
*Corresponding Author  Vol. 23 (No. 2) / 59 

International Journal of Thermodynamics (IJoT) Vol. 23 (No. 2), pp. 59-79, 2020 
ISSN 1301-9724 / e-ISSN 2146-1511 doi: 10.5541/ijot.649929 
www.ijoticat.com  Published online: June 1, 2020 

 

 

The Importance of the Debye Bosons (Sound Waves) for the Lattice Dynamics of 

Solids 
 

U. Köbler 

 

Research Center Jülich, Institute PGI, 52425 Jülich, Germany  

E-mail: u.koebler@fz-juelich.de 

 
Received 22 Nov 2019, Revised 3 Mar 2020, Accepted 23 Mar 2020 

 

Abstract 

For non-magnetic solids the two experimental signatures of a non-negligible and decisive interaction between the 

Debye bosons (sound waves) and the (acoustic) phonons are discussed: 1.) for large thermal energies the dispersion 

of the mass-less Debye bosons is a weaker than linear function of wave vector, and 2.) for many cubic materials the 

dispersion of the acoustic phonons along [ζ 0 0] direction follows a perfect sine function of wave vector, which is 

known to be the dispersion of the linear atomic chain. Only the absolute phonon energies are due to the inter-atomic 

interactions. It is argued that the sine-function originates in a relatively weak Debye boson-phonon interaction. For a 

strong Debye boson-phonon interaction, the dispersion of the acoustic phonons assumes initially over a large q-range 

the linear dispersion of the Debye bosons, followed by an analytical crossover to the sine-function. As a consequence 

of the boson-controlled wave-vector dependence of the phonons, the temperature dependence of the heat capacity of 

the phonon system is also determined by the Debye bosons, and exhibits universal power functions of absolute 

temperature. Quantitative analyses of the dispersion relations of the mass-less Debye bosons (sound waves) of cubic 

materials along [ζ 0 0] direction show that the dispersion is a linear function of wave vector only for low energies. 

When all phonon modes are excited, that is, for thermal energies of larger than corresponds to the Debye temperature 

(ΘD), the dispersion of the Debye bosons follows a power function of wave-vector ~qx. For the exponent x the rational 

values of x=0, 1/4, 1/3, 1/2, 2/3 and 3/4 could firmly be established experimentally. The discrete values of x show 

that there are distinct modes of interaction with the phonons only. Quantitative analyses show that the temperature 

dependence of the heat capacity can be described accurately over a large temperature range by the expression cp=c0-

B‧T-ε. The constants c0 and B are material specific and define the absolute value of the heat capacity. However, for 

the exponent ε the same rational value can be observed for materials with different chemical compositions and lattice 

structures. The finite temperature range of the cp=c0-B‧T-ε function and the rational exponents ε are the typical 

characteristics of a boson determined universal behavior. This universality must, however, be considered as a non-

intrinsic dynamic property of the atomistic phonon system, arising from the Debye boson-phonon interaction. Safely 

identified values for ε are ε=1, 5/4 and 4/3. The discrete modes of the boson-phonon interaction are essential for the 

different universality classes of the heat capacity, i.e. for the different exponents ε. The fit values for c0 are generally 

larger than the theoretical Dulong-Petit value. Universal exponents are identified also in the temperature dependence 

of the coefficient of the linear thermal expansion, α(T). Since the universal power functions in the α(T) dependence 

are functions of absolute temperature and hold for the same thermal energies (temperatures) as the ~qx functions in 

the dispersion of the Debye bosons, it can be concluded that the Debye bosons determine also the temperature 

dependence of α(T). Our results show that the Debye bosons dominate the dynamics of the atomic lattice of the non-

magnetic solids for all temperatures. The atomistic models restricting on the inter-atomic interactions therefore are 

neither sufficient to explain the phonon dispersion relations nor the detailed temperature dependence of the heat 

capacity. 
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1. Introduction 

    The temperature dependence of the heat capacity 

of all non-magnetic solids is qualitatively very 

similar, quite independent of the chemical 

composition and of the lattice structure. Only the 

absolute values of the heat capacity are material 

specific and are determined by the microscopic inter-

atomic interaction strengths and by the total number 

of the atomic degrees of freedom. The total number 

of degrees of freedom defines the saturation value of 

the heat capacity at the Dulong-Petit (D-P) limit, 

given by c(D-P)=3nNLkB where n is the number of 

atoms per formula unit, NL the number of atoms per 

mole and kB the Boltzmann constant. The inter-

atomic interaction strengths define the temperature 

at which the D-P limit is reached. This occurs 

approximately at the Debye temperature ΘD.  

    A temperature dependence that is independent of 

the chemical composition and of the lattice structure 

is called universal. Observation of universality 

strongly suggests that the temperature dependence of 

the heat capacity (not its absolute value!) is 

controlled by a boson field (see Figures 18-20 

below). The only known boson type that can be made 

responsible for the observed universal temperature 

dependence of the heat capacity are the Debye 

bosons, better known as sound waves. Universality 

for temperatures for which the absolute values of the 

heat capacity are material specific and are 

determined by the inter-atomic interactions, is 

surprising [1]. Only the low-temperature heat 

capacity of all solids is well-known to be universal 

[2]. For all solids, the observed low-temperature heat 

capacity is the heat capacity of the Debye boson 

field, and follows the famous Debye T3 function over 

a finite temperature range, commonly up to 10…30 

K (see Figure 1). In terms of the Renormalization 

Group (RG) methods [3], in this temperature range 

the heat capacity of the material specific lattice 

vibrations is not relevant and is completely 

suppressed. In other words, there is no thermal 

energy in the system of the lattice vibrations 

(phonons). It is a quite general, and experimentally 

well-established issue of the RG-methods, that in the 

vicinity of critical temperatures the dynamics is that 

of a boson field. The microscopic inter-atomic 

interactions play no role. In fact, T=0 is the critical 

temperature of the Debye boson field, completely 

equivalent to a finite ordering temperature. The T3 

function could be called a critical power function, 

and is a prominent example of universality (Figure 

1). Note that by symmetry arguments, phonons and 

bosons cannot become relevant at the same time.  

    No contribution of the lattice vibrations to the 

observed heat capacity can be proven by showing 

that the pre-factor of the T3 function agrees with the 

pre-factor calculated from the known sound 

velocities [4]. Possible contributions of the lattice 

vibrations would increase the heat capacity over the 

Debye value (see Figure 2). For the following it is 

important to note that the low-temperature T3 

function is the intrinsic behavior of the Debye boson 

field. Observation of the same T3 function in solids 

with different lattice symmetries is because the 

Debye boson field is not ordered and, so to say, 

isotropic. Typical for disordered boson fields is the 

absence of domains.  

 

Figure 1. Low-temperature heat capacities of 

various insulating compounds with different 

compositions and lattice structures as a function of 

the absolute temperature to a power of three [8]. For 

the mechanically hard materials the low-

temperature heat capacity is low (the Debye 

temperature is high) and has been multiplied by the 

given factors. The material-independent universal T3 

function is the intrinsic heat capacity of the Debye 

boson field. Heat capacity contributions of the lattice 

are not relevant, in the sense of the RG-methods. 

 

    In the metals an additional heat capacity term, 

linear-in-temperature, due to the electronic system 

superimposes on the T3 term [5]. Since the linear-in-

T term occurs for all metals and holds approximately 

over the same temperature range as the T3 function 

of the Debye boson field, it is also due to bosons [6]. 

These bosons are the excitations of the spatially 

continuous electronic (metallic) medium. Quite 

analogous to the Debye bosons that exist in addition 

to the phonons, the bosons of the electronic 

continuum (the EC-bosons) exist in addition to the 

better-known electronic band states [6]. In fact, in 

solids we have to distinguish between the bosons of 

the   elastic,   magnetic   and   electronic  degrees  of 
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freedom. Superposition of the T3 and of the T-term 

in the low-temperature heat capacity of all metals [5] 

is possible only because the Debye bosons and the 

EC-bosons do nearly not interact. Due to the very 

weak interaction with the elastic degrees of freedom, 

the EC-bosons have a very large mean free path [7]. 

The fact that thermal conductivity of all metals starts 

with the linear-in-T dependence of the heat capacity 

of the EC-bosons proves that thermal conductivity of 

the metals is exclusively due to the EC-bosons. The 

mean free path of the EC-bosons therefore must be 

larger than the usual linear dimension of the samples 

[6,7]. Note that thermal conductivity by phonons is 

generally negligible [7]. Observation of a linear-in-

T heat capacity for all metals, independent of the 

lattice structure shows that the EC-boson field is not 

ordered. As for the Debye boson field, the critical 

temperature of the EC-boson field is T=0; the critical 

heat capacity (the linear-in T term) is a function of 

absolute temperature. Only for temperatures of 

larger than 10…30 K the crossover to the atomistic 

band-states occurs and the dispersion of the EC-

bosons is no longer thermally populated. Thermal 

conductivity of the metals then decreases 

dramatically [7]. The nearly temperature-

independent low thermal conductivity for T> 10…30 

K is due to the electronic band states. 

    Figure 1 visualizes for a selection of insulators the 

composition- and lattice structure independence of 

the universal T3 function of the low temperature heat 

capacity [8]. A power function of temperature with 

rational exponent that holds over a finite temperature 

range is the typical signature of a boson field. In fact, 

universality is the thermodynamic behavior of a 

boson field [6]. Universality results from the lattice-

structure independent, ballistic propagation mode of 

the bosons. This makes the dispersion relation of the 

bosons a single power function of wave-vector for 

all energies. For the mass-less Debye boson, the 

dispersion is a linear function of wave-vector along 

all crystallographic directions, at least for low 

thermal energies (compare Figures 8-15 below). 

