen (1991, 1959), will be used to obtain
the estimated asymptotic variances of both µ̂ and σ̂. Cohen (1959) describes the
estimated asymptotic variance-covariance matrix of (µ̂, σ̂) by

Cov(µ̂, σ̂) =


( σ̂2

n[1−Φ(ξ̂)]
) ϕ̂22

ϕ̂11ϕ̂22−ϕ̂2
12

( σ̂2

n[1−Φ(ξ̂)]
) −ϕ̂12

ϕ̂11ϕ̂22−ϕ̂2
12

( σ̂2

n[1−Φ(ξ̂)]
) −ϕ̂12

ϕ̂11ϕ̂22−ϕ̂2
12

( σ̂2

n[1−Φ(ξ̂)]
) ϕ̂11

ϕ̂11ϕ̂22−ϕ̂2
12




where

ϕ̂11 = ϕ11(ξ̂) = 1 + Z(ξ̂)[Z(−ξ̂) + ξ̂]

ϕ̂12 = ϕ12(ξ̂) = Z(ξ̂)
(

1 + ξ̂[Z(−ξ̂) + ξ̂]
)

ϕ̂22 = ϕ22(ξ̂) = 2 + ξ̂ϕ̂12

For the ASAMLEOC ξ̂ is the solution of (2.5) as described in the previous sec-

tion. For all other methods, without loss of generality, ξ̂ = DL−µ̂
σ̂ .
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4. Computer Programs

To facilitate the application of parameter estimation methods described in this
article, a computer programs is presented to automate parameters estimation from
left-censored data sets that are normally or lognormally distributed. This com-
puter program is called ”SingleLeft.Censored.Normal.Lognormal.estimates”,
and is written in the R language. The EM Algorithm method has been pro-
grammed in the R language. The program is called ”EMA.Method”, and is pre-
sented as a part of the main computer program ”SingleLeft.Censored.Normal.Lognormal.estimates”.
Copies of source codes are available upon request.

5. Worked Example

The guidance document Statistical Analysis of Ground-Water Monitoring Data
at RCRA Facilities, Interim Final Guidance (USEPA, 1989b) contains an ex-
ample involving a set of sulfate concentrations (mg/L) in which three values are
reported as (< 1450 = DL). The sulfate concentrations are assumed to come from
a normal distribution. These 24 sulfate concentration values are:

< 1, 450 1, 800 1, 840 1, 820 1, 860 1, 780 1, 760 1, 800
1, 900 1, 770 1, 790 1, 780 1, 850 1, 760 < 1, 450 1, 710
1, 575 1, 475 1, 780 1, 790 1, 780 < 1, 450 1, 790 1, 800

For this sample n = 24, m = 21, mc = 3, h = 3
24 . The sample mean and the sample

variance of the non-censored sample values are x̄m = 1771.905 and s2
m = 8184.467.

WSM Method: From (3.3) and (3.4) we obtain the estimate weights and the
weighted data as follows:

(ŵ1 , ŵ2 , ŵ3) = (0.9348828 , 0.9430983 , 0.9680175),

and

(xw1 , xw2 , xw3 ) = (1355.580 , 1367.493 , 1403.625).

The updated data set (fully measured and weighted data) is given by:

1,355.580 1, 800 1, 840 1, 820 1, 860 1, 780 1, 760 1, 800
1, 900 1, 770 1, 790 1, 780 1, 850 1, 760 1,367.493 1, 710
1, 575 1, 475 1, 780 1, 790 1, 780 1,403.625 1, 790 1, 800

The sample mean x̄mc and sample variance s2
mc of the weighted data xw1 , xw2 , xw3

are given by:

x̄mc = 1375.566 and s2
mc = 417.3153

From (3.8) we obtain

λ̂µw =
mc

n
=

3

24
= 0.125 and λ̂σw =

m mc

n
=

(21)(3)

242
= 0.109375 .

Accordingly, using estimators (3.6) - (3.7) we calculate the WSM method estima-
tors µ̂w and σ̂w as:

µ̂w = 1771.905− 0.125(1771.905− 1375.566) = 1722.3626 ,
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Table 1. Estimates for µ and σ from Sulfate Data

Method of Estimation µ̂ σ̂
ASAMLEOC 1723.9951 153.6451
UMLE 1723.0543 159.3983
HS 1719.8363 157.9416
EMA 1723.9951 153.6451
ZE 1550.4167 592.0813
HDL 1641.0417 356.4231
DL 1731.6667 135.9968
WSM 1722.3624 156.1880

and

σ̂w =

√
21(8184.467) + 3(417.3153)

24
+ 0.109375(1771.905− 1375.566)2 = 156.1880 .

Applying the computer program ”SingleLeft.Censored.Normal” for these data
as shown in the Appendix, yields estimates for µ and σ parameters via eight
methods of estimation including the WSM method. The results are summarized
in Table 1.

Discussion: An inspection of Table 1 reveals that the ASAMLEOC, UMLE,
HS, EMA and WSM methods yield quite similar estimates for both µ and σ. The
DL method estimate for µ is close to those obtained by ASAMLEOC , EMA,
WSM , UMLE and HS methods. The DL method estimate for σ seems to be
underestimated comparing to those estimates obtained by ASAMLEOC, EMA,
WSM , UMLE and HS methods. The ZE and HDL methods yield estimates
which are different from those produced by ASAMLEOC, EMA, WSM , UMLE
and HS methods. The estimates of σ obtained by the ZE and HDL methods are
highly overestimated, while the estimates of µ are underestimated comparing to
estimates obtained by ASAMLEOC, EMA, WSM , UMLE and HS methods.
Overall, the WSM method performs similar to ASAMLEOC, EMA, UMLE
and HS methods, and superior to the common substitution ZE, HDL and DL
methods.

For more investigations of the performance of the parameter estimation meth-
ods described in section 2, the sulfate concentrations data are artificially cen-
sored at censoring levels (0.25 , 0.50 , 0.625 , 0.75 , 0.875 , 0.917) with a
single detection limit of 1, 450. The corresponding number of left-censored ob-
servations for each of these censoring levels are 6, 12, 15, 18, 21 and 22, respec-
tively. Then the estimates of µ and σ are computed using the computer program
”SingleLeft.Censored.Normal”. Results are summarized in Table 2. The follow-
ing observations are made from an examination of the results reported in Table 2.
The WSM estimates for µ and σ are similar to those reported by ASAMLEOC,
EMA, UMLE and HS for cases with censoring levels less than or equal to 0.75.
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Table 2. Estimates for µ and σ from Sulfate Data with artificial

censoring levels

mc = 6, CL = 0.25 mc = 12, CL = 0.50 mc = 15, CL = 0.625

Method of Estimation µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

ASAMLEOC 1658.6581 205.1465 1497.0883 313.4529 1367.1360 361.7728

UMLE 1656.2454 214.6244 1483.4885 337.3514 1336.9885 399.2681

HS 1651.2191 210.7608 1484.2813 320.0817 1351.8316 368.3523

EMA 1658.6581 205.1465 1497.1077 313.4304 1367.8667 361.0457

ZE 1322.9166 768.2189 888.9583 890.6903 661.4583 855.3307

HDL 1504.1667 457.3376 1251.4583 529.3775 1114.5833 505.3091

DL 1685.4167 158.9478 1613.9583 173.1027 1567.7083 159.5957

WSM 1647.8992 218.9194 1456.3776 341.5274 1314.6978 382.7615

mc = 18, CL = 0.75 mc = 21, CL = 0.875 mc = 22, CL = 0.917

ASAMLEOC 1191.5900 412.5770 815.9108 564.2837 623.1800 605.8733

UMLE 1125.5549 474.0433 642.4414 695.2905 391.6580 773.0710

HS 1170.5134 420.0236 801.0685 568.6071 633.4851 603.1457

EMA 1204.8421 401.5795 996.7565 443.5979 996.0501 381.4442

ZE 436.0417 756.5147 222.5000 588.7080 147.5000 489.2107

HDL 979.7917 443.4793 856.875 348.9562 812.0833 288.8372

DL 1523.5417 134.6947 1491.2500 109.2898 1476.6667 88.4904

WSM 1149.1283 406.4031 968.9359 419.4892 897.6092 410.0749

For cases with censoring levels above 0.75, the WSM and EMA methods yield
similar results. For cases with censoring levels less than 0.75, µ is underestimated
by both ZE and HDL Methods, while σ is overestimated comparing to estimates
obtained by ASAMLEOC, EMA, UMLE and HS methods. The DL method
yield similar estimate for µ for cases with censoring levels less than 0.75, while σ is
underestimated for all censoring levels via this method comparing to estimates ob-
tained by ASAMLEOC of Cohen, EMA, UMLE and HS methods. Overall, the
WSM method yields similar estimates to those obtained by ASAMLEOC, EMA,
UMLE and HS methods, and superior to the existing substitution methods ZE,
HDL and DL for all censoring levels.

6. Comparison of Methods

In this section the estimation methods described above were compared by a sim-
ulation study. We shall assess the performance of estimators obtained via these
methods in terms of the mean squared error MSE (variance of the estimator plus
the square of the bias). The simulation study was performed with ten thousand
repetitions (N = 10000) of samples from a normal distribution for each combina-
tion of n, µ, σ, and the censoring level CL = h. Simulations were conducted with
censoring levels 0.15, 0.25, 0.50, 0.75, and 0.90. The selected combinations of
(n, µ, σ, CL) are:

(6.1)

n = 10, 25, 50, 75, 100 , µ = 25 , σ = 10, CL = 0.15
n = 10, 25, 50, 75, 100 , µ = 25 , σ = 10, CL = 0.25
n = 10, 25, 50, 75, 100 , µ = 25 , σ = 10, CL = 0.50
n = 10, 25, 50, 75, 100 , µ = 10 , σ = 5, CL = 0.75
n = 10, 25, 50, 75, 100 , µ = 10 , σ = 5, CL = 0.90

Given the censoring level CL, the detection limit is computed from the relation
DL = CLth percentile. The data sets were then artificially censored at DL. Any
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value falling below DL was considered to be left-censored. These simulated data
sets (N = 10000 for each combination of n, µ, σ and CL) were then utilized by
these estimators to obtain estimates of µ and σ. The average of the N = 10000
estimates are reported as µ̂ and σ̂ in Table 1 and 2. The MSE based on N = 10000
simulation runs are also reported in each table. The MSE of µ̂ is defined by:

(6.2) MSE(µ̂, µ) = V ar(µ̂) + (b(µ̂, µ))
2
,

where

(6.3) b(µ̂, µ) = µ̂− µ ,
is the bias of µ̂, where

(6.4) µ̂ =
1

N

N∑

i=1

µ̂i and V ar(µ̂) =
1

N − 1

N∑

i=1

(µ̂i − µ̂)2.

The MSE of σ̂ can be defined in a similar way.

Estimation Methods: The methods used for the estimation of the normal pop-
ulation parameters from singly-left-censored samples are:

ASAMLEOC: Aboueissa and Stoline Algorithm for Calculating MLE of Cohen,
UMLE: Bias-Corrected MLE Estimators,

HS: Haas and Scheff method,
EMA: Expectation Maximization algorithm method,
ZE: Replacing all left-censored data by zero method,

HDL: Replacing all left-censored data by half of the detection limit method,
DL: Replacing all left-censored data by the detection limit method,

WSM : The new Weighted Substitution Method.

Tables 4 and 5 are partitioned into 5 subgroups by increasing censoring level:
CL = 0.15, 0.25, 0.50, 0.75 and 0.90. The simulation results within each subgroup
are further partitioned by increasing sample size n = 10, 25, 50 and 75. Two
simulation results are given for each method and for each combination of n, µ, σ
and CL. These are the average value of the estimate and the MSE.

6.1. Comparison of Methods: µ Parameter.
WSM to existing methods: The following observations and conclusions are
made from an examination of the simulation results reported for the mean µ.

For the µ = 25 parameter value: the reported new WSM method estimates
are all in the range 24.8722 − 25.2874, the reported HDL method estimates are
all in the range 23.7069 − 24.6108, the reported EMA method estimates are all
in the range 24.7206 − 25.002 and the reported ASAMLEOC method estimates
are all in the range 24.5856− 25.0355 for cases with censoring level less than 50%.
For cases with censoring levels less than 50%: (1) the MSE values for HDL
method are larger than those reported by the new WSM method, and (2) the
MSE values for WSM method are nearly equal to those reported by the new
EMA and ASAMLEOC methods. For cases with censoring level 50%: the re-
ported new WSM method estimates are all in the range 23.4630 − 24.6600, the
reported HDL method estimates are all in the range 22.5559 − 22.9255, the re-
ported EMA method estimates are all in the range 24.8221 − 25.0050 and the
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reported ASAMLEOC method estimates are all in the range 25.0019− 25.4548.
The MSE values for HDL method are larger than those reported by the new
WSM method. The MSE values for the new WSM method are nearly equal to
those reported by both EMA and ASAMLEOC methods except for cases with
sample sizes 50, 75, and 100.

For the µ = 10 parameter value and for cases with censoring level greater
than or equal to 75%: the reported new WSM method estimates are all in
the range 8.5887 − 9.8231, the reported HDL method estimates are all in the
range 8.6633 − 9.2154, the reported EMA method estimates are all in the range
10.1079−12.7350 and the reported ASAMLEOC method estimates are all in the
range 9.8679− 11.2427. The MSE values for HDL and EMA methods are quite
similar and smaller than those reported by EMA and ASAMLEOC methods ex-
cept for cases with sample sizes 75 and 100. For cases with censoring level 90%
and sample size 10, it has been noted that estimates for the µ parameter are not
available via EMA method.

Overall, the new WSM method appears to be superior to the existing meth-
ods for cases with censoring levels less than 50%, and superior to EMA and
ASAMLEOC methods for cases with censoring levels greater than or equal to
50% except for cases with sample sizes 75 and 100. The new WSM and HDL
methods yield quite similar estimates for the µ parameter for cases with censoring
levels greater than or equal to 50%.

6.2. Comparison of Methods: σ Parameter.
WSM to existing methods: The following observations and conclusions are
made from an examination of the simulation results reported for the standard de-
viation σ.

For the σ = 10 parameter value: the reported new WSM method estimates are
all in the range 9.2886 − 9.8007, the reported HDL method estimates are all in
the range 10.2680 − 10.7815, the reported EMA method estimates are all in the
range 9.6781− 10.0459 and the reported ASAMLEOC method estimates are all
in the range 9.5468 − 10.0068 for cases with censoring level less than 50%. The
MSE values for EMA and ASAMLEOC methods are larger than those reported
by the new WSM method for cases with censoring levels less than 50%. The
MSE values reported by HDL and the new WSM methods are quite similar for
cases with censoring levels less than 50%. For cases with censoring level 50%:
the reported new WSM method estimates are all in the range 9.3601 − 10.5496,
the reported HDL method estimates are all in the range 10.7585 − 11.0397, the
reported EMA method estimates are all in the range 9.5578− 9.9383 and the re-
ported ASAMLEOC method estimates are all in the range 9.1672− 9.8955. The
MSE values for HDL and the new WSM methods are quite similar, and smaller
than those reported by both EMA and ASAMLEOC methods except for cases
with sample sizes 100.
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For the σ = 5 parameter value and for cases with censoring level greater
than or equal to 75%: the reported new WSM method estimates are all in
the range 4.3496 − 5.0428, the reported HDL method estimates are all in the
range 3.0071 − 4.3463, the reported EMA method estimates are all in the range
3.0289 − 4.8167 and the reported ASAMLEOC method estimates are all in the
range 3.8187 − 4.9756. The MSE values for EMA, EMA and ASAMLEOC
methods are larger than those reported by the new WSM method. For cases with
censoring level 90% and sample size 10, it has been noted that estimates for the σ
parameter are not available via EMA method. It should be noted that the σ = 5
parameter value for most cases is highly under estimated by EMA, EMA and
ASAMLEOC methods.

Overall, the new WSM method appears to be superior to HDL method for
cases with censoring levels greater than or equal to 50%, and superior to EMA
and ASAMLEOC methods for all censoring cases. The HDL and the new WSM
methods perform similarly for cases with censoring levels less than 50%.

In summary, the maximum likelihood estimators (ASAMLEOC), the new weighted
substitution method estimators (WSM), and the EM algorithm estimators (EMA)
perform similarly, and all are generally superior to the existing substitution method
estimators.

6.3. Additional Simulation Results.
The following simulation results are obtained using the following combinations of
n, µ, σ, and censoring level CL.

Table 3. Estimates for µ and σ from Sulfate Data

(n, µ, σ) k CL
(k, 25, 10) k = 10, 25, 50, 75, 100 0.75 - 0.90
(k, 10, 5) k = 10, 25, 50, 75, 100 0.15 - 0.50
(k, 20, 3) k = 10, 25, 50, 75, 100 0.10 - 0.90

Tables 6, 7 and 8 are partitioned into two subgroups. Each subgroup has a differ-
ent censoring level. The simulation results within each subgroup are given for both
population mean µ and standard deviation σ. Two simulation results are given
for each method and for each combination of n, µ, σ and CL. These simulation
results are the average value of the estimate and the MSE.
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Table 4. Simulation Estimates of the Mean µ from Normally Dis-

tributed Left-Censored Samples with a Single Detection Limit

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.15

(10, 25, 10) µ̂
MSE

24.7206
12.9903

24.5856
12.1390

24.3367
12.4803

24.4160
12.3479

25.0303
10.2139

22.4497
14.1331

24.0517
10.3785

25.6536
12.1721

(25, 25, 10) µ̂
MSE

25.0022
4.0587

25.0047
4.0515

24.9302
4.0600

24.8702
4.0765

25.2874
3.6776

23.3820
5.5471

24.6056
3.5844

25.8292
4.7208

(50, 25, 10) µ̂
MSE

24.9873
1.9815

24.9610
1.9524

24.9221
1.9576

24.8229
1.9836

25.2175
1.7494

23.4054
3.9807

24.6045
1.8237

25.8036
2.5930

(75, 25, 10) µ̂
MSE

24.9569
1.3018

24.9167
1.2937

24.8892
1.2997

24.7757
1.3415

25.1520
1.2036

23.3772
3.5491

24.5654
1.2649

25.7536
1.8417

(100, 25, 10) µ̂
MSE

24.9303
1.0832

24.9455
1.0840

24.9308
1.0861

24.8173
1.1177

25.1187
1.0118

23.5041
3.0278

24.6108
1.0706

25.7176
1.5900

CL = 0.25

(10, 25, 10) µ̂
MSE

24.9314
11.1167

24.7705
10.1121

24.3606
10.6242

24.5564
10.2893

25.1387
8.6504

20.8147
22.7221

23.7069
8.7693

26.5991
12.2048

(25, 25, 10) µ̂
MSE

24.8567
4.7220

25.0355
4.4562

24.9278
4.4708

24.8842
4.4865

25.0651
3.8785

21.9426
11.9771

24.1728
4.0882

26.4031
6.3499

(50, 25, 10) µ̂
MSE

24.9379
2.3519

24.9031
2.2546

24.8405
2.2750

24.7176
2.3375

24.9884
1.9278

21.6906
12.1852

24.0783
2.4918

26.4659
4.3222

(75, 25, 10) µ̂
MSE

24.9199
1.3578

24.9175
1.3316

24.8798
1.3406

24.7403
1.3983

24.8745
1.1832

21.7923
11.0518

24.1097
1.7847

26.4272
3.3294

(100, 25, 10) µ̂
MSE

24.9792
1.0849

25.0024
1.0738

24.9770
1.0749

24.8292
1.1061

24.8722
0.9745

21.9016
10.2353

24.1936
1.4676

26.4857
3.2606

CL = 0.50

(10, 25, 10) µ̂
MSE

24.8221
18.5532

25.1868
15.2003

24.1506
17.3134

24.9091
15.4780

24.6600
10.1436

16.2848
79.3801

22.5559
12.9385

28.8270
27.0316

(25, 25, 10) µ̂
MSE

24.9778
6.7314

25.4548
6.3569

25.0936
6.3417

25.2066
6.3287

23.8873
5.2874

16.9032
67.0511

22.9255
7.2413

28.9479
20.7299

(50, 25, 10) µ̂
MSE

24.9382
3.2269

25.0019
2.9649

24.8038
3.0511

24.7091
3.1225

23.8758
4.0171

16.4341
74.0480

22.6824
6.7341

28.9307
17.8859

(75, 25, 10) µ̂
MSE

25.0050
1.9961

25.1557
1.9971

25.0237
1.9946

24.8749
2.0344

23.76042
4.2894

16.6278
70.5353

22.8010
5.7310

28.9742
17.3938

(100, 25, 10) µ̂
MSE

24.9496
1.4499

24.9960
1.3884

24.8980
1.4097

24.7015
1.5089

23.4630
5.1825

16.4471
73.4808

22.6953
5.9611

28.9434
16.6976

CL = 0.75

(10, 10, 5) µ̂
MSE

11.1600
4.9783

10.9294
6.9497

9.7694
8.5266

10.7134
6.9843

9.8231
2.3121

4.6079
29.4568

9.1331
2.5634

13.6582
16.9481

(25, 10, 5) µ̂
MSE

10.3701
3.2304

10.7352
3.9538

10.1216
4.0427

10.4767
3.8897

9.2815
2.3455

4.4301
31.1690

9.2023
2.3161

13.9745
17.4969

(50, 10, 5) µ̂
MSE

10.2091
1.6294

10.2622
1.7626

9.8291
1.9279

9.9475
1.8441

9.1792
1.2663

4.1868
33.8541

9.1008
1.1847

14.0148
16.8751

(75, 10, 5) µ̂
MSE

10.1761
1.0370

10.0857
1.2607

9.7393
1.4362

9.7467
1.4306

9.0131
1.6401

4.1183
34.6373

9.0916
1.0413

14.0649
17.0802

(100, 10, 5) µ̂
MSE

10.1079
0.8523

9.9587
0.9697

9.6655
1.1543

9.6094
1.2111

8.9862
1.2560

4.0600
35.3154

9.0399
1.0860

14.0197
16.5823

CL = 0.90

(10, 10, 5) µ̂
MSE

NAN
NAN

9.9275
28.3201

6.4233
78.0182

9.8992
28.5537

9.7546
2.1788

1.7684
67.8434

8.6633
3.4499

15.5582
36.3779

(25, 10, 5) µ̂
MSE

12.7350
11.2545

11.2427
10.9418

9.8571
13.8752

10.8905
11.3257

9.0188
2.8197

2.1579
7.8420

9.1766
1.3721

16.1952
40.5871

(50, 10, 5) µ̂
MSE

12.4702
8.8839

9.8679
8.3572

9.0350
11.1032

9.4993
9.3857

9.0459
5.7839

1.8560
66.3434

9.1220
2.1813

16.3880
42.1725

(75, 10, 5) µ̂
MSE

12.3973
7.6331

10.5135
4.9507

9.9385
5.4244

10.1106
5.2242

9.1537
6.9610

1.9673
64.5361

9.2154
4.8869

16.4635
42.6704

(100, 10, 5) µ̂
MSE

12.2278
6.3274

9.8990
4.2162

9.4768
4.9141

9.4882
4.8985

8.5887
6.3863

1.8662
66.1671

9.1851
3.8660

16.5041
42.9826
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Table 5. Simulation Estimates of the Standard Deviation σ from

