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Smarandache Curves of Spatial Quaternionic Bertrand Curve
According to Frenet Frame
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Abstract. In this study, Frenet vectors of spatial quaternionic Bertrand curve pair were taken as the position
vector. The obtained Smarandache curves from position vector were defined. Frenet vectors, the curvature
and torsion of this curve were calculated. This later the Frenet apparatus were expressed in terms of Frenet
apparatus of the spatial quaternionic Bertrand curve pair. Example related to the subject was found and
their drawings were done with Maple program.

1. Introduction

Quaternion was first introduced by the Irish mathematician William Rowan Hamilton in 1843 in the form
of generalized complex numbers. Each quaternion is accompanied by four units {1, e1, e2, e3}, [9]. In 1987,
Bharathi, K. and Nagaraj, M.’s ”Quaternion Valued Function of a Real Variable Serret-Frenet Formulae”
named article have shed light to many studies related to quaternions. In recent years, many studies have
been done on quaternions. These studies are found in [2–4, 6–9, 13, 14, 16]. Many studies have been done
on special curves in differential geometry. Studies on one of these, the Bertrand curve, are see in [17, 18].
Some studies of Smarandache curves are available in [1, 9–13, 15].

2. Preliminaries

A real quaternion is defined with q of the form
Q = {q|q = d + ae1 + be2 + ce3, d, a, b, c ∈ R, e1, e2, e3 ∈ R3

} such that

e2
1 = e2

2 = e2
3 = −1 , e1 × e2 = −e2 × e1 = e3,

e1 × e3 = −e3 × e1 = e2 , e2 × e3 = −e3 × e2 = e1.
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Cited this article as: Şenyurt S, Yıldız CC, Altun Y. Smarandache Curves of Spatial Quaternionic Bertrand Curve According to

Frenet Frame. Turkish Journal of Science. 2020, 5(2), 49-62.
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We put Sq = d and Vq = ae1 + be2 + ce3. Then a quaternion q can rewrite as

q = Sq + Vq

where Sq and Vq are the scalar part and vectorial part of q, respectively, [5]. For q1 = Sq1 + Vq1 , q2 = Sq2 + Vq2

quaternions, quaternionic summation, multiplication and conjugate operations are, respectively

q1 + q2 = Sq1 + Vq1 + Sq2 + Vq2 = Sq1+q2 + Vq1+q2

q1 × q2 = Sq1 Sq2 − 〈Vq1 ,Vq2〉 + Sq1 Vq2 + Sq2 Vq1 + Vq1 ∧ Vq2

q̄ = Sq1 − Vq1

These expression the symmetric real-valued, non-degenerate, bilinear form as follows,

〈, 〉|Q : Q ×Q→ R, 〈q1, q2〉|Q =
1
2

(q1 × q̄2 + q2 × q̄1).

It is called the quaternionic inner product, [5]. Then the norm of q is

N(q) =
√
〈q, q〉|Q =

√
q × q̄,

A spatial quaternion set define that QH = {q ∈ Q|q + q̄ = 0}, [2]. Let I = [0, 1] be an interval in the real line R
and s ∈ I be the are-length parameter along the smooth curve, [7]

γ : [0, 1]→ QH, γ(s) =

3∑
i=1

γi(s)ei, (1 ≤ i ≤ 3). (1)

The tangent vector γ′(s) = t(s) has unit length N(t(s))=1 for alls, [2]. Let γ be a differentiable spatial
quaternions curve with arc-length parameter s and {t(s),n1(s),n2(s)} be the Frenet frame of γ at the point
γ(s), [6],

t(s) = γ′(s), n1(s) =
γ′′(s)

N(γ′′(s))
, n2(s) = t(s) × n1(s), (2)

Let {t(s),n1(s),n2(s)} be the Frenet frame of γ(s). Then Frenet formulae, curvature and the torsion are given
by [6]

t′(s) = k(s)n1(s) , (3)
n1
′(s) = −k(s)t(s) + r(s)n2(s) ,

n2
′(s) = −r(s)n1(s)

where t(s), n1(s) and n2(s) are the unit tangent, the unit principal normal and the unit binormal vector of a
quaternionic curve, respectively, [2, 8].

Let {k(s), r(s)} be the curvatures of γ(s). Then curvature and the torsion are given by[6]

kβ1 =
N(β

′

× β
′′

)
N(β′ )3 (4)

rβ1 =
〈β
′

× β
′′

, β
′′′

〉|Q(
N(β′ × β′′ )

)2 .

Definition 2.1. Let α : I → QH unit speed and α∗ : I → QH differentiable two spatial quaternionic curves. If the
principal normal vector n1 of the curve α is linearly dependent on the principal vector n∗1 of the curve α∗, then the pair
(α, α∗) is defined to be quaternionic Bertrand curves pair, [7].
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If the curve α∗ is Bertrand partner of α and n1 principal vector of α, then we may write that

α∗(s) = α(s) + λn1(s) , λ = constant. (5)

Theorem 2.2. Let (α, α∗) be a quaternionic Bertrand pair curves in QH. The relations between the Frenet frames
{t,n1,n2} and {t∗,n∗1,n

∗

2} are as follows

t∗(s) = cosθt + sinθn2, (6)
n1
∗(s) = n1,

n2
∗(s) = − sinθt + cosθn2

where ∠(t, t∗) = θ, [7].

Theorem 2.3. Let (α, α∗) be a quaternionic Bertrand pair curves in QH. For the curvatures and the torsions of the
Bertrand curves pair (α, α∗) we have

k∗(s)
ds∗

ds
= cosθk − sinθr , (7)

r∗(s)
ds∗

ds
= sinθk + cosθr, [7].

3. Smarandache Curves of Spatial Quaternionic Bertrand Curve according to Frenet Frame

Frenet vectors of a curve are taken as position vector and a regular curve is defined with this vector. This
curve is called as Smarandache curve, [15]. In this study, (α∗, α) will be defined as quaternionic Bertrand
curve pair. Curve α∗ will be taken as main curve and the other curve α will be taken as Bertrand partner
curve of curve α∗. Frenet vectors of α∗ curve taken from the curve pair will be taken as position vector.
Smarandache curves’ Frenet apparatus defined by these position vectors will be calculated. The resulting
Frenet apparatus will be expressed Frenet aparatus denominated belonging to α∗ curve by using connecting
equation between Bertrand curve pair Frenet apparatus.

Definition 3.1. Let (α, α∗) be a quaternionic Bertrand pair curves in QH. If Frenet frame of curve α∗ is shown with
{t∗,n1

∗,n2
∗
},

β1(s) =
1
√

2
(t∗ + n1

∗) (8)

regular curve drawn by vectors t∗ and n1
∗ is called spatial quaternionic Smarandache curve β1.

Theorem 3.2. Frenet vectors of Smarandache curve β1 are given as follows;

tβ1(s) =
−k∗t∗ + k∗n∗1 + r∗n∗2√

2k∗2 + r∗2
, n1β1 (s) =

ω1t∗ + φ1n∗1 + σ1n∗2√
ω1

2 + φ1
2 + σ1

2

,

(9)

n2β1 (s) =
(k∗σ1 − r∗φ1)t∗ + (k∗σ1 + r∗ω1)n∗1 + (−k∗φ1 − k∗ω1)n∗2√

(ω1
2 + φ1

2 + σ2
1)(2k∗2 + r∗2)

.

Herein, the coefficients are

ω1 = −k∗2(2k∗2 + r∗2) − r∗(r∗k∗
′

− k∗r∗
′

),
φ1 = −k∗2(2k∗2 + 3r∗2) − r∗(r∗3 − r∗k∗

′

+ k∗r∗
′

), (10)

σ1 = k∗r∗(2k∗2 + r∗2) − 2k∗(r∗k∗
′

− k∗r∗
′

).



S. Şenyurt, C.C. Yıldız, Y. Altun / TJOS 5 (2), 49–62 52

Proof. If derivative according to sβ1 arc parameter of curve β1(s) is taken, tβ1 (s) and t′β1
(s) are given, respec-

tively

tβ1(s) =
−k∗t∗ + k∗n∗1 + r∗n∗2√

2k∗2 + r∗2
, t′β1

(s) =

√
2
(
ω1t∗ + φ1n∗1 + σ1n∗2

)
(
2k∗2 + r∗2

)2 . (11)

Herein, the coefficients are as seen in (10). From equation (2), principal vector n1β1 and binormal vector n2β1

are found as in (9).

Theorem 3.3. Curvature and torsion belonging to Smarandache curve β1 are, respectively

kβ1 =

√
2(ω1

2 + φ1
2 + σ1

2)(
2k∗2 + r∗2

)2 , rβ1 =

√
2
(
x1η1 + y1θ1 + z1ρ1

)
x1

2 + y1
2 + z1

2 (12)

where coefficients are

η1 = k∗3 + k∗(r∗2 − 3k∗
′

) − k∗
′′

, θ1 = −k∗3 − k∗(r∗2 + 3k∗
′

) − 3r∗r∗
′

+ k∗
′′

,

ρ1 = −k∗2r∗ − r∗3 + 2r∗k∗
′

+ k∗r∗
′

+ r∗
′′

, (13)

x1 = r∗(2k∗2 + r∗2) + k∗r∗
′

− k∗
′

r∗ , y1 = k∗
′

r∗ − k∗r∗
′

, z1 = 2k∗3 + k∗r∗2.

Proof. First, second and third derivatives of curve β1 are, respectively

β1
′

=
−k∗t∗ + k∗n1

∗ + r∗n2
∗

√
2

β1
′′

=
−(k∗2 + k∗

′

)t∗ + (k∗
′

− k∗2 − r∗2)n1
∗ + (k∗r∗ + r∗

′

)n2
∗

√
2

,

β1
′′′

=
η1t∗ + θ1n1

∗ + ρ1n2
∗

√
2

where the coefficients are as seen in (13). From (4) equation, curvatures are found as in (12).

Corollary 3.4. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of Frenet vectors of
Smarandache curve β1 in terms of Frenet apparatus of Bertrand partner curve are as follows:

tβ1 (s) =
−kt + (cosθ − sinθ)n1 + rn2√

k2 + r2 + (cosθk − sinθr)2
, n1β1 (s) =

ω̄1t + φ̄1n1 + σ̄1n2√
ω̄2

1 + φ̄2
1 + σ̄2

1

,

n2β1 (s) =
((k cosθ − r sinθ)σ̄1 − rφ̄1)t + (kσ̄1 + rω̄1)n1√(

k2 + r2 + (cosθk − sinθ)2
)
(ω̄2

1 + φ̄2
1 + σ̄2

1)
(14)

−
(kφ̄1 + (k cosθ − r sinθ)ω̄1)n2√(

k2 + r2 + (cosθk − sinθ)2
)
(ω̄2

1 + φ̄2
1 + σ̄2

1)
.
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Herein, coefficients are

ω̄1 = (−k
′

− k2 cosθ + kr sinθ)(k2 + r2 + (k cosθ − r sinθ)2)
+k(k2 + r2 + (k cosθ − r sinθ)

′

,

φ̄1 = (−k2
− r2 + k′ cosθ − r′ sinθ)(k2 + r2 + (k cosθ − r sinθ)2)

−(k cosθ − r sinθ)(k2 + r2 + (k cosθ − r sinθ)2)
′

,

σ̄1 = (kr cosθ − r2 sinθ + r′)(k2 + r2 + (k cosθ − r sinθ)2)
−r(k2 + r2 + (k cosθ − r sinθ)2)

′

.

Proof. If expression (6) instead of t∗ and n1
∗ in curve β1 is written, we have

β1(s) =
1
√

2

(
cosθt(s) + n1(s) + sinθn2(s)

)
.

If equations (6) and (7) into equation (9) and (25) are written, the proof is completed.

Corollary 3.5. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of curvatures of
Smarandache curve β1 in terms of Frenet apparatus of Bertrand partner curve are as follows:

kβ1 =

√
ω̄1

2 + φ̄2
1 + σ̄2

1(
k2 + r2 + (cosθk − sinθ)2

) 3
2

, rβ1 =
√

2
x̄1η̄1 + ȳ1θ̄1 + z̄1ρ̄1

x̄2
1 + ȳ2

1 + z̄2
1

. (15)

Herein, coefficients are

η̄1 = (−k′ − k2 cosθ + kr sinθ)
′

− k(−k2
− r2 + (k cosθ − r sinθ)

′

),

θ̄1 = k(−k′ − k2 cosθ + kr sinθ) + (−k2
− r2 + (k cosθ − r sinθ)

′

)
′

−r(kr cosθ − r2 sinθ + r
′

),

ρ̄1 = r(−k2
− r2 + (k cosθ − r sinθ)

′

) + (kr cosθ − r2 sinθ + r
′

)
′

,

x̄1 = (k cosθ − r sinθ)(kr cosθ − r2 sinθ + r
′

) − r(−k2
− r2 + (k cosθ − r sinθ)

′

),

ȳ1 = k(kr cosθ − r2 sinθ + r
′

) + r(−k
′

− k2 cosθ + kr sinθ),

z̄1 = −

(
k(−k2

− r2 + (k cosθ − r sinθ)
′

) + k(k cosθ − r sinθ)

.(−k
′

− k2 cosθ + kr sinθ)
)
.

Proof. If equations (6) and (7) into equation (12) and (13) are written, the proof is completed.

Definition 3.6. Let (α, α∗) be a quaternionic Bertrand pair curves in QH. If Frenet frame of curve α∗ is shown with
{t∗,n1

∗,n2
∗
},

β2(s) =
(n∗1 + n2

∗)
√

2
(16)

regular curve drawn by vectors n1
∗ and n2

∗ is called spatial quaternionic Smarandache curve β2.
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Theorem 3.7. The Frenet vectors of Smarandache curve β2 are given as follows:

tβ2 (s) =
−kt∗ − rn∗1 + rn2

∗)√
2r∗2 + k∗2

, n1β2 (s) =
ω2t∗ + φ2n∗1 + σ2n∗2√
ω2

2 + φ2
2 + σ2

2
,

(17)

n2β2 (s) =
−r∗(σ2 + φ2)t∗ + (r∗ω2 + k∗σ2)n∗1 + (−k∗φ2 + r∗ω2)n∗2√

(ω2
2 + φ2

2 + σ2
2)(2r∗2 + k∗2)

.

Herein, the coefficients are

ω2 = 2r∗2(−k∗
′

+ r∗r∗) + k∗r∗(k∗2 + 2r∗
′

),
φ2 = k∗(−k∗3 − r∗

′

k∗ + r∗k∗
′

) − r∗2(3k∗2 + 2r∗2), (18)

σ2 = k∗2(r∗
′

− r∗2) − r∗(2r∗3 + k∗k∗
′

).

Proof. If derivative is taken according to sβ2 arc parameter of curve β2(s), tβ2 (s) and t′β2
(s) are given, respec-

tively

tβ2(s) =
−k∗t∗ − r∗n∗1 + r∗n∗2√

2k∗2 + r∗2
, t′β1

(s) =

√
2
(
ω2t∗ + φ2n∗1 + σ2n∗2

)
(
2k∗2 + r∗2

)2 .

Herein, the coefficients are as seen in (18). From equation (2), principal vector n1β2 and binormal vector n2β2

are found as in (17).

Theorem 3.8. Curvature and torsion belonging to Smarandache curve β2 are, respectively

kβ2 =
√

2

√
ω2

2 + φ2
2 + σ2

2(
k∗2 + 2r∗2

)2 , rβ2 =
√

2
x2η2 + y2θ2 + z2ρ2

x2
2 + y2

2 + z2
2 (19)

where coefficients are

η2 = −r∗3k∗ + k∗3 + k∗
′

r∗ + 2k∗r∗
′

− k∗
′′

,

θ2 = r∗3 − r∗k∗2 − 3k∗k∗
′

+ 3r∗2r∗
′

− r∗
′

,

ρ2 = r∗3 + r∗k∗2 − 3r∗r∗
′

− r∗r∗
′′

, (20)

x2 = r∗(2r∗2 + k∗2) , y2 = k∗r∗
′

− r∗k∗
′

, z2 = k∗(k∗2 + 2r∗2 + r∗
′

) − r∗k∗
′

.

Proof. First, second and third derivatives of curve β2 are, respectively

β2
′

=
−k∗t∗ − r∗n1

∗ + r∗n2
∗

√
2

β′′2 =
(−k∗ + r∗k∗)t∗ − (k∗2 − k∗2 + r∗2 + r∗

′

)n1
∗ + (r∗

′

− r∗2)n2
∗

√
2

,

β′′′2 =
η2t∗ + θ2n1

∗ + ρ2n2
∗

√
2

where the coefficients are as seen in (20). From (4) equation, curvatures are found as in (19).
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Corollary 3.9. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of Frenet vectors of
Smarandache curve β2 in terms of Frenet apparatus of Bertrand partner curve are as follows:

tβ2 (s) =
−kt − (sinθ + cosθr)n1 + rn2√

k2 + r2 + (sinθ + cosθr)2
, n1β2 (s) =

ω̄1t + φ̄1n1 + σ̄1n2√
ω̄2

1 + φ̄2
1 + σ̄2

1

,

n2β2 (s) =
−(σ̄2(k sinθ + r cosθ) + rφ̄2)t + (kσ̄2 + rω̄2)n1√(

k2 + r2 + (k sinθ + r cosθ)2
)
(ω̄2

2 + φ̄2
2 + σ̄2

2)
(21)

+
(−kφ̄2 +

(
k sinθ + r cosθ)ω̄2

)
n2√(

k2 + r2 + (k sinθ + r cosθ)2
)
(ω̄2

2 + φ̄2
2 + σ̄2

2)
.

Herein, the coefficients are

ω̄2 = (−k′ + k(k sinθ + r cosθ))(k2 + r2 + (k sinθ + r cosθ)2)
+k(k2 + r2 + (k sinθ + r cosθ)2)

′

,

φ̄2 = (−k2
− r2
− (k′ sinθ − r′ cosθ))(k2 + r2 + (k sinθ + r cosθ)2)

+(k sinθ + r cosθ)(k2 + r2 + (k sinθ + r cosθ)2)
′

,

σ̄2 = (−r(k sinθ + r cosθ) + r′)(k2 + r2 + (k sinθ + r cosθ)2)
−r(k2 + r2 + (k sinθ + r cosθ)2)

′

.

Proof. If expression (6) instead of n1
∗ and n2

∗ in curve β2 is written, we have

β2(s) =
1
√

2

(
− sinθt + n1 + cosθn2

)
.

If equations (6) and (7) into equation (17) and (18) are written, the proof is completed.

Corollary 3.10. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of curvatures of
Smarandache curve β2 in terms of Frenet apparatus of Bertrand partner curve are as follows:

kβ2 =
√

2

√
ω̄2

2 + φ̄2
2 + σ̄2

2(
k2 + r2 +

(
sinθk + cosθr

)2) 3
2

, rβ2 =
√

2
x̄2η̄2 + ȳ2θ̄2 + z̄2ρ̄2

x̄2
2 + ȳ2

2 + z̄2
2

. (22)

Herein, the coefficients are

η̄2 =
(
− k′ + k(k sinθ + r cosθ)

)′
+ k

(
k2 + r2

− (k′ sinθ + r′ cosθ)
)
,

θ̄2 = −kk′ + (k2 + r2)(k sinθ + r cosθ) − (2kk′ + 2rr′ + (k′′ sinθ + r′′ cosθ)) − rr′,

ρ̄2 = r
(
− k′ + k(k sinθ + r cosθ)

)
+

(
− r(k sinθ + r cosθ) + r′

)
,

x̄2 = (k sinθ + r cosθ)(r(sinθ + r cosθ) − r′) + r
(
k2 + r2

− (k′ sinθ + r′ cosθ)
)
,

ȳ2 = k(−r(k sinθ + r cosθ) + r′) + r
(
− k′ + k(k sinθ + r cosθ)

)
,

z̄2 = k
(
k2 + r2

− (k′ sinθ + r′ cosθ
)

+ (k sinθ + r cosθ)
(
− k′ + k(k sinθ + r cosθ)

)
.
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Proof. If equations (6) and (7) into equation (19) and (20) are written, the proof is completed.

Definition 3.11. Let (α, α∗) be a quaternionic Bertrand pair curves in QH. If Frenet frame of α∗ curve is shown with
{t∗,n1

∗,n2
∗
},

β3(s) =
(t∗ + n∗2)
√

2
(23)

regular curve drawn by vectors t∗ and n∗2 is called spatial quaternionic Smarandache curve β3.

Theorem 3.12. Frenet vectors of Smarandache curve β3 are given as follows:

tβ3 (s) = n1
∗ , n1β3 (s) =

−k∗t∗ + r∗n2
∗

k∗2 + r∗2
, n2β3 (s) =

r∗t∗ + k∗n2
∗√

k∗2 + r∗2
. (24)

Proof. If derivative is taken according to sβ3 arc parameter of curve β3(s), tβ3 (s) and t′β3
(s) are given, respec-

tively

tβ3(s) =
(k∗ − r∗)n∗1√

2k∗2 + r∗2
, tβ3

′

(s) =

√
2
(
− k∗t∗ + r∗n∗2

)
k∗ − r∗

.

From equation (2), principal vector n1β3 and binormal vector n2β3 are found as in (24).

Theorem 3.13. Curvature and torsion belonging to Smarandache curve β3 are, respectively

kβ3 =

√
2(k∗2 + r∗2)

k∗ − r∗
, rβ3 =

√

2
x3η3 + z3ϕ3

η3
2 + ϕ3

2 (25)

where coefficients are

η3 = −3k∗k∗
′

+ 2k∗r∗
′

+ k∗
′

r∗ , θ3 = −k∗3 + r∗k∗2 − k∗r∗2 + r∗3 + k∗
′′

− r∗
′′

,

ϕ3 = k∗r∗
′

+ 2k∗
′

r∗ − 3r∗r∗
′

, x3 = r∗(k∗ − r∗)2 , z3 = k∗(k∗ − r∗)2. (26)

Proof. First, second and third derivatives of curve β3 are, respectively

β3
′

=
(k∗ − r∗)n1

∗

√
2

β3
′′

=
(−k∗2 + k∗r∗)t∗ + (k∗

′

− r∗
′

)n1
∗ + (k∗r∗ − r∗2)n2

∗

√
2

,

β3
′′′

=
η3t∗ + θ3n1

∗ + ρ3n2
∗

√
2

.

From (4) equation, curvatures are found as in (25).

Corollary 3.14. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of Frenet vectors of
Smarandache curve β3 in terms of Frenet apparatus of Bertrand partner curve are as follows:

tβ3 (s) = n1 , n1β3 (s) =
ω̄3t + φ̄3n1 + σ̄3n2√
ω̄3

2 + φ̄3
2

+ σ̄3
2

,

(27)

n2β3 (s) =
(ω̄3t − σ̄3n2)[k(cosθ − sinθ) − r(cosθ − sinθ)]√

(k2 − r2 − (k2 − r2) sin 2θ)(ω̄3
2 + φ̄3

2
+ σ̄3

2)
.
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Herein, coefficients are

ω̄3 = −k
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)√
k2 − r2 − (k2 − r2)2 sin 2θ,

φ̄3 =
(
k′(cosθ − sinθ) − r′(cosθ + sinθ)

)√
k2 − r2 − (k2 − r2)2 sin 2θ

−

(
k(cosθ − sinθ) − r(cosθ + sinθ)

)(√
k2 − r2 − (k2 − r2)2 sin 2θ

)′
,

σ̄3 =
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)√
k2 − r2 − (k2 − r2)2 sin 2θ.

Proof. If expression (6) instead of t∗ and n2
∗ in curve β3 is written, we have

β3(s) =
1
√

2

(
(cosθ − sinθ)t + (sinθ + cosθ)n2

)
.

If equations (6) and (7) into equation (21) and (22) are written, the proof is completed.

Corollary 3.15. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of curvatures of
Smarandache curve β3 in terms of Frenet apparatus of Bertrand partner curve are as follows:

kβ3 =
√

2

√
ω̄3

2 + φ̄3
2

+ σ̄3
2

k2 − r2 − (k2 − r2) sin 2θ
, rβ3 =

√

2
x̄3η̄3 + z̄3ϕ̄3

η̄3
2 + ϕ̄3

2 .

Herein, the coefficients are

η̄3 = −k′
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)
− 2k

(
k(cosθ − sinθ) − r(cosθ + sinθ)

)′
,

θ̄3 = −k2
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)
− r2

(
k(cosθ − sinθ) − r(cosθ + sinθ)

)
+
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)′′
,

ϕ̄3 = r′
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)
+ 2r

(
k(cosθ − sinθ) − r(cosθ + sinθ)

)′
,

x̄3 = k(k(cosθ − sinθ) − r(cosθ + sinθ)))2 , z̄3 = r((cosθ − sinθ) − r(cosθ + sinθ))2.

Proof. If equations (6) and (7) into equation (25) and (26) are written, the proof is completed.

Definition 3.16. Let (α, α∗) be a quaternionic Bertrand pair curves in QH. If Frenet frame of α∗ curve is shown with
{t∗,n1

∗,n2
∗
},

β4(s) =
(t∗ + n∗1 + n2

∗)
√

2
(28)

regular curve drawn by vectors t∗, n1
∗ and n2

∗ is called spatial quaternionic Smarandache curve β4.

Theorem 3.17. Frenet vectors of Smarandache curve β4 are given as follows:

tβ4 (s) =
k∗t∗ + (k∗ − r∗)n1

∗ + r∗n2
∗√

2(k∗ + r∗ − k∗r∗)
, n1β4 (s) =

ω4t∗ + φ4n1
∗ + σ4n2

∗√
ω4

2 + φ4
2 + σ4

2
,

n2β4 (s) =
((k∗ − r∗)σ4 − r∗φ4)t∗ + (r∗ω4 + k∗σ4)n1

∗√
(2k∗2 + 2r∗2 − 2k∗r∗)(ω4

2 + φ4
2 + σ4

2)
(29)

−
(k∗φ4 + (k∗ − r∗)ω4)n2

∗√
(2k∗2 + 2r∗2 − 2k∗r∗)(ω4

2 + φ4
2 + σ4

2)
.
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Herein, the coefficients are

ω4 = k∗2(−2k∗2 − 4r∗2 + 4r∗k∗ − k∗2r∗
′

) + k∗r∗(k∗
′

+ 2r∗2 + 2r∗
′

) − 2k∗
′

r∗2,
φ4 = k∗2(−2k∗2 − 4r∗2 + 2k∗r∗ − r∗

′

) + r∗2(−2r∗2 + 2k∗r∗ + k∗
′

) + k∗r∗(k∗
′

− r∗
′

),

σ4 = 2k∗2(k∗r∗ − 2r∗2 + r∗
′

) + r∗2(4k∗r∗ − 2r∗2 + k∗
′

) − k∗r∗(r∗
′

+ 2k∗
′

).

Proof. If derivative is taken according to sβ4 arc parameter of curve β4(s), tβ4 (s) and t′β4
(s) are given, respec-

tively

tβ4(s) =
−k∗t∗ + (k∗ − r∗)n∗1 + r∗n∗2

2(
√

k∗2 + r∗2 − k∗r∗)2

t′β4
(s) =

√
3
(
ω4t∗ + φ4n∗1 + σ4n∗2

)
4
(
2k∗2 + r∗2

)2 .

Herein, the coefficients are as seen in (30). From equation (2), principal vector n1β4 and binormal vector n2β4

are found as in (29).

Theorem 3.18. Curvature and torsion belonging to Smarandache curve β4 are, respectively

kβ4 =

√
3

4

√
ω2

4 + φ2
4 + σ2

4

(k∗2 + r∗2 − k∗r∗)2
, rβ4 =

√
3
[
η4x4 + θ4y4 + ρ4z4

]
x4

2 + y4
2 + z4

2 (30)

where coefficients are

η4 = k∗
′

r∗ − k∗
′′

− 3k∗k∗
′

+ 2k∗r∗
′

+ k∗3 + k∗r∗2,

θ4 = r∗3 − k∗3 − 3(k∗k∗
′

+ r∗r∗
′

) − (−k∗
′′

+ r∗
′′

) + k∗r∗(k∗ − r∗),
ρ4 = r∗

′′

− k∗2r∗ − 3r∗r∗
′

− r∗3 + 2r∗k∗
′

+ k∗r∗
′

, (31)

x4 = 2k∗r∗(k∗ − r∗) + k∗r∗
′

− r∗k∗
′

+ 2r∗3,
y4 = k∗r∗

′

− r∗k∗
′

, z4 = 2k∗3 + k∗r∗
′

+ 2k∗r∗2 − 2k∗2r∗ − k∗
′

r∗.

Proof. First, second and third derivatives of curve β4 are, respectively

β4
′

=
−k∗t∗ + (k∗ − r∗)n1

∗ + r∗n2
∗

√
3

β′′4 =
(−k∗

′

− k∗2 + k∗r∗)t∗ − (k∗2 − k∗
′

+ r∗
′

+ r∗2)n1
∗ + (k∗r∗ − r∗2 + r∗

′

)n2
∗

√
3

,

β′′′4 =
η4t∗ + θ4n1

∗ + ρ4n2
∗

√
2

where the coefficients are as seen in (31). From (4) equation, curvatures are found as in (30).

Corollary 3.19. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of Frenet vectors of
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Smarandache curve β4 in terms of Frenet apparatus of Bertrand partner curve are as follows:

tβ4 (s) =
1
√

2

−kt +
(
k(cosθ − sinθ) − r(cosθ + sinθ)

)
+ rn2√

(−2 cosθkr − cosθ sinθk2 + cosθ sinθr2 + k2 + kr + r2)
,

n1β4
(s) =

ω̄4t + φ̄4n1 + σ̄4n2√
ω̄4

2 + φ̄4
2

+ σ̄4
2
,

n2β4 (s) =

(
(k(cosθ − sinθ) − r(cosθ + sinθ))σ̄4 − rφ̄4

)
t√

k2 + r2 + [k(cosθ − sinθ) − r(cosθ + sinθ)]2(ω̄4
2 + φ̄4

2
+ σ̄4

2)
(32)

+
(kσ̄4 + rω̄4)n1√

k2 + r2 + [k(cosθ − sinθ) − r(cosθ + sinθ)]2(ω̄4
2 + φ̄4

2
+ σ̄4

2)

+
−(kφ̄4 + (k(cosθ − sinθ) − r(cosθ + sinθ))ω̄4)n2√

k2 + r2 + [k(cosθ − sinθ) − r(cosθ + sinθ)]2(ω̄4
2 + φ̄4

2
+ σ̄4

2)
.

Herein, the coefficients are

ω̄4 =
(
− k′ − k(k(cosθ − sinθ) − r(cosθ + sinθ))

)
.
(
k2 + r2 + (k(cosθ − sinθ) − r(cosθ + sinθ))2

)
+k

(
(k(cosθ − sinθ) − r(cosθ + sinθ))2

)′
,

φ̄4 =
(
− k2
− r2 + (k(cosθ − sinθ) − r(cosθ + sinθ))

′
)

.
(
k2 + r2 + (k(cosθ − sinθ) − r(cosθ + sinθ))2

)
−(k(cosθ − sinθ) − r(cosθ + sinθ)).

(
k2 + r2 + (k(cosθ − sinθ) − r(cosθ + sinθ))2

)′
,

σ̄4 = (r(k(cosθ − sinθ) − r(cosθ + sinθ)) + r′).
(
k2 + r2 + (k(cosθ − sinθ) − r(cosθ + sinθ))2

)
−r

(
k2 + r2 + (k(cosθ − sinθ) − r(cosθ + sinθ))2

)′
.

Proof. If expression (6) instead of t∗, n1
∗ and n2

∗ in curve β4 is written, we have

β4 =
1
√

3

(
(cosθ − sinθ)t + n1 + (sinθ + cosθ)n2

)
.

If equations (6) and (7) into (29) and (30) equations are written, the proof is completed.

Corollary 3.20. Let (α, α∗) be a spatial quaternionic Bertrand curve pair in QH. The expressions of curvatures of
Smarandache curve β4 in terms of Frenet apparatus of Bertrand partner curve are as follows:

kβ4 =

√
3
√
ω̄4

2 + φ̄4
2

+ σ̄4
2(

(k(cosθ − sinθ) − r(cosθ + sinθ))2 + k2 + r2
) 3

2

,

rβ4 =
√

2
x̄4η̄4 + ȳ4θ̄4 + z̄4ρ̄4

x̄2
4 + ȳ2

4 + z̄2
4

. (33)
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Herein, the coefficients are

η̄4 =
(
− k′ − k(k(cosθ − sinθ) − r(cosθ − sinθ))

)′
−k

(
− k2
− r2 + (k(cosθ − sinθ) − r(cosθ − sinθ))

′
)
,

θ̄4 = k
(
− k

′

− k(k(cosθ − sinθ) − r(cosθ − sinθ))
′
)
− r

(
(rk − r2)(cosθ − sinθ) + r′

)
+
(
− k2
− r2 + (k(cosθ − sinθ) − r(cosθ − sinθ))

′
)′
,

ρ̄4 = r
(
− k2
− r2 + (k(cosθ − sinθ) − r(cosθ − sinθ))

′
)

+
(
(rk − r2)(cosθ − sinθ) + r

′
)′
,

x̄4 =
(
k(cosθ − sinθ) − r(cosθ − sinθ)

)
.
(
r + (k(cosθ − sinθ) − r(cosθ − sinθ)) + r′

)
−r

(
− k2
− r2 + (k(cosθ − sinθ) − r(cosθ − sinθ))

′
)
,

ȳ4 = k
(
r(k(cosθ − sinθ) − r(cosθ − sinθ)) + r′

)
+ r

(
− k

′

− (k2 + kr)(cosθ − sinθ)
)
,

z̄4 = k
(
− k2
− r2 + [k(cosθ − sinθ) − r(cosθ − sinθ)]

′
)

(
(k(cosθ − sinθ) − r(cosθ − sinθ))

)
.
(
− k

′

− k(k(cosθ − sinθ) − r(cosθ − sinθ))
)
.

