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Smarandache Curves of Spatial Quaternionic Bertrand Curve
According to Frenet Frame

Siileyman Senyurt?, Ceyda Cevahir Yildiz?, Yasin Altun®

?Department of Mathematics, Faculty of Arts and Sciences,
Ordu University, 52200, Ordu/Turkey
YDepartment of Mathematics, Institute of Science
Ordu University, 52200, Ordu/Turkey
‘Department of Mathematics, Institute of Science
Ordu University, 52200, Ordu/Turkey

Abstract. In this study, Frenet vectors of spatial quaternionic Bertrand curve pair were taken as the position
vector. The obtained Smarandache curves from position vector were defined. Frenet vectors, the curvature
and torsion of this curve were calculated. This later the Frenet apparatus were expressed in terms of Frenet
apparatus of the spatial quaternionic Bertrand curve pair. Example related to the subject was found and
their drawings were done with Maple program.

1. Introduction

Quaternion was first introduced by the Irish mathematician William Rowan Hamilton in 1843 in the form
of generalized complex numbers. Each quaternion is accompanied by four units {1, 1, e, e3}, [9]. In 1987,
Bharathi, K. and Nagaraj, M.’s “Quaternion Valued Function of a Real Variable Serret-Frenet Formulae”
named article have shed light to many studies related to quaternions. In recent years, many studies have
been done on quaternions. These studies are found in [2-4, 6-9, 13, 14, 16]. Many studies have been done
on special curves in differential geometry. Studies on one of these, the Bertrand curve, are see in [17, 18].
Some studies of Smarandache curves are available in [1, 9-13, 15].

2. Preliminaries

A real quaternion is defined with q of the form
Q ={glg =d +aey +be, +ces,d,a,b,c e R,ey1,e2,e3 € R3} such that

e% = e§=e§=—1, e Xey=—6e;Xep =e3,

e X e3=-e3Xe1 =6, eyXez=—e3Xe =¢e1.
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We put S; = d and V;; = ae; + be + ces. Then a quaternion q can rewrite as
g=8;+V,

where S; and V, are the scalar part and vectorial part of g, respectively, [5]. For g1 = S;, +V,,, g2 = Sy, + V4,
quaternions, quaternionic summation, multiplication and conjugate operations are, respectively

g1+ q2=S55 +Vy + 55 + Vo, = Spivgy + Vi
1 Xq2 =548, = Vi, Vi) + 5. Vg, + S0,V + Vg AV,
‘7 = Sm - Vql

These expression the symmetric real-valued, non-degenerate, bilinear form as follows,

1
M :QxQ - R, {q1,92)lg = 5(171 X2 + g2 X ).

It is called the quaternionic inner product, [5]. Then the norm of g is

N(‘i) = V<q1q>|Q = quq/

A spatial quaternion set define that Qy = {g € Qlg + § = 0}, [2]. LetI = [0, 1] be an interval in the real line R
and s € I be the are-length parameter along the smooth curve, [7]

3
y 110,11 = Qu, y(6) = ) yi()ei, (1<i<3). (1)
i=1

The tangent vector y’(s) = #(s) has unit length N(t(s))=1 for alls, [2]. Let y be a differentiable spatial
quaternions curve with arc-length parameter s and {t(s), n11(s), n2(s)} be the Frenet frame of y at the point
y(s), [6],
1) = (6), ) = o, m(s) = Hs) X m(s), @
N (s))
Let {t(s), n1(s), n2(s)} be the Frenet frame of y(s). Then Frenet formulae, curvature and the torsion are given

by [6]

v@s) = k(sym(s), ©)
m'(s) = —k(s)s) + r(s)nals) ,
n'(s) = —r(s)ni(s)

where £(s), n1(s) and n,(s) are the unit tangent, the unit principal normal and the unit binormal vector of a
quaternionic curve, respectively, [2, 8].
Let {k(s), r(s)} be the curvatures of y(s). Then curvature and the torsion are given by[6]

N(B x ")
kg, NP (4)
(B xB B
g =
(N xp)

Definition 2.1. Let a : I — Qg unit speed and o : I — Qp differentiable two spatial quaternionic curves. If the
principal normal vector ny of the curve a is linearly dependent on the principal vector n] of the curve ", then the pair
(a0, ") is defined to be quaternionic Bertrand curves pair, [7].
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If the curve " is Bertrand partner of @ and n; principal vector of &, then we may write that
a’(s) = a(s) + Ani(s), A = constant. (5)

Theorem 2.2. Let (o, &) be a quaternionic Bertrand pair curves in Qp. The relations between the Frenet frames
{t, 1, na} and {t*, n7, n3} are as follows

t'(s) = cos Ot + sinHny, (6)
ni*(s) = my,
ny’(s) = —sin6t+ cosOn,

where /(t,t*) =6, [7].

Theorem 2.3. Let (a, a*) be a quaternionic Bertrand pair curves in Qg. For the curvatures and the torsions of the
Bertrand curves pair (o, a*) we have

k*(s) ilii = cosBk—sinOr, (7)
L, . as* .
r*(s) - = sin Ok + cos Or, [7].

3. Smarandache Curves of Spatial Quaternionic Bertrand Curve according to Frenet Frame

Frenet vectors of a curve are taken as position vector and a regular curve is defined with this vector. This
curve is called as Smarandache curve, [15]. In this study, (a", @) will be defined as quaternionic Bertrand
curve pair. Curve a* will be taken as main curve and the other curve a will be taken as Bertrand partner
curve of curve a*. Frenet vectors of a* curve taken from the curve pair will be taken as position vector.
Smarandache curves’ Frenet apparatus defined by these position vectors will be calculated. The resulting
Frenet apparatus will be expressed Frenet aparatus denominated belonging to a* curve by using connecting
equation between Bertrand curve pair Frenet apparatus.

Definition 3.1. Lef («, a*) be a quaternionic Bertrand pair curves in Q. If Frenet frame of curve o* is shown with
{t,m", ny7},

1
Pi(s) = —= (" +m") (®)
V2
regular curve drawn by vectors t* and n1* is called spatial quaternionic Smarandache curve f.
Theorem 3.2. Frenet vectors of Smarandache curve B, are given as follows;

*

w1t” + qi)ll’l; + o1h,
7

\/0)12 + (plz + 012

(k*Gl — V*Qi)l)t* + (k*O'1 + 7*0)1)71; + (—k*gbl - k*a)l)n;

V@2 + 412 + 0@k +r2)

-kt +kn1+rn2

t = 7
he V2k? + 12

1’1151 (S) =

Mg, (s)

Herein, the coefficients are

_k*2(2kx—2 + r+2 _ r*(r*kx»/ _ kir*')l

w1 =
o1 = k2K +3r%) - -k + k), (10)
o1 = kr@Ek?+r?) -2k - k).
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Proof. 1f derivative according to sg, arc parameter of curve f(s) is taken, tg, (s) and s (s) are given, respec-
tively

, k't + k*n; +1'n ‘o) \/§<w1t* +pin) + aln;)
pis) = 5) = >
V2k? + 22 h (Zk*2 + r*z)

Herein, the coefficients are as seen in (10). From equation (2), principal vector 115 and binormal vector nag,
are found asin (9). O

(11)

Theorem 3.3. Curvature and torsion belonging to Smarandache curve 1 are, respectively

\/2(0)12 + d)12 + 012) \/E(Xﬂ]l + y161 + le1)
ke, = 5 2 T = 2+ 2 + 2.2 (12)
(Zk* + r*z) 17+ 1

where coefficients are

m = KP+k@?=-3k") k", 6;=-k3-k@?+3k") =3 +k”,
p1 = kK -2k vk 4, (13)
x1 o= rREZT+rH)+kr -k, V= K'r—kr', oz =2k + k2

Proof. First, second and third derivatives of curve f; are, respectively

o =kt +kngt +rng?

ﬁl_ \/E

K+ k)W + (K =k =Dt + (K + 1 )ny*

N ,

’”

B’ =—

b = mt*+ 61n1" + p1no”
=
V2

where the coefficients are as seen in (13). From (4) equation, curvatures are found as in (12). O

Corollary 3.4. Let (o, a*) be a spatial quaternionic Bertrand curve pair in Qy. The expressions of Frenet vectors of
Smarandache curve By in terms of Frenet apparatus of Bertrand partner curve are as follows:

—kt + (cos O — sin O)ny + rny _ant+ G111 + 5112

242 —— Mp(8) = - ’
VK2 + 72 + (cos Ok — sin Or) /(D% + 2 + 52

((kcos O — rsin 0)51 — V(i)l)t + (ko1 + r1)m

tg, (s)

(14)

nap, (s)

\/(k2 + 72 + (cos Ok — sin 6)2)(@% + 3 +052)

(k1 + (kcos O — rsin O)@1)n,

\/(kz + 12 + (cos Ok — sin 9)2)(@% + 2 +57)
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Herein, coefficients are

@1 = (=k —k*cos O + krsin 0)(k* + 1* + (k cos 6 — rsin 0)?)
+k(k* +1* + (kcos 8 — rsin ),

$1 = (K> =7 +Kk cos O — 1 sin O)(K* + r* + (kcos O — rsin 0)?)
—(kcos O — rsin 0)(k* + 1* + (kcos 6 — rsin 6)?),

51 = (krcosO —r*sin0 +r')(k* + r* + (k cos 6 — rsin 0)?)
—r(k* + 1* + (kcos O — rsin 6)?) .
Proof. If expression (6) instead of t* and n;" in curve f; is written, we have
1 .
Bi(s) = $( cos O(s) + 11(s) + sin Ona(s)).

If equations (6) and (7) into equation (9) and (25) are written, the proof is completed. [

Corollary 3.5. Let (@, @) be a spatial quaternionic Bertrand curve pair in Qp. The expressions of curvatures of
Smarandache curve By in terms of Frenet apparatus of Bertrand partner curve are as follows:

\/ ajlz + (Z)% + 6_% \/53217]_1 + ]?19_1 +Z101

= 2 2.2
B+

kﬁ = P T’ﬁl = (15)

1 3
(k2 + 72 + (cos Ok - sin 0)2)*
Herein, coefficients are

m = (=K =k cosO+krsin0) —k(-k* — 1* + (kcos 6 — rsin 6)'),

01 = k(-k' —k*cosO +krsin 6) + (=k* — > + (kcos 6 — rsin 0))’
—r(krcos @ —r*sin6 + 1),

o= r(=k* = 1* + (kcos @ —rsin ) ) + (krcos 6 — *sinO + 1),
%1 = (kcos6 —rsinO)(krcosO —?sin @ +r) — r(=k* — ¥* + (kcos 6 — rsin 6)'),
= k(krcos9 — r?sin@ + 1) + r(—k' — k* cos 0 + krsin 6),

77 = —(k(—k2 — 12+ (kcos 0 — rsin0)) + k(k cos 6 — rsin 6)
(=k —Kk*cos 6 + krsin 6)).
Proof. If equations (6) and (7) into equation (12) and (13) are written, the proof is completed. [J

Definition 3.6. Let (a, a*) be a quaternionic Bertrand pair curves in Qg. If Frenet frame of curve o* is shown with
{t",m", ny}, ( )
ny +ny
pa(s) = ——— (16)
V2

regular curve drawn by vectors ny* and ny* is called spatial quaternionic Smarandache curve .
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Theorem 3.7. The Frenet vectors of Smarandache curve B, are given as follows:

—kt* —rn] +rny") B wat™ + pony + 021}
D s 4 nlﬁZ(S) - 4
\ Tk 1[(1)224‘(1)224-0'22

=1"(02 + Pt + (Fwa + K'op)n] + (=K' P2 + rw2)n;y

\/(w22 + ¢ + 02)(2r2 + k?)

t, ()

(17)

Mag, (s) =

Herein, the coefficients are
wy = 2K 4T+ KPR+ 28,
by = Kk =7k + k) = 2Bk + 2r), (18)
or = KX =7 —r@rd+ k).
Proof. 1f derivative is taken according to sg, arc parameter of curve B»(s), tg,(s) and tkz (s) are given, respec-
tively
-kt — r'ny +r'n; \/E(a)zt* + (Z)zn; + azn;)

2
(Zk"2 + r*z)z

tﬁz (s) = ’ t;gl (S) =

V2K + 12

Herein, the coefficients are as seen in (18). From equation (2), principal vector 114, and binormal vector g,
are found as in (17). O

Theorem 3.8. Curvature and torsion belonging to Smarandache curve B are, respectively

Vw22 + §2” + 022 + 120, +
\/E _ \/Exzﬂz Y202 + 2202

kg, = , Tg, = 19
P (k*Z " 21,*2)2 P X2+ y22 + 22 (19)
where coefficients are
m o= =Kk 2 -k,
0, = P —rk? -3k +37% -,
pr = rark?=3rr —rr’, (20)

X2 Pk, =k -k, m =k 2t ) -k

Proof. First, second and third derivatives of curve f, are, respectively
=kt =1 +rngt
P2 =
V2
B i o o T (e o (T ME T (Al ) /7
2 = ’
V2
o 1]21'* + 92711’s + pz]’lz*

2 V2

where the coefficients are as seen in (20). From (4) equation, curvatures are found as in (19). O
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Corollary 3.9. Let (o, a*) be a spatial quaternionic Bertrand curve pair in Qp. The expressions of Frenet vectors of
Smarandache curve B, in terms of Frenet apparatus of Bertrand partner curve are as follows:

—kt — (sin O + cos Or)ny + rny 1t + Py + 51
o) = o 2 (o) = Ll
VK2 + 72 + (sin O + cos Or) ,a")%+gi)%+5%
—((_)'z(k sin 6 + rcos 0) + V(i)z)t + (k(_fz + réon)m
2, (6) = (21)

\/(kz + 72 + (ksin O + r cos 6)2>(a‘)§ + (P35 +03)

(—kepp + (k sin @ + rcos G)a‘)z)nz
+

\/(kz +72+ (ksin 0 + rcos O)2)(@2 + G2 + 2)
Herein, the coefficients are

@ = (=K +k(ksin 0 + rcos 0))(k* + r* + (ksin 0 + r cos 0)?)
+k(kK? + 1% + (ksin 6 + r cos 0)?),

P = (K =7 = (K sin0 -1 cos 0))(kK* + r* + (ksin 6 + r cos 0))
+(ksin 0 + rcos 0) (k> + 1 + (ksin 6 + rcos 6)?),

Gy = (—r(ksin® +rcos6) + 1')(k* + 1> + (ksin O + r cos 6)?)
—r(k* + * + (ksin 6 + rcos 6)?) .

Proof. If expression (6) instead of 71" and n," in curve f, is written, we have
Ba(s) = L( —sin 6t + ny + cos an).
V2

If equations (6) and (7) into equation (17) and (18) are written, the proof is completed. O

Corollary 3.10. Let (o, ") be a spatial quaternionic Bertrand curve pair in Qp. The expressions of curvatures of
Smarandache curve B, in terms of Frenet apparatus of Bertrand partner curve are as follows:

\/‘J22+¢_)§+5§ %ot + 7202 + 220
kﬁzz \/E ;g = \/E 22 ¥ Y272 ZPZ‘

(k2+r2+(sin9k+cos Qr)z) x§+y§+z§

(22)

[N

Herein, the coefficients are

m = (=K +k(esin6 +rcos 9))' +k( + 72 = (K sin 0 + 1’ cos 0)),

02 = —KkK +(K*+7*)(ksin O +rcos 6) — (2kk’ + 217 + (K" sin 6 + "’ cos 0)) — rr’,
g2 = r(—k’+k(ksin9+rcos@))+(—r(ksin6+rc059)+r’),

¥ = (ksin®+rcosO)(r(sin® +rcos0) —r') + r(k2 +7% — (k' sin 6 + ' cos 6)),
72 = k(-r(ksin0+rcos0) +7) +r( = kK +k(ksin 0 +rcos 0)),

Z; = k(k2 +72 — (K sin 6 + 1’ cos 9) + (ksin 6 + rcos 9)( — k" +k(ksin 6 + r cos 6)).
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Proof. If equations (6) and (7) into equation (19) and (20) are written, the proof is completed. [J

Definition 3.11. Let (@, ") be a quaternionic Bertrand pair curves in Q. If Frenet frame of a* curve is shown with
{t, m*, my},

(" +n3)
Ba(s) = ——=— (23)
V2
regular curve drawn by vectors t* and n is called spatial quaternionic Smarandache curve fs.
Theorem 3.12. Frenet vectors of Smarandache curve B3 are given as follows:
Kt + rny’ r't+ k'ng®
te(s) = m', mp(s) = ——5——=, Mp(s) = ————. (24)
h ' e k2 + 2 2 Vi + 12

Proof. 1f derivative is taken according to sg, arc parameter of curve B3(s), tg,(s) and t;k (s) are given, respec-
tively

(k" = r)nj

t/}3(s) R
V2k? + 2

From equation (2), principal vector 7115, and binormal vector nyg, are found as in (24). O

\/E( -kt + r*n;)
I — .

7 tﬁgl(s) =

Theorem 3.13. Curvature and torsion belonging to Smarandache curve B3 are, respectively

\/2(1{*2 + 7*2) X313 + Z3P3

kg, = ———— =V2——— 25
B3  — s s \/_ 1732 n (P32 (25)
where coefficients are

m o= 3Kk 42k K, 03= kP 4kt -kt etk -1,

Q3 = K+ 2k =37, xy=r (-1, zm=kE -1 (26)

Proof. First, second and third derivatives of curve f3 are, respectively
. (K =r)n”
8y = ( )y
V2
X (k2 + k) + (=)t + (K = r)nyt
3 = ,
V2

o T]3t* + O3n1" + p31’lz*

V2

From (4) equation, curvatures are found as in (25). [J

3

Corollary 3.14. Let (o, ") be a spatial quaternionic Bertrand curve pair in Qn. The expressions of Frenet vectors of
Smarandache curve B3 in terms of Frenet apparatus of Bertrand partner curve are as follows:

w3t + (]531’[1 + d3ny
7
- C2 -
\[0)32 + @3 + 0‘32

(wst — d3n2)[k(cos B — sin ) — r(cos B — sin 6)]

tg,(s) = my, nlﬁa(s):

(27)

Nn2p, (s) =

\/(kz — 12— (k2 —r?)sin 29)((532 + (ﬁgz + OT3Z)



S. Senyurt, C.C. Yildiz, Y. Altun /TJOS 5 (2), 49-62 57

Herein, coefficients are

w3 = —k(k(cos 6 — sin 0) — r(cos O + sin Q)) k2 — 12 — (k2 — 12)2sin 26,

¢3 = (k’(cos 6 — sin 0) — '(cos 6 + sin 6)) Vk2 — 12 — (k2 — 12)2 sin 20

—(k(cos 6 — sin 0) — r(cos O + sin 6))( VK2 =72 — (k2 — 12)? sin 29)’,

g3 = (k(cos 6 — sin 0) — r(cos O + sin 6)) VK2 — 12 — (k2 — 12)2 sin 26.
Proof. If expression (6) instead of t* and n," in curve B3 is written, we have
1
B3(s) = $((cos 0 — sin )t + (sin 6 + cos G)nz).

If equations (6) and (7) into equation (21) and (22) are written, the proof is completed. [J

Corollary 3.15. Let (o, ") be a spatial quaternionic Bertrand curve pair in Qp. The expressions of curvatures of
Smarandache curve B3 in terms of Frenet apparatus of Bertrand partner curve are as follows:

_ 2.
V@3? + §3” + 057 V513 + D
kﬁ =2 \2 373 + 2393

= : ; Vg = ——5 -5 -
’ 21— (k2 —1?)sin20” 7 M2 + @32
Herein, the coefficients are
m = —k'(k(cos 0 — sin 0) — r(cos O + sin 9)) - Zk(k(cos 0 — sin 0) — r(cos 0 + sin 9)) ,
03 = -k (k(cos 0 — sin 0) — r(cos 0 + sin 9)) —7? (k(cos 0 — sin 0) — r(cos 0 + sin 9))

”

+(k(cos 6 — sin 0) — r(cos O + sin 9)) ,

’

Pz = r’(k(cos 0 —sin 0) — r(cos 0 + sin 9)) + 2r(k(cos 6 — sin 0) — r(cos O + sin 6)) ,

X3 k(k(cos 6 — sin 6) — r(cos 6 + sin 0)))?, z3 = r((cos O — sin 6) — r(cos 6 + sin 6)).
Proof. If equations (6) and (7) into equation (25) and (26) are written, the proof is completed. [J

Definition 3.16. Let (@, &) be a quaternionic Bertrand pair curves in Qp. If Frenet frame of a* curve is shown with
{t,m", ny7},
(" +n] +n")

4(s) = (28)
! V2
regular curve drawn by vectors t*, n1* and ny* is called spatial quaternionic Smarandache curve By.
Theorem 3.17. Frenet vectors of Smarandache curve B4 are given as follows:

kKt + (k' = r)ny* + r'ng* wat” + Pgnr” + 0411y’

tﬁ4 (S) = - " — ’ 1’11‘34 (S) = ’
2k + r = k*r?) /w42+q542+042
(k" =1r)og —r'o )t" + (Fws + Koy
nop(s) = (29)

V@2 202 2 2k @42 + ¢+ 04%)
(kK'pa + (k" = r)ws)ny”
V@2 4202 22k P) @8 + 4% + 0?)
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Herein, the coefficients are

wy = KH2K7 —4r? 448k — KA + K + 287 1 2y = 2k,
o K2 (=2k% = 4r? 4+ 2k — ) + P2 (=22 + 2k + k) + K (kT =),
04 k(' = 2r% + 1) + Ak = 2r? 4 k) = K+ 2k).