    The Debye T3 function holds rather precisely up 

to a crossover at which the pre-factor of the T3 

function increases suddenly. Figure 2 visualizes this 

analytical crossover event using the heat capacity of 

MgO as an example [9]. We have called this type of 

crossover amplitude crossover (AC) [6]. For the 

rather hard material MgO the amplitude crossover is 

at a fairly high temperature of TAC=40 K. Due to the 

increased pre-factor of the T3 function for 

temperatures of T>TAC the heat capacity becomes 

larger, over an intermediate temperature range, 

compared to the Debye heat capacity [10]. The 

amplitude crossover therefore provides clear 

evidence for the existence of energy degrees of 

freedom in addition to the Debye bosons. These 

energy degrees of freedom are, of course, the 

acoustic phonons. The increased pre-factor of the T3 

function for T>TAC is a nice experimental example 

to illustrate the principle of the RG-methods to 

distinguish between relevant and non-relevant 

energy degrees of freedom [3]. For T<TAC the Debye 

bosons are the relevant excitations. In this 

temperature range the observed heat capacity is the 

intrinsic heat capacity of the Debye boson field and 

follows a pure T3 function. The heat capacity of the 

lattice vibrations is negligible (if the pre-factor of the 

T3 function agrees with the pre-factor calculated 

from the sound velocities [4]). With increasing 

thermal energy, or temperature, the dispersion 

energy of the Debye bosons becomes larger than the 

dispersion energy of the acoustic phonons. This is 

because the dispersion of the mass-less Debye 

bosons continues as a nearly linear function of wave 

vector, while the dispersion of the acoustic phonons 

is curved and saturates towards the zone boundary 

(see Figures 9-13 below). The finite atomic near-

neighbor interactions set an upper energy limit to the 

phonons. Since the inter-atomic interactions are of 

no importance for the Debye bosons, their (nearly) 

linear dispersion continues unlimited. Only the 

melting temperature sets an upper energy limit to the 

Debye bosons. Note that the melting temperature 

commonly is much higher than conforms to the 

largest phonon energy, given approximately by 

~kB‧ΘD (see Figures 8-15 below). It is intuitively 

clear that at high temperatures the system with the 

lowest excitation energy will host the thermal 

energy. At elevated temperatures this is the phonon 

system. This qualitative argument becomes 

quantitatively stringent due to the symmetry 

selection principle of relevance. According to the 

RG methods [3], the thermal energy can be only 

either in the system with discrete translation 

symmetry (phonons) or in the system with 

continuous translation symmetry (Debye boson 

field). Since there is a finite interaction between the 

two systems, the two symmetries exclude each other. 

Relevance, therefore, has the dramatic consequence 

that all available states of the boson field and of the 

atomistic excitations (phonons) cannot 

simultaneously be occupied thermally according to 

the Boltzmann factor. Detailed balance holds for the 

energy level system of the relevant excitation 

systems only. The energy states of the non-relevant 

system are thermally not populated. The alternation 

of the thermal energy from one to the other excitation 



62 / Vol. 23 (No. 2)   Int. Centre for Applied Thermodynamics (ICAT) 

system is a crossover that gives rise to a non-steady 

behavior in the temperature dependence of the heat 

capacity. 

 

Figure 2. Amplitude crossover at TAC=40 K in the T3 

dependence of the heat capacity of MgO [9]. Only 

for T>TAC the heat capacity of the non-relevant 

phonons is sufficiently large to induce a crossover to 

a larger pre-factor of Debye´s universal T3 function. 

Low-temperature data are plotted a second time with 

the coordinate values multiplied by the given factors. 

 

    The transfer of the thermal energy from the Debye 

boson field to the system of the lattice vibrations 

proceeds by two crossover events [6]. We will 

designate the two crossover temperatures by TAC and 

T*. For T>TAC, the Debye boson field remains, at 

first, the relevant excitation system over some finite 

temperature range. This means, the T3 function 

persists. However, the effect of the non-negligible 

but non-relevant acoustic phonons is to increase the 

pre-factor (amplitude) of the universal T3 function. 

The phonons now are no longer completely 

suppressed. The amplitude crossover illustrates the 

principle of the RG methods that finite but non-

relevant energy degrees of freedom enter the pre-

factor of the universal power function of temperature 

of the relevant system but they do not change the 

universal exponent that is determined by the relevant 

system [3]. The nature and the intrinsic heat capacity 

of the non-relevant system therefore become not 

apparent. For the following it is important to note 

that this is a typical example that the heat capacity of 

the material specific lattice vibrations is dominated 

by the Debye bosons. The heat capacity 

contributions of the Debye bosons and of the 

phonons do not superimpose. This is because the two 

systems with different translational symmetry 

interact. The amplitude crossover is a threshold 

induced, discrete reaction on a sufficiently strong 

continuous variation of non-relevant energy 

contributions as a function of temperature. This 

proves the stability of the universality class of the 

boson field and its dynamic dominance. Only when 

the non-relevant energy contribution has become as 

strong as the relevant energy contribution it can 

become relevant and can change or lift the 

universality class. In this way, the type of the 

dynamic symmetry is always clearly defined, also 

when two excitation systems with different 

(translational) symmetry interfere. Typical for the 

non-asymptotic T3 function is an absolute (negative) 

constant (see Figure 2).  

    When the phonons are the relevant excitation 

system, the T3 function does no longer hold. This 

happens at a second crossover event, that is at T*=92 

K in the case of MgO, and therefore is outside the 

temperature window of Figure 2. At T* the transfer 

of the thermal energy to the phonon system gets 

completed (see Figures 3 and 4) [6]. At this 

crossover, the heat capacity falls below the 

asymptotic Debye T3 function and, eventually, 

saturates at the D-P limit. The two crossover events 

at TAC=40 K and at T*=92 K (in the case of MgO) 

with an increasing and a decreasing heat capacity 

with respect to the asymptotic T3 Debye heat 

capacity, respectively, give rise to a rather sharp 

minimum in the conventional descriptions of the 

experimental heat capacity data by a temperature 

dependent Debye temperature [11]. Note that a large 

heat capacity means a low Debye temperature. A 

continuous temperature dependence of the fitted 

Debye temperature means an infinite number of fit 

parameters.  

    Commonly it is assumed that the heat capacity 

shows a material specific, atomistic dynamics and, 

therefore, exhibits no universal power functions of 

temperature when the atomistic phonons determine 

the absolute value of the heat capacity [1]. This 

argument refers to the temperature interval between 

T=T* and that temperature at which the heat capacity 

reaches the D-P limit which occurs approximately at 

T=ΘD (Figures 3 and 4). It is the aim of this 

communication to show on account of quantitative 

analyses of available experimental heat capacity data 

[8,14,15] that this is not correct. Obviously, the 

Debye bosons interact at all thermal energies 

(temperatures) with the phonon system and 

determine the wave-vector dependence of the 

phonons (see Figures 5-7 below) and, therefore, the 

heat capacity of the phonon system. The interactions 

between the Debye bosons and the phonons do 

obviously not depend on whether the dispersion 

relation of the Debye bosons is thermally populated 

or not, i.e. whether the Debye bosons are relevant or 
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not. Note that for temperatures of T>T* the 

dispersion of the Debye boson is no longer thermally 

populated (the T3 function does no longer hold) 

(Figures 3 and 4). In the temperature range T>T*, the 

Debye bosons are, so to say, virtual states. Owing to 

the Debye boson-phonon interaction that is active for 

all temperatures, the heat capacity of the phonon 

system receives a non-intrinsic universal 

temperature dependence from the Debye bosons. 

Essential for the distinct universality classes of the 

heat capacity of the phonon system is that there are 

only a few discrete modes of the Debye boson-

phonon interaction. The different modes of 

interaction make the dispersion of the Debye bosons 

a non-linear function of wave vector (~qx) with a 

rational exponent x. As we will see, depending on 

the type of interaction, the discrete values of the 

exponent x are in the wide range of 0<x<3/4. This 

enables a rather clear distinction between the 

different exponent values. The universality classes 

induced by the Debye bosons in the temperature 

dependence of the heat capacity of the phonon 

system therefore depend essentially on the type of 

interaction between Debye bosons and phonons. It is 

observed that the exponents ε in the temperature 

dependence of the heat capacity of the phonon 

system according to cp=c0-B‧T-ε are rational numbers 

(see Figures 18-20 below). Note that the parameters 

c0 and B are atomistic, i.e. material specific and 

define the absolute value of the heat capacity. The 

parameter c0 scales approximately with the D-P 

limiting value, i.e. with the total number of atomic 

degrees of freedom, while the parameter B is 

determined by the inter-atomic interaction strengths 

and scales approximately with ΘD (see Figure 18 

below). Since all observed values of the exponent ε 

are in the narrow window of 1<ε<4/3, they are more 

difficult to separate from each other experimentally 

than the corresponding exponents x in the dispersion 

of the Debye bosons. The decisive characteristic of a 

boson defined universal heat capacity of the phonon 

system is that a single power function of absolute 

temperature with rational exponent holds over a 

large temperature range (see Figures 18-20 below). 

It seems to be a general phenomenon that the 

dynamics of solids is determined by bosons [6]. The 

length scale of the boson-determined dynamics is 

given by the mean free path (or coherence length) of 

the bosons. Phonons (or magnons) are local 

excitations on the short length scale of the lattice 

parameter and provide no unambiguous evidence of 

a coherent long-range order (see below). On the 

length scale of the inter-atomic distance there are no 

universal features.  