Proof. If equations (6) and (7) into equation (30) and (31) are written, the proof is completed.

Example. Let be spatial quaternionic curve

α(s) =

( √
2

2
cos

( √5
5

s
)

+

√
2

2
sin

( √5
5

s
)
,−

2
√

5
5

s,
−
√

2
2

cos(

√
5

5
s) +

√
2

2
sin(

√
5

5
s)
)

and if taken as λ = 1, Bertrand partner belonging to this curve,

α∗(s) =
(
0,
−2
√

5
5

s, 0
)
.

In terms of definition, we obtain special Smarandache curves β1, β2, β3 and β4 according to Frenet frame of
spatial quaternionic curve, (Figure 1).

β1(s) =

(
−

1
2

cos
( √

5
5

s
)
−

1
2

sin
( √

5
5

s
)
,−

√
2

2
,

1
2

cos
( √

5
5

s
)
−

1
2

sin
( √

5
5

s
) )
,

β2(s) =

(
− cos

( √
5

5
s
)
, 0,− sin

( √
5

5
s
) )
,

β3(s) =

(
1
2

sin
( √

5
5

s
)
−

1
2

cos
( √

5
5

s
)
,−

√
2

2
,−

1
2

cos
( √

5
5

s
)
−

1
2

sin
( √

5
5

s
) )
,

β4(s) =

(
−

√
6

3
cos

( √
5

5
s
)
,−

√
3

3
,−

√
6

3
sin

( √
5

5
s
) )
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Figure 1: Smarandache Curves of Quaternionic Bertrand Curve

4. Conclusion

In this study, We have calculated the Smarandache curves of the Bertrand curve pairs. To put it simply,
we derived curves from a curve according to a method. We found the Frenet frames and curvatures of
these curves, which we call Smarandache curves. Finally, we found these results depending on the Frenet
frames of the Bertrand curve pair. We saw that we could switch between Frenet frames. It is possible to
examine whether these obtained curves are included in special curves.
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Abstract. In this study we first write the characterizations of involute of a curve by means of the unit
Darboux vector of the involute curve. Then we make use of the Frenet formulas obtained by O. Çakır and
S. Şenyurt to explain the characterizations of involute of a curve by means of Frenet apparatus of the main
curve. Finally we examined the helix as an example.

1. Introduction and Preliminaries

To state a correlation between the invariants of a curve and characterizations of the curve in Euclidean space
and non-Euclidean spaces and then to interpret it from the language of geometry has been the focus of
interest for many researchers. Some curves are well-known by their explorers such as involute and evolute
curves,[2]. Afterwards, many studies have been conducted in Euclidean and non-Euclidean spaces closely
related to involute curves, [3, 4]. Later it has been revealed that curves can be classified, [5, 6, 8]. In this
paper, we first take a regular curve, that is, a main curve, then write the characterizations of the involute
curve by means of Frenet apparatus of the main curve. This work is one of the applications of [1] by which
looking from such a point of view that we make the complex calculations more elementary. Eventually we
put the example which support our assumption.
Now we may look at the main concepts related to the curve theory. Frenet vector fields can be expressed
by means of covariant derivative of these vectors and this relation is known as Frenet formulas, see [9]

T′ = ϑκN, N′ = −ϑκT + ϑτB , B′ = −ϑτN . (1)

Frenet vectors T ,N ,B form a Frenet frame and every Frenet frame moves along an instantaneous rotation
axis which is called a Darboux vector and given by, see [9]

W = τT + κB. (2)
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When we denote the angle between W and B by φ, the Darboux vector can be expressed as a unit Darboux
vector C given by, see [10]

C = sinφT + cosφB , sinφ =
τ

√

κ2 + τ2
, cosφ =

κ
√

κ2 + τ2
· (3)

Definition 1.1. Let α and β be two differentiable curves. If the tangent vector of α is perpendicular to the tangent
vector of β, then we call β as the involute of α. According to this definition, following parametrization can be given

β(s) = α(s) + λ(s)T(s) , λ(s) = c − s , c ∈ R. (4)

When β is the involute of α, we have d(α(s), β(s)) =| c − s |, ∀s ∈ I and c = const. The relationship between the
Frenet apparatus of the curves α and β is given by

Tβ = N , Nβ =
−κT + τB
√

κ2 + τ2
, Bβ =

τT + κB
√

κ2 + τ2
, κβ =

√

κ2 + τ2

λκ
, τβ =

κτ′ − κ′τ

λκ(κ2 + τ2)
· (5)

By this definition, Darboux vector of the curve β is given by, see [9]

Wβ = τβTβ + κβBβ. (6)

There is still another way to express Darboux vector named as unit Darboux vector in [10]

Cβ = sinφβTβ + cosφβBβ , sinφβ =
τβ√
κ2
β + τ2

β

, cosφβ =
κβ√
κ2
β + τ2

β

· (7)

with the angle φβ between the vectors Wβ and Bβ. It is also worth noting the relation here is that, see [11]

sinφβ =
φ′√

(φ′)2 + κ2 + τ2
, cosφβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

,

φ′β = (
φ′√

φ′2 + κ2 + τ2
)′

√
φ′2 + κ2 + τ2

√

κ2 + τ2
· (8)

This leads us the following relation, see [11]

Cβ =
φ′√

(φ′)2 + κ2 + τ2
N +

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

C . (9)

Figure 1: Unit Darboux vectors of the curves α and β.
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Definition 1.2. Letα be the unit speed curve, then the mean curvature vector field H along the curve α is defined
as, see [7]

H = Dα′α
′ = κN (10)

where D is the Levi-Civita connection. According to this definition the mapping

∆ : χ⊥(α(I))→ χ(α(I)) , ∆H = −D2
TH (11)

is called a Laplace operator. Let us denote the normal bundle of a curve α = α(s) by χ⊥(α(s)). Then the
normal connection D⊥ is given as

D⊥T : χ⊥(α(I))→ χ⊥(α(I)) , D⊥T X = DTX −
〈
DTX,T

〉
T (12)

and the normal Laplace operator ∆⊥ is given by the following mapping

∆⊥T X = −D⊥T D⊥T X, ∀X ∈ χ⊥(α(I)). (13)

Theorem 1.3. Let α be the unit speed curve and H, W be the mean curvature and Darboux vector along the curve
α, respectively. Then we have the following propositions, see [8]

a) ∆C = 0 then α is a biharmonic curve.

b) ∆C = µC, λ, µ ∈ R , then α is a 1-type harmonic curve.

c) ∆⊥C⊥ = 0 then α is a weak biharmonic curve.

d) ∆⊥C⊥ = µC⊥, λ, µ ∈ R , then α is a 1-type harmonic curve.

Theorem 1.4. Let α be a differentiable curve with unit Darboux vector C, then the differential equation character-
izing α according to unit Darboux vector is given as, see [8]

D3
TC + λ1D2

TC + λ2DTC + λ3C = 0 (14)

with the coefficients λ1 , λ2 , λ3

λ1 = −(
φ′′

φ′
+

(φ′ϑ ‖W ‖)′

ϑ ‖W ‖ φ′
), λ2 = (ϑ ‖W ‖)2 + (φ′)2

− (
φ′′

φ′
)′ +

(φ′ϑ ‖W ‖)′

ϑ ‖W ‖ (φ′)2φ
′′ ,

λ3 = ((φ′)2)′ −
(φ′ϑ ‖W ‖)′

ϑ ‖W ‖
φ′.

Theorem 1.5. Let α be a differentiable curve with unit normal Darboux vector C⊥, then the differential equation
characterizing α according to unit normal Darboux vector is given as, see [8]

λ2D⊥T D⊥T C⊥ + λ1D⊥T C⊥ + λ0C⊥ = 0 (15)

with the coefficients λ0 , λ1 , λ2

λ0 = φ′sinφ(φ′sinφϑτ − (ϑτcosφ)′) + ϑτcosφ(ϑ2τ2cosφ + (φ′sinφ)′) ,

λ1 = cosφ(φ′sinφϑτ − (ϑτcosφ)′) ,

λ2 = ϑτcos2φ .
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Theorem 1.6. [1] Let β be the involute of a unit speed curve α. Then the Frenet formulas for the curve β
with respect to Levi-Civita connection D and normal Levi-Civita connection D⊥ are given, respectively, as

DNT = κN, DNN = −κT + τB, DNB = −τN , (16)

D⊥NT = 0, D⊥NB = 0 . (17)

2. Calculation of the differential equations and harmonicity of the involute curve according to unit
Darboux vector with a new method

When we say α, unless we stated otherwise, we mean a unit speed curve in Euclidean 3-space with the
Frenet apparatus of T,N,B, κ, τ and when we mention β, it stands for the involute of the curve α in the
same space with the Frenet apparatus of Tβ,Nβ,Bβ, κβ, τβ and ϑ =‖ d

dsβ(s) ‖. Throughout the paper we
use C to denote the unit Darboux vector of α and Cβ to express the unit Darboux vector of β respectively.

Theorem 2.1. Let β be the involute of the curveα. Then the differential equation with respect to connection charac-
terizing the curve β by means of the unit Darboux vector Cβ is given as

D3
TβCβ + µβ1D2

TβCβ + µβ2DTβCβ + µβ3Cβ = 0 (18)

with the coefficients µβ1 , µβ2 , µβ3

µβ1 = −(
(φβ)′′

(φβ)′
+

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ (φβ)′
), µβ3 = (((φβ)′)2)′ −

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖
(φβ)′,

µβ2 = (ϑ ‖Wβ ‖)2 + ((φβ)′)2
− (

(φβ)′′

(φβ)′
)′ +

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ ((φβ)′)2 (φβ)′′ .

Proof. From equ.(3) we have Cβ = sinφβTβ + cosφβBβ · Taking the derivative with respect to Tβ gives us

DTβCβ = φ′β(cosφβTβ − sinφβBβ) · (19)

From the equalities (3) and (19) we write the equivalents of Tβ and Bβ as,

Tβ = sinφβCβ +
cosφβ
(φβ)′

DTβCβ ,

Bβ = cosφβCβ −
sinφβ
(φβ)′

DTβCβ ·

Second derivative of Cβ with respect to Tβ gives us

D2
TβCβ =

(φβ)′′

(φβ)′
DTβCβ − ((φβ)′)2Cβ + (φβ)′ϑ ‖Wβ ‖ Nβ ·

From this equality we derive Nβ as,

Nβ =
1

ϑ((φβ)′)2 ‖Wβ ‖
((φβ)′D2

TβCβ − (φβ)′′DTβCβ + ((φβ)′)3Cβ) ·
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After third derivative of Cβ we find

D3
TβCβ = (

(φβ)′′

(φβ)′
+

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ (φβ)′
)D2

TβCβ + ((
(φβ)′′

(φβ)′
)′ − (ϑ ‖Wβ ‖)2

− ((φβ)′)2
−

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ ((φβ)′)2 (φβ)′′)DTβCβ

+(
((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖
(φβ)′ − (((φβ)′)2)′)Cβ ·

It remains only to rearrange the above equality as a linear combinations of D3
Tβ

Cβ, D2
Tβ

Cβ, DTβCβ and Cβ · Then we
obtain the required equation which completes the proof.

Theorem 2.2. Let α be a differentiable curve with principal normal N, unit Darboux vector C and β be the involute
of α. Then the differential equation characterizing the curve β with respect to connection is given as

c1D3
NC +

(
3c′1 + µ1c1

)
D2

NC +
(
3c′′1 + 2µ1c′1 + µ2c1

)
DNC

+
(
c′′′1 + µ1c′′1 + µ2c′1 + µ3c1

)
C + c2D3

NN +
(
3c′2 + µ1c2

)
D2

NN

+
(
3c′′2 + 2µ1c′2 + µ2c2

)
DNN +

(
c′′′2 + µ1c′′2 + µ2c′2 + µ3c2

)
N = 0 (20)

with the coefficients c1, c2, µ1, µ2, µ3

c1 =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

, c2 =
φ′√

(φ′)2 + κ2 + τ2
,

µ1 = −

(arcsin φ′
√

(φ′)2+κ2+τ2
)′′

(arcsin φ′
√

(φ′)2+κ2+τ2
)′
−

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
√

(φ′)2 + κ2 + τ2
)′

√
(φ′)2 + κ2 + τ2

(
arcsin φ′

√
(φ′)2+κ2+τ2

)′ ,

µ2 = (φ′)2 + κ2 + τ2 + ((arcsin
φ′√

(φ′)2 + κ2 + τ2
)′)2
− (

(arcsin φ′
√

(φ′)2+κ2+τ2
)′′

(arcsin φ′
√

(φ′)2+κ2+τ2
)′

)′

+

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
√

(φ′)2 + κ2 + τ2
)′

√
(φ′)2 + κ2 + τ2

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
)2 · (arcsin

φ′√
(φ′)2 + κ2 + τ2

)′′ ,

µ3 =
(
((arcsin

φ′√
(φ′)2 + κ2 + τ2

)′)2
)′

−

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
√

(φ′)2 + κ2 + τ2
)′

√
(φ′)2 + κ2 + τ2

(arcsin
φ′√

(φ′)2 + κ2 + τ2
)′.
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Proof. We can compute the equivalents of coefficients µβ1, µβ2, µβ3 and the angle φβ in the equation (18) by tak-
ing equations (5) , (8) and (9) into consideration as µ1, µ2, µ3 and the angle φ. It follows from the equ.(9) we
have

c1 =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

, c2 =
φ′√

(φ′)2 + κ2 + τ2
·

Making use of the equalities (5) , (8) and (9) again, we can write the equivalents of coefficients µβ1, µβ2, µβ3 and the
Darboux vector Wβ as

Wβ =
sinφ

√

κ2 + τ2

λκ
T +

κτ′ − κ′τ

λκ(κ2 + τ2)
N +

cosφ
√

κ2 + τ2

λκ
B.

By referring the equalities (8) and (14) we can write that

Cβ =
1√

(φ′)2 + κ2 + τ2
(sinφ

√

κ2 + τ2 T + φ′N + cosφ
√

κ2 + τ2 B).

Applying the equ.(16) we may write the counterparts of DTβCβ, D2
Tβ

Cβ, D3
Tβ

Cβ as in the following form

DTβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

DNC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′C +
φ′√

(φ′)2 + κ2 + τ2
DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′N ,

D2
TβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D2
NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′DNC

+(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C +
φ′√

(φ′)2 + κ2 + τ2
D2

NN

+2(
φ′√

(φ′)2 + κ2 + τ2
)′DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′′N , (21)

D3
TβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D3
NC + 3(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′D2
NC

+3(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′DNC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′′C

+
φ′√

(φ′)2 + κ2 + τ2
D3

NN + 3(
φ′√

(φ′)2 + κ2 + τ2
)′D2

NN

+3(
φ′√

(φ′)2 + κ2 + τ2
)′′DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′′′N.
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Finally setting the equivalents of coefficients and derivatives with respect to N into the first equation we get desired
result which completes the proof.

Theorem 2.3. Let β be the involute of the curve α. Then the differential equation with respect to normal connection
characterizing the curve β by means of the unit Darboux vector C⊥β is given as

λβ2D⊥TβD
⊥

TβC
⊥

β + λβ1D⊥TβC
⊥

β + λβ0C⊥β = 0 (22)

with the coefficients λβ0 , λβ1 , λβ2

λβ2 = ϑτβcos2φβ, λβ1 = cosφβ
(
φ′βsinφβϑτβ − (ϑτβcosφβ)′

)
,

λβ0 = φ′βsinφβ
(
φ′βsinφβϑτβ − (ϑτβcosφβ)′

)
+ ϑτβcosφβ

(
ϑ2(τβ)2cosφβ + (φ′βsinφβ)′

)
.

Proof. From equ. (13) we write the normal component of Cβ as

C⊥β = cosφβBβ · (23)

Taking the first and second derivatives of this equality with respect to normal connection gives us,

D⊥TβC
⊥

β = −ϑτβcosφβNβ − φ
′

βsinφβBβ, (24)

D⊥TβD
⊥

TβC
⊥

β =
(
φ′βsinφβϑτβ − (ϑτβcosφβ)′

)
Nβ −

(
ϑ2(τβ)2cosφβ + (φ′βsinφβ)′

)
Bβ.

(25)

If we extract the vectors Nβ and Bβ from equ.(23) , (24) we have

Bβ =
1

cosφβ
C⊥β ,

Nβ =
−1

ϑτβcosφβ
D⊥TβC

⊥

β −

φ′β sinφβ

ϑτβcos2φβ
C⊥β ·

Putting the equivalents of Bβ and Nβ into the equ.(25) we obtain the desired equation which completes the proof.

Theorem 2.4. Let α be a differentiable curve with principal normal N, unit Darboux vector C and β be the involute
of α. Then the differential equation characterizing the curve β with respect to normal connection is given as(

ρλ2

)
D⊥ND⊥NC +

(
2ρ′λ2 + ρλ1

)
D⊥NC +

(
ρ′′λ2 + ρ′λ1 + ρλ0

)
C = 0 (26)
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with the coefficients ρ, λ0, λ1, λ2

ρ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

, λ2 =
κτ′ − κ′τ

(φ′)2 + κ2 + τ2 ,

λ1 =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

(
(arcsin

φ′√
(φ′)2 + κ2 + τ2

)′
φ′√

(φ′)2 + κ2 + τ2
·

κτ′ − κ′τ

κ2 + τ2 − (
κτ′ − κ′τ√

((φ′)2 + κ2 + τ2)(κ2 + τ2)
)′
)
,

λ0 = (arcsin
φ′√

(φ′)2 + κ2 + τ2
)′

φ′√
(φ′)2 + κ2 + τ2

·

(
(arcsin

φ′√
(φ′)2 + κ2 + τ2

)′
φ′√

(φ′)2 + κ2 + τ2

κτ′ − κ′τ

κ2 + τ2

−(
κτ′ − κ′τ√

((φ′)2 + κ2 + τ2)(κ2 + τ2)
)′
)

+
κτ′ − κ′τ√

((φ′)2 + κ2 + τ2)(κ2 + τ2)

(
(
κτ′ − κ′τ

(κ2 + τ2)
)2

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

+
(
(arcsin

φ′√
(φ′)2 + κ2 + τ2

)′
φ′√

(φ′)2 + κ2 + τ2

)′)
.

Proof. From equ.(3) we have cosφ = κ/
√

κ2 + τ2 and sinφ = τ/
√

κ2 + τ2 it follows from the equalities
(8) and (14)

we figure out that sinφβ = φ′/
√

(φ′)2 + κ2 + τ2 , cosφβ =
√

κ2 + τ2/
√

(φ′)2 + κ2 + τ2 . Then we get,

C⊥β =
τ√

(φ′)2 + κ2 + τ2
T +

κ√
(φ′)2 + κ2 + τ2

B.

On the other hand we can evaluate the equivalents of coefficients of the equation (22) by using the equalities (5) , (8)
and (17) as λ0, λ1, λ2. By the same way we can make use of the equalities (5) , (8) and (17)again, in order to write
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the equivalents of derivatives of D⊥TβC
⊥

β and D⊥TβD
⊥

Tβ
C⊥β with respect to N. It follows that

D⊥TβC
⊥

β =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D⊥NC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′C ,

D⊥TβD
⊥

TβC
⊥

β =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D⊥ND⊥NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′D⊥NC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C . (27)

Setting the equivalents of coefficients of the equation with the aid of equ.(5) and then the derivatives with respect to N
into the equation above we get desired result which completes the proof.

Theorem 2.5. Let β be the involute of a differentiable curve α with the unit Darboux vector Cβ. According to
connection, harmonicity (biharmonic or 1-type harmonic) of the curve β may not be expressed by means of the Frenet
apparatus of the main curve α.

Proof. From equ.(21), it is obvious that we have the following

D2
TβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D2
NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′DNC

+(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C +
φ′√

(φ′)2 + κ2 + τ2
D2

NN

+2(
φ′√

(φ′)2 + κ2 + τ2
)′DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′′N ·

Considering the case ∆Cβ = 0 or ∆Cβ = λCβ, from Theorem 1.3 of a and b we get DNN = 0 and DNC = 0.
Hence we cannot decide whether the curve β is biharmonic or 1-type harmonic.

Theorem 2.6. Let β be the involute of a differentiable curve α with the normal Darboux vector C⊥β . According to
normal connection, harmonicity (weak biharmonic or 1-type harmonic) of the curve β may not be expressed by means
of the Frenet apparatus of the main curve α.

Proof. From equ.(27), it is clear that we have the following

D⊥TβD
⊥

TβC
⊥

β =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D⊥ND⊥NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′D⊥NC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C ·

Considering the case ∆C⊥β = 0 or ∆C⊥β = λC⊥β , from Theorem 1.3 of c and d we get DNC = 0.
Hence we cannot decide whether the curve β is weak biharmonic or 1-type harmonic.

Example 2.7. Let a curve α(s) = 1
√

2
(coss, sins, s) be given. Then we have an involute of α, that is, curve β,

β(s) = 1
√

2
(coss − (c − s)sins, sins + (c − s)coss, c) , c ∈ R. It follows that Cβ = sinφβTβ + cosφβBβ with

sinφβ = 0 , cosφβ = 1. By the equ.(9) also we get Bβ = C. Hence we obtain, DNC = 0 and D⊥NC = 0 .
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[12] Kocayigit, H. , Önder M., Hacisalihoglu, H.H. Harmonic 1-type Curves and Weak Biharmonic Curves in Lorentzian 3-space. An

Alele Stiintifice Ale Universitatii ”Al.I. Cuza” Din Iasi(S.N.) Matematica, Tomul LX. 60(1), 2014, 109–124.



TURKISH JOURNAL OF SCIENCE
VOLUME 5, ISSUE 2, 73–84
ISSN: 2587–0971

http:/dergipark.gov.tr/tjos

The multiplicity of eigenvalues of a vectorial diffusion equations with
discontinuous function inside a finite interval

Abdullah ERGÜNa

aVocational High School of Sivas, Cumhuriyet University

Abstract. In this study , m-dimensional vectorial diffusion equation with discontinuous function inside a
finite interval is considered. Considering the asymptotic representation of the solution of the problem, we
have obtained some conclusions about the multiplicity of eigenvalues. We have proved that, under certain
conditions on potential matrix, the problem can only have a finite number of eigenvalues with multiplicity
m.

sectionIntroduction Consider the m-dimensional vectorial singular diffusion equations

−y′′ +
[
2λp (x) + q (x)

]
y = λ2δ (x) y, x ∈ (0, π) (1)

y′ (0) = θ (2)

y′ (π) = θ (3)

where λ is the spectral parameter ,y =
(
y1, y2, ...ym

)T is an m-dimensional vector function,

δ (x) =


1 , x ∈ (0, a1)
α2, x ∈ (a1, a2)
β2, x ∈ (a2, π)

and α > 0 , α , 1,β > 0 , β , 1, q(x) ∈ L2 [0, π], p(x) ∈ W1
2 [0, π] , a1, a2 ∈ (0, π), a1 < a2. The potential matrix(

2λp (x) + q (x)
)

is an m ×m real symmetric matrix function. θ denotes the m-dimensional zero vector.
Many studies on the theory of second-order differential operators have been studied in [7, 18]. One of
the most important of these was made in 1946 by Titchmarsh [20]. In 1984, the studies on the spectral
theory of singular differential operators were conducted by Levitan [21]. Many physical phenomena, such
as fluid flow and heat dissipation [23], atomic mixing modelling [24] include a diffusion process. Singular
differential operators with conditions of discontinuity are often used in mathematical physics, in geophysics
and natural sciences. In general, these problems are associated with discontinuous material properties. For
example; It is used to in determining the parameters of the electricity line in electronics [22]. Also, it is used
to determine geophysical models for the release of the earth [9]. The discontinuity here is the reflection of
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the shear waves at the base of the earth’s crust. In 1999, C. L. Shen and C.T. Shies [5] studied the multiplicity
of eigenvalues of the m-dimensional the vectorial Sturm-Liouville problem

−y′′ + Q (x) y = λy , y (0) = y (1) = θ

where Q is continuous m ×m Jacobi matrix-valued function defined on 0 ≤ x ≤ 1. Q. Kong [4] generalized
to the case when Qis real symmetric. However, there are no such result for the discontinuous problem
(1) − (3).
In this study, firstly we define the characteristic function of the eigenvalues of vectorial problem (1) − (3).
Following this, we prove the conclusion that the eigenvalues of the problem coincide with the zeros of
characteristic function. Then, we show the asymptotic forms of the solutions and obtain some results about
multiplicity of the eigenvalues.

1. Characteristic function and asymptotics of solutions

Denote H = L2 (I,Cm) the Hilbert space of vector-valued functioons with the scalar product

(
f , 1

)
=

∫ a1

0
1∗1 f1dx +

∫ a2

a1

1∗2 f2dx +

∫ π

a2

1∗r frdx =

∫ π

0
1∗ f dx

where f =
(

f1, f2, ..., fm
)T, 1 =

(
11, 12, ...1m

)T and fi, 1i ∈ L2 (I) , f1 (x) = f (x)
∣∣∣
(0,a1) , f2 (x) = f (x)

∣∣∣
(a1,a2) and

fr (x) = f (x)
∣∣∣
(a2,π). We can define an operator L associated with the problem (1) − (3) on H

L : −y′′ +
[
2λp (x) + q (x)

]
y = λ2δ (x) y , y ∈ D (L)

D (L) =
{
y ∈ H; y, y′ ∈ AC [I,Cm]

}
, Ly ∈ L2 [I,Cm]

y′ (0) = y′ (π) = θ.

Lemma 1.1. The operator L is self-adjoint.

The proof is similar to the scaler case in [12].
We consider the problem on the three intervals (0, a1) , (a1, a2) and (a2, π) respectively, where θm denotes
m ×m zero matrix and Emdenotes m ×m identify matrix. On (0, a1), the matrix initial value problem{

−Y′′ +
(
2λp (x) + q (x)

)
Y = λ2

· 1 · Y , x ∈ (0, a1)
φ1 (0, λ) = Em , φ′1 (0, λ) = θm

(4)

has a unique solution φ1 (x, λ). What’s more, for any fixed x ∈ (0, a1), φ1 (x, λ) is an entire matrix function
in λ [1],p17. By variation of constants, we have

φ1 (x, λ) = cosλxEm +
1
λ

∫ x

0
sinλ (x − t)

(
2λp (t) + q (t)

)
φ1 (t, λ) dt. (5)

on (a1, a2) the matrix value problem
−Y′′ +

(
2λp (x) + q (x)

)
Y = λ2α2Y , x ∈ (a1, a2)

φ2 (a1 + 0, λ) = φ1 (a1 − 0, λ)
φ′2 (a1 + 0, λ) = φ′1 (a1 − 0, λ)

(6)

has a unique solution φ2 (x, λ). In addition to, for any fixed x ∈ (a1, a2), φ2 (x, λ) is an entire matrix
function in λ. By variation of constants, we have

ϕ (x, λ) = α+eiλµ+(x) + α−eiλµ−(x) + α+
∫ a1

0
sinλ(µ+(x)−t)

λ Q (t) y (t, λ) dt

+α−
∫ a1

0
sinλ(µ−(x)−t)

λ Q (t) y (t, λ) dt +
∫ x

a1

sinλα(x−t)
λα Q (t) y (t, λ) dt

(7)



A. Ergün / TJOS 5 (2), 73–84 75

where µ± (x) = ±αx ∓ αa1 + a1, Q (t) = 2λp (t) + q (t),
or

φ2 (x, λ) = cosλα (x − a1)φ1 (a1 − 0) Em + 1
λα sinλα (x − a1)φ

′

1 (a1 − 0) Em

+
∫ x

a1

sinλα(x−t)
λα

(
2λp (t) + q (t)

)
φ2 (t, λ) dt. (8)

on (a2, π) the matrix value problem
−Y′′ +

(
2λp (x) + q (x)

)
Y = λ2β2Y , x ∈ (a2, π)

φ3 (a2 + 0, λ) = φ2 (a2 − 0, λ)
φ′3 (a2 + 0, λ) = φ′2 (a2 − 0, λ)

(9)

has a unique solution φ3 (x, λ). In addition to, for any fixed x ∈ (a2, π), φ3 (x, λ) is an entire matrix function
in λ. By variation of constants, we have

φ3 (x, λ) = α+β+eiλk+(x) + α−β−eiλk−(x) + α+β−eiλs+(x) + α−β+eiλs−(x)

+α+β+
∫ a1

0
sinλ(k+(x)−t)

λ Q (t) y (t, λ) dt + α+β−
∫ a1

0
sinλ(s+(x)−t)

λ Q (t) y (t, λ) dt
+α−β−

∫ a1

0
sinλ(k−(x)−t)

λ Q (t) y (t, λ) dt + α−β+
∫ a2

a1

sinλ(s−(x)−t)
λ Q (t) y (t, λ) dt

+
β+

α

∫ a1

0
sinλ(βx−βa2+αa2−αt)

λ Q (t) y (t, λ) dt

−
β−

α

∫ a1

0
sinλ(βx−βa2−αa2+αt)

λ Q (t) y (t, λ) dt +
∫ x

a2

sinλβ(x−t)
λβ Q (t) y (t, λ) dt

(10)

where Q (t) = 2λp (t) + q (t),µ± (x) = ±αx∓αa1 + a1,α± = 1
2

(
1 ± 1

α

)
,β± = 1

2

(
1 ± 1

β

)
, k± (x) = βx−βa2 +µ± (a2),

s± (x) = −βx + βa2 + µ± (a2) ,
or

φ3 (x, λ) = cosλβ (x − a2)φ2 (a2 − 0, λ) Em + 1
λβ sinλβ (x − a2)φ′2 (a2 − 0, λ) Em

+
∫ x

a2

sinλβ(x−t)
λβ

(
2λp (t) + q (t)

)
φ3 (t, λ) dt .

(11)

Let

φ (x, λ) =


φ1 (x, λ) , x ∈ (0, a1)
φ2 (x, λ) , x ∈ (a1, a2)
φ3 (x, λ) , x ∈ (a2, π)

.

Then, any solution of the equations (1) satisfying boundary condition (2) can be expressed as

y (x, λ) = φ (x, λ) c1 =


φ1 (x, λ) c0, x ∈ (0, a1)
φ2 (x, λ) c0, x ∈ (a1, a2)
φ3 (x, λ) c0, x ∈ (a2, π)

(12)

where c1 is an arbitrary m-dimensional constant vector. If λ is an eigenvalue of the problem (1) − (3), then
c0 , θ and y (x, λ) satisfies the boundary condition at x = π, that is,

y′ (π, λ) = φ′ (π, λ) c0 = φ′3 (π, λ) c0 = θ.

Thus, we get
det

(
φ′3 (π, λ)

)
= 0.

Similarly, on (a2, π), consider the matrix initial value problem{
−Y′′ +

(
2λp (x) + q (x)

)
Y = λ2β2Y , x ∈ (a2, π)

ψ3 (π, λ) = Em , ψ
′

3 (π, λ) = θm
. (13)

The problem (13) has a unique solution ψ3 (x, λ). Furthermore, for any fixed x ∈ (a2, π), ψ3 (x, λ) is an entire
matrix function in λ.
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Consider the matrix initial value problem on (a1, a2),
−Y′′ +

(
2λp (x) + q (x)

)
Y = λ2α2Y , x ∈ (a1, a2)

ψ3 (a2 + 0, λ) = ψ2 (a2 − 0, λ)
ψ′3 (a2 + 0, λ) = ψ′2 (a2 − 0, λ)

. (14)

The problem (14) has a unique solution ψ2 (x, λ). Furthermore, for any fixed x ∈ (a1, a2), ψ2 (x, λ) is an entire
matrix function in λ.
Consider the matrix initial value problem on (0, a1),

−Y′′ +
(
2λp (x) + q (x)

)
Y = λ2

· 1 · Y , x ∈ (0, a1)
ψ2 (a1 + 0, λ) = ψ1 (a1 − 0, λ)
ψ′2 (a1 + 0, λ) = ψ′1 (a1 − 0, λ)

(15)

The problem (15) has a unique solution ψ1 (x, λ). Furthermore, for any fixed x ∈ (0, a1), ψ1 (x, λ) is an entire
matrix function in λ. Let

ψ (x, λ) =


ψ1 (x, λ) , x ∈ (0, a1)
ψ2 (x, λ) , x ∈ (a1, a2)
ψ3 (x, λ) , x ∈ (a2, π)

.