Proof. 1f derivative is taken according to s, arc parameter of curve B4(s), tg,(s) and t, (s) are given, respec-
tively

—k't + (k' =)y + i
k2 412 — k)2

\/§(w4t* + ¢4n§ + o4n;)
2k +r?)

ta(s)

£,

Herein, the coefficients are as seen in (30). From equation (2), principal vector 115, and binormal vector g,
are found as in (29). O

Theorem 3.18. Curvature and torsion belonging to Smarandache curve B4 are, respectively

o V3 @it i+ 0] B \/§[n4x4 + Osys + p4Z4] 0)
T A e 2 ey T Tyl 2
where coefficients are
n o= K=k =3k + 2k + kP + k',
0 = k330K +rr)— (k" +r")+ kK - 1),
ps = =k =3 20k + K (31)

xy = 2Pk —r)+kr =k + 23,
vy = k' —rk’, oz =2k 4k 42k = 2k — Ky
Proof. First, second and third derivatives of curve f, are, respectively

okt + (k=1 + gt

ﬁ4_ \/5

(k" = k2 + k) = k2 =K+ + 7))t + K =2+ )yt

7 ,

‘8"_
y =

T]4i’yr + Onq" + p47’12*
! V2

where the coefficients are as seen in (31). From (4) equation, curvatures are found as in (30). [

"ro_

Corollary 3.19. Let (o, ") be a spatial quaternionic Bertrand curve pair in Qn. The expressions of Frenet vectors of
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Smarandache curve By in terms of Frenet apparatus of Bertrand partner curve are as follows:

1 —kt + (k(cos 0 — sin 0) — r(cos 0 + sin 9)) + 11y

tp(s) = — ,
b V2 /(=2 cos 6kr — cos O sin 6k2 + cos Bsin 072 + k2 + kr + 12)

wyt + ¢§4n1 + 04Ny

711;;4(5) = —2 — A
\ @4 + Py + 5y

((k(cos 0 —sin 0) — r(cos O + sin 0))64 — rq54)t

(32)

nag, (s) =
\/k2 + 12 + [k(cos 6 — sin 0) — r(cos O + sin 0)]2(042 + P4~ + 342)

(koy + rag)m

+

\/k2 + 12 + [k(cos O — sin 0) — r(cos 6 + sin 0)]? (w42 + (542 + d42)

—(k¢ps + (k(cos 6 — sin 0) — r(cos 6 + sin 0))wg )12

\/k2 + 12 + [k(cos 6 — sin 0) — r(cos 6 + sin 0)]2(w042 + <]§42 + G42)

Herein, the coefficients are
@y = ( — k" — k(k(cos 6 — sin 0) — r(cos O + sin 9))).(k2 + 7% + (k(cos 6 — sin 6) — r(cos 6 + sin 9))2)
+k((k(cos 0 — sin 0) — r(cos O + sin 6))2) ,
¢s = (—K =7+ (k(cos O —sin 0) - r(cos 0 +sin 0)))

.(k2 + 72 + (k(cos O — sin ) — r(cos 6 + sin 6))2)

’

—(k(cos O — sin 0) — r(cos 6 + sin 6)).(k2 + 7% + (k(cos O — sin ) — r(cos 6 + sin 6))2) ,

64 = (r(k(cos 6 — sin 0) — r(cos O + sin 0)) + r').(k2 + 12 + (k(cos O — sin 0) — r(cos 6 + sin 6))2)
—r(k2 + 7% + (k(cos O — sin ) — r(cos 6 + sin 9))2),.
Proof. If expression (6) instead of t*, n;* and n," in curve B4 is written, we have

1
Bs = —((COS 0 —sin )t + ny + (sin O + cos 6)112).

If equations (6) and (7) into (29) and (30) equations are written, the proof is completed. [J

Corollary 3.20. Let (o, a*) be a spatial quaternionic Bertrand curve pair in Qp. The expressions of curvatures of
Smarandache curve B4 in terms of Frenet apparatus of Bertrand partner curve are as follows:

V3J@s? + <ﬁ42 + 042

7

ks, = .
((k(cos 0 —sin 0) — r(cos O + sin 0))2 + k2 + ,,2)2
Xaffa + JaOs + Zaps
V2 R2+ipr+2 (33)
1T Ytz
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Herein, the coefficients are

’

My = ( — k' — k(k(cos 0 — sin 0) — r(cos 6 — sin 9)))
—k( — K% = 1% + (k(cos 6 — sin 0) — r(cos O — sin 9))/),

0y = k( — kK = k(k(cos 6 — sin 6) — r(cos 6 — sin 9))/) - r((rk —?)(cos 6 — sin ) + r’)

+( = = 7 + (k(cos 0 - sin 0) — r(cos O — sin 0)) ) ,
Pa = r( — K2 — 12 + (k(cos 6 — sin 0) — r(cos 6 — sin 6))') + ((rk —7*)(cos 6 — sin ) + r/) ,
Xy = (k(cos 0 —sin 0) — r(cos 0 — sin 6)).(r + (k(cos O — sin 0) — r(cos 6 — sin 0)) + r’)
—r( — K% = 1% + (k(cos 6 — sin 0) — r(cos O — sin 9))/),

Ji = k(r(k(cos 0 —sin 6) — r(cos O — sin 0)) + r’) + r( —K = (k% +kr)(cos 6 — sin 9)),
Zy = k( — k% =2 + [k(cos 0 — sin 6) — r(cos O — sin 9)]/)

((k(cos 6 — sin 0) — r(cos 0 — sin 6))).( — K = k(k(cos 6 — sin 6) — r(cos 6 — sin 9))).
Proof. If equations (6) and (7) into equation (30) and (31) are written, the proof is completed. [

Example. Let be spatial quaternionic curve

2 (B L (280 2 o B g 2 o)

a(s) = (— cos|—s)+ - sin s, —— cos(— s) + — sin(— )

2 5 5 %775 Y2 5 2 5

and if taken as A = 1, Bertrand partner belonging to this curve,

v (q =2V5
a’(s) = (O, 5 s,O).
In terms of definition, we obtain special Smarandache curves f1, 2, f3 and B4 according to Frenet frame of
spatial quaternionic curve, (Figure 1).

o - (Ao £ Sl E) 8l £ Ll )

o - [l Eamf5)
o = ({2 3ol $)E Lol £ 1l 2]
o+ ()2l
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- 7 04
;- Smarandache curve -

0
42
24

e

S, - Smarandache curve 4~ 1%

Figure 1: Smarandache Curves of Quaternionic Bertrand Curve

4. Conclusion

In this study, We have calculated the Smarandache curves of the Bertrand curve pairs. To put it simply,
we derived curves from a curve according to a method. We found the Frenet frames and curvatures of
these curves, which we call Smarandache curves. Finally, we found these results depending on the Frenet
frames of the Bertrand curve pair. We saw that we could switch between Frenet frames. It is possible to
examine whether these obtained curves are included in special curves.
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Abstract. In this study we first write the characterizations of involute of a curve by means of the unit
Darboux vector of the involute curve. Then we make use of the Frenet formulas obtained by O. Cakir and
S. Senyurt to explain the characterizations of involute of a curve by means of Frenet apparatus of the main
curve. Finally we examined the helix as an example.

1. Introduction and Preliminaries

To state a correlation between the invariants of a curve and characterizations of the curve in Euclidean space
and non-Euclidean spaces and then to interpret it from the language of geometry has been the focus of
interest for many researchers. Some curves are well-known by their explorers such as involute and evolute
curves,[2]. Afterwards, many studies have been conducted in Euclidean and non-Euclidean spaces closely
related to involute curves, [3, 4]. Later it has been revealed that curves can be classified, [5, 6, 8]. In this
paper, we first take a regular curve, that is, a main curve, then write the characterizations of the involute
curve by means of Frenet apparatus of the main curve. This work is one of the applications of [1] by which
looking from such a point of view that we make the complex calculations more elementary. Eventually we
put the example which support our assumption.

Now we may look at the main concepts related to the curve theory. Frenet vector fields can be expressed
by means of covariant derivative of these vectors and this relation is known as Frenet formulas, see [9]

T’ = 9xN, N’ = —9xT + 81B, B = —-91N. 1)

Frenet vectors T, N, B form a Frenet frame and every Frenet frame moves along an instantaneous rotation
axis which is called a Darboux vector and given by, see [9]

W =T + «B. (2)

Corresponding author: OC, email adress: osmancakir75@hotmail.com ORCID:https://orcid.org/0000-0002-2664-5232,
SS ORCID:https://orcid.org/0000-0003-1097-5541

Received: 23 April 2020; Accepted: 15 September 2020; Published: 31 October 2020

Keywords. unit Darboux vector, connection, involute curve, biharmonic, differential equation, Laplace operator.

2010 Mathematics Subject Classification. 14H45, 53A04.

Cited this article as: Senyurt S, Cakir O. Calculation of the differential equations and harmonicity of the involute curve according
to unit Darboux vector with a new method. Turkish Journal of Science. 2020, 5(2), 63-72.



S. Senyurt, O.Cakir /TJOS 5 (2), 63-72 64

When we denote the angle between W and B by ¢, the Darboux vector can be expressed as a unit Darboux
vector C given by, see [10]

T K
C =singT + cos¢B, singg = ———, c0sp = —— 3)
K2 + 72 V2 + 72

Definition 1.1. Let o and p be two differentiable curves. If the tangent vector of « is perpendicular to the tangent
vector of B, then we call B as the involute of a. According to this definition, following parametrization can be given

B(s) = a(s) + A(s)T(s), A(s)=c-s, ceR 4)

When B is the involute of a, we have d(a(s),p(s)) =l c—s |, Vs € I and c = const. The relationship between the
Frenet apparatus of the curves a and p is given by

T.=N N _ —kT+1B B. = 1T + kB . V2412 = KT —x'T 5)
= L s P s P P™ Ak + 12)
By this definition, Darboux vector of the curve f is given by, see [9]
Wﬁ = TﬁTﬁ + KﬁBﬁ. (6)
There is still another way to express Darboux vector named as unit Darboux vector in [10]
Cp = singpTp + cosypBp, singg = (7)

T K
—‘B , Cosd)ﬁ = —ﬁ .
[2 4 2 [2 2

Ky + T Kg + T
with the angle ¢ between the vectors Wgzand Bg. It is also worth noting the relation here is that, see [11]

¢’ Vi2 + 72

S oprere YT Jorrera

o = (N T ®
a VO + K2+ 72 V2 + 12
This leads us the following relation, see [11]
¢’ V2 + 12 ©)

Cg = N C
e e Jorieio

Figure 1: Unit Darboux vectors of the curves a and .
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Definition 1.2. Let a be the unit speed curve, then the mean curvature vector field H along the curve « is defined
as, see [7]

H=Dya =«xN (10)
where D is the Levi-Civita connection. According to this definition the mapping
Az x*aD) - x(aD),  AH=-DiH (11)

is called a Laplace operator. Let us denote the normal bundle of a curve a = a(s) by x*(a(s)). Then the
normal connection D+ is given as

Df : x*(a(D) = x*(a(D), DfX=DrX ~(DrX,T)T (12)
and the normal Laplace operator A* is given by the following mapping
A+X = -DyD7X, VX € x*(a(D)). (13)

Theorem 1.3. Let o be the unit speed curve and H, W be the mean curvature and Darboux vector along the curve
a, respectively. Then we have the following propositions, see [8]

a) AC =0 then «a is a biharmonic curve.

b) AC=puC, A, u€elR, then a isal-type harmonic curve.

¢) A*C* =0 then a is a weak biharmonic curve.

d) A*C*+ =puC*, A, u€R, then a isa l-type harmonic curve.

Theorem 1.4. Let o be a differentiable curve with unit Darboux vector C, then the differential equation character-
izing a according to unit Darboux vector is given as, see [8]

D3C + MD3C + A,DrC+ A3C =0 (14)
with the coefficients Ay, Ay, A3
__ (@ @siwiy _ 2 o (B0 @SIWY
A= ((p, + STWIo ), A=W+ (@) (¢,) +8||W||(¢’)2¢ ,
ooy (@S ITWID

Theorem 1.5. Let « be a differentiable curve with unit normal Darboux vector C*, then the differential equation
characterizing a according to unit normal Darboux vector is given as, see [8]

A2DEDECE + A\ DECH + oC* = 0 (15)
with the coefficients Ay, A1, Ay
Ao = ¢'sing(¢’sin St — (Stcos)’) + Stcosp(9*1>cosp + (¢'sing)’),
Ay = cosp(¢’'sing St — (Stcosd)’),

Ay = 9108’ .



S. Senyurt, O.Cakir /TJOS 5 (2), 63-72 66

Theorem 1.6. [1] Let 8 be the involute of a unit speed curve a. Then the Frenet formulas for the curve f8
with respect to Levi-Civita connection D and normal Levi-Civita connection D+ are given, respectively, as

DnT =N, DyN =—«T +1B, DyB=-1N, (16)
DiT=0, DiB=0. 17)

2. Calculation of the differential equations and harmonicity of the involute curve according to unit
Darboux vector with a new method

When we say «a, unless we stated otherwise, we mean a unit speed curve in Euclidean 3-space with the
Frenet apparatus of T,N, B, x, T and when we mention f, it stands for the involute of the curve « in the
same space with the Frenet apparatus of Tg, Ng, Bg, x3, 75 and 9 =|| disﬁ(s) l. Throughout the paper we
use C to denote the unit Darboux vector of @ and Cj to express the unit Darboux vector of 8 respectively.

Theorem 2.1. Let f be the involute of the curve a. Then the differential equation with respect to connection charac-
terizing the curve ff by means of the unit Darboux vector Cg is given as

D7, Cp + upn D7, Cp + 2D, Cp + 113Cp = 0 (18)
with the coefficients g1, g, Ups

(¢p)” . ((p)" S 1| Wg Il)’

o (5 Il Wy lly
Han @) ST Wl (@p) Wl

STw

), pgs = (((Pp))?) —

(¢p)”
(Pp)

((p)" S 1| Wg Il)Y
S I We Il ((p))?

lg2 (S 1l Wi ID* + ((p)")* = ( )+ (p)” -

Proof. From equ.(3) we have Cg = singgTg + cosgBg - Taking the derivative with respect to Tg gives us
Dr,Cs = ¢jylcosyTp —sindpsBy)- (19)

From the equalities (3) and (19) we write the equivalents of Tg and Bg as,

T iy + %D,
= sin +— ,

B BB (p) Ts~p

singyg

By = cosppgCp— —D1,Cp-

p bsCp @y

Second derivative of Cg with respect to Ty gives us
2 _ ((Pﬁ),, 72 ’
D7, Cp = _((Pﬁ)' D1, Cps — ((¢p)' )" Cp + ()9 |l Wg || Ng -

From this equality we derive Ny as,

1 ’ 1 4
N = S e, 189 D1~ @)Dy + (@) Cy)-
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After third derivative of Cg we find

(@p)”  ((Pp) S I W II)’

(¢p)”
@) S Wy Il (bp)

(dp)

() S I Wy Il
STWs (@92

D;Cs = ( )D3 Cp + (7o) = (8 1 Wy ID* = (p) ) (¢)")Dr,Cp

(e N Ws ), oy
+(W(¢ﬁ) = (((Pp))))Cp -

It remains only to rearrange the above equality as a linear combinations of D%; Cg, D%ﬁCﬁ, Dr,Cg and Cg - Then we
obtain the required equation which completes the proof. [

Theorem 2.2. Let « be a differentiable curve with principal normal N, unit Darboux vector C and  be the involute
of a. Then the differential equation characterizing the curve B with respect to connection is given as

ch?\]C + (3ci + ylcl)Dlz\,C + (3c'1’ +2uc) + yzcl)DNC

77

+(C1 + [chi, + [JzCi + ‘Ll3C1)C + CzD?\]N + (3C’2 + y1C2)D12\]N

+(3c§’ + 210y + yzcz)DNN + (cé" + ey + pach + yg,cz)N =0 (20)
with the coefficients c1, c2, 1, Ha, U3
i V2 + 12 i ¢’
1 = — e =

Jor+e+a L Jor+e+’

¢

in—yr ¥y 71 21 2)
(arcsin \/m) ((arcsm W) V)2 +« +T)

o= - P - / -
T AR, N2 2 > Ly
(arcsin V@2 ) V(@) +x2 + 7 (arcszn W)
. &
, (arcsznﬁ)ﬂ
Uy = (¢/)2 +12+ 72+ ((arcsin qu : 2),)2 —( V@ );;\ +1
’ + + L,
(@) +x2+1 (arcsin W)
((arcsin¢—')' @)+ K2+ Tz)’
W . ¢l
+ - (arcsin———————=)"
] ' 2 72 2 2
W((aresm\/ﬁ)/) \/m
. ¢’ o\
3 = (((arcsin—————=)")
= (orein )
. L ’ \/ﬁ ’
_((arcszn W) (@Y +x>+1 ) o ,

(arcsin

NCOETaES Jorseia
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Proof. We can compute the equivalents of coefficients g1, ligo, gz and the angle ¢g in the equation (18) by tak-
ing equations (5), (8) and (9) into consideration as i, ya, p3 and the angle ¢. It follows from the equ.(9) we
have

V2 + 12 ¢’

CT Joriere O Jorieie

Making use of the equalities (5), (8) and (9) again, we can write the equivalents of coefficients g1, tigo, pps and the
Darboux vector Wpg as

W = sincj)VK2+7:2T+ kT —K'T . cos¢ VK2+TzB
P AK Ax(x2 + 12) Ak '
By referring the equalities (8) and (14) we can write that

G = ;(sinqb Vi2 + 12T + ¢'N + cosp V2 + 12 B).
Joriea

Applying the equ.(16) we may write the counterparts of Dr,Cg, D%ﬁ Cs, D%S Cg as in the following form

Vi2 + 12 Vi2 + 12 ¢’ ol
Dr,Cg = ————=—=DnC 'C DyN + (———=)'N
Top /(¢/)z 12+ 12 NCH( V@2 + 12+ Tz) * V@2 + 12+ 12 N+ ( /((P/)z T2+ 72)

V2 + 72 D2 Vi + 72 'DuC

D:Cp = ——  D?PCH4+2(—0Mm ——
N T a= O o rrarar=
V2 + 12 ¢’ 5
"C DN
orrere  Jorrara
wo— ¥ ypNs(—P N @1)
Jor+e+a | J@greern
DGy = VT D s(—— Ty

Joriera N Joraesa N

#)”D C+($)/NC
Jor—e+2 e+

+3(
¢ o

N C e A o el

e ypaNs ey

Jorieie G o
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Finally setting the equivalents of coefficients and derivatives with respect to N into the first equation we get desired
result which completes the proof. [

Theorem 2.3. Let f be the involute of the curve a. Then the differential equation with respect to normal connection
characterizing the curve by means of the unit Darboux vector C; is given as

AﬁZD%ﬁD%ﬁCE— + /\ﬁﬂ)iCbL + /\‘(;()CbL =0 (22)
with the coefficients Ago, Agt, Ag2

Ay = d1gcos’Pp, Ap = cosgbﬁ(qbl’gsin(plgSTﬁ - (STﬁCOS(Pﬁ)’),

Ago = @psingy(dysingpdty — (Stpcosdy)’) + Stpcosy(9%(zp)2cosgpy + (Ppsingyy) ).

Proof. From equ. (13) we write the normal component of Cg as

Cg = cospBg - (23)
Taking the first and second derivatives of this equality with respect to normal connection gives us,

DJT‘[;C;' = —STﬁCOS(]ﬁﬁNﬁ—(P’;SiH(PﬁBﬁ, (24)

D; D; Cjy = (@psingyp St — (STpcosdp) )Ny — (9%(xp) coscpy + (Pjsingp) )Bp.
(25)

If we extract the vectors Ng and By from equ.(23) , (24) we have

1
B = Cs,
P Cospg

P Stpcosps TP Stgcostpy P

Putting the equivalents of Bg and Ny into the equ.(25) we obtain the desired equation which completes the proof. [

Theorem 2.4. Let « be a differentiable curve with principal normal N, unit Darboux vector C and  be the involute
of a. Then the differential equation characterizing the curve B with respect to normal connection is given as

(pA2)DEDXC + (20" A2 + A1 )DRC + (" Az + /Ay + pAg)C = 0 (26)
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with the coefficients p, Ao, A1, Az

3 V2 + 12 1 = kT —x'T
P Jorseas VT wrrara
Vi? + 72
A= —((arcs

Joriere

in d ) ¢ .
V@2 +12+ 12 (@R + 12+ 12

Kkt — k't Kkt —K'T ),)
K2 + 72 V(@) + 2+ )2 + %) !
’ ’
Ao = (arcsin ¢ ! ¢

V@) +12 + 172) V@2 +12+ 12 '

¢’ , ¢’ kT —K'T

VO + 12+ 2 @R+ 2+ KT

((arcsin

KT —K'T ,)

B V(@) + k2 + ) (2 + Tz))

N KT — KT ((KT’ - K’T)2 Vi2 + 72
V@ P+ 2+ D)2+ 12) " (@ +7)" P+ 2+ 2

R
V@R +x2+12 ()2 + 12+ 12

+((arcsin

Proof. From equ.(3) we have cospp = x/ Vx> + 12 and sing = 1/ V&2+12 it follows from the equalities
(8) and (14)

we figure out that  singyg = ¢’/ (@2 + 12+ 12, cospp = Vi2+ 12/ [(¢')2 + x2 + 12. Then we get,

L T K

“ V(@) + 12+ TZT * V@) + 12+ TzB'

On the other hand we can evaluate the equivalents of coefficients of the equation (22) by using the equalities (5), (8)
and (17) as Ao, A1, Az By the same way we can make use of the equalities (5),(8) and (17)again, in order to write
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the equivalents of derivatives of D;ﬁc,; and D%ﬁD%ﬁCé with respect to N. It follows that

oL Vi2 + 12 N Vi? + 12 ,
D C; = —————=—=D\C+(——=—==)C
V(@')? + x% + T2 V(@)? + x% + 12

Vi2 + 12 V2 + 12 Vi2 + 12
D: D C}? = K—HDIf,le]C + Z(K—H)'DIJ\']C + (K—H)"C (27)
B Tp (P +2+12 () +x2+ 12 @)+l +12

Setting the equivalents of coefficients of the equation with the aid of equ.(5) and then the derivatives with respect to N
into the equation above we get desired result which completes the proof. [

Theorem 2.5. Let B be the involute of a differentiable curve a with the unit Darboux vector Cg. According to
connection, harmonicity (biharmonic or 1-type harmonic) of the curve p may not be expressed by means of the Frenet
apparatus of the main curve a.

Proof. From equ.(21), it is obvious that we have the following

Vi? + 12 Vk? + 72
Y e (— T ypyC
@r+2+2 " ( VP +2+ 2

2 —
DAC, =

o Vi2 + 2 yieq ¢’
N @+t

2
D3N

¢ , ¢’ "
2(—————)'DNN + (——————=)"N
2 V@ )? + 12+ TZ) N V@) + 12+ TZ)

Considering the case ACg = 0 or ACg = ACg, from Theorem 1.3 of a and b we get DyN = 0 and DyC = 0.
Hence we cannot decide whether the curve 8 is biharmonic or 1-type harmonic. [

Theorem 2.6. Let 8 be the involute of a differentiable curve a with the normal Darboux vector Cg. According to

normal connection, harmonicity (weak biharmonic or 1-type harmonic) of the curve B may not be expressed by means
of the Frenet apparatus of the main curve a.

Proof. From equ.(27), it is clear that we have the following
Vi2 + 2 Vi2 + 72 Vi2 + 2
D% D% CE = K—”Di][)i]c + 2(K—H)'D§C + (K—H)"C
P V@) +12 + 12 V@) +12 + 12 V@) +12 + 12

Considering the case AC/? =0or AC/? = /\C/?,from Theorem 1.3 of c and d we get DnC = 0.
Hence we cannot decide whether the curve  is weak biharmonic or 1-type harmonic. [

Example 2.7. Let a curve af(s) = %(cass, sins, s) be given. Then we have an involute of a, that is, curve B,
B(s) = %i(coss — (¢ —s)sins, sins + (c —s)coss, ¢), c € R. It follows that Cg = sinpgTp + cospBg with

singg =0, cosg = 1. By the equ.(9) also we get Bg = C. Hence we obtain, DyC =0 and DyC=0.
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The multiplicity of eigenvalues of a vectorial diffusion equations with
discontinuous function inside a finite interval

Abdullah ERGUN?

*Vocational High School of Sivas, Cumhuriyet University

Abstract. In this study , m-dimensional vectorial diffusion equation with discontinuous function inside a
finite interval is considered. Considering the asymptotic representation of the solution of the problem, we
have obtained some conclusions about the multiplicity of eigenvalues. We have proved that, under certain
conditions on potential matrix, the problem can only have a finite number of eigenvalues with multiplicity
m.

sectionIntroduction Consider the m-dimensional vectorial singular diffusion equations

~y + [2p () +q@)]y =A% (1) y, x € (0,m) 1)
y(©0)=0 ()
y (=0 ©)

where A is the spectral parameter ,y = (1, 2, ...ym)T is an m-dimensional vector function,

1, x€(0,a1)
6(x) =4 a?, x€(ay,a)
B, x€(a,m)

anda>0,a#18>0,8#1,4(x) €L [0,7], p(x) € W [0,n], a1,a5 € (0,7), a1 < a2. The potential matrix
(2Ap (x) + g (x)) is an m X m real symmetric matrix function. 6 denotes the m-dimensional zero vector.

Many studies on the theory of second-order differential operators have been studied in [7, 18]. One of
the most important of these was made in 1946 by Titchmarsh [20]. In 1984, the studies on the spectral
theory of singular differential operators were conducted by Levitan [21]. Many physical phenomena, such
as fluid flow and heat dissipation [23], atomic mixing modelling [24] include a diffusion process. Singular
differential operators with conditions of discontinuity are often used in mathematical physics, in geophysics
and natural sciences. In general, these problems are associated with discontinuous material properties. For
example; It is used to in determining the parameters of the electricity line in electronics [22]. Also, it is used
to determine geophysical models for the release of the earth [9]. The discontinuity here is the reflection of
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the shear waves at the base of the earth’s crust. In 1999, C. L. Shen and C.T. Shies [5] studied the multiplicity
of eigenvalues of the m-dimensional the vectorial Sturm-Liouville problem

-y +Qy=Ay, y0)=y@1)=

where Q is continuous m X m Jacobi matrix-valued function defined on 0 < x < 1. Q. Kong [4] generalized
to the case when Qis real symmetric. However, there are no such result for the discontinuous problem
1) - ).

In this study, firstly we define the characteristic function of the eigenvalues of vectorial problem (1) — (3).
Following this, we prove the conclusion that the eigenvalues of the problem coincide with the zeros of
characteristic function. Then, we show the asymptotic forms of the solutions and obtain some results about
multiplicity of the eigenvalues.