    Indications of rather weak Debye boson-phonon 

interactions are already noticeable for the 

temperature range of Debye´s asymptotic T3 

function. The T3 function holds exactly only for a 

vanishing Debye boson-phonon interaction. Note 

that in the temperature range of the T3 function the 

heat capacity of the phonons is suppressed. In fact, 

the T3 function results from a pure field theory 

assuming that the field bosons are perfectly free 

particles and have linear dispersion [2]. This means 

that the velocity of the Debye bosons is a 

temperature independent constant. In reality, this 

holds strictly for T→0 only [13]. Debye´s theory is 

very similar to Planck´s treatment of the 

electromagnetic radiation field in vacuum. Note that 

the Planck boson field is universal, i.e. independent 

of the material of the walls of the cavity. Its energy 

density is ~T4 (Stefan-Boltzmann law) for all 

temperatures.  

    As is well-known, the assumption of perfectly free 

bosons is rarely realized in solids. For practically all 

solids it is observed that the sound velocities (elastic 

constants) decrease moderately as a function of an 

increasing temperature [12]. This is because the 

effective interaction of the Debye bosons with the 

phonons becomes stronger with an increasing 

thermal excitation of the phonons. This interaction 

provides damping to the Debye bosons and 

decreases their velocity as a function of an increasing 

temperature [13]. Additionally, damping of the 

Debye bosons depends somewhat on the purity and 

crystalline perfection of the considered sample, and 

therefore is not perfectly reproducible [12]. Quite 

generally, due to interactions with the atomic 

background the dispersion of the Debye bosons 

becomes a weaker than linear function of wave-

vector [13]. Debye´s T3 function then holds ideally 

for vanishing interactions only, that is 

asymptotically for T→0. In the range T<TAC, the 

deviations from the perfect T3 function are rather 

small and not resolved in Figure 1.  

    With increasing temperature more and more 

phonons get excited. Eventually, on approaching the 

Debye temperature ΘD, nearly all phonons are 

excited. The Debye boson-phonon interaction then 

has reached its full value. This qualitative change is 

associated with an analytical crossover in the 

dispersion relation of the Debye bosons. 

Approximately at E~kB‧ΘD the dispersion of the 

Debye bosons changes from a weakly non-linear to 

a strongly non-linear wave-vector dependence 

(Figures 8-15). The strongly curved dispersion 

section can well be described by the expression 

E(q)=-A+B‧qx. Since  this  q-function  holds  for  the
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large energy range between the Debye temperature, 

ΘD, and the melting temperature, Tm, rather accurate 

fits for the exponent x are possible. It turns out that 

the fit values for the exponent x are rational numbers 

to a very good approximation. This is the basis for 

the rational values of the exponent ε in the 

temperature dependence of the heat capacity of the 

phonon system (cp=c0-B·T-ε). 

 
Figure 3. At T*=58 K the heat capacity of 

magnesium exhibits an analytical crossover from 

Debye´s T3 function to a power function of type 

cp=c0-B‧T-ε. Near to the Dulong-Petit limit a further 

crossover occurs (change from red curve to black 

straight line). The heat capacity values of larger 

than the D-P limit must be attributed to another type 

of boson field (the MP-bosons) that determines the 

critical dynamics at the melting point (see text) [16]. 

For many materials the heat capacity above the D-P 

limit is a linear function of temperature up to melting 

point [14-16]. 

 

    In summary, in the temperature dependence of the 

heat capacity of the insulating and non-magnetic 

solids three crossover events can be identified. At 

each crossover an analytical change of the 

temperature function occurs. Consequently, in 

contrast to the misleading concept of Debye [2], 

there is no closed expression possible that would 

describe the heat capacity for all temperatures. At a 

first crossover, at TAC, the pre-factor of the T3 

function increases suddenly (Figure 2). At a second 

rather broad crossover, at T*, the T3 function ceases 

and a change to a power function of temperature of 

the form cp=c0-B·T-ε occurs (Figures 3 and 4). Note 

that in Figures 3 and 4, the amplitude crossover 

events of magnesium (TAC=18.5 K) and of aluminum 

(TAC=22 K) are not resolved. For the metals, the 

visualization of the amplitude crossover as in Figure 

2 requires subtraction of the electronic heat capacity 

(cel=γ‧T) from the measured heat capacity [5,6]. 

Since the bosons of the electronic continuum, the 

EC-bosons, interact neither with the Debye bosons 

nor with the phonons there seems to be no amplitude 

crossover in the electronic heat capacity such that the 

cel=γ‧T function holds up to T*. This allows for a 

convenient subtraction of cel from the observed heat 

capacity of the metals [6]. Note that at T*, the T3 

function of the Debye bosons and the T-function of 

the EC-bosons cease. For magnesium we find 

γ=1.455 mJK-2mole-1 and for aluminum γ=1.38 mJK-

2mole-1.    

 
Figure 4. Heat capacity of aluminum up to melting 

point at Tm=933 K. At T*=66 K a crossover from T3 

function to a power function of type cp=c0-B‧T-1 

occurs [14,15]. At the Dulong-Petit limit of 24.95 

JK-1mole-1, a further crossover to a power function 

of type cp=A-B‧(Tm-T)2/3 occurs. The constant A gives 

the heat capacity at the melting temperature Tm. Note 

that c0 is larger than the D-P limit. 

 

    We should mention that the fitted values for c0 are 

generally larger by approximately ~10% compared 

to the theoretical D-P limit (see Figures 3 and 4). A 

third crossover occurs near to that temperature at 

which the heat capacity exceeds the D-P limit. This 

is approximately at ΘD. For magnesium, ΘD=403 K, 

for aluminum ΘD=433 K. Since heat capacity values 

of larger than the D-P limit are beyond atomistic 

concepts, it follows that additional energy degrees of 

freedom must be responsible for these heat capacity 

values. The large temperature range of the linear 

temperature dependence in Figure 3 and of the power 

function cp=A-B‧(Tm-T)2/3 in Figure 4 provides 

evidence that these power functions are also due to a 

boson field with Tm as critical temperature. Further 

examples of the power functions of the argument 

~(Tm-T) can be found in [16]. Note that as for the 

range of the low-temperature T3 function, the heat 

capacity values of larger than the D-P limit are 

exclusively due to a boson field. We will call these 

bosons that determine the heat capacity in the 

vicinity of the melting point, MP-bosons. The 

hypothetical MP-bosons are, however, completely 

unexplored. We must assume that the MP-boson 
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field orders at Tm and therefore appears to be 

responsible for the development of a long-range and 

coherent atomic order below Tm. This argument 

assumes that the MP-bosons are also generated by 

stimulated emission. Typical for ordered boson 

fields are domains. It is suggestive to consider the 

mosaic blocks, occurring in practically all solids, as 

the domains of the ordered MP-boson field. We 

should note that in axial crystals the domain 

structures are not very stable and can depend on the 

strain in the sample. As a consequence, the domain 

structure can easily be changed by weak external 

perturbations such as pressure. Note that the long-

range and coherent atomic order reveals clearly only 

from the very narrow x-ray scattering lines observed 

in the crystal structure analyses. Phonon (or magnon) 

dispersions measured by inelastic neutron scattering 

are local excitations and give no unambiguous 

evidence of a long-range atomic (magnetic) order. 

Moreover, the MP-bosons warrant the cohesion of 

the solid for temperatures of larger than corresponds 

to the inter-atomic interaction strengths, as they can 

be estimated from the largest observed phonon 

energies, that correspond approximately to kB‧ΘD. 

Note that Tm is generally larger than ΘD. In other 

words, the MP-bosons have binding function and 

prevent the decomposition of the solid. This is 

different for the Goldstone bosons in magnetism. 

The Goldstone bosons destabilize the magnetic order 

and shift the magnetic ordering temperature to a 

lower value than corresponds to the near-neighbor 

exchange interactions. In ferromagnets, the critical 

temperature TC is generally lower than the Curie-

Weiss temperature Θ. Possibly, all order-disorder 

phase transitions are driven, by boson fields [18,19]. 

Typical for boson driven phase transitions is that the 

width of the critical range is finite and that the 

critical exponents are rational numbers. This seems 

to apply also to phase transitions of first order such 

as the melting transition [16,17].  

    In the intermediate temperature range between T* 

and the D-P limit, the lattice vibrations determine the 

absolute values of the heat capacity. Nevertheless, in 

this temperature interval, the detailed temperature 

dependence of the heat capacity is determined by the 

Debye boson field, and is given by a power function 

of absolute temperature (cp=c0-B·T-ε). If in this 

temperature range the MP-bosons would determine 

the temperature dependence of the heat capacity, 

power functions of (Tm-T) should hold. Note that the 

Debye boson field is not ordered, its critical 

temperature is T=0. The heat capacity of the Debye 

boson field is a function of absolute temperature! 

This also supports the conclusion that the function of 

absolute temperature for the phonon heat capacity 

according to cp=c0-B·T-ε is determined by the 

interaction with the Debye bosons.  

    That bosons control the dynamics of atomistic 

systems is well-know from magnetism [6]. The 

absolute values of the spontaneous magnetization are 

given by the atomic magnetic moments and are 

material specific but the thermal decrease of the 

spontaneous magnetization is determined not by the 

interactions between the spins but by the heat 

capacity of the Goldstone boson field and exhibits 

universality [6]. Independence the boson-controlled 

universal dynamics of the near-neighbor exchange 

interactions reveals clearly from the fact that in the 

whole ordered range the dynamics is independent of 

the spin structure. The width of the critical range at 

the two critical temperatures T=0 and the magnetic 

ordering temperature, T=Tc is sufficiently large such 

that the two associated critical power functions 

overlap [6]. The intersection point of the two power 

functions is another example of a crossover event 

(analytical change). For most order-disorder phase 

transition, such as the liquid-gas transition, the 

relevant bosons are, however, not yet explored 

[18,19].   