Then, any solution of the equations (1) satisfying boundary condition (3) can be expressed as

y (x, λ) = ψ (x, λ) c2 =


ψ1 (x, λ) c1, x ∈ (0, a1)
ψ2 (x, λ) c1, x ∈ (a1, a2)
ψ3 (x, λ) c1, x ∈ (a2, π)

(16)

where c2 is an arbitrary m-dimensional constant vector. If λ is an eigenvalue of the problem (1) − (3), then
c1 , θand y (x, λ) satisfies the boundary condition at x = 0, that is,

y′ (0, λ) = ψ′ (0, λ) c1 = ψ
′

1 (0, λ) c1 = θ

Thus, we get
det

(
ψ
′

1 (0, λ)
)

= 0.

Let ∆ j (λ) = W
(
φ j (x, λ) , ψ j (x, λ)

)
be the Wronskian of solution matrices φ j (x, λ)and ψ j (x, λ), j = 1, 2, 3, that

is,

∆1 (λ) =

∣∣∣∣∣ φ1 (x, λ) ψ1 (x, λ)
φ′1 (x, λ) ψ′1 (x, λ)

∣∣∣∣∣ . ∆2 (λ) =

∣∣∣∣∣ φ2 (x, λ) ψ2 (x, λ)
φ′2 (x, λ) ψ′2 (x, λ)

∣∣∣∣∣ .
∆3 (λ) =

∣∣∣∣∣ φ3 (x, λ) ψ3 (x, λ)
φ′3 (x, λ) ψ′3 (x, λ)

∣∣∣∣∣ . (17)

Lemma 1.2. ∆1 (λ) = ∆2 (λ) = ∆3 (λ) for all λ ∈ C.

Proof. Because the Wronskian of the solution matrices φ j (x, λ) and ψ j (x, λ) is independent of x ,

∆3 (λ) = ∆3 (λ)|x=a2+0 =

∣∣∣∣∣ φ3 (a2 + 0, λ) ψ3 (a2 + 0, λ)
φ′3 (a2 + 0, λ) ψ′3 (a2 + 0, λ)

∣∣∣∣∣ =

∣∣∣∣∣ φ2 (a2 − 0, λ) ψ2 (a2 − 0, λ)
φ′2 (a2 − 0, λ) ψ′2 (a2 − 0, λ)

∣∣∣∣∣
=

∣∣∣∣∣ φ2 (x, λ) ψ2 (x, λ)
φ′2 (x, λ) ψ′2 (x, λ)

∣∣∣∣∣
x=a2−0

= ∆2 (λ) = ∆2 (λ)|x=a1+0 =

∣∣∣∣∣ φ2 (a1 + 0, λ) ψ2 (a1 + 0, λ)
φ′2 (a1 + 0, λ) ψ′2 (a1 + 0, λ)

∣∣∣∣∣
=

∣∣∣∣∣ φ1 (a1 − 0, λ) ψ1 (a1 − 0, λ)
φ′1 (a1 − 0, λ) ψ′1 (a1 − 0, λ)

∣∣∣∣∣ =

∣∣∣∣∣ φ1 (x, λ) ψ1 (x, λ)
φ′1 (x, λ) ψ′1 (x, λ)

∣∣∣∣∣
x=a1−0

= ∆1 (λ)

the proof is completed.
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Denote ∆ (λ) = ∆1 (λ) = ∆2 (λ) = ∆3 (λ), we have the following lemma.

Lemma 1.3. λ is an eigenvalue of (1) − (3) if any only if ∆ (λ) = 0.

Proof. Necessity: Assume that λ0is an eigenvalue of (1) − (3). y (x, λ0) is the eigenfunctions corresponding
to λ0, then by (16) we have

y (x, λ0) = φ (x, λ0) c30 =


φ1 (x, λ0) c30, x ∈ (0, a1)
φ2 (x, λ0) c30, x ∈ (a1, a2)
φ3 (x, λ0) c30, x ∈ (a2, π)

(18)

y (x, λ0) = ψ (x, λ0) c40 =


ψ1 (x, λ0) c40, x ∈ (0, a1)
ψ2 (x, λ0) c40, x ∈ (a1, a2)
ψ3 (x, λ0) c40, x ∈ (a2, π)

(19)

c30, c40 are m-dimensional nonzero constant vector. So from (18) and (19), we have

φ1 (x, λ0) c30 = ψ1 (x, λ0) c40
φ′1 (x, λ0) c30 = ψ′1 (x, λ0) c40

}
x ∈ (0, a1) .

By direct simplification, we get (
φ1 (x, λ0) −ψ1 (x, λ0)
φ′1 (x, λ0) −ψ′1 (x, λ0)

)
·

(
c30
c40

)
=

(
θ
θ

)
.

Because c30, c40 , 0, the coefficient determinant of above linear system of equations∣∣∣∣∣ φ1 (x, λ0) −ψ1 (x, λ0)
φ′1 (x, λ0) −ψ′1 (x, λ0)

∣∣∣∣∣ = (−1)m
∣∣∣∣∣ φ1 (x, λ0) ψ1 (x, λ0)
φ′1 (x, λ0) ψ′1 (x, λ0)

∣∣∣∣∣
= (−1)m ∆1 (λ0) = ∆2 (λ0) = ∆3 (λ0) = ∆ (λ0) = 0

Sufficiency:
If λ0 ∈ C, ∆ (λ0) = 0. Then the linear systems of equations(

φ1 (x, λ0) ψ1 (x, λ0)
φ′1 (x, λ0) ψ′1 (x, λ0)

)
·

(
c0
c1

)
=

(
θ
θ

)
,

(
φ2 (x, λ0) ψ2 (x, λ0)
φ′2 (x, λ0) ψ′2 (x, λ0)

)
·

(
c0
c1

)
=

(
θ
θ

)
(
φ3 (x, λ0) ψ3 (x, λ0)
φ′3 (x, λ0) ψ′3 (x, λ0)

)
·

(
c0
c1

)
=

(
θ
θ

)
have nonzero solutions. By a direct computation, we get

φ1 (x, λ0) c0 = −ψ1 (x, λ0) c1
φ′1 (x, λ0) c0 = −ψ′1 (x, λ0) c1

}
x ∈ (0, a1) ,

φ2 (x, λ0) c0 = −ψ2 (x, λ0) c1
φ′2 (x, λ0) c0 = −ψ′2 (x, λ0) c1

}
x ∈ (a1, a2)

and
φ3 (x, λ0) c0 = −ψ3 (x, λ0) c1
φ′3 (x, λ0) c0 = −ψ′3 (x, λ0) c1

}
x ∈ (a2, π) .

Denote

y (x, λ0) =


φ1 (x, λ0) c0 = −ψ1 (x, λ0) c1, x ∈ (0, a1)
φ2 (x, λ0) c0 = −ψ2 (x, λ0) c1, x ∈ (a1, a2)
φ3 (x, λ0) c0 = −ψ3 (x, λ0) c1, x ∈ (a2, π)

.

We note that y (x, λ0) satisfies the boundary condition (2) , (3). That is, y (x, λ0) is the eigenfunctions corre-
sponding to λ0. Thus λ0 is an eigenvalue of the problem (1) − (3).
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Remark 1.4. As two especial case

∆ (λ) =

∣∣∣∣∣ φ1 (x, λ0) ψ1 (x, λ0)
φ′1 (x, λ0) ψ′1 (x, λ0)

∣∣∣∣∣
x=0

=

∣∣∣∣∣ Em ψ1 (0, λ0)
θm ψ′1 (0, λ0)

∣∣∣∣∣ = det
(
ψ′1 (0, λ)

)
∆ (λ) =

∣∣∣∣∣ φ3 (x, λ0) ψ3 (x, λ0)
φ′3 (x, λ0) ψ′3 (x, λ0)

∣∣∣∣∣
x=π

=

∣∣∣∣∣ φ3 (π, λ0) Em
φ′3 (π, λ0) θm

∣∣∣∣∣ = (−1)m det
(
φ′3 (π, λ)

)
.

Definition 1.5. ∆ (λ) will be called the characteristic function of the eigenvalues of the problem (1) − (3).

Definition 1.6. If there is a ∆1 (λ) to be ∆ (λ) = (λ − λ0)m ∆1 (λ), algebraic multiplicity of eigenvalue λis called
m. The geometric multiplicity of λ as an eigenvalue of the problem (1) − (3) is defined to be the number of linearly
independent solutions of the boundary value problem. If we denote 2m × 2mmatrices

A (x, λ0) =

(
φ1 (x, λ0) ψ1 (x, λ0)
φ′1 (x, λ0) ψ′1 (x, λ0)

)
,B (x, λ0) =

(
φ2 (x, λ0) ψ2 (x, λ0)
φ′2 (x, λ0) ψ′2 (x, λ0)

)
and

C (x, λ0) =

(
φ3 (x, λ0) ψ3 (x, λ0)
φ′3 (x, λ0) ψ′3 (x, λ0)

)
the rank of matrix A (x, λ0) as R (A (x, λ0)). Similarly, B (x, λ0) as R (B (x, λ0)) and C (x, λ0)as R (C (x, λ0)).

Corollary 1.7. The geometric multiplicity of λ0 as an eigenvalue of the problem (1)− (3) is equal to 2m−R (A (x, λ0))
or 2m − R (B (x, λ0)) or 2m − R (C (x, λ0)).

Corollary 1.8. R (A (x, λ0)), R (B (x, λ0)) or R (C (x, λ0)) is at least equal to m, so the geometric multiplicity of λ0
varies from 1 to m. When the geometric multiplicity of an eigenvalue is m, we say the eigenvalue has maximal (full)
multiplicity. In this study, we refer multiplicity as the geometric multiplicity.
An entire function of non-integer order has an infinite set of zeros. The zeros of an analytic function which does
not vanish identically are isolated [3]. ψ′1 (0, λ) and φ′3 (π, λ) are entire function of order 1

2 matrices. The sums and
products of such functions are entire of order not exceeding 1

2 . Hence, the determinants of ψ′1 (0, λ) and φ′3 (π, λ), that
is, the caracteristic functions are also non-integer.

Eigenvalues for (1)−(3) are real. The boundary value problem (1)−(3)has a countable number of eigenvalues
that grow unlimitedly, when those are ordered according to their absolute value.
The norm of a constant matrix as well as the norm of a matrix function A is denoted by ‖A‖.
A (x) =

(
ai j

)m

i, j=1
: I→MR

mxm, for any x ∈ I, the norm of A (x) may be taken as

‖A (x)‖ = max
1≤i≤m

m∑
j=1

∣∣∣ai j

∣∣∣ (20)

Let λ = s2, s = σ + iτ , σ, τ ∈ R. We have the following three lemmas.

Lemma 1.9. When |λ| → ∞, the following asymptotic formulas hold on
0 < x < a1,

φ1 (x, λ) = cos (λx) Em + O
(
|λ|−1 e|σ|x

)
(21)

φ′1 (x, λ) = −λ sin (λx) Em + O
(
e|σ|x

)
(22)

Proof. See [1].

Lemma 1.10. When |λ| → ∞, φ2 (x, λ) and φ′2 (x, λ) have the following asymptotic formulas on a1 < x < a2 ,

φ2 (x, λ) =
1
2
α+ exp

(
−i

(
λµ+ (x) −

1
α

∫ x

a1

p (t) dt
))

Em

(
1 + O

( 1
λ

))
(23)

φ′2 (x, λ) =
1
2
α+ (

p (x) − λα
)

i exp
(
−i

(
λµ+ (x) −

1
α

∫ x

a1

p (t) dt
))

Em + O (1) (24)

where µ∓ (x) = ∓αx ± αa1 + a1 , α± = 1
2

(
1 ± 1

α

)
.
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Proof. Since φ2 (x, λ) is the solution of initial value problem (6) , we have

φ2 (x, λ) = α+ cos
[
λµ+ (x) − 1

α

∫ x

a1
p (t) dt

]
Em

+α− cos
[
λµ− (x) + 1

α

∫ x

a1
p (t) dt

]
Em + O

(
1
λ eσµ+(x)

) .
We get

φ2 (x, λ) = 1
2α

+e
i
[
λµ+(x)− 1

α

∫ x
a1

p(t)dt
]
Em + 1

2α
+e
−i

[
λµ+(x)− 1

α

∫ x
a1

p(t)dt
]
Em

+ 1
2α
−e

i
[
λµ−(x)+ 1

α

∫ x
a1

p(t)dt
]
Em + 1

2α
−e
−i

[
λµ−(x)+ 1

α

∫ x
a1

p(t)dt
]
Em + O

(
1
λ eσµ+(x)

) (25)

Let f (x, λ) := O
(

1
λ eσµ+(x)

)
and note that

φ2 (x, λ) =
1
2
α+e

−i
[
λµ+(x)− 1

α

∫ x
a1

p(t)dt
]
Em +

(
1 + 1 (x, λ)

)
.

From a simple computation at equations (25), we get

1 (x, λ) = e
2i
[
λµ+(x)− 1

α

∫ x
a1

p(t)dt
]
Em + α−1

α+1 e2iλa1 Em + α−1
α+1 e2i

[
λα(x−a1)− v(x)

α

]
Em

+ 2e
i
[
λµ+ (x)− 1

α
∫ x
a1

p(t)dt
]

α+ f (x, λ) Em.

Let’s examine 1 (x, λ) = O
(

1
λ

)
accuracy.

∣∣∣1 (x, λ)
∣∣∣ ≤ ∣∣∣∣∣∣e2i

[
λµ+(x)− 1

α

∫ x
a1

p(t)dt
]
Em

∣∣∣∣∣∣ +
∣∣∣α−1
α+1 e2iλa1 Em

∣∣∣ +
∣∣∣∣α−1
α+1 e2i

[
λα(x−a1)− v(x)

α

]
Em

∣∣∣∣
+

∣∣∣∣∣ e
i
[
λµ+(x)− v(x)

α

]
s+ Em f (x, λ)

∣∣∣∣∣ +

∣∣∣∣∣∣ 2e
i
[
λµ+ (x)− 1

α
∫ x
a1

p(t)dt
]

α+ f (x, λ) Em

∣∣∣∣∣∣
≤ e−2σµ+(x)Em +

∣∣∣ s−
s+

∣∣∣ e−2σa1 Em +
∣∣∣ s−

s+

∣∣∣ e−2σαxEm + c
λ e−σµ+(x)eσµ+(x)Em

Furthermore , σ > ε |λ|, ε > 0 in D. Thus,−σ < −ε |λ| and e−2σµ+(x) < e−ε|λ|µ+(x)

Since x
ex → 0, x < ceµ+(x) (c > 0). Thus, e−2σµ+(x) < c

ε|λ|µ+(x) . We get

1 (x, λ) = O
(

1
λ

)
λ→∞ . Hence,

φ2 (x, λ) =
1
2
α+ exp

(
−i

(
λµ+ (x) −

1
α

∫ x

a1

p (t) dt
))

Em

(
1 + O

( 1
λ

))
, |λ| → ∞.

Derivativing both sides of (23) and using the first formula (25), we could get the formula of (24) similarly.

Lemma 1.11. When |λ| → ∞, φ3 (x, λ) and φ′3 (x, λ) have the following asymptotic formulas on a2 < x < π ,

φ3 (x, λ) =
1
2
β+ exp

(
−i

(
λk+ (x) −

1
β

∫ x

a2

p (t) dt
))

Em

(
1 + O

( 1
λ

))
(26)

φ′3 (x, λ) =
1
2
β+ (

p (x) − λβ
)

i exp
(
−i

(
λk+ (x) −

1
β

∫ x

a2

p (t) dt
))

Em + O (1) (27)

where k± (x) = ±βx ∓ βa2 + µ+ (a2), s± (x) = ±βx ∓ βa2 + µ− (a2),β∓2 = 1
2

(
α2 ∓

αβ2

β

)
.

Proof. Since φ3 (x, λ) is the solution of initial value problem (9) , we have

φ3 (x, λ) = β+ cos
[
λk+ (x) − 1

β

∫ x

a2
p (t) dt

]
+ β− cos

[
λk− (x) − 1

β

∫ x

a2
p (t) dt

]
+β− cos

[
λs+ (x) + 1

β

∫ x

a2
p (t) dt

]
+ β+ cos

[
λs− (x) + 1

β

∫ x

a2
p (t) dt

]
+ O

(
1
λ eσk+(x)

)
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We get

φ3 (x, λ) =
β+

2 e
i
[
λk+(x)− 1

β

∫ x
a2

p(t)dt
]
+

β+

2 e
−i

[
λk+(x)− 1

β

∫ x
a2

p(t)dt
]

+
β−

2 e
i
[
λk−(x)− 1

β

∫ x
a2

p(t)dt
]
+

β−

2 e
−i

[
λk−(x)− 1

β

∫ x
a2

p(t)dt
]

+
β−

2 e
i
[
λs+(x)+ 1

β

∫ x
a2

p(t)dt
]
+

β−

2 e
−i

[
λs+(x)+ 1

β

∫ x
a2

p(t)dt
]

+
β+

2 e
i
[
λs−(x)+ 1

β

∫ x
a2

p(t)dt
]
+

β+

2 e
−i

[
λs−(x)+ 1

β

∫ x
a2

p(t)dt
]
+ O

(
1
λ eσk+(x)

)
(28)

Let f (x, λ) := O
(

1
λ eσk+(x)

)
and note that

φ3 (x, λ) =
β+

2
e
−i

[
λk+(x)− 1

β

∫ x
a2

p(t)dt
]
Em +

(
1 + 1 (x, λ)

)
From a simple calculation at equation (28), we get

1 (x, λ) = e
2i
[
λk+(x)− 1

β

∫ x
a2

p(t)dt
]
Em +

β−

β+ e
2i
[
(βπ−βa2+a1)− 1

β

∫ x
a2

p(t)dt
]
Em

+
β−

β+ e
2i
[
α(a2−a1)− 1

β

∫ x
a2

p(t)dt
]
Em +

β−

β+ e2iµ+(a2) +
β−

β+ e2iβ(π−a2)

+e2ia1 + e2i[βπ−βa2+αa2−αa1] + e
i
[
λk+ (x)− 1

β

∫ x
a2

p(t)dt
]

β+ f (x, λ) Em

Let’s examine 1 (x, λ) = O
(

1
λ

)
accuracy.

∣∣∣1 (x, λ)
∣∣∣ ≤ ∣∣∣∣∣∣e2i

[
λk+(x)− 1

β

∫ x
a2

p(t)dt
]
Em

∣∣∣∣∣∣ +

∣∣∣∣∣∣ β−β+ e
2i
[
(βπ−βa2+a1)− 1

β

∫ x
a2

p(t)dt
]
Em

∣∣∣∣∣∣
+

∣∣∣∣∣∣ β−β+ e
2i
[
α(a2−a1)− 1

β

∫ x
a2

p(t)dt
]
Em

∣∣∣∣∣∣ +
∣∣∣∣ β−β+ e2iµ+(a2)Em

∣∣∣∣ +
∣∣∣∣ β−β+ e2iβ(π−a2)Em

∣∣∣∣
+

∣∣∣e2ia1 Em

∣∣∣ +
∣∣∣e2i[βπ−βa2+αa2−αa1]Em

∣∣∣ +

∣∣∣∣∣ e
i
[
λk+ (x)− 1

β

∫ x
a2

p(t)dt
]

β+ f (x, λ) Em

∣∣∣∣∣
≤ e−2σk+(x) +

∣∣∣∣ β−β+

∣∣∣∣ e−2σk+(x) +
∣∣∣∣ β−β+

∣∣∣∣ e−2σa2 +
∣∣∣∣ β−β+

∣∣∣∣ e−2σa2 +
∣∣∣∣ β−β+

∣∣∣∣ e−2σβx

+e−2σa1 + e−2σk+(x) + c
λ e−2σk+(x)e2σk+(x)

In addition to , σ > ε |λ|, ε > 0 in D . Thus,−σ < −ε |λ| and e−2σk+(x) < e−ε|λ|k+(x)

Since x
ex → 0, x < cek+(x) (c > 0). Thus, e−2σk+(x) < c

ε|λ|k+(x) . We get

1 (x, λ) = O
(

1
λ

)
λ→∞ . Hence,

φ3 (x, λ) =
1
2
β+ exp

(
−i

(
λk+ (x) −

1
β

∫ x

a2

p (t) dt
))

Em

(
1 + O

( 1
λ

))
, |λ| → ∞.

Derivativing both sides of (26) and using the first formula (28), we could get the formula of (27) similarly.

2. Multiplicities of eigenvalues of the vectorial problem

In the section, we find the conditions on the potential matrix function
(
2λp (x) + q (x)

)
, under some con-

ditions, the problem (1) − (3) can only have a finite number of eigenvalues with multiplicity m. Where
p(x) ∈W1

2 [0, π] ve p (x) =
{
pi j (x)

}m

i, j=1
, q(x) ∈ L2 [0, π] and q (x) =

{
qi j (x)

}m

i, j=1
.

Theorem 2.1. Let m ≥ 2. Assume that, for some i, j ∈ {1, 2, ...,m} with i , j
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either

(i)

∫ a1

0 pi j (x) dx +
(α+)2

4

∫ a2

a1
pi j (x) dx +

(β+)2

4

∫ π
a2

pi j (x) dx , 0∫ a1

0 qi j (x) dx +
(α+)2

4

∫ a2

a1
qi j (x) dx +

(β+)2

4

∫ π
a2

qi j (x) dx , 0
(29)

or

(ii)

∫ a1

0

[
pii (x) − p j j (x)

]
dx +

(α+)2

4

∫ a2

a1

[
pii (x) − p j j (x)

]
dx +

(β+)2

4

∫ π
a2

[
pii (x) − p j j (x)

]
dx , 0∫ a1

0

[
qii (x) − q j j (x)

]
dx +

(α+)2

4

∫ a2

a1

[
qii (x) − q j j (x)

]
dx +

(β+)2

4

∫ π
a2

[
qii (x) − q j j (x)

]
dx , 0

(30)

where α± = 1
2

(
1 ± 1

α

)
, β± = 1

2

(
1 ± 1

β

)
.Then, with finitely many exceptions. The multiplicities of the eigenvalues of

the problem (1) − (3) are at most m − 1.

Proof. (i) We assume that (29) holds. Suppose, to the contrary, that there exists a sequence of eigenvalues
{λn}

∞

n=1 whole multiplicities are all m. Obviously, λn → ∞ as n → ∞. From the equations in (9). Denoting
φ3 (x, λ) =

{
y+

i j (x)
}m

i, j=1
, when λ = λn for n = 1, 2, ..., we get(

y+
ii

)′′
(x) +

(
λ −

(
2λpii (x) + qii (x)

))
y+

ii (x) −
∑
k,i

(
2λpii (x) + qii (x)

)
y+

ki (x) = 0 (31)

and (
y+

i j

)′′
(x) +

(
λ −

(
2λpii (x) + qii (x)

))
y+

i j (x) −
∑
k, j

(
2λpii (x) + qii (x)

)
y+

kj (x) = 0 (32)

Multiplying (31) and (32) by y+
i j (x) and y+

ii (x) respectively, then subtructing one fom the other and using
(26), nothing that the eigenvalues of the problem are all real, we have((

y+
ii

)′
(x) y+

i j (x) − y+
ii (x)

(
y+

i j

)′
(x)

)′
=

∑
k,i

(
2λpik (x) + qik (x)

) (
y+

ki (x) y+
i j (x) − y+

ii (x) y+
kj (x)

)
=

(
2λpi j (x) + qi j (x)

) [
y+

i j (x) y+
ji (x) − y+

ii (x) y+
i j (x)

]
+

∑
k,i, j

(
2λpi j (x) + qi j (x)

) (
y+

ki (x) y+
i j (x) − y+

ii (x) y+
kj (x)

)
= −

(
2λpi j (x) + qi j (x)

)  (β+)2

4
cos2

(
λk+ (x) −

1
β

∫ x

a2

p (t) dt
) + O

(
1 +

1
λ

)
(33)

similarly, from the equations in (6), denoting φ2 (x, λ) =
{
y−i j (x)

}m

i, j=1
, we get((

y−ii
)′

(x) y−i j (x) − y−ii (x)
(
y−i j

)′
(x)

)′
=

−

(
2λpi j (x) + qi j (x)

) [
(α+)2

4 cos2
(
λµ+ (x) − 1

α

∫ x

a1
p (t) dt

)]
O

(
1 + 1

λ

) (34)

similarly, from the equations in (4), denoting φ1 (x, λ) =
{
y0

i j (x)
}m

i, j=1
, we get

((
y0

ii

)′
(x) y0

i j (x) − y0
ii (x)

(
y0

i j

)′
(x)

)′
= −

(
2λpi j (x) + qi j (x)

) [
cos2 (λx)

]
+ O

( 1
λ

)
(35)

When λ is an eigenvalue with multiplicity m, we have φ′3 (π, λ) = 0m. By integrating both sides of (33) from
a2 to π, for λn → λ and n→∞, we obtain

−

((
y+

ii

)′
(x) y+

i j (x) − y+
ii (x)

(
y+

i j

)′
(x)

)
=

=
∫ π

a2

[
−

(
2λpi j (x) + qi j (x)

) [ (β+)2

4 cos2
(
λk+ (x) − 1

β

∫ x

a2
p (t) dt

)]
+ O

(
1
λ

)]
dx

(36)
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By integrating both sides of (34) from a1 to a2 and appliying the boundary condition

−

((
y−ii

)′
(x) y−i j (x) − y−ii (x)

(
y−i j

)′
(x)

)
=

=
∫ a2

a1

[
−

(
2λpi j (x) + qi j (x)

) [
(α+)2

4 cos2
(
λµ+ (x) − 1

α

∫ x

a1
p (t) dt

)]
+ O

(
1
λ

)]
dx

(37)

By integrating both sides of (35) from 0 to a1 and applying the boundary condition φ′1 (0, λ) = 0m, we obtain,
for λn → λ and n→∞,((

y0
ii

)′
(x) y0

i j (x) − y0
ii (x)

(
y0

i j

)′
(x)

)
= −

∫ a1

0

[(
2λpi j (x) + qi j (x)

) [
cos2 (λx)

]
+ O

( 1
λ

)]
dx (38)

Sum the above (36), (37) and (38), then use the initial conditions at point x = a1 and x = a2, we get

0 = −
∫ a1

0

[(
2λpi j (x) + qi j (x)

) [
cos2 (λx)

]
+ O

(
1
λ

)]
dx

+
∫ a2

a1

[
−

(
2λpi j (x) + qi j (x)

) [
(α+)2

4 cos2
(
λµ+ (x) − 1

α

∫ x

a1
p (t) dt

)]]
dx

+
∫ π

a2

[
−

(
2λpi j (x) + qi j (x)

) [ (β+)2

4 cos2
(
λk+ (x) − 1

α

∫ x

a1
p (t) dt

)]]
dx + O

(
1
λ

)
By a simple computation, one can see that

∫ a1

0

(
2λpi j (x) + qi j (x)

)
dx +

(α+)2

4

∫ a2

a1

(
2λpi j (x) + qi j (x)

)
dx +

(β+)2

4

∫ π
a2

(
2λpi j (x) + qi j (x)

)
dx

= −
∫ a1

0

[(
2λpi j (x) + qi j (x)

)
cos 2λx

]
dx

−

∫ a2

a1

[(
2λpi j (x) + qi j (x)

) [
(α+)2

4 cos 2
(
λµ+ (x) − 1

α

∫ x

a1
p (t) dt

)]]
dx

−

∫ π
a2

[(
2λpi j (x) + qi j (x)

) [ (β+)2

4 cos 2
(
λk+ (x) − 1

α

∫ x

a1
p (t) dt

)]]
dx + O

(
1
λ

) (39)

= −2λ
∫ a1

0 pi j (x) cos (2λx) dx −
∫ a1

0 qi j (x) cos (2λx) dx − 2λ (α+)2

4

∫ a2

a1
pi j (x) cos 2λµ+ (x) cos 2v(x)

α dx

−
(α+)2

4

∫ a2

a1
qi j (x) cos 2λµ+ (x) cos 2v(x)

α dx − 2λ (α+)2

4 in
∫ a2

a1
pi j (x) 2λµ+ (x) sin 2v(x)

α dx

−
(α+)2

4

∫ a2

a1
qi j (x) sin 2λµ+ (x) sin 2v(x)

α dx − 2λ (β+)2

4

∫ π
a2

pi j (x) cos 2λk+ (x) cos 2t(x)
β dx

−
(β+)2

4

∫ π
a2

qi j (x) cos 2λk+ (x) cos 2t(x)
β dx − 2λ (β+)2

4

∫ π
a2

pi j (x) sin 2λk+ (x) sin 2t(x)
β dx

−
(β+)2

4

∫ π
a2

qi j (x) sin 2λk+ (x) sin 2t(x)
β dx

where v (x) =
∫ x

a1
p (t) dt , t (x) =

∫ x

a2
p (t) dt. Then, we obtain, for λn →∞ and n→∞,

= −2
∫ a1

0 pi j (x) cos (2λx) dx − 2 (α+)2

4

∫ a2

a1
pi j (x) cos 2λµ+ (x) cos 2v(x)

α dx

−2 (α+)2

4

∫ a2

a1
pi j (x) 2λµ+ (x) sin 2v(x)

α dx − 2(β+)2

4

∫ π
a2

pi j (x) cos 2λk+ (x) cos 2t(x)
β dx

−2(β+)2

4

∫ π
a2

pi j (x) sin 2λk+ (x) sin 2t(x)
β dx

By Riemann-Lebesgue Lemma, the right side of (39) approaches 0 as λn = λ and n→∞. This implies that

∫ a1

0 pi j (x) dx +
(α+)2

4

∫ a2

a1
pi j (x) dx +

(β+)2

4

∫ π
a2

pi j (x) dx = 0∫ a1

0 qi j (x) dx +
(α+)2

4

∫ a2

a1
qi j (x) dx +

(β+)2

4

∫ π
a2

qi j (x) dx = 0

We have reached a contradiction. The conclusion for this case is proved.
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(ii) Next, we assume that∫ a1

0

(
2λpi j (x) + qi j (x)

)
dx +

(α+)2

4

∫ a2

a1

(
2λpi j (x) + qi j (x)

)
dx +

(
β+)2

4

∫ π

a2

(
2λpi j (x) + qi j (x)

)
dx = 0

or∫ a1

0 si j (x) dx +
(α+)2

4

∫ a2

a1
si j (x) dx +

(β+)2

4

∫ π
a2

si j (x) dx = 0,∀i , j,

where si j (x) =
(
2λpi j (x) + qi j (x)

)
.

and∫ a1

0

[
sii (x) − s j j (x)

]
dx +

(α+)2

4

∫ a2

a1

[
sii (x) − s j j (x)

]
dx +

(β+)2

4

∫ π
a2

[
sii (x) − s j j (x)

]
dx , 0

without loss of generality, we assume that for i = 1, j = 2∫ a1

0
[s11 (x) − s22 (x)] dx +

(α+)2

4

∫ a2

a1

[s11 (x) − s22 (x)] dx +

(
β+)2

4

∫ π

a2

[s11 (x) − s22 (x)] dx , 0

K =



1
2 −

1
2

1
2

1
2

1
. . .

1


K =



1
2 −

1
2

1
2

1
2

1
. . .

1


and y = K · t. Then, the problem (1) − (3) becomes

t′′ +
(
λ2δ (x) − R (x)

)
t = 0

t′ (0) = t′ (π) = 0

}
(40)

where R (x) = K−1S (x) K. By making a simple computation, we get

R (x) =



1
4 (s11 + s22) + s12

1
4 (s22 − s11) ∗ ∗ ∗

1
4 (s22 − s11) 1

4 (s11 + s22) + s12 ∗ ∗ ∗

∗ ∗ q33 . . .

∗ ∗
...

. . .
∗ ∗ · · · qmm


(x)

We note that the two poblems (1) − (3)and (40)have exactly the same spectral structure. Denote R (x) ={
ri j (x)

}m

i, j=1
. Since

∫ a1

0 r12 (x) dx +
(α+)2

4

∫ a2

a1
r12 (x) dx +

(β+)2

4

∫ π
a2

r12 (x) dx =∫ a1

0 [s11 (x) − s22 (x)] dx +
(α+)2

4

∫ a2

a1
[s11 (x) − s22 (x)] dx +

(β+)2

4

∫ π
a2

[s11 (x) − s22 (x)] dx , 0

By part (i) , the conclusion of the theorem holds for the problem (40), and hence holds for the problem
(1) − (3).
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Abstract. In this article, we proposed a new family of generalized Nak-G distributions and study some
of its statistical properties, such as moments, moment generating function, quantile function, and prob-
ability Weighted Moments. The Renyi entropy, expression of distribution order statistic and parameters
of the model are estimated by means of maximum likelihood technique. We prove, by providing three
applications to real-life data, that Nakagami Exponential (Nak-E) distribution could give a better fit when
compared to its competitors.