1. Characteristic function and asymptotics of solutions

Denote H = L? (I, C™) the Hilbert space of vector-valued functioons with the scalar product

(f.9) = f 7 fudx + f e A
0 a az 0

where f = (fi, for o fu)'s 9 = (91,92, gw)" and figi € 2D, i) = f@)| g, L0 = f@), ,, and
frx)=f (x)| ()’ We can define an operator L associated with the problem (1) — (3) on H
Li=y"+[2p () +q@]y=21*6(y, yeD(L)
D(L)={yeH; y,y € AC[I,C"]}, Ly € L*[I,C"]
vy =y(m=06
Lemma 1.1. The operator L is self-adjoint.

The proof is similar to the scaler case in [12].
We consider the problem on the three intervals (0,4;) , (a1,42) and (4, ) respectively, where 6,, denotes
m X m zero matrix and E,,denotes m X m identify matrix. On (0, 41), the matrix initial value problem

-Y" +QAp () +g(x)Y=A%-1-Y, x€(0,a1) @
(Pl (O/ A) =En lﬂbi (0/ /\) = 0O

has a unique solution ¢; (x, A). What’s more, for any fixed x € (0,a;), ¢1 (x, A) is an entire matrix function
in A [1],p17. By variation of constants, we have

X
¢1(x, A) = cos AxE,,, + % f sinA (x — ) 2Ap (t) + q (1)) ¢1 (¢, A) dt. (5)
0
on (a1,a) the matrix value problem

=Y+ QAp(x) +q (1) Y = A2a?Y , x € (a1,a2)
¢z (a1 +0,A) = ¢1 (a1 —0,A) (6)
(;b; (ﬂl +0, /\) = gbi (ﬂl -0, A)

has a unique solution ¢, (x,A). In addition to, for any fixed x € (a1,42), ¢2 (x,A) is an entire matrix
function in A. By variation of constants, we have

@ (x,A) = ateM' @ 4 gl 4 o foal SmA(H © t)Q(t)y (t,A)dt

7
var [ EEOD o 1y (1, Ay + [ sndses ”Q(t)y(t A)dt 7
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where u* (x) = zax ¥ aay + a1, Q(t) = 2Ap (t) + 4 (t),
or
¢2 (x, A) = cos Aa (x — a1) ¢y (a1 — 0) Eyy + 1= sin Aa (x — a1) ¢y (a1 — 0) E,

+ j:: sm/\a(x H (2/\]7 () + q (t)) b2 (t, A)dt. 8)

on (ay, ) the matrix value problem

¢3(az +0,A) = P2 (a2 —0,7A) )

=Y+ (Ap () +q () Y = A?B2Y, x € (ap, )
¢35 @2 +0,A) =5 (a2 —0,7)

has a unique solution ¢3 (x, A). In addition to, for any fixed x € (ay, ), ¢3 (x, A) is an entire matrix function
in A. By variation of constants, we have

$3 (x, ) = a*pre™ ™) 4 g7 BTN 4 gt Bl 4 g7 BreitsT()
Bt foj —anMkAi(x)‘f)Q(t)y(t, Aydt +atp fO“ IO (1) y (¢, A)
rarp [ DD (1 y (1, Ayt + o pr [ DD (1) (1, ) (10)

gt rm sin A(px— ﬁaz+aa2

“ 0 0ty y (1, A) dt

_% Om sin A(px— [Saz—aa2+at)Q(t) Yt A)dt + fx sm/\ﬁ(x t)Q(t)y(f, A)dt

where Q (t) = 2Ap (£) +q (t),u* (x) = xaxFaa; +ar,a* = 1 (1 + }y),ﬁi =1 (1 + /%), k* (x) = Bx—Ba + p* (a2),

s*(x) = —Bx + fay + u* (a2) ,
or

@3 (x,A) = cos AB(x —az) P (a2 —0,A) Ey + 55 sm)\ﬁ(x—aZ)gbz (ap —0,N)E,
o [ IR0 (0 1)+ () 95 (1, )t (

Let
(Pl xrA)/ X € (0 ﬂl)
O, ) =2 ¢a(x,A),x €(ar,a2) .
¢3 (xr /\),X € (aZI 7T)

Then, any solution of the equations (1) satisfying boundary condition (2) can be expressed as

¢1(x,A)co, x€(0,a1)
yx,A) =@, A)cr =3 ¢a(x,A)co, x € (a1,a2) (12)

(P3 (x/ /\) Co, X € (112, 7T)

where ¢; is an arbitrary m-dimensional constant vector. If A is an eigenvalue of the problem (1) — (3), then
co # 6 and y (x, A) satisfies the boundary condition at x = 7, that is,

Yy (m,A)=¢" (m,A)co = ¢5(m,A)co = 6.
Thus, we get
det (¢} (m, 1)) = 0

Similarly, on (4, 1), consider the matrix initial value problem

{ Y7+ QAp ) +g(0))Y = A2B2Y, x € (@, 70) (13)

V3 (,A) = Eyy 5 (1, A) = O

The problem (13) has a unique solution 3 (x, A). Furthermore, for any fixed x € (ay, ), Y3 (x, A) is an entire
matrix function in A.
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Consider the matrix initial value problem on (a1, 43),

17[)3 (ﬂz +0, A) = ¢2 (az -0, A) . (14)

=Y+ QAp(x) +q ()Y = A2a?Y , x € (a1,a2)
Y5 (a2 +0,4) = ¢ (a2 = 0,A)

The problem (14) has a unique solution y»; (x, A). Furthermore, for any fixed x € (a1, a2), Y2 (x, A) is an entire
matrix function in A.
Consider the matrix initial value problem on (0, a1),

Yo (a1 +0,A) =1 (a1 —0,A) (15)

Y +QAp(x)+g(x)Y=A%-1-Y, x€(0,a)
P (@ +0,A) = 9, (a1 — 0, A)

The problem (15) has a unique solution 1 (x, A). Furthermore, for any fixed x € (0,41), 1 (x, A) is an entire
matrix function in A. Let
lPl (x/ A)/ X € (Olal)
Y, A) =3 Pa(x,A),x€(ar,a) .
Y3 (x, A),x € (ap, M)

Then, any solution of the equations (1) satisfying boundary condition (3) can be expressed as

Y1 (x,A)cy, x€(0,a1)
y,A) =9, A) e =1 Pa(x,A)cr,x € (a1,a2) (16)
Y3 (x, A)c1,x € (a2, )
where ¢; is an arbitrary m-dimensional constant vector. If A is an eigenvalue of the problem (1) — (3), then
c1 # 0and y (x, A) satisfies the boundary condition at x = 0, that is,

¥ 0,1)=1¢'(0,A)c1 =9, (0,A)c; =0

Thus, we get
det (¢ (0, 1)) = 0.

LetAj(A) =W (¢ i (5, A), P (x, /\)) be the Wronskian of solution matrices ¢; (x, A)and ¢ (x, A), j = 1,2, 3, that
is,
_ ¢1 (X, /\) Hbl (X, /\) _ (PZ (x/ /\) 1)[}2 (xr A)
MW=| B B [ aw=| SR Ba | o
A (A) — 4)3 (X, /\) 1#3 (X, /\)
’ ¢y (x,A) P (xA) |

Lemma 1.2. A;(A) = Ay (A) = Az (A) forall A € C.

Proof. Because the Wronskian of the solution matrices ¢; (x, A) and 1; (x, A) is independent of x ,

_ | $3@+0,4) Y3(a2+0,A) | _| ¢2(a2—-0,A) 12(a2—0,4)
Az (A) = Ag (Dlyzgys0 = O (@ +0,0) W@ +0,4) | 7| ¢, (a2 —0,1) (a2 —0,1)
_ ¢2 (x/ /\) ¢2 (X, /\)
oy (x ) Ph(x,A)

_ _ | P2(@1+0,4) (a1 +0,1)
= Az (A) = AZ (/\)lx:g1+0 - (PZ (ai + 0, A) ¢z (ai + 0’ )\)

x=a,—0

=A1(A)

x=a1—0

_| ¢1(@-0,4) 1(a1-0,4) ‘ _| (A Yi(xA)
Qbi (al - 0/ /\) llbll (al - 0/ A) ¢i (x/ /\) l]b/l (x/ /\)

the proof is completed. [
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Denote A (A1) = A1 (A) = Ay (A) = Az (A), we have the following lemma.
Lemma 1.3. A is an eigenvalue of (1) — (3) if any only if A(A) = 0.

Proof. Necessity: Assume that Agis an eigenvalue of (1) — (3). y (x, Ao) is the eigenfunctions corresponding
to Ao, then by (16) we have

¢1(x, Ao)cs0, x €(0,a1)
y(x,A0) = ¢ (x,Ag)czo =4 P2(x,Ao)czo, x € (a1,a2) (18)
3 (x, Ag) c30, x € (az, )

Y1 (x, Ag) ca0, x € (0,a1)
y(x,Ao) =P (x, Ao) cao =3 Y2 (x, Ao) cao, x € (a1,42) (19)
Y3 (x, Ag) ca0, X € (a2, )

C30, C40 are m-dimensional nonzero constant vector. So from (18) and (19), we have

$1(x, Ao) 30 = P1 (x5, Ao) cao
(1)/1 (-x, AO) C30 = wi (xl AO) Ca0 }x (S (0, ﬂl) .

By direct simplification, we get

(le(x//\o) —l,Ul(x/)\o))'(Cgo (6
$1(x,A0) =97 (x, Ao) g )\ O )

Because c39, ¢4 # 0, the coefficient determinant of above linear system of equations

P1(x, Ao) =1 (x, Ao) | _ (-1)" ¢1(x, Ao) Y1 (x, Ao)
¢1 (xr AO) _l/}i (x/ /\0) (P/l (xr AO) 1/"1 (xr AO)
= (=1)" A1 (Ag) = A2 (Ag) = A3 (Ag) = A(Ap) =0

Sufficiency:
If Ag € C, A(Ag) = 0. Then the linear systems of equations

( P1(x, Ag) 1 (x, Ag) )( Co ):( 0 ) ( $2(x, Ao) 2 (x, Ao) )( co )_( 0 )
cz)ll (x/ AO) llbll (X, AO) 1 0 ) ¢/2 (X, /\0) 170/2 (x/ /\0) 1 h

(qbs(x,Ao) Bbs(x/)\o)).(co e
¢3(x, A0) 95 (x, Ao) aa |l \0

have nonzero solutions. By a direct computation, we get

1 (x, Ag) co = =11 (x, Ag) ¢ P2 (x, Ag) co = =12 (x, Ap) €
9, (Ao =~ (6 Aoy }"e O g1 (6 A0) o =~ (x Aoy }"e(”l'”z)
and
3 (x, Ag) co = =3 (x, Ag) &1
&, (x, o) co = —, (x, o) s }" € (@2 m).
Denote

2 (x, Ao) co = =2 (x, Ag) c1, x € (a1,a2) .
¢3 (x, Ao) co = =3 (x, Ag) €1, x € (a2, T0)
We note that y (x, A) satisfies the boundary condition (2), (3). That is, y (x, A¢) is the eigenfunctions corre-

sponding to Ag. Thus Ay is an eigenvalue of the problem (1) — (3).
|

1 (x, Ag) co = —1p1 (x, Ag) c1, x € (0,a1)
y(xr AO) =
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Remark 1.4. As two especial case

@1 (x, Ag)  P1(x, Ag)
(Pi (X, AO) llji (xr AO)

_| ¢3(x,A0) 3 (x, Ao) ¢3 (1, Ao)  En
¢5 (e, Ao) Y5 A0) | | @5(L,A0)  Om

Definition 1.5. A (A) will be called the characteristic function of the eigenvalues of the problem (1) — (3).

Definition 1.6. If there is a A1 (A) to be A(A) = (A = Ag)" Ay (A), algebraic multiplicity of eigenvalue Ais called
m. The geometric multiplicity of A as an eigenvalue of the problem (1) — (3) is defined to be the number of linearly
independent solutions of the boundary value problem. If we denote 2m X 2mmatrices
,Ao) 1 (x, Ag) ¢2(x, Ao) P2 (x, Ag)

A(x, Ag) = (z)/l (x 0 ’ ,B(x,Ag) = ’ ’ d

(o) ( o1 ¥ PO g ) gy o) )

$3(x,Ao) 3 (x, M)

C 7 /\ = ’ ’

(x,A0) ( ¢, (x, Ao) P (x, Ao)
the rank of matrix A (x, Ag) as R (A (x, Ao)). Similarly, B (x, Ag) as R (B (x, Ag)) and C (x, Ag)as R(C (x, Ag)).

Ew  1(0,A0)

A) = L ‘ O (0, A0)

= det (¢4 (0, 1))

A(A) = (-1)" det (¢ (1, 1)).

Corollary 1.7. The geometric multiplicity of Ay as an eigenvalue of the problem (1) — (3) is equal to 2m — R (A (x, Ag))
or2m — R (B (x, Ag)) or 2m — R(C (x, Ag)).

Corollary 1.8. R(A (x, Ag)), R(B(x, Ag)) or R(C (x, Ap)) is at least equal to m, so the geometric multiplicity of Ag
varies from 1 to m. When the geometric multiplicity of an eigenvalue is m, we say the eigenvalue has maximal (full)
multiplicity. In this study, we refer multiplicity as the geometric multiplicity.

An entire function of non-integer order has an infinite set of zeros. The zeros of an analytic function which does
not vanish identically are isolated [3]. Y} (0,A) and ¢}, (m, A) are entire function of order § matrices. The sums and
products of such functions are entire of order not exceeding }. Hence, the determinants of /; (0, A) and ¢ (1, A), that
is, the caracteristic functions are also non-integer.

Eigenvalues for (1)—(3) are real. The boundary value problem (1)—(3)has a countable number of eigenvalues
that grow unlimitedly, when those are ordered according to their absolute value.
The norm of a constant matrix as well as the norm of a matrix function A is denoted by [|A]|.

A (x) = (aij)Z=1 - MR

mxms fOT any x € I, the norm of A (x) may be taken as

A @Il = max )" [a;] (20)
B

Let A =s%,s =0 +it, 0,7 € R. We have the following three lemmas.

Lemma 1.9. When |A| — oo, the following asymptotic formulas hold on
O0<x<m,
1 (x,A) = cos (Ax) Eyy + O (IA|™" %) (1)

¢} (x,A) = —Asin (Ax) Ey, + O () (22)
Proof. See [1]. O

Lemma 1.10. When |A| — oo, ¢ (x, A) and ¢ (x, A) have the following asymptotic formulas on ay < x < ay ,

02 (x,A) = %oﬁ exp (—i(/\y+ (x) — % fal [20) dt)) E. (1 +0 (%)) (23)
¢y (x,A) = %a* (p(x) — Aa)iexp (—i (Ay* (x) - % L p(t) dt)) E,+0O(1) (24)

where ¥ (x) = Fax t any +ay , aF = 1 (1 + [ly)
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Proof. Since ¢, (x, A) is the solution of initial value problem (6) , we have
2 (x, 1) = a* cos[Ap* (1) = L ["p () dt|E,
+a” cos [/\y (x)+1 f p(t dt]E + O( UW(X)) '
We get
B2 (1, 1) = [/\y -1 [ p(t)dt] E,+la +e-i[M,+<x)_§ [ p(t)dt] £
" M2 " (25)
+%a_el[)\y (x ;falp t)dt]Em N %a‘eil[}w @+t [ p(t)dt]Em N O(%e"f”(’f))
Let f(x,A):=0 (%eaw(x)) and note that

1 | —iaprw-L [
¢2(x, 1) = sae Dot Lroly 4 g ).
From a simple computation at equations (25), we get

2ifA 1 d _Z’L
g(x, A) = z[ pr)-, f p(t) t]E + ol oz 1 lelE + [z_& 21[)\04(): ay) ]Em
M@k [ (t)dt]

+2[ — f(x,A) Eyp.

Let’s examine g (x,A) = O (%) accuracy.

a—1 21[)\01(3( aﬂ—ﬁ]Em’

|g x, )\)| < ‘621‘[/\y+(x)—3Y fa: P(t)dt]Em| " |ﬂ62i)m1 Em| +|%te

l\p*(r)fﬁJ

st

- }, [ v

Enf (x, /\)’ o[

<20, L|5 e

jin]

20‘111E + 2(mem + %e—gy+(x)eay+(x)Em

s
=

Furthermore , 0 > ¢|A|, ¢ > 0in D. Thus,—0 < —¢ |A| and e 29" ™) < p=ellu" @)
Since £ — 0, x < cet" @ (¢ > 0). Thus, e ™ < . We get

gx,A) = O(%) A — oo . Hence,

P2 (x,A) = —oz exp(—z(/\y (x)—lﬁ p(t)dt)) (1+O(%)),|/\|—>oo.

Derivativing both sides of (23) and using the first formula (25), we could get the formula of (24) similarly. [J

—_c
AT

Lemma 1.11. When |A| — oo, ¢35 (x, A) and ¢; (x, A) have the following asymptotic formulas ona, <x <1,

1 . 1™ 1
B3 (1, 1) = 5B exp (—1 (Ak* -3 f b (D) dt)) En (1 N O(X)) 26)
o5 (x, A) = %ﬁ* (p(x)—AB)iexp (—i ()thr (x) — % fx p(t) dt)) E,+0(@) (27)

—_ aﬁz

where k* (x) = £px F ay + u* (a2), s* (x) = £px F far + u~ (a2),5 = (az F T)

Proof. Since ¢3 (x, A) is the solution of initial value problem (9) , we have

s (x, 1) = B* cos [Ak* (x) = & [" p (B dt| + p~ cos [ Ak~ (x) = § [“p (1) alt]
+p~ cos [/\5+ (x) + % j::p 0) dt] + B* cos [/\s‘ (x) + % fu:p 0 dt] +0 (%eak%x))
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We get
b5 (1, A) = ﬁ+ [/\k @-3 f p(t)dt] ;e—i[,w(x)_% N p(t)dt]
L ei[/\k*(x)—% NG LB e—z[)\k’(x)—% [ oy o)
N ei[/\s*(x)+% L] e e—i[/\s*(x)+/1§ L ptoee]

+52_+ei[/ls’(x)+% I p(t)dt] + %e—i[/\s’(x)ﬂ% I, p(t)dt] +0 ( 1 40k (3 )
Let f (x,A) := ( “k+(")) and note that

+ . b1 (%
s o) = e T g )

From a simple calculation at equation (28), we get

g6 A) = 21[Ak+(x sz(t)dt]Em e Zi[(ﬁﬂ*ﬁazml)f% I p(t)dt]E

+£_;ezi[a(ﬂz—ﬂ1)—3 ft'z P(f)df]E + ﬁ 21# (a2) + ,[ 21[5(7? a)

m

; [Ak* (-1 & [ v

+e2ia1 +62i[[€n—ﬁa2+auz—aa]] + 7

f(x,A)En
Let’s examine g (x,A) = O (%) accuracy.

‘g x, A)| < e2i[/\k+(x)—% L p(t)dt]Em .\

B Zz[a(az—al)—gf pt)dt
ﬂ+

g_; eZi[(ﬁn—ﬁuzﬂzl)—% I p(t)dt] Em‘

+ +|g_; ezi#+(a2)Em| + '2_; eZi{i(n—az)Em‘

ei[x\k*(x)—% By v

+ |62ia1 Em’ + |62i[ﬁn—ﬁaz+aaz—am]]§m | + 7 f (x,A)E,

Se—Z(rk*(x) + 5_; e—2(7k+(x) +Jﬁ_;|e—2(mz + |ﬁ_;|e—2(mz + ’g_;’e—Zaﬁx

(x) eZokJr (x)

+e—2cm1 + e—Zok+ X) + %e—Zak

In additionto, ¢ > ¢|A|, ¢ >0in D . Thus,—o < —¢ MI and e 29K < el (@)
Since £ — 0, x < cé*'® (c > 0). Thus, e 2F'® < e - We get

gx,A) = O(%) A — oo . Hence,

3 (x,A) = —/3 exp(—z(w(x) ; p(t)dt)) (1+O(%)),|/\|—>oo.

Derivativing both sides of (26) and using the first formula (28), we could get the formula of (27) similarly. [J

2. Multiplicities of eigenvalues of the vectorial problem

In the section, we find the conditions on the potential matrix function (2Ap (x) + g (x)), under some con-
ditions, the problem (1) — (3) can only have a finite number of eigenvalues with multiplicity m. Where

p(x) € W; [0, ] vep (x) = {pij (x)}:;=1 ,q(x) € L, [0, 7] and g (x) = {q,-]- (JC)}Z,=1

Theorem 2.1. Let m > 2. Assume that, for some i, j € {1,2,...,m} withi # j
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either
o By e+ S [y oy + CY [ iy () dx £ 0 o)
"y eode s “* [ gy dx + BL Y [F a5 @ dx %0
or
0 fom [Piz’ () - pjj (x)] dx + % I ’jz [Pii (x) = pjj (x)] dx + @ fu: [Pii () —pjj (x)] dx # 0 (30)

+12 +)? T
B[00 - ;0] dx + ©E [ [0 () = gy @] e+ EL [ [0 - g (9] dx % 0
where a* = 1 (1 + %), gt =1 (1 + %).Then, with finitely many exceptions. The multiplicities of the eigenvalues of
the problem (1) — (3) are at most m — 1.