Normally Distributed Left-Censored Samples with a Single Detection

Limit

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.15

(10, 25, 10) σ̂
MSE

10.0459
6.3001

9.6976
6.4146

10.7021
8.1939

9.8076
6.4824

9.4377
5.3325

13.0290
11.5996

10.3384
4.9412

8.0643
8.1432

(25, 25, 10) σ̂
MSE

9.8113
2.5130

9.7730
2.5439

10.1485
2.7096

9.8612
2.5525

9.6837
2.2003

12.4614
7.0256

10.2680
1.8620

8.4608
4.2423

(50, 25, 10) σ̂
MSE

9.9661
1.3647

10.0068
1.3279

10.2000
1.4193

10.0965
1.3572

9.7549
1.0455

12.5478
7.0106

10.4218
0.9788

8.6617
2.7903

(75, 25, 10) σ̂
MSE

9.9220
0.8380

9.9845
0.8363

10.1138
0.8708

10.0765
0.8575

9.4640
0.7558

12.5021
6.5641

10.4922
0.6781

8.6389
2.4788

(100, 25, 10) σ̂
MSE

9.9273
0.6693

9.9035
0.6685

9.9950
0.6715

9.9874
0.6704

9.7880
0.6262

12.3037
5.5621

10.3035
0.5424

8.6555
2.3117

CL = 0.25

(10, 25, 10) σ̂
MSE

9.6782
7.6926

9.7455
7.8342

10.9469
10.6996

9.8648
7.9515

9.2886
4.5755

14.7549
25.2537

10.7656
3.3651

7.2926
11.7217

(25, 25, 10) σ̂
MSE

9.7791
2.8727

9.5468
2.7838

9.9658
2.8110

9.6299
2.7655

9.5273
2.0599

13.8585
15.9031

10.4642
1.7138

7.6557
7.1502

(50, 25, 10) σ̂
MSE

9.9417
1.5469

9.9884
1.4527

10.2161
1.5662

10.0907
1.4891

9.5583
1.0459

14.2765
18.8102

10.7815
1.1838

7.8224
5.6361

(75, 25, 10) σ̂
MSE

9.9461
0.9648

9.9494
0.9589

10.0974
0.9944

10.0468
0.9761

9.6981
0.6769

14.1626
17.6624

10.7359
0.9304

7.8518
5.2130

(100, 25, 10) σ̂
MSE

9.9602
0.7465

9.9296
0.7489

10.0385
0.7619

10.0245
0.7601

9.8007
0.4713

14.1353
17.3686

10.7264
0.8366

7.8658
5.0213

CL = 0.50

(10, 25, 10) σ̂
MSE

9.5578
15.6057

9.1672
12.0724

10.8553
16.6869

9.2823
12.1633

9.3601
3.7688

16.7716
49.5103

10.7585
3.1956

5.3312
25.6978

(25, 25, 10) σ̂
MSE

9.7338
5.2199

9.2809
5.2880

9.9360
5.4728

9.3811
5.2627

9.9686
1.6210

16.7956
47.6687

10.8394
1.8370

5.5985
21.1074

(50, 25, 10) σ̂
MSE

9.9095
2.6241

9.8507
2.5035

10.2101
2.7096

9.9679
2.5395

10.2462
1.3816

16.9698
49.3191

11.0231
1.6188

5.7495
18.9206

(75, 25, 10) σ̂
MSE

9.9029
1.6039

9.7586
1.5602

9.9950
1.5756

9.8706
1.5542

10.3847
1.4119

16.9536
48.8112

11.0084
1.3613

5.7604
18.4996

(100, 25, 10) σ̂
MSE

9.9383
1.2036

9.8955
1.2086

10.0758
1.2475

10.0129
1.2261

10.5496
1.7183

16.9832
16.9832

11.0397
1.3615

5.7767
18.2478

CL = 0.75

(10, 10, 5) σ̂
MSE

4.2618
5.2597

3.8187
5.6734

4.9812
7.2788

3.8871
5.6663

4.3496
1.1665

7.1417
5.5348

4.2411
1.5443

1.5442
12.6638

(25, 10, 5) σ̂
MSE

4.5483
2.7109

4.2664
2.7569

4.8400
2.8810

4.3438
2.7305

4.6328
0.4991

7.2150
5.3049

4.3111
0.8201

1.6639
11.4708

(50, 10, 5) σ̂
MSE

4.7104
1.3499

4.6859
1.2885

5.0415
1.3782

4.7798
1.2854

4.8445
0.2456

7.1681
4.8861

4.3241
0.5780

1.7189
10.9302

(75, 10, 5) σ̂
MSE

4.8058
0.8648

4.8796
0.8804

5.1431
0.9823

4.9806
0.9026

4.9818
0.1611

7.1746
4.8646

4.3463
0.5148

1.7528
10.6573

(100, 10, 5) µ̂
MSE

4.8167
0.6827

4.9337
0.6806

5.1437
0.7556

5.0375
0.7065

5.0428
0.1283

7.1359
4.6661

4.3290
0.5177

1.7547
10.6186

CL = 0.90

(10, 10, 5) σ̂
MSE

NAN
NAN

4.2813
13.5159

6.8391
36.5542

4.2891
13.5523

4.3553
1.5075

5.3054
1.463764

3.0071
4.4102

0.7088
18.7701

(25, 10, 5) σ̂
MSE

3.5159
5.3528

4.0208
5.5123

4.9838
6.9890

4.1082
5.5572

4.4259
0.8011

5.8762
1.1049

3.3071
3.0605

0.8551
17.3969

(50, 10, 5) σ̂
MSE

3.4667
4.5614

4.9175
3.7233

5.5312
4.9842

5.0063
3.8528

4.8617
0.4854

5.6002
0.5449

3.2012
3.3510

0.9177
16.7972

(75, 10, 5) σ̂
MSE

3.4707
3.8156

4.5939
2.2375

4.9854
2.4406

4.6899
2.2567

4.8792
0.3493

5.7293
0.65004

3.2513
3.1282

0.9179
16.7499

(100, 10, 5) σ̂
MSE

3.5912
3.0289

4.9756
1.7452

5.2876
2.0531

5.0733
1.8204

4.8105
0.2995

5.6338
0.4841

3.2202
3.2185

0.9437
16.5173
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Table 6. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.75, 0.90: (k, 25, 10) , (k =
10, 25, 50, 75, 100)

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.75

(10, 25, 10) µ̂
MSE

27.565
21.380

26.815
34.594

24.464
42.150

26.380
34.912

27.349
26.146

10.737
205.140

21.543
19.480

32.349
72.169

(25, 25, 10) µ̂
MSE

25.492
11.982

26.063
14.436

24.800
16.016

25.528
14.680

25.797
11.949

10.235
218.58

21.480
14.862

32.725
65.793

(50, 25, 10) µ̂
MSE

25.321
6.356

25.493
6.912

24.620
7.578

24.857
7.245

25.407
6.216

9.689
234.71

21.376
14.493

33.063
68.410

(75, 25, 10) µ̂
MSE

25.294
4.253

25.148
5.072

24.457
5.826

24.471
5.801

25.221
4.392

9.487
240.82

21.283
14.641

33.080
67.417

(100, 25, 10) µ̂
MSE

25.223
3.434

24.947
3.905

24.354
4.632

24.242
4.850

25.086
3.474

9.412
243.12

21.281
14.450

33.151
68.053

(10, 25, 10) σ̂
MSE

8.464
20.263

7.742
21.496

10.099
27.905

7.880
21.453

8.114
18.758

16.589
47.473

9.635
12.165

3.133
49.949

(25, 25, 10) σ̂
MSE

9.259
11.333

8.782
11.516

9.963
12.918

8.943
11.534

9.040
10.770

16.612
45.296

9.735
7.948

3.416
44.854

(50, 25, 10) σ̂
MSE

9.548
5.479

9.451
5.080

10.167
5.556

9.640
5.100

9.499
5.083

16.532
43.540

9.734
5.599

3.469
43.307

(75, 25, 10) σ̂
MSE

9.601
3.588

9.726
3.637

10.457
5.826

11.471
5.801

9.664
3.485

16.467
42.344

9.721
2.422

3.494
42.789

(100, 25, 10) σ̂
MSE

9.748
2.733

9.970
2.791

10.394
3.187

10.179
2.940

9.859
2.666

16.483
42.417

9.756
2.320

3.543
42.050

CL = 0.90

(10, 25, 10) µ̂
MSE

NAN 24.304
110.97

16.853
8.147

24.244
111.98

23.178
29.204

4.080
437.99

20.178
19.204

36.276
146.64

(25, 25, 10) µ̂
MSE

30.247
44.689

27.918
44.648

25.236
53.141

27.246
45.532

28.366
42.684

4.916
403.54

21.211
17.366

37.506
165.91

(50, 25, 10) µ̂
MSE

29.900
34.130

24.606
31.013

22.926
41.799

23.866
34.897

27.251
21.481

4.214
432.14

20.983
17.709

37.751
167.83

(75, 25, 10) µ̂
MSE

29.811
30.283

25.967
27.901

24.815
19.642

25.164
18.856

26.881
18.244

4.465
421.76

21.179
17.674

37.894
169.76

(100, 25, 10) µ̂
MSE

29.637
27.767

24.944
17.654

24.116
20.304

24.138
20.268

27.290
15.268

4.213
432.14

21.053
16.340

37.892
168.765

(10, 25, 10) σ̂
MSE

NAN 8.587
52.124

13.718
141.74

8.603
52.263

11.177
3.453

12.239
8.032

6.873
11.582

1.507
73.601

(25, 25, 10) σ̂
MSE

7.251
21.416

7.784
22.564

9.649
27.230

7.951
22.670

7.816
19.561

13.367
12.790

7.390
17.606

1.654
70.487

(50, 25, 10) σ̂
MSE

6.941
17.354

9.915
13.288

11.153
18.132

10.094
13.751

8.475
11.657

12.697
7.945

7.150
8.526

1.848
66.917

(75, 25, 10) σ̂
MSE

6.935
24.960

9.207
8.208

9.991
8.925

9.398
8.264

8.791
9.549

12.984
9.373

7.257
9.790

1.842
66.862

(100, 25, 10) σ̂
MSE

6.970
13.718

9.755
7.583

10.367
8.631

9.947
7.832

8.363
8.131

12.698
7.606

7.132
8.736

1.848
66.734

The following observations and conclusions are made from an examination of
the simulation results reported in Tables 6− 8. The new WSM method appears
to be superior to existing substitution methods for all censoring cases, and yields
quite similar estimates to EMA and ASAMLEOC methods. The HDL and the
newWSM methods perform similarly for cases with censoring levels less than 50%.

In summary, the maximum likelihood estimators (ASAMLEOC), the new weighted
substitution method estimators (WSM), and the EM algorithm estimators (EMA)
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Table 7. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.15, 0.50: (k, 10, 5) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.15

(10, 10, 5) µ̂
MSE

10.078
2.836

10.103
2.669

9.888
2.689

9.928
2.667

10.045
2.437

9.405
2.195

9.976
2.203

10.547
2.951

(25, 10, 5) µ̂
MSE

10.046
1.019

10.047
1.013

10.010
1.102

9.980
1.014

10.046
1.011

9.626
1.140

10.043
1.272

10.460
1.256

(50, 10, 5) µ̂
MSE

9.977
0.508

9.964
0.492

9.945
0.494

9.894
0.502

9.979
0.498

9.580
0.538

9.978
0.507

10.380
0.633

(75, 10, 5) µ̂
MSE

9.959
0.373

9.939
0.373

9.925
0.375

9.868
0.387

9.949
0.371

9.585
0.438

9.973
0.351

10.362
0.496

(100, 10, 5) µ̂
MSE

9.993
0.256

9.999
0.255

9.991
0.255

9.934
0.259

9.996
0.254

9.643
0.316

10.213
0.238

10.382
0.399

(10, 10, 5) σ̂
MSE

5.019
1.524

4.856
1.703

5.359
2.178

4.911
1.723

5.027
1.526

5.746
1.727

4.825
1.852

4.048
2.194

(25, 10, 5) σ̂
MSE

4.917
0.640

4.886
0.617

5.073
0.656

4.929
0.618

4.911
0.596

5.520
0.612

4.819
0.597

4.230
1.046

(50, 10, 5) σ̂
MSE

4.931
0.337

4.952
0.328

5.047
0.341

4.997
0.332

4.956
0.329

5.514
0.398

4.849
0.321

4.285
0.755

(75, 10, 5) σ̂
MSE

5.015
0.236

5.045
0.237

5.111
0.253

5.092
0.248

5.030
0.234

5.553
0.400

4.913
0.213

4.366
0.578

(100, 10, 5) σ̂
MSE

4.931
0.120

4.923
0.161

4.968
0.159

4.965
0.159

4.927
0.158

5.449
0.267

4.829
0.175

4.302
0.605

CL = 0.50

(10, 10, 5) µ̂
MSE

9.990
3.691

10.093
3.433

9.588
3.878

9.955
3.485

10.061
3.240

6.853
10.724

9.357
2.066

11.861
6.368

(25, 10, 5) µ̂
MSE

10.014
1.548

10.228
1.533

10.047
1.531

10.102
1.528

10.121
1.453

7.162
8.392

9.571
1.183

11.980
5.131

(50, 10, 5) µ̂
MSE

9.976
0.754

10.020
0.711

9.921
0.728

9.874
0.743

9.983
0.579

7.294
5.436

9.947
0.441

12.880
4.692

(75, 10, 5) µ̂
MSE

9.962
0.571

10.053
0.522

9.988
0.525

9.924
0.538

10.007
0.532

7.031
8.934

9.494
0.490

11.958
4.252

(100, 10, 5) µ̂
MSE

10.017
0.329

10.029
0.339

9.980
0.340

9.882
0.359

10.022
0.327

6.982
9.196

9.487
0.432

11.992
4.265

(10, 10, 5) σ̂
MSE

4.626
3.317

4.464
2.744

5.287
3.527

4.522
2.744

4.555
2.785

7.115
5.343

4.736
1.679

2.590
6.650

(25, 10, 5) σ̂
MSE

4.866
1.316

4.659
1.280

4.988
1.333

4.780
1.272

4.763
1.224

7.207
5.217

4.862
1.097

2.809
5.230

(50, 10, 5) σ̂
MSE

4.975
0.612

4.934
0.586

5.114
0.638

4.992
0.596

4.954
0.579

7.294
5.436

4.947
0.541

2.880
4.692

(75, 10, 5) σ̂
MSE

4.955
0.431

4.868
0.427

4.986
0.430

4.924
0.425

4.917
0.417

7.257
5.217

4.923
0.302

2.873
4.666

(100, 10, 5) σ̂
MSE

4.936
0.230

4.924
0.273

5.024
0.278

4.983
0.275

4.930
0.265

7.290
5.338

4.924
0.217

2.873
4.614

perform similarly, and all are generally superior to the existing substitution method
estimators.