1. Introduction

There has been recent developments focus on generalized classes of continuous distributions by adding
at least one shape parameters to the baseline distribution, studying the properties of these distributions and
using these distributions to model data in many applied areas which include engineering, biological studies,
environmental sciences and economics. Numerous methods for generating new families of distributions
have been proposed [8] many researchers. The beta-generalized family of distribution was developed ,
Kumaraswamy generated family of distributions [5], Beta-Nakagami distribution [19], Weibull generalized
family of distributions [4], Additive weibull generated distributions [12], Kummer beta generalized family
of distributions [17], the Exponentiated-G family [6], the Gamma-G (type I) [21], the Gamma-G family (type
II) [18], the McDonald-G [1], the Log-Gamma-G [3], A new beta generated Kumaraswamy Marshall-Olkin-
G family of distributions with applications [11], Beta Marshall-Olkin-G family [2] and Logistic-G family
[20].
The Nakagami distribution is a continuous probability distribution related to gammadistribution with ap-
plications in measuring alternation of wireless signal traversing multiple paths. The Nakagami distribution
has two parameters; λ ≥ 0.5 is the shape parameter and β > is scale parameter. The cumulative distribution
function (cdf) is given by

F(x;λ, β) =

x∫
0

2λλ

Γ(λ)βλ
t2λ−1 exp

(
−λ
β

t2

)
dt (1)
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probability density function (pdf) is given by

f (x;λ, β) =
2λλ

Γ(λ)βλ
t2λ−1 exp

(
−λ
β

t2

)
; x > 0 (2)

It reduces to Rayleigh distribution when λ = 1 and half normal distribution when λ = 0.5 The main aim of
this study is to develop a new family of generated distributions for the generalized Nakagami distribution
and study some of the mathematical and statistical properties of the proposed family of distributions.
This paper is organized as follows: In section 2, the Nakagami (Nak-G) family of distributions was defined.
In section 3, a useful linear representation for its probability density function (pdf) was obtained, some
mathematical properties and parameter estimators using maximum likelihood estimation are derived. In
section 4, the goodness of fit of the distribution using real data was illustrated while section 5, gives the
conclusion.

2. Constructions of the Nak-G Distributions

In this section, the probability density function (pdf), cumulative distribution function (cdf), survival
function, hazard rate function (hrf), mean remaining lifetime function, order statistic, moment, moment
generating function, Renyi and q entropies of Nak-G distributions are derived. We obtain the Nak-G
distribution by considering the Nakagami generator applied to the odd ratio G(x; η)/Ḡ(x; η) where G(x; η)
is the cdf of baseline distribution and Ḡ(x; η) = 1 − G(x; η).
Let denote the cdf and pdf of baseline model, η is the parameter vector of the baseline distribution. Based
on the family of distributions we define the cdf of Nak-G by replacing x with in equation (1) it become
Nak-G distribution.

F(x;λ, β, η) =

G(x;η)
Ḡ(x;η)∫
0

2λλ

Γ(λ)βλ
t2λ−1 exp

(
−λ
β

t2

)
dt (3)

F(x;λ, β, η) =
1

Γλ
γ

λ, λβ
(

G(x; η)
Ḡ(x; η)

)2
F(x;λ, β, η) = γ∗

λ, λβ
(

G(x; η)
Ḡ(x; η)

)2 (4)

Using expansion of incomplete gamma ratio function γ∗ (a, x) in [7] the above equation (4) can be expressed
as:

γ∗

λ, λβ
(

G(x; η)
Ḡ(x; η)

)2 =

∞∑
q=0

(−1)q

{
λ
β

(
G(x;η)
Ḡ(x;η)

)2
}λ+q

(λ − 1)!q!(λ + q)
(5)

The pdf of the Nak-G is given by

f (x) =
2λλ

Γ(λ)βλ
1(x; η)

[
G(x; η)

]2λ−1[
1 − G(x; η)

]2λ+1
exp

−λβ
(

G(x; η)
Ḡ(x; η)

)2 ; x ∈ < (6)

A random variable X with pdf in equation (6) is denoted by X ∼ Nak − G(x; η) the survival function and
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hazard rate function (hrf) of X are given by:

S(x) = 1 − γ∗

λ, λβ
(

G(x; η)
Ḡ(x; η)

)2 (7)

and

h(x) =

2λλ
Γ(λ)βλ 1(x; η) [G(x;η)]2λ−1

[1−G(x;η)]2λ+1 exp
(
−
λ
β

(
G(x;η)
Ḡ(x;η)

)2
)

1 − γ∗

(
λ, λβ

(
G(x;η)
Ḡ(x;η)

)2
) (8)

2.1. Linear Representation
In this section, we derive some very useful linear representation for the Nak-G density function. Note

that.

e−x =

∞∑
k=0

(−1)kxk

k!
(9)

Therefore, applying equation (9) to (6)

f (x) =
2λλ

Γ(λ)βλ
1(x; η)

∞∑
k=0

(−1)k

k!

(
λ
β

)k [
G(x; η)

]2(λ+k)−1[
1 − G(x; η)

]2(λ+k)+1
(10)

Consider the binomial expansion theorem

(1 − z)−b =
∞∑
j=0

(b+ j−1
j

)
z j, |z| < 1, b > 0 then

[
1 − G(x; η)

]−2(λ+k)+1 =

∞∑
j=0

(
2(λ + k) + j

j

)
[G(x; η)] j, [2(λ + k) + 1] > 0 (11)

Therefore, applying equation (11) to (10)

f (x) =
2λλ

[
2(λ + k) + 2 j(λ + k) + j

]
Γ(λ)βλ

[
2(λ + k) + j

] ∞∑
k, j=0

(−1)k

k!

(
λ
β

)k (2(λ + k) + j
j

)
1(x; η)[G(x; η)]2(λ+k)+ j−1 (12)

Also, the pdf equation (12) can be written as

f (x) =

∞∑
k, j=0

πk, jh2(λ+k)+ j(x) (13)

where

πk, j =
2

Γ(λ)
(−1)k

k!

(
λ
β

)λ+k(2(λ + k) + j
j

)
and

h2(λ+k)+ j(x) = (2(λ + k) + j)1(x; η)[G(x; η)]2(λ+k)+ j−1
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Equation (13) can be well-defined as an infinite linear combination of exponentiated -G (exp−G) densities.
Similarly, the cdf of the Nak-G family can also be expressed as a linear combination of exponentiated-G
(exp−G) cdfs given by

F(x) =

∞∑
k, j

πk, jH2(λ+k)+ j(x) (14)

where H2(λ+k)+ j(x) = [G(x; η)]2(λ+k)+ j is the cdf of the exp−G family with power parameter.

3. The Nakagami Exponential (NE) Distribution

Our baseline distribution, the Exponential distribution with parameter α has its cdf and pdf given by:

G(x;α) = 1 − e−αx (15)
1(x;α) = αe−αx;α > 0, x > 0 (16)

Substituting equation (15) and (16) in (4) and (6) then, the cdf and pdf of NE distribution can be written as

FNE(x) = γ∗

λ, λβ
(

1 − e−αx

e−αx

)2 (17)

fNE(x) =
2λλαe−αx (1 − e−αx)2λ−1

Γ(λ)βλ (e−αx)2λ+1
e−

λ
β

(
1−e−αx

e−αx

)2

(18)

3.1. Investigation of the Proposed (NE) Distribution for PDF
To show that the proposed distribution is a proper pdf, we proceed to show as follows:

∞∫
0

f (x)dx = 1 (19)

∞∫
0

2λλαe−αx (1 − e−αx)2λ−1

Γ(λ)βλ (e−αx)2λ+1
e−

λ
β

(
1−e−αx

e−αx

)2

dx = 1

y =
λ
β

(
1 − e−αx

e−αx

)2

(20)

∂y
∂x

=
λ
β

(
1 − e−αx

e−αx

) (
1 − e−αx

e−αx

)

∂x =
βe−2αx

2αλ(1 − e−αx)
∂y

x∫
0

f (x)dx ≡
λλ−1

Γ(λ)βλ−1

∫
∞

0

(1 − e−α)2λ−2

(e−α)2λ−2
e−y∂y (21)
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from (20) (
yβ
λ

) 1
2

(22)

Therefore, from (21) and (22) we obtained

1
Γ(λ)

∫
∞

0
yλ−1e−y∂y = 1 (23)

Hence Nakagami Exponential Distribution is pdf

3.2. Expansion for Nakagami Exponential Distribution
In this part a simple form for the probability density function of NE distribution is derived. Applying

equation (9) into (18) we obtained

fNE(x) =
2α

Γ(λ)

∞∑
k=0

(−1)k

k!
λλ+k

βλ+k

(
1 − e−αx)2(λ+k)−1 (

e−αx)−2(λ+k) (24)

The binomial expansion of (1 − e−αx) can be expressed as
∞∑

i=0
(−1)i(2(λ+k)−1

i
)
e−αx Therefore, equation (24) will

take the following form

fNE(x) =
2α

Γ(λ)

∞∑
k,i=0

(−1)k+i

k!
λλ+k

βλ+k

(
2(λ + k) − 1

i

) (
e−αx)i−2(λ+k) (25)

Therefore, the NE pdf distribution is reduced to

fNE(x) =
2α

Γ(λ)
λλ+k

βλ+k

∞∑
k,i=0

ωk,i
(
e−αx)i−2(λ+k) (26)

where ωk,i =
(−1)k+i

k!

(
2(λ + k) − 1

i

)
.

While the cumulative distribution function (cdf), survival function and hazard functions are given respec-
tively by equations (27), (28) and (29).

FNE(x) = γ∗

λ, λβ
(

1 − e−αx

e−αx

)2 (27)

SNE(x) = 1 − γ∗

λ, λβ
(

1 − e−αx

e−αx

)2 (28)

HNE(x) =

2α
Γ(λ)

λλ+k

βλ+k

∞∑
k,i=0

ωk,i (e−αx)i−2(λ+k)

1 − γ∗
[
λ, λβ

(
1−e−αx

e−αx

)2
] (29)

3.3. Some Mathematical and Statistical Properties
In this section, some general mathematical and statistical properties of Nak-G distribution are derived.
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3.4. Moment and Moment Generating Function

In this subsection, the rth moment and moment generating function for Nak-G distribution will be
derived. The rth moment of random variable can be obtained from pdf equation in (13) as follows;

µ′r =

∞∫
0

xr f (x)∂x = πk, j

∞∑
k, j=0

xrh2(λ+k)+ j(x)∂x

therefore,

µ′r = πk, jIr,2(λ+k)+ j, r = 1, 2, 3, . . . (30)

where

Ir,2(λ+k)+ j =

∞∑
k, j=0

xrh2(λ+k)+ j(x)∂x

The mean and variance of Nak-G distribution are obtained, respectively as follows

E(x) = πk, jIr,2(λ+k)+ j (31)

where,

Ir,2(λ+k)+ j =

∞∑
k, j=0

xh2(λ+k)+ j(x)∂x

and

Var(x) = πk, jI2,2(λ+k)+ j −
[
πk, jI1,2(λ+k)+ j

]2
(32)

, where

I2,2(λ+k)+ j =

∞∑
k, j=0

x2h2(λ+k)+ j(x)∂x (33)

From equation (30) the measures of skewness γ1 and kurtosis γ2 of Nak-G distribution can be expressed as
follows

γ1 =
µ′3 − 3µ′2µ

′

1µ
′3
1

(µ′2 − µ
′2
1 )

3
2

, (34)

γ2 =
µ′4 − 4µ′3µ

′

1 + 6µ′2µ
′2
1 − 3µ′41

(µ′2 − µ
′2
1 )2

(35)

Furthermore, the moment generating function can be obtained by using pdf equation (13) as follows

MX(t) = E(etX) =

∞∑
r=0

trµ′r
r!

=

∞∑
r=0

trπk, jIr,2(λ+k)+ j

r!
(36)
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3.4.1. Moment for Nakagami Exponential Distribution
moment can be obtained by using pdf in equation (26) as follows

E(Xr) =

∞∑
k,i=0

ωk, j
2λλ+kα

Γ(λ)βλ+k

∞∫
0

xre−αx[i−2(λ+k)]∂x (37)

Let

u = αx[i − 2(λ + k)]⇒
∂x
∂y

= α[i − 2(λ + k)]

∂u
α[i − 2(λ + k)]

= ∂x

E(Xr) =

∞∑
k,i=0

ωk, j
2λλ+kα

Γ(λ)βλ+k

∞∫
0

ur

αr[i − 2(λ + k)]r e−u ∂u
α[i − 2(λ + k)]

=

∞∑
k,i=0

ωk, j
2λλ+kα

Γ(λ)βλ+k

∞∫
0

ur

αr+1[i − 2(λ + k)]r+1 e−u∂u

E(Xr) =

∞∑
k,i=0

ωk, j
2λλ+kαΓ(r + 1)

Γ(λ)βλ+kαr+1[i − 2(λ + k)]r+1
; r = 1, 2, 3, . . . (38)

The mean and variance of NE distribution are obtained, respectively as follows

E(X) =

∞∑
k,i=0

ωk, j
2λλ+kΓ(2)

Γ(λ)βλ+kα[i − 2(λ + k)]2
(39)

Var(x) =

∞∑
k,i=0

ωk, j
4λλ+kΓ(2)

Γ(λ)βλ+kα2[i − 2(λ + k)]3
−

 ∞∑
r=0

ωk, j
2λλ+kΓ(2)

Γ(λ)βλ+kα[i − 2(λ + k)]2


2

(40)

Furthermore, the moment generating function can be obtained by using pdf in equation (26) as follows

MX(t) = E(etX) =
2α

Γ(λ)

∞∑
k,i=0

ωk, j
λλ+k

βλ+k

∞∫
0

e−x[α[i−2(λ+k)]−t]∂x

Therefore, the moment generating function of NE distribution takes the following form

MX(t) =
2α

Γ(λ)

∞∑
k,i=0

ωk, j
λλ+k

βλ+k[α[i − 2(λ + k)] − t]
. (41)



I. Abdullahi, O. Job / TJOS 5 (2), 85-101 92

3.5. Probability Weighted Moments

[10] stated that for a random variable X, the Probability Weighted Moments (pwm) is given by:

ϕs,r = E [XsF(x)r] =

∞∫
−∞

xsF(x)r f (x)∂x (42)

we formally define PWM of Nak-G by means of equation (4) and (13)

ϕs,r =

∞∫
0

xsγ∗

λ, λβ
(

G(x; η)
Ḡ(x; η)

)2r ∞∑
k, j=0

πk, j,i,bh2(λ+k)+ j(x)∂x (43)

ϕs,r =

∞∫
0

xsρk, j,i,bh2[λ(r+1)+i+k]+b+ j(x)∂x (44)

where,

ρk, j,i,b =

∞∑
k, j,i,b=0

cr,i
(2(λr+i)+b−1

b
) (λ

β

)λr+1
πk, j

[Γ(λ)]r

3.6. Measures of Uncertainty

In this subsection, Renyi entropy will be mentioned as an important measure of uncertainty. The Rényi
entropy of a random variable X is defined mathematically as follows:

IR(σ) =
1

1 − σ
lo1


∞∫

0

f σ(x)∂x


Where σ > 0 and σ , 1. Based on f (x) of any distribution. From equation (18)

f σNE(x) =
2σ

(
λλ

)σ
ασe−σαx (1 − e−αx)σ(2λ−1)

(Γ(λ))σ βσλ (e−αx)σ(2λ+1)
e−σ

λ
β

(
1−e−αx

e−αx

)2

(45)

Since the power series for the following exponential function can be expressed as

e−σ
λ
β

(
1−e−αx

e−αx

)2

=

∞∑
i=0

(−1)i

i!

(
σ
λ
β

)i (1 − e−αx

e−αx

)2i

Therefore equation (45) can be expressed as

f σNE(x) =

∞∑
i=0

(−1)i

i!

(
2α

Γ(λ)

)σ (
λ
β

)λσ+i

σi (1 − e−αx)σ(2λ−1)+2i

(e−αx)2σ(λ+ i
σ )

(46)

therefore, (46) is reduced to

f σNE(x) =

∞∑
i. j=0

τi, jeαx[2(σλ+i)− j] (47)
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where

τi, j =
(−1)i+ j

i!

(
σ(2λ − 1)2i

j

) (
2σ

Γ(λ)

)σ (
λ
β

)λσ+i

σi

since

∞∫
0

f σNE(x)∂x =

∞∫
0

∞∑
i. j=0

τi, jeαx[2(σλ+i)− j]∂x;

∞∫
0

f σNE(x)∂x =

∞∑
i. j=0

τi, j

α[ j − 2(σλ + i)]
(48)

therefore, IR(σ) reduces to

IR(σ) =
1

1 − σ
lo1

 ∞∑
i. j=0

τi, j

α[ j − 2(σλ + i)]

 (49)

3.7. Distribution of Order Statistic

Let X(1),X(2), . . . ,X(n). denote the order statistics of a random sample, X1,X2, . . . ,Xn from a Nak-G
distribution with cdf equation (6) and pdf equation (5). Then the pdf of X( j) is given by

fx( j) (x) =
n!

( j − 1)!(n − j)!

n− j∑
z=0

(−1)z
(
n − j

z

)
fX(x) [FX(x)]z+ j−1 (50)

fx( j) (x) =
n!

( j − 1)!(n − j)!

n− j∑
z=0

(−1)z
(
n − j

z

)
2λλ

Γ(λ)βλ
1(x; η)

[
G(x; η)

]2λ−1[
1 − G(x; η)

]2λ+1
exp

−λβ
(

G(x; η)
Ḡ(x; η)

)2γ∗ λ, λβ
(

G(x; η)
Ḡ(x; η)

)2z+ j−1

3.8. The Asymptotic Properties

We study the asymptotic behavior of NE distribution with a view to influential its performance limit as
x→∞ is 0 and the limit as x→ 0 is 0.

Proof:

These can be achieved as follows by taking the limiting behavior of the NE density function in equation
(18).

lim
x→∞

fNE(x) = lim
x→∞

2λλαe−αx (1 − e−αx)2λ−1

Γ(λ)βλ (e−αx)2λ+1
e−

λ
β

(
1−e−αx

e−αx

)2
 = 0

lim
x→0

fNE(x) = lim
x→0

2λλαe−αx (1 − e−αx)2λ−1

Γ(λ)βλ (e−αx)2λ+1
e−

λ
β

(
1−e−αx

e−αx

)2
 = 0

Then fNE(x) has at least one mode.
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3.9. Quantile Function

Quantile functions are normally used to describe a probability distribution, simulations and statistical
application. Simulation techniques utilize quantile function to create simulated random variables for
standard and new continuous distributions. In general, it is given as: Q(u) = F−1(u).
U Uni f orm(0, 1). That is U follows a uniform distribution.
By considering equation (4) quantile function (qf) X is obtained as follows:

u = F(x;λβη) =
1

Γλ
γ

λ, λβ
(

G(x; η)
Ḡ(x; η)

)2 (51)

x =
−1
α

ln
〈
1 −


[
β
λγ
−1(λ,uΓ(λ))

]
1 +

[
β
λγ
−1(λ,uΓ(λ))

]


1
2 〉

(52)

3.10. Shape of the Crucial Functions

The shapes of the density and hazard function of the Nak-G family can be defined analytically. The
critical points of the Nak-G density function equation (6) are the roots of the resulting equation:

1′(x; η)
1(x; η)

+
(2λ − 1)1(x; η)

G(x; η)
+

(2λ + 1)1(x; η)
Ḡ(x; η)

−
2λ1(x; η)

β
[
Ḡ(x; η)

]3 = 0 (53)

The critical points of Nak-G hazard function obtained in equation (8) are obtained from the following
equation:

1′(x; η)
1(x; η)

+
(2λ − 1)1(x; η)

G(x; η)
+

(2λ + 1)1(x; η)
Ḡ(x; η)

−
2λ1(x; η)

β
[
Ḡ(x; η)

]3 + e−
λ
β

(
1−e−αx

e−αx

)2 2λλαe−αx (1 − e−αx)2λ−1

Γ(λ)βλ (e−αx)2λ+1

〈
Γ(λ) − γ

(
λ, λβ

(
1−e−αx

e−αx

)2
)〉

= 0

By using R software, we can examine equations (53) and (54) to determine the local maximums and
minimums and inflexion points.

3.11. Maximum Likelihood Estimation

This subsection, deals with the ML estimators of the unknown parameters for the Nak-G family of
distributions based on complete samples of size n. Let X1,X2, . . . ,Xn be observed values from the Nak-G
family with set of parameter Θ =

(
λ, β, η

)
. The log-likelihood function for parameter vector Θ =

(
λ, β, η

)
is

obtained from equation (6) as follows

`(Θ) = nln2 + nλlnλ − nlnΓ(λ) − nλlnβ +

∞∑
i=0

ln
[
1(x; η)

]
+ (2λ − 1) ·

∞∑
i=0

ln
[
G(x; η)

]
− (2λ + 1)

∞∑
i=0

ln
[
1 − G(x; η)

]
−

λ
β

∞∑
i=0

ln
[
W(x; η)

]2 (54)
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where W(x; η) =
G(x;η)

1−G(x;η)

The components of the score function U(Θ) =
(
Uλ,Uβ,Uη

)
are given by

Uλ = nlnλ − n − nΨ (λ) − nlnβ + 2
∞∑

i=0

ln
[
G(x; η)

]
− 2

∞∑
i=0

ln
[
1 − G(x; η)

]
−

1
β

∞∑
i=0

ln
[
W(x; η)

]
(55)

Uβ = n
λ
β

+

λ
∞∑

i=0
ln

[
W(x; η)

]2

β2 (56)

Uη =

∞∑
i=0

∂1(x; η)/∂η
1(x; η)

+ (2λ − 1)
∞∑

i=0

∂1(x; η)/∂η
G(x; η)

+ (2λ + 1)
∞∑

i=0

∂1(x; η)/∂η
1 − G(x; η)

−
2λ
β
·

∞∑
i=0

W(x; η)w(x; η) (57)

Setting Uλ,Uβ,Uη equate to zero and solving the equations simultaneously result to the ML estimates
Θ̂ = (λ̂, β̂, η̂) of Θ = (λ, β, η)τ.
These estimates can not be solved algebraically and statistical software can be used to solve them numerically
via iterative technique.

4. Result and Discussion

The first real life data set was obtained on the breaking stress of carbon fibres of 50 mm length (GPa).
The data has been formerly used by [15] and [16]. The data is as follows: 0.39, 0.85, 1.08 ,1.25, 1.47, 1.57,
1.61, 1.61, 1.69, 1.80, 1.84, 1.87 ,1.89, 2.03, 2.03 ,2.05, 2.12 ,2.35 ,2.41, 2.43, 2.48, 2.50, 2.53 ,2.55, 2.55, 2.56, 2.59,
2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87 ,2.88, 2.93, 2.95 ,2.96 ,2.97, 3.09, 3.11 ,3.11, 3.15, 3.15 ,3.19 ,3.22, 3.22,
3.27, 3.28, 3.31 ,3.31, 3.33 ,3.39, 3.39, 3.56 ,3.60 ,3.65, 3.68 ,3.70 ,3.75 ,4.20 ,4.38, 4.42, 4.70, 4.90

Table 1: MLEs and Goodness-of-fit measures for First Data Set
Model MLE ` AIC BIC CAIC

Nak-Exp
λ = 1.2778 -85.88033 177.7607 187.3296 184.3296
β=2.1709
α=0.2964

GOG-Exp
λ = 0.6170 -85.92746 177.8549 187.4239 184.4239
β = 4.0054
α = 0.4087

Wei-Exp
λ = 0.7704 -85.97049 177.941 187.5099 184.5099
β = 2.4675
α = 0.2389

Kum-Exp
λ = 5.13720 -88.10031 182.2006 191.7696 188.7696
β = 10.23005
α = 0.33140

Beta-Exp
λ = 8.19864 -91.78444 189.5689 199.1378 196.1378
β = 4.98148
α = 0.37362

Exp. α = 0.36235 -132.9944 267.9887 271.1785 270.1785

Gamma-Exp
λ = 0.337 -127.4033 260.8066 270.3756 267.3756
β = 1.141
α = 11.458

The second data set represents the times of failures and running times for sample of devices from an
eld-tracking study of a larger system. The data set has been previously studied by [13] and [14]. The data
set has thirty (30) observations and they are as follows: 2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00,
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1.73, 1.06, 3.00, 3.00, 2.12, 3.00,3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45,
2.66 The third real life data set [9] corresponds to fifty two ordered annual maximum antecedent rainfall

Table 2: MLEs and Goodness-of-fit measures for Second Data Set
Model MLE ` AIC BIC CAIC

Nak-Exp
λ=0.35257 -38.92824 83.85647 88.06007 91.06007
β=6.96172
α=0.54568

Wei-Exp
λ=0.13324 -39.07062 84.14124 88.34483 91.34483
β = 0.56404
α = 1.60267

Exp. α = 0.5648 -47.13504 96.27007 97.67128 98.67128

measurements in mm from Maple 264.9, 314.1, 364.6, 379.8, 419.3, 457.4, 459.4, 460, 490.3, 490.6, 502.2, 525.2,
526.8, 528.6, 528.6, 537.7, 539.6, 540.8, 551.0, 573.5, 579.2, 588.2, 588.7, 589.7, 592.1, 592.8, 600.8, 604.4, 608.4,
609.8, 619.2,626.4, 629.4, 636.4, 645.2, 657.6, 663.5, 664.9, 671.7, 673.0, 682.6, 689.8, 698, 698.6, 698.8, 703.2,
755.9, 786, 787.2, 798.6, 850.4, 895.1.

Table 3: MLEs and Goodness-of-fit measures for Third Data Set
Model MLE ` AIC BIC CAIC

Nak-Exp
λ= 2.5182774 -329.275 664.5501 670.4037 673.4037
β=0.2482101
α=0.0006204

Wei-Exp
λ=1.6478687 -351.8995 709.799 715.6527 718.6527
β=1.5943460
α=0.0008296

Ext.-Burr III

a=12.0863 -339.5244 689.0488 698.805 703.805
b=15.3622
α=0.5868
λ=15.4776
s=11.8405
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Figure 1: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp and Exp (λ= 1.9 (shape parameter) and β, γ=
1.5, 0.15 (scale parameters))

Figure 2: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp and Exp (λ= 1.5 (shape parameter) and β, γ=
1.5, 0.2 (scale parameters))
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Figure 3: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp andExp (λ= 4 (shape parameter) and β, γ= 3,
0.2 (scale parameters))

Figure 4: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp and Exp (λ= 1.9 (shape parameter) and β, γ
=1.2, 0.3 (scale parameters))
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Figure 5: Graph of the Cummulative Distribution of Nak-Exp (λ= shape parameter and β, γ = scale parameters)

Figure 6: Graph of the Survival Function of Nak-Exp (λ= shape parameter and β, γ = scale parameters)
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Figure 7: fitted Models on histogram of the first data set

4.1. CONCLUSION
For the first time, we propose a new family of Nakagami-G distributions by add two parameter to

Exponential distribution called Nakagami Exponential distribution and some of its statistical properties of
the new family were studied. The model parameters were estimated by using the maximum likelihood
estimation technique. We finally fit the proposed model among others to real life data show that Nakagami
Exponential distribution was found to provide a better fit than its competitors
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Computational Statistics & Data Analysis, 56(6):1880–1897, 2012.

[2] Morad Alizadeh, Gauss M Cordeiro, Edleide De Brito, and Clarice Garcia B Demétrio. The beta marshall-olkin family of
distributions. Journal of Statistical Distributions and Applications, 2(1):4, 2015.

[3] Morteza Amini, SMTK MirMostafaee, and Jafar Ahmadi. Log-gamma-generated families of distributions. Statistics, 48(4):913–
932, 2014.

[4] Marcelo Bourguignon, Rodrigo B Silva, and Gauss M Cordeiro. The weibull-g family of probability distributions. Journal of Data
Science, 12(1):53–68, 2014.

[5] Gauss M Cordeiro and Mario de Castro. A new family of generalized distributions. Journal of statistical computation and simulation,
81(7):883–898, 2011.

[6] Gauss M Cordeiro, Edwin MM Ortega, and Daniel CC da Cunha. The exponentiated generalized class of distributions. Journal
of Data Science, 11(1):1–27, 2013.

[7] Gauss M Cordeiro, Edwin MM Ortega, and Giovana O Silva. The exponentiated generalized gamma distribution with application
to lifetime data. Journal of statistical computation and simulation, 81(7):827–842, 2011.

[8] Nicholas Eugene, Carl Lee, and Felix Famoye. Beta-normal distribution and its applications. Communications in Statistics-Theory
and methods, 31(4):497–512, 2002.

[9] Ting Gao, Hui Yao, Jingyuan Song, Chang Liu, Yingjie Zhu, Xinye Ma, Xiaohui Pang, Hongxi Xu, and Shilin Chen. Identification
of medicinal plants in the family fabaceae using a potential dna barcode its2. Journal of ethnopharmacology, 130(1):116–121, 2010.

[10] J Arthur Greenwood, J Maciunas Landwehr, Nicolas C Matalas, and James R Wallis. Probability weighted moments: definition
and relation to parameters of several distributions expressable in inverse form. Water resources research, 15(5):1049–1054, 1979.

[11] Laba Handique and Subrata Chakraborty. A new beta generated kumaraswamy marshall-olkin-g family of distributions with
applications. MJS, 36(3):157–174, 2017.

[12] Amal S Hassan and Saeed E Hemeda. A new family of additive weibull-generated distributions. rn, 55:7, 2016.
[13] William Q Meeker and Luis A Escobar. Statistical methods for reliability data. John Wiley & Sons, 2014.



I. Abdullahi, O. Job / TJOS 5 (2), 85-101 101

[14] Faton Merovci and Ibrahim Elbatal. Weibull rayleigh distribution: Theory and applications. Applied Mathematics & Information
Sciences, 9(4):2127, 2015.

[15] Michele D Nichols and WJ Padgett. A bootstrap control chart for weibull percentiles. Quality and reliability engineering international,
22(2):141–151, 2006.

[16] PE Oguntunde, OS Balogun, HI Okagbue, and SA Bishop. The weibull-exponential distribution: Its properties and applications.
Journal of Applied Sciences, 15(11):1305–1311, 2015.

[17] Rodrigo R Pescim, Gauss M Cordeiro, Clarice GB Demétrio, Edwin MM Ortega, and Saralees Nadarajah. The new class of
kummer beta generalized distributions. SORT-Statistics and Operations Research Transactions, 36(2):153–180, 2012.
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Abstract. In this paper, we define the Hadamard-type Padovan-p sequence by using the Hadamard-type
product of characteristic polynomials of the Padovan sequence and the Padovan-p sequence. Also, we
derive the generating matrices for these sequences. Then using the roots of characteristic polynomial of
the Hadamard-type Padovan-p sequence, we produce the Binet formula for the Hadamard-type Padovan-p
numbers. Also, we give the permanental, determinantal, combinatorial, exponential representations and
the sums of the Hadamard-type Padovan-p numbers.

1. Introduction

It is well-known that Padovan sequence is defined by the following equation:

P (n) = P (n − 2) + P (n − 3)

for n ≥ 3, where P (0) = P (1) = P (2) = 1.
Deveci and Karaduman defined [8] the Padovan p-numbers as shown:

Pap
(
n + p + 2

)
= Pap

(
n + p

)
+ Pap (n)

for any given p
(
p = 2, 3, 4, . . .

)
and n ≥ 1 with initial conditions Pap (1) = Pap (2) = · · · = Pap

(
p
)
= 0,

Pap
(
p + 1

)
= 1 and Pap

(
p + 2

)
= 0.

It is clear that the characteristic polynomials of Padovan sequence and the Padovan-p sequence are
P (x) = x3

− x − 1 and Pp (x) = xp+2
− xp
− 1, respectively.

Akuzum and Deveci [1] defined the Hadamard-type product of polynomials f and 1 as follows:

f (x) ∗ 1(x) =
∞∑

i=0

(ai ∗ bi) xi, where ai ∗ bi =

{
aibi if aibi , 0

ai + bi if aibi = 0
,

such that f (x) = amxm + am−1xm−1 + · · · + a1x + a0 and 1(x) = bnxn + bn−1xn−1 + · · · + b1x + b0.
Suppose that the (n + k)th term of a sequence is defined recursively by a linear combination of the

preceding k terms:
an+k = c0an + c1an+1 + · · · + ck−1an+k−1
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where c0, c1, . . . , ck−1 are real constants. In [13], Kalman derived a number of closed-form formulas for the
generalized sequence by the companion matrix method as follows:

A =
[
ai, j

]
k×k
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


.

Then by an inductive argument, he obtained that

An


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1


for n ≥ 0.

Recently, many authors studied number theoretic properties such as these obtained from homogeneous
linear recurrence relations relevant [2, 5–12, 14–20]. In [1], Akuzum and Deveci defined the Hadamard-type
product of two polynomials and they obtained the Hadamard-type k-step Fibonacci sequence by the aid
of this the Hadamard-type product. Then they studied properties of this sequence in detail. In this paper,
we define the Hadamard-type Padovan-p sequence by using the definition of Hadamard-type product in
[1]. Also, we produce the generating matrix of this sequence. Then we give relationships between the
Hadamard-type Padovan-p numbers and the permanents and the determinants of certain matrices which
are produced by using the generating matrix of the Hadamard-type Padovan-p sequence. Also, we obtain
the combinatorial representations, the generating function, the exponential representation and the sums of
the Hadamard-type Padovan-p numbers.