Proof. (i) We assume that (29) holds. Suppose, to the contrary, that there exists a sequence of eigenvalues
{An};y whole multiplicities are all m. Obviously, A, — o0 as n — co. From the equations in (9). Denoting

¢3(x,A) = {y; (x)}fn, Y when A = A, forn=1,2,..., we get
i,j=

() 0+ (A = @Apis () + g (00) s (0 — Y, @Api () + g (09) s () = 0 (31)
k#i
and .,
(v7) @)+ (= @Api (0 + s ) v () = Y (2Apis (x) + g (¥)) i (x) = 0 (32)
kej

Multiplying (31) and (32) by y;; (x) and yf (x) respectively, then subtructing one fom the other and using
(26), nothing that the eigenvalues of the problem are all real, we have

() @y - @ (53) @) = X @Api )+ 01 ) (33,0 ¥ 00 - v 0 3 )
k#i
= (24pij () + 4;; () [yf] () j; () = v () 7 @)
+ Lo (2495 ) + 5 (0) (v @) 5 0 = v @ ;@)

+\2 X
~ (249 @) + g5 () [(ﬁ 4) cos? (/\k+ () - % f p(b) dt) +o(1+ %) (33)
similarly, from the equations in (6), denoting ¢, (x, 1) = {y; (x)};njzl, we get
((57) @930 - v 0 (57) @) = o

(ZApzj(x)+q,](x))[—cos (/\y (x) - f p(t)dt)] ( 1)

similarly, from the equations in (4), denoting ¢; (x, 1) = { y?]. (x)}r,n, o we get
ij=

((3) 00,0 - s @ (12) ) = =@y 0+ 0, ) cos 0] + 0 ) )

When A is an eigenvalue with multiplicity m, we have ¢; (, A) = 0,,. By integrating both sides of (33) from
a ton, for A, > A and n — oo, we obtain

() @ w5 - @) () @) =

; (36)
- faz [_ (2Api;‘ (x) + g4 (x)) [ﬂ cos ()\k+ (x) - ;, f p(t) dt)] + OG)] dx
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By integrating both sides of (34) from a; to a, and appliying the boundary condition

~((v5) @50 - w3 0 (v5) @) =

J (37)
= Ju [— (24p5 () + g5 (x))[‘*j cos? (A" () = 3 [ P(t)dt)]+o ]d"

By integrating both sides of (35) from 0 to 4; and applying the boundary condition ¢’ (0, A) = 0,,, we obtain,
for A, - Aand n — oo,

((y”) (x) %] (x) — yu (%) (3/1] (x) f [ZAp,j (x) + gij (x)) [cos (Ax)]+O( )] dx (38)

Sum the above (36), (37) and (38), then use the initial conditions at point x = a; and x = a,, we get

0=— [ [(2Api () + 4ij (%)) [cos? (Ax)| + O (4)] dx
. [ [ (2293 () + 5 () [ 952 cos? (Ap* ()~ L [ p 0y ) ]dx

+f [ (2/\;71] x)+q1](x))[(ﬁ) cos ()\kJr -1 f p(t)dt)] dx+O<%)

By a simple computation, one can see that

fa (ZAPz] (x) + qij (x)) dx + L (a+) (2/\}71] (x) + gii (x)) de + ¥ ) (ﬁ ) f (2/\}71] (x) + i (X))
=- fo [(2)\;91] (x) + gij (x) cosZ/\x] dx
- [ [(2/\191; () + 45 (@) [ cos2(Ap* (@) - L [Fp (1)) ]dx (39)

- I [(2/\pij(x)+q,-]- (x))[(ﬁ) cos2 (A (@) -1 [ p(t)dt)] dx+0(1)

= =21 [" pij (x) cos (2Ax) dx — [1" gij (x) cos (2Ax) dx — 20 @) jZZ pij () cos 2Ap* (x) cos 2 dx
—@ ™ g5 (x) cos 24 (x) cos 20t — 229 i [ py; (x) 204 (x) sin 2

_% fa‘:Z gij (x) sin2Au™ (x) sin 2UT(’“)alx - 2/\(“%)2 fﬂ: pi; (x) cos 2k* (x) cos %dx

o J 7 3) cos 22k" () cos Ed 2L I i () sin 22k (x) sin 2

_(F%)Z f i gij (x) sin 2Ak* (x) sin de

where v (x) = f p(D)dt, t(x) = f p (t)dt. Then, we obtain, for A, — coand n — oo,
-2 fo pij (x) cos 2Ax) dx — 2(a i fﬂz pij (x) cos 2/\” (x) cos 2 2v(x 2000 7,
-2 - fa pij (¥) 24" (%) sin 22 gy — Z(ﬁ )y f pi; (x) cos 2k* (x) cos 2t(x)dx
_2@ faz pij (x) sin 2Ak* (x) sin %dx

By Riemann-Lebesgue Lemma, the right side of (39) approaches 0 as A, = A and n — co. This implies that

" pij x)dx+(“+)2  pi () dx + L ﬁ+) “pii () dx =0
o p] p] p]
j(; qij az i () dx + B) f gij (x)dx =0

We have reached a contradiction. The conclusion for this case is proved.
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(i) Next, we assume that

1 +32 2 +\2  n
f (2)\;9,-]- (x) + gij (x)) dx + (a4) j: (ZApij (x) + gij (x)) dx + (ﬁ4) jﬂ; (2/\}7,-]- (x) + gij (x)) dx=0

or
Fspde+ CF s @+ CL [Tsy dx=0,vi

where s;; (x) = (2)\;9,-]- (x) + gij (x)).

and ,

foal [s,-i (x) —sjj (x)] dx + % j;f [sii (x) =sj; (x)] dx + Q fu: [Sii (x) = sj; (x)] dx#0

without loss of generality, we assume that fori=1,j =2

1 +\2 ) +\2 T
f 51 () — 520 ()] + 4 f 511 () — 52 (@] + & 4) f (512 () — 522 (9)] dx # 0
0 a ap
1 _1 1 _1
i 7 i 7
2 2 2 2
K: 1 K: ]-
1 . 1

and y = K - t. Then, the problem (1) — (3) becomes

(40)

P+ (A25(x) —R(x))t =0 }
#©) =+ (n)=0

where R (x) = K™1S (x) K. By making a simple computation, we get

}1 (11 +522) + 512 }1 (s22 — s11) * * *
% (22 — 511) % (511 +522) +512 * * *
R(x) = * * qs3 .- ()
* * : ’
* * Gmm

We note that the two poblems (1) — (3)and (40)have exactly the same spectral structure. Denote R (x) =
{ri]» (x)}i,jzl' Since

foul 12 (x) dx + % jzz 12 (x) dx + (ﬁ%) fu: 12 (x) dx =
F 511 () = 52 @)1 + 8 [ [s513 () = 520 ()] + L [T [s11 () = 520 (9] dx # 0
0 1 2

By part (i) , the conclusion of the theorem holds for the problem (40), and hence holds for the problem
MH-3). O
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Abstract. In this article, we proposed a new family of generalized Nak-G distributions and study some
of its statistical properties, such as moments, moment generating function, quantile function, and prob-
ability Weighted Moments. The Renyi entropy, expression of distribution order statistic and parameters
of the model are estimated by means of maximum likelihood technique. We prove, by providing three
applications to real-life data, that Nakagami Exponential (Nak-E) distribution could give a better fit when
compared to its competitors.

1. Introduction

There has been recent developments focus on generalized classes of continuous distributions by adding

at least one shape parameters to the baseline distribution, studying the properties of these distributions and
using these distributions to model data in many applied areas which include engineering, biological studies,
environmental sciences and economics. Numerous methods for generating new families of distributions
have been proposed [8] many researchers. The beta-generalized family of distribution was developed ,
Kumaraswamy generated family of distributions [5], Beta-Nakagami distribution [19], Weibull generalized
family of distributions [4], Additive weibull generated distributions [12], Kummer beta generalized family
of distributions [17], the Exponentiated-G family [6], the Gamma-G (typeI) [21], the Gamma-G family (type
II) [18], the McDonald-G [1], the Log-Gamma-G [3], A new beta generated Kumaraswamy Marshall-Olkin-
G family of distributions with applications [11], Beta Marshall-Olkin-G family [2] and Logistic-G family
[20].
The Nakagami distribution is a continuous probability distribution related to gammadistribution with ap-
plications in measuring alternation of wireless signal traversing multiple paths. The Nakagami distribution
has two parameters; A > 0.5 is the shape parameter and § > is scale parameter. The cumulative distribution
function (cdf) is given by

e (2 a (A
F(x'A"B)_fI”(A)ﬁAt exp( 5 t)dt (1)
0

Corresponding author: 1A mail address: ibworld82@yahoo.com ORCID: https://orcid.org/0000-0002-7280-3035

Received: 29 July 2020; Accepted: 30 October 2020; Published: 31 October 2020

Keywords. Nak-G, Nak-E, Maximum Likelihood Estimation, Order Statistic.

2010 Mathematics Subject Classification. 62G30

Cited this article as: Abdullahi I, Job O. A New Family of Odd Generalized Nakagami (Nak-G) Distributions. Turkish Journal of
Science. 2020, 5(2), 85-101.



L. Abdullahi, O. Job /TJOS 5 (2), 85-101 86
probability density function (pdf) is given by

A o —Aa).

flAB) = F(/\)‘BAt exp(ﬁ t),x>0 (2)
It reduces to Rayleigh distribution when A = 1 and half normal distribution when A = 0.5 The main aim of
this study is to develop a new family of generated distributions for the generalized Nakagami distribution
and study some of the mathematical and statistical properties of the proposed family of distributions.
This paper is organized as follows: In section 2, the Nakagami (Nak-G) family of distributions was defined.
In section 3, a useful linear representation for its probability density function (pdf) was obtained, some
mathematical properties and parameter estimators using maximum likelihood estimation are derived. In
section 4, the goodness of fit of the distribution using real data was illustrated while section 5, gives the
conclusion.

2. Constructions of the Nak-G Distributions

In this section, the probability density function (pdf), cumulative distribution function (cdf), survival
function, hazard rate function (hrf), mean remaining lifetime function, order statistic, moment, moment
generating function, Renyi and q entropies of Nak-G distributions are derived. We obtain the Nak-G
distribution by considering the Nakagami generator applied to the odd ratio G(x; n)/G(x; ) where G(x; 1)
is the cdf of baseline distribution and G(x; 1) = 1 — G(x; ).

Let denote the cdf and pdf of baseline model, 1 is the parameter vector of the baseline distribution. Based
on the family of distributions we define the cdf of Nak-G by replacing x with in equation (1) it become
Nak-G distribution.

G(x'ly)
G

A, Bn) = f F(/i\)ﬁ/\ﬂ/\ -1 xp(?/\tz) dt 3)
1
F(x; A, B,n) = ™/ G(iZ;]
G
FQg A B,m) = ps (A B (ch Z;) ] )

Using expansion of incomplete gamma ratio function y. (a4, x) in [7] the above equation (4) can be expressed
as:

Gl Z}Mq
A A ( (x 77)) Z( 1) { (G(xq)) (5)
"M B\Gwn) )T & T a- Dty
The pdf of the Nak-G is given by
244 [Ge ™! [ (G(x n)) ]
= ; R 6
TO = Tp " G P 7B G [ € ©

A random variable X with pdf in equation (6) is denoted by X ~ Nak — G(x; 1) the survival function and
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hazard rate function (hrf) of X are given by:

A c(x;m)z]
S =1-v.lA, == 7
® V( ﬁ(G(x;n) @

and

- 2
PTCRRN (<67)) A (Gl
Tp 90 D g &P |75 (G

h(x) = o)
1=y (A' 5 (G(xfn) )

(8)

2.1. Linear Representation

In this section, we derive some very useful linear representation for the Nak-G density function. Note
that.

o avkak
E_XZ;(ZX ©)

Therefore, applying equation (9) to (6)

2/\)\ 0o (_1)k (/\ )k [G(x, 77)]2(/\+k)—1
x) = X; — 10
109 = @0 L \5) 1= g g (10)
Consider the binomial expansion theorem
1-zt=Y (b+§_l)z]', |zl <1,b > 0 then
j=0
[1- Gl = ) (2(A +jk) = )[G(x; MY, 200 +K) +1]> 0 1)
j=0
Therefore, applying equation (11) to (10)
QAM[2(A +K) + 2j(A +K) + ] & (—1F (AN (200 +K) +
f) = ; — 2 |3 .
g MIG(; PO (12)
Also, the pdf equation (12) can be written as
£ = Y o () (13)
k,j=0
where
2 DAV 20 k) +
"I T TR) K \B i
and

harsry+j(x) = (A + k) + fg(x; MIG(x; n)PA0+i-1
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Equation (13) can be well-defined as an infinite linear combination of exponentiated -G (exp —G) densities.
Similarly, the cdf of the Nak-G family can also be expressed as a linear combination of exponentiated-G
(exp —G) cdfs given by

F() = Y 7tk iHogpy () (14)
k,j

where Hy(41)+j(x) = [G(x; 17)]2("+k)+j is the cdf of the exp —G family with power parameter.

3. The Nakagami Exponential (NE) Distribution
Our baseline distribution, the Exponential distribution with parameter « has its cdf and pdf given by:

Glx;a)=1-e (15)
gl a)=ae™™;a>0,x>0 (16)

Substituting equation (15) and (16) in (4) and (6) then, the cdf and pdf of NE distribution can be written as

—ax \2
Fre(x) = . [A, % (%) ] (17)

2AM e (1 — gmax)?A-1

T(A)B* (=)'

e f (=)

fne(x) = (18)

3.1. Investigation of the Proposed (NE) Distribution for PDF
To show that the proposed distribution is a proper pdf, we proceed to show as follows:

ff(x)dx =1 (19)
0

[

2N ae (1= e P ey
OB (e—ax)Z/\"'l AN x=1

A __—ax\2
=) @0

ﬂ_& 1—eg 1— e
ox ﬁ e—ax p—ax

B ﬁe—Zax
T 2aA(1 —emax) %

ox

P A/\—l 00 (1 _ e—a)ZA—Z ~
ff(x)dxz I’(A),BA—lj(; e e Yy (21)
0
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from (20)

vB\*
%) =

Therefore, from (21) and (22) we obtained

1 )\ 1 - —

Hence Nakagami Exponential Distribution is pdf

3.2. Expansion for Nakagami Exponential Distribution

In this part a simple form for the probability density function of NE distribution is derived. Applying
equation (9) into (18) we obtained

(-1)F /\Mk 2 H=1  — e —=2(A+k
fNE(x) F(A Z o ‘B}H'k —e x) (A+k) (8 x) (A+k) (24)
The binomial expansion of (1 — ™) can be expressed as Z -1) (Z(Mk) 1)6“"" Therefore, equation (24) will

i=0
take the following form

( 1)k+i /\/H—k 2(/\ + k) -1 —ax\i— k
Fre(x) = r(/\) Z G ; (G (25)
Therefore, the NE pdf distribution is reduced to
20 A}H—k = —yynNi—
fre(x) = ) g Z ST () (26)
ki=0

where wy; =

k! i
While the cumulative distribution function (cdf), survival function and hazard functions are given respec-
tively by equations (27), (28) and (29).

(=1)F+ (2(/\ +k) - 1

—axX 2
Fe(®) = 7. [A, % (1 — ) ] (27)
A1 —eox)
SNE(.'X) =1- Vs [/\, E( s ) ] (28)

(o)
20 AN —ax\i—2(A+k
r([}t) ﬁ/’u-k Z wk,i (E ax) ( )

1oy 14 ()]

3.3. Some Mathematical and Statistical Properties

Hne(x) =

(29)

In this section, some general mathematical and statistical properties of Nak-G distribution are derived.
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3.4. Moment and Moment Generating Function

In this subsection, the 7" moment and moment generating function for Nak-G distribution will be
derived. The rth moment of random variable can be obtained from pdf equation in (13) as follows;

[

W = fx’f(x)&‘x = Ti,j Z xth(A+k)+j(x)ax

5 k,j=0
therefore,
ty = T ileoenyj ¥ = 1,2,3,. .. (30)

where

00

Loy = Z X Mo+ j(X)9x
k,j=0

The mean and variance of Nak-G distribution are obtained, respectively as follows

E(x) = 7ty il 2148+ (31)
where,
Lohy+j = Z xhoky+j(X)9x
k,j=0
and
2
Var(x) = miy jlo o400+ — [nk,j11,2(/\+k)+j] (32)
, where
Lok = Z X hok+(X)0x (33)
k,j=0

From equation (30) the measures of skewness y1 and kurtosis y, of Nak-G distribution can be expressed as
follows

T3y 3
ot , o -
(ALLZ - yl )2
_ g~ A + b — Burt (35)
(w5 = piy w2y

Furthermore, the moment generating function can be obtained by using pdf equation (13) as follows

(o] (o) t P
Mx(t)zg(efx)zz : Z i1 2“+k)“ (36)

r=0 r=0
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3.4.1. Moment for Nakagami Exponential Distribution
moment can be obtained by using pdf in equation (26) as follows

(o8]

Ak,
EXX") = Z 2A"a f x e~ iI2A+01 5 (37)

Wr.j A4k
= Tt y

Let

u:ax[z’—Z(/\+k)]:>g—;:a[i—Z(/\+k)]

u

T

" °° 2A/\+ka u’ _u ou
EX") = Z CUk,jI-(A)ﬁM-k f a'li —2(A + k)]re afi —2(A + k)]

k,i=0 0
i 1) 2" a f il e "du
= k.j A+k r+1[7 — r+1
G TR @i =20+ KT
R 2AMKaT(r + 1)
EX) =) O a2 B T (38)

k,i=0

The mean and variance of NE distribution are obtained, respectively as follows

I 20T (2)
E(X) = I;_Owk,] r(/\)ﬁ/\+k0([i —2(A + k)2 (39)
v _ i ‘ AAMT(2) ~ i | 2AMET(2) 2 w0
"0 = L T gai— 2l + OF | A TRl - 21 + P )

k,i=0
Furthermore, the moment generating function can be obtained by using pdf in equation (26) as follows

o)

£X 20+ Ak lali~20+0]-1]
MX(t) = E(E ) = — a)k,'_ fe—x ali— — ax
') & ] pA+k y

Therefore, the moment generating function of NE distribution takes the following form

» o A/H—k
=—— ) BMK[ali = 2(A + k)] — ] .
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3.5. Probability Weighted Moments
[10] stated that for a random variable X, the Probability Weighted Moments (pwm) is given by:

o

@s; = E[X°F(x)'] = f XF(x) f(x)dx (42)

—00

we formally define PWM of Nak-G by means of equation (4) and (13)

_ ]oxs 1 A (G ) ? ri " (%) (43)
Psr = 0 V<IN B G(x;n) ~ k,ji bII2(A+k)+j
Qsr = f X° Pk, Mo A1) +isk]+b+ j(X)OX (44)
0
where,
- 2(Ar+i)+b-1y ( A\
Cri = Tk, i
) k,]-,,-,zbzo T )(ﬁ) k.j
Pt = Ty

3.6. Measures of Uncertainty

In this subsection, Renyi entropy will be mentioned as an important measure of uncertainty. The Rényi
entropy of a random variable X is defined mathematically as follows:

Ir(0) = 1ialog ff“(x)&x
0

Where ¢ > 0 and ¢ # 1. Based on f(x) of any distribution. From equation (18)

20 (A/\)U ale—ox (1 _ e—ax)U(Z/‘—l)
(1"(/\))(7 ‘30)\ (e—ax)U(Z/Hl)

f]f]E(x) = 6_0%(1;%)2 (45)

Since the power series for the following exponential function can be expressed as

i=0
Therefore equation (45) can be expressed as
00 i o Ao+i —ax\0(2A-1)+2i
(-1) (m) (/\) (1 — emax)!
9 (%) = —— (= o' : 46
Je®) ;‘ it \I'(A)) \Bp (e-ax)2(A+5) (40)
therefore, (46) is reduced to
fIC\FfE (x) = Z T pl2(0A+i)=]] (47)

i.j=0
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(DY (o@A-12i\ [ 20 \T (A\T
T j AV

f fpx)ox = f ZT al2(A+i)-jl

where

since

i.j=0
f fopax=Y (48)
NE a[] —2(cA +1)]
therefore, Iz(0) reduces to
o m
I [Z alj—2(cA +1)] 49)

3.7. Distribution of Order Statistic

Let X4y, X@), ..., Xm). denote the order statistics of a random sample, Xi,X>,...,X, from a Nak-G
distribution with cdf equation (6) and pdf equation (5). Then the pdf of X; is given by

fr @) '(n ! Z 1 ( j)fX<x> [Fx(or™ (50)

N - P n—j) TP () (_g(G(x;n))z)
Fo®) = A= 1)( N o raemrd  Vereer

A (G )H’
[y* (A’ B (G(x; )

3.8. The Asymptotic Properties

We study the asymptotic behavior of NE distribution with a view to influential its performance limit as
x — oo is 0 and the limit as x — 01is 0.

Proof:

These can be achieved as follows by taking the limiting behavior of the NE density function in equation
(18).

=l

hm fNE(x = lim

X—00

2A qemax (1 — gmax)?A1
TP et

2A qeox (1 — gmax)?A1 -
T(A)B (emox)*!

()} ~0

ol

0

£E)I8fNE(x) = }Clg(}

Then fye(x) has at least one mode.
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3.9. Quantile Function

Quantile functions are normally used to describe a probability distribution, simulations and statistical
application. Simulation techniques utilize quantile function to create simulated random variables for
standard and new continuous distributions. In general, it is given as: Q(u) = F~}(u).

U Uniform(0,1). That is U follows a uniform distribution.
By considering equation (4) quantile function (qf) X is obtained as follows:

o 1 A (Glx;n) :
u=F(x; ABn) = MV[A' B (G(x; rz)) ) "

) By1(A, ur(A %
x:711n<1— |57, ur )] > (52)

1+ [§y1(4, ura)]

3.10. Shape of the Crucial Functions

The shapes of the density and hazard function of the Nak-G family can be defined analytically. The
critical points of the Nak-G density function equation (6) are the roots of the resulting equation:

gon  CA=Dgbsn) @A+Dglxn) - 2Ag6sn)
g(x;m) G(x; 1) G(x; ) BIGE )T

(53)

The critical points of Nak-G hazard function obtained in equation (8) are obtained from the following
equation:

g  @A-Dgln)  @A+Dgn) 20965  _a(eemy2Atae ™ (1 - ey
+ + - - +e Fle

(1) G(x; ) G(x; ) BIGC: T(A)B (e=x)**

(ro-y(na(5=2))) =0

By using R software, we can examine equations (53) and (54) to determine the local maximums and
minimums and inflexion points.

3.11. Maximum Likelihood Estimation

This subsection, deals with the ML estimators of the unknown parameters for the Nak-G family of
distributions based on complete samples of size n. Let Xj, X5, ..., X, be observed values from the Nak-G
family with set of parameter © = (A, ,1). The log-likelihood function for parameter vector ® = (4,8, 1) is
obtained from equation (6) as follows

o)

£(0) = nln2 + nAlnA — nInl'(A) — nAlng + i Ingl;n)]+2A-1)- i In[G;n)] - 2A+1) Z In[1-G@x;n)]-

i=0 i=0 i=0

Z In[W(x; )] (54)

i=0

=
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G(xn)
1-G(x;m)

The components of the score function U(O) = (U,\, Us, U,,) are given by

where W(x; 1) =

Uy = nlnAd —n—n¥(A) —nlnp + 2; In[G(x;n)] - 2;1 n[l-G(x;n)] % Z‘ n[W(x;n)] (55)
a2 . In W )’
Up=nZ+ 2 (56)
P P
- 99(x;1)/91 &g( n)/ n dglx;m)/In 27
Uy = ZO sy T 1>Z @A+ 1>Z =G Z Wesnwn)  (57)

Setting Uy, Ug, U, equate to zero and solving the equations simultaneously result to the ML estimates
@ = (/\/ ﬁ/ 77) Of @ = (/\/ﬁ/ T])T

These estimates can notbe solved algebraically and statistical software can be used to solve them numerically
via iterative technique.

4. Result and Discussion

The first real life data set was obtained on the breaking stress of carbon fibres of 50 mm length (GPa).
The data has been formerly used by [15] and [16]. The data is as follows: 0.39, 0.85, 1.08 ,1.25, 1.47, 1.57,
1.61,1.61,1.69,1.80,1.84,1.87,1.89,2.03,2.03 ,2.05,2.12,2.35 ,2.41, 2.43, 2.48, 2.50, 2.53 ,2.55, 2.55, 2.56, 2.59,
2.67,2.73,2.74,2.79,2.81,2.82,2.85,2.87 ,2.88,2.93,2.95 ,2.96 ,2.97,3.09, 3.11 ,3.11, 3.15, 3.15 ,3.19 ,3.22, 3.22,
3.27,3.28,3.31 ,3.31, 3.33 ,3.39, 3.39, 3.56 ,3.60 ,3.65, 3.68 ,3.70 ,3.75 ,4.20 ,4.38, 4.42, 4.70, 4.90

Table 1: MLEs and Goodness-of-fit measures for First Data Set
Model MLE 4 AIC BIC CAIC

A =1.2778 | -85.88033 | 177.7607 | 187.3296 | 184.3296
Nak-Exp $=2.1709
a=0.2964
A =0.6170 | -85.92746 | 177.8549 | 187.4239 | 184.4239
GOG-Exp p = 4.0054
a = 0.4087
A=0.7704 | -85.97049 | 177.941 | 187.5099 | 184.5099
Wei-Exp B =2.4675
a =0.2389
A =5.13720 | -88.10031 | 182.2006 | 191.7696 | 188.7696
Kum-Exp | §=10.23005
a = 0.33140
A =8.19864 | -91.78444 | 189.5689 | 199.1378 | 196.1378
Beta-Exp B =4.98148
a = 0.37362
Exp. a=0.36235 | -132.9944 | 267.9887 | 271.1785 | 270.1785
A =0.337 | -127.4033 | 260.8066 | 270.3756 | 267.3756
Gamma-Exp | p=1.141
a =11.458

The second data set represents the times of failures and running times for sample of devices from an
eld-tracking study of a larger system. The data set has been previously studied by [13] and [14]. The data
set has thirty (30) observations and they are as follows: 2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00,
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1.73, 1.06, 3.00, 3.00, 2.12, 3.00,3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45,
2.66 The third real life data set [9] corresponds to fifty two ordered annual maximum antecedent rainfall

Table 2: MLEs and Goodness-of-fit measures for Second Data Set
Model MLE 4 AIC BIC CAIC

A=0.35257 | -38.92824 | 83.85647 | 88.06007 | 91.06007
Nak-Exp | $=6.96172
a=0.54568
A=0.13324 | -39.07062 | 84.14124 | 88.34483 | 91.34483
Wei-Exp | B = 0.56404
a = 1.60267
Exp. a=0.5648 | -47.13504 | 96.27007 | 97.67128 | 98.67128

measurements in mm from Maple 264.9, 314.1, 364.6, 379.8, 419.3, 457 .4, 459.4, 460, 490.3, 490.6, 502.2, 525.2,
526.8, 528.6, 528.6, 537.7, 539.6, 540.8, 551.0, 573.5, 579.2, 588.2, 588.7, 589.7, 592.1, 592.8, 600.8, 604.4, 608.4,
609.8, 619.2,626.4, 629.4, 636.4, 645.2, 657.6, 663.5, 664.9, 671.7, 673.0, 682.6, 689.8, 698, 698.6, 698.8, 703.2,
755.9,786,787.2,798.6, 850.4, 895.1.