7. Conclusions and Recommendations

This article has dealt with the problem of estimating the mean and standard de-
viation of a normal and/or lognormal populations in the presence of left-censored
data. To avoid clumping of replaced values in cases where there are several left-
censored observations that share a common detection limit, a new replacement
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Table 8. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.10, 0.90: (k, 20, 3) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation

MLE Replacement
(n, µ, σ) EMA ASAMLEOC UMLE HS WSM ZE HDL DL

CL = 0.10

(10, 20, 3) µ̂
MSE

19.984
0.948

20.026
0.895

19.982
0.896

20.004
0.895

20.005
0.915

18.482
3.034

19.323
1.264

20.164
0.919

(25, 20, 3) µ̂
MSE

19.962
0.370

19.948
0.363

19.929
0.366

19.914
0.370

19.955
0.365

18.151
3.694

19.137
1.058

20.123
0.374

(50, 20, 3) µ̂
MSE

19.973
0.177

19.980
0.175

19.973
0.176

19.952
0.178

19.976
0.176

18.496
2.404

19.309
0.635

20.122
0.190

(75, 20, 3) µ̂
MSE

19.900
0.125

19.983
0.124

19.977
0.124

19.952
0.126

19.986
0.124

18.405
2.646

19.271
0.643

20.137
0.143

(100, 20, 3) µ̂
MSE

19.990
0.087

19.992
0.087

19.989
0.087

19.964
0.088

19.991
0.087

18.513
2.286

19.324
0.538

19.991
0.087

(10, 20, 3) σ̂
MSE

3.143
0.537

2.780
0.554

3.026
0.600

2.796
0.552

3.068
0.474

6.595
13.047

3.319
1.948

2.549
0.629

(25, 20, 3) σ̂
MSE

2.988
0.214

2.967
0.220

3.075
0.241

2.992
0.222

2.993
0.211

7.090
16.783

4.644
2.786

2.666
0.289

(50, 20, 3) σ̂
MSE

2.977
0.104

2.961
0.102

3.012
104

2.982
0.102

2.970
0.101

6.614
13.083

3.427
2.080

2.711
0.168

(75, 20, 3) σ̂
MSE

2.988
0.066

2.999
0.067

3.035
0.069

3.022
0.068

2.994
0.065

6.789
14.377

4.526
2.358

2.728
0.129

(100, 20, 3) σ̂
MSE

2.986
0.053

2.983
0.052

3.008
0.053

3.004
0.052

2.985
0.052

6.621
13.129

4.042
2.103

2.730
0.116

CL = 0.90

(10, 20, 3) µ̂
MSE

NAN 19.896
11.399

17.761
32.365

19.879
11.512

18.866
12.444

2.462
307.61

12.894
51.034

23.327
12.850

(25, 20, 3) µ̂
MSE

21.756
4.333

20.830
4.200

20.032
5.098

20.627
4.317

21.385
3.816

2.965
290.20

13.325
44.812

23.685
14.411

(50, 20, 3) µ̂
MSE

21.420
2.985

19.862
3.364

19.354
4.479

19.634
3.796

20.631
2.119

2.517
305.67

13.180
46.661

23.843
15.274

(75, 20, 3) µ̂
MSE

21.423
2.733

20.217
1.646

19.866
1.881

19.972
1.787

20.716
1.634

2.672
300.27

13.255
45.576

23.839
15.018

(100, 20, 3) µ̂
MSE

21.382
2.393

19.976
1.468

19.725
1.696

19.733
1.691

20.678
1.255

2.518
305.62

13.207
46.219

23.896
15.425

(10, 20, 3) σ̂
MSE

NAN 2.609
5.860

4.167
15.924

2.613
5.879

6.895
6.173

7.387
19.540

3.909
1.013

0.432
6.751

(25, 20, 3) σ̂
MSE

1.997
2.061

2.317
2.027

2.872
2.411

2.367
2.034

2.320
1.735

8.038
25.496

4.220
1.546

0.495
6.353

(50, 20, 3) σ̂
MSE

2.128
1.496

3.002
1.395

3.377
1.907

3.057
1.451

2.693
1.086

7.560
20.850

4.012
1.763

0.561
5.999

(75, 20, 3) σ̂
MSE

2.082
1.404

2.797
0.811

3.036
0.908

2.856
0.824

2.444
0.917

7.742
22.529

4.093
1.220

0.557
5.999

(100, 20, 3) σ̂
MSE

2.120
1.157

2.954
0.628

3.139
0.726

3.011
0.651

2.537
0.665

7.563
20.856

4.008
1.035

0.559
5.983

method called weighted substitution method is introduced. In this method left-
censored observations are spaced from zero to the detection limit according to
weights assigned to these non-detected data. To facilitate the application of esti-
mation methods described in this article, a computer program is presented. The
computer program ”SingleLeft.Censored.Normal”, written in the R language, is
an easy-to-use computerized tool for obtaining estimates and their standard devia-
tions of population parameters of singly left-censored data using either a normal or
lognormal distribution. The simulation results presented in Tables 3-4 show that
the new WSM and HDL methods perform similarly for cases where the censoring
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levels is less than 50%. The new WSM method perform better than EMA and
ASAMLEOC methods for cases where the censoring levels is less than 50%. For
estimating the σ parameter the new WSM method perform better than the exist-
ing methods for cases where the censoring levels is greater than or equal to 75%.
Taken together, the suggested new WSM method appear to work best for nor-
mally distributed censored samples, and lognormal versions of the estimator can
be obtained simply by taking natural logarithm of the data and the detection limit.
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Appendix

The suggested weighted substitution method is based on replacing the left-censored
observations that are less than the detection limit DL by non-constant different
values based on assigning a different weight for each observation. Some of the
choices of the weights that were examined are:

w1j(= wj) =

(
(m+ j − 1)

n

) j
j+1

(P (U ≥ DL))
ln(m+j−1)

, (3.1 given above)

w2j =

(
(m+ j − 1)

n

) j
j+1

[P (U ≥ DL)]

w3j =

(
(m+ j − 1)

n

) j
j+1

(P (U ≥ DL))
m+j−1

,

w4j =

(
(m+ j − 1)

n

)(
j
j+1

)

(P (U ≤ DL))
ln(m+j−1)

,

w5j =

(
(m+ j − 1)

n

) j
j+1

[P (U ≤ DL)]
(m+j−1)

,

w6j =

(
(m+ j − 1)

n

)
(P (U ≥ DL))

ln(m+j−1)

,

w7j =

(
(m+ j − 1)

n

)
(P (U ≥ DL)) ,

for j = 1, 2, ...,mc

where the probability P (U ≥ DL) is estimated from the sample data by:

̂P (U ≥ DL) = 1− Φ

(
DL− x̄m

sm

)

An extensive simulation study was conducted on these weights in addition to other
weights (not shown here). The simulation results indicate that the suggested
weight in (3.1) leads to estimators that have the ability to recover the true mean
and standard deviation as well as the existing methods such as maximum likelihood
and EM algorithm estimators. More simulation results will be available in the web
page of the author later on if needed.
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Table 9. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.75, 0.90: (k, 25, 10) , (k =
10, 25, 50, 75, 100)

Methods Of Estimation
(n, µ, σ) MLE W1j(= Wj) W2j W3j W4j W5j W6j W7j

CL = 0.75

(10, 25, 10) µ̂
MSE

26.820
34.258

24.234
12.401

23.252
16.047

19.329
51.433

11.108
194.777

10.741
205.259

21.515
21.974

22.402
15.600

(25, 25, 10) µ̂
MSE

26.063
14.436

23.465
6.016

20.810
22.861

13.064
148.885

10.320
216.079

10.235
218.583

19.899
30.475

22.433
9.668

(50, 25, 10) µ̂
MSE

25.493
6.912

24.206
5.299

19.842
30.481

10.692
206.662

9.706
234.184

9.689
234.705

19.339
35.300

21.544
7.859

(75, 25, 10) µ̂
MSE

25.148
5.072

24.521
5.233

19.296
35.658

9.883
229.296

9.493
240.630

9.487
240.824

18.920
40.013

21.625
8.410

(100, 25, 10) µ̂
MSE

24.980
3.789

24.113
4.305

18.714
42.200

9.571
238.248

9.416
242.978

9.413
243.065

18.997
38.541

22.970
6.051

(10, 25, 10) σ̂
MSE

7.490
22.999

8.921
3.664

8.536
4.216

11.143
6.978

16.354
44.455

16.586
47.441

10.111
2.020

3.023
51.492

(25, 25, 10) σ̂
MSE

8.782
11.516

10.168
1.413

9.342
5.342

14.902
27.034

16.560
44.618

16.612
45.296

11.266
5.969

10.379
7.088

(50, 25, 10) σ̂
MSE

9.451
5.080

9.745
0.576

11.873
3.077

15.960
36.846

16.522
43.411

16.532
43.540

12.475
5.094

11.987
4.726

(75, 25, 10) σ̂
MSE

9.726
3.637

9.912
0.314

11.267
2.292

16.245
39.594

16.463
42.298

16.467
42.344

11.611
4.972

11.945
5.237

(100, 25, 10) σ̂
MSE

9.950
2.791

10.486
1.468

11.732
4.555

16.397
41.318

16.484
42.428

16.485
42.448

12.464
3.102

10.997
2.250

CL = 0.90

(10, 25, 10) µ̂
MSE

24.891
108.321

24.215
99.875

22.568
114.827

7.982
387.340

5.174
393.543

4.045
439.447

20.009
121.432

20.099
132.093

(25, 25, 10) µ̂
MSE

27.918
44.648

23.327
42.724

20.050
45.861

12.317
191.703

5.044
398.446

4.918
403.496

18.748
48.107

20.927
41.091

(50, 25, 10) µ̂
MSE

24.606
31.013

23.938
29.925

18.526
52.094

8.797
289.135

4.245
430.836

4.214
432.141

17.937
59.028

20.844
31.088

(75, 25, 10) µ̂
MSE

25.967
17.901

23.983
16.502

16.584
78.491

5.541
382.210

4.485
420.910

4.465
421.758

15.983
88.275

20.569
21.601

(100, 25, 10) µ̂
MSE

24.944
17.655

23.896
16.520

16.544
78.921

5.135
398.059

4.222
431.778

4.213
432.136

16.188
84.747

21.690
20.197

(10, 25, 10) σ̂
MSE

8.587
52.124

9.071
50.071

8.672
55.982

12.014
67.803

13.322
84.007

13.366
58.602

14.071
55.341

13.510
52.762

(25, 25, 10) σ̂
MSE

7.784
22.567

9.771
15.847

9.585
24.087

11.906
16.094

16.560
44.618

16.612
45.296

12.647
25.442

12.993
23.087

(50, 25, 10) σ̂
MSE

9.915
13.288

9.964
10.487

10.730
11.522

12.510
13.951

12.687
14.890

12.997
13.944

11.604
15.604

12.106
12.106

(75, 25, 10) σ̂
MSE

9.207
8.208

10.156
5.371

11.415
7.468

12.656
9.784

12.977
9.332

12.984
9.373

10.938
8.034

11.048
7.997

(100, 25, 10) σ̂
MSE

9.755
7.583

10.143
5.264

11.544
6.514

12.423
7.486

12.696
8.591

12.699
8.606

11.479
6.479

11.029
8.029
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Table 10. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.15, 0.50: (k, 10, 5) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation
(n, µ, σ) MLE W1j(= Wj) W2j W3j W4j W5j W6j W7j

CL = 0.15

(10, 10, 5) µ̂
MSE

10.013
2.669

10.327
2.617

10.388
2.988

11.072
2.899

9.001
3.120

9.105
3.195

10.704
3.560

11.264
3.626

(25, 10, 5) µ̂
MSE

10.047
1.013

10.073
1.008

10.560
1.788

9.661
1.843

9.326
1.848

9.034
1.901

10.544
1.196

10.703
1.934

(50, 10, 5) µ̂
MSE

9.964
0.492

10.084
0.490

10.286
0.553

9.570
0.804

9.380
0.638

9.294
0.701

10.363
0.781

10.565
0.739

(75, 10, 5) µ̂
MSE

9.939
0.373

10.164
0.367

10.372
0.426

9.618
0.621

9.585
0.438

9.275
0.509

10.357
0.470

10.470
0.478

(100, 10, 5) µ̂
MSE

9.991
0.255

10.082
0.270

10.298
0.334

9.654
0.375

9.542
0.416

9.343
0.493

10.165
0.273

10.380
0.326

(10, 10, 5) σ̂
MSE

4.856
1.703

4.609
1.544

4.241
1.973

4.065
2.164

5.974
2.218

6.746
2.228

4.221
1.986

4.244
2.507

(25, 10, 5) σ̂
MSE

4.886
0.617

4.772
0.690

4.356
0.842

5.209
0.973

5.520
0.908

5.728
0.937

4.522
0.690

4.409
0.798

(50, 10, 5) σ̂
MSE

4.952
0.329

4.885
0.302

4.404
0.585

5.456
0.604

5.513
0.698

5.743
0.599

4.270
0.603

4.417
0.957

(75, 10, 5) σ̂
MSE

5.045
0.237

4.829
0.293

4.482
0.434

5.496
0.450

5.553
0.500

5.729
0.564

4.645
0.375

4.510
0.609

(100, 10, 5) σ̂
MSE

4.923
0.161

4.772
0.189

4.412
0.458

5.431
0.354

5.449
0.377

5.793
0.386

4.589
0.306

4.430
0.414

CL = 0.50

(10, 10, 5) µ̂
MSE

10.093
3.433

10.114
2.506

10.490
2.339

9.245
3.189

6.897
10.452

6.853
10.724

9.706
3.213

10.655
3.233

(25, 10, 5) µ̂
MSE

10.228
1.533

9.975
0.827

10.593
1.230

7.873
5.163

7.169
8.352

7.162
8.392

9.560
0.889

10.445
0.989

(50, 10, 5) µ̂
MSE

10.020
0.711

9.969
0.561

10.493
0.677

7.200
8.130

6.980
9.288

6.979
9.288

9.620
0.608

10.464
0.664

(75, 10, 5) µ̂
MSE

10.054
0.522

9.779
0.517

10.573
0.547

7.078
8.670

7.031
8.931

7.957
8.652

9.483
0.690

10.950
0.472

(100, 10, 5) µ̂
MSE

10.029
0.339

9.827
0.366

10.469
0.466

6.996
9.112

6.982
9.194

6.982
9.196

9.465
0.627

10.482
0.769

(10, 10, 5) σ̂
MSE

4.464
2.744

4.310
1.864

3.741
3.279

4.633
2.321

7.074
5.166

7.115
5.343

4.370
2.190

4.179
2.320

(25, 10, 5) σ̂
MSE

4.659
1.280

4.599
0.668

3.968
1.407

6.502
2.879

7.200
5.184

7.207
5.217

4.705
0.998

10.534
1.093

(50, 10, 5) σ̂
MSE

4.934
0.586

4.866
0.267

4.118
0.933

7.082
4.565

7.293
5.565

7.294
5.436

9.520
0.703

10.964
0.864

(75, 10, 5) σ̂
MSE

4.868
0.427

4.868
0.179

4.116
0.895

7.211
5.021

7.257
5.215

7.946
6.012

4.658
0.258

4.242
0.683

(100, 10, 5) σ̂
MSE

4.924
0.273

4.932
0.118

4.148
0.800

7.276
5.275

7.290
5.337

7.290
5.338

5.311
0.216

4.261
0.617
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Table 11. Simulation Estimates of the Mean µ and σ from Normally

Distributed Left-Censored Samples with a Single Detection Limit and

Censoring Levels CL = 0.10, 0.90: (k, 20, 3) , (k = 10, 25, 50, 75, 100)

Methods Of Estimation
(n, µ, σ) MLE W1j(= Wj) W2j W3j W4j W5j W6j W7j

CL = 0.10

(10, 20, 3) µ̂
MSE

20.026
0.895

20.008
0.881

19.881
0.892

19.067
1.319

18.488
3.016

18.482
3.034

19.752
0.913

19.375
0.870

(25, 20, 3) µ̂
MSE

19.948
0.363

19.937
0.353

19.762
0.408

18.863
1.735

18.151
3.693

18.151
3.694

19.474
0.538

19.683
0.483

(50, 20, 3) µ̂
MSE

19.980
0.176

19.984
0.172

19.799
0.217

18.736
1.794

18.496
2.404

17.968
2.725

19.672
0.238

19.754
0.282

(75, 20, 3) µ̂
MSE

19.983
0.124

19.990
0.122

19.781
0.175

18.531
2.277

18.405
2.646

17.998
2.763

19.667
0.0.238

19.873
0.195

(100, 20, 3) µ̂
MSE

19.992
0.087

19.999
0.087

19.783
0.139

18.559
2.157

18.513
2.286

18.092
14.109

19.761
0.147

19.072
0.185

(10, 20, 3) σ̂
MSE

2.780
0.554

3.026
0.432

2.789
0.455

4.218
2.324

6.579
12.932

6.595
13.047

3.204
0.543

2.772
0.493

(25, 20, 3) σ̂
MSE

2.967
0.220

2.953
0.173

3.274
0.292

5.311
6.297

7.090
16.777

7.390
15.638

3.367
0.427

3.245
0.258

(50, 20, 3) σ̂
MSE

2.961
0.102

2.928
0.081

3.285
0.187

5.951
9.016

6.614
13.083

7.025
12.573

3.348
0.218

2.790
0.276

(75, 20, 3) σ̂
MSE

2.999
0.067

2.960
0.054

3.359
0.204

6.447
12.022

6.789
14.377

6.993
12.948

3.408
0.241

3.209
0.187

(100, 20, 3) σ̂
MSE

2.983
0.052

2.945
0.045

3.365
0.194

6.492
12.238

6.621
13.129

6.904
12.839

3.405
0.225

2.789
0.098

CL = 0.90

(10, 20, 3) µ̂
MSE

19.398
15.410

18.993
16.107

17.859
17.703

14.982
30.444

5.676
282.441

4.462
307.606

12.836
51.858

13.908
47.054

(25, 20, 3) µ̂
MSE

20.830
4.200

18.759
6.295

17.983
8.054

12.467
77.596

11.050
83.965

13.966
92.837

11.658
72.274

13.133
57.946

(50, 20, 3) µ̂
MSE

19.862
3.364

18.699
3.109

15.795
5.895

10.277
8.973

6.537
12.948

6.517
56.666

13.125
10.102

12.042
41.033

(75, 20, 3) µ̂
MSE

20.217
1.646

18.649
2.017

16.972
3.896

9.683
11.874

8.375
13.874

7.047
15.266

13.196
11.551

12.972
16.801

(100, 20, 3) µ̂
MSE

19.976
3.706

19.274
4.003

14.280
8.604

14.168
16.173

8.523
21.403

7.518
23.619

13.138
33.287

14.973
49.818

(10, 20, 3) σ̂
MSE

2.609
5.860

3.546
6.027

4.013
6.627

5.546
7.182

7.470
15.271

7.387
16.539

4.975
5.048

4.998
6.192

(25, 20, 3) σ̂
MSE

2.317
2.027

3.402
2.377

3.869
3.094

5.678
4.289

5.678
7.286

6.038
11.494

4.812
3.750

5.091
10.700

(50, 20, 3) σ̂
MSE

2.936
1.392

3.078
1.973

4.948
3.275

5.826
5.749

6.553
9.788

6.560
10.849

5.329
8.188

4.958
7.854

(75, 20, 3) σ̂
MSE

2.797
2.811

3.306
2.913

3.972
4.870

8.522
10.611

7.738
17.492

6.803
15.529

5.028
10.722

6.145
9.321

(100, 20, 3) σ̂
MSE

2.594
4.628

3.514
5.023

6.014
6.286

7.378
13.307

7.562
15.009

7.563
14.721

6.235
8.517

6.663
7.452
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Abstract

Regression analysis is investigation the relation between dependent and
independent variables. And, the degree and functional shape of this re-
lation is determinate by regression analysis. In case that dependent
variable has outlier, the robust regression methods are proposed to
make smaller the effect of the outlier on the parameter estimates. In
this study, an algorithm has been suggested to define the unknown
parameters of regression model, which is based on ANFIS (Adaptive
Network based Fuzzy Inference System). The proposed algorithm, ex-
pressed the relation between the dependent and independent variables
by more than one model and the estimated values are obtained by
connected this model via ANFIS. In the solving process, the proposed
method is not to be affected the outliers which are to exist in dependent
variable. So, to test the activity of the proposed algorithm, estimated
values obtained from this algorithm and some robust methods are com-
pared.
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T. E. Dalkılıç et al.

1. Introduction

In a regression analysis, it is assumed that the observations come from a sin-
gle class in a data cluster and the simple functional relationship between the
dependent and independent variables can be expressed using the general model;
Y = f (X) + ε . However; a data set may consist of a combination of observations
that have different distributions that are derived from different clusters. When
faced with issues of estimating a regression model for fuzzy inputs that have been
derived from different distributions, this regression model has been termed the

’switching regression model’ and it is expressed with Y L = fL(X)+εL (L =
p∏
i=1

li).

Here li indicates the class number of each independent variable and p is indicative
of the number of independent variables [18, 19, 21]. In case that, the class numbers
of the data and the number of the independent variables are more than two, si-
multaneously the numbers of sub-models are increased. At this stage, the method
attempts to utilize the neural networks, which are intended to solve complex prob-
lems and systems. When faced with issues in which the data belong to an indefinite
or fuzzy class, the neural network, termed the adaptive network, is used for es-
tablishing the regression model. In this study, adaptive networks have been used
to construct a model that has been formed by gathering obtained models. There
are methods that suggest the class numbers of independent variables heuristically.
Alternatively, in defining the optimal class number of independent variables, the
use of suggested validity criterion for fuzzy clustering has been aimed. There are
many studies on the use of the adaptive network for parameter estimation. In a
study by Chi-Bin, C. and Lee, E. S. a fuzzy adaptive network approach was estab-
lished for fuzzy regression analysis [4] and it was studied on both fuzzy adaptive
networks and the switching regression model [5]. Jang, J. R. studied the adaptive
networks based on a fuzzy inference system [16]. In a study of Takagi, T. and
Sugeno, M., the method for identifying a system using it’s input-output data was
presented [23]. James, P. D. and Donalt, W., were studied fuzzy regression using
neural networks [15]. In a study by Cichocki, A. and Unbehauen, R., the different
neural networks for optimization were explained [2]. There are different studies
about fuzzy clustering and the validity criterion. In the study of Mu-Song, C. and
Wang, S.W. the analysis of fuzzy clustering was done for determining fuzzy mem-
berships and in this study a method was suggested for indicating the optimal class
numbers that belong to the variables [20]. Bezdek, J.C. has conducted important
studies on the fuzzy clustering topic [1]. One such study is by Hathaway R.J. and
Bezdek J.C. were studied on switching regression and fuzzy clustering [7]. In 1991,
Xie, X.L. and Beni, G. suggested a validity criterion for fuzzy clustering [24]. In
this study we used the Xie-Beni validity criterion for determining optimal class
numbers. Over the years, the least squares method(LSM) has commonly been
used for the estimation of regression parameters. If a data set conforms to LSM
assumptions, LSM estimates are known to be the best. However, if outliers exist in
the data set, the LSM can yield bad results. In the conventional approach, outliers
are removed from the data set, after which the classical method can be applied.
However, in some research, these observations are not removed from the data set.
In such cases, robust methods are preferred to the LSM [17]. The remainder of
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the paper is organized as follows. Section 2 explores the fuzzy if-then rules and
the use of these rules will be introduced using adaptive networks for analysis. In
Section 3 an algorithm for parameter estimation based ANFIS is given.In Section
4, we provide definitions of M methods of Huber, Hampel, Andrews and Tukey,
which are commonly used in the literature. In Section 5, a numerical application
examining the work and validity of the suggested algorithm as well as a compar-
ison of the algorithm with these robust methods and LSM is provided.In the last
part, a discussion and conclusion are provided.