2. The Hadamard-type Padovan-p Sequences

We define a new sequence which is defined by using Hadamard-type product of characteristic poly-
nomials of Padovan sequence and the Padovan-p sequence and is called the Hadamard-type Padovan-p
sequence. This sequence is defined by integer constants Ph

0 = Ph
1 = · · · = Ph

p = 0 and Ph
p+1 = 1 and the

recurrence relation

Ph
n+p+2 = Ph

n+p − Ph
n+3 + Ph

n+1 − Ph
n (1)

for the integers n ≥ 0 and p ≥ 4.
By relation (1), we can write the following companion matrix:

Mp =



0 1 0 · · · 0 −1 0 1 −1
1 0 0 · · · 0 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 1 0 0 · · · 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

0 · · · 0 0 0 1 0 0 0
0 0 · · · 0 0 0 1 0 0
0 0 0 · · · 0 0 0 1 0


(p+2)×(p+2).
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The matrix Mp is said to be a Hadamard-type Padovan-p matrix.

It can be readily established by an inductive argument that

(
Mp

)n
=



Ph
n+p+1 Ph

n+p+2 Ph
n+p−1 − Ph

n+p−2 Ph
n+p − Ph

n+p−1 −Ph
n+p

Ph
n+p Ph

n+p+1 Ph
n+p−2 − Ph

n+p−3 Ph
n+p−1 − Ph

n+p−2 −Ph
n+p−1

Ph
n+p−1 Ph

n+p Ph
n+p−3 − Ph

n+p−4 Ph
n+p−2 − Ph

n+p−3 −Ph
n+p−2

...
... M∗p

...
...

...
Ph

n+1 Ph
n+2 Ph

n−1 − Ph
n−2 Ph

n − Ph
n−1 −Ph

n
Ph

n Ph
n+1 Ph

n−2 − Ph
n−3 Ph

n−1 − Ph
n−2 −Ph

n−1


(2)

where M∗p is a
(
p − 3

)
×

(
p − 3

)
matrix as follows:

Ph
n+p+3 − Ph

n+p+1 Ph
n+p+4 − Ph

n+p+2 · · · Ph
n+2p−1 − Ph

n+2p−3

Ph
n+p+2 − Ph

n+p Ph
n+p+3 − Ph

n+p+1 · · · Ph
n+2p−2 − Ph

n+2p−4
Ph

n+p+1 − Ph
n+p−1 Ph

n+p+2 − Ph
n+p · · · Ph

n+2p−3 − Ph
n+2p−5

...
...

...
Ph

n+3 − Ph
n+1 Ph

n+4 − Ph
n+2 · · · Ph

n+p−1 − Ph
n+p−3

Ph
n+2 − Ph

n Ph
n+3 − Ph

n+1 · · · Ph
n+p−2 − Ph

n+p−4


for n ≥ 3. Also, It is easy to see that det Mp = (−1)p.

Now we concentrate on finding a Binet formula for the Hadamard-type Padovan-p numbers.

Lemma 2.1. The characteristic equation of the Hadamard-type Padovan-p sequence xp+2
− xp + x3

− x + 1 = 0 does
not have multiple roots.

Proof. Let f (x) = xp+2
− xp + x3

− x+ 1. It is clear that f (0) , 0 and f (1) , 0 for all p ≥ 4. Let λ be a multiple root
of f (x), then λ < {0, 1}. If it is possible that λ is a multiple root of f (x) then it follows that f (λ) = 0 and f ′ (λ) = 0.
Now, we consider f (λ) = λp+2

− λp + λ3
− λ + 1. So, we obtain

λp =
−λ3 + λ − 1
λ2 − 1

. (3)

Moreover, we may write f ′ (λ) =
(
p + 2

)
λp+1

− pλp−1 + 3λ2
− 1 and hence we get

λp =
−3λ3 + λ(

p + 2
)
λ2 − p

. (4)

From (3) and (4), the following equation can be obtained:

p = 1 +
3λ2
− 1

−λ5 + 2λ3 − λ2 − λ + 1
.

Using appropriate softwares such as Mathematica Wolfram 10.0 [21], we obtain that there is no solution for p ≥ 4.
Since all p’s are integers with p ≥ 4, it is a contradiction. So, the equation f (x) = 0 does not have multiple roots.

If x1, x2, . . ., xp+2 are roots of the equation xp+2
− xp + x3

− x + 1, then by Lemma 2.1, it is known that x1,
x2, . . ., xp+2 are distinct. Define the

(
p + 2

)
×

(
p + 2

)
Vandermonde matrix Vp+2 as shown:

Vp+2 =



(x1)p+1 (x2)p+1
· · ·

(
xp+2

)p+1

(x1)p (x2)p
· · ·

(
xp+2

)p

...
...

...
x1 x2 xp+2
1 1 · · · 1


.
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Assume that

Wp+2 (
i, j

)
=


xn+p+2−i

1
xn+p+2−i

2
...

xn+p+2−i
p+2


and Vp+2 (

i, j
)

is a
(
p + 2

)
×
(
p + 2

)
matrix obtained from Vp+2 by replacing the jth column of Vp+2 by Wp+2 (

i, j
)
.

Theorem 2.2. Let (MP)n =
[
mp,n

i, j

]
, then

mp,n
i, j =

det Vp+2 (
i, j

)
det Vp+2 ,

for n ≥ 3 and p ≥ 4 .

Proof. Since the eigenvalues of the matrix MP, x1, x2, . . ., xp+2 are distinct, the matrix MP is diagonalizable.
Let Dp+2 =

(
x1, x2, . . . , xp+2

)
, then we easily see that MPVp+2 = Vp+2Dp+2. Since Vp+2 is invertible, we can

write
(
Vp+2

)−1
MPVk = Dp+2. Then, the matrix MP is similar to Dp+2 and so (MP)n Vp+2 = Vp+2

(
Dp+2

)n
. Hence

we have the following linear system of equations:
mp,n

i,1 xp+1
1 +mp,n

i,2 xp
1 + · · · +mp,n

i,p+2 = xn+p+2−i
1

mp,n
i,1 xp+1

2 +mp,n
i,2 xp

2 + · · · +mp,n
i,p+2 = xn+p+2−i

2
...

mp,n
i,1 xp+1

p+2 +mp,n
i,2 xp

p+2 + · · · +mp,n
i,p+2 = xn+p+2−i

p+2

Therefore, for each i, j = 1, 2, . . . , k, we obtain

mp,n
i, j =

det Vp+2 (
i, j

)
det Vp+2 .

From this result we immediately deduce:

Corollary 2.3. Let Ph
n be the nth the Hadamard-type Padovan-p number, then

Ph
n =

det Vp+2 (
p + 2, 1

)
det Vp+2 = −

det Vp+2 (
p + 1, p + 2

)
det Vp+2

for n ≥ 3 and p ≥ 4.

Now we concentrate on finding the permanental representations of the Hadamard-type Padovan-p
numbers.

Definition 2.4. A u × v real matrix M =
[
mi, j

]
is called a contractible matrix in the kth column (resp. row.) if the

kth column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, . . . , xu are row vectors of the matrix M. If M is contractible in the kth column such
that mi,k , 0,m j,k , 0 and i , j, then the (u − 1) × (v − 1) matrix Mi j:k obtained from M by replacing the ith

row with mi,kx j +m j,kxi and deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order α > 1 and N is a
contraction of M.
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Let α ≥ p + 2 be a integer and let Ap,α =
[
ap,α

i, j

]
be the α × α super-diagonal matrix, defined by

ap,α
i, j =



1

if i = r and j = r + 1 for 1 ≤ r ≤ α − 1,
i = r and j = r − 1 for 2 ≤ r ≤ α

and
i = r and j = r + p for 1 ≤ r ≤ α − p,

−1
if i = r and j = r + p − 2 for 1 ≤ r ≤ α − p + 2

and
i = r and j = r + p + 1 for 1 ≤ r ≤ α − p − 1,

0 otherwise.

Then we have the following Theorem.

Theorem 2.5. For α ≥ p + 2 and p ≥ 4,
perAp,α = Ph

α+p+1.

Proof. The assertion may be proved by induction on α. Let the equation be hold for α ≥ p+2, then we show
that the equation holds for α+1. If we expand the perAp,α by the Laplace expansion of permanent according
to the first row, then we obtain

perAp,α+1 = perAp,α−1
− perAp,α−p+2 + perAp,α−p

− perAp,α−p−1.

Since perAp,α−1 = Ph
α+p, perAp,α−p+2 = Ph

α+3, perAp,α−p = Ph
α+1 and perAp,α−p−1 = Ph

α, it is easy to see that
perAp,α+1 = Ph

α+p+2. Thus, the proof is complete.

Let α ≥ p + 2 and let Bp,α =
[
bp,α

i, j

]
be the α × α matrix, defined by

bp,α
i, j =



1

if i = r and j = r + 1 for 1 ≤ r ≤ α − p − 1,
i = r and j = r − 1 for 2 ≤ r ≤ α

and
i = r and j = r + p for 1 ≤ r ≤ α − p − 1,

−1
if i = r and j = r + p − 2 for 1 ≤ r ≤ α − p − 1

and
i = r and j = r + p + 1 for 1 ≤ r ≤ α − p − 1,

0 otherwise.

Now we define the α × α matrix Cp,α =
[
cp,α

i, j

]
as follows:

Cp,α =

(α−p−2)th
↓

1 · · · 1 0 · · · 0
1
0 Bp,α−1

...
0


.

Then we can give the following Theorem by using the permanental representations.

Theorem 2.6. (i). For α ≥ p + 2,
perBp,α = −Ph

α−1.

(ii) . For α > p + 2,

perCp,α = −

α−2∑
i=0

Ph
i .
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Proof. (i) .Let the equation be hold for α ≥ p + 2, then we show equation hold for α + 1. If we expand the
perBp,α by the Laplace expansion of permanent according to the first row, then we obtain

perBp,α+1 = perBp,α−1
− perBp,α−p+2 + perBp,α−p

− perBp,α−p−1

= −Ph
α−2 + Ph

α−p+1 − Ph
α−p−1 + Ph

α−p−2.

So, we have the conclusion.
(ii) . If we expand the perCp,α with respect to the first row, we write

perCp,α = perCp,α−1 + perBp,α−1.

From Theorem 2.5 and Theorem 2.6. (i) and induction on α, the proof follows directly.

Let the notation M ◦ K denotes the Hadamard product of M and K. A matrix M is called convertible if
there is an u × u (1, -1)-matrix K such that per M = det(M ◦ K).

Let G be the α × α matrix, defined by

G =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1
1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


for α > p + 2.

Corollary 2.7. For α > p + 2 and p ≥ 4
det (Ap,α

◦ G) = Ph
α+p+1,

det (Bp,α
◦ G) = −Ph

α−1

and

det (Cp,α
◦ G) = −

α−2∑
i=0

Ph
i .

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 0
...

. . .
...

0 · · · 1 0


.

Theorem 2.8. (Chen and Louck [4]).The
(
i, j

)
entry k(u)

i, j (k1, k2, . . . , kv) in the matrix Ku (k1, k2, . . . , kv) is given by
the following formula:

k(u)
i, j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

t j + t j+1 + · · · + tv

t1 + t2 + · · · + tv
×

(
t1 + · · · + tv

t1, . . . , tv

)
kt1

1 · · · k
tv
v (5)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = u − i + j,
(t1+···+tv

t1,...,tv

)
=

(t1+···+tv)!
t1!···tv! is a

multinomial coefficient, and the coefficients in (5) are defined to be 1 if u = i − j.
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Then we have the following Corollary for the Hadamard-type Padovan-p numbers.

Corollary 2.9. For p ≥ 4, let Ph
n be the nth the Hadamard-type Padovan-p number. Then

i.

Ph
n =

∑
(t1,t2...,tp+2)

(
t1 + · · · + tp+2

t1, . . . , tp+2

)
(−1)tp−1+tp+2

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 2

)
tp+2 = n − p − 1.

ii.

Ph
n = −

∑
(t1,t2...,tk)

tp+2

t1 + t2 + · · · + tp+2
×

(
t1 + · · · + tp+2

t1, . . . , tp+2

)
(−1)tp−1+tp+2

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 2

)
tp+2 = n + 1.

Proof. In Theorem 2.8, If we take i = p + 2 and j = 1, for case i. and i = p + 1, j = p + 2, for case ii., then the
proof is immediately seen from

(
Mp

)n
.

The generating function of the Hadamard-type Padovan-p sequence is given by:

fp (x) =
xp+1

1 − x2 + xp−1 − xp+1 + xp+2 .

It can be readily established that the Hadamard-type Padovan-p sequences have the following expo-
nential representation.

Theorem 2.10. The Hadamard-type Padovan-p numbers have the following exponential representation:

fp (x) = xp+1 exp


∞∑

i=1

(
x2

)i

i

(
1 − xp−3 + xp−1

− xp
)i


where p ≥ 4.

Proof. It is clear that

ln
fp (x)

xp+1 = − ln
(
1 − x2 + xp−1

− xp+1 + xp+2
)

and

− ln
(
1 − x2 + xp−1

− xp+1 + xp+2
)
= −[−x2

(
1 − xp−3 + xp−1

− xp
)
−

1
2

x4
(
1 − xp−3 + xp−1

− xp
)2
− · · · −

1
n

x2n
(
1 − xp−3 + xp−1

− xp
)n
− · · · ].

A simple calculation shows that

ln
fp (x)

xp+1 =

∞∑
i=1

(
x2

)i

i

(
1 − xp−3 + xp−1

− xp
)i

.

Thus the conclusion is obtained.
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Now we consider the sums of the Hadamard-type Padovan-p numbers.
Let

Tn =

n∑
i=0

Ph
n

for n ≥ 3 and p ≥ 4, and let Qp be the
(
p + 3

)
×

(
p + 3

)
matrix, such that

Qp =


1 0 · · · 0
1
0 Mp
...
0


.

Then it can be shown by induction that

(
Qp

)n
=



1 0 · · · 0
Tn+p

Tn+p−1

(
Mp

)n

...
Tn−1


.
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Abstract. Soft set theory, defined by Molodtsov as a novel mathematical tool modeling uncertainty,
has been combined with many different discipline fields. In this article, the concept of soft topological
polygroups is proposed by examining polygroups, a special class of hypergroups, with a soft topological
approach. Also, several results have been obtained by establishing important characterizations related to
this concept. In last, by presenting the definition of soft topological subpolygroups, some of their properties
are examined.

1. Introduction

Hyperstructure theory, as a generalization of classical algebraic theory, was initiated by F. Marty at the
eighth congress of Scandinavian Mathematicians in 1934 [2]. Although it does not have a long history,
this theory has been used successfully in both applied and theoretical branches of mathematics. A special
subclass of hypergroups, one of the most important hyperstructures, is polygroups. Polygroups studied
by many researchers were defined by Ioulidis in 1981 [17]. Some algebraic and topological properties were
investigated in detail. Davvaz and Poursalavati in [16] described matrix representations of polygroups
over hyperrings. Subsequently, Davvaz introduced permutation polygroups and notions related to it [15].
Also, by examining the topological properties of this concept, the concept of topological polygroups was
presented by Heidari et al. as a generalization of topological groups [19].

Another important theory in the basis of this study is soft set theory. In 1999, soft set theory was proposed
by Molodtsov to resolve some complex problems involving uncertain data in engineering, medical science,
economics, environment science [1]. This theory, which is a powerful mathematical approach for modeling
uncertainties, has been studied algebraically and topologically by many mathematicians. Aktas and cagman
presented the definition of soft groups [3]. Later on, Jun defined the notion of soft ideals on BCK/ BCI-
algebras [8]. By defining the actions of soft groups, Oguz et al. examined the relation between the soft
action and soft symmetric group [9]. Also, topological studies on soft sets were introduced by Shabir and
Naz [6]. By proposing the definition of a soft topological space, they studied the separation axioms in a
soft topological space. Aygunoglu and Aygun described soft product topologies and soft compactness [11].
Oguz et al. defined soft topological categories and obtained some important properties [7]. After that, Oguz
proposed the concept of soft topological transformation groups [10]. On the other hand, soft hyperstructures
are introduced by applying soft set theory to hyperstructures. Leoreanu-Fotea and Corsini [13] defined the
concept of soft hypergroups. Yamak et. al. [12] introduced the notion of soft hypergroupoids. Morever,
soft polygroups were studied by Wanga et. al. [14].
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The main purpose of this study is to introduce the notion of soft topological polygroups by applying soft
set theory to topological polygroups. In addition, some important properties of soft topological polygroups
are examined and soft topological subpolygroups are studied.

2. Preliminaries

In this section, we review some fundamental notions and properties of soft sets and topological poly-
groups for the sake of completeness. See [1-4, 18].

Assume that X is an initial universe set and E is a set of parameters. Also, P(X) denotes the power set
of X and A ⊂ E. Then, Molodtsov defined the soft set follow as:

Definition 2.1. [1] A pair (F ,A) is said to be a soft set over X, where F is a mapping defined by

F : A −→ P(X)

Clearly, a soft set over X can be regarded as a parametrized family of subsets of the universe X.

Definition 2.2. [4] Let (F ,A) and (G,B) be two soft sets over the common universe X. Then, (F ,A) is said to be a
soft subset of (G,B) if
i) A ⊆ B,
ii) F (a) and G(a) are identical approximations for all α ∈ A.

We denote it as (F ,A)⊂̃(G,B).

Definition 2.3. [4] A soft set (F ,A) over X is is said to be a null soft set denoted by Φ, if F (α) = ∅ for all α ∈ A.

Definition 2.4. [4] A soft set (F ,A) over X is is said to be an absolute soft set denoted by Ã, if F (α) = X for all
α ∈ A.

From an general perspective, the following notions are presented for the nonempty family {(Fi,Ai)|i ∈ I}
of soft sets over the common universe X

Definition 2.5. [5] The restricted intersection of the family {(Fi,Ai)|i ∈ I} is a soft set (F ,A) =
⋂̃

i∈I(Fi,Ai) such
that A =

⋂
i∈I Ai , ∅ and F (a) =

⋂
i∈I Fi(a) for all a ∈ Ai.

Definition 2.6. [5] The restricted union of the family {(Fi,Ai)|i ∈ I} is a soft set (F ,A) = (
⋃
R)i∈I(Fi,Ai) such that

A =
⋂

i∈I Ai , ∅ and F (a) =
⋃

i∈I Fi(a) for all a ∈ Ai.

Definition 2.7. [5] The extended union of the family {(Fi,Ai)|i ∈ I} is a soft set (F ,A) =
⋃̃

i∈I(Fi,Ai) such that
A =
⋃

i∈I Ai and F (a) =
⋃

i∈I(a) Fi(a), I(a) = {i ∈ I : a ∈ Ai} for all a ∈ Ai.

Definition 2.8. [5] The extended intersection of the family {(Fi,Ai)|i ∈ I} is a soft set (F ,A) = (
⋂
E)i∈I(Fi,Ai) such

that A =
⋃

i∈I Ai and F (a) =
⋂

i∈I(a) Fi(a), I(a) = {i ∈ I : a ∈ Ai} for all a ∈ Ai

Definition 2.9. [5] The ∧−intersection of the family {(Fi,Ai)|i ∈ I} is a soft set (F ,A) =
∧̃

i∈I(Fi,Ai) such that
A = Πi∈IAi and F ((ai)i∈I) =

⋂
i∈I Fi(ai) for all (ai)i∈I ∈ Ai.

Definition 2.10. [5] The ∨−intersection of the family {(Fi,Ai)|i ∈ I} is a soft set (F ,A) =
∨̃

i∈I(Fi,Ai) such that
A = Πi∈IAi and F ((ai)i∈I) =

⋃
i∈I Fi(ai) for all (ai)i∈I ∈ Ai.

Now, we recall the definitions of polygroup and topological polygroup. Assume P∗(P) be the set of all
non-empty subsets of P.
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Definition 2.11. [18] A polygroup is a multi-valued system P =< P, ◦, e,−1 >, where ◦ : P × P −→ P∗(P), e ∈ P,
−1 is a unitary operation on P and the following conditions hold for all x, y, z ∈ P: i. (x ◦ y) ◦ z = x ◦ (y ◦ z), ii.
e ◦ x = x ◦ e = x, iii. x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1

◦ x.

Definition 2.12. [14] Let P =< P, ◦, e,−1 > be a polygroup and K be a non-empty subset of P. Then K is said to be a
subpolygroup if < K, ◦, e,−1 > is itself a polygroup.

The concept of polygroup is examined with the soft set theory and the concept of soft polygroup is defined
as follows:

Definition 2.13. [14] For a non-null soft set (F ,A) over the polygroup P =< P, ◦, e,−1 >, (F ,A) is said to be a soft
polygroup over P if and only if F (a) is a subpolygroup of P for all a ∈ Supp(F,A).

Definition 2.14. [19] Let P =< P, ◦, e,−1 > be a polygroup and (P, τ) be a topological space. Then multi-valued
systemP =< P, ◦, e,−1 , τ > is said to be a topological polygroup if the mappings −1 : P −→ P and ◦ : P×P −→ P∗(P)
are continuous with respect to the the product topology on τ × τ and the topology τ∗ on P∗(P) which is generated by
B = {SV |V ∈ τ}, where SV = {U ∈ P∗(P)|U ⊆ V,U ∈ τ}.

Definition 2.15. [19] Let P =< P, ◦, e,−1 , τ > and P′ =< P′, ◦′, e′,−1 , τ′ > be two topological polygroups. A
mapping θ : P −→ P′ is called a good topological homomorphism if the following conditions are satisfied for all
x, y ∈ P:
i. θ(e) = e′

ii. θ(x ◦ y) = θ(x) ◦′ θ(y)
iii. θ is continuous and open.

Note that a good topological homomorphism is a topological isomorphism if the mapping θ is one to
one and onto.

3. Soft Topological Polygroups

In this section, we define soft topological polygroups and present some of their features. From now
on, P∗ denotes the set of all subpolygroups of a polygroup P =< P, ◦, e,−1 > and P∗(P) denotes the set of all
non-empty subsets of P.

Definition 3.1. Let τ be a topology on the polygroup P =< P, ◦, e,−1 > such that and τ∗ be a topology on P∗, which
is generated by B = {SV |V ∈ τ}, where SV = {U ∈ P∗|U ⊆ V,U ∈ τ}. Let (F ,A) be a non-null soft set over P. The
pair (F ,A) is said to be a soft topological polygroup over P with the topology τ if the following axioms hold:
i. F(a) is a subhpolygroup of P for all a ∈ Supp(F,A).
ii. The mappings ◦ : F (a)×F (a) −→ P∗(F (a)) and −1 : F (a) −→ F (a) are continuous with respect to the topologies
induced by τ × τ and τ∗ for all a ∈ Supp(F,A).

It is to be noted that if P is a topological polygroup, it is sufficient that only the first condition of the above
definition is satisfied in order to the pair (F ,A) to be defined as a soft topological polygroup. Namely, the soft
topological polygroup (F ,A) can be considered as a parameterized family of subpolygroups of the topological polygroup
P.

Theorem 3.2. Every soft polygroup on a topological polygroup is a soft topological polygroup.

Proof. LetP be a topological polygroup and let (F ,A) be a soft polygroup overPwith the topology τ. Then
F (a) is a subpolygroup of P for all a ∈ A. Hence, F (a) is a topological subpolygroup of P with recpect to
the topologies induced by τ and τ∗ for all a ∈ A. Therefore, (F ,A) is also a soft topological polygroup over
P.

Remark 3.3. Each soft polygroup P can be transformed into a soft topological polygroup by equipping both P and
P∗(P) with discrete or indiscrete topology. However, every soft polygroup over a polygroup is not a soft topological
polygroup.
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Theorem 3.4. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological polygroups over P with the topology τ.
i. The restricted intersection of the family {(Fi,Ai)|i ∈ I} with

⋂
i∈I Ai , ∅ is a soft topological polygroup over P if⋂̃

i∈I(Fi,Ai) , ∅
ii. The extended intersection of the family {(Fi,Ai)|i ∈ I} is a soft topological polygroup over P if (

⋂
E)i∈I(Fi,Ai) , ∅

Proof. i. The restricted intersection of the family {(Fi,Ai)|i ∈ I} with
⋂

i∈I Ai , ∅ defined as the soft set⋂̃
i∈I(Fi,Ai) = (F ,A) such that

⋂
i∈I Fi(a) for all a ∈ A. Choose a ∈ Supp(F,A). Suppose

⋂
i∈I Fi(a) , ∅ so that

Fi(a) , ∅ for all i ∈ I. Since {(Fi,Ai)|i ∈ I} is a non-empty family of soft topological polygroup overPwith the
topology τ, Fi(a) is a topological polygroup of P for all i ∈ I. Then,

⋂
i∈I Fi(a) is a topological subpolygroup

of P. Thus, (F ,A) is a soft topological polygroup over Pwith the topology τ.
ii. The proof is similar to i.

Theorem 3.5. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological polygroups over P with the topology τ.
i. The extended union of the family {(Fi,Ai)|i ∈ I} is a soft topological polygroup over P if Fi(x) ⊆ F j(x) or
F j(x) ⊆ Fi(x) for all i, j ∈ I, x ∈

⋃
i∈I Ai

ii. The restricted union of the family {(Fi,Ai)|i ∈ I} is a soft topological polygroup over P if Fi(x) ⊆ F j(x) or
F j(x) ⊆ Fi(x) for all i, j ∈ I, x ∈ ∩i∈IAi with

⋂
i∈I Ai , ∅.

Proof. i. Assume (F ,A) =
⋃̃

i∈I(Fi,Ai) as the extended union of the family {(Fi,Ai)|i ∈ I} with
⋂

i∈I Ai , ∅.
Let Fi(x) ⊆ F j(x) or F j(x) ⊆ Fi(x) for all i, j ∈ I, x ∈

⋃
i∈I Ai. Choose a ∈ Supp(F ,A). Since each (Fi,Ai) is

non-null soft sets over P, then
⋃

i∈I(Fi,Ai) is also a non-null soft set over P for all i ∈ I. By the hypothesis,
Fi(x) ⊆ F j(x) or F j(x) ⊆ Fi(x) for all i, j ∈ I, x ∈

⋂
i∈I Ai with

⋂
i∈I Ai , ∅ such that Fi(x) and F j(x) are the

topological subpolygroups of P and thus their union must be non-null too. Therefore, F (x) is a topological
subpolygroup of P. Hence, (F ,A) is a soft topological polygroup over Pwith the topology τ.
ii. The proof is similar to that of i.

From the above proposition, the following resultf is easily obtained:

Corollary 3.6. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological polygroups over P with the topology τ.
Then the extended union of the family {(Fi,Ai)|i ∈ I} is a soft topological polygroup over P with the topology τ if
Ai ∩ A j , ∅ for all i, j ∈ I, i , j.

Theorem 3.7. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological polygroups over P with the topology τ.
i. The ∧−intersection

∧̃
i∈I(Fi,Ai) is a soft topological polygroup over P if it is non-null.

ii. The ∨−union
∨̃

i∈I(Fi,Ai) is a soft topological polygroup overP if Fi(xi) ⊆ F j(x j) or F j(x j) ⊆ Fi(xi) for all i, j ∈ I,
xi ∈ Ai.

Proof. i.Write (F ,A) =
∧̃

i∈I(Fi,Ai) for a non-empty family {(Fi,Ai)|i ∈ I} of soft topological polygroups over
Pwith the topology τ. Let a ∈ Supp(F,A). By the assumption,

⋂
i∈I Fi(ai) , ∅ so thatFi(ai) , ∅ for all i ∈ I and

(ai)i∈I ∈ Ai. Hence, Fi(ai) is a topological subpolygroup of P for all i ∈ I so that their intersection must be a
topological subpolygroup of P too. Thus, (F ,A) is a soft topological polygroup over H with the topology
τ.

Definition 3.8. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological polygroups over Pi with the topologies
τi. Then the cartesian product of the family {(Fi,Ai)|i ∈ I} over Πi∈IHi with the product topology

∏
i∈I τi is denoted

by Πi∈I(Fi,Ai), is defined as Πi∈I(Fi,Ai) = (F ,A) where A = Πi∈IAi and F (xi) = Πi∈IFi(xi) for all (xi)i∈I ∈ A.

Theorem 3.9. The cartesian product of the family {(Fi,Ai)|i ∈ I} is a soft topological polygroup over Πi∈IHi with the
product topology Πi∈Iτi.

Proof. Assume that (Fi,Ai) is a soft topological polygroup over Pi with the topology τi for all i ∈ I. Then,
Fi(a) , ∅ and Fi(ai) a topological subpolygroup of Pi for all (ai)i∈I ∈ Supp(Fi,Ai). Thus, Πi∈IFi(ai) , ∅ and
Πi∈IFi(ai) a topological subpolygroup of Πi∈IPi with the product topology Πi∈Iτi. Therefore, Πi∈I(Fi,Ai) is a
soft topological polygroup over Πi∈IPi.
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3.1. Soft Topological Polygroup Homomorphisms
Definition 3.10. Let (F ,A) and (K ,B) be soft topological polygroups over P and P′ with the topologies τ and τ′,
respectively. Let ϕ : A −→ B and ψ : P −→ P′ be two mappings. Then, the pair (ψ,ϕ) is said to be a soft topological
homomorphism if the following axioms hold:
i. ψ is a good homomorphism.
ii. ψ(F (a)) = K (ϕ(a)) for all a ∈ Supp(F ,A).
ii. ψa : (F (a), τF (a)) −→ (K (ϕ(a)), τ′

K (ϕ(a))) is continuous and open for all a ∈ Supp(F ,A).

In this perspective,, it follows that a soft topological homomorphism (ψ,ϕ) is a mapping of soft topo-
logical polygroups. Therefore, we define a new category whose objects are soft topological polygroups and
whose arrows are soft topological homomorphisms.

In addition, it can be said that (F ,A) is soft topologically isomorphic to (K ,B) if the mappings ψ and ϕ
are one to one and onto.

Example 3.11. Let (K ,B) be a soft topological subpolygroup of (F ,A) over P. Together with the inclusion map
i : B −→ A and the identity map I : P −→ P, the pair (I, i) is a soft topological homomorphism from (K ,B) to
(F ,A).

Example 3.12. Let (F ,A) and (K ,B) be the two soft good homomorphic polygroups defined over P and P′, respec-
tively. Then (F ,A) is soft topological homomorphic to (K ,B) with discrete or anti-discrete topology. Thus, any
soft good homomorphic polygroups can be regarded as soft topological homomorphic polygroups in the discrete or
anti-discrete topology.

Theorem 3.13. Let the pair (ψ,ϕ) be a soft topological homomorphism from (F ,A) to (K ,B), where (F ,A) and
(K ,B) are two soft topological polygroups overP andP′, respectively. Then, (ψ(F ),B) is a soft topological polygroup
over P′ if ϕ : A −→ B be an injective mapping.

Proof. Let (F ,A) and (K ,B) be two soft topological polygroups over P and P′ with the topologies τ and
τ′, respectively. Then, F (a) is a topological subpolygroup of P for all a ∈ Supp(F,A). Since (ψ,ϕ) :
(F ,A) −→ (K ,B) is a soft topological homomorphism, we have ϕ(Supp(F ,A)) = Supp(ψ(F ),B). Choose
b ∈ Supp(ψ(F ),B). So there exist a ∈ Supp(F ,A) such that ϕ(a) = b, thus we have F (a) , ∅. Further, F (a) is
a topological subpolygroup of P with respect to the topology induced by τ. Since ψ is a good topological
homomorphism, then ψ(F (x)) is a topological subpolygroup of P′ with respect to the topology induced by
τ′. Therefore, (ψ(F ),B) is a soft topological polygroup over P′ with the topology τ′.

Theorem 3.14. Let the pair (ψ,ϕ) be a soft topological homomorphism from (F ,A) to (K ,B), where (F ,A) and
(K ,B) are two soft topological polygroups over P and P′, respectively. Then, (ψ−1(K ),A) is a soft topological
polygroup over P if it is non-null.

Proof. Assume that (F ,A) and (K ,B) are two soft topological polygroups overP andP′ with the topologies
τ and τ′, respectively. So for all b ∈ Supp(K ,B), it is easy to show thatϕ(Supp(ψ−1(K ),A)) = ϕ−1(Supp(K ,B)).
Let a ∈ Supp(ψ−1(K ),A), thus ϕ(a) ∈ Supp(K ,B). Hence, the nonempty setK (ϕ(a)) is a topological subpoly-
group of P′ with respect to the topology induced by τ′. Since ψ is a good topological homomorphism, then
ψ−1(K (ϕ(b))) = ψ−1(K (a)) is a topological subpolygroup of P with respect to the topology induced by τ.
Thus, it has been proven that the pair (ψ−1(K ),A) is a soft topological polygroup over Pwith the topology
τ.

Theorem 3.15. Let (F ,A), (K ,B) and (N ,C) be soft topological polygroups over P, P′ and P′′ with the topologies
τ, τ′ and τ′′, respectively. Then, (ψ′ ◦ ψ,ϕ′ ◦ ϕ) : (F ,A) −→ (N ,C) is a soft topological homomorphism if
(ψ,ϕ) : (F ,A) −→ (K ,B) and (ψ′, ϕ′) : (K ,B) −→ (N ,C) are two soft topological homomorphisms.