    The exponent ε in the temperature function cp=c0-

B·T-ε of the heat capacity of the phonons is universal. 

Since this universality is not an intrinsic property of 

the phonon system but arises from the Debye boson-

phonon interaction, the exponent ε depends on the 

type of this interaction. As a consequence of the 

different types of boson-phonon interaction, 

different values for ε result. Since the heat capacity 

is an integral quantity, it is affected by all 

interactions between Debye bosons and phonons 

along all crystallographic directions and for all 

polarizations. Here we restrict on the evaluation of 

these interactions for cubic materials along [ζ 0 0] 

direction. This is accomplished by fitting ~qx power 

functions to the high-energy part of the dispersion 

relations of the Debye bosons (see Figures 8-15 

below). The corresponding analyses along the other 

crystallographic directions are more complex and 

less conclusive. Clearly identified values for the 

exponent x are x=0, 1/4, 1/3, 1/2, 2/3 and 3/4. From 

our analyses of the heat capacity according to the 

function cp=c0-B·T-ε, exponent values of ε=1, 5/4 and 

4/3 could be established firmly (see Figures 16-18) 

but further exponents between ε=1 and ε=5/4 seem 

to exist in addition. It is, however, not possible to 

correlate the exponents x, evaluated from the 

dispersions of the Debye bosons along only the [ζ, 0, 

0] direction with the integral exponent ε. Note that 
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the exponents x commonly are different for the two 

polarizations of the Debye bosons.  

 

2. Dispersion of the Acoustic Phonons 

    The following analyses of the dispersion relations 

of the acoustic phonons of cubic materials along [ζ 0 

0] direction provide strong evidence that the wave-

vector dependence of the phonon dispersions is 

determined by the Debye bosons. Since atoms have 

a mass, excitation of lattice vibrations requires 

irradiation of massive neutrons. Figure 5 shows for 

the cubic Rare Gas solids and for solid 4He the 

dispersions of the phonons with transverse 

polarization measured along cube edge using 

inelastic neutron scattering [20-24]. All shown solid 

gases have the fcc structure. As can be seen, for all 

materials the dispersion is given perfectly by a sine 

function of wave vector (solid curves through the 

experimental points). As is well-known, the sine 

function is the dispersion of the linear atomic chain. 

It is unlikely that the linear chain dispersion is the 

intrinsic behavior of three-dimensional solids. From 

the perfect one-dimensional dispersion, we have to 

conclude that the generation process of the Debye 

bosons is dominated, as for the Goldstone bosons in 

the magnetic solids, by stimulated emission 

[6,27,28,41]. The sine function evidently holds 

independent of the type of the solid gas and of the 

details of the inter-atomic interactions. Only the pre-

factor of the sine function is material specific.  

  
Figure 5. Dispersion of the phonons with transverse 

polarization of some solid gases, all with cubic fcc 

structure, measured along cube edge using inelastic 

neutron scattering [20-24]. The curves through the 

experimental points are sine functions of wave-

vector. These data have been taken at 10 K (36Ar, Xe, 

Kr), at 6.5 K (Ne), and at 15.5 K (4He). For better 

clarity the dispersion energies of Ne and Xe are 

multiplied by the given factors. 

 

    

    Figure 6 shows similar results but for 

conventional solids all with cubic lattice symmetry 

[25]. For all selected materials the dispersion of the 

acoustic phonons with transverse polarization is 

given by a sine function of wave-vector (solid curves 

through the experimental points). Note that the 

materials of Figure 6 have different cubic lattice 

structures: copper has fcc structure, LiF and TiC 

have the NaCl structure with 4 molecules per unit 

cell, CsCl has cubic structure with only one molecule 

per unit cell [26]. As a conclusion, the sine function 

of wave-vector is universal and must, hence, be 

determined by a boson field. The only bosons that 

one could imagine are the Debye bosons 

    A phonon dispersion that is manipulated by a 

boson field has the severe consequence that the inter-

atomic force constants cannot be evaluated 

conclusively from the phonon dispersion curves [1]. 

We should mention, that a similar phenomenon is 

observed for the magnetic excitations (magnons) 

[6,27,41]. For many magnets with one magnetic 

species only, the dispersion of the magnons is given 

by a sine-function of wave vector for 

antiferromagnets but by a sine-function squared for 

ferromagnets [41]. These functions are known to 

apply to the linear spin chains. Observation of one-

dimensional magnon dispersion relations in three-

dimensional solids can be explained by the fact that 

the magnon propagation is restricted to the 

individual magnetic domain. Since the Goldstone 

bosons (magnetic dipole radiation) are generated by 

stimulated emission [28], the boson field within each 

domain is perfectly one-dimensional [27]. Owing to 

interactions with the spin system, the one-

dimensional boson field stabilizes the perfect 

collinear spin alignment within each magnetic 

domain and leads to the one-dimensional wave 

vector dependence of the magnons, quite 

independent of the local anisotropy of the exchange 

interactions and of the lattice structure. In other 

words, the one-dimensional Goldstone boson field 

furnishes the spin system with a particular axial 

anisotropy that is not known in the atomistic spin 

wave theory. In magnets with a pure spin moment, 

the magnon gap provides a measure of the stability 

of the one-dimensional spin order. We must assume 

that the functionality of the Debye bosons for the 

dispersion of the phonons is similar to the 

functionality of the Goldstone bosons for the 

dispersion of the magnons, although the Debye 

boson field is not ordered. Note that magnon 

dispersions as for the linear spin chain are observed 

also in the paramagnetic phase where the Goldstone 

boson   field   is   also   not   ordered   [27,28].    For 
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disordered boson fields the observed dimensionality 

seems to hold on the short atomistic length scale 

only, as it is sampled specifically by inelastic 

neutron scattering [41]. 

    Since the initial slopes of the sine functions in 

Figure 6 agree quantitatively with the quoted sound 

velocities, measured at the same temperature as the 

phonons [12], it can be concluded that the Debye 

bosons determine the initial slopes of the phonon 

dispersion. Note that the sound velocities are 

measured with a completely independent 

experimental method compared to the phonon 

dispersions. The results of the two experimental 

methods are combined in Figure 6. In other words, 

due to a finite Debye boson-phonon interaction the 

dispersion relations of the two excitation systems 

attract each other. It is a quite common phenomenon 

that the dispersion relations of excitations with 

different (translation) symmetries cannot cross but 

can attract each other only, if there is a finite 

interaction between them. Crossing is allowed only 

for a vanishing interaction. We can assume that not 

only the slope of the initially linear dispersion of the 

acoustic phonons is determined by the Debye 

bosons, but that the whole wave vector dependence 

(the sine-function) is determined by the Debye 

bosons. From the fact that the dispersion of the 

phonons is as for the linear atomic chain we have to 

conclude that the Debye boson field is one-

dimensional, along the main crystallographic 

symmetry directions. As for the Goldstone bosons 

(magnetic dipole radiation) in magnetism [6,28], the 

spontaneous generation of the Debye bosons seems 

to be dominated by stimulated emission. 

Spontaneous creation and absorption of Debye 

bosons by individual atoms are, however, 

completely unexplored processes. 

    Since the Debye boson field is not ordered (the 

critical temperature is T=0), the long-range coherent 

atomic order, evidenced by x-ray scattering methods, 

cannot be stabilized by the Debye bosons but must 

be stabilized by the ordered MP-boson field. Note 

that in the critical paramagnetic range above the 

magnetic ordering temperature, the Goldstone boson 

field is also not ordered. In spite of no long-range 

magnetic order, the Goldstone bosons are the 

relevant excitations to determine the universality 

class (the critical exponent) of the two-spin 

correlation length and of the paramagnetic 

susceptibility. These quantities can be sampled using 

the microscopic method of neutron scattering. The 

observed one-dimensional structures of the 

disordered boson fields, possibly, hold on the short 

atomic length scale only, and seem to be a 

consequence of the generation process of the bosons 

by stimulated emission. Note that magnons and 

phonons are the typical excitations on the short 

length scale of the lattice parameter. Magnons and 

phonons provide no definite evidence of a long-

range and coherent order. This can be concluded 

from the fact that magnons can be observed far above 

the magnetic ordering temperature [33,41].   

  

 
Figure 6. For the selected cubic materials, the 

dispersion of the acoustic phonons with transverse 

polarization measured along the cube edge is given 

by a sine-function of wave vector (solid curves), 

quite independent of the chemical composition and 

of the details of the lattice structure viz. inter-atomic 

interactions [29-32]. The initial slopes agree 

quantitatively with the sound velocities (straight 

lines) measured at the same temperature as the 

phonon dispersions [12]. Only for CsCl the phonon 

dispersion is measured at 78 K, for the other 

materials at room temperature. 