2. ANFIS: Adaptive Network based Fuzzy Inference System

The most popular application of fuzzy methodology is known as fuzzy inference
systems. This system forms a useful computing framework based on the concepts of
fuzzy set theory, fuzzy reasoning and fuzzy if-then rules. Fuzzy inference systems
usually perform on input-output relation, as in control applications where the
inputs correspond to system state variables, and the outputs are control signals
[3, 5, 16]. The fuzzy inference system is a powerful function approximater. The
basic structure of a fuzzy inference system consist of five conceptual components;a
rule base which contains a selection of fuzzy rules, a database which defines the
membership functions of the fuzzy sets used in the fuzzy rules, a decision-making
unit which performs inference operations on the rules, a fuzzification interface
which transforms the crisp inputs into degrees of match with linguistic values, and
a defuzzification interface which transform the fuzzy results of the inference into
a crisp output [3, 15, 16]. The adaptive network used to estimate the unknown
parameters of regression model is based on fuzzy if-then rules and fuzzy inference
system. When issues of estimating a regression model to fuzzy inputs from different
distributions arose, the Sugeno Fuzzy Inference System is appropriate and the
proposed fuzzy rule in this case is indicated as

RL = If ;
(
x1 = FL1 and x2 = FL2 and . . . xp = FLp

)
.

Then; Y = Y L = cL0 + cL1 x1 + ...+ cLp xp.

Here, FLi stands for fuzzy cluster and Y L stands for system output according
to the RL rule [16, 23].

The weighted mean of the models obtained according to fuzzy rules is the output
of Sugeno Fuzzy Inference System and a common regression model for data from
different classes is indicated with this weighted mean as follows,

Ŷ =

m∑
L=1

wLY L

m∑
L=1

wL
.

Here; wL weight is indicated as,

wL =

p∏

i=1

µFL
i (xi).
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µFL
i

(xi) is a membership function defined on the fuzzy set FLi , and m is fuzzy

rule number [13, 14].
Neural networks that enable the use of fuzzy inference systems for fuzzy re-

gression analysis is known as adaptive network and called ANFIS. An adaptive
network is a multilayer feed forward network in which each node performs a par-
ticular function on incoming signals as well as a set of parameters pertaining to this
node. The formulas for the node functions may wary from node to node and the
choice of each node function depends on the overall input-output function of the
network. Neural networks are used to obtain a good approach to regression func-
tions and were formed via neural and adaptive network connections consistingof
five layers [4, 12− 14, 15].

Fuzzy rule number of the system depends on numbers of independent variables
and fuzzy class number forming independent variables. When independent variable
number is indicated with p and if the fuzzy class number associated with each
variable is indicated by li (i = 1, ..., p), the fuzzy rule number indicated by

L =

p∏

i=1

li.

To illustrate how a fuzzy inference system can be represented by ANFIS, let
us consider the following example. Suppose a data set has two-dimensional input
X = (x1, x2). For input x1, there are two fuzzy sets ”tall” and ”short” and for
input x2, three fuzzy set ”thin”, ”normal” and ”fat”. In this case a fuzzy inference
system contains the following six rules:

R1 : If(x1 is tall and x2 is thin), then; (Y 1 = c10 + c11x1 + c12x2),

R2 : If(x1 is tall and x2 is normal), then; (Y 2 = c20 + c21x1 + c22x2),

R3 : If(x1 is tall and x2 is fat), then; (Y 3 = c30 + c31x1 + c22x2),

R4 : If(x1 is short and x2 is thin), then; (Y 4 = c40 + c41x1 + c42x2),

R5 : If(x1 is short and x2 is normal), then; (Y 5 = c50 + c51x1 + c52x2),

R6 : If(x1 is short and x2 is fat), then; (Y 6 = c60 + c61x1 + c62x2).

This fuzzy system is represented by the ANFIS as shown in Figure 1. The
functions of each node in Figure 1 defined as follows.

Layer 1: The output of node h in this layer is defined by the membership
function on Fh

f1,h = µFh
(x1) for h = 1, 2

f1,h = µFh
(x2) for h = 3, 4, 5

where fuzzy cluster related to fuzzy rules are indicated with F1, F2, ..., Fh and
µFh

is the membership function relates to Fh. Different membership functions are
can be define for Fh. In this example, the Gaussian membership function will be
used whose parameters can be represented by {vh, σh}.
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]

Figure 1. The ANFIS architecture

µFh
(x1) = exp

[
−
(
x1 − vh
σh

)2
]

for h = 1, 2

µFh
(x2) = exp

[
−
(
x2 − vh
σh

)2
]

for h = 3, 4, 5.

The parameter set {vh, σh} in this layer is referred to as the premise parameters.
Layer 2: Each nerve in the second layer has input signals coming from the first

layer and they are defined as multiplication of these input signals. This multiplied
output forms the firing strength wl for rule l:

f2,1 = w1 = µF1(x1)× µF3(x2),

f2,2 = w2 = µF1
(x1)× µF4

(x2),

f2,3 = w3 = µF1(x1)× µF5(x2),

f2,4 = w4 = µF2
(x1)× µF3

(x2),

f2,5 = w5 = µF2
(x1)× µF4

(x2),

f2,6 = w6 = µF2(x1)× µF5(x2).

Layer 3: The output of this layer is a normalization of the outputs of the
second layer and nerve function is defined as

f3,L = wL =
wL

6∑
L=1

wL
.
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Layer 4: The output signals of the fourth layer are also connected to a function
and this function is indicated with

f4,L = wLY L

where, Y L stands for conclusion part of fuzzy if-then rule and it is indicated with

Y L = cL0 + cL1 x1 + cL2 x2,

where cLi are fuzzy numbers and stands for posteriori parameters.
Layer 5: There is only one node which computes the overall output as the

summation of all the incoming signals

f5,1 = Ŷ =

6∑

L=1

wLY L.

3. An Algorithm for Parameter Estimation Based ANFIS

The estimation of parameters with an adaptive network is based on the principle
of the minimizing of error criterion. There are two significant steps in the process
of estimation. First, we must determine the a priori parameter set characterizing
the class from which the data comes and then update these parameters within the
process. The second step is to determine a posteriori parameters belonging to the
regression models to be formed. The process of determining parameters for the
switching regression model begins with determining class numbers of independent
variables and a priori parameters [6]. The algorithm related to the proposed
method for determining the switching regression model in the case of independent
variables coming from a normal distribution is defined as follows.

Step 1: Optimal class numbers related to the data set associated with the
independent variables are determined. Optimal value of class number li, (li = 2,
li= 3 . . . li= max) can be obtained by minimizing the fuzzy clustering validity
function Si. This function is expressed by

Si =

1
n

li∑
i=1

n∑
j=1

( uij)
m ‖vi − xj‖2

min
i 6=j
‖vi − vj‖2

.

As it can be seen in this statement, cluster centers, which are well-separated
produce a high value of separation such that a smaller Si value is obtained. When
the lowest Si value is observed, class number (li) with the lowest value is defined
as an optimal class number.

Step 2: A priori parameters are determined. Spreading is determined intu-
itively according to the space in which input variables gain value and to the fuzzy
class numbers of the variables. Center parameters are based on the space in which
variables gain value and fuzzy class numbers and it is defined by
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vi = (minXi) +
max (Xi)−min (Xi)

li − 1
(i− 1) , i = 1, 2, ..., p.

Step 3: wL weights are counted which are used to form matrix B to be used
in counting the a posteriori parameter set. L is the fuzzy rule number. The wL

weights are outputs of the nerves in the third layer of the adaptive network, and
they are counted based on a membership function related to the distribution family
to which independent variable belongs. Nerve functions in the first layer of the
adaptive network are defined by

f1,h = µFh
(xi) h = 1, 2, ...,

p∑

i=1

li.

µFh
(xi) is called the membership function. Here, when the normal distribu-

tion function which has the parameter set of {vh, σh} is considered, membership
functions are defined as

µFh
(xi) = exp

[
−
(
xi − vh
σh

)2
]
.

From the defined membership functions, membership degrees related to each class
forming independent variables are determined. The wL weights are indicated as

wL = µFL
(xi).µFL

(xj).

They are obtained via mutual multiplication of membership degrees at an amount
depending on the number of independent variables and the fuzzy class numbers
of these variables. wL weight is a normalization of the weight defined as wL and
they are counted with

wL =
wL

m∑
L=1

wL
.

Step 4: On the condition that the independent variables are fuzzy and the
dependent variables are crisp, a posteriori parameter set cLi = (aLi , b

L
i ) is obtained

as crisp numbers in the shape of, cLi = aLi (i = 1, ..., p). In that condition,

Z =
(
BTB

)−1
BTY equation is used to determine the a posteriori parameter

set. Here B is the data matrix which is weighted by membership degree and its
dimension is [(p+ 1)×m× n], Y dependent variable vector and Z is posterior
parameter vector which is defined by

Z =
[
a1

0, ..., a
m
0 , a

1
1, ..., a

m
1 , ..., a

1
p, ..., a

m
p

]T

Step 5: By using a posteriori parameter set cLi = aLi obtained in Step 4, the
regression model indicated by

Y L = cL0 + cL1 x1 + cL2 x2 + ...+ cLp xp
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are constituted. Setting out from the models and weights specified in Step 1, the
estimation values are obtained using

Ŷ =
m∑

L=1

wLY L.

Step 6: The error related to model is counted as

εk =

n∑

k=1

(yk − ŷk)
2
.

If ε < φ, then the a posteriori parameters have been obtained as parameters of
regression models to be formed, and the process is determinate. If ε < φ, then,
Step 6 begins. Here φ, is a law stable value determinated by the decision maker.
Step 7: Central a priori parameters specified in Step 2 are updated with

v
′
i = vi ± t

in a way that it increases from the lowest value to the highest and it decreases
from the highest value to the lowest. Here, t is the size of the step;

t =
max (xji)−min (xji)

a
j = 1, 2, ..., n; i = 1, 2, ..., p

and a is a stable value, which is determinant by the size of the step, and is therefore
an iteration number.

Step 8: Estimations for each a priori parameter obtained by change and the
error criteria related to these estimations are counted. The lowest of the error
criterion is defined. A priori parameters giving the lowest error specified, and the
estimation obtained via the models related to these parameters is taken as output.

In the proposed algorithm, the estimated values which are obtained from the
fuzzy adaptive network are not to be affected by the outliers that may exist in
the dependent variable. This is because in this algorithm, all of the independent
variables are weighted. Consequently, the proposed method has a robust method’s
properties, and, it is comparable to robust methods that are commonly used in
literature.

4. M methods

The classical LSM is widely used in regression analysis because computing its
estimate is easy and traditional. However, least square estimators are very sensitive
to outliers and to deviations from basic assumptions of normal theory [11, 25]. The
importance of eachobservation should therefore be recognized, and the data should
be tested in detail whenit is analyzed. This is important because sometimes even
a single observation can changethe value of the parameter estimates, and omitting
this observation from the data maylead to totally different estimates. If there
exist outliers in the data set, robust methods are preferred to estimate parameter
values [22]. Now, we discuss the widely used methods of the Huber, Hampel,
Andrews and Tukey M estimators. The M estimator utilizes minimizing of residual
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functions much more thanminimizing the sum of the squared residuals. Regression
coefficients are obtained by theminimizing sum:

(4.1)

n∑

i=1

ρ




yi −

p∑

j=1

xij β̂j


�d


 .

By taking the first partial derivative of the sum in Equation (4.1) with respect

to each β̂j and setting it to zero, it may be found regression coefficient that p
equations:

n∑

i=1

xijΨ




yi −

p∑

j=1

xij β̂j


�d


 = 0 j = 1, 2, ..., p

where Ψ(z) = ρ
′
(z). When the data contains outliers, standard deviations are not

good measures of variability, and other robust measures of variability are therefore
required. One robust measure of variability is d. In the case where ri is the
residual of ith observation, d = median |ri −median (ri)|�0.6745, i = 1, 2, ..., n.
Therefore, the standardized residuals may be defined as z = ri�d. Inaddition

ri = yi −
p∑
j=1

xij β̂j .

Huber’s Ψ function is defined as:

Ψ (z) =




−k z < −k
z |z| ≤ k
k z > k

with k=1.5.
The Hampel Ψ function is defined as:

Ψ(z) =





|z| 0 < |z| ≤ a
asgn(z) a < |z| ≤ b

a
(
c−|z|
c−b

)
sgn(z) b < |z| ≤ c

0 c < |z|

sgn(z) =





+1 z > 0
0 z = 0
−1 z < 0

Reasonably good values of the constants are a = 1.7, b = 3.4 and c = 8.5.
Andrews (sine estimate) Ψ function is defined as

Ψ (z) =

{
sin (z�k) |z| ≤ kπ

0 |z| > kπ

with k =1.5 or k = 2.1.
The Tukey (biweight estimate) Ψ function is defined as:

Ψ (z) =





(
z
(

1− (z�k)
2
)2
)

|z| ≤ k
0 |z| > k

with k = 5.0 or 6.0 [8− 11].
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5. Numerical Example

The values related to the data set having three independent variables and one
dependent variable is shown in Table 1. The values in the data set have been
generated from normal distribution such that X1 ∼ (µ = 20;σ = 3), X2 ∼ (µ =
50;σ = 12), X3 ∼ (µ = 32;σ = 13), and dependent variable Y is depend on
independent variables value. 5th observation of the dependent variable is changed
with (y15 + 50) to work up this observation into outlier. The regression models
and estimations for this model are obtained via the proposed algorithm for this
data set. Moreover, estimations have been obtained using the robust regression
methods are used for comparison. The proposed algorithm was executed with a
program written in MATLAB. From the initial step of the proposed algorithm,
fuzzy class numbers for each variable are defined as two. Number of fuzzy inference
rules to be formed depending on these class numbers is obtained as

L =

p=3∏

i=1

li = l1 × l2 × l3 = 8.

Table 1. Data set having three independent variables and one
dependent variable

No X1 X2 X3 Y No X1 X2 X3 Y

1 21.8101 50.5397 49.8319 125.4057 16 25.2815 50.2143 54.2714 128.9194
2 19.8248 78.9993 35.1925 137.4526 17 20.2663 30.6749 40.9755 60.9541
3 16.6740 46.2813 33.5450 97.0719 18 27.7867 64.8650 33.4679 130.0444
4 26.4327 52.2510 37.0010 116.3851 19 17.9736 58.2030 17.8756 87.9184
5 15.9415 61.3724 31.0880 107.0015 20 28.3604 40.6314 11.7420 78.4568
6 21.3711 43.6916 24.4820 92.0244 21 19.9495 56.3718 40.2863 116.6304
7 21.1735 36.6127 38.1010 100.6000 22 20.8150 75.6140 26.7405 118.1328
8 26.2190 30.8922 48.8959 90.8950 23 17.2577 54.2523 26.7568 103.9698
9 19.0300 64.0981 53.2524 136.5460 24 14.1459 52.7804 33.0930 101.7193
10 24.4044 55.8217 22.8635 104.7410 25 19.0477 65.4558 26.3405 113.7832
11 18.4928 69.7458 42.4943 133.6250 26 21.7650 49.8381 24.6859 93.9008
12 20.6288 44.5492 18.6431 83.1755 27 22.4870 33.9999 43.4148 101.4928
13 22.2644 62.1052 48.8284 134.8870 28 14.9754 43.3239 21.4096 85.7995
14 17.1554 74.5928 32.1941 126.0083 29 14.2331 59.0672 28.6413 105.1197
15 21.8395 57.2242 34.8432 166.4707 30 18.6900 39.0578 38.4129 99.5382

Models obtained via eight fuzzy inference rules are;

ŷ1 = 1308 + 346x1 − 84x2 − 314x3

ŷ2 = 10896− 145x1 + 175x2 − 230x3

ŷ3 = 9022− 211x1 − 126x2 + 263x3

ŷ4 = − 27061− 24x1 + 202x2 + 207x3

ŷ5 = − 20670 + 701x1 − 51x2 + 436x3

ŷ6 = − 6201− 405x1 − 155x2 + 341x3

ŷ7 = 18219− 610x1 + 19x2 − 316x3

ŷ8 = 25742 + 283x1 − 204x2 − 283x3(5.1)

Regression model estimates, which are obtained from robust regression methods
and the LSM, are located in Table 2.
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Table 2. The estimation of regression parameters

Constant β̂1 β̂2 β̂3

LMS −10.4360 1.0404 1.2420 0.9412
Huber 3.0366 0.8125 1.0329 1.0085
Hampel 5.5338 0.7794 0.9778 1.0412
Tukey 5.3224 0.8127 0.9625 1.0563

Andrews 5.2896 0.7775 0.9809 1.0430

The weights related to the observations that are used in estimation methods
for regression models, are located in Table 3. The weights for robust methods
are expression of that observation’s effect on one model for each of the outlier
observations of the robust method. On the other hand, weight obtained from
the network is an expression of that observation’s effect on more than one model,
which are expressed in Equation (5.1). For this reason, eight different weights,
which are called membership degrees of observation, are located in Table 3.