Proof. Suppose that (ψ,ϕ) : (F ,A) −→ (K ,B) and (ψ′, ϕ′) : (K ,B) −→ (N ,C) are two soft topological
homomorphisms. Then, ψ : P −→ P′ and ψ′ : P′ −→ P′′ are two good topological homomorphisms,
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and ϕ : A −→ B and ϕ′ : B −→ C are two mappings such that the equalities ψ(F (a)) = K (ϕ(a)) and
ψ′(K (b)) = N(ϕ′(b)) hold for all a ∈ Supp(F ,A), b ∈ Supp(K ,B). Obviously, ψ′ ◦ ψ : P −→ P′′ is also good
topological homomorphism and ϕ′ ◦ ϕ : A −→ C is a mapping so that the equality

(ψ′ ◦ ψ)(F (a)) = ψ′(ψ(F (a))) = ψ′(K (ϕ(a))) = N(ϕ′(ϕ(a))) = N((ϕ′ ◦ ϕ)(a))

holds for all a ∈ Supp(F ,A). Thus, the pair (ψ′ ◦ ψ,ϕ′ ◦ ϕ) is a soft topological homomorphism from (F ,A)
to (N ,C).

3.2. Soft Topological Subpolygroups
Definition 3.16. Let (F ,A) and (K ,B) be soft topological polygroups over P with the topology τ. Then the pair
(K ,B) is said to be a soft topological subpolygroup of (F ,A) if the following axioms hold :
i. B ⊆ A .
ii. K (b) is a subpolygroup of F (b) for all b ∈ Supp(K,B).
iii. The mappings · : K (b) ×K (b) −→ P∗(K (b)) and

−1 : K (b) −→ K (b)

are continuous for all b ∈ Supp(K ,B).

Example 3.17. Take a soft topological polygroup (F ,A) overPwith the topology τ. Then, (F |B,B) is a soft topological
subpolygroup of (F ,A) if B ⊆ A.

Theorem 3.18. If (K ,B) is a soft topological subpolygroup of (F ,A) and (N ,C) is a soft topological subpolygroup
of (K ,B), then (N ,C) is the soft topological subpolygroup of (F ,A).

Proof. The proof follows from Definition 3.16.

Theorem 3.19. Let (F ,A) and (K ,B) be two soft topological polygroups over P with the topology τ. Then, (K ,B)
is a soft topological subpolygroup of (F ,A) if (K ,B) is a soft subset of (F ,A).

Proof. Suppose that (F ,A) and (K ,B) are two soft topological polygroups over P with the topology τ.
Then, the nonempty sets F (x) andK (x) are the topological subpolygroup ofP. By the assumption, if (K ,B)
is a soft subset of (F ,A), then B ⊆ A and K (b) ⊆ F (b) for all b ∈ Supp(K ,B). So, K (b) is a topological
subpolygroup of F (b) with respect to the topology induced by τ. From this fact, we conclude that (K ,B) is
a soft topological subpolygroup of (F ,A) with the topology τ.

Theorem 3.20. Let (F ,A) be a soft topological polygroup over P with the topology τ and {(Fi,Ai)|i ∈ I} be a non-
empty family of soft topological subpolygroups of (F ,A).
i. The restricted intersection of the family {(Fi,Ai)|i ∈ I} with

⋂
i∈I Ai , ∅ is a soft topological subpolygroup of (F ,A)

if
⋂̃

i∈I(Fi,Ai) , ∅
ii. The extended intersection of the family {(Fi,Ai)|i ∈ I} is a soft topological subpolygroup of (F ,A) if (

⋂
E)i∈I , ∅

Proof. i. The restricted intersection of the family {(Fi,Ai)|i ∈ I} with
⋂

i∈I Ai , ∅ defined as the soft set⋂̃
i∈I(Fi,Ai) = (F ,A) such that F (a) =

⋂
i∈I Fi(a) for all a ∈ A. Let a ∈ Supp(F ,A). Suppose

⋂
i∈I Fi(a) , ∅,

which implies Fi(a) , ∅ for all i ∈ I. Since {(Fi,Ai)|i ∈ I} is a non-empty family of soft topological
subpolygroups of (F ,A), we get Ai ⊆ A and Fi(a) is a topological subpolygroup of F (a) with respect to the
topology induced by τ for all i ∈ I. Hence,

⋂
i∈I Ai ⊆ A and

⋂
i∈I Fi(a) is a topological subpolygroup of F (a).

Consequently, the family {(Fi,Ai)|i ∈ I} is a soft topological subpolygroup of (F ,A)
ii. The proof is similar to i.

Theorem 3.21. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological subpolygroups of a soft topological
polygroup (F ,A) over P with the topology τ.
i. The extended union of the family {(Fi,Ai)|i ∈ I} is a soft topological subpolygroup of (F ,A) if fi(x) ⊆ f j(x) or
f j(x) ⊆ fi(x) for all i, j ∈ I, x ∈

⋃
i∈I Ai

ii. The restricted union of the family {(Fi,Ai)|i ∈ I} is a soft topological subpolygroup of (F ,A) if fi(x) ⊆ f j(x) or
f j(x) ⊆ fi(x) for all i, j ∈ I, x ∈

⋂
i∈I Ai with

⋂
i∈I Ai , ∅.
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Proof. i. Suppose that {(Fi,Ai)|i ∈ I} is a non-empty family of soft topological subpolygroups of a soft
topological polygroup (F ,A) with

⋂
i∈I Ai , ∅. Let Fi(x) ⊆ F j(x) or F j(x) ⊆ Fi(x) for all i, j ∈ I, x ∈

⋃
i∈I Ai.

Take a ∈ Supp(F,A). Since each (Fi,Ai) is non-null soft sets over P, then
⋃̃

i∈I(Fi,Ai) is also a non-null soft
set over P for all i ∈ I. By assumption, Fi(a) ⊆ F j(a) or F j(a) ⊆ Fi(a) for all i, j ∈ I, a ∈

⋂
i∈I Ai with

⋂
i∈I Ai , ∅

such that Fi(a) and F j(a) are the topological subpolygroups of F (a) with respect to the topology induced by
τ and so their union must be non-null too. This show that the extended union of the family {(Fi,Ai)|i ∈ I} is
a soft topological subpolygroup of (F ,A) with the topology τ.
ii. The proof is similar to i.

Corollary 3.22. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological subpolygroups of a soft topological
polygroup (F ,A) overPwith the topology τ. Then the extended union of the family {(Fi,Ai)|i ∈ I} is a soft topological
subpolygroup of (F ,A) with the topology τ if Ai ∩ Ai , ∅ for all i, j ∈ I, i , j.

Theorem 3.23. Let {(Fi,Ai)|i ∈ I} be a non-empty family of soft topological polygroups over P with the topology τ
and let (Ki,Bi) be a soft topological subpolygroup of (Fi,Ai) for all i ∈ I.
i. The ∧−intersection

∧̃
i∈I(Ki,Bi) is a soft topological subpolygroup of

∧̃
i∈I(Fi,Ai) if it is non-null.

ii. The ∨−union
∨̃

i∈I(Ki,Bi) is a soft topological subpolygroup of
∨̃

i∈I(Fi,Ai) if Ki(bi) ⊆ K j(b j) or K j(b j) ⊆ Ki(bi)
for all i, j ∈ I, bi ∈ Bi.

Proof. i. Consider {(Fi,Ai)|i ∈ I} as a non-empty family of soft topological polygroups over P with the
topology τ. By 3.5 Theorem (ii),

∨̃
i∈I(Fi,Ai) is also a soft topological polygroup over Pwith the topology τ.

Choose bi ∈ Supp(Ki,Bi). By the assumption,
⋂

i∈IKi(bi) , ∅ such that Ki(bi) , ∅ for all i ∈ I and (bi)i∈I ∈ Bi.
Also, Bi ⊆ Ai and Ki(bi) is a topological subpolygroup of Fi(bi) with respect to the topology induced by τ
for all i ∈ I so that

⋂
i∈I Bi ⊆

⋂
i∈I Ai and

∨
i∈I(Ki(bi)) must be a topological subpolygroup of

∨
i∈I(Fi(bi)) too.

So,
∧̃

i∈I(Ki,Bi) is a soft topological subpolygroup of
∧̃

i∈I(Fi,Ai) with the topology τ
ii. The proof is similar to i.

Theorem 3.24. Let (F ,A) be a soft topological polygroup over P with the topology τ and (K ,B) be a soft topological
subpolygroup of (F ,A).
i. The restricted intersection of (F ,A) and (K ,B) is a soft topological subpolygroup of (F ,A) if it is non-null.
ii. The restricted union of (F ,A) and (K ,B) is a soft topological subpolygroup of (F ,A) if it is non-null.

Proof. i. Assume that (K ,B) is a soft topological subpolygroup of (F ,A) over Pwith the topology τ. If it is
non-null, it follows that B ⊆ A andK (b) is a topological subpolygroup of F (b) with respect to the topology
induced by τ for all b ∈ Supp(K ,B). Thus, it is easy to see that A∩B ⊆ A andK (b)∩F (b) is also a topological
subhypergroupoid of F (b) with respect to the topology induced by τ for all b ∈ Supp(K ,B). Therefore, the
restricted intersection (F ,A)∩̃(K ,B) is a soft topological subpolygroup of (F ,A) with the topology τ.
ii. The proof is similar to i.

Theorem 3.25. Let f : P −→ P′ be a good homomorphism of topological polygroups with the topologies τ and
τ′, respectively, and let (F ,A) and (K ,B) be two soft topological polygroups over P′. Then, ( f−1(K ),B) is a soft
topological subpolygroup of ( f−1(F ),A) if (K ,B) is a soft topological subpolygroup of (F ,A) with the topology τ.

Proof. Assume (K ,B) be a soft topological subpolygroup of (F ,A) over P with the topology τ′. Take
b ∈ Supp( f−1(K ),B). Since (K ,B) is a soft topological subpolygroup of (F ,A), it follows that B ⊆ A and (K (b))
is a topological subpolygroup of (F (b) with respect to the topology induced by τ′ for all b ∈ Supp( f−1(K ),B).
Morever, since f : P −→ P

′ be a good topological homomorphism, then f−1(F )(b) = f−1(F (b)) is a
topological subpolygroup of f−1(K )(b) = f−1(K (b)) with respect to the topology induced by τ for all
b ∈ Supp( f (K ),B). This proves that ( f−1(K ),B) is a soft topological subpolygroup of ( f−1(F ),A) with the
topology τ.
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Theorem 3.26. Let f : P −→ P′ be a good homomorphism of topological polygroups with the topologies τ and τ′,
respectively, and let (F ,A) and (K ,B) be two soft topological polygroups overP. Then, ( f (K ),B) is a soft topological
subpolygroup of ( f (F ),A) over P′ with the topology τ′ if (K ,B) is a soft topological subpolygroup of (F ,A) with the
topology τ.

Proof. Suppose that (K ,B) is a soft topological subpolygroup of (F ,A) over Pwith the topology τ. If (K ,B)
is a soft topological subpolygroup of (F ,A), it follows that B ⊆ A and (K (b)) is a topological subpolygroup
of (F (b) with respect to the topology induced by τ for all b ∈ Supp(K ,B). Furthermore, since f : P −→ P′ be a
good topological homomorphism, so f (F )(b) = f (F (b)) is a topological subpolygroup of f (K )(b) = f (K (b))
with respect to the topology induced by τ′ for all b ∈ Supp( f (K ),B). Therefore, ( f (K ),B) is a soft topological
subpolygroup of ( f (F ),A).
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Abstract. In this paper, we firstly express ruled surfaces drawn by Frenet and Darboux vectors of Bertrand
mate depending on Bertrand curve. Then, the tangent vectors of the striciton curves on these surfaces are
calculated. Finally, we give some results with these vectors.

1. Introduction and Preliminaries

Many results on ruled surfaces have been obtained by mathematicians (see [1, 5, 9, 11, 12]). In [11], authors
examine spatial quaternionic ruled surfaces. Another study, authors express some results about Bertrand
offsets in Minkowski space [5]. A ruled surface is generated by a one-parameter family of straight lines and
it possesses a parametric representation

ϕ(s, v) = α(s) + ve(s) (1)

where α base curve and e generator vector [3]. The striction curve is given by [3]

c(s) = α(s) −
〈αs, es〉

〈es, es〉
e(s). (2)

The notion of Bertrand curves was discovered by J. Bertrand in 1850. There are many studies on the Bertrand
curve Bertrand curves in different areas. In [6], authors examine the Bertrand curves in the Euclidean 4-space
as quaternionic. J. Monterde characterize Bertrand curves defined from Salkowski curves [10].
Let α be a unit speed curve in E3, and {V1(s),V2(s),V3(s)} denote the Frenet frame of α. The Frenet formulas
are given by  V̇1

V̇2
V̇3

 =

 0 k1 0
−k1 0 k2

0 −k2 0


 V1

V2
V3


where k1 and k2 denote the curvature and the torsion of α, respectively. On the other hand, the Darboux
vector is [2]

D(s) = k2(s)V1 (s) + k1(s)V3 (s) , (3)
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The modified Darboux vector [4]

D̃(s) =
k2(s)
k1(s)

(s)V1 (s) + V3 (s) . (4)

Let α and α∗ be the unit speed two curves and let V1(s),V2(s),V3(s) and V∗1(s),V∗2(s),V∗3(s) be the Frenet frames
of the curves α and α∗, respectively. If the principal normal vector of the curve α is linearly dependent on
the principal normal vector of the curve α∗, then the pair {α, α∗} are called Bertrand pair and α∗ is called
Bertrand mate. [3]. The parametrization of Bertrand mate is [3]

α∗ (s) = α (s) + λV2 (s) (5)

Theorem 1.1. [3] The distance between corresponding points of the Bertrand pair in E3 is constant.

Theorem 1.2. [3]. If k2(s) , 0 along α(s), then α(s) is a Bertrand curve if and only if there exist nonzero real numbers
λ and β such that constant

λk1 + βk2 = 1. (6)

Theorem 1.3. [3] Let α and α∗ be the unit speed two curves.
{
V1,V2,V3, D̃, k1, k2

}
and

{
V∗1,V

∗

2,V
∗

3, D̃
∗, k∗1, k

∗

2

}
are

Frenet-Serret apparatus of the Bertrand curve and the Bertrand mate, respectively. Then, the formulas are given by

V∗1 =
βV1 + λV3√
λ2 + β2

, V∗2 = V2, V∗3 =
−λV1 + βV3√

λ2 + β2
, D̃∗ =

k1
√
λ2 + β2(

βk1 − λk2
) D̃.

The first and second curvatures of Bertrand mate are given by

k∗1 =
βk1 − λk2(
λ2 + β2) k2

, k∗2 =
1(

λ2 + β2) k2
·

Let α : I→ E3 be differentiable unit speed curve and let {V1(s),V2(s),V3(s), D̃} be the Frenet-Serret apparatus
of this curve. The equations

ϕ1 (s,u1) = α (s) + u1V1 (s)
ϕ2 (s,u2) = α (s) + u2V2 (s) (7)
ϕ3 (s,u3) = α (s) + u3V3 (s)
ϕ4 (s,u4) = α (s) + u4D̃(s)

are the parametrization of the ruled surface which are called tangent ruled surface, normal ruled surface,
binormal ruled surface, modified Darboux ruled surface, respectively. For the sake of shortness, we write
Frenet ruled surfaces instead of the above all ruled surfaces.

Theorem 1.4. [8] The tangent vectors of the striction curves on Frenet ruled surfaces are given by the following
matrix

[T] =


T1
T2
T3
T4

 =



1 0 0

k2
2

η
∥∥∥c′2(s)

∥∥∥
(

k1
η

)′∥∥∥c′2(s)
∥∥∥ k1k2

η
∥∥∥c′2(s)

∥∥∥
1 0 0

µ − µ′ − k2
k1

µ
∥∥∥c′4(s)

∥∥∥ 0
µ′

µ2
∥∥∥c′4(s)

∥∥∥



 V1
V2
V3

 .

where η = k2
1 + k2

2, µ =
(

k2
k1

)′
.
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Definition 1.5. [9] Let α∗ : I → E3 be differentiable unit speed curve and let {V∗1(s),V∗2(s),V∗3(s), D̃∗} be the Frenet-
Serret apparatus of this curve. The equations

ϕ∗1 (s,w1) = α∗ (s) + w1V∗1 (s) = α + λV2 + w1
βV1 + λV3√
λ2 + β2

ϕ∗2 (s,w2) = α∗ (s) + w2V∗2 (s) = α + (λ + w2) V2 (8)

ϕ∗3 (s,w3) = α∗ (s) + w3V∗3 (s) = α + λV2 + w3

−λV1 + βV3√
λ2 + β2


ϕ∗4 (s,w4) = α∗ (s) + w4D̃∗(s) = α + λV2 + w4

k1
√
λ2 + β2(

βk1 − λk2
) D̃

are the parametrization of the ruled surface which are called Bertrandian tangent ruled surface, Bertrandian
normal ruled surface, Bertrandian binormal ruled surface and Bertrandian modified Darboux ruled surface,
respectively.

For the sake of shortness, we write Bertrand ruled surfaces instead of the above all ruled surfaces.

Theorem 1.6. [7] The tangent vectors of striction curves on Bertrand ruled surfaces are given by the following matrix
T∗1
T∗2
T∗3
T∗4

 =


1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


 V∗1

V∗2
V∗3


where

a∗ =
k∗2

2

η∗
∥∥∥c∗2
′(s)

∥∥∥ , b∗ =

(
k∗1
η∗

)′
∥∥∥c∗2
′(s)

∥∥∥ , c∗ =
k∗1k∗2

η∗
∥∥∥c∗2
′(s)

∥∥∥ , d∗ =
µ∗ − µ∗′ −

k∗2
k∗1

µ∗‖c∗4
′(s)‖

=

−m′ −
(

−m′

m2k2

√
λ2+β2

)′
m2
−mk2

√
λ2 + β2

−m′‖c∗4
′(s)‖

,

e∗ =
µ∗′

µ∗2
∥∥∥c∗4
′(s)

∥∥∥ =

( −m′

m2k2
√
λ2 + β2

)′ 1

k2

√
λ2 + β2(

−m′

m2k2

√
λ2+β2

)2
‖c∗4
′(s)‖

, η∗ = k∗1
2 + k∗2

2, µ∗ =

(
k∗2
k∗1

)′
.

2. An Examination on the Striction Curves in terms of Special Ruled Surfaces

In this section Then, the tangent vectors of the striciton curves on Frenet and Bertrandian ruled surfaces are
calculated. We give some results with these vectors.

Theorem 2.1. The relationship between the tangent vectors of the striciton curves on the Frenet and Bertrandian
ruled surfaces is

[T] [T∗]T =
1√

λ2 + β2


β a∗β − c∗λ β d∗β − e∗λ
x a∗x + b∗

√
λ2 + β2 + a∗y x d∗x + e∗y

β a∗β − c∗λ β d∗β − e∗λ
z a∗z + c∗t z d∗z + e∗t


where

x =
k2

(
βk2 + λk1

)
η
∥∥∥c′2(s)

∥∥∥ , y =
k2

(
− λk2 + βk1

)
η
∥∥∥c′2(s)

∥∥∥ , z =

(
µ − µ′ − k2

k1

)
β + µ′λ

µ
∥∥∥c′4(s)

∥∥∥ , t =

(
− µ + µ′ + k2

k1

)
λ + µ′β

µ
∥∥∥c′4(s)

∥∥∥ .
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Proof. Let [T] = [A] [V] and [T∗] = [A∗] [V∗] hence, by using the properties of the matrix, we can write

[T] [T∗]T = [A] [V] ([A∗] [V∗])T

= [A]
(
[V] [V∗]T

)
[A∗]T

=



1 0 0

k2
2

η
∥∥∥c′2(s)

∥∥∥
(

k1
η

)′∥∥∥c′2(s)
∥∥∥ k1k2

η‖c′2(s)‖

1 0 0
µ−µ′−

k2
k1

µ‖c′4(s)‖
0 µ′

µ2‖c′4(s)‖



 V1
V2
V3





1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


 V1

∗

V2
∗

V3
∗




T

=
1√

λ2 + β2


β 0 −λ
x b

√
λ2 + β2 y

β 0 −λ
z 0 t


 1 a∗ 1 d∗

0 b∗ 0 0
0 c∗ 0 e∗



=
1√

λ2 + β2


β a∗β − c∗λ β d∗β − e∗λ
x a∗x + b∗

√
λ2 + β2 + a∗y x d∗x + e∗y

β a∗β − c∗λ β d∗β − e∗λ
z a∗z + c∗t z d∗z + e∗t



=



〈
T1,T∗1

〉 〈
T1,T∗2

〉 〈
T1,T∗3

〉 〈
T1,T∗4

〉〈
T2,T∗1

〉 〈
T2,T∗2

〉 〈
T2,T∗3

〉 〈
T2,T∗4

〉〈
T3,T∗1

〉 〈
T3,T∗2

〉 〈
T3,T∗3

〉 〈
T3,T∗4

〉〈
T4,T∗1

〉 〈
T4,T∗2

〉 〈
T4,T∗3

〉 〈
T4,T∗4

〉
 .

Corollary 2.2. There are four pairs of tangent vector fields equal to each other of the striction curves on Frenet and
Bertrandian ruled surfaces.

Proof. Since
〈
T1,T∗1

〉
=

〈
T1,T∗3

〉
=

〈
T3,T∗1

〉
=

〈
T3,T∗3

〉
=

β√
λ2 + β2

, it is trivial.

Corollary 2.3. i)Tangent vectors of striction curves on tangent ruled surface and Bertrandian normal ruled surface
are perpendicular if β = λm where m = βk1 − λk2.
ii)Tangent vectors of striction curves on binormal ruled surface and Bertrandian normal ruled surface are perpendicular
if β = λm.

Proof. i) Since 〈T1,T∗2〉 =
a∗β − c∗λ√
λ2 + β2

and 〈T1,T∗2〉 = 0

a∗β − c∗λ = 0,
β − λ(βk1 − λk2) = 0,

β = λm,
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this completes the proof.
ii) Since 〈T1,T∗2〉 = 〈T3,T∗2〉, it is trivial.

Corollary 2.4. i)Tangent vectors of striction curves on tangent ruled surface and Bertrandian modified Darboux
ruled surface are perpendicular if ( 1

m

)′[( 1
m

)′
−

( 1
m

)′′
−

1
m

]
β =

( 1
m

)′′
λ.

ii)Tangent vectors of striction curves on binormal ruled surface and Bertrandian modified Darboux ruled surface are
perpendicular if ( 1

m

)′[( 1
m

)′
−

( 1
m

)′′
−

1
m

]
β =

( 1
m

)′′
λ.

Proof. i) Since 〈T1,T∗4〉 =
d∗β − e∗λ√
λ2 + β2

and 〈T1,T∗4〉 = 0

d∗β − e∗λ = 0( 1
m

)′[( 1
m

)′
−

( 1
m

)′′
−

1
m

]
β −

( 1
m

)′′
λ = 0( 1

m

)′[( 1
m

)′
−

( 1
m

)′′
−

1
m

]
β =

( 1
m

)′′
λ

this completes the proof.
ii) Since 〈T1,T∗4〉 = 〈T3,T∗4〉, it is trivial.

The following corollaries are obtained similar to Corollary 2.5.

Corollary 2.5. i)Tangent vectors of striction curves on normal ruled surface and Bertrandian tangent ruled surface
have orthogonal under the condition k2 = 0.
ii)Tangent vectors of striction curves on normal ruled surface and Bertrandian binormal ruled surface are perpendicular
if k2 = 0.

Corollary 2.6. i)Tangent vectors of striction curves on modified Darboux ruled surface and Bertrandian tangent
ruled surface are perpendicular if

k1 =
β( k2

k1
)′
[
k1( k2

k1
)′ − k2

]
( k2

k1
)′′

[
β( k2

k1
)′ + λ

] ·
ii)Tangent vectors of striction curves on modified Darboux ruled surface and
Bertrandian binormal ruled surface are perpendicular if

k1 =
β( k2

k1
)′
[
k1( k2

k1
)′ − k2

]
( k2

k1
)′′

[
β( k2

k1
)′ + λ

] ·
Corollary 2.7. Tangent vectors of striction curves on normal ruled surface and Bertrandian normal ruled surface are
perpendicular if

k2 = −
m
(
x + y

)
(λ2 + β2)

3
2

·

Corollary 2.8. Tangent vectors of striction curves on normal ruled surface and Bertrandian modified Darboux ruled
surface are perpendicular if ( 1

m

)′[( 1
m

)′
−

( 1
m

)′′
−

1
m

]
x = −

( 1
m

)′′
y.
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Corollary 2.9. Tangent vectors of striction curves on modified Darboux ruled surface and Bertrandian normal ruled
surface are perpendicular if

k2 = βk1 −
z

λ
(
λ

(µ−µ′− k2
k1

)

µ‖c′4(s)‖
− β k1k2

η‖c′2(s)‖

) ·
Corollary 2.10. Tangent vectors of striction curves on modified Darboux ruled surface and Bertrandian modified
Darboux ruled surface are perpendicular if( 1

m

)′[( 1
m

)′
−

( 1
m

)′′
−

1
m

]
z = −

( 1
m

)′′
t.
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[7] Kılıçoğlu Ş, Şenyurt S., Çalışkan, A. On the striction curves along the involutive and Bertrandian Darboux ruled surfaces based

on the tangent vector fields, New Trends in Mathematical Sciences. 4(4), 2016, 128-136.
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Abstract. In our paper, the spread of SIQR model with fractional order differential equation is considered.
We have evaluated the system with fractional way and investigated stability of the non-virus equilibrium
point and virus equilibrium points. Also, the existence of the solutions are proved. Finally, the efficient
numerical method for finding solutions of system is given.

1. Introduction

Fractional calculus is a very efficient way for researchers while studying real world phenomena problems
like astronomy, biology, physics also in the social sciences e.g. education, history, sociology, life sciences
. In recent years, fractional order differential equations have become an important tool in mathematical
modelling. The most useful way to work on modelling is considering models again with their fractional
order version. The most commonly used definitions are Riemann and Caputo fractional order derivatives.
The Riemann-Liouville derivative is historically the first but there are some difficulties while applying it to
real life problems. In order to overcome these difficulties, the latter concept, fractional order Caputo type
derivative is defined [3, 5, 6, 8, 16].

Some disease models which are an important area in mathematical modelling are discussed [1, 9, 10, 13].
In our paper, we have investigated the system of equations involving fractional derivatives. But especially
we are interested in investigating the spread of fractional order SIQR model using the concept of fractional
operator of Caputo differentiations. After considered SIQR model with Caputo type, disease free equi-
librium and endemic equilibrium points are computed. Also we have applied the next generation matrix
method to calculated the basic reproduction number R0 [19]. The stability analysis of SIQR model and the
existence and uniqueness of its solutions have been obtained. Finally a suitable iteration for the solutions
of the SIQR model is obtained by Atangana-Toufik method [18].

2. Preliminaries

In this section, let us give important definitions of fractional derivatives and their useful properties
[7 − 17].
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Definition 2.1. The Gamma function Γ(x) is defined by the integral as below:

Γ(x) = e−ttx−1dt. (1)

One the basic properties of the gamma function is that it satifies the following equation :

Γ(x + 1) = x.Γ(x) = z.(z − 1)! = z!. (2)

Definition 2.2. The Grünwald-Letnikov definition is given as

aDα
t f (t) = lim

h−→0

1
hα

(t−a)
h∑

(−1)k
(
α
k

)
f (t − kh).

k=0

(3)

Fractional derivative operator is non-local in nature and fractional equations provides an useful tool to
describe phenomenas comprising memory and hereditary features. Such a phenomena can also appear in
biological processes, population dinamics.

Definition 2.3. Riemann-Liouville definition of fractional order differ-integral:

aDα
t f (t) =

1
Γ(n − α)

dn

dt

t∫
a

(t − τ)n−α−1 f (τ)dτ, (4)

where
n − 1 < α 6 n,n ∈N. (5)

The Laplace transform of the Riemann-Liouville fractional order differ-integral is given as below:

L[0Dα
t f (t)] = {

sαF(s) f or α < 0,
sαF(s) − F′(s) f or α > 0, . (6)

where n − 1 < α 6 n, n ∈N.

Definition 2.4. Caputo’s definition of fractional order differ-integral:

C
a Dα

t f (t) =
1

Γ(α − n)

t∫
a

f n(τ)
(t − τ)α+1−n dτ, (7)

where n − 1 < α 6 n,n ∈N, α ∈ R is a fractional order of the differ-integral of the function f (t).

The Laplace transform of the Caputo fractional order differ-integral is given as follows:

L[C
0 Dα

t f (t)] = sαF(s) −
n−1∑
k=0

sα−k−1 f (k)(0) (8)

where n − 1 < α 6 n,n ∈N.
Now, we give some important lemmas for Riemann–Liouville derivative and Caputo derivative as

following:

Lemma 2.5. Let us take a function f (x) and m,n > 0, then the following equations hold.
For R − L derivative given as:
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i. Linearity rule:

aDα
t (c f1 + f2) =a Dα

t (c f1) +a Dα
t ( f2) = caDα

t ( f1) +a Dα
t ( f2). (9)

ii. The semi-group property does not hold. Indeed, the following equation is not always true.

Dα
t Dβ

t f = Dα+β
t f . (10)

For Caputo derivative given as:
i. Linearity rule:

C
a Dα

t (c f1 + f2) =C
a Dα

t (c f1) +C
a Dα

t ( f2) = cC
a Dα

t ( f1) +C
a Dα

t ( f2). (11)

ii. The semi-group property:

CDαC
t Dβ

t f =C Dα+β
t f . (12)

Fractional derivative operator is non-local in nature and fractional equations provides an useful tool to describe
phenomenas comprising memory and hereditary features. Such a phenomena can also appear in biological processes,
population dinamics.

Theorem 2.6. Consider the n-dimensional system

Dα
a y(t) = f (t, y(t)),

y(t0) = y0,
(13)

where α ∈ (0, 1) and Dα
a represents Caputo sense fractional derivative of order α. Let y∗ be the equilibrium point

of the system and J(y∗) be the Jacobian matrix about the equilibrium point y∗. Then, the equilibrium point y∗ is locally
asymptotically stable if and only if all the eigenvalues ri, i = 1, 2, ...,n of J(y∗) satify | arg(ri)| > απ

2 .

Theorem 2.7. Considering the delayed fractional differential system with the Caputo fractional derivative as

Dαy(t) = My(t) + Ny(t − τ),
y(t) = ψ(t), t ∈ [−τ, 0],

(14)

where α ∈ (0, 1], y ∈ Rn, M,N ∈ Rnxn, and ψ(t) ∈ Rnxn
+ . The characteristic equation of the system (14) is given as

det |rαI −M −Ne−rτ
| = 0. (15)

If all the roots of (15) have negative real parts, then the zero solution of system (14) is locally asymptotically stable
[12, 15]

3. Model Derivation

In this paper, we proposed a SIQR epidemic model with given first version with following form [11]:

dS
dt

= Λ − µS −
βSI
N
, (16)

dI
dt

=
βSI
N
−

(
µ + γ + δ + α

)
I,

dQ
dt

= δI −
(
µ + ε + α

)
Q,

dR
dt

= γI + εQ − µR,
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where S, I,R detone the numbers of susceptible, infective and removed, recpectively, Q detones the
number of quarantined and N = S + I + Q + R is the number of total population individuals. The parameter
Λ is the recruitment rate of S correspoinding to births and immigration; β detones tha average number
of adequate contacts; µ is the natural death rate; γ and ε detone the recover rates from grup I, Q to R,
recpectively; δ detones the removal rate from I; α is the disease-caused death rate of I and Q. The parameters
involved in the system (3) are all positive constans [11].

Fractional calculus which means fractional derivatives and fractional integrals is of increasing interest
among the researchers. It is known that fractional operators describe the system behavior more accurate
and efficiently than integer order derivatives. Because of great advantege of memory properties let us
consider model given above, again with fractional order. Fractional order SIQR epidemic model given as
below:

C
a Dα

t S(t) = Λ − µS −
βSI
N
, (17)

C
a Dα

t I (t) =
βSI
N
−

(
µ + γ + δ + α

)
I,

C
a Dα

t Q (t) = δI −
(
µ + ε + α

)
Q,

C
a Dα

t R (t) = γI + εQ − µR,

with initial conditions
S (t0) = S0, I (t0) = I0,Q (t0) = Q0 and R (t0) = R0.

A working on equilibrium points and their asymptotic stability:
In this part, we study stabilities of non-virus equilibrium, virus equilibrium, and basic reproduction

number of our fractional model (18).
Let α ∈ (0, 1] and consider the Caputo differential equation system as below:

C
a Dα

t S(t) = F1(t,S (t)), (18)
C
a Dα

t I (t) = F2(t, I (t)),
C
a Dα

t Q (t) = F3(t,Q (t)),
C
a Dα

t R (t) = F4 (t,R (t)) .

with initial conditions

S (t0) = S0, I (t0) = I0,Q (t0) = Q0 and R (t0) = R0. (19)

Here,

F1(t,S (t)) = Λ − µS (t) −
βS (t) I (t)

N
, (20)

F2(t, I (t)) =
βS (t) I (t)

N
−

(
µ + γ + δ + α

)
I (t) ,

F3(t,Q (t)) = δI (t) −
(
µ + ε + α

)
Q (t) ,

F4 (t,R (t)) = γI (t) + εQ (t) − µR (t) .