 

    The behavior displayed Figures 5 and 6 is not 

generally observed. A dispersion given by a pure 

sine function of wave vector for all q-values seems 

to apply to materials with a rather weak Debye 

boson-phonon interaction only. For a stronger Debye 

boson-phonon interaction the dispersion of the 

acoustic phonons gets stronger attracted by the linear 

dispersion of the Debye bosons. This means, the 

phonon dispersion initially assumes over a finite 

wave vector range the linear dispersion of the Debye 

bosons. The slope of this linear dispersion section 

agrees with the measured sound velocities (Figure 7) 

[12]. The strong modification of the phonon 

dispersion by the Debye bosons shows the primacy 

of the Debye bosons. Since either the behavior of 

Figure 6 or Figure 7 is observed, it can be concluded 

that the Debye boson-phonon interaction is 

quantized. 
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Figure 7. For a strong Debye boson-phonon 

interaction the dispersion relation of the acoustic 

phonons is determined over a finite wave vector 

range by the linear dispersion of the Debye bosons 

[25,34-36]. At the end of the linear section an 

analytical crossover to a sine function occurs [27]. 

It turns out to be necessary to add a phase shift (ϕ) 

in the argument of the sine function. The given sound 

velocities refer to ambient temperature at which the 

phonon dispersions are taken.  

 

    A linear phonon dispersion over a finite q-range 

implies that an analytical crossover must occur at the 

end of the linear dispersion section. At this crossover 

the dispersion changes to a sine function of wave 

vector. However, in order to obtain good agreement 

with the experimental data it turns out to be 

necessary to add a phenomenological phase shift (ϕ) 

in the argument of the sine-function [6,27]. The 

phase shift can be positive or negative and seems to 

be another measure of the Debye boson-phonon 

interaction strength. This clearly proves that the 

Debye boson-phonon interaction affects the 

dispersion of the acoustic phonons for all q-values. 

Due to the phase shift the zone boundary is no longer 

an absolutely sharp limit for the phonons. This is a 

typical consequence of the Debye boson-phonon 

interaction. Note that the Debye bosons propagate 

independent of the lattice structure. The zone 

boundary is of no significance for the Debye bosons. 

As will be shown by Figures 8-15 in compound 

materials the dispersion of the Debye bosons extends 

much beyond the zone boundary. 

    In the case of a very strong Debye boson-phonon 

interaction the analytical crossover from the linear 

dispersion to the sine function gets shifted to a large 

q-value. The q-range of the sine function then is 

small. Fitting the dispersion data by a sine function, 

including a phase shift in the argument, then gets 

very difficult or even impossible. 

 

3. Dispersion of the Debye Bosons 

    Since the Debye bosons (sound waves) have no 

mass they cannot be observed using scattering of 

massive neutrons. Instead, sound waves can be 

excited using transmitters attached to the surface of 

the sample. On the other hand, sound injection by a 

transmitter can generally not excite lattice 

vibrations. As we have seen in the preceding 

Chapter, Debye boson-phonon interactions modify 

the dispersion of the acoustic phonons. According to 

the principle of reciprocity it can therefore be 

expected that the dispersion of the Debye bosons will 

correspondingly be modified by the Debye boson-

phonon interaction. 

    The dispersion of the mass-less Debye bosons 

cannot be measured directly. However, as we have 

explained in [13], the dispersion of the Debye bosons 

can be constructed from the known temperature 

dependence of the sound velocities that are simply 

related to the elastic constants [12]. Using this 

method, it is assumed that the sound velocity 

measured at a temperature T gives the slope of the 

dispersion curve at an excitation energy of kB‧T. For 

all solids it is observed that the sound velocities 

(elastic constants) decrease somewhat as a function 

of an increasing temperature [12]. This effect can be 

attributed to interactions of the Debye bosons with 

the phonon system. With increasing thermal 

excitation of the phonons, the effective Debye 

boson-phonon interaction increases. This interaction 

provides an enhanced damping to the Debye bosons 

with increasing temperature and decreases their 

velocity. As a consequence, the dispersion of the 

Debye bosons assumes a weaker than linear wave-

vector dependence.  

    On the other hand, it is well-known that the elastic 

properties of solids depend somewhat on the 

crystalline perfection and on the impurity content of 

the sample, and therefore are not perfectly 

reproducible. Fortunately, for high-quality crystals, 

the intrinsic damping mechanism owing to 

interactions of the Debye bosons with the lattice 

vibrations dominates. The effect of the lattice 

imperfections is to decrease the absolute values of 

the elastic constants by a small nearly constant 

amount [12]. The dominant contribution to the 

temperature dependence of the sound velocity seems 

to be due to the intrinsic mechanism of the Debye 

boson-phonon interactions. 

    As a first example of the dispersion of the Debye 

bosons, calculated from the temperature dependence 

of the sound velocities, Figure 8 displays data for 

cubic KCl [12]. For energies of larger  than ~kB‧ΘD 
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the dispersion of the Debye bosons becomes strongly 

non-linear. This is characteristic for a strong Debye 

boson-phonon interaction. Evidently, for a strong 

Debye boson-phonon interaction all phonons must 

be excited. This is the case for thermal energies of 

E>kB‧ΘD. In fact, approximately at E/kB~ΘD the heat 

capacity exhibits also a crossover (Figures 3 and 4). 

At this crossover the MP-bosons become the 

relevant excitations for larger temperatures. On the 

other hand, for thermal energies of lower than 

~kB‧ΘD the dispersion of the Debye bosons is much 

less curved. We have to identify the change from a 

nearly linear but weakly curved dispersion for 

E<kB‧ΘD to a strongly curved dispersion for E>kB‧ΘD 

as an analytical crossover event. It turns out that for 

energies of E>kB‧ΘD the dispersion of the Debye 

bosons can well be fitted by q/q0=-A+B‧qx. Note that 

the q/q0=-A+B‧qx function is for an energy range 

where the MP-bosons are the relevant excitations. 

Nevertheless, there are strong indications that the 

Debye bosons interact not with the MP-bosons but 

with the phonons. One argument for this is the 

analytical form of the dispersion relation according 

to q/q0=-A+B‧qx that provides evidence that the 

Debye bosons interact with the phonons (see below). 

As we will show on discussing Figure 17, the MP-

bosons seem not to couple to the elastic degrees of 

freedom. No interaction of the MP-bosons with the 

elastic degrees of freedom (Debye bosons) might 

explain the fact that the melting transition of all 

solids is first order [15]. Ordering of the MP-boson 

field at the melting temperature resembles the 

threshold for the onset of stimulated emission of a 

LASER.  

    Note that for cubic crystals the velocity of the 

sound waves with longitudinal polarization, 

propagating along the cube edge (the [1 0 0] 

direction) is given by vL=(c11/ρ)1/2 and for sound 

waves with transverse polarization by vT=(c44/ρ)1/2 

with ρ as mass density. For no interaction of the 

Debye bosons with the phonons the elastic constants 

would be temperature independent and the 

dispersion of the Debye bosons would be a linear 

function of wave vector for all q-values (for all 

thermal energies). A constant sound velocity is 

realized for T→0 (or q→0) only. In Figure 8, the 

slope of this initially linear wave vector dependence 

is given by the straight lines for q→0. The associated 

sound velocities are given.  

    The power function q/q0=-A+B‧qx holds over the 

rather large energy range, starting from E~kB‧ΘD up 

to a thermal energy that corresponds to the melting 

temperature (~kB‧Tm). The absolute constant 

indicates that the function q/q0=-A+B‧qx is not the 

asymptotic behavior for q/q0→0. The fitted 

experimental values for the exponent x are to a very 

good approximation rational numbers of lower than 

unity. For KCl, the fitted values for x are consistent 

with the assumed rational numbers of x=1/2 and 3/4. 

Since we attribute the curvature of the dispersion of 

the Debye bosons to the interactions with the 

phonons it follows from the discrete values of the 

exponents x that there are distinct modes of 

interaction only. The lower the exponent x is, 

compared to unity, the stronger is the Debye boson-

phonon interaction.    

 

Figure 8. Dispersion of the mass-less Debye bosons 

with longitudinal (circles) and transverse 

polarization (filled circles) along the cube edge of 

KCl as constructed from the temperature 

dependence of the sound velocities, calculated from 

the elastic constants c11(T) and c44(T), respectively 

[12,13]. After a nearly linear dispersion at small q-

values an analytical crossover to a ~qx function 

(including a negative constant) with rational 

exponent x is identified (for explanation see text). 

The given sound velocities are calculated for 

c11(T→0) and c44(T→0).  

 

    There are several very remarkable features with 

the results displayed by Figure 8. Very surprising is 

that the dispersion of the Debye bosons extends 

much beyond the zone boundary, q/q0=1. In 

principle, the shortest possible wave-length of the 

bosons, and therefore the largest value of q/q0 is 

given by the diameter of the sources of the bosons. 

We must assume that the sources of the Debye 

bosons are the individual atoms, possibly inner 

atomic shells. As a consequence, for compound 

materials, the largest wave vector of the Debye 

bosons can be larger than the zone boundary that is 

given by the lattice parameter, q0=2π/a0. On the other 

hand, for KCl,  the  dispersion  of  the  Debye bosons 
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with transverse polarization, extends up to q/q0~8. 

Since the lattice parameter of KCl is a0=6.293 Å 

[26], this means that the diameter of the sources of 

the Debye bosons with transverse polarization is 

~0.8 Å which is considerably smaller than the 

diameter of the K+ ion (~2.66 Å) or the diameter of 

the Cl- ion (~3.62 Å). Note that for the NaCl structure 

of KCl the lattice parameter is given by the sum of 

the diameters of the K+ ion and of the Cl- ion.  