Table 3. The weight related to observation for all methods

N
o
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d
r
e
w
s

The membership degrees of the observation to belong to the models
in Equation (5.1)

w1 w2 w3 w4 w5 w6 w7 w8
1 1 1 1 0.9892 0.4710 0.2558 0.8399 0.1927 0.6327 0.2563 0.8714 0.1931 0.6341
2 1 1 1 0.9274 0.4632 0.1331 0.1553 0.6541 0.7634 0.1323 0.1544 0.6504 0.7590
3 1 1 1 0.9704 0.4713 0.4513 0.4688 0.2568 0.2667 0.4431 0.4603 0.2521 0.2619
4 1 1 1 0.9996 0.4752 0.2955 0.3919 0.2492 0.3305 0.3017 0.4001 0.2544 0.3374
5 1 1 1 0.9068 0.4545 0.2619 0.2287 0.4029 0.3518 0.2564 0.2239 0.3944 0.3444
6 1 1 1 0.9812 0.4702 0.9279 0.5080 0.4451 0.2437 0.9283 0.5082 0.4453 0.2438
7 1 0.9901 1 0.9383 0.4559 0.6285 0.9008 0.1891 0.2710 0.6283 0.9005 0.1890 0.2709
8 1 0.2780 0.1984 0 0.1023 0.1777 0.5464 0.0367 0.1128 0.1813 0.5573 0.0374 0.1150
9 1 1 1 0.9555 0.4685 0.1053 0.4404 0.1939 0.8109 0.1044 0.4365 0.1922 0.8037
10 1 1 1 0.9729 0.4692 0.5702 0.2784 0.6084 0.2971 0.5774 0.2820 0.6161 0.3009
11 1 1 1 0.9853 0.4732 0.1575 0.3079 0.4207 0.8225 0.1557 0.3045 0.4160 0.8134
12 1 1 1 0.9794 0.4728 0.9492 0.3440 0.4818 0.1746 0.9468 0.3431 0.4806 0.1742
13 1 1 1 0.9999 0.4758 0.1794 0.5488 0.2896 0.8859 0.1801 0.5510 0.2908 0.8895
14 1 1 1 0.9917 0.4754 0.1503 0.1419 0.5525 0.5216 0.1478 0.1396 0.5435 0.5132
15 1 0.0793 0 0 0 0.4992 0.5684 0.5843 0.6652 0.5004 0.5697 0.5856 0.6668
16 1 1 1 0.9371 0.4691 0.1247 0.5603 0.0919 0.4131 0.1267 0.5694 0.0934 0.4198
17 1 0.1292 0 0 0 0.5070 0.8905 0.1032 0.1812 0.5050 0.8869 0.1027 0.1804
18 1 1 1 0.8298 0.4345 0.1445 0.1493 0.2798 0.2891 0.1483 0.1532 0.2872 0.2967
19 1 0.5182 0.7229 0.6013 0.3816 0.5293 0.1817 0.6608 0.2268 0.5224 0.1793 0.6521 0.2238
20 1 1 1 0.9810 0.4742 0.3005 0.0669 0.1178 0.0262 0.3091 0.0688 0.1212 0.0270
21 1 1 1 0.9724 0.4718 0.3892 0.6510 0.4306 0.7203 0.3872 0.6476 0.4284 0.7165
22 1 0.5921 0.9567 0.7679 0.4197 0.2313 0.1485 0.9096 0.5841 0.2309 0.1483 0.9080 0.5831
23 1 1 1 0.8455 0.4425 0.5032 0.3235 0.4841 0.3113 0.4952 0.3184 0.4764 0.3063
24 1 1 1 0.9931 0.4747 0.2068 0.2081 0.1806 0.1817 0.2010 0.2022 0.1755 0.1766
25 1 1 1 0.9569 0.4682 0.4008 0.2502 0.8070 0.5038 0.3973 0.2480 0.7999 0.4994
26 1 1 1 0.9086 0.4589 0.8261 0.4589 0.5943 0.3301 0.8278 0.4598 0.5955 0.3307
27 1 1 1 0.9955 0.4762 0.4479 0.9437 0.1135 0.2367 0.4501 0.9393 0.1140 0.2379
28 1 0.9584 1 0.8559 0.4441 0.4073 0.1794 0.1907 0.0840 0.3971 0.1750 0.1860 0.0819
29 1 1 1 0.9882 0.4744 0.1948 0.1431 0.2575 0.1891 0.1894 0.1392 0.2504 0.1839
30 1 1 1 0.9931 0.4726 0.5378 0.7880 0.1901 0.2785 0.5323 0.7799 0.1882 0.2757

The residuals, which belong to estimates fromregression models in Equation
(5.1) and belong to estimates for models from robust regression methods, are
located in Table 4. The proposed algorithm was executed with a program written
in MATLAB. In the stage of step operating, data sets have one dependent variables
and this variable has an outlier observation.
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Table 4. The residuals belong to observations for all methods

No LMS Huber Hampel Tukey Andrews ANFIS
Residual Residual Residual Residual Residual Residual

1 3.4767 2.1904 1.5721 1.0752 1.6086 -17.6759
2 -3.9789 1.2178 2.5822 2.8061 2.5519 -7.8254
3 1.1051 -1.1466 -1.6369 -1.7818 -1.5673 -1.5879
4 -0.4020 0.5861 0.6348 0.2043 0.6978 -11.5606
5 -4.6338 -3.7318 -3.3337 -3.1872 -3.3084 -2.26604
6 2.9175 1.8044 1.6230 1.4196 1.7260 1.1031
7 7.6721 4.1178 3.0940 2.5835 3.1943 -7.6847
8 -10.3378 -14.6644 -16.1899 -17.1185 -16.0816 -28.9371
9 -2.5497 -1.8646 -1.9390 -2.1887 -1.9565 2.7615
10 -1.0641 1.1593 1.8002 1.7052 1.8737 -6.1937
11 -1.8004 0.6667 1.2379 1.2547 1.2210 -1.0513
12 -0.7286 -1.4388 -1.4064 -1.4838 -1.2970 1.2672
13 -0.9346 0.3685 0.4359 0.1152 0.4387 -13.3710
14 -4.3509 -0.4822 0.6489 0.9398 0.6329 -4.3802
15 50.3167 51.4430 51.6845 51.5151 51.7272 -10.2161
16 -0.3957 -1.2575 -1.9241 -2.6085 -1.8880 -29.6824
17 -26.3607 -31.5567 -33.0319 -33.6463 -32.9199 -9.3339
18 -0.4926 3.6793 4.5840 4.3540 4.6162 -11.3668
19 -9.4589 -7.8677 -7.1450 -6.9146 -7.0821 -5.1477
20 -2.1298 -1.4330 -1.1352 -1.4250 -0.9864 10.9992
21 -1.6218 -1.4706 -1.5166 -1.7185 -1.4846 -7.6727
22 -12.1691 -6.8861 -5.3992 -5.1320 -5.4017 -11.5501
23 3.8849 3.8895 4.0801 4.1399 4.1380 -3.2610
24 0.7363 -0.7023 -0.9030 -0.8580 -0.8578 0.0676
25 -1.6870 1.0962 1.9775 2.1547 2.0043 -7.9256
26 -3.4418 -3.1937 -3.0297 -3.1557 -2.9457 -2.9142
27 5.4420 1.2833 -0.0150 -0.6893 0.0864 -16.3709
28 6.6952 4.2542 3.9416 3.9915 4.0392 0.8268
29 0.4278 0.6231 0.9175 1.1227 0.9512 -1.3372
30 5.8638 2.2337 1.2525 0.8570 1.3398 -5.0809

Sum of Square
Residual 3867.3 4087.8 4228.2 4278.2 4222.3 3580.9

Mean 128.9112 136.2609 140.9394 142.6050 140.7425 119.3650

The defined methods M (Huber, Hampel, Tukey, Andrews) were executed with
programs written in MATLAB.The residuals of from the robust methods and LSM
are large, but the residuals from the proposed algorithm based network are small.
This is because, this method depend on fuzzy clustering.

As it can be seen in a numerical example, error related to estimations obtained
via the network according to error criterion is lower than errors obtained via all
the other methods.

6. Conclusion

In the study, we have proposed a method for obtaining optimal estimation values
and compared various methods. Estimation values, which are obtained from the
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Figure 2. Graphs for errors related to data set in Table 1

proposed algorithm, have the lowest error values. Recently, in our field as well
as others, adaptive networks that fall under the heading of neural networks and
yield efficient estimations related to data are being used more frequently. In the
proposed algorithms, the fuzzy class number of the independent variable is defined
intuitively at first, and within the on going process, these class numbers are taken
as the basis. In this study, it has been thought to use validity criterion based on
fuzzy clustering at the stage of defining level numbers of independent variables.
Moreover, as it can be observed in the algorithm in Section 3, an algorithm different
from other proposed algorithms has been used for updating central parameters.
The difference between the obtained estimation values and the observed values,
that is, the network that decreases the errors to the minimum level, is formed
based on the adaptive network architecture that includes a fuzzy inference system
based on the fuzzy rules. The process followed in the proposed method can be
accepted as an ascendant from other methods since it does not allow intuitional
estimations and it brings us to the smallest error. At the same time, this method
is robust, since it is not affected by the contradictory observations that can occur
at dependent variables. Finally, the estimation values obtained from the networks
that are formed through the proposed algorithm are compared with the estimation
values obtained from the robust regression methods. According to the indicated
error criterion, the errors related to the estimations that are obtained from the
network are lower than the errors that are obtained from the robust regression
methods and LSM.The figures of errors obtained from the six methods are given in
Figure 2. Figure 2(a) shows the errors related to the estimations that are obtained
from the LSM, (b,c,d,e) are show the errors related to the estimations that are
obtained from M Methods, and (f) shows the errors related to the estimations that
are obtained from the proposed algorithm based ANFIS.
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Complete qth moment convergence of weighted
sums for arrays of row-wise extended negatively

dependent random variables

M. L. Guo ∗

Abstract

In this paper, the complete qth moment convergence of weighted sums
for arrays of row-wise extended negatively dependent (abbreviated to
END in the following) random variables is investigated. By using
Hoffmann-Jφrgensen type inequality and truncation method, some gen-
eral results concerning complete qth moment convergence of weighted
sums for arrays of row-wise END random variables are obtained. As
their applications, we extend the corresponding result of Wu (2012) to
the case of arrays of row-wise END random variables. The complete qth
moment convergence of moving average processes based on a sequence
of END random variables is obtained, which improves the result of Li
and Zhang (2004). Moreover, the Baum-Katz type result for arrays of
row-wise END random variables is also obtained.

Keywords: END random variables; Weighted sums; Complete moment conver-
gence; Complete convergence.

2000 AMS Classification: 60F15

1. Introduction and Lemmas

The concept of complete convergence was given by Hsu and Robbins[1] in the
following way. A sequence of random variables {Xn, n ≥ 1} is said to converge
completely to a constant θ if for any ε > 0,

∞∑

n=1

P (|Xn − θ| > ε) <∞.

In view of the Borel-Cantelli lemma, the above result implies that Xn → θ almost
surely. Hence the complete convergence is very important tool in establishing
almost sure convergence. When {Xn, n ≥ 1} is a sequence of independent and
identically distributed random variables, Baum and Katz[2] proved the following

∗School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003,
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remarkable result concerning the convergence rate of the tail probabilities P (|Sn| >
εn1/p) for any ε > 0, where Sn =

∑n
i=1Xi.

1.1. Theorem. {X,Xn, n ≥ 1} be a sequence of independent and identically
distributed random variables, r > 1/2 and p > 1. Then

∞∑

n=1

np−2P (|Sn| > εnr) <∞ for all ε > 0,

if and only if E|X|p/r <∞, where EX = 0 whenever 1/2 < r ≤ 1.

Many useful linear statistics based on a random sample are weighted sums of
independent and identically distributed random variables, see, for example, least-
squares estimators, nonparametric regression function estimators and jackknife
estimates, among others. However, in many stochastic model, the assumption
that random variables are independent is not plausible. Increases in some random
variables are often related to decreases in other random variables, so an assumption
of dependence is more appropriate than an assumption of independence. The
concept of END random variables was firstly introduced by Liu[3] as follows.

1.2. Definition. Random variables {Xi, i ≥ 1} are said to be END if there exists
a constant M > 0 such that both

(1.1) P

(
n⋂

i=1

(Xi ≤ xi)
)
≤M

n∏

i=1

P (Xi ≤ xi)

and

(1.2) P

(
n⋂

i=1

(Xi > xi)

)
≤M

n∏

i=1

P (Xi > xi)

hold for each n ≥ 1 and all real numbers x1, x2, · · · , xn.

In the case M = 1 the notion of END random variables reduces to the well-
known notion of so-called negatively dependent (ND) random variables which was
introduced by Lehmann[4]. Recall that random variables {Xi, i ≥ 1} are said
to be positively dependent (PD) if the inequalities (1.1) and (1.2) hold both in
the reverse direction when M = 1. Not looking that the notion of END random
variables seems to be a straightforward generalization of the notion of ND, the
END structure is substantially more comprehensive. As it is mentioned in Liu[3],
the END structure can reflect not only a negative dependent structure but also
a positive one, to some extend. Joag-Dev and Proschan[5] also pointed out that
negatively associated (NA) random variables must be ND, therefore NA random
variables are also END. Some applications for sequences of END random vari-
ables have been found. We refer to Shen[6] for the probability inequalities, Liu[3]
for the precise large deviations, Chen[7] for the strong law of large numbers and
applications to risk theory and renewal theory.

Recently, Baek et al.[8] discussed the complete convergence of weighted sums
for arrays of row-wise NA random variables and obtained the following result:

1.3. Theorem. Let {Xni, i ≥ 1, n ≥ 1} be an array of row-wise NA random
variables with EXni = 0 and for some random variable X and constant C > 0,
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P (|Xni| > x) ≤ CP (|X| > x) for all i ≥ 1, n ≥ 1 and x ≥ 0. Suppose that β ≥ −1,
and that {ani, i ≥ 1, n ≥ 1} is an array of constants such that

(1.3) sup
i≥1
|ani| = O(n−r) for some r > 0

and

(1.4)

∞∑

i=1

|ani| = O(nα) for some α ∈ [0, r).

(i) If α + β + 1 > 0 and there exists some δ > 0 such that
α

r
+ 1 < δ ≤ 2, and

s = max(1 +
α+ β + 1

r
, δ), then, under E|X|s <∞, we have

(1.5)
∞∑

n=1

nβP

(∣∣∣∣∣
∞∑

i=1

aniXni

∣∣∣∣∣ > ε

)
<∞ for all ε > 0.

(ii) If α+ β + 1 = 0, then, under E|X| log(1 + |X|) <∞, (1.5) remains true.

If β < −1, then (1.5) is immediate. Hence Theorem 1.3 is of interest only for
β ≥ −1. Baek and Park [9] extended Theorem 1.3 to the case of arrays of row-wise
pairwise negatively quadrant dependent (NQD) random variables. However, there
is a question in the proofs of Theorem 1.3(i) in Baek and Park [9]. The Rosenthal
type inequality plays a key role in this proof, but it is still an open problem to
obtain Rosenthal type inequality for pairwise NQD random variables.

When β > −1, Wu [10] dealt with more general weight and proved the fol-
lowing complete convergence for weighted sums of arrays of row-wise ND random
variables. But, the proof of Wu[10] does not work for the case of β = −1.

1.4. Theorem. Let {Xni, i ≥ 1, n ≥ 1} be an array of row-wise ND random
variables and for some random variable X and constant C > 0, P (|Xni| > x) ≤
CP (|X| > x) for all i ≥ 1, n ≥ 1 and x ≥ 0. Let β > −1 and {ani, i ≥ 1, n ≥ 1}
be an array of constants satisfying (1.3) and
(1.6)
∞∑

i=1

|ani|θ = O(nα) for some 0 < θ < 2 and some α such that θ + α/r < 2.

Denote s = θ+ (α+ β + 1)/r. When s ≥ 1, further assume that EXni = 0 for any
i ≥ 1, n ≥ 1.

(i) If α+ β + 1 > 0 and E|X|s <∞, then (1.5) holds.
(ii) If α+ β + 1 = 0 and E|X|θ log(1 + |X|) <∞, then (1.5) holds.

The concept of complete moment convergence was introduced firstly by Chow
[11]. As we know, the complete moment convergence implies complete conver-
gence. Morover, the complete moment convergence can more exactly describe the
convergence rate of a sequence of random variables than the complete convergence.
So, a study on complete moment convergence is of interest. Liang et al. [12] ob-
tained the complete qth moment convergence theorems of sequences of identically
distributed NA random variables. Sung [13] proposed sets of sufficient conditions
for complete qth moment convergence of arrays of random variables satisfying
Marcinkiewicz-Zygmund and Rosenthal type inequalities. Guo [14] provided some
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sufficient conditions for complete moment convergence of row-wise NA arrays of
random variables. Li and Zhang [15] established the complete moment conver-
gence of moving average processes based on a sequence of identically distributed
NA random variables as follows.

1.5. Theorem. Suppose that Yn =
∑∞
i=−∞ ai+nXi, n ≥ 1, where {ai,−∞ < i <

∞} is a sequence of real numbers with
∑∞
−∞ |ai| < ∞ and {Xi,−∞ < i < ∞}

is a sequence of identically distributed and negatively associated random variables
with EX1 = 0, EX2

1 < ∞. Let 1/2 < r ≤ 1, p ≥ 1 + 1/(2r). Then E|X1|p < ∞
implies that

∞∑

n=1

nrp−2−rl(n)E

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣− εn
r

)+

<∞ for all ε > 0.

The aim of this paper is to give a sufficient condition concerning complete
qth moment convergence for arrays of row-wise END random variables. As an
application, we not only generalize and extend the corresponding results of Baek
et al. [8] and Wu [10] under some weaker conditions, but also greatly simplify
their proof. Moreover, the complete qth moment convergence of moving average
processes based on a sequence of END random variables is also obtained, which
improves the result of Li and Zhang [15]. The Baum-Katz type result for arrays
of row-wise END random variables is also established.

Before we start our main results, we firstly state some definitions and lemmas
which will be useful in the proofs of our main results. Throughout this paper, the
symbol C stands for a generic positive constant which may differ from one place
to another. The symbol I(A) denotes the indicator function of A. Let an � bn
denote that there exists a constant C > 0 such that an ≤ Cbn for all n ≥ 1. Denote
(x)q+ = (max(x, 0))q, x+ = max(x, 0), x− = max(−x, 0), log x= ln max(e, x).

1.6. Definition. A sequence {Xn, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive constant
C, such that P (|Xn| > x) ≤ CP (|X| > x) for all x ≥ 0 and n ≥ 1.

The following lemma establish the fundamental inequalities for stochastic dom-
ination, the proof is due to Wu [16].

1.7. Lemma. Let the sequence {Xn, n ≥ 1} of random variables be stochastically
dominated by a random variable X. Then for any n ≥ 1, p > 0, x > 0, the following
two statements hold:

E|Xn|pI(|Xn| ≤ x) ≤ C (E|X|pI(|X| ≤ x) + xpP (|X| > x)) ,

E|Xn|pI(|Xn| > x) ≤ CE|X|pI(|X| > x).

The following lemma is the Hoffmann-Jφrgensen type inequality for sequences
of END random variables and is obtained by Shen [6].

1.8. Lemma. Let {Xi, i ≥ 1} be a sequence of END random variables with EXi =
0 and EX2

i < ∞ for every i ≥ 1 and set Bn =
∑n
i=1EX

2
i for any n ≥ 1. Then

for all y > 0, t > 0, n ≥ 1,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ y
)
≤ P

(
max

1≤k≤n
|Xk| > t

)
+ 2M · exp

{
y

t
− y

t
log

(
1 +

yt

Bn

)}
.
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1.9. Definition. A real-valued function l(x), positive and measurable on [A,∞)

for some A > 0, is said to be slowly varying if lim
x→∞

l(xλ)

l(x)
= 1 for each λ > 0.

1.10. Lemma. Let X be a random variable and l(x) > 0 be a slowly varying
function. Then

(i)
∞∑

n=1

n−1E|X|αI(|X| > nγ) ≤ CE|X|α log(1 + |X|) for any α ≥ 0, γ > 0,

(ii)
∞∑

n=1

nβl(n)E|X|αI(|X| > nγ) ≤ CE|X|α+(β+1)/γ l(|X|1/γ) for any β >

−1, α ≥ 0, γ > 0,

(iii)
∞∑

n=1

nβl(n)E|X|αI(|X| ≤ nγ) ≤ CE|X|α+(β+1)/γ l(|X|1/γ) for any β <

−1, α ≥ 0, γ > 0.

Proof. We only prove (ii). Noting that β > −1, we have by Lemma 1.5 in Guo[14]
that

∞∑

n=1

nβl(n)E|X|αI(|X| > nγ) =
∞∑

n=1

nβl(n)
∞∑

k=n

E|X|αI(kγ < |X| ≤ (k + 1)γ)

=

∞∑

k=1

E|X|αI(kγ < |X| ≤ (k + 1)γ)

k∑

n=1

nβl(n)

≤C
∞∑

k=1

kβ+1l(k)E|X|αI(kγ < |X| ≤ (k + 1)γ) ≤ CE|X|α+(β+1)/γ l(|X|1/γ).

�

2. Main Results and the Proofs

In this section, let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of row-wise END random
variables with the same M in each row. Let {kn, n ≥ 1} be a sequence of positive
integers and {an, n ≥ 1} be a sequence of positive constants. If kn = ∞ we will
assume that the series

∑∞
i=1Xni converges a.s. For any x ≥ 1, q > 0, set

X ′ni(x) = x1/qI(Xni > x1/q) +XniI(|Xni| ≤ x1/q)− x1/qI(Xni < −x1/q),

1 ≤ i ≤ kn, n ≥ 1. For any x ≥ 1, q > 0, it is clear that {X ′ni(x), 1 ≤ i ≤ kn, n ≥ 1}
is an array of row-wise END random variables, since it is a sequence of monotone
transformations of {Xni, 1 ≤ i ≤ kn, n ≥ 1}.
2.1. Theorem. Suppose that q > 0 and the following three conditions hold:

(i)
∞∑

n=1

an

kn∑

i=1

E|Xni|qI(|Xni| > ε) <∞ for all ε > 0,

(ii) there exist 0 < r ≤ 2 and s > q/r such that

∞∑

n=1

an

(
kn∑

i=1

E|Xni|r
)s

<∞,
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(iii) sup
x≥1

x−1/q
kn∑

i=1

|EX ′ni(x)| → 0, as n→∞. Then for all ε > 0,

(2.1)
∞∑

n=1

anE

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣− ε
)q

+

<∞.

Proof. By Fubini’s theorem, we get that

∞∑

n=1

anE

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣− ε
)q

+

=
∞∑

n=1

an

∫ ∞

0

P

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε+ x1/q

)
dx

≤
∞∑

n=1

anP

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε

)
+

∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > x1/q

)
dx =: I1 + I2.

We prove only I2 <∞, the proof of I1 <∞ is analogous. Using a simple integral
and Fubini’s theorem, we obtain that for any q > 0 and a random variable X,

(2.2)

∫ ∞

1

P (|X| > x1/q)dx ≤ E|X|qI(|X| > 1).