3.1. Analysis of the non-virus equilibrium point

A non-virus equilibrium point is the point with no virus infection. Clearly, the point E0 =
(

Λ
µ , 0, 0, 0

)
to

the non-virus equilibrium point of model (18).
Here, we examine the basic reproduction number in more detail utilizing the method given in [19].

According to the next generation matrix method, the matrices
∼

F and
∼

W are defined as:
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∼

F =

[
βS
N 0
δ 0

]
and

∼

W =

[
µ + γ + δ + α 0

−δ µ + ε + α

]
. (21)

For obtaining the eigenvalues of the matrix
∼

F
∼

W −1 at the point E0 =
(

Λ
µ , 0, 0, 0

)
, we have to solve the

following equation ∣∣∣∣∣∼F ∼W−1
− λI

∣∣∣∣∣ = 0, (22)

where λ are the eigenvalues and I is the identity matrix. So, the reproduction number is

R0 =
βΛ

Nµ
(
µ + γ + δ + α

) . (23)

Therefore, the disease free (non-virus) equilibrium point E0 =
(

Λ
µ , 0, 0, 0

)
is locally asymptotically stable if

R0 < 1.

3.2. Analysis of the virus equilibrium point

The Jacobian matrix J (S∗, I∗,Q∗,R∗) for the system given in (18) is.

J (S∗, I∗,Q∗,R∗) =


−µ −

βI∗

N
βI∗

N 0 0
−
βS∗

N
βS∗

N −
(
µ + γ + δ + α

)
δ γ

0 0 −
(
µ + ε + α

)
ε

0 0 0 −µ

 . (24)

We now discuss the asymptoticstability of the E = (S∗, I∗,Q∗,R∗) equilibrium the system given by (18) ,

S∗ =
N

((
µ + γ + δ + α

))
β

, (25)

I∗ =
β − µN

(
µ + γ + δ + α

)
β
(
µ + γ + δ + α

) ,

Q∗ =
δ
(
β − µN

(
µ + γ + δ + α

))
β
(
µ + ε + α

) (
µ + γ + δ + α

) ,
R∗ =

(
γ + ε

) (
β − µN

(
µ + γ + δ + α

))
βµ

(
µ + γ + δ + α

) .

The characteristic equation of system is obtained via determination of (26)

K (λ) = det (J − λI) = 0. (26)

The characteristic roots are obtained by solving the following equation

K (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0. (27)

Here
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a1 =
(
2µ + ε + α

)
+ µ +

βI∗

N
−
βS∗

N
+

(
µ + γ + δ + α

)
, (28)

a2 = µ
(
µ + ε + α

)
+

(
2µ + ε + α

) [
µ +

βI∗

N
−
βS∗

N
+

(
µ + γ + δ + α

)]
−
µβI∗

N
+ µ

(
µ + γ + δ + α

)
+
β
(
µ + γ + δ + α

)
I∗

N
,

a3 = µ
(
µ + ε + α

) [
µ +

βI∗

N
−
βS∗

N
+

(
µ + γ + δ + α

)]
+

(
2µ + ε + α

) [
−
µβI∗

N
+ µ

(
µ + γ + δ + α

)
+
β
(
µ + γ + δ + α

)
I∗

N

]
,

a4 = µ
(
µ + ε + α

) [
−
µβI∗

N
+ µ

(
µ + γ + δ + α

)
+
β
(
µ + γ + δ + α

)
I∗

N

]
.

For a1, a2, a3, a4 > 0 , a1a2− a3 > 0 and a1a2a3− a2
3− a2

1a4 > 0, so by Routh-Hurwitz Criterion, all characteristics
roots have negative real parts. Therefore equilibrium point is asymptotic stable.

4. Working on the existence of solutions

Let B = Φ
(
q
)
×Φ

(
q
)

and Φ
(
q
)

be the Banach space of continuous function defined on the interval q with
the norm

‖S, I,Q,R‖ = ‖S‖ + ‖I‖ + ‖Q‖ + ‖R‖ (29)

Here, ‖S‖ = sup
{
|S (t)| : t ∈ q

}
, ‖I‖ = sup

{
|I (t)| : t ∈ q

}
, ‖Q‖ = sup

{
|Q (t)| : t ∈ q

}
and ‖R‖ = sup

{
|R (t)| : t ∈ q

}
.

Let us consider the classical SIQR model again by replacing the time derivative with Caputo fractional
derivative:

C
a Dα

t S(t) = F1(t,S (t)), (30)
C
a Dα

t I (t) = F2(t, I (t)),
C
a Dα

t Q (t) = F3(t,Q (t)),
C
a Dα

t R (t) = F4 (t,R (t)) .

with initial conditions

S (t0) = S0, I (t0) = I0,Q (t0) = Q0 and R (t0) = R0. (31)

Here,

F1(t,S (t)) = Λ − µS (t) −
βS (t) I (t)

N
, (32)

F2(t, I (t)) =
βS (t) I (t)

N
−

(
µ + γ + δ + α

)
I (t) ,

F3(t,Q (t)) = δI (t) −
(
µ + ε + α

)
Q (t) ,

F4 (t,R (t)) = γI (t) + εQ (t) − µR (t) .

The above system (30)is written as below:
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S (t) − S0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F1 (τ,S (τ)) dτ, (33)

I (t) − I0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F2 (τ, I (τ)) dτ,

Q (t) −Q0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F3 (τ,Q (τ)) dτ,

R (t) − R0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F4 (τ,R (τ)) dτ.

Theorem 4.1. The kernels F1,F2,F3 and F4 satisfy the Lipschitz condition and contraction if the inequality holds as
below:

0 ≤ Li < 1 for i = 1, 2, 3, 4. (34)

Proof. Taking S and S1 be two functions then we have following:

‖F1 (t,S) − F1 (t,S1 (t))‖ =

∥∥∥∥∥Λ − µS (t) −
βS (t) I (t)

N
−Λ + µS1 (t) +

βS1 (t) I (t)
N

∥∥∥∥∥ , (35)

=

∥∥∥∥∥µ (S1 (t) − S (t)) +
βI (t)

N
(S1 (t) − S (t))

∥∥∥∥∥ ,
≤

(
µ +

βb
N

)
‖S1 (t) − S (t)‖ ,

≤ L1 ‖S1 (t) − S (t)‖ .

Taking L1 = µ +
βb
N , where a = max

t∈I
‖S(t)‖ , b = max

t∈I
‖I(t)‖ , c = max

t∈I
‖Q(t)‖ , d = max

t∈I
‖R(t)‖ are bounded

function, then we get

‖F1 (t,S) − F1 (t,S1 (t))‖ ≤ L1 ‖S1 (t) − S (t)‖ . (36)

So, the Lipschitz condition and contraction are satisfied for F1 if 0 ≤ L1 < 1 is satified. With doing same
way, the other kernels also satisfy the Lipschitz condition as follows:

‖F2 (t, I) − F2 (t, I1 (t))‖ ≤ L2 ‖I1 (t) − I (t)‖ , (37)
‖F3 (t,Q) − F3 (t,Q1 (t))‖ ≤ L3 ‖Q1 (t) −Q (t)‖ ,
‖F4 (t,R) − F4 (t,R1 (t))‖ ≤ L4 ‖R1 (t) − R (t)‖ .

Now we consider the kernels for the model, eq. (33) and ıt is rewritten as follows:
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S (t) = S0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F1 (τ,S (τ)) dτ, (38)

I (t) = I0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F2 (τ, I (τ)) dτ,

Q (t) = Q0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F3 (τ,Q (τ)) dτ,

R (t) = R0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F4 (τ,R (τ)) dτ.

Then we have the following recursive formula:

Sn (t) = S0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F1 (τ,Sn−1 (τ)) dτ, (39)

In (t) = I0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F2 (τ, In−1 (τ)) dτ,

Qn (t) = Q0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F3 (τ,Qn−1 (τ)) dτ,

Rn (t) = R0 +
1

Γ (α)

t∫
0

(t − τ)α−1 F4 (τ,Rn−1 (τ)) dτ.

Here initial conditions are given with S (t0) = S0, I (t0) = I0,Q (t0) = Q0 and R (t0) = R0.
The difference between the successive terms in the expression are given below:

An (t) = Sn (t) − Sn−1 (t) =
1

Γ (α)

t∫
0

(t − τ)α−1 (F1 (τ,Sn−1 (τ)) − F1 (τ,Sn−2 (τ)))dτ, (40)

Bn (t) = In (t) − In−1 (t) =
1

Γ (α)

t∫
0

(t − τ)α−1 (F2 (τ, In−1 (τ)) − F2 (τ, In−2 (τ)))dτ,

Cn (t) = Qn (t) −Qn−1 (t) =
1

Γ (α)

t∫
0

(t − τ)α−1 (F3 (τ,Qn−1 (τ)) − F3 (τ,Qn−2 (τ)))dτ,

Dn (t) = Rn (t) − Rn−1 (t) =
1

Γ (α)

t∫
0

(t − τ)α−1 (F4 (τ,Rn−1 (τ)) − F4 (τ,Rn−2 (τ)))dτ.

It is worth noticing that
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Sn (t) =

n∑
i=1

Ai (t) , (41)

In (t) =

n∑
i=1

Bi (t) ,

Qn (t) =

n∑
i=1

Ci (t) ,

Rn (t) =

n∑
i=1

Di (t) .

It is easy to see that the equation (40) reduces to (42) ,

‖An (t)‖ = ‖Sn (t) − Sn−1 (t)‖ , (42)

≤
1

Γ (α)

∥∥∥∥∥∥∥∥
t∫

0

(t − τ)α−1 (F1 (τ,Sn−1 (τ)) − F1 (τ,Sn−2 (τ)))dτ

∥∥∥∥∥∥∥∥ .
So we have,

‖Sn (t) − Sn−1 (t)‖ ≤
L1

Γ (α)

t∫
0

(t − τ)α−1
‖Sn−1 (τ) − Sn−2 (τ)‖ dτ, (43)

then we get

‖An(t)‖ ≤
L1

Γ (α)

t∫
0

(t − τ)α−1
‖An−1 (τ)‖ dτ. (44)

Similarly, we get the following results:

‖Bn(t)‖ ≤
L2

Γ (α)

t∫
0

(t − τ)α−1
‖Bn−1 (τ)‖ dτ, (45)

‖Cn(t)‖ ≤
L3

Γ (α)

t∫
0

(t − τ)α−1
‖Cn−1 (τ)‖ dτ,

‖Dn(t)‖ ≤
L4

Γ (α)

t∫
0

(t − τ)α−1
‖Dn−1 (τ)‖ dτ.

After the above results, let us give a now theorem.

Theorem 4.2. The SIQR system (30) has a unique solution ıf we can find tmax satisfying following condition

tαmax

Γ (α)
Li < 1, for i = 1, 2, 3, 4. (46)
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Proof. S(t), I(t),Q(t) and R(t) are bounded functions so from the equality (44) , we have the succeeding relation as
follows:

‖An(t)‖ ≤ ‖S0‖

[
tαmax

Γ (α)
L1

]n

, (47)

‖Bn(t)‖ ≤ ‖I0‖

[
tαmax

Γ (α)
L2

]n

,

‖Cn(t)‖ ≤ ‖Q0‖

[
tαmax

Γ (α)
L3

]n

,

‖Dn(t)‖ ≤ ‖R0‖

[
tαmax

Γ (α)
L4

]n

.

Now let us assume that followings are satisfied

S(t) − S0 = Sn (t) − bn (t) , (48)
I(t) − I0 = In (t) − cn (t) ,

Q(t) −Q0 = Qn (t) − dn (t) ,
R(t) − R0 = Rn (t) − en (t) .

Now we have to show that the infinity term ‖b∞ (t)‖ −→ 0, therefore we have

‖bn (t)‖ ≤

∥∥∥∥∥∥∥∥ 1
Γ (α)

t∫
0

(t − τ)α−1 (F1 (τ,S) − F1 (τ,Sn−1))dτ

∥∥∥∥∥∥∥∥ , (49)

≤
1

Γ (α)

t∫
0

(t − τ)α−1
‖F1 (τ,S) − F1 (τ,Sn−1)‖ dτ,

≤
tα

Γ (α)
L1 ‖S − Sn−1‖ .

Repeating this process recursively, we obtain following equality

‖bn (t)‖ ≤
[

tα

Γ (α)

]n+1

Ln
1M. (50)

Then at tmax we have

‖bn (t)‖ ≤
[

tαmax

Γ (α)

]n+1

Ln
1M. (51)

If we apply the limit to both sides as n tends to infinity, we have ‖b∞ (t)‖ −→ 0. So this completes the proof.

4.1. Uniqueness of the special solution
To prove the uniqueness of the system of solutions We assume that by contraction there exists another system of

solutions of (6), S1 (t) , I1 (t) ,Q1 (t) and R1(t). Then we have

‖S (t) − S1 (t)‖ ≤
1

Γ (α)

t∫
0

(t − τ)α−1 (F1 (τ,S) − F1 (τ,S1))dτ, (52)
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Wit applying the norm to eq. (52), we get

‖S (t) − S1 (t)‖ ≤
1

Γ (α)

t∫
0

(t − τ)α−1
‖F1 (τ,S) − F1 (τ,S1)‖ dτ, (53)

‖S (t) − S1 (t)‖ ≤
1

Γ (α)
L1tα ‖S(t) − S1(t)‖ . (54)

Finally, this gives

‖S(t) − S1(t)‖
(
1 −

1
Γ (α)

L1tα
)
≤ 0, (55)

‖S(t) − S1(t)‖ = 0 −→ S(t) = S1(t).

It is easily showed that the equation S(t) and other solutions have a unique solution.

5. Atangana-Toufik numerical scheme with Caputo derivative

First of all, it should be emphasised that the ”numerical approach” is not directly equivalent to the ”approach with
use of computer”, although we usually use numerical approach to find the solution with use of computers. Generally,
analytical solutions are possible using simplifying assumptions that may not realistically reflect reality. In many
applications, analytical solutions are impossible to achieve. Numerical methods makes it possible to obtain realistic
solutions without the need for simplifying assumptions. There are lots of numerical methods have been used for
finding the solutions of equations [2, 4, 14].

In this section, we reconsider Atangana-Toufik method for fractional differential equations with Caputo derivative
as below:

C
a Dα

t x (t) = f (t, x(t)), (56)
x(0) = x0.

Caputo fractional integral of this equation is given by

x(t) − x(0) =
1

Γ(α)

t∫
0

(t − τ)α−1 f (τ, x(τ))dτ. (57)

If we take t = tn+1 for n = 0, 1, 2, ..., the equation (57) is rewritten as

x(tn+1) − x(0) =
1

Γ(α)

tn+1∫
0

(tn+1 − τ)α−1 f (τ, x(τ))dτ. (58)

Here, If we use the two-step Lagrange polynomial interpolation in integral then we have following

Pk(τ) = f (τ, x(τ)) '
f (tk, xk) (τ − tk−1)

h
−

f (tk−1, xk−1) (τ − tk)
h

, (59)

where h = tn − tn−1. So we have

x(tn+1) − x(0) (60)

=
1

Γ(α)

n∑
k=0

tk+1∫
tk

(
Pk(τ)

+
(τ−tk)(τ−tk−1)

2!
∂2

∂τ2

[
f (τ, x(τ))

]
τ=εk

)
(tn+1 − τ)α−1dτ,
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or

x(tn+1) − x(0) (61)

=
1

Γ(α)

n∑
k=0



f (tk,xk)
h

tk+1∫
tk

(τ − tk−1) (tn+1 − τ)α−1

︸                         ︷︷                         ︸
dτ

I1

−
f (tk−1,xk−1)

h

tk+1∫
tk

(τ − tk) (tn+1 − τ)α−1

︸                       ︷︷                       ︸
dτ

I2

+
tk+1∫
tk

(τ−tk)(τ−tk−1)
2!

∂2

∂τ2

[
f (τ, x(τ))

]
τ=εk

(tn+1 − τ)α−1dτ



.

Finally, calculating integrals in equation above, we obtain

x(tn+1) − x(0) (62)

=
f (tk, xk)

h

n∑
k=0


α

[
(n − k)α+1

− (n + 1 − k)α+1

]
− (α + 1) (n − k + 2)

[
(n − k)α+1

− (n + 1 − k)α+1

]


Γ(α + 2)

−
f (tk−1, xk−1)

h

n∑
k=0


(α + 1) (k − n − 1)

[
(n + 2 − k)α

−(n − k + 1)α+1

]
−α

[
(n − k + 2)α−1

− (n + 1 − k)α−1

]


Γ(α + 2)

+Eαn

Above 1Eαn is error term and given by

Eαn (63)

=
1

Γ(α)

n∑
k=0

tk+1∫
tk

(
(τ − tk) (τ − tk−1)

2!
∂2

∂τ2

[
f (τ, x(τ))

]
τ=εk

)
(tn+1 − τ)α−1dτ.

then we have ∣∣∣Eαn ∣∣∣ (64)

≤
h

2Γ(2 + α))
max
[0,tn+1]

∣∣∣∣∣∣∂2 f (τ, x(τ))
∂τ2

∣∣∣∣∣∣ ×
n∑

k=0


α

[
(n − k)α+1

−(n + 1 − k)α+1

]
−

(α + 1) (k − n − 2)
[

(n − k)α

−(n + 1 − k)α

]
 .
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The right-hand side converges as follows:

n∑
k=0


α

[
(n − k)α+1

−(n + 1 − k)α+1

]
−

(α + 1) (k − n − 2)
[

(n − k)α

−(n + 1 − k)α

]
 (65)

= (nα − (n + 1)α)
(

(n + 1) (αn − n − 4(α + 1))
2

)
− (n + 1)α+1α.

So we have error term as

∣∣∣Eαn ∣∣∣ ≤ h
2Γ(2 + α))

max
[0,tn+1]

∣∣∣∣∣∣∂2 f (τ, x(τ))
∂τ2

∣∣∣∣∣∣ (nα − (n + 1)α) (66)

×

((
(n + 1) (αn − n − 4(α + 1))

2

)
− (n + 1)α+1α

)
.

5.1. Application of method to system

In this part, we apply the method for fractional order Caputo system. Let us consider system with Caputo
derivative.

C
a Dα

t S(t) = F1(t,S (t)), (67)
C
a Dα

t I (t) = F2(t, I (t)),
C
a Dα

t Q (t) = F3(t,Q (t)),
C
a Dα

t R (t) = F4 (t,R (t)) .

Then we have

S (t) − S0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F1 (τ,S (τ)) dτ, (68)

I (t) − I0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F2 (τ, I (τ)) dτ,

Q (t) −Q0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F3 (τ,Q (τ)) dτ,

R (t) − R0 =
1

Γ (α)

t∫
0

(t − τ)α−1 F4 (τ,R (τ)) dτ.

At a given point t = tn+1, following formula is written
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Sn+1 − S0 (69)

=
1

Γ(α)

n∑
k=0



F1(tk ,Sk)
h


α

[
(n − k)α+1

− (n + 1 − k)α+1

]
− (α + 1) (n − k + 2)

[
(n − k)α+1

− (n + 1 − k)α+1

]


α(α+1)

−
F1(tk−1,Sk−1)

h


(α + 1) (k − n − 1)

[
(n + 2 − k)α

−(n − k + 1)α+1

]
−α

[
(n − k + 2)α−1

−

(n + 1 − k)α−1

]


α(α+1)



+1 Rαn ,

In+1 − I0

=
1

Γ(α)

n∑
k=0



F2(tk ,Ik)
h


α

[
(n − k)α+1

− (n + 1 − k)α+1

]
− (α + 1) (n − k + 2)

[
(n − k)α+1

− (n + 1 − k)α+1

]


α(α+1)

−
F2(tk−1,Ik−1)

h


(α + 1) (k − n − 1)

[
(n + 2 − k)α −
(n − k + 1)α+1

]
−α

[
(n − k + 2)α−1

−

(n + 1 − k)α−1

]


α(α+1)



+2 Rαn ,

Qn+1 −Q0

=
1

Γ(α)

n∑
k=0



F3(tk ,Qk)
h


α

[
(n − k)α+1

− (n + 1 − k)α+1

]
− (α + 1) (n − k + 2)

[
(n − k)α+1

−

(n + 1 − k)α+1

]


α(α+1)

−
F3(tk−1,Qk−1)

h


(α + 1) (k − n − 1)

[
(n + 2 − k)α −
(n − k + 1)α+1

]
−α

[
(n − k + 2)α−1

−

(n + 1 − k)α−1

]


α(α+1)



+3 Rαn ,
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Rn+1 − R0

=
1

Γ(α)

n∑
k=0



F4(tk ,Rk)
h


α

[
(n − k)α+1

− (n + 1 − k)α+1

]
− (α + 1) (n − k + 2)

[
(n − k)α+1

−

(n + 1 − k)α+1

]


α(α+1)

−
F4(tk−1,Rk−1)

h


(α + 1) (k − n − 1)

[
(n + 2 − k)α −
(n − k + 1)α+1

]
−α

[
(n − k + 2)α−1

−

(n + 1 − k)α−1

]


α(α+1)



+4 Rαn .

Where

∣∣∣1Rαn
∣∣∣ ≤ h

2Γ(2 + α))
max
[0,tn+1]

∣∣∣∣∣∣∂2F1(τ,S(τ))
∂τ2

∣∣∣∣∣∣ (nα − (n + 1)α) (70)

×

((
(n + 1) (αn − n − 4(α + 1))

2

)
− (n + 1)α+1α

)
,

∣∣∣2Rαn
∣∣∣ ≤ h

2Γ(2 + α))
max
[0,tn+1]

∣∣∣∣∣∣∂2F2(τ, I(τ))
∂τ2

∣∣∣∣∣∣ (nα − (n + 1)α)

×

((
(n + 1) (αn − n − 4(α + 1))

2

)
− (n + 1)α+1α

)
,

∣∣∣3Rαn
∣∣∣ ≤ h

2Γ(2 + α))
max
[0,tn+1]

∣∣∣∣∣∣∂2F3(τ,Q(τ))
∂τ2

∣∣∣∣∣∣ (nα − (n + 1)α)

×

((
(n + 1) (αn − n − 4(α + 1))

2

)
− (n + 1)α+1α

)
,

∣∣∣4Rαn
∣∣∣ ≤ h

2Γ(2 + α))
max
[0,tn+1]

∣∣∣∣∣∣∂2F4(τ,R(τ))
∂τ2

∣∣∣∣∣∣ (nα − (n + 1)α)

×

((
(n + 1) (αn − n − 4(α + 1))

2

)
− (n + 1)α+1α

)
.

6. Conclusion

In this paper fractional order SIQR model is considered. Here, we generalize the previous model by considering
the order as fractional order. As we saw that, the fractional order model is much more efficient in modeling than its
integer order version. We have applied the next generation matrix method to calculated the basic reproduction number
R0.Also, the detailed analysis such as existence ande uniqueness results of the solution and efficient numerical scheme
for model are presented.
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I. Koca, E. Akçetin, P. Yaprakdal / TJOS 5 (2), 124–139 139

[2] Atangana, A., & Koca, I. (2016). On the new fractional derivative and application to nonlinear Baggs and Freedman model. J.
Nonlinear Sci. Appl, 9(5).
[3] Baskonus HM, Mekkaoui T, Hammouch H, et al. Active control of a Chaotic fractional order economic system. Entropy 2015;
17: 5771–5783.3413-3442.
[4] Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a fractional advection-dispersion equation. Water
resources research, 36(6), 1403-1412.
[5] Bulut H, Baskonus HM and Belgacem FBM. The analytical solutions of some fractional ordinary differential equations by
Sumudu transform method. Abstr Appl Anal 2013; 2013: 203875-1–203875-6.
[6] Debnath, L. (2003). Recent applications of fractional calculus to science and engineering. International Journal of Mathematics
and Mathematical Sciences, 2003(54), feron-α therapy. Science, 282(5386), 103-107.
[7] Debnath, L. (2004). A brief historical introduction to fractional calculus. International Journal of Mathematical Education in
Science and Technology, 35(4), 487-501.
[8] Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential
operators of Caputo type. Springer Science & Business Media.
[9] Koca, I. (2018). Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators. The European Physical Journal
Plus, 133(3), 100.
[10] Linda J.S. Allen, ”An Introduction to mathematical biology,” Pearson/Prentice Hall, (2007).
[11] Liu, Q., Jiang, D., & Shi, N. (2018). Threshold behavior in a stochastic SIQR epidemic model with standard incidence and
regime switching. Applied Mathematics and Computation, 316, 310-325.
[12] Mu, Y., Li, Z., Xiang, H., & Wang, H. (2017). Bifurcation analysis of a turbidostat model with distributed delay. Nonlinear
Dynamics, 90(2), 1315-1334.
[13] Neumann, A. U., Lam, N. P., Dahari, H., Gretch, D. R., Wiley, T. E., Layden, T. J., & Perelson, A. S. (1998). Hepatitis C viral
dynamics in vivo and the antiviral efficacy of inter
[14] Odibat, 396. 39c., & Momani, S. (2006). Application of variational iteration method to nonlinear differential equations of
fractional order. International Journal of Nonlinear Sciences and Numerical Simulation, 7(1), 27-34.
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Abstract. In this paper, we establish several new integral inequalities including Caputo fractional deriva-
tives for exponential s-convex functions. By using convexity for exponential s−convex functions of any
positive integer order differentiable function some novel results are given.

1. Introduction

Convexity plays an important role in many features of mathematical programming including, for
example, suficient optimality conditions and duality theorems. The topic of convex functions has been
treated extensively in the classical book by Hardy, Littlewood, and Polya [5]. The study of fractional order
derivatives and integrals is called fractional calculus. Fractional calculus have important applications in
all fields of applied sciences. Fractional integration and fractional differentiation appear as basic part in
the subject of partial differential equations [1, 12]. Many types of fractional integral as well as differential
operators have been defined in literature. Classical Caputo fractional derivatives were introduced by
Michele Caputo in [8] which is written in 1967.

Definition 1.1. The function Ψ : [u, v]→ R is said to be convex, if we have

Ψ (τz1 + (1 − τ)z2) ≤ τΨ(z1) + (1 − τ) Ψ(z2)

for all z1, z2 ∈ [u, v] and τ ∈ [0, 1].

Definition 1.2. (see[9])
Let Ψ : I ⊆ < is of exponential-convex, if

Ψ (τz1 + (1 − τ)z2) ≤ τe−αz1Ψ(z1) + (1 − τ)e−αz2Ψ(z2)

for all τ ∈ [0, 1] and z1, z2 ∈ I and α ∈ <.
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Definition 1.3. (see[6])
Let Ψ : I ⊂ [0,∞) −→ < is of s-convex in second sense, with s ∈ (0, 1], if

Ψ (τz1 + (1 − τ)z2) ≤ τsΨ(z1) + (1 − τ)sΨ(z2)

for all τ ∈ [0, 1) and z1, z2 ∈ I.

Definition 1.4. (see[10])
Let Ψ : I ⊂ [0,∞) −→ < is of exponential s-convex in second sense, with s ∈ [0, 1], if

Ψ (τz1 + (1 − τ)z2) ≤ τse−βz1Ψ(z1) + (1 − τ)se−βz2Ψ(z2)

for all τ ∈ [0, 1] and z1, z2 ∈ I and β ∈ <.

The previous era of fractional calculus is as old as the history of differential calculus. They generalize
the differential operators and ordinary integral. However, the fractional derivatives have some basic
properties than the corresponding classical ones. On the other hand, besides the smooth requirement,
Caputo derivative does not coincide with the classical derivative [2].We give the following definition of
Caputo fractional derivatives, see ([1, 3, 7, 11]).

Definition 1.5. let ACn[u, v] be a space of functions having nth derivatives absolutely continuous, Ψ ∈ ACn[u, v],
λ < {1, 2, 3, ...} and n = [λ] + 1. The right sided Caputo fractional derivative is as follows,

(CDλ
u+Ψ)(z) =

1
Γ(n − λ)

∫ z

u

Ψ(n)(τ)
(z − τ)λ−n+1

dτ, z > u (1)

The left sided caputo fractional derivative is as follows,

(CDλ
v−Ψ)(z) =

(−1)n

Γ(n − λ)

∫ v

z

Ψ(n)(τ)
(τ − z)λ−n+1

dτ, z < v. (2)

The Caputo fractional derivative (CDn
u+Ψ)(z) coincides with Ψ(n)(z) whereas (CDn

v−Ψ)(z) coincides with Ψ(n)(z) with
exactness to a constant multiplier (−1)n ,if λ = n ∈ {1, 2, 3, ...} and usual derivative Ψ(n)(z) of order n exists. In
particular we have

(CD0
u+Ψ)(z) = (CD0

v−Ψ)(z) = Ψ(z) (3)

where n = 1 and λ = 0.

In this paper, we establish several new integral inequalities including Caputo fractional integrals for ex-
ponential s-convex functions.By using convexity for exponential s-convex functions of any integer order
differentiable function some novel results are given.The purpose of this paper is to introduce some frac-
tional inequalities for the Caputo-fractional derivatives via s-convex functions in second sense which have
derivatives of any integer order.

2. Main Results

First we give the following estimate of the sum of left and right handed Caputo fractional derivatives
for exponential s-convex function in second sense.

Theorem 2.1. Let Ψ : I ⊂ [0,∞) −→ R be a real valued n-time differentiable function where n is a positive integer.
If Ψ(n) is a positive exponential s-convex function in second sense, then for a, b ∈ I; a < b and γ ∈ R, α, β > 1 with
n > max{α, β}, the following inequality for Caputo fractional derivatives holds

Γ(n − α + 1)(CDα−1
a+ Ψ)(x) + Γ(n − β + 1)(CDβ−1

b− Ψ)(x) (4)

≤
(x − a)n−α+1e−γaΨ(n)(a) + (b − x)n−β+1e−γbΨ(n)(b)

s + 1

+ e−γxΨ(n)(x)
[ (x − a)n−α+1 + (b − x)n−β+1

s + 1

]
.
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Proof. Let us consider the function Ψ on the interval [a, x], x ∈ [a, b] and n is a positive integer. For t ∈ [a, x]
and n > α the following inequality holds

(x − t)n−α
≤ (x − a)n−α. (5)

Since Ψ(n) is exponential s-convex function in second sense therefore for t ∈ [a, x] we have

Ψ(n)(t) ≤
( x − t

x − a

)s
e−γaΨ(n)(a) +

( t − a
x − a

)s
e−γxΨ(n)(x). (6)

Multiplying inequalities (6) and (5), then integrating with respect to t over [a, x] we have∫ x

a
(x − t)n−αΨ(n)(t)dt ≤

(x − a)n−α

(x − a)s

[
e−γaΨ(n)(a)

∫ x

a
(x − t)sdt + e−γxΨ(n)(x)

∫ x

a
(t − a)sdt

]
Γ(n − α + 1)(CDα−1

a+ Ψ)(x) ≤
(x − a)n−α+1

s + 1
[e−γaΨ(n)(a) + e−γxΨ(n)(x)]. (7)

Now we consider function Ψ on the interval [x, b], x ∈ [a, b]. For t ∈ [x, b] the following inequality holds

(t − x)n−β
≤ (b − x)n−β. (8)

Since Ψ(n) is exponential s-convex function in second sense on [a, b], therefore for t ∈ [x, b] we have

Ψ(n)(t) ≤
( t − x

b − x

)s
e−γbΨ(n)(b) +

(
b − t
b − x

)s

e−γxΨ(n)(x). (9)

Multiplying inequalities (8) and (9), then integrating with respect to t over [x, b] we have∫ b

x
(t − x)n−βΨ(n)(t)dt ≤

(b − x)n−β

(b − x)s

[
e−γbΨ(n)(b)

∫ b

x
(t − x)sdt + e−γxΨ(n)(x)

∫ b

x
(b − t)sdt

]
Γ(n − β + 1)(CDβ−1

b− Ψ)(x) ≤
(b − x)n−β+1

s + 1
[e−γbΨ(n)(b) + e−γxΨ(n)(x)]. (10)

Adding (7) and (10) we get the required inequality in (4).

Corollary 2.2. By setting α = β in (4) we get the following fractional integral inequality

Γ(n − α + 1)
(
(CDα−1

a+ Ψ)(x) + (CDα−1
b− Ψ)(x)

)
(11)

≤
(x − a)n−α+1e−γaΨ(n)(a) + (b − x)n−α+1e−γbΨ(n)(b)

s + 1

+ e−γxΨ(n)(x)
[ (x − a)n−α+1 + (b − x)n−α+1

s + 1

]
.

Remark 2.3. By setting α = β, γ = 0,and s = 1 we will get Corollary 2.1 in [4].

Now we give the next result stated in the following theorem.