    Another very revealing detail in Figure 8 (and in 

all following Figures) is that the dispersion energy of 

the Debye bosons continues monotonically with 

increasing wave vector up to an energy that 

conforms to the melting temperature, Tm. For KCl, 

kB‧Tm corresponds to ~22 THz [8,15]. In particular, 

no anomaly can be seen at the Debye cut-off energy 

of kB‧ΘD with ΘD=236 K for KCl [4]. The 

monotonous behavior of the dispersion of the Debye 

bosons at the cut-off energy of kB‧ΘD corresponds to 

the monotonous temperature dependence of the 

elastic constants c11(T) and c44(T) that, commonly, 

are measured up to the melting temperature Tm [12]. 

As can be seen in Figures 8-15, quite generally, the 

fit of the q/q0=-A+B‧qx power functions holds up to 

melting temperature. 

    Absence of any anomaly at Debye´s cut-off 

energy proves the unphysical nature of this cutting 

procedure. The artificial termination of the 

dispersion of the Debye bosons at kB‧ΘD has the non-

sensical physical consequence that the solid would 

no longer have elastic properties for temperatures of 

T>ΘD. As a consequence, all solids would be ideal 

soundproofing materials for temperatures of larger 

than the Debye temperature. This contradicts the 

empirical facts. As is well-known, all solids have 

elastic properties up to the melting temperature and 

beyond as well. This means, excitation of sound 

waves is possible for all temperatures. The intention 

of Debye with his cutting procedure was to stop the 

exploding T3 dependence of the heat capacity of the 

Debye boson field. As we now know, the T3 function 

ceases at that temperature at which the thermal 

energy changes from the Debye boson field into the 

system of the lattice vibrations. As we have 

explained in connection with Figures 3 and 4, this 

crossover is at T*. At the time of Debye, crossover 

events were unknown, mainly because sufficient 

experimental data were not available to provide the 

necessary information. According to the symmetry 

selection principle of relevance, established by the 

RG methods [3], the thermal energy can be only in 

one or the other of the two excitation systems. Note 

that bosons and phonons are distinguished by 

different translational symmetries. In other words, 

the principle of relevance ascertains that different 

symmetries exclude each other.  

    It was the conceptual shortcoming of Debye´s 

theory not to strictly distinguish between the 

continuous translation symmetry of the bosons 

(sound waves) and the discrete translation symmetry 

of the phonons. At the time of Debye, these two 

symmetries were not yet recognized as the 

generators of different particles with specific 

excitation spectra. In his field theory, Debye has cut 

the assumed perfect linear dispersion of the sound 

waves in such a way that the heat capacity of the 

boson field saturates at the atomistic Dulong-Petit 

limit. To this end it was necessary to limit the infinite 

number of states of the boson field to the absolute 

number of states of the atomic system. The 

incorporation of atomic parameters, such as the 

number of atomic states, into a field theory is, 

however, strictly forbidden. The inconsistency of 

this procedure lies in the fact that atoms do not occur 

in a field theory. This is a consequence of the fact 

that the field bosons propagate ballistic, that is, 

independent of the atomic structure. For the bosons 

the solid is a continuum. Note that saturation of the 

heat capacity at the D-P limit holds automatically 

when all thermal energy has changed to the system 

of the lattice vibrations. The heat capacity of the 

Debye boson field then tends to zero. 

 
Figure 9. Dispersion of the Debye bosons (circles) 

[12,13] and of the acoustic phonons (filled circles) 

[37] of aluminum, both with transverse polarization, 

measured along the edge of the cubic fcc unit cell as 

a function of the reduced wave-vector. For q/q0>1 

the dispersion of the Debye bosons is excellently 

described by a wave vector dependence as ~q1/2. 

Note that the dispersion of the Debye bosons is 

continuous at Debye´s cut-off energy of kB‧ΘD~8.9 

THz.
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    In the following Figures 9-15 further examples of 

the evaluation of the exponents x are presented. 

Figure 12 shows that in one case (LiF) the particular 

exponent x=0 has been observed. This means a 

logarithmic behavior. 

  
Figure 10. Dispersion of the acoustic phonons (filled 

circles), measured at T=80 K [38] and dispersion of 

the Debye bosons (circles) [12], both for 

longitudinal polarization, measured along the edge 

of the cubic unit cell of NaCl. The velocity of the 

Debye bosons at T=80 K, calculated from the elastic 

constant c11(T), is indicated as straight line [12]. 

Above the analytical crossover at q/q0~1, the 

dispersion data of the Debye bosons are excellently 

described by the rational exponent of x=1/4. 

 

Figure 11. Dispersion of the Debye bosons (circles) 

[12] and of the acoustic phonons (filled circles) 

[38], both for transverse polarization measured at 

T=80 K along the edge of the cubic unit cell of NaCl. 

High-energy data for the Debye bosons are 

excellently described, up to an energy of kB‧Tm, by 

the rational exponent of x=2/3. Note that at the 

Debye cut-off energy of kB‧ΘD with ΘD=284 K (~5.9 

THz) the dispersion is continuous. The indicated 

sound velocity is for T=80 K, as calculated from the 

elastic constant c44(T) [12].  

 

 

Figure 12. Dispersion of the Debye bosons with 

longitudinal polarization (open triangles) along 

cube edge of LiF calculated from the temperature 

dependence of the sound velocity (elastic constant 

c11) [6,12,13]. Fit of the data by a log-function of 

wave vector means x=0. At the Debye cut-off energy 

at ~15.3 THz the dispersion is continuous. The 

dispersion of the LA-phonons, measured at T=298 K 

is given by circles [30]. The fitted sine-function 

includes a phase shift. The initial slope of the LA-

phonons agrees with the indicated sound velocity at 

T=298 K [6]. The melting temperature of LiF 

(Tm=1120 K) corresponds to ~23.3 THz. 

 

 

Figure 13. Dispersion of the Debye bosons with 

longitudinal polarization (filled circles) and with 

transverse polarization (circles) calculated from the 

temperature dependence of the sound velocities 

(elastic constants) for CsCl [12]. The transverse 

data confirm existence of the exponent x=1/3. The 

dispersion of the acoustic phonons with longitudinal 

polarization, measured at T=78 K, is given by solid 

points [32].
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Figure 14. Dispersion of the Debye bosons with 

longitudinal polarization (dots) and with transverse 

polarization (circles) calculated from the 

temperature dependence of the sound velocities 

[12]. These data for KBr confirm the exponent 

values of x=1/3 and x=1/2. The initially linear 

dispersions (straight lines) conform to the sound 

velocities for T→0. 

 

Figure 15. Dispersion of the Debye bosons with 

longitudinal polarization (circles) and with 

transverse polarization (filled circles) of tungsten 

calculated from the temperature dependence of the 

sound velocities (elastic constants) [12,13]. For both 

polarizations the exponent is x=3/4. The dispersion 

of the phonons with transverse polarization 

measured at ambient temperature is given by circles 

[34]. The initial slope of the phonon dispersion, 

measured at room temperature, is not visibly 

different from the sound velocity for T→0 (straight 

solid line). 

 

    The q/q0=-A+B‧qx power functions fitted to the 

dispersion relations of the Debye bosons (Figures 8-

15) are essentially in the energy (temperature) range 

between ~kB‧ΘD and ~kB‧Tm. In this temperature 

range the heat capacity is exclusively due to the MP-

bosons. We therefore have to investigate whether the 

curvature in the dispersion of the Debye bosons 

could alternatively be caused by interactions with the 

MP-boson. One argument against this is that direct 

interactions between two boson types are generally 

unlikely. Debye bosons and photons do also not 

interact. If there is an interaction between Debye 

bosons and MP-bosons it can be assumed that this 

interaction involves the elastic degrees of freedom. 

It is therefore useful to have a look on the behavior 

of the lattice expansion data in the temperature range 

between ΘD and Tm. In Figure 16 the temperature 

dependence of the coefficient of the linear thermal 

expansion of cubic aluminum, α(T), is plotted as a 

function of temperature (large red dots) [39]. 

Additionally, heat capacity data of aluminum up to 

melting temperature are shown (small black dots) 

[14,15]. In the range below the D-P limit the heat 

capacity data of Al have been matched to the α(T) 

data. As can be seen, for heat capacity values of 

lower than the D-P limit there is a perfect 

proportionality between both quantities. This is the 

so called Grüneisen relation. However, 

approximately at the Debye temperature a crossover 

occurs for both quantities as a function of 

temperature. Moreover, for temperatures of larger 

than the crossover temperature the two quantities are 

no longer proportional to each other. While the heat 

capacity data can excellently be described by a 

power function of type ~(Tm-T)ε, the α(T) data 

follow a power function of absolute temperature of 

the type α(T)=c+d‧Tδ. The ~(Tm-T)ε function is a 

typical critical power function of a boson field with 

Tm (melting temperature) as critical temperature. 

The large temperature range and the rational 

exponent of ε=2/3 prove that in the temperature 

range of the ~(Tm-T)ε function the MP-bosons are the 

relevant excitations, and define the universality class 

of the heat capacity exclusively. On the other hand, 

the power function of absolute temperature for α(T) 

indicates that the associated critical temperature is 

T=0. This agrees with the Debye boson field that is 

not ordered at any finite temperature. The critical 

temperature of the Debye boson field therefore is 

T=0. The absolute constant in the α(T) function is 

typical for a non-asymptotic behavior (see 

discussion of Figure 2). 

    As a conclusion, it appears that the only signature 

of the MP-bosons is their heat capacity. Since α(T) 

seems to be due to the Debye bosons, it follows that 

the MP-bosons are not -or much weaker- involved in 

the thermal lattice expansion than the Debye bosons. 