Then by (2.2) and the subadditivity of probability measure we obtain the estimate

I2 ≤
∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

X ′ni(x)

∣∣∣∣∣ > x1/q

)
dx+

∞∑

n=1

an

∫ ∞

1

kn∑

i=1

P
(
|Xni| > x1/q

)
dx

≤
∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

X ′ni(x)

∣∣∣∣∣ > x1/q

)
dx+

∞∑

n=1

an

kn∑

i=1

E|Xni|qI(|Xni| > 1)

=: I3 + I4.

By assumption (i), we have I4 <∞. By assumption (iii), we deduce that

(2.3) I3 �
∞∑

n=1

an

∫ ∞

1

P

(∣∣∣∣∣
kn∑

i=1

(X ′ni(x)− EX ′ni(x))

∣∣∣∣∣ > x1/q/2

)
dx.

Set Bn =
∑kn
i=1E(X ′ni(x) − EX ′ni(x))2, y = x1/q/2, t = x1/q/(2s), we have by

assumption (iii) and Lemma 1.8 that

(2.4)

P

(∣∣∣∣∣
kn∑

i=1

(X ′ni(x)− EX ′ni(x))

∣∣∣∣∣ > x1/q/2

)

≤P
(

max
1≤i≤kn

|X ′ni(x)− EX ′ni(x)| > x1/q/(2s)

)
+ 2Mes ·

(
1 +

x2/q

4sBn

)−s

≤P
(

max
1≤i≤kn

|X ′ni(x)| > x1/q/(4s)

)
+ 2Mes(4s)sx−2s/qBsn

≤
kn∑

i=1

P
(
|X ′ni(x)| > x1/q/(4s)

)
+ 2Mes(4s)sx−2s/q

(
kn∑

i=1

E(X ′ni(x))2

)s

�
kn∑

i=1

P
(
|X ′ni(x)| > x1/q/(4s)

)
+ x−2s/q

(
kn∑

i=1

E(X ′ni(x))2

)s
.
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By (2.3) and (2.4), we obtain that

I3 �
∞∑

n=1

an

∫ ∞

1

kn∑

i=1

P
(
|X ′ni(x)| > x1/q/(4s)

)
dx(2.1)

+
∞∑

n=1

an

∫ ∞

1

x−2s/q

(
kn∑

i=1

E(X ′ni(x))2

)s
dx

= I4 + I5.

Since |X ′ni(x)| ≤ |Xni|, we have P
(
|X ′ni(x)| > x1/q/(4s)

)
≤ P

(
|Xni| > x1/q/(4s)

)
.

By (2.2) and assumption (i), we conclude that

I4 ≤
∞∑

n=1

an

∫ ∞

1

kn∑

i=1

P
(
|Xni| > x1/q/(4s)

)
dx

≤
∞∑

n=1

an

kn∑

i=1

(4s)qE|Xni|qI(|Xni| > 1/(4s)) <∞.

Hence, to complete the proof, it suffices to show that I5 <∞. From the definition
of X ′ni(x), since 0 < r ≤ 2, we have by Cr-inequality that
(2.5)

E(X ′ni(x))2 � EX2
niI(|Xni| ≤ x1/q) + x2/qP (|Xni| > x1/q) ≤ 2x(2−r)/qE|Xni|r.

Noting that s > q/r, it is clear that

∫ ∞

1

x−sr/qdx < ∞. Then we have by (2.5)

and assumption (ii) that

I5 �
∞∑

n=1

an

∫ ∞

1

x−2s/q

(
kn∑

i=1

x(2−r)/qE|Xni|r
)s

dx

≤
∞∑

n=1

an

(
kn∑

i=1

E|Xni|r
)s ∫ ∞

1

x−sr/qdx�
∞∑

n=1

an

(
kn∑

i=1

E|Xni|r
)s

<∞.

Therefore, (2.1) holds. �

2.2. Remark. Note that

∞∑

n=1

anE

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣− ε
)q

+

=

∫ ∞

0

∞∑

n=1

anP

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε+ x1/q

)
dx.

Thus, we obtain that the complete qth moment convergence implies the complete
convergence, i.e., (2.1) implies

∞∑

n=1

anP

(∣∣∣∣∣
kn∑

i=1

Xni

∣∣∣∣∣ > ε

)
<∞ for all ε > 0.

2.3. Theorem. Suppose that β > −1, p > 0, q > 0. Let {Xni, i ≥ 1, n ≥ 1} be
an array of row-wise END random variables which are stochastically dominated by

329



a random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying
(1.3) and

(2.6)
∞∑

i=1

|ani|t � n−1−β+r(p−t) for some 0 < t < p.

Furthermore, assume that

(2.7)

∞∑

i=1

a2
ni � n−µ for some µ > 0

if p ≥ 2. Assume further that EXni = 0 for all i ≥ 1 and n ≥ 1 when p ≥ 1. Then

(2.8)





E|X|q <∞, if q > p,

E|X|p log(1 + |X|) <∞, if q = p,

E|X|p <∞, if q < p,

implies

(2.9)

∞∑

n=1

nβE

(∣∣∣∣∣
∞∑

i=1

aniXni

∣∣∣∣∣− ε
)q

+

<∞ for all ε > 0.

Proof. We will apply Theorem 2.1 with an = nβ , kn =∞ and {Xni, i ≥ 1, n ≥ 1}
replaced by {aniXni, i ≥ 1, n ≥ 1}. Without loss of generality, we can assume
that ani > 0 for all i ≥ 1, n ≥ 1(otherwise, we use a+

ni and a−ni instead of ani,
respectively, and note that ani = a+

ni − a−ni). From (1.3) and (2.6), we can assume
that

(2.10) sup
i≥1
|ani| ≤ n−r,

∞∑

i=1

|ani|t ≤ n−1−β+r(p−t).

Hence for any q ≥ t, we obtain by (2.10) that

(2.11)

∞∑

i=1

|ani|q =

∞∑

i=1

|ani|t|ani|q−t ≤ n−r(q−t)
∞∑

i=1

|ani|t ≤ n−1−β+r(p−q).
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For all ε > 0 , we have by (1.3), (2.8), (2.11), Lemma 1.7 and Lemma 1.10 that

(2.12)

∞∑

n=1

nβ
∞∑

i=1

E|aniXni|qI(|aniXni| > ε)

�
∞∑

n=1

nβ
∞∑

i=1

|ani|qE|X|qI(|X| > εnr)

≤
∞∑

n=1

n−1+r(p−q)E|X|qI(|X| > εnr)

≤





∞∑

n=1

n−1+r(p−q)E|X|q, if q > p,

∞∑

n=1

n−1E|X|pI(|X| > εnr), if q = p,

�





∞∑

n=1

n−1+r(p−q), if q > p,

E|X|p log(1 + |X|), if q = p,

<∞.

When q < p, taking q′ such that max (q, t) < q′ < p, we have by (1.3), (2.8),
(2.11), Lemma 1.7 and Lemma 1.10 that

(2.13)

∞∑

n=1

nβ
∞∑

i=1

E|aniXni|qI(|aniXni| > ε)

≤εq−q′
∞∑

n=1

nβ
∞∑

i=1

E|aniXni|q
′
I(|aniXni| > ε)

�
∞∑

n=1

nβ
∞∑

i=1

|ani|q
′
E|X|q′I(|X| > εnr)

≤
∞∑

n=1

n−1+r(p−q′)E|X|q′I(|X| > εnr)

�E|X|p <∞.

It is obvious that (2.8) implies E|X|p <∞. When p ≥ 2, It is clear that EX2 <∞.
Noting that µ > 0, we can choose sufficiently large s such that β − µs < −1 and
s > q/2. Then, by Lemma 1.7, (2.7) and EX2 <∞ we get that

(2.14)

∞∑

n=1

nβ

( ∞∑

i=1

Ea2
niX

2
ni

)s
�

∞∑

n=1

nβ

( ∞∑

i=1

a2
ni

)s
�

∞∑

n=1

nβ−µs <∞.
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When p < 2, since β > −1, we can choose sufficiently large s such that β+s(−1−
β) < −1 and s > q/p, we have by (2.11), E|X|p <∞ and Lemma 1.7 that
(2.15)

∞∑

n=1

nβ

( ∞∑

i=1

E|aniXni|p
)s
�

∞∑

n=1

nβ

( ∞∑

i=1

|ani|p
)s
≤
∞∑

n=1

nβ+s(−1−β) <∞.

When p < 1, combining (2.11), E|X|p < ∞ , β > −1, Cr-inequality and Lemma
1.7, we obtain that

(2.16)

sup
x≥1

x−1/q
∞∑

i=1

|EX ′ni(x)| ≤

∞∑

i=1

P (|aniXni| > 1) + sup
x≥1

x−1/q
∞∑

i=1

E |aniXni| I(|aniXni| ≤ x1/q)

≤
∞∑

i=1

P (|aniXni| > 1) + sup
x≥1

x−p/q
∞∑

i=1

E |aniXi|p I(|aniXni| ≤ x1/q)

≤2

∞∑

i=1

E|aniXni|p �
∞∑

i=1

|ani|p

≤n−1−β → 0, as n→∞.
When p ≥ 1, since EXni = 0, we get that

EaniXniI(|aniXni| ≤ x1/q) = −EaniXniI(|aniXni| > x1/q).

Thus, we have by E|X|p <∞, β > −1, Cr-inequality and Lemma 1.7 that
(2.17)

sup
x≥1

x−1/q
∞∑

i=1

|EX ′ni(x)|

≤
∞∑

i=1

P (|aniXni| > 1) + sup
x≥1

x−1/q
∞∑

i=1

∣∣∣EaniXniI(|aniXni| > x1/q)
∣∣∣

≤2
∞∑

i=1

E|aniXni|I(|aniXni| > 1)�
∞∑

i=1

|ani|pE|X|pI(|X| > nr)�
∞∑

i=1

|ani|p

≤n−1−β → 0, as n→∞.
Thus, by (2.12)–(2.17), we see that assumptions (i), (ii) and (iii) in Theorem 2.1
are fulfilled. Therefore (2.9) holds by Theorem 2.1. �

2.4. Remark. When 1+α+β > 0, the conditions (1.3), (2.6) and (2.7) are weaker
than the conditions (1.3) and (1.6). In fact, taking t = θ, p = θ + (1 + α + β)/r,
we immediately get (2.6) by (1.6). Noting that θ < 2, we obtain by (1.3) and (1.6)
that

∞∑

i=1

a2
ni ≤ sup

i≥1
|ani|2−θ

∞∑

i=1

|ani|θ � n−(r(2−θ)−α).

Since θ < 2 − α/r, we have µ =: r(2 − θ) − α > 0. Therefore (2.7) holds. So,
Theorem 2.3 not only extends the result of Wu [10] for ND random variables to
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END case, but also obtains the weaker sufficient condition of complete qth moment
convergence of weighted sums for arrays of row-wise END random variables. It
is worthy to point out that the method used in this article is novel, which differs
from that of Wu [10]. Our method greatly simplify the proof of Wu [10].

Note that conditions (1.3) and (2.6) together imply

(2.18)

∞∑

i=1

|ani|p � n−1−β .

From the proof of Theorem 2.3, we can easily see that if q > 0 of Theorem 2.3 is
replaced by q ≥ p, then condition (2.6) can be replaced by the weaker condition
(2.18).

2.5. Theorem. Suppose that β > −1, p > 0. Let {Xni, i ≥ 1, n ≥ 1} be an
array of row-wise END random variables which are stochastically dominated by a
random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying
(1.3) and (2.18). Furthermore, assume that (2.7) holds if p ≥ 2. Assume further
that EXni = 0 for all i ≥ 1 and n ≥ 1 when p ≥ 1. Then

(2.19)

{
E|X|q <∞, if q > p,

E|X|p log(1 + |X|) <∞, if q = p,

implies that (2.9) holds.

2.6. Remark. As in Remark 2.4 , when 1 +α+β = 0, the conditions (1.3), (2.7)
and (2.18) are weaker than the conditions (1.3) and (1.6).

Take q < p in Theorem 2.3 and q = p in Theorem 2.5, by Remark 2.2 we can
immediately obtain the following corollary:

2.7. Corollary. Suppose that β > −1, p > 0. Let {Xni, i ≥ 1, n ≥ 1} be an
array of row-wise END random variables which are stochastically dominated by a
random variable X. Assume further that EXni = 0 for all i ≥ 1 and n ≥ 1 when
p ≥ 1. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying (1.3), (2.7) and

(2.20)
∞∑

i=1

|ani|t � n−1−β+r(p−t) for some 0 < t ≤ p.

(i) If t < p, then E|X|p <∞ implies (1.5).
(ii) If t = p, then E|X|p log(1 + |X|) <∞ implies (1.5).

The following corollary establish complete qth moment convergence for moving
average processes under a sequence of END non-identically distributed random
variables, which extends the corresponding results of Li and Zhang [15] to the case
of sequences of END non-identically distributed random variables. Moreover, our
result covers the case of r > 1, which was not considered by Li and Zhang [15].

2.8. Corollary. Suppose that Yn =
∑∞
i=−∞ ai+nXi, n ≥ 1, where {ai,−∞ < i <

∞} is a sequence of real numbers with
∑∞
−∞ |ai| < ∞ and {Xi,−∞ < i < ∞}

is a sequence of END random variables with mean zero which are stochastically
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dominated by a random variable X. Let r > 1/2, p ≥ 1 + 1/(2r), q > 0. Then

(2.21)





E|X|q <∞, if q > p,

E|X|p log(1 + |X|) <∞, if q = p,

E|X|p <∞, if q < p,

implies that

(2.22)
∞∑

n=1

nrp−2E

(∣∣∣∣∣n
−r

n∑

i=1

Yi

∣∣∣∣∣− ε
)q

+

<∞, for all ε > 0.

Proof. Note that

n−r
n∑

i=1

Yi =
∞∑

i=−∞


n−r

n∑

j=1

ai+j


Xi.

We will apply Theorem 2.3 with β = rp − 2, t = 1, ani = n−r
∑n
j=1 ai+j and

{Xni, i ≥ 1, n ≥ 1} replaced by {Xi,−∞ < i < ∞}. Noting that
∑∞
−∞ |ai| < ∞,

r > 1/2 and p ≥ 1 + 1/(2r), we can easily see that the conditions (1.3) and (1.6)
hold for θ = 1, α = 1 − r. Therefore (2.22) holds by (2.21), Theorem 2.3 and
Remark 2.2. �

Similar to the proof of Corollary 2.8, we can get the following Baum-Katz type
result for arrays of row-wise END random variables as follows.

2.9. Corollary. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of row-wise END
random variables which are stochastically dominated by a random variable X. Let
r > 1/2, p > 1, q > 0. Assume further that EXni = 0 for all i ≥ 1 and n ≥ 1
when p ≥ r. Then





E|X|q <∞, if q > p/r,

E|X|p/r log(1 + |X|) <∞, if q = p/r,

E|X|p/r <∞, if q < p/r,

implies that

∞∑

n=1

np−2−rqE

(∣∣∣∣∣
n∑

i=1

Xni

∣∣∣∣∣− εn
r

)q

+

<∞, for all ε > 0.
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A new calibration estimator in stratified double
sampling
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Abstract

In the present article, we consider a new calibration estimator of the
population mean in the stratified double sampling. We get more effi-
cient calibration estimator using new calibration weights compared to
the straight estimator. In addition, the estimators derived are ana-
lyzed for different populations by a simulation study. The simulation
study shows that new calibration estimator is highly efficient than the
existing estimator.

Keywords: Calibration, Auxiliary information, Stratified double sampling.
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1. Introduction

When the auxiliary information is available, the calibration estimator is widely
used in the sampling literature to improve the estimates. Many authors, such as
Deville and Sarndal [2], Estevao and Sarndal [3], Arnab and Singh [1], Farrell and
Singh [4], Kim et al.[5], Kim and Park [6], Koyuncu and Kadilar etc.[8], defined
some calibration estimators using different constraints. In the stratified random
sampling, calibration approach is used to get optimum strata weights. Tracy et
al.[9] defined calibration estimators in the stratified random sampling and stratified
double sampling. In this study, we try to improve the calibration estimator in the
stratified double sampling.

aHacettepe University, Department of Statistics, Beytepe, 06800, Ankara, Turkey.
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N. Koyuncu and C. Kadılar

2. Notations

Consider a finite population of N units consists of L strata such that the hth

stratum consists of Nh units and
L∑
h=1

Nh = N . From the hth stratum of Nh units,

draw a preliminary large sample of mh units by the simple random sampling
without replacement (SRSWOR) and measure the auxiliary character,xhi, only.
Select a sub-sample of nh units from the given preliminary large sample of mh

units by SRSWOR and measure both the study variable, yhi and auxiliary variable,

xhi. Let x∗h = 1
mh

mh∑
i=1

xhi and s∗2hx = 1
mh−1

mh∑
i=1

(xhi − x∗h)2 denote the first phase

sample mean and variance, respectively. Besides, assume that xh = 1
nh

nh∑
i=1

xhi

, s2
hx = 1

nh−1

nh∑
i=1

(xhi − xh)2 and yh = 1
nh

nh∑
i=1

yhi , s2
hy = 1

nh−1

nh∑
i=1

(yhi − yh)2

denote the second phase sample means and variances for the auxiliary and study
characters, respectively.

Calibration estimator, defined by Tracy et al.[9], is given by

(2.1) yst(d) =

L∑

h=1

W ∗hyh,

where W ∗h are calibration weights minimizing the chi-square distance measure

(2.2)
L∑

h=1

(W ∗h −Wh)2

QhWh

subject to calibration constraints defined by

(2.3)
L∑

h=1

W ∗hxh =
L∑

h=1

Whx
∗
h,

(2.4)

L∑

h=1

W ∗hs
2
hx =

L∑

h=1

Whs
∗2
hx.

The Lagrange function using calibration constraints and chi-square distance
measure is given by

(2.5)

4 =
L∑

h=1

(W ∗h −Wh)2

QhWh
−2λ1(

L∑

h=1

W ∗hxh−
L∑

h=1

Whx
∗
h)−2λ2(

L∑

h=1

W ∗hs
2
hx−

L∑

h=1

Whs
∗2
hx),

where λ1 and λ2 are Lagrange multipliers. Setting the derivative of ∆ with
respect to W ∗h equals to zero gives
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(2.6) W ∗h = Wh +QhWh(λ1xh + λ2s
2
hx).

Substituting (2.6) in (2.3) and (2.4) respectively, we get




(
L∑

h=1

QhWhx
2
h

) (
L∑

h=1

QhWhxhs
2
hx

)

(
L∑

h=1

QhWhxhs
2
hx

) (
L∑

h=1

QhWhs
4
hx

)


 [ λ1

λ2

]
=




L∑
h=1

Whx
∗
h−

L∑
h=1

Whxh

L∑
h=1

Whs
∗2
hx−

L∑
h=1

Whs
2
hx




Solving the system of equations for lambdas, we obtain

λ1 =

(
L∑
h=1

QhWhs
4
hx)(

L∑
h=1

Whx
∗
h −

L∑
h=1

Whxh)− (
L∑
h=1

Whs
∗2
hx −

L∑
h=1

Whs
2
hx)(

L∑
h=1

QhWhxhs
2
hx)

(
L∑
h=1

QhWhs4
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs2
hx)2

,

λ2 =

(
L∑
h=1

Whs
∗2
hx −

L∑
h=1

Whs
2
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs
2
hx)(

L∑
h=1

Whx
∗
h −

L∑
h=1

Whxh)

(
L∑
h=1

QhWhs4
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs2
hx)2

.

Substituting these values into (2.6), we get the weights as given by

W ∗h = Wh+

(QhWhxh)[(
L∑
h=1

QhWhs
4
hx)(

L∑
h=1

Wh(x∗h − xh))− (
L∑
h=1

Wh(s∗2hx − s2
hx))(

L∑
h=1

QhWhxhs
2
hx)]

(
L∑
h=1

QhWhs4
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs2
hx)2

+

(QhWhs
2
hx)[(

L∑
h=1

Wh(s∗2hx − s2
hx))(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs
2
hx)(

L∑
h=1

Wh(x∗h − xh))]

(
L∑
h=1

QhWhs4
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs2
hx)2

Writing these weights in (2.1), we get the calibration estimator as

yst(d) = (

L∑

h=1

Whyh) + β1(d)(

L∑

h=1

Wh(x∗h− xh)) + β2(d)(

L∑

h=1

Wh(s∗2hx− s2
hx)),

where betas are given by

β1(d) =

(
L∑
h=1

QhWhs
4
hx)(

L∑
h=1

QhWhxhyh)− (
L∑
h=1

QhWhxhs
2
hx)(

L∑
h=1

QhWhyhs
2
hx)

(
L∑
h=1

QhWhs4
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs2
hx)2

,
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β2(d) =

(
L∑
h=1

QhWhx
2
h)(

L∑
h=1

QhWhyhs
2
hx)− (

L∑
h=1

QhWhxhs
2
hx)(

L∑
h=1

QhWhxhyh)

(
L∑
h=1

QhWhs4
hx)(

L∑
h=1

QhWhx
2
h)− (

L∑
h=1

QhWhxhs2
hx)2

.