Table 3: MLEs and Goodness-of-fit measures for Third Data Set
Model MLE 4 AIC BIC CAIC

A=205182774 | -329.275 | 664.5501 | 670.4037 | 673.4037
Nak-Exp $=0.2482101
a=0.0006204
A=1.6478687 | -351.8995 | 709.799 | 715.6527 | 718.6527
Wei-Exp $=1.5943460
a=0.0008296
a=12.0863 -339.5244 | 689.0488 | 698.805 | 703.805
b=15.3622
Ext.-Burr III a=0.5868
A=15.4776
s=11.8405
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Figure 1: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp and Exp (A= 1.9 (shape parameter) and §8, y=

1.5, 0.15 (scale parameters))
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Figure 2: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp and Exp (A= 1.5 (shape parameter) and §, y=

1.5, 0.2 (scale parameters))
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Figure 3: Graph of the Six Distributions Nak-Exp Wei-Exp, KW-Exp, BE-Exp, OG-Exp andExp (A= 4 (shape parameter) and , y= 3,
0.2 (scale parameters))
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Fitted Densities forbreaking stress of carbon
fibres of 50 mm length (GPa)
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Figure 7: fitted Models on histogram of the first data set

4.1. CONCLUSION

For the first time, we propose a new family of Nakagami-G distributions by add two parameter to
Exponential distribution called Nakagami Exponential distribution and some of its statistical properties of
the new family were studied. The model parameters were estimated by using the maximum likelihood
estimation technique. We finally fit the proposed model among others to real life data show that Nakagami
Exponential distribution was found to provide a better fit than its competitors
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The Hadamard-type Padovan-p Sequences

Yesim Akiiziim?

?Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, TURKEY

Abstract. In this paper, we define the Hadamard-type Padovan-p sequence by using the Hadamard-type
product of characteristic polynomials of the Padovan sequence and the Padovan-p sequence. Also, we
derive the generating matrices for these sequences. Then using the roots of characteristic polynomial of
the Hadamard-type Padovan-p sequence, we produce the Binet formula for the Hadamard-type Padovan-p
numbers. Also, we give the permanental, determinantal, combinatorial, exponential representations and
the sums of the Hadamard-type Padovan-p numbers.

1. Introduction

It is well-known that Padovan sequence is defined by the following equation:
Pn)=Pn—-2)+P(n-23)

forn >3, where P(0) =P(1)=P(2) =1.
Deveci and Karaduman defined [8] the Padovan p-numbers as shown:

Pap(n+p +2) = Pap(n + p) + Pap (n)

for any given p(p=2,3,4,...) and n > 1 with initial conditions Pap (1) = Pap(2) = --- = Pap(p) = 0,
Pap(p+1)=1and Pap(p +2) = 0.

It is clear that the characteristic polynomials of Padovan sequence and the Padovan-p sequence are
P(x) =x*—x—T1and P, (x) = x"*? — x — 1, respectively.

Akuzum and Deveci [1] defined the Hadamard-type product of polynomials f and g as follows:

% - - e b)) b — ab;  if abi#0
f(x) = g(x) = Zo’ (a; * b;) ', where a; + b; = { wtb i ab -0
= ’

such that f(x) = 2,X" + a,-1X™ 1 + -+ + a1x + ap and g(x) = byx" + b1 XL + -+ + byx + by.
Suppose that the (1 + k)th term of a sequence is defined recursively by a linear combination of the
preceding k terms:
Ap+k = C0An + C1Ap41 + -+ + Ch—10n+k-1
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where ¢y, c1, ..., 1 are real constants. In [13], Kalman derived a number of closed-form formulas for the
generalized sequence by the companion matrix method as follows:

[0 1 0 --- O 0
o o1 - 0 0
0 0 0 . 0 0
A= [ai’j]kxk - .
0 0 O 0 1
o C1 C Ck—2 Ck-1 |

Then by an inductive argument, he obtained that

ap ay
n a1 An+1
L k-1 Ap+k-1

forn > 0.

Recently, many authors studied number theoretic properties such as these obtained from homogeneous
linear recurrence relations relevant [2, 5-12, 14-20]. In [1], Akuzum and Deveci defined the Hadamard-type
product of two polynomials and they obtained the Hadamard-type k-step Fibonacci sequence by the aid
of this the Hadamard-type product. Then they studied properties of this sequence in detail. In this paper,
we define the Hadamard-type Padovan-p sequence by using the definition of Hadamard-type product in
[1]. Also, we produce the generating matrix of this sequence. Then we give relationships between the
Hadamard-type Padovan-p numbers and the permanents and the determinants of certain matrices which
are produced by using the generating matrix of the Hadamard-type Padovan-p sequence. Also, we obtain
the combinatorial representations, the generating function, the exponential representation and the sums of
the Hadamard-type Padovan-p numbers.

2. The Hadamard-type Padovan-p Sequences

We define a new sequence which is defined by using Hadamard-type product of characteristic poly-
nomials of Padovan sequence and the Padovan-p sequence and is called the Hadamard-type Padovan-p
sequence. This sequence is defined by integer constants P! = P! = ... = Pf, = 0 and PZ .1 = 1 and the

recurrence relation

=ph

n+p

Ph

n+p+2

-Pl +P' P! 1)

n+l

for the integers n > 0 and p > 4.
By relation (1), we can write the following companion matrix:

[0 1 0 0 -1 0 1 -17
1 0 0 0 0 0 0 O
o1 o O - 0 0 0 O
o o0 1 o o0 --- 0 0 O
M, = o 0 o 1 0 O -~ 0 O
0 0 0 0 1 0 0
0 0O 0 o 1 0 O
0 0 O 0o 0 0 1 0

A(p+2)x(p+2).



Y. Akiiziim /TJOS 5 (2), 102-109 104
The matrix M, is said to be a Hadamard-type Padovan-p matrix.

It can be readily established by an inductive argument that

- ph h h _ ph h _ ph _ph
Pn+p+1 Pn+p+2 Pn+p—1 Pn+p72 Pnﬂﬂ Pn+p—1 Pn+]ﬂ
h h h _ ph h _ ph _ph
PﬂﬂJ Pn+p+1 Pn+p—2 Pn+p—3 Pn+p—1 Pn+p—2 Pn+p—1
h h h _ ph h _ ph _ph
n_ Pn+p—1 Pﬂﬂ’ Pn+p—3 Pn+p—4 Pn+p—2 Pn+p—3 Pn+p—2
() = . . . @
M, : :
h h o _ ph h h _ph
Pnz—l Pill+2 Pﬁ—l P?—Z IZ” Pngl I;Tl
—_— 1 —_— —_—
P” Pn+1 Pn—2 Pn—3 pn—l Pn—2 Pn—l
where M isa (p —3) X (p — 3) matrix as follows:
[ ph _ ph h _ ph . h _ ph
Pn+p+3 Pn+p+1 Pn+p+4 Pn+p+2 Pn+2p—1 Pn+2p—3
h _ ph h _ ph e h _ ph
Pn+p+2 Pn+p Pn+p+3 Pn+p+1 Pn+2p—2 Pn+2p—4
h h h _ ph h h
Pn+p+1 Pn+p—1 Pn+p+2 Pn+p Pn+2p—3 Pn+2p—5
h _ ph h _ ph h h
Pn+3 Pn+1 Pn+4 Pn+2 Pn+p—1 Pn+p—3
h _ ph h _ ph h _ ph
Pn+2 Pn Pn+3 Pn+1 Pn+p72 Pn+p—4

for n > 3. Also, It is easy to see that det M, = (-1).
Now we concentrate on finding a Binet formula for the Hadamard-type Padovan-p numbers.

Lemma 2.1. The characteristic equation of the Hadamard-type Padovan-p sequence xP** — xP + x> — x + 1 = 0 does
not have multiple roots.

Proof. Let f(x) = xP*2 —xP + x> —x + 1. It is clear that f(0) # O and f (1) # 0 forall p > 4. Let A be a multiple root
of f(x), then A ¢ {0,1}. If it is possible that A is a multiple root of f (x) then it follows that f (A) = 0and f (1) = 0.
Now, we consider f (1) = AP*2 — AP + A3 — A + 1. So, we obtain
B A-1
IEE
Moreover, we may write f (A) = (p + 2) AP*1 — pAP=1 + 312 — 1 and hence we get
=3+
CERDIE
From (3) and (4), the following equation can be obtained:

312 -1
2B A2 A+ 1

Using appropriate softwares such as Mathematica Wolfram 10.0 [21], we obtain that there is no solution for p > 4.
Since all p’s are integers with p > 4, it is a contradiction. So, the equation f(x) = 0 does not have multiple roots. [

AP )

p

p=1+

If x1, X2, ..., Xp42 are roots of the equation a2 —xP +x3 —x + 1, then by Lemma 2.1, it is known that x;,
X2, ..., Xp42 are distinct. Define the (p +2) X (p + 2) Vandermonde matrix VP*2 as shown:

- p+1 -
@™ @ ()
5 (x1) (E5) . (xp+2)
VPt = . . .
X1 X2 Xp+2
1 1 1
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Assume that )
n+p+2—i

1 .
n+p+2—i

WG j)=|

n+p+2—i
p+2

and VP*2 (i, j)isa (p + 2)X(p + 2) matrix obtained from V?*? by replacing the jth column of V/*2 by WF*2 (i, j).

Theorem 2.2. Let (Mp)" = [mf’].”], then
det VP*2 (i, )
W detVrt2

i _

forn>3andp >4.
Proof. Since the eigenvalues of the matrix Mp, x1, X2, ..., X,12 are distinct, the matrix Mp is diagonalizable.
Let DP*2 = <x1,x2, ... ,xp+2), then we easily see that MpV#*™? = VP*2DP*2_ Since VP*? is invertible, we can

; +2\7! k +2 : e Qi +2 ny7p+2 +2 +2\"
write (V” ) MpV* = DP*2. Then, the matrix Mp is similar to D?** and so (Mp)" VP** = V* (D’” ) . Hence
we have the following linear system of equations:

pn, ptl prp o pn _ ntp2—i
MGy Xy T, Xy e+, =%
pn, p+l prp pn _ nAp2-i
MG Xy T Xyt t I, =%
pn, p+1 pn_p o pn o ntp+2—i
My Xpp T Xy Tt = X0

Therefore, for eachi,j =1,2,...,k, we obtain

pn_ det VP2 (i, j)

Lj det Vpr+2
[

From this result we immediately deduce:
Corollary 2.3. Let P! be the nth the Hadamard-type Padovan-p number, then

P det V"2 (p+2,1)  detV?*2(p+1,p+2)
" det Vp+2 - det Vr+2

forn>3andp > 4.

Now we concentrate on finding the permanental representations of the Hadamard-type Padovan-p
numbers.

Definition 2.4. A u X v real matrix M = [mi,j] is called a contractible matrix in the k'™ column (resp. row.) if the
k' column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, xy,...,x, are row vectors of the matrix M. If M is contractible in the kth column such
that m;j # 0,mj; # 0 and i # j, then the (u — 1) X (v — 1) matrix M;jx obtained from M by replacing the i
row with m;rx; + mjrx; and deleting the jth row. The k" column is called the contraction in the k™ column

relative to the i row and the j™ row.
In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order @ > 1 and N is a
contraction of M.
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Let o > p + 2 be a integer and let AP* = [a’; ’.“] be the a X a super-diagonal matrix, defined by
]

ifi=rand j=r+1forl<r<a-1,
i=rand j=r—-1for2<r<a
1
and
pa i=rand j=r+pforl<r<a-p,
B = ifi=rand j=r+p-2forl<r<a-p+2
-1 and
i=rvand j=r+p+1lforl<r<a-p-1,
0 otherwise.
Then we have the following Theorem.
Theorem 2.5. Fora >p+2andp >4,
perAP* = P’;+p+1.

Proof. The assertion may be proved by induction on a. Let the equation be hold for a > p + 2, then we show
that the equation holds for « + 1. If we expand the perAP* by the Laplace expansion of permanent according
to the first row, then we obtain

per APl = per A1 — per APAP*2 4 per AP — per APATPL,

. a-1 _ ph ,a—p+2 _ ph
Since perA” = Pyyy perAPOTPTE = P,

perApe+l = ph pa2- Thus, the proof is complete. [J

perAPAP = Ph - and perAPaP~! = Pl it is easy to see that

Leta > p+2and let B = [bf ]a] be the @ X a matrix, defined by

ifi=rand j=r+1forl<r<a-p-1,
1 i=rand j=r-1for2<r<a
and
- i=rand j=r+pforl<r<a-p-1,
0 ifi=rand j=r+p-2forl<r<a-p-1
-1 and
i=rand j=r+p+1lforl<r<a-p-1,
0 otherwise.
Now we define the a X @ matrix CP* = [cf ]a] as follows:
(a—p—Z)th
l
1 ... 1 0 e 0
1
cra | 0 Brect
0

Then we can give the following Theorem by using the permanental representations.

Theorem 2.6. (i). Fora >p+2,
perB'® = —ph

a=1"

(if). Fora > p +2,

a—2
a _ h
perCP? = — E P
i=0
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Proof. (i) .Let the equation be hold for @ > p + 2, then we show equation hold for a + 1. If we expand the
perBP“ by the Laplace expansion of permanent according to the first row, then we obtain

perBPAtL = perBPATl — perBP P2 4 perBPA P — perBPA P
_  _ph ho_ ph I
- Pa—Z + Pa—p+1 Pa—p—l + Pa—p—Z'

So, we have the conclusion.
(ii) . If we expand the perCP* with respect to the first row, we write

perCP* = perC”'“‘l + peer'“_l.
From Theorem 2.5 and Theorem 2.6. (i) and induction on ¢, the proof follows directly. [J
Let the notation M o K denotes the Hadamard product of M and K. A matrix M is called convertible if

there is an u X u (1, -1)-matrix K such that per M = det(M o K).
Let G be the a X a matrix, defined by

1 1 1 1 1

-1 1 1 1 1

1 -1 1 1 1
G= :

1 1 -1 1 1

1 1 1 -1 1

fora>p+2.

Corollary 2.7. Fora >p+2andp >4
det(AP% o0 G) = PZ p+ls
det (B o G) = _PZ—1
and

a—2
det(C"* o G) = — Z P,
i=0

Let K (ky, ks, ..., ky) be a v X v companion matrix as follows:

ki ky - ke
1 0 0
K(k],kzr-”rkv): : . .
o --- 1 0

Theorem 2.8. (Chen and Louck [4]).The (i, j) entry kl(.l;,) (ki, ko, ..., ky) in the matrix K" (ki, ko, ..., ky) is given by
the following formula:

y L+t +--+1, 4+t
kl(-,j)(kl,kzl---,kv)= Z A x(l )k?'”k;v ®)

(i) ti+tr+---+1t, t,..., ty

. . . . . . . . HAtty)! -
where the summation is over nonnegative integers satisfying t; + 2ty + -+ + vty =u —i+j, tlt:' ey = (1;—;',1) isa
reerbo crlye

multinomial coefficient, and the coefficients in (5) are defined to be 1 if u =i — j.
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Then we have the following Corollary for the Hadamard-type Padovan-p numbers.

Corollary 2.9. For p > 4, let P! be the nth the Hadamard-type Padovan-p number. Then

1.
PI:, = Z (t1 +- 4 tp+2) (_1)tp,1+tp+2

t1,...,t
(flffz---,fwz) b 12

where the summation is over nonnegative integers satisfying t; + 2t +--- + (p +2) tpyo =n—p - L.
ii.

n

P _ tp+2 MR
t1+t2+"'+i’p+2

(_1)tp,1 +pi2
(t1,t2-/1t) b tp+2 )

where the summation is over nonnegative integers satisfying t; + 2t + -+ + (p +2) tpyo =n + 1.

Proof. In Theorem 2.8, If wetakei =p+2and j=1,forcasei andi=p+1, j = p+2, for case ii., then the
proof is immediately seen from (Mp)n. O

The generating function of the Hadamard-type Padovan-p sequence is given by:

P!
1 —x2 4 ap=1 — xp*l 4 xp+2

fp (x) =

It can be readily established that the Hadamard-type Padovan-p sequences have the following expo-
nential representation.

Theorem 2.10. The Hadamard-type Padovan-p numbers have the following exponential representation:
fp () = 2P ex i (x_2)1 (1 — P8 P - x”)i
’ ’ =
wherep > 4.

Proof. 1t is clear that

fr ()
In ppﬂ =-In (1 2+ x”*z)
X
and
—In (1 —x2 -t x’”z) = —[-2? (1 - - x”) -

A simple calculation shows that

o (42} .
lnfp(x) :Zx—,)(l—xp_3+xp_1—x”)l.

xp+1

Thus the conclusion is obtained. [
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Now we consider the sums of the Hadamard-type Padovan-p numbers.

Let .
T,=Y P
i=0

for n > 3 and p > 4, and let Q, be the (p + 3) X (p + 3) matrix, such that

0 --- 0

O = =

Qp = Mp

Then it can be shown by induction that
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A New View on Topological Polygroups
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Abstract. Soft set theory, defined by Molodtsov as a novel mathematical tool modeling uncertainty,
has been combined with many different discipline fields. In this article, the concept of soft topological
polygroups is proposed by examining polygroups, a special class of hypergroups, with a soft topological
approach. Also, several results have been obtained by establishing important characterizations related to
this concept. In last, by presenting the definition of soft topological subpolygroups, some of their properties
are examined.

1. Introduction

Hyperstructure theory, as a generalization of classical algebraic theory, was initiated by F. Marty at the
eighth congress of Scandinavian Mathematicians in 1934 [2]. Although it does not have a long history,
this theory has been used successfully in both applied and theoretical branches of mathematics. A special
subclass of hypergroups, one of the most important hyperstructures, is polygroups. Polygroups studied
by many researchers were defined by Ioulidis in 1981 [17]. Some algebraic and topological properties were
investigated in detail. Davvaz and Poursalavati in [16] described matrix representations of polygroups
over hyperrings. Subsequently, Davvaz introduced permutation polygroups and notions related to it [15].
Also, by examining the topological properties of this concept, the concept of topological polygroups was
presented by Heidari et al. as a generalization of topological groups [19].

Another important theory in the basis of this study is soft set theory. In 1999, soft set theory was proposed
by Molodtsov to resolve some complex problems involving uncertain data in engineering, medical science,
economics, environment science [1]. This theory, which is a powerful mathematical approach for modeling
uncertainties, has been studied algebraically and topologically by many mathematicians. Aktas and cagman
presented the definition of soft groups [3]. Later on, Jun defined the notion of soft ideals on BCK/ BCI-
algebras [8]. By defining the actions of soft groups, Oguz et al. examined the relation between the soft
action and soft symmetric group [9]. Also, topological studies on soft sets were introduced by Shabir and
Naz [6]. By proposing the definition of a soft topological space, they studied the separation axioms in a
soft topological space. Aygunoglu and Aygun described soft product topologies and soft compactness [11].
Oguz et al. defined soft topological categories and obtained some important properties [7]. After that, Oguz
proposed the concept of soft topological transformation groups [10]. On the other hand, soft hyperstructures
are introduced by applying soft set theory to hyperstructures. Leoreanu-Fotea and Corsini [13] defined the
concept of soft hypergroups. Yamak et. al. [12] introduced the notion of soft hypergroupoids. Morever,
soft polygroups were studied by Wanga et. al. [14].
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The main purpose of this study is to introduce the notion of soft topological polygroups by applying soft
set theory to topological polygroups. In addition, some important properties of soft topological polygroups
are examined and soft topological subpolygroups are studied.

2. Preliminaries

In this section, we review some fundamental notions and properties of soft sets and topological poly-
groups for the sake of completeness. See [1-4, 18].

Assume that X is an initial universe set and E is a set of parameters. Also, P(X) denotes the power set
of X and A C E. Then, Molodtsov defined the soft set follow as:

Definition 2.1. [1] A pair (7, A) is said to be a soft set over X, where F is a mapping defined by
F:A— P(X)
Clearly, a soft set over X can be regarded as a parametrized family of subsets of the universe X.

Definition 2.2. [4] Let (¥, A) and (G, B) be two soft sets over the common universe X. Then, (¥, A) is said to be a
soft subset of (G, B) if
i) ACB,
ii) F (a) and G(a) are identical approximations for all a € A.
We denote it as (F, A)C(G, B).

Definition 2.3. [4] A soft set (¥, A) over X is is said to be a null soft set denoted by @, if ¥ (o) = 0 for all a € A.

Definition 2.4. [4] A soft set (F,A) over X is is said to be an absolute soft set denoted by A, if F(a) = X for all
a €A

From an general perspective, the following notions are presented for the nonempty family {(F;, A;)li € I}
of soft sets over the common universe X

Definition 2.5. [5] The restricted intersection of the family {(F, Aili € I} is a soft set (F,A) = ﬁid(ﬁ, A;) such
that A = N Ai # 0 and F(a) = (i Fia) forall a € A;.

Definition 2.6. [5] The restricted union of the family {(F;, Ai)li € 1} is a soft set (F, A) = (Ur)ie1(Fi, Ai) such that
A= NigAi #0and F(a) = U Fi(a) for all a € A;.

Definition 2.7. [5] The extended union of the family {(F;, A)li € I} is a soft set (F,A) = Oid(ﬁ-, A;) such that
A = Ujg Ai and F(a) = Uier Fi(a), [(a) ={i € 1 :a € Aj} forall a € A;.

Definition 2.8. [5] The extended intersection of the family {(F;, Ai)li € 1} is a soft set (F,A) = ((\g)ier(Fi, Ai) such
that A = U;er Ai and F(a) = (Nieyqy Fi(a), (@) ={i € [ : a € Aj} for all a € A;

Definition 2.9. [5] The A—intersection of the family {(F;, A)li € I} is a soft set (F,A) = /~\,-€I(7~“i,A,-) such that
A = igtA; and F ((@i)ier) = Mieg Fi(ai) for all (a)ier € Ai.
Definition 2.10. [5] The V—intersection of the family {(F;, Ai)li € I} is a soft set (F,A) = \~/iel(7—'i,Ai) such that
A = igtA; and F ((@i)ier) = Uier Fi(ai) for all (a:)ier € Ai.

Now, we recall the definitions of polygroup and topological polygroup. Assume P*(P) be the set of all
non-empty subsets of P.
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Definition 2.11. [18] A polygroup is a multi-valued system P =< P,o,e,”} >, where o : P x P —> P*(P), e € P,
1 is a unitary operation on P and the following conditions hold for all x,y,z € P: i. (x o y) oz = x o (y o z), ii.
eox=xoe=x,iii. xeyozimpliesyexoz landze yox.

Definition 2.12. [14] Let P =< P, 0,e,”! > be a polygroup and K be a non-empty subset of P. Then K is said to be a
subpolygroup if < K, 0,e,7! > is itself a polygroup.

The concept of polygroup is examined with the soft set theory and the concept of soft polygroup is defined
as follows:

Definition 2.13. [14] For a non-null soft set (¥, A) over the polygroup P =< P,o,e,”t >, (¥, A) is said to be a soft
polygroup over P if and only if F (a) is a subpolygroup of P for all a € Supp(F, A).

Definition 2.14. [19] Let P =< P,o,¢,7' > be a polygroup and (P, 7) be a topological space. Then multi-valued
system P =< P,o,e,”! , T > is said to be a topological polygroup if the mappings ~' : P — Pand o : Px P — P*(P)
are continuous with respect to the the product topology on © X T and the topology t* on P*(P) which is generated by
B = {Sy|V € 1}, where Sy = {U e P*(P))lU C V,U € 1}.

Definition 2.15. [19] Let P =< P,o,e,”\,7 > and P' =< P’,o’,¢’,”} ,v" > be two topological polygroups. A
mapping 0 : P — P’ is called a good topological homomorphism if the following conditions are satisfied for all
X,y €P:

i. 0(e) =¢

ii. O(x o y) = O(x) o’ O(y)

iii. 0 is continuous and open.