In other words, the MP-bosons do nearly not couple 
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to the elastic degrees of freedom. This is an 

unexpected result since the MP-bosons can be 

considered to warrant the cohesion of the solid for 

thermal energies of larger than the inter-atomic 

interaction energies as they can be estimated from 

the largest phonon energies. On the other hand, 

virtually no interaction of the MP-bosons with the 

elastic degrees of freedom may explain the first order 

character of the melting transitions of all solids 

[15,16]. 

 
Figure 16. Temperature dependence of the 

coefficient of the linear thermal expansion, α(T), of 

cubic aluminum (large red dots) [39]. In the 

temperature range below the D-P limit (T<ΘD), the 

heat capacity data of aluminum (small black dots) 

have been matched to the α(T) data [8,15]. The two 

quantities are proportional to each other (Grüneisen 

relation) below the D-P limit only. Near to the Debye 

temperature, viz. to the D-P limit, both quantities 

exhibit a crossover as a function of temperature and 

are no longer proportional to each other (for details 

see text). 

 

    Since the dispersion of the Debye bosons follows 

a power function of type E(q)=-A+B‧qx with rational 

exponent x, it can be expected that the coefficient of 

the linear thermal expansion follows a similar power 

function as a function of temperature, with also a 

rational exponent. This conclusion assumes that the 

Debye bosons are responsible also for the 

temperature dependence of the thermal lattice 

expansion. In fact, for temperatures that correspond 

to the fit range of the function E(q)=-A+B‧qx, the 

α(T) data can excellently be described up to melting 

temperature by a power function of type 

α(T)=c+d‧Tδ with a rational exponent δ (Figure 17). 

In particular, for both functions, E(q) and α(T), the 

applicability starts at the same thermal energy of 

~kB‧ΘD. Note that the dispersion energies of the 

Debye bosons according to E(q)=-A+B‧qx entail no 

heat capacity since the dispersion relation of the 

Debye bosons is thermally not populated in the fit 

range of the E(q)=-A+B‧qx function. Nevertheless, 

excitation of sound waves in this range of thermal 

energies (temperatures) is possible, and proceeds out 

of thermal equilibrium. The absolute constants in the 

power functions of both quantities indicate that these 

functions are not the asymptotic behavior for q→0 

viz. T→0. Figure 17 visualizes for a selection of 

cubic metals that the temperature dependence of 

α(T) follows, starting at ~ΘD, a single power 

function of temperature with rational exponent δ up 

to melting temperature [39]. As the analyses of many 

metallic elements and non-metallic compounds [40] 

with cubic symmetry show, there are more values for 

δ than only those of Figure 17. For the here 

investigated materials the fit results for δ are δ=1/2 

(Nb, Si, Li, Ar, Kr, Ge, Li), δ=1 (CsI, RbI, MgO, 

NiO), δ=4/3 (Ag, RbCl, CaO), δ=5/3 (V, Pd, Ne), 

δ=5/2 (Al, W, Pb, NaCl, NaF), δ=3 (Mo, Ni), δ=4 

(Ta, AgCl, LiF). These exponent values can be 

grouped into two sequences according to δ=3/3, 4/3, 

5/3 and 6/3 and according to the sequence δ=1/2, 2/2, 

4/2, 5/2, 6/2 and 8/2. The typical fit errors for these 

exponents are ±0.05. As a conclusion, the power 

functions of absolute temperature for α(T) exclude 

that the MP-bosons give the dominant contribution 

to the thermal lattice expansion. Otherwise power 

functions of the argument (Tm-T) should be 

observed.     

 

 
Figure 17. Coefficient of the linear thermal 

expansion, α(T), of various metallic elements for 

temperatures of larger than the Debye temperature 

[39]. Starting from ΘD, these data can be described, 

up to melting temperature by the power function of 

absolute temperature of type α(T)=c+d‧Tδ with a 

rational value of the exponent δ (solid curves). 
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    It is, however, nearly not possible to correlate the 

exponents δ with the other material properties. For 

instance, the Rare Gas solids Ne, Ar, Kr and Xe are 

chemically very similar and all have the cubic fcc 

structure [20-23]. Nevertheless, the exponents δ are 

different. For Ar and Kr δ=1/2 but for Ne δ=5/3 and 

for Xe δ=2. 

 

4. The Heat Capacity 

    As we have seen (Figures 5-7), there are strong 

indications that the Debye bosons determine the 

wave-vector dependence of the dispersion of the 

acoustic phonons. The absolute dispersion energies 

of the phonons are given by the inter-atomic 

interactions. In Figures 5-7 a selection of clear 

examples confirming this peculiarity was given for 

phonons propagating along [ζ 0 0] direction in cubic 

crystals. If the Debye bosons determine the wave-

vector dependence of the phonon dispersions it can 

reasonably be expected that they affect the detailed 

temperature dependence of the heat capacity of the 

phonon system as well. It appears that the 

thermodynamics of solids is generally controlled by 

bosons and is a phenomenon on the large length scale 

of the mean free path of these bosons. In insulators 

with a good thermal conductivity, the mean free path 

of the Debye bosons can reach a few millimeters in 

the low-temperature range of the T3 function [6,7]. 

As a consequence, for samples with a linear 

dimension of less than the mean free path of the 

Debye bosons, the low-temperature thermal 

conductivity is determined by the heat capacity of 

the Debye boson field and starts with the same 

universal T3 dependence as the heat capacity [6,7]. 

Since thermal conductivity of insulators is 

exclusively due to the Debye bosons, a good thermal 

conductivity requires that the Debye bosons have a 

heat capacity. This means, the dispersion relation of 

the Debye bosons must be thermally populated. A 

good thermal conductivity therefore is limited to 

temperatures of T<TAC (see Figure 2). Heat transport 

by phonons is generally negligible [6,7]. For 

temperatures of T>TAC the phonons come into play 

and thermal conductivity of the insulators decreases 

dramatically [6,7]. This results in a rather sharp 

maximum of the thermal conductivity in the vicinity 

of TAC.  

    As we have explained, between the crossover 

temperature T* and that temperature at which the 

heat capacity has reached the atomistic Dulong-Petit 

limit (see Figures 3 and 4), the absolute heat capacity 

values are determined by the phonons. Nevertheless, 

the dynamics, that is the detailed temperature 

dependence of the heat capacity is determined by the 

Debye bosons. Interestingly, this is for T>T* (see 

Figures 3 and 4) where the dispersion relation of the 

Debye bosons is thermally no longer populated. For 

T>T*, the heat capacity of all insulating solids can 

well be described by one universal power function of 

the type c=c0-B‧T-ε. The parameters c0 and B are 

material specific and define the absolute heat 

capacity values. One can expect that the fitted value 

for the parameter c0 agrees with the D-P limit. 

However, the fit values for c0 are generally larger by 

~10% compared to the D-P limit. The parameter B is 

given by the inter-atomic interaction strengths, and 

defines the temperature at which the heat capacity 

reaches the D-P limit. As a consequence, B scales 

approximately with the Debye temperature ΘD. In 

contrast to the intrinsic T3 function of the heat 

capacity of the Debye boson field, that holds for all 

solids at sufficiently low temperatures (see Figure 1), 

there is not only one universal exponent ε. 

Depending on the type of interaction between Debye 

bosons and phonons a number of different exponents 

ε can result. In Figures 8-15 strong indications were 

obtained for the existence of different modes of 

Debye boson-phonon interaction. As a consequence, 

different well-defined values for the exponent ε can 

be expected. However, as we have explained, the 

exponents x and ε are not simply correlated. Within 

the experimental accuracy limits, the fit-values for 

the exponent ε seem to be rational numbers ranging 

in the rather narrow interval of 1<ε<4/3. 

 

Figure 18. For the selected materials with different 

chemical compositions and different lattice 

structures the high-temperature heat capacity is 

excellently described by the expression c=c0-B‧T-ε 

with ε=1. The parameter c0 is the fitted asymptotic 

heat capacity value for T→∞, and is larger than the 

theoretical Dulong-Petit value. For a properly 

selected upper and lower limit of the fit range the 

typical fit error for ε is ±0.015.
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    Evaluation of the exponent ε from the heat 

capacity data is more difficult than the evaluation of 

the exponent x in the dispersion relation of the Debye 

bosons (Figures 8-15). The main reason for this is 

the difficulty to correctly select the upper and lower 

limits of the fit range for the function c=c0-B‧T-ε. 

These limits are given by the two crossover events at 

T* and at that temperature at which the heat capacity 

approaches the D-P limit, respectively (see Figures 3 

and 4). Since crossover events are not absolutely 

sharp phenomena but are smeared over some finite 

temperature interval, the fit cannot be conducted up 

to the crossover temperature but has to be stopped 

appropriately before. Another ambiguity is that the 

absolute differences between the different values of 

ε are small and often compare with the fit errors for 

ε. Additionally, the not explicitly specified 

systematic errors in the experimental heat capacity 

data can be a problem, in addition to the statistical 

errors.   

 

Figure 19. For the selected materials with different 

chemical compositions and lattice structures the 

same exponent ε=5/4 in the function c=c0-B‧T-ε for 

the high-temperature heat capacity is observed. Note 

that Au and Pt have fcc structure, W has bcc 

structure, NaBr has the cubic NaCl structure while 

Cd has hexagonal hcp structure. For better clarity, 

the abscissa values of the Cd and Pt data are 

multiplied by the given factors. 

 

    One clearly identified exponent value is ε=1. 