Theorem 2.4. Let Ψ : I −→ R be a real valued n-time differentiable function where n is a positive integer. If |Ψ(n+1)
|

is exponential s-convex function, then for a, b ∈ I; a < b and α, β > 0, the following inequality for Caputo fractional
derivatives holds ∣∣∣∣Γ(n − α + 1)(CDα

a+Ψ)(x) + Γ(n − β + 1)(CDβ
b−Ψ)(x) (12)

−

(
(x − a)n−αΨ(n)(a) + (b − x)n−βΨ(n)(b)

)∣∣∣∣
≤

(x − a)α+1e−γa
|Ψ(n+1)(a)| + (b − x)β+1e−γb

|Ψ(n+1)(b)|
s + 1

+
e−γx
|Ψ(n+1)(x)|

(
(x − a)α+1 + (b − x)β+1

)
s + 1

.
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Proof. Since |Ψ(n+1)
| is exponential s-convex function in second sense and n is a positive integer, therefore

for t ∈ [a, x] and n > α we have

|Ψ(n+1)(t)| ≤
( x − t

x − a

)s
e−γa
|Ψ(n+1)(a)| +

( t − a
x − a

)s
e−γx
|Ψ(n+1)(x)|

from which we can write

−

(( x − t
x − a

)s
e−γa
|Ψ(n+1)(a)| +

( t − a
x − a

)s
e−γx
|Ψ(n+1)(x)|

)
(13)

≤ Ψ(n+1)(t)

≤

( x − t
x − a

)s
e−γa
|Ψ(n+1)(a)| +

( t − a
x − a

)s
e−γx
|Ψ(n+1)(x)|.

We consider the second inequality of inequality (13)

Ψ(n+1)(t) ≤
( x − t

x − a

)s
e−γa
|Ψ(n+1)(a)| +

( t − a
x − a

)s
e−γx
|Ψ(n+1)(x)|. (14)

Now for α > 0 we have
(x − t)n−α

≤ (x − a)n−α, t ∈ [a, x]. (15)

The product of last two inequalities give

(x − t)n−αΨ(n+1)(t) ≤ (x − a)n−α−s
(
(x − t)se−γa

|Ψ(n+1)(a)| + (t − a)se−γx
|Ψ(n+1)(x)|

)
.

Integrating with respect to t over [a, x] we have∫ x

a
(x − t)n−αΨ(n+1)(t)dt (16)

≤ (x − a)n−α−s
[
e−γa
|Ψ(n+1)(a)|

∫ x

a
(x − t)sdt + e−γx

|Ψ(n+1)(x)|
∫ x

a
(t − a)sdt

]
= (x − a)n−α+1

[
e−γa
|Ψ(n+1)(a)| + e−γx

|Ψ(n+1)(x)|
s + 1

]
,

and ∫ x

a
(x − t)n−αΨ(n+1)(t)dt = Ψ(n)(t)(x − t)n−α

|
x
a + (n − α)

∫ x

a
(x − t)n−α−1Ψ(n)(t)dt

= −Ψ(n)(a)(x − a)n−α + Γ(n − α + 1)(CDα
a+Ψ)(x).

Therefore (16) takes the form

Γ(n − α + 1)(CDα
a+Ψ)(x) −Ψ(n)(a)(x − a)n−α (17)

≤ (x − a)n−α+1
[

e−γa
|Ψ(n+1)(a)| + e−γx

|Ψ(n+1)(x)|
s + 1

]
.

If one consider from (13) the first inequality and proceed as we did for the second inequality, then following
inequality can be obtained

Ψ(n)(a)(x − a)n−α
− Γ(n − α + 1)(CDα

a+Ψ)(x) (18)

≤ (x − a)n−α+1

[
e−γa
|Ψ(n+1)(a)| + e−γx

|Ψ(n+1)(x)|
s + 1

]
.
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From (17) and (18) we get ∣∣∣Γ(n − α + 1)(CDα
a+Ψ)(x) −Ψ(n)(a)(x − a)n−α

∣∣∣ (19)

≤ (x − a)n−α+1

[
e−γa
|Ψ(n+1)(a)| + e−γx

|Ψ(n+1)(x)|
s + 1

]
.

On the other hand for t ∈ [x, b] using convexity of |Ψ(n+1)
| as a exponential convex function we have

|Ψ(n+1)(t)| ≤
( t − x

b − x

)s
e−γb
|Ψ(n+1)(b)| +

(
b − t
b − x

)s

e−γx
|Ψ(n+1)(x)|. (20)

Also for t ∈ [x, b] and β > 0 we have
(t − x)n−β

≤ (b − x)n−β. (21)

By adopting the same treatment as we have done for (13) and (15) one can obtain from (20) and (21) the
following inequality ∣∣∣∣Γ(n − β + 1)(CDβ

b−Ψ)(x) −Ψ(n)(b)(b − x)n−β
∣∣∣∣ (22)

≤ (b − x)n−β+1

[
e−γb
|Ψ(n+1)(b)| + e−γx

|Ψ(n+1)(x)|
s + 1

]
.

By combining the inequalities (19) and (22) via triangular inequality we get the required inequality.

It is interesting to see the following inequalities as a special case.

Corollary 2.5. By setting α = β in (12) we get the following fractional integral inequality∣∣∣Γ(n − α + 1)[(CDα
a+Ψ)(x) + (CDα

b−Ψ)(x)]

−

(
(x − a)n−αΨ(n)(a) + (b − x)n−αΨ(n)(b)

)∣∣∣∣
≤

(x − a)n−α+1e−γa
|Ψ(n+1)(a)| + (b − x)n−α+1e−γb

|Ψ(n+1)(b)|
s + 1

+
e−γx
|Ψ(n+1)(x)|

[
(x − a)n−α+1 + (b − x)n−α+1

]
s + 1

.

Remark 2.6. By setting α = β, γ = 0,and s = 1 we will get Corollary 2.2 in [4].

Before going to the next theorem we observe the following result.

Lemma 2.7. Let Ψ : [a, b] −→ R, be a exponential s-convex function in second sense. If Ψ is exponentially
symmetric about a+b

2 , then the following inequality holds

Ψ

(
a + b

2

)
≤

1
2s−1

(
e−γxΨ(x)

)
x ∈ [a, b]. (23)

Proof. As Ψ is exponential s-convex function in second sense we have

Ψ

(
a + b

2

)
≤

1
2s

[
e−γ(at+(1−t)b)Ψ(at + (1 − t)b) + e−γ(a(1−t)+bt)Ψ(a(1 − t) + bt)

]
(24)

Since Ψ is symmetric about a+b
2 , therefore we get Ψ(a + b − x) = Ψ(bt + (1 − t)a)

Ψ

(
a + b

2

)
≤

1
2s

(
e−γ(at+(1−t)b)Ψ((at + (1 − t)b)) + e−γ(a+b−x)Ψ(a + b − x)

)
.
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By substituting x = at + (1 − t)b we get

Ψ

(
a + b

2

)
≤

1
2s

(
e−γxΨ(x) + e−γ(a+b−x)Ψ(a + b − x)

)
.

Also Ψ is exponentially symmetric about a+b
2 , therefore we have Ψ(a + b − x) = Ψ(x) and inequality in (23)

holds.

Theorem 2.8. Let Ψ : I −→ R be a real valued n-time differentiable function where n is a positive integer. If Ψ(n)

is a positive exponential s- convex function in second sense and symmetric about a+b
2 , then for a, b ∈ I; a < b and

α, β ≥ 1, the following inequality for Caputo fractional derivatives holds

h(γ)2s−1

2

(
1

n − α + 1
+

1
n − β + 1

)
Ψ(n)

(
a + b

2

)
(25)

≤
Γ(n − β + 1)(CDβ−1

b− Ψ)(a)

2(b − a)n−β+1 +
Γ(n − α + 1)(CDα−1

a+ Ψ)(b)
2(b − a)n−α+1

≤
Ψ(n)(a) + Ψ(n)(b)

(s + 1)
.

where h(γ) = eγa for γ < 0 and h(γ) = eγb for γ ≥ 0.

Proof. For x ∈ [a, b] we have
(x − a)n−β

≤ (b − a)n−β. (26)

Also Ψ is exponential s-convex function in second sense we have

Ψ(n)(x) ≤
(x − a

b − a

)s
e−γbΨ(n)(b) +

(
b − x
b − a

)s

e−γaΨ(n)(a). (27)

Multiplying (26) and (27) and then integrating with respect to x over [a, b] we have∫ b

a
(x − a)n−βΨ(n)(x)dx ≤

(b − a)n−β

(b − a)s

(∫ b

a
e−γb(Ψ(n)(b)(x − a)s + e−γaΨ(n)(a)(b − x)s)dx

)
.

From which we have
Γ(n − β + 1)(CDβ−1

b− Ψ)(a)

(b − a)n−β+1 ≤
e−γaΨ(n)(a) + e−γbΨ(n)(b)

s + 1
. (28)

On the other hand for x ∈ [a, b] we have

(b − x)n−α
≤ (b − a)n−α. (29)

Multiplying (27) and (29) and then integrating with respect to x over [a, b] we get∫ b

a
(b − x)n−αΨ(n)(x)dx ≤ (b − a)n−α+1 e−γaΨ(n)(a) + e−γbΨ(n)(b)

s + 1
.

From which we have
Γ(n − α + 1)(CDα−1

a+ Ψ)(b)
(b − a)n−α+1 ≤

e−γaΨ(n)(a) + e−γbΨ(n)(b)
s + 1

. (30)

Adding (28) and (30) we get the second inequality.

Γ(n − β + 1)(CDβ−1
b− Ψ)(a)

2(b − a)n−β+1 +
Γ(n − α + 1)(CDα−1

a+ Ψ)(b)
2(b − a)n−α+1 ≤

e−γaΨ(n)(a) + e−γbΨ(n)(b)
s + 1

.
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Since Ψ(n) is exponential s-convex function in second sense and symmetric about a+b
2 using Lemma 2.7 we

have

Ψ(n)

(
a + b

2

)
≤

1
2s−1

(
e−γxΨn(x)

)
, x ∈ [a, b]. (31)

Multiplying with (x − a)n−β on both sides and then integrating over [a, b] we have

Ψ(n)

(
a + b

2

) ∫ b

a
(x − a)n−βdx ≤

1
h(γ)2s−1

∫ b

a
(x − a)n−βΨ(n)(x)dx. (32)

By definition of Caputo fractional derivatives for exponential s-convex function one can has

Ψ(n)

(
a + b

2

)
1

2(n − β + 1)
≤

1
h(γ)2s−1

Γ(n − β + 1)(CDβ−1
b− Ψ)(a)

2(b − a)n−β+1 . (33)

Multiplying (31) with (b − x)n−α, then integrating over [a, b] one can get

Ψ(n)

(
a + b

2

)
1

2(n − α + 1)
≤

1
h(γ)2s−1

Γ(n − α + 1)(CDα−1
a+ Ψ)(b)

2(b − a)n−α+1 . (34)

Adding (33) and (34) we get the first inequality.

Corollary 2.9. If we put α = β in (25), then we get

h(γ)2s−1Ψ(n)

(
a + b

2

)
1

(n − α + 1)

≤
Γ(n − α + 1)
2(b − a)α+1

[
(CDα+1

b− Ψ)(a) + (CDα+1
a+ Ψ)(b)

]
≤

e−γaΨ(n)(a) + e−γbΨ(n)(b)
s + 1

.

where h(γ) = eγa for γ < 0 and h(γ) = eγb for γ ≥ 0.

Remark 2.10. By setting γ = 0 and m = 1 in Theorem 2.8 we will get theorem 2.3 in [4].
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Abstract. In this paper, we define the Fibonacci-Jacobsthal p-sequence and then we discuss the connection
between of the Fibonacci-Jacobsthal p-sequence with the Jacobsthal and Fibonacci p-sequences. Also, we
provide a new Binet formula and a new combinatorial representation of the Fibonacci-Jacobsthal p-numbers
by the aid of the nth power of the generating matrix of the Fibonacci-Jacobsthal p-sequence. Furthermore,
we derive some properties of the Fibonacci-Jacobsthal p-sequences such as the exponential, permanental,
determinantal representations and the sums by using its generating matrix.

1. Introduction

The well-known Jacobsthal sequence {Jn} is defined by the following recurrence relation:

Jn = Jn−1 + 2Jn−2

for n ≥ 2 in which J0 = 0 and J1 = 1.
There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence

{
Fp (n)

}
(see detailed information in [21, 22]) is one of them:

Fp (n) = Fp (n − 1) + Fp
(
n − p − 1

)
for n > p and p = 1, 2, 3, . . ., in which Fp (0) = 0, Fp (1) = · · · Fp

(
p
)
= 1. When p = 1, the Fibonacci p-sequence{

Fp (n)
}

is reduced to the usual Fibonacci sequence {Fn}.
It is easy to see that the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence are

11 (x) = x2
− x − 2 and 12 (x) = xp+1

− xp
− 1, respectively. We will use these in the next section.

Let the (n + k)th term of a sequence be defined recursively by a linear combination of the preceding k
terms:

an+k = c0an + c1an+1 + · · · + ck−1an+k−1

in which c0, c1, . . . , ck−1 are real constants. In [12], Kalman derived a number of closed-form formulas for
the generalized sequence by the companion matrix method as follows:
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Let the matrix A be defined by

A =
[
ai, j

]
k×k
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1


for n ≥ 0.

Several authors have used homogeneous linear recurrence relations to deduce miscellaneous properties
for a plethora of sequences: see for example, [1, 4, 8–11, 19, 20]. In [5–7, 14–16, 21–23], the authors defined
some linear recurrence sequences and gave their various properties by matrix methods. In this paper,
we discuss connections between the Jacobsthal numbers and Fibonacci p-numbers. Firstly, we define the
Fibonacci-Jacobsthal p-sequence and then we study recurrence relation among this sequence, Jacobsthal
sequence and Fibonacci p-sequence. Also, we give the relations between the generating matrix of the
Fibonacci-Jacobsthal p-numbers and the elements of Jacobsthal sequence and Fibonacci p-sequence. Fur-
thermore, using the generating matrix the Fibonacci-Jacobsthal p-sequence, we obtain some new structural
properties of the Fibonacci p-numbers such as the Binet formula and combinatorial representations. Finally,
we derive the exponential, permanental, and determinantal representations and the sums of Fibonacci-
Jacobsthal p-sequences.

2. On The Connections Between Jacobsthal Numbers and Fibonacci p-Numbers

Now we define the Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
by the following homogeneous linear recur-

rence relation for any given p (3, 4, 5, . . .) and n ≥ 0

FJ,p
n+p+3 = 2FJ,p

n+p+2 + FJ,p
n+p+1 − 2FJ,p

n+p + FJ,p
n+2 − FJ,p

n+1 − 2FJ,p
n (1)

in which FJ,p
0 = · · · = FJ,p

p+1 = 0 and FJ,p
p+2 = 1.

First, we consider the relationship between the Fibonacci-Jacobsthal p-sequence which is defined above,
Jacobsthal sequence, and Fibonacci p-sequences.

Theorem 2.1. Let Jn, Fp (n) and FJ,p
n be the nth Jacobsthal number, Fibonacci p-number, and Fibonacci-Jacobsthal

p-numbers, respectively. Then,
Jn + Fp (n + 1) = FJ,p

n+p+2 − 3FJ,p
n+p − FJ,p

n

for n ≥ 0 and p ≥ 3.

Proof. The assertion may be proved by induction on n. It is clear that J0 + Fp (1) = FJ,p
p+2 − 3FJ,p

p − FJ,p
0 = 0.

Suppose that the equation holds for n ≥ 1. Then we must show that the equation holds for n + 1. Since the
characteristic polynomial of Fibonacci-Jacobsthal p-sequence

{
FJ,p

n

}
, is

h (x) = xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2
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and

h (x) = 11 (x) 12 (x) ,

where 11 (x) and 12 (x) are the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence,
respectively, we obtain the following relations:

Jn+p+3 = 2Jn+p+2 + Jn+p+1 − 2Jn+p + Jn+2 − Jn+1 − 2Jn

and

Fp
(
n + p + 3

)
= 2Fp

(
n + p + 2

)
+ Fp

(
n + p + 1

)
− 2Fp

(
n + p

)
+ Fp (n + 2) − Fp (n + 1) − 2Fp (n)

for n ≥ 1. Thus, by a simple calculation, we have the conclusion.

Theorem 2.2. Let Jn and FJ,p
n be the nth Jacobsthal number and Fibonacci-Jacobsthal p-numbers. Then,

i.

Jn = FJ,p
n+p+1 − FJ,p

n+p − FJ,p
n ,

ii.

Jn + Jn+1 = FJ,p
n+p+2 − FJ,p

n+p − FJ,p
n+1 − FJ,p

n

for n ≥ 0 and p ≥ 3.

Proof. Consider the case ii. The assertion may be proved by induction on n. It is clear that J0 + J1 =

FJ,p
5 −FJ,p

3 −FJ,p
1 −FJ,p

0 = 1. Now we assume that the equation holds for n > 0. Then we show that the equation
holds for n + 1. Since the characteristic polynomial of Jacobsthal sequence {Jn}, is

11 (x) = x2
− x − 2

we obtain the following relations:

Jn+p+3 = 2Jn+p+2 + Jn+p+1 − 2Jn+p + Jn+2 − Jn+1 − 2Jn

for n ≥ 1. Thus, by a simple calculation, we have the conclusion.
There is a similar proof for i.

By the recurrence relation (1), we have



FJ,p
n+p+2

FJ,p
n+p+1

FJ,p
n+p
...

FJ,p
n





2 1 −2 0 · · · 0 0 1 −1 −2
1 0 0 0 · · · 0 0 0 0 0
0 1 0 0 · · · 0 0 0 0 0
0 0 1 0 · · · 0 0 0 0 0
0 0 0 1 · · · 0 0 0 0 0
...

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 · · · 0 0 0 1 0



=



FJ,p
n+p+3

FJ,p
n+p+2

FJ,p
n+p+1
...

FJ,p
n+1


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for the Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
. Letting

Mp =



2 1 −2 0 · · · 0 0 1 −1 −2
1 0 0 0 · · · 0 0 0 0 0
0 1 0 0 · · · 0 0 0 0 0
0 0 1 0 · · · 0 0 0 0 0
0 0 0 1 · · · 0 0 0 0 0
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 · · · 0 0 0 1 0


(p+3)×(p+3).

The companion matrix Mp =
[
mi, j

]
(p+3)×(p+3) is said to be the Fibonacci-Jacobsthal p-matrix. For detailed

information about the companion matrices, see [17, 18]. It can be readily established by mathematical
induction that for p ≥ 3 and α ≥ 2p

(
Mp

)α
=



FJ,p
α+p+2 FJ,p

α+p+3 − 2FJ,p
α+p+2 Fp

(
α − p + 2

)
− 2FJ,p

α+p+1 Fp
(
α − p + 3

)
· · ·

FJ,p
α+p+1 FJ,p

α+p+2 − 2FJ,p
α+p+1 Fp

(
α − p + 1

)
− 2FJ,p

α+p Fp
(
α − p + 2

)
· · ·

FJ,p
α+p FJ,p

α+p+1 − 2FJ,p
α+p Fp

(
α − p

)
− 2FJ,p

α+p−1 Fp
(
α − p + 1

)
· · · M∗p

...
...

...
...

FJ,p
α+1 FJ,p

α+2 − 2FJ,p
α+1 Fp

(
α − 2p + 1

)
− 2FJ,p

α Fp
(
α − 2p + 2

)
· · ·

FJ,p
α FJ,p

α+1 − 2FJ,p
α Fp

(
α − 2p

)
− 2FJ,p

α−1 Fp
(
α − 2p + 1

)
· · ·


,

where

M∗p =



Fp (α) Fp (α + 1) − FJ,p
α+p+2 −2FJ,p

α+p+1

Fp (α − 1) Fp (α) − FJ,p
α+p+1 −2FJ,p

α+p

Fp (α − 2) Fp (α − 1) − FJ,p
α+p −2FJ,p

α+p−1

.

.

.
.
.
.

.

.

.

Fp
(
α − p − 1

)
Fp

(
α − p

)
− FJ,p

α+1 −2FJ,p
α

Fp
(
α − p − 2

)
Fp

(
α − p − 1

)
− FJ,p

α −2FJ,p
α−1


.

We easily derive that det Mp = (−1)p+1
·2. In [21], Stakhov defined the generalized Fibonacci p-matrix Qp

and derived the nth power of the matrix Qp. In [13], Kılıc gave a Binet formula for the Fibonacci p-numbers
by matrix method. Now we concentrate on finding another Binet formula for the Fibonacci-Jacobsthal
p-numbers by the aid of the matrix

(
Mp

)α
.

Lemma 2.3. The characteristic equation of all the Fibonacci-Jacobsthal p-numbers xp+3
−2xp+2

−xp+1+xp
−x2+x+2 =

0 does not have multiple roots for p ≥ 3.

Proof. It is clear that xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2 =

(
xp+1
− xp
− 1

) (
x2
− x − 2

)
. In [13], it was shown

that the equation xp+1
− xp

− 1 = 0 does not have multiple roots for p > 1. It is easy to see that the roots of
the equation x2

− x − 2 = 0 are 2 and −1. Since (2)p+1
− (2)p

− 1 , 0 and (−1)p+1
− (−1)p

− 1 , 0 for p > 1, the
equation xp+3

− 2xp+2
− xp+1 + xp

− x2 + x + 2 = 0 does not have multiple roots for p ≥ 3.

Let h (x) be the characteristic polynomial of matrix Mp. Then we have h (x) = xp+3
−2xp+2

−xp+1+xp
−x2+

x + 2, which is a well-known fact from the companion matrices. If λ1, λ2, . . . , λp+3 are roots of the equation
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xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2 = 0, then by Lemma 2.3, it is known that λ1, λ2, . . . , λp+3 are distinct.

Define the
(
p + 3

)
×

(
p + 3

)
Vandermonde matrix Vp as follows:

Vp =



(λ1)p+2 (λ2)p+2 . . .
(
λp+3

)p+2

(λ1)p+1 (λ2)p+1 . . .
(
λp+3

)p+1

...
...

...
λ1 λ2 . . . λp+3
1 1 . . . 1


.

Assume that Vp
(
i, j

)
is a

(
p + 3

)
×

(
p + 3

)
matrix derived from the Vandermonde matrix Vp by replacing the

jth column of Vp by Wp (i), where, Wp (i) is a
(
p + 3

)
× 1 matrix as follows:

Wp (i) =


(λ1)α+p+3−i

(λ2)α+p+3−i

...(
λp+3

)α+p+3−i


.

Theorem 2.4. Let p be a positive integer such that p ≥ 3 and let
(
Mp

)α
= m(p,α)

i, j for α ≥ 1, then

m(p,α)
i, j =

det Vp
(
i, j

)
det Vp

.

Proof. Since the equation xp+3
− 2xp+2

− xp+1 + xp
− x2 + x + 2 = 0 does not have multiple roots for p ≥ 3, the

eigenvalues of the Fibonacci-Jacobsthal p-matrix Mp are distinct. Then, it is clear that Mp is diagonalizable.
Let Dp = dia1

(
λ1, λ2, . . . , λp+3

)
, then we may write MpVp = VpDp. Since the matrix Vp is invertible, we

obtain the equation
(
Vp

)−1
MpVp = Dp. Therefore, Mp is similar to Dp; hence,

(
Mp

)α
Vp = Vp

(
Dp

)α
for α ≥ 1.

So we have the following linear system of equations:

m(p,α)
i,1 (λ1)p+2 +m(p,α)

i,2 (λ1)p+1 + · · · +m(p,α)
i,p+3 = (λ1)α+p+3−i

m(p,α)
i,1 (λ2)p+2 +m(p,α)

i,2 (λ2)p+1 + · · · +m(p,α)
i,p+3 = (λ2)α+p+3−i

...

m(p,α)
i,1

(
λp+3

)p+2
+m(p,α)

i,2

(
λp+3

)p+1
+ · · · +m(p,α)

i,p+3 =
(
λp+3

)α+p+3−i
.

Then we conclude that

m(p,α)
i, j =

det Vp
(
i, j

)
det Vp

for each i, j = 1, 2, . . . , p + 3.

Thus by Theorem 2.4 and the matrix
(
Mp

)α
, we have the following useful result for the Fibonacci-

Jacobsthal p-numbers.

Corollary 2.5. Let p be a positive integer such that p ≥ 3 and let FJ,p
n be the nth element of Fibonacci-Jacobsthal

p-sequence, then

FJ,p
n =

det Vp
(
p + 3, 1

)
det Vp
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and

FJ,p
n = −

det Vp
(
p + 2, p + 3

)
2 · det Vp

for n ≥ 1.

It is easy to see that the generating function of Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
is as follows:

1 (x) =
xp+2

1 − 2x − x2 + 2x3 − xp+1 + xp+2 + 2xp+3 ,

where p ≥ 3.
Then we can give an exponential representation for the Fibonacci-Jacobsthal p-numbers by the aid of

the generating function with the following Theorem.

Theorem 2.6. The Fibonacci-Jacobsthal p-sequence
{
FJ,p

n

}
have the following exponential representation:

1 (x) = xp+2 exp

 ∞∑
i=1

(x)i

i

(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)i
 ,

where p ≥ 3.

Proof. Since
ln 1 (x) = ln xp+2

− ln
(
1 − 2x − x2 + 2x3

− xp+1 + xp+2 + 2xp+3
)

and

− ln
(
1 − 2x − x2 + 2x3

− xp+1 + xp+2 + 2xp+3
)
= −[−x

(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)
−

1
2

x2
(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)2
− · · ·

−
1
i

xi
(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)i
− · · · ]

it is clear that

1 (x) = xp+2 exp

 ∞∑
i=1

(x)i

i

(
2 + x − 2x2 + xp

− xp+1
− 2xp+2

)i


by a simple calculation, we obtain the conclusion.

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 0
...

. . .
...

0 · · · 1 0


.

Theorem 2.7. (Chen and Louck [3]) The
(
i, j

)
entry k(n)

i, j (k1, k2, . . . , kv) in the matrix Kn (k1, k2, . . . , kv) is given by
the following formula:

k(n)
i, j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

t j + t j+1 + · · · + tv

t1 + t2 + · · · + tv
×

(
t1 + · · · + tv

t1, . . . , tv

)
kt1

1 · · · k
tv
v (2)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,
(t1+···+tv

t1,...,tv

)
=

(t1+···+tv)!
t1!···tv! is a

multinomial coefficient, and the coefficients in (2) are defined to be 1 if n = i − j.
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Then we can give other combinatorial representations than for the Fibonacci-Jacobsthal p-numbers by
the following Corollary.

Corollary 2.8. Let FJ,p
n be the nth Fibonacci-Jacobsthal p-number for n ≥ 1. Then

i.

FJ,p
n =

∑
(t1,t2,...,tp+3)

(
t1 + t2 + · · · + tp+3

t1, t2, · · · , tp+3

)
2t1 (−1)tp+2 (−2)t3+tp+3

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 3

)
tp+3 = n − p − 2.

ii.

FJ,p
n = −

∑
(t1,t2,...,tp+3)

tp+3

t1 + t2 + · · · + tp+3
×

(
t1 + t2 + · · · + tp+3

t1, t2, · · · , tp+3

)
2t1 (−1)tp+2 (−2)t3+tp+3

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 3

)
tp+3 = n + 1.

Proof. If we take i = p+ 3, j = 1 for the case i. and i = p+ 2, j = p+ 3 for the case ii. in Theorem 2.7, then we
can directly see the conclusions from

(
Mp

)α
.

Now we consider the relationship between the Fibonacci-Jacobsthal p-numbers and the permanent of a
certain matrix which is obtained using the Fibonacci-Jacobsthal p-matrix

(
Mp

)α
.

Definition 2.9. A u × v real matrix M =
[
mi, j

]
is called a contractible matrix in the kth column (resp. row.) if the

kth column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M. If M is contractible in the kth column such
that mi,k , 0,m j,k , 0 and i , j, then the (u − 1) × (v − 1) matrix Mi j:k obtained from M by replacing the ith

row with mi,kx j +m j,kxi and deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order α > 1 and N is a
contraction of M.

Now we concentrate on finding relationships among the Fibonacci-Jacobsthal p-numbers and the per-
manents of certain matrices which are obtained by using the generating matrix of Fibonacci-Jacobsthal

p-numbers. Let KF,J
m,p =

[
k(p)

i, j

]
be the m ×m super-diagonal matrix, defined by

k(p)
i, j =



2 if i = τ and j = τ for 1 ≤ τ ≤ m,

1

if i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 1,
i = τ and j = τ + p for 1 ≤ τ ≤ m − p

and
i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 1,

−1 if i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 1,

−2
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 2

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 2,

0 otherwise.

, for m ≥ p + 3.

Then we have the following Theorem.

Theorem 2.10. For m ≥ p + 3,
perKF,J

m,p = FJ,p
m+p+2.
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Proof. Let us consider matrix KF,J
m,p and let the equation be hold for m ≥ p + 3. Then we show that the

equation holds for m + 1. If we expand the perKF,J
m,p by the Laplace expansion of permanent with respect to

the first row, then we obtain

perKF,J
m+1,p = 2perKF,J

m,p + perKF,J
m−1,p − 2perKF,J

m−2,p + perKF,J
m−p,p − perKF,J

m−p−1,p − 2perKF,J
m−p−2,p.

Since
perKF,J

m,p = FJ,p
m+p+2,

perKF,J
m−1,p = FJ,p

m+p+1,

perKF,J
m−2,p = FJ,p

m+p,

perKF,J
m−p,p = FJ,p

m+2,

perKF,J
m−p−1,p = FJ,p

m+1

and
perKF,J

m−p−2,p = FJ,p
m ,

we easily obtain that perKF,J
m+1,p = FJ,p

m+p+3. So the proof is complete.

Let LF,J
m,p =

[
l(

p)
i, j

]
be the m ×m matrix, defined by

l(
p)

i, j =



2 if i = τ and j = τ for 1 ≤ τ ≤ m − 3,

1

if i = τ and j = τ for m − 2 ≤ τ ≤ m,
i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 1,

i = τ and j = τ + p for 1 ≤ τ ≤ m − p − 2
and

i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 4,
−1 if i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 1,

−2
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 3

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 2,

0 otherwise.

, for m ≥ p + 3.

Then we have the following Theorem.

Theorem 2.11. For m ≥ p + 3,
perLF,J

m,p = FJ,p
m+p−1.

Proof. Let us consider matrix LF,J
m,p and let the equation be hold for m ≥ p+3. Then we show that the equation

holds for m + 1. If we expand the perLF,J
m,p by the Laplace expansion of permanent with respect to the first

row, then we obtain

perLF,J
m+1,p = 2perLF,J

m,p + perLF,J
m−1,p − 2perLF,J

m−2,p + perLF,J
m−p,p − perLF,J

m−p−1,p − 2perLF,J
m−p−2,p.

Since
perLF,J

m,p = FJ,p
m+p−1,

perLF,J
m−1,p = FJ,p

m+p−2,
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perLF,J
m−2,p = FJ,p

m+p−3,

perLF,J
m−p,p = FJ,p

m−1,

perLF,J
m−p−1,p = FJ,p

m−2

and
perLF,J

m−p−2,p = FJ,p
m−3,

we easily obtain that perLF,J
m+1,p = FJ,p

m+p. So the proof is complete.

Assume that NF,J
m,p =

[
n(p)

i, j

]
be the m ×m matrix, defined by

NF,J
m,p =



(m − 3) th
↓

1 · · · 1 0 0 0
1
0
... LF,J

m−1,p
0
0


, for m > p + 3,

then we have the following results:

Theorem 2.12. For m > p + 3,

perNF,J
m,p =

m+p−2∑
i=0

FJ,p
i .

Proof. If we extend per NF,J
m,p with respect to the first row, we write

perNF,J
m,p = perNF,J

m−1,p + perLF,J
m−1,p.

Thus, by the results and an inductive argument, the proof is easily seen.

A matrix M is called convertible if there is an n× n (1,−1)-matrix K such that perM = det (M ◦ K), where
M ◦ K denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci-Jacobsthal p-numbers and the determinants of certain
matrices which are obtained by using the matrix KF,J

m,p, LF,J
m,p and NF,J

m,p. Let m > p + 3 and let H be the m × m
matrix, defined by

H =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1
1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


.

Corollary 2.13. For m > p + 3,
det

(
KF,J

m,p ◦H
)
= FJ,p

m+p+2,

det
(
LF,J

m,p ◦H
)
= FJ,p

m+p−1,

and

det
(
NF,J

m,p ◦H
)
=

m+p−2∑
i=0

FJ,p
i .
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Proof. Since perKF,J
m,p = det

(
KF,J

m,p ◦H
)
, perLF,J

m,p = det
(
LF,J

m,p ◦H
)

and perNF,J
m,p = det

(
NF,J

m,p ◦H
)

for m > p + 3, by
Theorem 2.10, Theorem 2.11 and Theorem 2.12, we have the conclusion.

Now we consider the sums of the Fibonacci-Jacobsthal p-numbers. Let

Sα =
α∑

u=0

FJ,p
u

for α > 1 and p ≥ 3, and let TF,J
p and

(
TF,J

p

)α
be the

(
p + 4

)
×

(
p + 4

)
matrix such that

TF,J
p =



1 0 0 · · · 0 0
1
0
... Mp
0
0


.

If we use induction on α, then we obtain

(
TF,J

p

)α
=



1 0 0 · · · 0 0
Sα+p+1
Sα+p
...

(
Mp

)α
Sα

Sα−1


.
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