3. Suggested Estimator

Motivated by Tracy et al.[9], we consider a new calibration estimator as

(3.1) yst(dnew) =
L∑

h=1

Ωhyh.

Using the chi-square distance

(3.2)
L∑

h=1

(Ωh −Wh)2

QhWh
,

and subject to calibration constraints defined by Koyuncu[7]

(3.3)
L∑

h=1

Ωhxh =
L∑

h=1

Whx
∗
h,

(3.4)
L∑

h=1

Ωhs
2
hx =

L∑

h=1

Whs
∗2
hx,

(3.5)

L∑

h=1

Ωh =

L∑

h=1

Wh,

we can write the Lagrange function given by

4 =
L∑

h=1

(Ωh −Wh)2

QhWh
− 2λ1(

L∑

h=1

Ωhxh −
L∑

h=1

Whx
∗
h)− 2λ2(

L∑

h=1

Ωhs
2
hx −

L∑

h=1

Whs
∗2
hx)

− 2λ3(
L∑

h=1

Ωh −
L∑

h=1

Wh),

Setting ∂4
4Ωh

= 0, we obtain

(3.6) Ωh = Wh +QhWh(λ1xh + λ2s
2
hx + λ3).

Substituting (3.6) in (3.3)-(3.5), respectively, we get the following system of
equations
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(
L∑

h=1

QhWhx
2
h

) (
L∑

h=1

QhWhxhs
2
hx

) (
L∑

h=1

QhWhxh

)

(
L∑

h=1

QhWhxhs
2
hx

) (
L∑

h=1

QhWhs
4
hx

) (
L∑

h=1

QhWhs
2
hx

)

(
L∑

h=1

QhWhxh

) (
L∑

h=1

QhWhs
2
hx

) (
L∑

h=1

QhWh

)




[
λ1

λ2

λ3

]
=




L∑
h=1

Whx
∗
h−

L∑
h=1

Whxh

L∑
h=1

Whs
∗2
hx−

L∑
h=1

Whs
2
hx

0




Solving the system of equations for lambdas, we obtain

λ1 =
A

D
,λ2 =

B

D
,λ3 =

C

D
,

where

A =

(
L∑

h=1

Wh(x∗h − xh)

)[( L∑

h=1

QhWh

)( L∑

h=1

QhWhs
4
hx

)
−
( L∑

h=1

QhWhs
2
hx

)2
]

+

(
L∑

h=1

Wh(s∗2hx − s2
hx)

)[( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
2
hx

)

−
( L∑

h=1

QhWh

)( L∑

h=1

QhWhs
2
hxxh

)]

B =

(
L∑

h=1

Wh(s∗2hx − s2
hx)

)[( L∑

h=1

QhWh

)( L∑

h=1

QhWhx
2
h

)
−
( L∑

h=1

QhWhxh

)2
]

−
( L∑

h=1

Wh(x∗h − xh)
)[( L∑

h=1

QhWhs
2
hxxh

)( L∑

h=1

QhWh

)

−
( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
2
hx

)]

C =
( L∑

h=1

Wh(x∗h − xh)
)[( L∑

h=1

QhWhs
2
hx

)( L∑

h=1

QhWhs
2
hxxh

)
−
( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
4
hx

)]

+
( L∑

h=1

Wh(s∗2hx − s2
hx)
)[( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhxhs
2
hx

)

−
( L∑

h=1

QhWhx
2
h

)( L∑

h=1

QhWhs
2
hx

)
]
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D =
( L∑

h=1

QhWh

)( L∑

h=1

QhWhs
4
hx

)( L∑

h=1

QhWhx
2
h

)
−
( L∑

h=1

QhWhxh

)2( L∑

h=1

QhWhs
4
hx

)

−
( L∑

h=1

QhWh

)( L∑

h=1

QhWhs
2
hxxh

)2

−
( L∑

h=1

QhWhs
2
hx

)2( L∑

h=1

QhWhx
2
h

)

+ 2
( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
2
hx

)( L∑

h=1

QhWhxhs
2
hx

)

Substituting these lambdas in (3.6) and then (3.1), we get

yst(dnew) = yst+β1(dnew)(
L∑

h=1

Wh(x∗h−xh))+β2(dnew)(
L∑

h=1

Wh(s∗2hx−s2
hx)),

where β1(dnew) = A∗

D and β2(dnew) = B∗

D

A∗ =

(
L∑

h=1

QhWhxhyh

)[( L∑

h=1

QhWh

)( L∑

h=1

QhWhs
4
hx

)
−
( L∑

h=1

QhWhs
2
hx

)2
]

−
(

L∑

h=1

QhWhs
2
hxyh

)[( L∑

h=1

QhWhs
2
hxxh

)( L∑

h=1

QhWh

)
−
( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
2
hx

)]

+

(
L∑

h=1

QhWhyh

)[( L∑

h=1

QhWhs
2
hx

)( L∑

h=1

QhWhs
2
hxxh

)
−
( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
4
hx

)]

B∗ =

(
L∑

h=1

QhWhxhyh

)[( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhs
2
hx

)
−
( L∑

h=1

QhWh

)( L∑

h=1

QhWhs
2
hxxh

)]

+

(
L∑

h=1

QhWhs
2
hxyh

)[( L∑

h=1

QhWh

)( L∑

h=1

QhWhx
2
h

)
−
( L∑

h=1

QhWhxh

)2
]

+

(
L∑

h=1

QhWhyh

)[( L∑

h=1

QhWhxh

)( L∑

h=1

QhWhxhs
2
hx

)
−
( L∑

h=1

QhWhx
2
h

)( L∑

h=1

QhWhs
2
hx

)]

4. Theoretical Variance

We can write the estimators yst(d) and yst(dnew) as follows:

(4.1) yst(α) =
L∑

h=1

Whyh + β1(α)

L∑

h=1

Wh(xh − x∗h) + β2(α)

L∑

h=1

Wh(s2
hx − s∗2hx)

where α = d, dnew. To find the variance of estimators, let us define following
equations:
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e0h =

(
yh − Y h

)

Y h
, e1h =

(
xh −Xh

)

Xh

, e∗1h =

(
x∗h −Xh

)

Xh

, e2h =

(
s2
hx − S2

hx

)

S2
hx

and e∗2h =

(
s∗2hx − S2

hx

)

S2
hx

yh = Y h(1 + e0h), xh = Xh(1 + e1h), x∗h = Xh(1 + e∗1h),

s2
hx = S2

hx(1 + e2h),s∗2hx = S2
hx(1 + e∗2h),

E(e2
0h) = λnhC

2
yh, E(e2

1h) = λnhC
2
xh, E(e0he1h) = λnhCyxh, E(e0he

∗
1h) =

λmhCyxh, E(e2
2h) = λnh(λ04h−1), E(e∗22h) = λmh(λ04h−1),E(e2he

∗
2h) = λmh(λ04h−

1), E(e0he2h) = λnhCyhλ12h, E(e0he
∗
2h) = λmhCyhλ12h,E(e∗21h) = λmhC

2
xh, E(e1he

∗
1h) =

λmhC
2
xh,E(e1he2h) = λnhCxhλ03h, E(e∗1he2h) = λmhCxhλ03h,E(e1he

∗
2h) = λmhCxhλ03h,E(e∗1he

∗
2h) =

λmhCxhλ03h

where λnh = 1
nh
− 1

Nh
, λmh = 1

mh
− 1

Nh
, Cyh =

Syh

Y h
, Cxh = Sxh

Xh
, Cyxh =

Syxh

Y hXh
,

λrsh = µrsh

µ
r
2
20hµ

s
2
02h

and µrsh =
=

Nh∑
i=1

(Yhi−Y h)r(Xhi−Xh)s

Nh−1 .

Expressing (4.1) in terms of e’s, we have

(4.2)

yst(α) =
L∑

h=1

Wh[Y h(1+e0h)+β1(α)Xh((1+e1h)−(1+e∗1h))+β2(α)S
2
hx((1+e2h)−(1+e∗2h)]

(4.3)

yst(α)−
L∑

h=1

WhY h =
L∑

h=1

Wh[Y he0h+β1(α)Xh(e1h−e∗1h)+β2(α)S
2
hx(e2h−e∗2h)]

Squaring both sides of (4.3),

(
yst(α)−

L∑

h=1

WhY h

)2

=

L∑

h=1

W 2
h

[
Y he0h + β1(α)Xh(e1h − e∗1h) + β2(α)S

2
hx(e2h − e∗2h)

]2
(4.4)

=
L∑

h=1

W 2
h

[
Y

2

he
2
0h + β2

1(α)X
2

h(e1h − e∗1h)2 + β2
2(α)S

4
hx(e2h − e∗2h)2

+ 2β1(α)XhY he0h(e1h − e∗1h) + 2β2(α)Y hS
2
hxe0h(e2h − e∗2h)

+ 2β1(α)β2(α)XhS
2
hx(e1h − e∗1h)(e2h − e∗2h)

]

and taking expectations, we get the variance of yst(α) as

V ar(yst(α)) =
L∑

h=1

W 2
h [Y

2

hλnhC
2
yh + (λnh − λmh)β2

1(α)X
2

hC
2
xh + (λnh − λmh)β2

2(α)S
4
hx(λ04h − 1)(4.5)

+ 2(λnh − λmh)β1(α)Y hXhCyxh + 2(λnh − λmh)β2(α)Y hS
2
hxCyhλ12h

+ 2(λnh − λmh)β1(α)β2(α)S
2
hxXhCxhλ03h]

The variance of yst(α) in (4.5) is minimized for
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V ar(yst(α))

∂β1(α)
= 0,

(4.6) β1(α) =
−β2(α)S

2
hxCxhλ03h − Y hCyxh
XhC2

xh

,

V ar(yst(α))

∂β2(α)
= 0,

(4.7) β2(α) =
−β1(α)XhCxhλ03h − Y hCyhλ12h

S2
hx(λ04h − 1)

,

Substituting (4.6) in (4.7) or vice versa, we have optimum betas as given by

β1(α) =
Syh
Sxh

λ12hλ03h − λ11h(λ04h − 1)

(λ04h − 1)− λ2
03h

, β2(α) =
Syh
S2
xh

λ11hλ03h − λ12h

(λ04h − 1)− λ2
03h

The resulting (minimum) variance of yst(α) is given by

V ar(yst(α))(4.8)

=
L∑

h=1

W 2
hY

2

h

[
λnhC

2
yh − (λnh − λmh)

C2
yxh(λ04h − 1) + C2

xhC
2
yhλ

2
12h − 2CyxhCyhCxhλ03hλ12h

C2
xh[(λ04h − 1)− λ2

03h]

]

=
L∑

h=1

W 2
hY

2

hC
2
yh

[
λmh + (λnh − λmh)

[
1− λ2

11h −
(λ12h − λ11hλ03h)2

(λ04h − 1)− λ2
03h

]]

5. Simulation Study

To study the properties of the proposed calibration estimator, we perform a
simulation study by generating four different artificial populations where x∗hi and
y∗hi values are from different distributions given in Table 1. To get different level
of correlations between study and auxiliary variables, we apply some transforma-
tions given in Table 2. Each population consists of three strata having 500 units.
After selecting a preliminary sample of size 300 from each stratum, we select 5000
times for the second sample whose sample of sizes are 30 and 50. The correlation
coefficients between study and auxiliary variables for each stratum are taken as
ρxy1 = 0.5 ,ρxy2 = 0.7 and ρxy3 = 0.9 . The quantities,S1x = 4.5 , S2x = 6.2 ,
S3x = 8.4 and S1y = S2y = S3y are taken as fixed in each stratum as in Tracy et al.
[9]. We calculate the empirical mean square error and percent relative efficiency,
respectively, using following formulas:
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MSE(yst(α)) =


 N

n




∑
k=1

[yst(α)− Y ]2

(
N
n

) , α = d, dnew

PRE =
MSE(yst(d))

MSE(yst(dnew))
∗ 100

From Table 3, the simulation study shows that new calibration estimator is
quite efficient than the existing estimator.

6. Conclusion

In this study we derived new calibration weights in stratified double sampling.
The performance of the weights are compared with a simulation study. We found
that suggested weights perform better than existing weights.
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Table 1. Parameters and Distributions of Study and Auxiliary Variables

Parameters and distributions
of study variable

Parameters and distributions
of auxiliary variable

I. Population, h=1,2,3

f(y∗hi) = 1
Γ(1.5)

y∗1.5−1
hi e−y

∗
hi f(x∗hi) = 1

Γ(0.3)
x∗0.3−1
hi e−x

∗
hi

II. Population, h=1,2,3

f(y∗hi) = 1√
2π
e−

y∗2hi
2 f(x∗hi) = 1

Γ(0.3)
x∗0.3−1
hi e−x

∗
hi

Table 2. Properties of Strata

Strata Study Variable Auxiliary Variable

1. Stratum y1i = 50 + y∗1i x1i = 15 +
√

(1 − ρ2
xy1)x∗1i + ρxy1

S1x
S1y

y∗1i

2. Stratum y2i = 150 + y∗2i x2i = 100 +
√

(1 − ρ2
xy2)x∗2i + ρxy2

S2x
S2y

y∗2i

3. Stratum y3i = 50 + y∗3i x3i = 200 +
√

(1 − ρ2
xy3)x∗3i + ρxy3

S3x
S3y

y∗3i

Table 3. Empirical Mean Square Error (MSE) and Percent Relative
Efficiency (PRE) of Estimators

Population Empirical MSE(yst(d)) Empirical MSE(yst(dnew)) PRE

I (mh = 30) 61205495678 65730798 93115.4

I (mh = 50) 626914412 38472456 1629.515

II (mh = 30) 6.8404e+11 50343013 1358759

II (mh = 50) 245901177 35046173 701.6491
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exponential parameters under various

approximation techniques
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Abstract

In this paper, we propse Bayes estimators of the parameters of
Marshall Olkin extended exponential distribution (MOEED) intro-
duced by Marshall-Olkin [2] for complete sample under squared
error loss function (SELF). We have used different approximation
techniques to obtain the Bayes estimate of the parameters. A
Monte Carlo simulation study is carried out to compare the per-
formance of proposed estimators with the corresponding maximum
likelihood estimator (MLE’s) on the basis of their simulated risk.
A real data set has been considered for illustrative purpose of the study.

Keywords: Bayes estimator, Squared error loss function, Lindley’s approxima-
tion method, T-K approximation, MCMC method.

2000 AMS Classification: 62F15, 62C10

1. Introduction

Due to simple, elegant and closed form of distribution function, Exponential dis-
tribution is most popular distribution for life time data analysis. Further Borlow
and Proschan [22] have discussed the justification regarding the use of exponen-
tial distribution as the failure law of complex equipment. However its uses are
restricted to constant hazard rate, which is difficult to justify in many real situ-
ations. Thus one can think to develop alternative model which has non-constant
hazard rate. In the literature, various methods may be used to generalise exponen-
tial distributions and these generalized models have the property of non-constant
hazard rate like Weibull, gamma and exponentiated exponential distribution etc.
These generalized models are frequently used to analyse the life time data. In
addition Marshall and Olkin [2] introduced a method of adding a new parameter
to a specified distribution. The resulting distribution is known as Marshall Olkin
extended distribution. The general methodology regarding the introducing a new

aDepartment of Statistics and DST-CIMS, Banaras Hindu University, Varanasi-221005
∗Corresponding author e–mail: singhsk64@gmail.com
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parameters is as follows:
Let F̄ (x) be the survival function of existing or specified distribution then, the
survival function of new distribution can be obtained by using following relation

S̄(x) =
αF̄ (x)

1− ᾱF̄ (x)
; −∞ < x <∞, α > 0

where ᾱ = 1−α and S̄(x) is the survival function of new distribution. Note that,
when α = 1, S̄(x) = F̄ (x). Thus, the form of density corresponding to the survival
function S̄(x) is obtained as,

f(x, α) =
αf(x)

{
1− ᾱF̄ (x)

}2

Further more, Marshall and Olkin derived a distribution by introducing the sur-
vival function of exponential distribution say (F̄ (x) = e−λx). The resulting distri-
bution is known as Marshall Olkin extended exponential distribution (MOEED)
with increasing and decreasing failure rate functions see [2]. The probability den-
sity function (pdf) and cumulative distribution function (cdf) of this distribution
are given as:

(1.1) f(x, α, λ) =
αλe−λx

(1− ᾱe−λx)2
; x, α, λ ≥ 0

(1.2) F (x, α, λ) =
1− e−λx

1− ᾱe−λx ; x, α, λ ≥ 0

respectively. The considered distribution is very useful in life testing problem and
it may be used as a good alternative to the gamma, Weibull and other exponen-
tiated family of distributions. The basic properties related to this distribution
have been discussed in [2]. The density function (1) has increasing failure rate for
α ≥ 1 , decreasing failure rate for α ≤ 1 and constant failure rate for α = 1 similar
to one parameter exponential distribution. G. Srinivasa Rao et al [3] used this
distribution for making reliability test plan with sampling point of view. Shape
of this distribution is presented bellow see figure 1. for different choices of shape
and scale parameter.

In this paper, we mainly consider both the informative and non-informative
priors under squared error loss function to compute the Bayes estimators of pa-
rameters. It has been noticed that the Bayes estimators of the parameters cannot
be expressed in a nice closed form. Thus the different numerical approximation
procedures are used to obtain Bayes estimator. Here we use the Lindley’s, Tier-
ney and Kadane (T-K) approximation methods and Markov Chain Monte Carlo
(MCMC) technique to compute the Bayes estimators of the parameters.

The rest of the paper is organized as follows: In section 2.1, we describe the
classical estimation with maximum likelihood estimator (MLE) of parameters. In
section 2.2, we compute Bayes estimator of parameters with gamma prior and in
section 2.2.1, 2.2.2 and 2.2.3 we describe different Bayesian approaches like Lind-
ley Approximation, Tierney and Kadane approximation and Monte Carlo Markov
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Figure 1. Density plot with different choice of α and λ

chain (MCMC) method for estimating the unknown parameters respectively. Sec-
tion 3 provides the simulation and numerical result and one real data set has been
analysed in section 4. Finally conclusion of the paper is provided in section 5.

2. Estimation of the parameters

2.1. Maximum likelihood estimators. Suppose {x1, x2, ..., xn} be a indepen-
dently identically distributed (iid) random sample of size n from Marshall Olkin
extended exponential distribution (MOEED) defined in (1). Thus the likelihood
function of α and λ for the samples is,

(2.1) L(x|α, λ) = αnλne
−λ

n∑
i=1

xi
n∏

i=1

(1− ᾱe−λxi)−2; x, α, λ ≥ 0

The maximum likelihood estimators of the parameters have obtained by differ-
entiating the log of likelihood function w.r.t.to parameters and equating to zero.
Thus two normal equations have been obtained as,

(2.2)
n

α
− 2

n∑

i=1

e−λxi(1− ᾱe−λxi)−1 = 0

and

(2.3)
n

λ
−

n∑

i=1

xi − 2

n∑

i=1

ᾱxie
−λxi(1− ᾱe−λxi)−1 = 0

Above normal equation of α and λ form an implicit system and does not exist an
unique root for above system of equations, so they can not be solved analytically.
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Thus maximum likelihood estimators (MLE) have been obtained By using Newton-
Raphson (N-R) method.