Note that a good topological homomorphism is a topological isomorphism if the mapping 6 is one to
one and onto.

3. Soft Topological Polygroups

In this section, we define soft topological polygroups and present some of their features. From now
on, P denotes the set of all subpolygroups of a polygroup £ =< P, o,¢,”! > and P*(P) denotes the set of all
non-empty subsets of P.

Definition 3.1. Let T be a topology on the polygroup P =< P,o,e,”' > such that and ©* be a topology on P*, which
is generated by B = {Sy|V € 1}, where Sy = {U e P|U C V,U € 1}. Let (F,A) be a non-null soft set over P. The
pair (¥, A) is said to be a soft topological polygroup over P with the topology T if the following axioms hold:

i. F(a) is a subhpolygroup of P for all a € Supp(E, A).

ii. The mappings o : F (a) X F (a) — P*(F (a)) and ~! : F (a) — F (a) are continuous with respect to the topologies
induced by T X T and T for all a € Supp(F, A).

It is to be noted that if P is a topological polygroup, it is sufficient that only the first condition of the above
definition is satisfied in order to the pair (¥,A) to be defined as a soft topological polygroup. Namely, the soft
topological polygroup (¥, A) can be considered as a parameterized family of subpolygroups of the topological polygroup
P.

Theorem 3.2. Every soft polygroup on a topological polygroup is a soft topological polygroup.

Proof. Let P be a topological polygroup and let (¥, A) be a soft polygroup over £ with the topology 7. Then
¥ (a) is a subpolygroup of P for all a € A. Hence, ¥ (a) is a topological subpolygroup of # with recpect to
the topologies induced by 7 and 7* for all 2 € A. Therefore, (¥, A) is also a soft topological polygroup over
P. O

Remark 3.3. Each soft polygroup P can be transformed into a soft topological polygroup by equipping both P and
P*(P) with discrete or indiscrete topology. However, every soft polygroup over a polygroup is not a soft topological

polygroup.
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Theorem 3.4. Let {(F;, Ai)li € I} be a non-empty family of soft topological polygroups over P with the topology .
i. The restricted intersection of the family {(F;, Ajli € I} with (N, Ai # 0 is a soft topological polygroup over P if

Mier(Fi, Ai) # 0
ii. The extended intersection of the family {(Fi, A)li € I} is a soft topological polygroup over P if (\g)iet(Fi, Ai) # 0

Proof. i. The restricted intersection of the family {(7;, A))li € I} with (;;;A; # 0 defined as the soft set
Nier(Fi, Ai) = (F, A) such that (,¢; Fi(a) for all a € A. Choose a € Supp(F, A). Suppose (ie; Fi(a) # 0 so that
Fi(a) # O foralli € I. Since {(F;, A;)li € I} is a non-empty family of soft topological polygroup over # with the
topology 7, Fi(a) is a topological polygroup of P for all i € I. Then, ();; Fi(a) is a topological subpolygroup
of P. Thus, (¥, A) is a soft topological polygroup over P with the topology .

ii. The proof is similar toi. O

Theorem 3.5. Let {(F;, Ai)li € I} be a non-empty family of soft topological polygroups over P with the topology .

i. The extended union of the family {(F;, Ajli € I} is a soft topological polygroup over P if Fi(x) C Fi(x) or
Fi(x) € Fix) foralli,j €I, x € U A

ii. The restricted union of the family {(F:, A))li € I} is a soft topological polygroup over P if Fi(x) S Fi(x) or
Fi(x) € Fi(x) forall i, j € I, x € NigfA; with (i Ai # 0.

Proof. i. Assume (7, A) = U,e(Fi, Ai) as the extended union of the family {(7, Ai)li € I} with (;; Ai # 0.
Let Fi(x) € Fj(x) or Fi(x) € Fi(x) for all i,j € I, x € |J;; Ai. Choose a € Supp(F, A). Since each (7, A;) is
non-null soft sets over P, then | J;;(Fi, A;) is also a non-null soft set over # for all i € I. By the hypothesis,
Fi(x) € Fj(x) or Fi(x) € Fi(x) for all i,j € I, x € ;g A; with (N, A; # 0 such that Fi(x) and Fj(x) are the
topological subpolygroups of  and thus their union must be non-null too. Therefore, ¥ (x) is a topological
subpolygroup of £. Hence, (¥, A) is a soft topological polygroup over # with the topology 7.

ii. The proof is similar to that of i. [J

From the above proposition, the following resultf is easily obtained:

Corollary 3.6. Let {(F;, Ajli € I} be a non-empty family of soft topological polygroups over P with the topology t.
Then the extended union of the family {(¥;, A;)li € I} is a soft topological polygroup over P with the topology t if
AiNAj#Oforalli,jel i+

Theorem 3.7. Let {(i, Ai)li € 1} be a non-empty family of soft topological polygroups over P with the topology .

i. The A—intersection /o (Fi, Ai) is a soft topological polygroup over P if it is non-null.

ii. The V—union \/,c/(Fi, A;) is a soft topological polygroup over P if Fi(x;) € F(x;) or F(x;) € Fi(x;) forall i, j €1,
x; € Aj.

Proof. i. Write (7, A) = /~\ ie1(Fi, Ai) for a non-empty family {(F;, A;)li € I} of soft topological polygroups over
P with the topology 7. Leta € Supp(F, A). By the assumption, (;¢; Fi(a;) # 0 so that Fi(a;) # 0 foralli € ] and
(a:)ier € Ai. Hence, Fi(a;) is a topological subpolygroup of P for all i € I so that their intersection must be a
topological subpolygroup of  too. Thus, (¥, A) is a soft topological polygroup over H with the topology
T.

0

Definition 3.8. Let {(F;, Aj)li € I} be a non-empty family of soft topological polygroups over P; with the topologies
;. Then the cartesian product of the family {(F;, Ai)li € I} over IietH; with the product topology I1;e; Ti is denoted
by Iie1(Fi, Ai), is defined as Tl (F;, Ai) = (F, A) where A = ictA; and F (x;) = It Fi(x;) for all (x;)ie; € A.

Theorem 3.9. The cartesian product of the family {(F;, A:)li € 1} is a soft topological polygroup over Il;eiH; with the
product topology Iliert;.

Proof. Assume that (F;, A;) is a soft topological polygroup over P; with the topology 7; for all i € I. Then,
Fi(a) # 0 and Fi(a;) a topological subpolygroup of P; for all (a;)ic; € Supp(Fi, Ai). Thus, [Tie/Fi(a;) # 0 and
ITie;Fi(a;) a topological subpolygroup of I1;e/P; with the product topology Ilit;. Therefore, I (Fi, Ai) is a
soft topological polygroup over [1;;P;. O
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3.1. Soft Topological Polygroup Homomorphisms

Definition 3.10. Let (¥, A) and (%, B) be soft topological polygroups over P and P’ with the topologies T and 7',
respectively. Let ¢ : A — Band ¢ : P — P’ be two mappings. Then, the pair (), @) is said to be a soft topological
homomorphism if the following axioms hold:

i. 1 isa good homomorphism.

ii. Y(F (a)) = K(p(a)) for all a € Supp(F, A).

ii. ¢, : (F @), 7)) — (K(p(a)), T;(((p(a») is continuous and open for all a € Supp(F, A).

In this perspective,, it follows that a soft topological homomorphism (¢, ) is a mapping of soft topo-
logical polygroups. Therefore, we define a new category whose objects are soft topological polygroups and
whose arrows are soft topological homomorphisms.

In addition, it can be said that (¥, A) is soft topologically isomorphic to (X, B) if the mappings ¢ and ¢
are one to one and onto.

Example 3.11. Let (K, B) be a soft topological subpolygroup of (¥, A) over P. Together with the inclusion map
i : B — A and the identity map I : P — P, the pair (I,i) is a soft topological homomorphism from (K, B) to
(F,A).

Example 3.12. Let (¥, A) and (K, B) be the two soft good homomorphic polygroups defined over P and P’, respec-
tively. Then (¥, A) is soft topological homomorphic to (K, B) with discrete or anti-discrete topology. Thus, any
soft good homomorphic polygroups can be regarded as soft topological homomorphic polygroups in the discrete or
anti-discrete topology.

Theorem 3.13. Let the pair (1, @) be a soft topological homomorphism from (¥, A) to (K, B), where (¥,A) and
(%, B) are two soft topological polygroups over P and P, respectively. Then, (¢(F), B) is a soft topological polygroup
over P’ if ¢ : A — B be an injective mapping.

Proof. Let (¥,A) and (K, B) be two soft topological polygroups over £ and #’ with the topologies T and
7', respectively. Then, ¥ (a) is a topological subpolygroup of # for all a € Supp(F, A). Since (i, ¢) :
(F,A) — (K, B) is a soft topological homomorphism, we have @(Supp(F,A)) = Supp(Y(F), B). Choose
b € Supp(Y(F), B). So there exist a € Supp(F, A) such that p(a) = b, thus we have ¥ (a) # 0. Further, ¥ (a) is
a topological subpolygroup of  with respect to the topology induced by 7. Since 1 is a good topological
homomorphism, then (¥ (x)) is a topological subpolygroup of $’ with respect to the topology induced by

7’. Therefore, ({(¥), B) is a soft topological polygroup over ’ with the topology v’. [

Theorem 3.14. Let the pair (), @) be a soft topological homomorphism from (¥, A) to (K, B), where (¥, A) and
(K, B) are two soft topological polygroups over P and P’, respectively. Then, (y~(K),A) is a soft topological
polygroup over P if it is non-null.

Proof. Assume that (¥, A) and (%, B) are two soft topological polygroups over £ and £’ with the topologies
Tand 7/, respectively. So for all b € Supp(K, B), it is easy to show that p(Supp(y~(K), A)) = ¢~ (Supp(K, B)).
Leta € Supp(y~1(K), A), thus ¢(a) € Supp(K, B). Hence, the nonempty set K(¢(a)) is a topological subpoly-
group of P’ with respect to the topology induced by t’. Since ¢ is a good topological homomorphism, then
P HK(p(b)) = P~1(K()) is a topological subpolygroup of P with respect to the topology induced by 7.
Thus, it has been proven that the pair (1 71(K), A) is a soft topological polygroup over P with the topology
. O

Theorem 3.15. Let (7, A), (K, B) and (N, C) be soft topological polygroups over P, P’ and P with the topologies
T, v and t©”, respectively. Then, (' o, ¢’ o @) : (F,A) — (N,C) is a soft topological homomorphism if
W, @) : (F,A) — (K,B)and (', ¢’) : (K,B) — (N, C) are two soft topological homomorphisms.

Proof. Suppose that (,¢) : (F,4) — (K,B) and (', ¢’) : (K,B) — (N, C) are two soft topological
homomorphisms. Then, i) : P — P’ and ¢’ : P’ — P” are two good topological homomorphisms,
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and ¢ : A — B and ¢’ : B — C are two mappings such that the equalities (¥ (1)) = K(p(a)) and
P (K(b)) = N(¢’ (b)) hold for all a € Supp(F, A), b € Supp(K, B). Obviously, ¢’ o ¢ : P — P” is also good
topological homomorphism and ¢’ o ¢ : A — C is a mapping so that the equality

@ o P)(F (@) = ' (Y(F (@) = P (K(p(@)) = N(@'(¢@)) = N(¢" ° 9)(@))

holds for all a € Supp(¥, A). Thus, the pair (" o ¢, ¢’ o @) is a soft topological homomorphism from (7, A)
to(N,0). O

3.2. Soft Topological Subpolygroups

Definition 3.16. Let (¥, A) and (%, B) be soft topological polygroups over P with the topology t. Then the pair
(K, B) is said to be a soft topological subpolygroup of (¥, A) if the following axioms hold :

iLBCA.

ii. K(b) is a subpolygroup of F (b) for all b € Supp(K, B).

iii. The mappings - : K(b) X K(b) — P*(K (b)) and

1 K(@b) — K(b)
are continuous for all b € Supp(K, B).

Example 3.17. Take a soft topological polygroup (F, A) over P with the topology t. Then, (¥ |, B) is a soft topological
subpolygroup of (F,A) if B C A.

Theorem 3.18. If (%, B) is a soft topological subpolygroup of (¥, A) and (N, C) is a soft topological subpolygroup
of (K, B), then (N, C) is the soft topological subpolygroup of (¥, A).

Proof. The proof follows from Definition 3.16. [J

Theorem 3.19. Let (F,A) and (K, B) be two soft topological polygroups over P with the topology . Then, (K, B)
is a soft topological subpolygroup of (F, A) if (K, B) is a soft subset of (F, A).

Proof. Suppose that (¥, A) and (K, B) are two soft topological polygroups over £ with the topology .
Then, the nonempty sets ¥ (x) and K (x) are the topological subpolygroup of . By the assumption, if (X, B)
is a soft subset of (¥, A), then B € A and K(b) € F(b) for all b € Supp(K,B). So, K(b) is a topological
subpolygroup of ¥ (b) with respect to the topology induced by 7. From this fact, we conclude that (%, B) is
a soft topological subpolygroup of (¥, A) with the topology 7. O

Theorem 3.20. Let (F,A) be a soft topological polygroup over P with the topology T and {(F:, Ai)li € 1} be a non-
empty family of soft topological subpolygroups of (F, A).

i. The restricted intersection of the family {(Fi, A;)li € I} with (e Ai # 0 is a soft topological subpolygroup of (¥, A)
if Nier(Fi, Ai) # 0

ii. The extended intersection of the family {(F;, Ai)li € I} is a soft topological subpolygroup of (F,A) if (Ng)ier # 0

Proof. i. The restricted intersection of the family {(7;, A))li € I} with (;;;A; # 0 defined as the soft set
Niel(Fi, A)) = (F, A) such that F(a) = ;e Fi(a) for all a € A. Let a € Supp(F,A). Suppose N Fi(a) # 0,
which implies Fi(a) # 0 for all i € I. Since {(F;, A)li € I} is a non-empty family of soft topological
subpolygroups of (¥, A), we get A; € A and F;(a) is a topological subpolygroup of ¥ (a) with respect to the
topology induced by 7 for all i € I. Hence, (N;¢; Ai € A and (,¢; Fi(a) is a topological subpolygroup of 7 (a).
Consequently, the family {(F;, A;)|i € I} is a soft topological subpolygroup of (¥, A)

ii. The proofis similar toi. O

Theorem 3.21. Let {(F, A)li € I} be a non-empty family of soft topological subpolygroups of a soft topological
polygroup (¥, A) over P with the topology 7.

i. The extended union of the family {(Fi, Ai)li € I} is a soft topological subpolygroup of (F,A) if fi(x) € fi(x) or
fi@) € fi(x) foralli,j €I, x € U A

ii. The restricted union of the family {(F;, A:)li € 1} is a soft topological subpolygroup of (¥, A) if fi(x) C fi(x) or
fi(x) € fi(x) foralli,j € I, x € ;e Ai with iy Ai # 0.
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Proof. i. Suppose that {(F;, A;)li € I} is a non-empty family of soft topological subpolygroups of a soft
topological polygroup (7, A) with (N, A; # 0. Let Fi(x) € Fi(x) or F;(x) € Fi(x) for all i, j € I, x € U A
Take a € Supp(F, A). Since each (¥, A;) is non-null soft sets over P, then | J;;(7:, A;) is also a non-null soft
set over P for all i € I. By assumption, Fi(a) C F;(a) or Fi(a) € Fi(a) foralli,j € I,a € (g A with (g, Ai # 0
such that F;(a) and ¥(a) are the topological subpolygroups of ¥ (a) with respect to the topology induced by
7 and so their union must be non-null too. This show that the extended union of the family {(F;, A;)li € I} is
a soft topological subpolygroup of (¥, A) with the topology 7.

ii. The proof is similar to i.

O

Corollary 3.22. Let {(F, Ai)li € I} be a non-empty family of soft topological subpolygroups of a soft topological
polygroup (F, A) over P with the topology ©. Then the extended union of the family {(F;, Ai)li € 1} is a soft topological
subpolygroup of (F, A) with the topology Tif AiNA; # 0 foralli,jel, i+ ]

Theorem 3.23. Let {(F;, Aj)li € I} be a non-empty family of soft topological polygroups over P with the topology T
and let (%, B;) be a soft topological subpolygroup of (F;, A;) for alli € I.

i. The A—intersection 7\iel(7(il B;) is a soft topological subpolygroup of 7\1’61(771'/141') if it is non-null.

ii. The V—union \~/iE1(7(i,B,-) is a soft topological subpolygroup of \71‘51(7:1‘/ Ap) if Ki(bi) € Ki(bj) or K;(bj) < Ki(bi)
foralli,jel, b; € B,

Proof. i. Consider {(F;, Aj)li € I} as a non-empty family of soft topological polygroups over £ with the

topology 7. By 3.5 Theorem (ii), \/;;(Fi, A:) is also a soft topological polygroup over £ with the topology .
Choose b; € Supp(%K;, Bi). By the assumption, (;; Ki(bi) # 0 such that K;(b;) # 0 for all i € I and (b;);es € Bi.
Also, B; € A; and K;(b;) is a topological subpolygroup of F;(b;) with respect to the topology induced by
for all i € I so that (;¢; Bi € Nier Ai and V ;¢ (Ki(bi)) must be a topological subpolygroup of \/ .;(Fi(b;)) too.
So, Aier(%, Bi) is a soft topological subpolygroup of A (7, A;) with the topology ©

ii. The proof is similar toi. [

Theorem 3.24. Let (¥, A) be a soft topological polygroup over P with the topology t and (%, B) be a soft topological
subpolygroup of (F, A).

i. The restricted intersection of (¥, A) and (K, B) is a soft topological subpolygroup of (¥, A) if it is non-null.

ii. The restricted union of (¥, A) and (%, B) is a soft topological subpolygroup of (¥, A) if it is non-null.

Proof. i. Assume that (K, B) is a soft topological subpolygroup of (¥, A) over # with the topology 7. If it is
non-null, it follows that B € A and K(b) is a topological subpolygroup of ¥ (b) with respect to the topology
induced by 7 for all b € Supp(K, B). Thus, it is easy to see that ANB C A and K(b) NF () is also a topological
subhypergroupoid of ¥ (b) with respect to the topology induced by 7 for all b € Supp(K, B). Therefore, the
restricted intersection (7, A)N(K, B) is a soft topological subpolygroup of (¥, A) with the topology 7.

ii. The proof is similar toi. [

Theorem 3.25. Let f : P — P’ be a good homomorphism of topological polygroups with the topologies T and
v, respectively, and let (F,A) and (K, B) be two soft topological polygroups over P’. Then, (f 1(K), B) is a soft
topological subpolygroup of (f "1(F), A) if (K, B) is a soft topological subpolygroup of (¥, A) with the topology 7.

Proof. Assume (K, B) be a soft topological subpolygroup of (¥,A) over £ with the topology t’. Take
b € Supp(f~1(K), B). Since (K, B) is a soft topological subpolygroup of (¥, A), it follows that B C A and (K (b))
is a topological subpolygroup of (¥ (b) with respect to the topology induced by 1’ for all b € Supp(f~1(X), B).
Morever, since f :  — P’ be a good topological homomorphism, then f~}(F)() = fHF (b)) is a
topological subpolygroup of fH(K)(b) = f(K(b)) with respect to the topology induced by 7 for all
b € Supp(f(K), B). This proves that (f~}(%K), B) is a soft topological subpolygroup of (f~}(F), A) with the

topology .
O
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Theorem 3.26. Let f : P — P’ be a good homomorphism of topological polygroups with the topologies T and 1,
respectively, and let (F, A) and (K, B) be two soft topological polygroups over P. Then, (f(K), B) is a soft topological
subpolygroup of (f(F), A) over P’ with the topology t’ if (K, B) is a soft topological subpolygroup of (¥, A) with the
topology .

Proof. Suppose that (%, B) is a soft topological subpolygroup of (¥, A) over $ with the topology . If (%, B)
is a soft topological subpolygroup of (¥, A), it follows that B C A and (K (b)) is a topological subpolygroup
of (¥ (b) with respect to the topology induced by 7 for all b € Supp(K, B). Furthermore, since f : P — P’ bea
good topological homomorphism, so f(7)(b) = f(F (b)) is a topological subpolygroup of f(K)(b) = f(K(b))
with respect to the topology induced by 7’ for all b € Supp(f(K), B). Therefore, (f(K), B) is a soft topological
subpolygroup of (f(7),A). O
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Abstract. In this paper, we firstly express ruled surfaces drawn by Frenet and Darboux vectors of Bertrand
mate depending on Bertrand curve. Then, the tangent vectors of the striciton curves on these surfaces are
calculated. Finally, we give some results with these vectors.

1. Introduction and Preliminaries

Many results on ruled surfaces have been obtained by mathematicians (see [1, 5,9, 11, 12]). In [11], authors
examine spatial quaternionic ruled surfaces. Another study, authors express some results about Bertrand
offsets in Minkowski space [5]. A ruled surface is generated by a one-parameter family of straight lines and
it possesses a parametric representation

®(s,v) = a(s) + ve(s) 1)
where a base curve and e generator vector [3]. The striction curve is given by [3]

(as, es)
c(5) = a(s) = o1 els). @
The notion of Bertrand curves was discovered by J. Bertrand in 1850. There are many studies on the Bertrand
curve Bertrand curves in different areas. In [6], authors examine the Bertrand curves in the Euclidean 4-space
as quaternionic. J. Monterde characterize Bertrand curves defined from Salkowski curves [10].
Let a be a unit speed curve in E2, and {V(s), Va(s), V5(s)} denote the Frenet frame of a. The Frenet formulas
are given by

Vi 0 kt 0 Vi
Vz = —k1 0 kg V2
Vs 0 -k 0 || Vs

where k; and k; denote the curvature and the torsion of a, respectively. On the other hand, the Darboux

vector is [2]
D(s) = ka(s)V1 () + k1(s)V3 (s), ©)
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The modified Darboux vector [4]
ka(s)
ka(s)

Leta and a" be the unit speed two curves and let V1(s), Va(s), V3(s) and Vi (s), V3 (s), V;(s) be the Frenet frames
of the curves a and a*, respectively. If the principal normal vector of the curve a is linearly dependent on
the principal normal vector of the curve a*, then the pair {a,a*} are called Bertrand pair and a* is called
Bertrand mate. [3]. The parametrization of Bertrand mate is [3]

D@s) = —=(6Vi(s) + V3 (s). (4)

a’(s)=a(s)+AVa(s) ®)
Theorem 1.1. [3] The distance between corresponding points of the Bertrand pair in B3 is constant.

Theorem 1.2. [3]. Ifky(s) # 0along a(s), then a(s) is a Bertrand curve if and only if there exist nonzero real numbers
A and B such that constant
/\kl + ﬁkz =1. (6)

Theorem 1.3. [3] Let o and a* be the unit speed two curves. {Vl, Va, Vs, D, kl,kz} and {V* |29%" Dr, ki, k5 } are

Frenet-Serret apparatus of the Bertrand curve and the Bertrand mate, respectively. Then, the formulas are given by

Vi+ AV, —“AVi+BVs .. kiAJAZ+B2 .
BV1 3 Vi=Vs V3= 1+BVs3 ooh B

TR Ny R TS

The first and second curvatures of Bertrand mate are given by

f—

K = ‘Bkl Ak . 1
T2k T (R Pk

Leta : I — IE3 be differentiable unit speed curve and let {V1(s), V2a(s), V3(s), D} be the Frenet-Serret apparatus
of this curve. The equations

@1 (s,u1) a(s) +uiVi(s)

¢2 (s, u2) a(s) +uaVa(s) @)
@3 (s,us) = a(s)+uzVs(s)

Pa(s,ug) = a(s)+ usD(s)

are the parametrization of the ruled surface which are called tangent ruled surface, normal ruled surface,
binormal ruled surface, modified Darboux ruled surface, respectively. For the sake of shortness, we write
Frenet ruled surfaces instead of the above all ruled surfaces.