Figure 18 shows a few examples of this exponent 

[8,14]. As can be seen in Figure 18, the heat 

capacities of chemically different materials with 

different lattice structures follow the same c0-B‧T-1 

function rather precisely. The exponent ε=1 

therefore has to be identified as universal. Note that 

MgO, NaF and NaI have the NaCl structure, titanium 

and yttrium have the hexagonal closed packed 

structure (hcp) and ZnCl2 has hexagonal structure. In 

Figure 18 the heat capacity data have been 

normalized to the fitted asymptotic value for T→∞, 

c0. Note that c0 is generally larger than the theoretical 

D-P value (see Figures 3 and 4). The as normalized 

heat capacity data are plotted over T-1 in Figure 18. 

The typical fit error for ε is ±0.015. It can be seen 

that the slopes of the fitted c=c0-B‧T-ε functions (the 

parameter B) scale approximately with the Debye 

temperature ΘD, that are ΘD=942 K for MgO, 

ΘD=420 K for titanium, ΘD=256.4 K for yttrium and 

ΘD=167.5 K for NaI [4,6]. We should mention that 

in the high-temperature heat capacity of the metallic 

elements the contributions of the Debye bosons 

(~T3) and of the EC-bosons (~T) are absent. This is 

because for the temperatures of T>T* the dispersion 

relations of the two boson types are no longer 

thermally populated. On the other hand, the finite 

heat capacity of the electronic band states, that is also 

liner-in-T, should be visible. This contribution seems 

to be negligibly small compared to the low-

temperature heat capacity cel=γ‧T of the EC-bosons 

[7,13].  

 

Figure 20. For the selected materials with different 

chemical compositions and lattice structures, the 

same exponent of ε=4/3 of the function c=c0-B‧T-ε is 

observed in the high-temperature range with a 

phonon defined heat capacity [8]. Note that KF has 

the cubic NaCl structure while MnCl2 has 

rhombohedral structure but SrCl2 has cubic 

structure. 

 

    Figure 19 displays a few selected examples for the 

exponent ε=5/4. Again, the materials of Figure 19 

are chemically different and have different lattice 

structures. Tungsten has bcc structure, NaBr has the 

NaCl structure, Au (gold) and Pt have fcc structure 

and Cd has hcp structure. All heat capacity data are 

normalized to the fitted value for c0 and are plotted 
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on T-5/4 temperature scale in Figure 19. For the 

selected materials the typical fit error for ε is ±0.021.  

    Figure 20 displays some examples for the 

exponent ε=4/3. Note that KF has the NaCl structure, 

while MnCl2 is hexagonal and SrCl2 has the cubic 

fluorite structure. The heat capacity data in Figure 20 

are again normalized to the fitted value for c0 and are 

plotted over T-4/3. The typical fit error for ε is ±0.026. 

    There are, however, more than only the three 

clearly identified exponent values of ε=1, 5/4 and 

4/3. This can be rationalized since there are at least 

6 different modes of interaction between the Debye 

bosons and the phonons according to the 6 values for 

the exponent x (x=0, 1/4, 1/3, 1/2, 2/3 and 3/4) in the 

dispersion relation of the Debye bosons (Figures 8-

15). The other fit-values for the exponent ε are all 

near to ε~ 1.1 and are more difficult to separate from 

each other. As an average over many analyzed 

materials the exponent ε=1.153±0.025 could 

reasonably be established. This exponent value 

appears to be a non-rational number. Since in the 

same material different exponents x occur for 

different polarizations of the Debye bosons, different 

modes of interaction can be simultaneously active. It 

is possible that the different types of interaction 

interfere. In fact, ε=1.153±0.025 could be interpreted 

as the average of ε=1 and ε=5/4, that is ε=1.125 but 

also as the average of ε=1 and ε=4/3, that is ε=1.167. 

Interference exponents are known from magnetic 

systems in which different universality classes 

coexist [6]. This applies to magnetic materials with 

two types of magnetic atoms that have integer or 

half-integer spin. 

 

Discussion 

    The conclusions presented in this communication 

are rather preliminary and need further experimental 

studies for a final approval. Many statements should 

be considered as working hypotheses only. 

However, since the advent of the Renormalization 

Group (RG) methods it became clear that boson 

fields are of fundamental importance for the 

dynamics in solids. This calls for the development of 

appropriate field theories. It is evident that the 

prerequisite for this task is that the field quanta are 

precisely known. Quite generally, future theories of 

the dynamics of solids have to distinguish properly 

between the two translational symmetries: the 

discrete and periodic translational symmetry of the 

atomic structure and the continuous translational 

symmetry of the infinite solid. This distinction has to 

be made for the elastic, the magnetic and the 

electronic degrees of freedom. The two translational 

symmetries are the generators of specific particles 

with characteristic excitation spectra. In the elastic 

case the two particles are well-known as phonons 

and sound waves [13]. The latter we have called 

Debye bosons. Unfortunately, in the first field theory 

of the heat capacity of solids by P. Debye in 1912 

[2], no explicit differentiation between the two 

translational symmetries and their excitation spectra 

was made [2]. Consequently, crossover events were 

ignored. The conceptual deficiencies of Debye´s 

theory could be resolved only seven decades later by 

the development of the RG methods [3]. As we have 

shown earlier, the bosons of the continuous magnetic 

solid are essentially magnetic dipole radiation 

generated by the processing spins [6,28]. We have 

called them Goldstone bosons. The excitations of the 

discrete magnetic lattice are the well-known 

magnons.  

    The excitations of the continuous translational 

symmetry (bosons) and of the discrete translational 

symmetry (phonons, magnons) are, however, not 

independent of each other, but interact significantly. 

This is a considerable complication for the 

development of realistic field theories of solid-state 

physics. Here we have focused on the interaction 

between the Debye bosons and the phonons that is 

phenomenologically very similar to the interaction 

between Goldstone bosons and magnons in the 

magnetic materials [41]. Due to this interaction the 

dispersion relations of the acoustic phonons 

(magnons) deviate characteristically from the 

conventional, purely atomistic descriptions. In other 

words, the dispersion relations of phonons 

(magnons) cannot be understood by neglecting the 

interactions with the Debye bosons (Goldstone 

bosons). This has the severe consequence that the 

interaction parameters between neighboring atoms 

(spins) cannot be evaluated reliably from the 

experimental phonon (magnon) dispersion relations. 

It appears that only the absolute energies of the 

phonons (magnons) are determined by the inter-

atomic interactions but that the wave-vector 

dependence of their dispersion relations is 

determined by the bosons. As we have shown, the 

dispersion relations of the acoustic phonons 

(magnons) along the [ζ,0,0]-direction in cubic solids 

are essentially as for the linear atomic chain (spin 

chain), i.e. one-dimensional [27,41]. This is unusual 

for a three-dimensional solid and has been explained 

by a dominating stimulated emission in the 

generation process of both boson types. Stimulated 

emission is essential for the perfect one-dimensional 

ordered Goldstone boson fields and the one-

dimensional magnon dispersions within each 

magnetic domain. Since the Debye boson field is not
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ordered (its critical temperature is T=0), the phonon 

dispersion as for the linear atomic chain has to be 

considered as of short-range only. Note that inelastic 

neutron scattering provides no evidence of a 

coherent long-range order. The spontaneous 

generation of the Debye bosons by individual atoms 

therefore seems to be dominated by stimulated 

emission as well. This generation process is, 

however, completely unexplored theoretically. The 

observed universality in the temperature dependence 

of the heat capacity of the atomistic phonons or 

magnons can be understood as a direct consequence 

of their boson-determined dispersion relations [41].  

    One origin of the phenomenon of broken 

symmetry at phase transitions appears to be that the 

generation process of most boson types seems to be 

by stimulated emission. In the magnetic case this can 

be rationalized, since the field bosons are essentially 

magnetic dipole radiation [28]. However, there 

exists no theory yet for the generation of magnetic 

dipole radiation by the precessing spins, but it is 

known that this process is dominated by stimulated 

emission. As a consequence, the basic ordered 

Goldstone boson field is perfectly one-dimensional, 

as it is realized in each magnetic domain. A two- or 

three-dimensional global boson field results by some 

(dynamic) coupling of the boson fields (domains) 

along two- or three in-equivalent crystal axes. The 

necessary coupling between the domains defines the 

dynamic dimensionality of the resulting global 

boson field.  

    Near critical temperatures, the dynamics seems 

generally to be determined by boson fields as reveals 

by the observation of universality. One obvious 

example for this is the critical temperature of T=0 of 

the Debye boson field. On approaching T→0 the 

heat capacity of the non-magnetic insulators is 

exclusively due to the Debye boson field; the 

assumed heat capacity contributions of the atomistic 

phonons are completely suppressed, i.e. non-

relevant. In other words, all thermal energy is in the 

boson field. In the same way, the atomistic exchange 

interactions become non-relevant on approaching 

the finite magnetic ordering temperature from the 

paramagnetic side [3,6,27,41]. This is the basis for 

the universality of the critical magnetic behavior. 

Non-relevance of the atomistic exchange 

interactions reveals clearly from the fact that the 

critical behavior is identical for ferromagnets and for 

antiferromagnets.  

    We can assume that the melting process of the 

solids is also controlled by a boson field [16]. We 

have called the not yet specified bosons at the 

melting point MP-bosons. This boson field seems to 

be responsible for the coherent long-range atomic 

order in the solid phase and guarantees the cohesion 

of the solid for thermal energies of larger than the 

inter-atomic interaction energies, that correspond 

approximately to E>kB‧ΘD. The MP-bosons 

therefore have a binding function. A long-range and 

coherent atomic or magnetic order seems to be 

generally due to a coherent boson field. As can be 

concluded from the rational critical exponents and 

the finite width of the critical range, the vapor-liquid 

transition seems to be driven also by a boson field 

[18,19]. The associated bosons are, however, 

completely unexplored as yet. 
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