2.2. Bayesian Estimation of the parameters. The Bayesian estimation pro-
cedure of the parameters related to various life time models has been extensively
discussed the literature (see in[5],[6],[8] and so on). It may be mentioned here, that
most of the discussions on Bayes estimator are confined to quadratic loss function
because this loss function is most widely used as symmetrical loss function which
has been justified in classical method on the ground of minimum variance unbiased
estimation procedure and associates equal importance to the losses for overesti-
mation and underestimation of equal magnitudes. This may be defined as,

L(θ̂, θ) ∝ (θ̂ − θ)2

where θ̂ is the estimate of the parameter θ.
Under the above mentioned loss function, Bayes estimators are the posterior

mean of the distributions. In Bayesian analysis, parameters of the models are
considered to be a random variable and following certain distribution. This dis-
tribution is called prior distribution. If prior information available to us which
may be used for selection of prior distribution. But in many real situation it is
very difficult to select a prior distribution. Therefore selection of prior distribution
plays an important role in estimation of the parameters. A natural choice for the
prior of α and λ would be two independent gamma distributions i.e. gamma(a, b)
and gamma(c, d) respectively . It is important to mention that Gamma prior has
flexible nature as a non-informative prior in particular when the values of hyper
parameters are considered to be zero. Thus the proposed prior for α and λ may
be considered as,

ν1(α) ∝ αa−1e−bα and ν2(λ) ∝ λc−1e−dλ

respectively. Where a, b, c and d are the hyper-parameters of the prior distribu-
tions. Thus, the joint prior of α and λ may be taken as;

(2.4) ν(α, λ) ∝ αa−1λc−1e−dλ−bα ; α, λ, a, b, c, d ≥ 0

Substituting L(x|α, λ) and ν(α, λ) form equation no. (3) and (6) respectively then
we can find the posterior distribution of α and λ i.e.p(α, λ|x) is given as,

(2.5) p(α, λ|x) = Kαn+a−1λn+c−1e
−dλ−bα−λ

n∑
i=1

xi
n∏

i=1

(1− ᾱe−λxi)−2

where,

(2.6) K−1 =

∫

α

∫

λ

αn+a−1λn+c−1e
−dλ−bα−λ

n∑
i=1

xi
n∏

i=1

(1− ᾱe−λxi)−2dαdλ

Here, we see that the posterior distribution involves an integral in the denominator
which is not solvable and consequently the Bayes estimators of the parameters are
the ratio of the integral, which are not in explicit form. Hence the determination of
posterior expectation for obtaining the Bayes estimator of α and λ will be tedious.
There are several methods available in literature to solve such type of integration
problem. Among the entire methods we consider T-K, Lindley’s and Monte Carlo
Markov Chain (MCMC) approximation method, which approach the ratio of the
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integrals as a whole and produce a single numerical result. These methods are
described bellow:

2.2.1. Bayes estimator using Lindley’s Approximation. We consider the Lindley’s
approximation method to obtain the Bayes estimates of the parameters, which
includes the posterior expectation is expressible in the form of ratio of integral as
follow:

(2.7) I(x) = E(α, λ|x) =

∫
u(α, λ)eL(α,λ)+G(α,λ)d(α, λ)∫

eL(α,λ)+G(α,λ)d(α, λ)

where,
u(α, λ)= is a function of α and λ only
L(α, λ)= Log- likelihood function
G(α, λ)= Log of joint prior density
According to D. V. Lindley [1], if ML estimates of the parameters are available
and n is sufficiently large then the above ratio of the integral can be approximated
as:

I(x) = u(α̂, λ̂) + 0.5[(ûλλ + 2ûλτ̂λ)σ̂λλ + (ûαλ + 2ûατ̂λ)σ̂αλ + (ûλα + 2ûλτ̂α)σ̂λα +

(ûαα + 2ûατ̂α)σ̂αα] +
1

2
[(ûλσ̂λλ + ûασ̂λα)(L̂λλλσ̂λλ + L̂λαλσ̂λα + L̂αλλσ̂αλ +

L̂ααλσ̂αα) + (ûλσ̂αλ + ûασ̂αα)(L̂αλλσ̂λλ + L̂λαασ̂λα + L̂αλασ̂αλ + L̂ααασ̂αα)]

where α̂ and λ̂ is the MLE of α and λ respectively, and

ûα =
∂u(α̂, λ̂)

∂α̂
, ûλ =

∂u(α̂, λ̂)

∂λ̂
, ûαλ =

∂u(α̂, λ̂)

∂α̂∂λ̂
, ûλα =

∂u(α̂, λ̂)

∂λ̂∂α̂
, ûαα =

∂2u(α̂, λ̂)

∂α̂2
,

ûλλ =
∂2u(α̂, λ̂)

∂λ̂2
, L̂αα =

∂2L(α̂, λ̂)

∂α̂2
, L̂λλ =

∂2L(α̂, λ̂)

∂λ̂2
, L̂ααα =

∂3L(α̂, λ̂)

∂α̂3
,

L̂ααλ =
∂3L(α̂, λ̂)

∂α̂∂α̂∂λ̂
, L̂λλα =

∂3L(α̂, λ̂)

∂λ̂∂λ̂∂α̂
, L̂λαλ =

∂3L(α̂, λ̂)

∂λ̂∂α̂∂λ̂
, L̂ααλ =

∂3L(α̂, λ̂)

∂α̂∂α̂∂λ̂
,

L̂αλλ =
∂3L(α̂, λ̂)

∂α̂∂λ̂∂λ̂
, L̂λαα =

∂3L(α̂, λ̂)

∂λ̂∂α̂∂α̂
, p̂α =

∂G(α̂, λ̂)

∂α̂
, p̂λ =

∂G(α̂, λ̂)

∂λ̂

After substitution of p(α, λ|x) from (7) in above equation (9) then this integral
must be reduces like Lindley’s integral, where:

u(α, λ) = α

L(α, λ) = n lnα+ n lnλ− λ
n∑

i=1

xi − 2

n∑

i=1

ln(1− ᾱe−λxi) and

G(α, λ) = (a− 1) lnα+ (c− 1) lnλ− (bα+ dλ)

it may verified that,

uα = 1, uαα = uλλ = uαλ = uλα = 0, pα =
a− 1

α
− b, pλ =

c− 1

λ
− d

Lα =
n

α
− 2

n∑
i=1

e−λxi

(1− ᾱe−λxi) , Lαα =
−n
α2

+ 2
n∑
i=1

e−2λxi

(1− ᾱe−λxi)2 ,

Lααα =
2n

α3
− 4

n∑
i=1

e−3λxi

(1− ᾱe−λxi)3 , Lλ =
n

λ
−

n∑
i=1

xi − 2
n∑
i=1

xiᾱe
−λxi

(1− ᾱe−λxi) ,
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Lλλ =
−n
λ2

+ 2
n∑
i=1

x2
i ᾱe
−λxi

(1− ᾱe−λxi) + 2
n∑
i=1

x2
i ᾱ

2e−2λxi

(1− ᾱe−λxi)2 ,

Lλλλ =
2n

λ3
− 2

n∑
i=1

x3
i ᾱe
−λxi

(1− ᾱe−λxi) − 6
n∑
i=1

x3
i ᾱ

2e−2λxi

(1− ᾱe−λxi)2 − 4
n∑
i=1

x3
i ᾱ

3e−3λxi

(1− ᾱe−λxi)3 ,

Lααλ = Lλαα = −4
n∑
i=1

xie
−2λxi

(1− ᾱe−λxi)2 − 4
n∑
i=1

xiᾱe
−3λxi

(1− ᾱe−λxi)3 ,

Lαλλ = Lλλα = −2
n∑
i=1

x2
i e
−λxi

(1− ᾱe−λxi) − 6
n∑
i=1

x2
i ᾱe
−2λxi

(1− ᾱe−λxi)2 − 4
n∑
i=1

x2
i ᾱ

2e−3λxi

(1− ᾱe−λxi)3

If α and λ are orthogonal then σij = 0 for i 6= j and σij =
(
− 1

Lij

)
for i = j After

evaluation of all U-terms, L-terms, and p- terms at the point (α̂, λ̂) and using the
above expression, the approximate Bayes estimator of α under SELF is,

(2.8) α̂LS = α̂+ ûαp̂ασ̂αα + 0.5
(
ûασ̂αασ̂λλL̂αλλ + ûασ̂

2
ααL̂ααα

)

and similarly the Bayes estimate for λ under SELF is,
uλ = 1, uαα = uλλ = uαλ = uλα = 0 and remaining L-terms and -terms will be
same as above thus we have,

(2.9) λ̂LS = λ̂+ ûλp̂λσ̂λλ + 0.5
(
ûλσ̂

2
λλL̂λλλ + ûλσ̂αασ̂λλL̂ααλ

)

2.2.2. Bayes estimators using Tierney and Kadane’s (T-K) Approximation. Lind-
ley’s method of solving integral is accurate enough but one of the problems of this
method is that it requires evaluation of third order partial derivatives and in

p-parameters case the total number of derivatives is
p(p+ 1)(p+ 2)

6
then this ap-

proximation will be quite complicated. thus one can think about T-K approxima-
tion method and this method may be used as an alternative to Lindley’s method.
According to the Tierney and Kadane’s approximation any ratio of the integral of
the form,

(2.10) û(α, λ) = Ep(α,λ|x)[u(α, λ|x)] =

∫
α,λ

enL∗(α,λ)d(α, λ)

∫
α,λ

enL0(α,λ)d(α, λ)

where,

(2.11) L0(α, λ) =
1

n
[L(α, λ) + ln ν(α, λ)] and L∗(α, λ) = L0(α, λ) +

1

n
lnu(α, λ)

Thus estimate can be obtained as,

(2.12) û(α, λ) =

√
|Σ∗|
|Σ0|

e[n{L∗(α∗,λ∗)−L0(α0,λ0)}]

where (α∗, λ∗) and (α0, λ0) maximize L∗(α, λ) and L0(α, λ) respectively, and Σ∗
and Σ0 are the negative of the inverse of the matrices of second derivatives of
L∗(α, λ) and L0(α, λ) at the point (α∗, λ∗) and (α0, λ0) respectively. In our study,
based on (14) the function L0(α, λ) is given as,

(2.13)
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L0(α, λ) =
1

n
[(n+a−1) lnα−bα+(n+c−1) lnλ−λ(d+

n∑

i=1

xi)−2
n∑

i=1

ln(1−ᾱe−λxi)]

and thus for the Bayes estimator of α and λ under SELF using this approximation
(17) can be written as,

(2.14) α̂T−KS (α, λ) =

√
|Σ∗|
|Σ0|

e[n{Lα∗ (α∗,λ∗)−L0(α0,λ0)}]

(2.15) λ̂T−KS (α, λ) =

√
|Σ∗|
|Σ0|

e[n{Lλ∗ (α∗,λ∗)−L0(α0,λ0)}]

where

Lα∗ (α, λ) = Lα0 (α, λ) +
1

n
lnα and Lλ∗(α, λ) = Lλ0 (α, λ) +

1

n
lnλ

2.2.3. Bayes estimator using Monte Carlo Markov Chain (MCMC) method. In
this section, we propose Monte Carlo Markov Chain (MCMC) method for ob-
taining the Bayes estimates of the parameters. Thus we consider the MCMC
technique namely Gibbs sampler and Metropolis-Hastings algorithm to generate
sample from the posterior distribution and then compute the Bayes estimate. The
Gibbs sampler is best applied on problems where the marginal distributions of the
parameters of interest are difficult to calculate, but the conditional distributions of
each parameter given all the other parameters and the data have nice forms. If the
conditional distributions of the parameters have standard forms, then they can be
simulated easily. But generating samples from full conditionals corresponding to
joint posterior is not easily manageable. Therefore we considered the Metropolis-
Hastings algorithm. Metropolis step is used to extract samples from some of the
full conditional to complete a cycle in Gibbs chain . For more detail about MCMC
method see for example Gelfand and Smith [23], Upadhya and Gupta [24] . Thus
utilizing the concept of Gibbs sampling procedure as mentioned above, generates
sample from the posterior density function (7) under the assumption that parame-
ters α and λ have independent Gamma density function with hyper parameters a,
b and c, d respectively. To incorporate this technique we consider full conditional
posterior densities of α and λ are written as ,

(2.16) π(α|λ, x) ∝ αn+a−1e−bα
n∏

i=1

(1− ᾱe−λxi)−2

(2.17) π(λ|α, x) ∝ λn+c−1e
−λ(d+

n∑
i=1

xi)
n∏

i=1

(1− ᾱe−λxi)−2

The Gibbs algorithm consist the following steps

• Start with k=1 and initial values (α0, λ0)
• Using M-H algorithm generate posterior sample for α and λ from (18) and

(19) respectively, where asymptotic normal distribution of full conditional
densities are considered as the proposal.
• Repeat step 2, for all k = 1, 2, 3, . . . ,M and obtain (α1, λ1), (α2, λ2), ...(αM , λM )
• After obtaining the posterior sample the Bayes estimates of α and λ with

respect to the SELF are as follows:
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(2.18) α̂MC = [Eπ(α|x)] ≈
(

1

M −M0

M−M0∑

i=1

αi

)

(2.19) λ̂MC = [Eπ(λ|x)] ≈
(

1

M −M0

M−M0∑

i=1

λi

)

Where, M0 is the burn-in-period of Markov Chain.

3. Simulation Study

This section, consists of simulation study to compare the performance of the
various estimation techniques described in the previous section 2. Comparison of
the estimators have been made on the basis of simulated risk (average loss over
whole sample space). It is not easy to obtain the risk of the estimators directly.
Therefore the risk of the estimators are obtained on the basis of simulated sample.
For this purpose, we generate 1000 samples of size n (small sample size n = 20,
moderate sample size n = 30, and large sample size n = 50) from Mrshall-Olkin
Extended exponential distribution. In order to consider MCMC method for ob-
taining the Bayes estimate of the parameters, we generate 20000 deviates for the
parameters α and λ using algorithm discussed in section 2.2.3. First five hundred
MCMC iterations (Burn-in period) have discarded from the generated sequence.
We have also checked the convergence of the sequences of α and λ for their sta-
tionary distributions through different starting values. It was observed that all
the Markov chains reached to the stationary condition very quickly. Further, in
Bayes estimation choice of hyper-parameters have great importance. Therefore
the values of hyper- parameters have been considered as follows:

• The values of hyper parameters are assumed in such a way that prior
mean is equal to the guess value of the parameters when prior variances
are taken as small (see Table 1), large (see Table 2) along with variation
of sample size and for fixed value of parameters.
• The value of hyper parameters are assumed to be zero (i.e. non-informative

case) along with variation of sample sizes and for fixed value of parameters
(see Tables 3).

Here, we know that the Gamma prior provides flexible approach to handle estima-
tion procedure in both scenarios i.e. informative and non-informative. The case
of non-informative prior has been obtained by assuming the values of hyper pa-
rameters as zero i.e.a = b = c = d = 0. For informative prior, we take prior mean
(say,µ ) to be equal to the guess value of the parameter with varying prior variance
(say,ν ). The prior variance indicates the confidence of our prior guess. A large
prior variance shows less confidence in prior guess and resulting prior distribution
is relatively flat. On the other hand, small prior variance indicates greater confi-
dence in prior guess. Several variations of sample size and hyper-parameters have
been obtained and due to similar patterns some of them are presented below. In
Table 1 the variation of various sample sizes has been observed through fixing the
value of shape and scale parameter i.e α = λ = 2 and choice of hyper-parameter is
assumed as a=4, b=2 and c=4, d=2, such that, prior mean is 2 and prior variance
is small (say 1). Table 2 shows the same patterns described as above for different
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choice of hyper-parameters which is assumed as a=0.4, b=0.2 and c=0.4, d=0.2,
such that prior mean is 2 but prior variance is very large (say 10). Table 3 exhibits
similar results under consideration of non-informative prior scenario. It is also ob-
served that the risks of all the estimators decrease as sample size increases in all
the considered cases. As we expected, it is also observed that when we consider
informative prior, the proposed Bayes estimators behave better than the classical
maximum likelihood estimators. But in case of non-informative prior, their be-
haviour are almost same as MLE, which may be seen in the following connected
tables (see Table 1,2 and 3).

4. Real Illustration

In this section; we analyze a real data set from A. Wood [21] to illustrate our
estimation procedure. The data is based on the failure times of the release of
software given in terms of hours with average life time be 1000 hours from the
starting of the execution of the software. This data can be regarded as an ordered
sample of size 16 are given as,

0.519 0.968 1.430 1.893 2.490 3.058 3.625 4.442
5.218 5.823 6.539 7.083 7.485 7.846 8.205 8.564

Given data set have been already considered by Rao et al.[3] to construct a sam-
pling plan only if the life time has Marshall-Olkin extended exponential distribu-
tion. To identify the validity of proposed model criterion of log-likelihood, Akaike
information criterion (AIC) and Bayesian information criterion (BIC) have been
discussed. It has been verified that the given data set provides better fit than other
exponetiated family such as exponential, Generalized exponential and gamma dis-
tributions see Table (5) and empirical cumulative distribution function (ECDF)
plot of this data is represented in figure (2).
To calculate the Bayes estimates of the parameters in absence of prior informa-
tion, we consider the non-informative prior. Further we calculate the Maximum
likelihood estimates of the parameter and also Bayes estimates of the parameters
under different considered estimation methods which are presented in Table 4. The
MCMC iterations of α and λ are plotted respectively. Density and Trace plots are
indicating that the MCMC samples are well mixed and stationary achieved see
figure 3.

5. Conclusion

In this paper, we have considered the classical as well as Bayesian estimation of
the unknown parameters of the Marshall- Olkin extended exponential distribution
under various approximation techniques. On the basis of extensive study we may
conclude the followings:

• Under informative setup the performance of Bayes estimators of the pa-
rameters is better than the maximum likelihood estimators (MLE’s) in
all considered approximation techniques and also Lindley’s approximation
technique works quite well than rest of other methods such as T-K and
MCMC.
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• Under non-informative set up, we observed that T-K approximation method
behaves like maximum likelihood estimators (MLE’s) and performs well
than Lindleys and MCMC approximation methods.
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Table 1. This table represents the estimates of the parameters
obtained through various estimation techniques when prior mean
is 2 and prior variance is 1 i.e.µ = 2,ν = 1 and also the quantity in
second row exhibits the average expected loss over sample space
i.e. risks of corresponding estimators.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

20
2.23773 2.06460 2.23737 2.06445 1.77297 1.98913 2.28136 2.07794
1.39995 0.39985 1.40010 0.39962 0.26508 0.26972 1.15025 0.30349

30
2.21472 2.04999 2.21469 2.04986 1.95451 2.00332 2.23035 2.05050
1.19207 0.26914 1.19255 0.26902 0.24508 0.21117 0.96397 0.19768

50
2.26295 2.06143 2.26278 2.06138 2.11909 2.03343 2.25792 2.05326
1.00657 0.19669 1.00657 0.19668 0.39802 0.16998 0.88427 0.16388

Table 2. This table represents the estimates of the parameters
obtained through various estimation techniques when prior mean
is 2 and prior variance is 10 i.e.µ = 2,ν = 10 and also the quantity
in second row exhibits the average expected loss over sample space
i.e. risks of corresponding estimators.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

20
2.23773 2.06460 2.23834 2.06459 2.28362 2.00365 2.18074 2.00827
1.39995 0.39985 1.40243 0.40017 1.32136 0.36720 1.40399 0.42792

30
2.21472 2.04999 2.21525 2.05007 2.24926 2.00974 2.14724 1.99070
1.19207 0.26914 1.19239 0.26918 1.14257 0.25448 1.18310 0.28731

50
2.26295 2.06143 2.26265 2.06135 2.28564 2.03720 2.21927 2.02727
1.00657 0.19669 1.00658 0.19668 0.98506 0.18914 0.99635 0.20304
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Table 3. Table represents the estimates of the parameters ob-
tained through various estimation techniques and also the quan-
tity in square bracketed exhibits the average expected loss over
sample space i.e. risks under non-informative prior.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

20
2.23773 2.06460 2.23750 2.06448 2.34036 2.00526 2.15852 1.98538
1.39995 0.39985 1.40114 0.40005 1.60352 0.37905 1.46574 0.47475

30
2.21472 2.04999 2.21514 2.05005 2.28201 2.01046 2.12848 1.97225
1.19207 0.26914 1.19233 0.26916 1.30748 0.25955 1.23519 0.32177

50
2.26295 2.06143 2.26262 2.06137 2.30415 2.03762 2.21263 2.02207
1.00657 0.19669 1.00659 0.19669 1.07019 0.19134 1.01519 0.21145

Table 4. This table represents the estimates of the parameters
obtained by various methods of estimation for real data set under
the assumption that prior information assume to be non-
informative.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

16 8.62532 0.50074 8.62534 0.50074 9.12253 0.48963 8.62581 0.49910

Table 5. This Table represents the values of Log-likelihood, AIC
and BIC for different models in real data set.

Distribution -log L
Information Criterion
AIC BIC

Exponential 40.762 83.524 84.296
Generalized Exponential 38.836 81.673 83.218

Gamma 38.629 81.258 82.803
MOEED 38.044 80.089 81.634
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Figure 2. CDF plot for considered real data set
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Figure 3. Posterior density and trace plot for considered real
data set.
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