Theorem 1.4. [8] The tangent vectors of the striction curves on Frenet ruled surfaces are given by the following
matrix

1 0 0
T: K (%) kiky v,
| 2| nle6) c5(s) c5(s)
[T] = T; = I% ” 20 ” (2) ” ‘{;2
T4 p-p -k ' ’
80 kK _H
6| w2l |

wheren =k +k3, p = (%)/
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Definition 1.5. [9] Let a* : I — IE® be differentiable unit speed curve and let {Vi(s), V5(s), V5(s), D*} be the Frenet-
Serret apparatus of this curve. The equations

. . ) BV + AVs
p1sw) = a*(s)+w Vi) =a+AVy+w————
VA? + B2
Py (s,wa) = a’'(s)+wVy(s) =a+(A+w) Vs (8)
—-AV7 + BV,
P53(s,w3) = a'(s)+w3V5(s)=a+AVy+ws 1—‘63
VAZ + B2
. ki A/AZ + B2
Py (s,wy) = a’(s)+wsD*(s) = a+ AV, + w4¢D

(Bky — Aky)

are the parametrization of the ruled surface which are called Bertrandian tangent ruled surface, Bertrandian
normal ruled surface, Bertrandian binormal ruled surface and Bertrandian modified Darboux ruled surface,
respectively.

For the sake of shortness, we write Bertrand ruled surfaces instead of the above all ruled surfaces.

Theorem 1.6. [7] The tangent vectors of striction curves on Bertrand ruled surfaces are given by the following matrix

o

1 0
1 *
| _|a b c “;1
|71 0 02
T: @0 e |73
where
kY VR SV G A Y N Y
: Ky ) wme e ) o
a = T = , C = 7 = ) = 71 A% 4
7 [l 6| ') 7 [le5 )| ey ()l —m’|lcy" (S)Il
( -m’ 4 1
o m2k2 \//\2+ﬂ2 ky \//\2+‘32 k* ’
* H _ k*Z k*Z
¢ = —0 = , N = +2,y—k.
u?|ey )| ]

(ﬁ) lley @I

2. An Examination on the Striction Curves in terms of Special Ruled Surfaces

In this section Then, the tangent vectors of the striciton curves on Frenet and Bertrandian ruled surfaces are
calculated. We give some results with these vectors.

Theorem 2.1. The relationship between the tangent vectors of the striciton curves on the Frenet and Bertrandian
ruled surfaces is

-c'A B dp-eA
[T][T]" x ax+ b* \/ +p2+a'y x dx+ey
\/—ﬁz -cA B dp—eA
a* z +c't z d'z+e't
where
kz(ﬁkz + /\k1) kz( - Akz + ‘Bkl) B (y - y’ - %)ﬁ + ‘Ll'A 3 (— u+ y' + %)A + [J"B

7

] ]

]



S. Kiligoglu /TJOS 5 (2), 118-123 121
Proof. Let [T] = [A][V]and [T*] = [A*][V"] hence, by using the properties of the matrix, we can write
[TITT" = [AlIVIQATIVD"

= [AN(vIVTT) AT
1 0 0
kY
K 3 Lo o o
@l Joel ™o ([ Yolll o oo || V2
= V2 V2
v 1 0 0 vt
1 0 0 3 ax 0 ¢ 3
,_k
B W
2] R (=1
g 0 ) * *
1 a4 1 d
_ 1 x bAZ+p2 y 0 0
A%+ ﬁZ 18 0 —A 0 ¢ 0 ¢
| z 0 t
_ ‘8 a*ﬁ—C*/\ ’8 d*lg_e*A
_ 1 X ax+bA\AZ+B2+a'y x dx+e'y
- JA2+p2| B ap-cA B d'p-eA
| Z a‘z+c't z d'z+e't

T, T I, T;) (T, T;) (T1,T,
() (ToTy) (ToTy) (T T;
T5,T;) (T5,T3) (T5,T3) (Ts,T;

Ty, T:) (ToTy) (T T) (Ta T

%
1

O

Corollary 2.2. There are four pairs of tangent vector fields equal to each other of the striction curves on Frenet and
Bertrandian ruled surfaces.

: % % ﬁ . . . .
Proof. Since (T1,T;) =(T1,T:) =(T3,T;) =(T3,Ts) = ———, itis trivial. [
f. (1. 17) = (10, T5) = (T3, T3) = (T, ) JEi P
Corollary 2.3. i)Iangent vectors of striction curves on tangent ruled surface and Bertrandian normal ruled surface
are perpendicular if p = Am where m = ki — Aky.
ii)Tangent vectors of striction curves on binormal ruled surface and Bertrandian normal ruled surface are perpendicular
if B = Am.
s . ap—cA
Proof. i) Since (Ty, T;) = ——=and (T, T;) =0
VA2 + B2
ap—cA
B — A(Bk1 — Aky)
g = Am,

o
L L
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this completes the proof.
ii) Since (T, T;) = (T3, T), it is trivial. [

Corollary 2.4. i)Tangent vectors of striction curves on tangent ruled surface and Bertrandian modified Darboux
ruled surface are perpendicular if

ii)Iangent vectors of striction curves on binormal ruled surface and Bertrandian modified Darboux ruled surface are
perpendicular if
Ty 1 v 1\ 1 1\
() =) == () A
ap—ei
—————and (T, T;) =0
VA2 + p?

Proof. i) Since (T4, T}) =

dp-eA = 0
D) - () -2l-(5)a=0
GG - ) -al= ()

this completes the proof.
ii) Since (T4, T;) = (T3, T}), it is trivial. (O

The following corollaries are obtained similar to Corollary 2.5.

Corollary 2.5. i)Iangent vectors of striction curves on normal ruled surface and Bertrandian tangent ruled surface
have orthogonal under the condition k, = 0.

ii)Tangent vectors of striction curves on normal ruled surface and Bertrandian binormal ruled surface are perpendicular
isz =0.

Corollary 2.6. i)Tangent vectors of striction curves on modified Darboux ruled surface and Bertrandian tangent
ruled surface are perpendicular if

_M%%ﬁﬂ—ﬂ.
()[R +4]

ii)Iangent vectors of striction curves on modified Darboux ruled surface and
Bertrandian binormal ruled surface are perpendicular if

_M%%ﬁﬂ—ﬂ.
()[R +4]

Corollary 2.7. Tangent vectors of striction curves on normal ruled surface and Bertrandian normal ruled surface are
perpendicular if

m(x + y)
(2 )]

Corollary 2.8. Tangent vectors of striction curves on normal ruled surface and Bertrandian modified Darboux ruled

surface are perpendicular if
Ivr1ly 1\ 1 1\
GG -G = b=
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Corollary 2.9. Tangent vectors of striction curves on modified Darboux ruled surface and Bertrandian normal ruled

sutface are perpendicular if
z

(-2 kik .
/\(A 17 1k )
Aol ~ Pallee

ky = pky —

Corollary 2.10. Tangent vectors of striction curves on modified Darboux ruled surface and Bertrandian modified
Darboux ruled surface are perpendicular if

(G) -() -2 =~)
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Abstract. In our paper, the spread of SIQR model with fractional order differential equation is considered.
We have evaluated the system with fractional way and investigated stability of the non-virus equilibrium
point and virus equilibrium points. Also, the existence of the solutions are proved. Finally, the efficient
numerical method for finding solutions of system is given.

1. Introduction

Fractional calculus is a very efficient way for researchers while studying real world phenomena problems
like astronomy, biology, physics also in the social sciences e.g. education, history, sociology, life sciences
. In recent years, fractional order differential equations have become an important tool in mathematical
modelling. The most useful way to work on modelling is considering models again with their fractional
order version. The most commonly used definitions are Riemann and Caputo fractional order derivatives.
The Riemann-Liouville derivative is historically the first but there are some difficulties while applying it to
real life problems. In order to overcome these difficulties, the latter concept, fractional order Caputo type
derivative is defined [3, 5, 6, 8, 16].

Some disease models which are an important area in mathematical modelling are discussed [1,9, 10, 13].
In our paper, we have investigated the system of equations involving fractional derivatives. But especially
we are interested in investigating the spread of fractional order SIQR model using the concept of fractional
operator of Caputo differentiations. After considered SIQR model with Caputo type, disease free equi-
librium and endemic equilibrium points are computed. Also we have applied the next generation matrix
method to calculated the basic reproduction number Ry [19]. The stability analysis of SIQR model and the
existence and uniqueness of its solutions have been obtained. Finally a suitable iteration for the solutions
of the SIQR model is obtained by Atangana-Toufik method [18].

2. Preliminaries

In this section, let us give important definitions of fractional derivatives and their useful properties
[7-17].
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Definition 2.1. The Gamma function T'(x) is defined by the integral as below:
T(x) = et Ldt. (1)
One the basic properties of the gamma function is that it satifies the following equation :
I'x+1)=xI(x)=z.(z-1)! =2zl (2)
Definition 2.2. The Griinwald-Letnikov definition is given as

(l t')

D5 = Jim =3 (1)

&

k=0

Fractional derivative operator is non-local in nature and fractional equations provides an useful tool to
describe phenomenas comprising memory and hereditary features. Such a phenomena can also appear in
biological processes, population dinamics.

Definition 2.3. Riemann-Liouville definition of fractional order differ-integral:

DS F() = mf( oy faydr, @
where
n-1<a<nnelN. (5)
The Laplace transform of the Riemann-Liouville fractional order differ-integral is given as below:

. _ s%F(s) for a <0,
L[oDy f(t)] = { s%F(s) = F'(s) for a>0," ©

wheren —1<a <n,nelN.

Definition 2.4. Caputo’s definition of fractional order differ-integral:

Cha — fn(T
DA = ¢ f T ?

wheren —1 <a <n,n €N, a € Ris a fractional order of the differ-integral of the function f(t).

The Laplace transform of the Caputo fractional order differ-integral is given as follows:

n—-1

LISDE f(5)] = sF(s) - ) 5" £9(0) )

k=0

wheren—1<a<nnelN.
Now, we give some important lemmas for Riemann-Liouville derivative and Caputo derivative as
following:

Lemma 2.5. Let us take a functzon f(x) and m,n > 0, then the following equations hold.
For R — L derivative given as:
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i. Linearity rule:

Dy (cfi + f2) =0 Di(cfi) +a Di(f2) = caDy (f1) +a Di (f2). ©)

ii. The semi-group property does not hold. Indeed, the following equation is not always true.

DD} f = D', (10)
For Caputo derivative given as:
i. Linearity rule:
i Di(cfi + f2) =¢ Di(ch) +; Di(f) = ¢ D} () +7 D} (fa). (1)
ii. The semi-group property:
cpec Df f =€ DI (12)

Fractional derivative operator is non-local in nature and fractional equations provides an useful tool to describe
phenomenas comprising memory and hereditary features. Such a phenomena can also appear in biological processes,
population dinamics.

Theorem 2.6. Consider the n-dimensional system

Dzy(t) = f(t, y(D)),

13
y(to) = o, 13)

where a € (0,1) and DY represents Caputo sense fractional derivative of order a. Let y* be the equilibrium point
of the system and J(y*) be the Jacobian matrix about the equilibrium point y*. Then, the equilibrium point y* is locally
asymptotically stable if and only if all the eigenvalues ri, i = 1,2, ..., n of J(y*) satify | arg(r;)| > 5.

Theorem 2.7. Considering the delayed fractional differential system with the Caputo fractional derivative as

Dy(h) = My(t) + Ny(t - 1),
y) =y, t € [-7,0],
where a € (0,1], y € R", M,N € R™", and {(t) € R'". The characteristic equation of the system (14) is given as

(14)

det|r*I — M — Ne™ | = 0. (15)

If all the roots of (15) have negative real parts, then the zero solution of system (14) is locally asymptotically stable
[12,15]

3. Model Derivation

In this paper, we proposed a SIQR epidemic model with given first version with following form [11]:

is sl

i psI

E = W—(y+)/+6+a)l,
4Q = 0—-(u+e+a)Q,

dt

dR

il yI+€eQ - uR,
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where 5,1, R detone the numbers of susceptible, infective and removed, recpectively, Q detones the
number of quarantined and N = S + I+ Q + R is the number of total population individuals. The parameter
A is the recruitment rate of S correspoinding to births and immigration; § detones tha average number
of adequate contacts; u is the natural death rate; y and e detone the recover rates from grup I, Q to R,
recpectively; 6 detones the removal rate from I; « is the disease-caused death rate of I and Q. The parameters
involved in the system (3) are all positive constans [11].

Fractional calculus which means fractional derivatives and fractional integrals is of increasing interest
among the researchers. It is known that fractional operators describe the system behavior more accurate
and efficiently than integer order derivatives. Because of great advantege of memory properties let us
consider model given above, again with fractional order. Fractional order SIQR epidemic model given as
below:

SI
Des(t) = A-u —%, (17)
SI
Der(t) = %—(y+y+6+oz)l,
CDrQ(t) = Sl-(u+e+a)Q,
SDIR(t) = yl+eQ—puR,

with initial conditions
S (to) = So, I (to) = I, Q (to) = Qo and R (tp) = Ry.

A working on equilibrium points and their asymptotic stability:

In this part, we study stabilities of non-virus equilibrium, virus equilibrium, and basic reproduction
number of our fractional model (18).

Let a € (0,1] and consider the Caputo differential equation system as below:

SDIS() = Fi(t,S(1), (18)
$DEI(t) = Faft,I(t),
SDFQ() = Fs(tQ®),
CDIR(H) = Fi(t,R(D).
with initial conditions
S (to) = So,1(to) = In, Q (to) = Qo and R (to) = Ro. (19)
Here,
Fi(t,S(t) = A-uS(t)— w (20)
Fo(t,I(t) = w —(p+y+o+a)l(D),
F3(t,Q() = oI(t)—(u+e+a)Q(t),
Fi(t,R(t) = yI(H)+eQ(t) - uR ().

3.1. Analysis of the non-virus equilibrium point

A non-virus equilibrium point is the point with no virus infection. Clearly, the point Ey = (%, 0,0, 0) to
the non-virus equilibrium point of model (18).
Here, we examine the basic reproduction number in more detail utilizing the method given in [19].

According to the next generation matrix method, the matrices F and W are defined as:
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g

For obtaining the eigenvalues of the matrix IN-“ W -1 at the point Ey = (ﬁ,O, 0, O) , we have to solve the
following equation

(21)

oz[&
oo
ed
jov]
=]
Q.
=
I}
—

~~-1
'PW - M‘ =0, (22)
where A are the eigenvalues and I is the identity matrix. So, the reproduction number is

BA

Rp = .
0 Nu(u+y+o+a)

(23)

Therefore, the disease free (non-virus) equilibrium point Ey = (%, 0,0, 0) is locally asymptotically stable if
Ry < 1.

3.2. Analysis of the virus equilibrium point

The Jacobian matrix J (S*,I*, Q*, R*) for the system given in (18) is.

i I
—u-5& 5 0 0
BS* s
[(S', T, O RY) = -5 ~ - (u+y+o+a) o v | (24)
0 0 —(u+e+a) e
0 0 -u

We now discuss the asymptoticstability of the E = (5%, I*, Q, R*) equilibrium the system given by (18),

¢ = N((u+yﬁ+6+a)), (25)
p oo P-iNu+y+o+a)
Bluty+o+a) '
o S(B-uN(p+y+o+a))
Blu+te+a)(u+y+o+a)
R o= WFrOB-pN@u+y+o+a))
Bu(u+y+o+a)

The characteristic equation of system is obtained via determination of (26)

K(A) =det(J— A = 0. (26)

The characteristic roots are obtained by solving the following equation

KA) = At + @A + apA? + a3A +a, = 0. (27)

Here
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* *

m = Qute+a)+u+ NN +(u+y+o+a), (28)
pr_gs’
;= pptreta)+Qureta)iptm-m+(p+y+ota)
1)F 6 I*
Jfl +P‘(#+V+6+a)+ﬁ(“+7/;:] +a) ,
I BS
= “(#+€+“)#+ﬁl\,—%+(u+y+5+a)]
I* 6 Ix-
+(2M+€+0{)|:—#ﬁ +‘U([Ll+')/+6+a)+‘8(‘u+y+ +C() ]/
N N
I* 6 I:c—
A = #(H+€+0‘)[_y£] +#(H+7/+6+0c)+ﬁ(“+7’; +a) ]

Foraq,a,a3,a4 > 0,a1a, —az > 0 and aa0a3 — a§ - a%a4 > 0, so by Routh-Hurwitz Criterion, all characteristics

roots have negative real parts. Therefore equilibrium point is asymptotic stable.

4. Working on the existence of solutions

Let B = @ () X D (g) and @ (g) be the Banach space of continuous function defined on the interval g with
the norm

IS, L, Q, Ril = lISI + [I1]I + 1QIl + [IRIl (29)

Here, ||S]| = sup {IS (t)| : t € g}, Il = sup {|II (t)| : t € g}, [IQIl = sup{|Q (#)| : t € g} and ||R|| = sup {|[R(¥)| : t € q}.
Let us consider the classical SIQR model again by replacing the time derivative with Caputo fractional
derivative:

SDES(t) = Fat,S(t), (30)
EDML(t) = Fa(tI(t),
CDIQ() = Fs(t,Q(1),
CDIR(t) = F4(t,R(t).
with initial conditions
S (to) = So,1(to) = Io, Q (to) = Qo and R (to) = Ro. (31)
Here,
Fi(t,S(t)) = A-puS(t)- w (32)
Fp(t,I(t) = w —(uty+o+a)l(t),
F3(t,Q() = oI(t)—(u+e+a)Q(t),
Fy(t,R(t)) = pI(t)+eQ(t) — uR(t).

The above system (30)is written as below:
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SH-S = F%qu—ﬂ*Ua@su»M, (33)
0
-1 = F%yfﬁ—ﬂ*UiWJhDﬁ,
0
QB -Q = ﬁajﬁ—w*&@QmMn
0
R(H)—Ry = ﬁajﬁ—w”a@RmmT
0

Theorem 4.1. The kernels F1, F,, F3 and F4 satisfy the Lipschitz condition and contraction if the inequality holds as
below:

0<Li<lfori=1,234. (34)

Proof. Taking S and S; be two functions then we have following:

pS (f) (1)

IF1(t,S) = F1 (t, St (DIl - A+uSi(H)+ (35)

HA —uS(t) -

5§)6un—

[MCYOREIOR

A

__(u+%ywun—smm
LIS () - S 0.

IA

Taking Ly = u + %b, where a = Irt1alx||S(t)||,b = rrtlalxlll(t)ll,c = rrtlalelQ(t)ll,d = rrt1alx||R(t)|| are bounded
€ € € €
function, then we get
IF1 (&, S) = F1(t, St < Ly [IS1 (#) = S @Il - (36)

So, the Lipschitz condition and contraction are satisfied for F; if 0 < L; < 1 is satified. With doing same
way, the other kernels also satisfy the Lipschitz condition as follows:

[F2(t, 1) = Fx (t, LNl < Lollli (1) =T (DI, (37)
IF3(t,Q) = F3(t, Q1 (M)l < L3llQi1 () —Q®Il,
IFs(t,R) = F4(t, Rt ()l < Lgl|lRe () =R (@Il

Now we consider the kernels for the model, eq. (33) and 1t is rewritten as follows:
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t
_ 1 a1
50 = S+ Of (-0 S (@) dr, ©9)
t
_ 1 _ a1
It = +—r(a)6f(t )" Fp(7,1(1))dT,
. t
_ _ a1
QO = Q+ s Of (-0 Fy(r, Q) e
t
_ 1 _ a1
R() = RO+_F(a)!(t )" F4(1,R (7)) d7.
Then we have the following recursive formula:
5.0 = S+ s f (=0 Fy (5,01 (), @)
_ _ a1
L) = r()fa O Fa 1 s (D) d

Q) = Qo+$ Of (t = 0" Fs (1, Quor (1)) d,

R, (t) = R() + ﬁbf(t—l')a_l F, (T,Rn_l (T))d’l’

Here initial conditions are given with S (ty) = So, I (to) = o, Q (to) = Qo and R (tp) = Ro
The difference between the successive terms in the expression are given below:

t
Av(®) = Su()=Sur(B) = ﬁ f (= 0 (F1 (6, Spon (0)) = By (5, Sz (), (40)

Bu(t) = L(t)—la()= f (= 0" (B2 (5, Lot (1) = Fa (5, Lya (D))

T (a)

Cn (t) Qn (t) Qn 1 (t

o f (4= 0" (B3 (5, Qs () = Fs (5, Qu 2 (O,

Dy (1)

Ro () = Rt (8) = ﬁ f (t = 0 (F4 (6, Ryt (1))  Fs (1, Rus ().
0

It is worth noticing that
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Sy = Y A, (41)
i=1
L® = Y B,
i=1
n
Qi = Y.Go,
i=1
n
Ri(t) = ) Di(h).
i=1
It is easy to see that the equation (40) reduces to (42),
A O = 11Su () = Sua (I, (42)
1 a-
TT__ = 1) (Fy (1, 1 (1)) = Fi (T, S0 (1))
So we have,
t
L .
15,60 = S,1 011 < 75 [ =07 15,1 ()= Su2 @l )
I'(a)
0
then we get
A DI < )f(f ) A (@l de. (44)
0
Similarly, we get the following results:
BOI < F f (4= 0" B (Ol d, )
a—1
GO < 25 f (=0 ICons (D,
< _ a1 :
DI < Fs f (4= 0" IDyr (Dl
After the above results, let us give a now theorem. [
Theorem 4.2. The SIQR system (30) has a unique solution if we can find tmax satisfying following condition
tll
Mg, fori=1,2,3,4. (46)

I' (o)



I. Koca, E. Akgetin, P. Yaprakdal /TJOS 5 (2), 124-139 133

Proof. S(t),1(t), Q(t) and R(t) are bounded functions so from the equality (44), we have the succeeding relation as
follows:

A < ||so||[§(m) ] @)
.01 < | ]
GO < IIQoI[ ]
DI < IR oll[ ]

Now let us assume that followings are satisfied

St)=So = S.()-bu(t), (48)
()=l = L,({#)—cu(t),
Q) -Qo = Qut)—du(t),
R(t)=Ro = Ry(H)—en(t).

Now we have to show that the infinity term ||b« (t)|| — 0, therefore we have

t
1 a-1
.01 < | [ 0= 109 = Fr (@ S, )
0
t
1 -
< o [ - 0TIRES) - R @Sl
I' (@)
0
ta
< mh IS = Suall-
Repeating this process recursively, we obtain following equality
n+1
b, (D] < [F( )] LIM. (50)
Then at tmax we have
ta n+1
max n
B “)”—[n )} LiM. (51)

If we apply the limit to both sides as n tends to infinity, we have ||b ()|l — 0. So this completes the proof. [

4.1. Uniqueness of the special solution

To prove the uniqueness of the system of solutions We assume that by contraction there exists another system of
solutions of (6), S1 (t), 11 (t), Q1 (t) and Ry (t). Then we have

1S - 51 (B < m f (t -0 (F1 (5, S) - Fy (1, S, (52)



I. Koca, E. Akgetin, P. Yaprakdal /TJOS 5 (2), 124-139

Wit applying the norm to eq. (52), we get

IS(t) - §1 (Bl < ﬁ Of (t— 0 |IFy (1,9) — Fy (1, 1)l d,

IS () = S (DIl < Lyt 11S () = Sa (Dl

I'(a)
Finally, this gives

1 a
15(8) = S1 (Ol (1 - let ) < 0
I5() = S1(®)ll 0 — 5() = S1(b).

1t is easily showed that the equation S(t) and other solutions have a unique solution.

5. Atangana-Toufik numerical scheme with Caputo derivative

134

(53)

(54)

(55)

First of all, it should be emphasised that the "numerical approach” is not directly equivalent to the “approach with
use of computer”, although we usually use numerical approach to find the solution with use of computers. Generally,
analytical solutions are possible using simplifying assumptions that may not realistically reflect reality. In many
applications, analytical solutions are impossible to achieve. Numerical methods makes it possible to obtain realistic
solutions without the need for simplifying assumptions. There are lots of numerical methods have been used for

finding the solutions of equations [2,4, 14].

In this section, we reconsider Atangana-Toufik method for fractional differential equations with Caputo derivative

as below:

«Dfx ()
x(0)

[t x(8)),

X0.

Caputo fractional integral of this equation is given by

t
x(t) — x(0) = ﬁ f(t - 7)* ! (1, x(7))d7.
0

If we take t = t,4q forn =0,1,2, ..., the equation (57) is rewritten as

En1

x(tns) - x(0) = ﬁ f (busr — 0 f(z, x(D)d.
0

Here, If we use the two-step Lagrange polynomial interpolation in integral then we have following

Py(t) = £(t, x(1)) ~ f(t, xk)](: —h1) f(tkflzxk;/ll) (t- tk)’

where h = t,, — t,_1. So we have

x(tm—l) - X(O)

tes1

- Ly Py(v) o
. F‘”ét (+%5—;[ﬂwm>h_gk )“"“ R

(56)

(57)

(58)

(59)

(60)
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or

x(tn+1) - X(O)

et
tx, _
L) (7 — byq) (tn — ) e
bk
I
1 n frs1
= — (Fk=1,%k-1) —
Tl O [ -t - e
b
I
B e emt) 22
T T—1lj— —
+ | R (D) ], (brs — T T
tx ]

Finally, calculating integrals in equation above, we obtain

X(tp+1) — x(0)

R [ ((n _ k)a+1

—n+1- k)a+1
(7’1 _k)a+1
ftr) y _(a+1)(n_k+2)[ —(n+ 1R ]
- T(a+2)
(@+1)(k-n-1) _((Zjlf;f))aﬂ
_ [ (n -k +2)* ]
_f(tk—lr Xk-1) Zn‘ -m+1- k)a—l
o o T(a+2)

+E;;
Above | ES is error term and given by

EO(

n

(T —t)(
F(a ;I(T sz

then we have

E3]
h

202 + ) 4]

5

te-1) 9°

(1, x(7))
;’(2 - x

(n _ k)a+1 B
—(n+1-k*

k=0 (oc+1)(k—n—2)[ (n—k)"‘)a]

-n+1-k

ﬁ [f(T’ x(T))]T—ek) (tna1 — T)a_ld’l'.

135

(61)

(62)

(63)

(64)
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The right-hand side converges as follows:

(Tl _ k)()(+1
- a[—(n+1—k)“”]_
| @+ Dk-n-2) [ _ (15”;1"2 " ]
C - (1)) ((n +1) (an —2n —4(a + 1))) (4 10,
So we have error term as
h 9 f(z, x(1))

IEx| (n* = (n +1)°)

@ +a)iotel| o

y (((n +1)(an —zn — 4 + 1))) i+ 1)“+1a).

5.1. Application of method to system

136

(65)

(66)

In this part, we apply the method for fractional order Caputo system. Let us consider system with Caputo

derivative.

DSy = Fult,S(),
DI = Fat1(),

DYQ() = F3(t, Q)
CDIR(H = Fu(t,R(D).
Then we have
1 t
S-Sy = — | t-1)*"Fi(5,S()dr,
r(ooof
t
1 a—1
I(-Ih = = | ¢t-0""F(rI(0)dr,
r(a>0f
t
1 a-1
QB -Q = —— | t-1" ' F3(1, Q1) dx,
F(oc)of
t
1 a—1
R(t)—-Ry = —— | t—1)" F4(t,R(7))d.
r(a)()f

At a given point t = t,41, following formula is written

(67)

(68)
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Sps1—So (69)
r (1’1 _ k)a+1 1
YN 11—k

(7’1 _ k)a+1
. —(a+1)(n—-k+ 2)[ (41— k)aﬂ ]

1 n h ala+1)
= T/ N +1 Rz/
T e
(n-—k+2)1-
Y i+ 1-k)*?

ala+1)

_ Fa(ti-1,561)
L h

1n+1 - IO

(n- k)a+1
YN 11—k
(I’l _ k)a+1 ]

—(a+1)(n—-k+2
Fz(tk,[k) ( )( )|: _ (n + 1 _ k)a+1
1 n h ala+1)

— +5 R[nl,
k=0 (n+2—k)“—]

(@+1)(k-n-1) (n—k+1)a+l

(n—k+2)1-
‘“[(n+1—m*1]

ala+1)

_ B(be1,lin)
h

Qn+1 - QO
r (71 _ k)a+1

—(n+1-k*
(11 _ k)a+1_
—(oz+1)(n—k+2)[ (41— k)™ ]
1 ala+1) R
= _ =+ ﬁ,
@) n+2-k"- ] ’

F3(t,Qx)
h

n

(@+1)(k-n-1) (n_k+1)a+1

(n—k+2)*1-
1 -p!

a(a+1)

_ Fa(tie1,Qk1)
h
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Ryus1 —Ro
r (Vl _ k)a+1
—(n+1-k**!
(1’1 _ k)a+1_
. —(@+1)(n—-k+2) (n+1- Kk ]
1 n h ala+1)
- +4 R%,
T(a) & - !
k=0 (a+1)(k—7’l_1) E:’llti+11(;a+l]
a (n—k+2)*1-
 FalbRen) (n+1-K""
I ala+1)
Where
o h a21:‘1 (T/ S(T)) a o4
|1Rn| < m{%’}iﬁ o (n* —(n+1)%) (70)
o (((n +1) (an —211 —4a+ 1))) _(n+ l)aﬂa)/
. h PF (1, I(0)|, , a
R3] < Aoz | DY
N (((n +1)(an —2n —4(a+ 1))) i+ 1)“”a),
N h F3(t, Q(0) |, , a
R3] < T o | DY)
y (((n +1)(an —2n —4(a + 1))) s 1)“*10(),
N 9?F4(1,R(7)) o "
LRy < P R (n* = (n+1)%)

" (((n +1)(an —211 —4(a + 1))) s 1)“+1a).

6. Conclusion

In this paper fractional order SIQR model is considered. Here, we generalize the previous model by considering
the order as fractional order. As we saw that, the fractional order model is much more efficient in modeling than its
integer order version. We have applied the next generation matrix method to calculated the basic reproduction number
Ro. Also, the detailed analysis such as existence ande uniqueness results of the solution and efficient numerical scheme
for model are presented.
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Abstract. In this paper, we establish several new integral inequalities including Caputo fractional deriva-
tives for exponential s-convex functions. By using convexity for exponential s—convex functions of any
positive integer order differentiable function some novel results are given.

1. Introduction

Convexity plays an important role in many features of mathematical programming including, for
example, suficient optimality conditions and duality theorems. The topic of convex functions has been
treated extensively in the classical book by Hardy, Littlewood, and Polya [5]. The study of fractional order
derivatives and integrals is called fractional calculus. Fractional calculus have important applications in
all fields of applied sciences. Fractional integration and fractional differentiation appear as basic part in
the subject of partial differential equations [1, 12]. Many types of fractional integral as well as differential
operators have been defined in literature. Classical Caputo fractional derivatives were introduced by
Michele Caputo in [8] which is written in 1967.

Definition 1.1. The function V¥ : [u, v] — R is said to be convex, if we have
W(tz1 + (1 - 1)z0) < tW(z1) + (1 = 1) W(22)
forall z1,zp € [u,v]and T € [0, 1].

Definition 1.2. (see[9])
Let W : I C R is of exponential-convex, if

W(tz1 + (1 = 1)zp) < e W(z1) + (1 — 7)™ *2W(zy)

forall t €[0,1] and z1,2z, € Tand a € R.
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Definition 1.3. (see[6])
Let W : I C [0, 00) — R is of s-convex in second sense, with s € (0,1], if
W(tz1 + (1 - 1)z0) < T°W(z1) + (1 — 1)°W(z0)
forall T €[0,1)and z1,z, € L.
Definition 1.4. (see[10])
Let W : I C [0, 00) — R is of exponential s-convex in second sense, with s € [0,1], if
W (121 + (1 = T)z2) < e PAW(21) + (1 — 1)°e P2 W(z,)

forall t €[0,1] and z1,2z2 € L and B € R.

The previous era of fractional calculus is as old as the history of differential calculus. They generalize
the differential operators and ordinary integral. However, the fractional derivatives have some basic
properties than the corresponding classical ones. On the other hand, besides the smooth requirement,

Caputo derivative does not coincide with the classical derivative [2].We give the following definition of
Caputo fractional derivatives, see ([1, 3,7, 11]).

Definition 1.5. let AC"[u,v] be a space of functions having nth derivatives absolutely continuous, W € AC"[u,v],
A¢1{1,2,3,..}and n = [A] + 1. The right sided Caputo fractional derivative is as follows,

zZ )
(D} Y)(z) = F(nl— ) f - T)/(\sz dr, z>u 1)

The left sided caputo fractional derivative is as follows,

Cp) _ =" ¢ wi(r)

(D;,_W)(z) = T=7) ). (r=zy—m dr, z < 0. 2)
The Caputo fractional derivative (“D!',W)(z) coincides with W (z) whereas (“D!_W)(z) coincides with W (z) with
exactness to a constant multiplier (-1)" jif A = n € {1,2,3,...} and usual derivative W"(z) of order n exists. In
particular we have

(DY, W)(z) = ((DS_W)(z) = ¥(2) (3)
wheren =1and A = 0.

In this paper, we establish several new integral inequalities including Caputo fractional integrals for ex-
ponential s-convex functions.By using convexity for exponential s-convex functions of any integer order
differentiable function some novel results are given.The purpose of this paper is to introduce some frac-
tional inequalities for the Caputo-fractional derivatives via s-convex functions in second sense which have
derivatives of any integer order.

2. Main Results

First we give the following estimate of the sum of left and right handed Caputo fractional derivatives
for exponential s-convex function in second sense.

Theorem 2.1. Let W : I C [0, 00) — R be a real valued n-time differentiable function where n is a positive integer.
If W™ is g positive exponential s-convex function in second sense, then for a,b € a <band y € R, a,f > 1 with
n > max|{a, B}, the following inequality for Caputo fractional derivatives holds

T(n - a + 1)(CDE W)(x) + T(n — B + 1)(CDL- " W)(x) (4)
- (x _ a)n—a+1e—)/u\lj(n)(u) + (b _ x)n—ﬁ+1e—yb\y(n)(b)
- s+1

(x _ a)n—a+1 + (b _ x)n—ﬁ+1

Ly [
¢ ) s+1
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Proof. Let us consider the function W on the interval [a, x], x € [4,b] and 7 is a positive integer. For € [a, x]
and n > a the following inequality holds

=" "< (x—a)"". (5)
Since W is exponential s-convex function in second sense therefore for € [a, x] we have
— 1\ t—a\’
W) < (—x ) Y (g) + (—) 1) (y). 6
(0 < (T ] W@ + (T2 ] e W) ©)

Multiplying inequalities (6) and (5), then integrating with respect to ¢ over [4, x] we have

f (= WO (i < %[e-www(m f S dt + WO ) f - a)Sdt]
T(n—a+1)(EDY 1 W)(x) < %[W“\W(a) + e WM (x)]. 7)
Now we consider function W on the interval [x, b], x € [a, D]. For t € [x, b] the following inequality holds
(t—x)"P < (b-x)""P. (8)
Since W™ is exponential s-convex function in second sense on [a, b], therefore for ¢ € [x, b] we have
wp) < ( ; — )s WO () 4 (Ii’_;i) TP (). )
Multiplying inequalities (8) and (9), then integrating with respect to ¢ over [x, b] we have
b N b b
f (t — )" PWO) (1) < %[e‘yb\y(")(b) f (t = x)°dt + WO (x) f (b t)Sdt]

T(n - B+ 1) (D W)(x) < w;’%ﬁ“[e—ybww(b) + e WO (x)]. (10)
Adding (7) and (10) we get the required inequality in (4). O
Corollary 2.2. By setting a = f in (4) we get the following fractional integral inequality

T(n - a+1) (DL W)(x) + (D)) (11)

- (x _ a)n—aﬂe—ya\y(n)(a) + (b _ x)n*[H’le*)/b\y(n)(b)
- s+1
(x _ a)n—a+1 + (b _ x)n—a+1
s+1 ]

+ e_)’x‘I’(”)(x)[

Remark 2.3. By setting a = 8, y = 0,and s = 1 we will get Corollary 2.1 in [4].

Now we give the next result stated in the following theorem.

Theorem 2.4. Let W : I — R be a real valued n-time differentiable function where n is a positive integer. If [W*+1)|

is exponential s-convex function, then for a,b € I,a < b and o, p > 0, the following inequality for Caputo fractional
derivatives holds

|r(n —a+ )DL W) (x) +T(n - B+ 1)(CD’Z_\I/)(x) (12)
(@ —ay v @) + (b - x)"*ﬁ\y(")(b))|

- (x _ a)a+1efya|\y(n+l)(a)| + (b _ x)ﬁ+1e—yb|\y(n+l)(b)|
- s+1
e—yx|\y(n+1)(x)| ((x _ a)a+1 +(b- x)ﬁ+1>

s+1 '

+
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Proof. Since |W"*1| is exponential s-convex function in second sense and 7 is a positive integer, therefore
for t € [a,x] and n > a we have

—F\S F—a\s
|\I](Tl+1)(t)| S (x ) e—;/g|\I](n+l)(u)| + ( a) e—)/xl\y(n-%-l)(x)l
X—a X—a
from which we can write
x—t\ t—ay
_((EZEY prepgpr ) (_) X +D) ) 13
(E=) e+ (=5) e (13)

< WO(1)

< (x_—t) e W (g)] + (t—_a) eV WD ().
x—a —-a
We consider the second inequality of inequality (13)

t

X —
X—a

s t—a\°
vy < (2L e+ (2] oo (14)

Now for @ > 0 we have
x-t)"*<(x—a)"%te]ax] (15)

The product of last two inequalities give
(x — "W () < (x — )"0 ((x — 1) 7 WD ()| + (t - a)se_”"l\I’("“)(x)D )
Integrating with respect to ¢ over [a, x] we have
f (x — "W D ()t (16)
a

< (x—a)o [e‘V“I‘I’(”“)(a)I f (x — £)°dt + e V¥ WD ()] f ' (t—a)sdt]

= (x—ayot [e‘)"’l‘l’(“”(a)l - e-)’xw(““(x)q

s+1

and
f x(x — iy WO (dt = WO () (x - 1" + (n - a) f x(x — BT ()t
= WM (g)(x —a)"* + T(n — a + 1)(°D*, W)(x).

Therefore (16) takes the form

T(n —a+1)(“Dy,W)(x) - W*(a)(x — a)"™ (17)
< (x —a)yot! [e‘?’”l‘l’(”“)(a)sl : i‘?”‘l‘I’(”“)(x)l] '

If one consider from (13) the first inequality and proceed as we did for the second inequality, then following
inequality can be obtained

W (g)(x —a)"™* = T(n — a + 1)(“DZ, W)(x) (18)
e 7 W ()] + e WD (x))|
s+1 '

< (X _ a)n—oﬁ—l [
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From (17) and (18) we get
IP(n - & + 1)(CDE, W)(x) = W (a)(x — a)" | (19)
- e—ya|\p(n+1)(a)| + e—yx|\y(n+1)(x)|
s@-a) [ s+1 ’

On the other hand for t € [x, b] using convexity of [¥"*1| as a exponential convex function we have

(WD (5] < (2:_3;) ef)’b|\lf(”+1)(b)| + (%) e WD (). (20)

Also for t € [x,b] and g > 0 we have
(t—x)"P < (b-x)"PF (21)

By adopting the same treatment as we have done for (13) and (15) one can obtain from (20) and (21) the
following inequality

Tt -+ (D) W)(x) = WO B)(b - 0| (22)
e e—yb|\y(ﬂ+1)(b)| +€—yx|\p(n+1)(x)|
<(b-x) [ T 1 .

By combining the inequalities (19) and (22) via triangular inequality we get the required inequality. [
It is interesting to see the following inequalities as a special case.
Corollary 2.5. By setting a = f8 in (12) we get the following fractional integral inequality
[P(1 = &+ DD W)) + (CDy_W)(x)]
— (= @)W (@) + (b — x)" WD)

- (x _ a)n—a+1e—)/a|\lj(n+l)(a)| + (b _ x)n—a+167)/b|\y(n+1)(b)|
- s+1
e—yx|\p(n+1)(x)| [(x _ a)n—a+1 + (b _ x)n—a+1]

s+1

+

Remark 2.6. By setting a = 3, y = 0,and s = 1 we will get Corollary 2.2 in [4].

Before going to the next theorem we observe the following result.

Lemma 2.7. Let W : [a,b] — R, be a exponential s-convex function in second sense. If WV is exponentially
symmetric about %2, then the following inequality holds

W(L%b) = 23,1 (€7"W(x) x€labl. (23)

Proof. As W is exponential s-convex function in second sense we have

V7 (“ er b) < % [e-ﬂﬂ”(l—f)b)\y(at + (1= B)b) + e 7@y (1 — ) + bt)] (24)

Since W is symmetric about ”zlb, therefore we get W(a + b —x) = W(bt + (1 — t)a)

v (”ib) < 21 (e @+ 0=DDW((at + (1 = b)) + eV IW(a + b - x)).
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By substituting x = at + (1 — t)b we get

a+b 1
~ (,rx —y(a+b—x) _
\y( > )s > (e7*W(x) + eV W(a + b - x)).
Also VW is exponentially symmetric about ’lzib, therefore we have W(a + b — x) = W(x) and inequality in (23)
holds. O

Theorem 2.8. Let W : [ — R be a real valued n-time differentiable function where n is a positive integer. If W)
is a positive exponential s- convex function in second sense and symmetric about %, then for a,b € I;a < b and
a, B > 1, the following inequality for Caputo fractional derivatives holds

h(y)2s! 1 1 m(at+h
2 n—a+1+n—‘8+1)\y (T) @)
_To=p+DEDW@ | T+ DEDEW)O)
- z(b _ a)n—ﬁ+1 + 2(b _ a)n—a+1
- WO (a) + W (b)
(s+1) '

where h(y) = e for y < 0 and h(y) = e® for y > 0.

Proof. For x € [a,b] we have
(x—a)" P <(b-a)yP. (26)

Also W is exponential s-convex function in second sense we have
) X=aV g 4 (27 grmge
WO (x) < m)eﬂy ®) + (7= 7). 27)

Multiplying (26) and (27) and then integrating with respect to x over [4, b] we have

(b —a)y"F

b
& —ay ( f e PP (b)(x - a)° + e WP (a)(b - x)s)dx) .

b
f (x — a)" PWO (x)dx <

From which we have
T(n—p+1)(CD) " W)a) e rowi(g) + 70w (p)
<

. 2
(b —ay—p+1 - s+1 28)
On the other hand for x € [a, b] we have
(b—x)""<(b—a)"". (29)
Multiplying (27) and (29) and then integrating with respect to x over [a, b] we get
b ~ya\py(n) —ybyy(n)
f (b — )" WO ()dx < (b — a)'—+1E @+e ®
a s+1
From which we have
T(n—a+1)(CDY W) (b) - e W) (g) + e PWM) (h) 30)

(b — ayr—a+1 = s+1

Adding (28) and (30) we get the second inequality.

L=+ DEDW@ T -+ DEDE W) _ "W 0(a) + 7' W)
2b—ay1 T 2b—ayt s+1 '
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Since W is exponential s-convex function in second sense and symmetric about ’%b using Lemma 2.7 we
have

P (a ; b) > (e7"¥™(x)), x¢€la,b]. (31)
Multiplying with (x — a)" on both sides and then integrating over [4,b] we have
a+b\ ("
p (T) ja‘ (x—a)"Pdx < ——— e ) T f (x — a)" PW (x)dx. (32)

By definition of Caputo fractional derivatives for exponential s-convex function one can has

gttty 11 Te-p+ DD W@) )
2 )2(n—p+1) " h(y)2s! 2(b — a)—p+1
Multiplying (31) with (b — x)"~%, then integrating over [4, b] one can get
) s b 1 1 [(n—a+1)(CDW)(b) (34)
2 J2n—a+1) " h(y)2s! 2(b — ayr—a+l

Adding (33) and (34) we get the first inequality. [

Corollary 2.9. If we put a = f in (25), then we get

sy (4D 1
hy)2 ( 2 )(n—oz+1)

< BZaH D[ cprwy) + D)

2(b — a)e+!
eI () 4 e~ EPO) ()
- s+1 )

where h(y) = e for y < 0 and h(y) = e® for y > 0.

Remark 2.10. By settingy = 0 and m =1 in Theorem 2.8 we will get theorem 2.3 in [4].

References

[1] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of Fractional Differential Equations. North-Holland Mathematics
Studies, Elsevier, New York-London, 2006.

[2] LiCP, Deng WH. Remarks on fractional derivatives. Appl. Math. Comput., 187(2), 2007, 777-784.

[3] Farid G, NaqviS, Rehman AU. A version of the Hadamard inequality for Caputo fractional derivatives and related results. RGMIA
Research Report Collection, 20 2017.

[4] Farid G. On Caputo Fractional Derivatives Via Convexity. Kragujevac Journal of Math. 44(3), 2020, 393-399.

[5] Hardy GH, Littlewood JE, Polya, G. Inequalities. Cambridge, UK : Cambridge University Press, Cambridge mathematical library,
1952.

[6] Hudzik H, Maligranda L. Some remarks on s—convex functions. Aequ. Math. 48(1), 1994, 100-111.

[7] Mishra LN, Ain QU, Farid G, Rehman AU. k—fractional integral inequalities for (%1, 1)— convex functions via Caputo k— fractional
derivatives. The Korean Journal of Mathematics. 27(2), 2019, 357-374.

[8] Caputo M. Linear model of dissipation whose Q is almost frequency independent. Geophysical Journal International. 13(5), 1967,
529-539.

[9] Awan MU, Noor MA, Noor KI. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 12(2),
2018, 405-409.

[10] Mehreen N, Anwar M. Hermite-Hadamard type inequalities fo exponentially p-convex functions and exponentially s—convex
functions in the second sense with applications. ] Inequal. Appl. 92, 2019.

[11] NagqviS, Farid F and Tariq B. Caputo fractional integral inequalities via m—convex function. RGMIA Research Report Collection,
2014.

[12] Miller S, Ross B. An introduction to fractional calculus and fractional differential equations. John Wiley And Sons, USA. (2), 1993.



TURKISH JOURNAL OF SCIENCE http:/dergipark.gov.tr/tjos
VOLUME 5, ISSUE 2, 147-156
ISSN: 2587-0971

On The Connections Between Jacobsthal Numbers and Fibonacci
p-Numbers

Ozgiir Erdag?, Omiir Deveci®

?Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey
YDepartment of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract. In this paper, we define the Fibonacci-Jacobsthal p-sequence and then we discuss the connection
between of the Fibonacci-Jacobsthal p-sequence with the Jacobsthal and Fibonacci p-sequences. Also, we
provide a new Binet formula and a new combinatorial representation of the Fibonacci-Jacobsthal p-numbers
by the aid of the nth power of the generating matrix of the Fibonacci-Jacobsthal p-sequence. Furthermore,
we derive some properties of the Fibonacci-Jacobsthal p-sequences such as the exponential, permanental,
determinantal representations and the sums by using its generating matrix.

1. Introduction

The well-known Jacobsthal sequence {],,} is defined by the following recurrence relation:
Jn =TJn-1+2]n-2

forn > 2 in which Jy =0and J; = 1.
There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence {Fp (n)}
(see detailed information in [21, 22]) is one of them:

F,m)=F,(n-1)+F,(n-p-1)

forn>pandp=1,23,...,inwhich F,(0) =0,F, (1) = ---F, (p) = 1. When p = 1, the Fibonacci p-sequence
{Fp (n)} is reduced to the usual Fibonacci sequence {F,}.
It is easy to see that the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence are
g1(x) =x* —x—2and g, (x) = x¥**! — x¥ — 1, respectively. We will use these in the next section.
Let the (1 + k)th term of a sequence be defined recursively by a linear combination of the preceding k
terms:
An+k = Con + C1Ap41 + -+ + Cr-10n+k-1

in which ¢, c1,...,ck1 are real constants. In [12], Kalman derived a number of closed-form formulas for
the generalized sequence by the companion matrix method as follows:
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Let the matrix A be defined by

0 1 0 0 0
0 0 1 0 0
0 0 O 0 0
A= [ai’j]kxk = .
0 0 O 0 1
| C0 €1 C2 Ck—2 Ck-1 ]
then
[ ag a,
a A+l
L k-1 Ap+k-1
forn > 0.

Several authors have used homogeneous linear recurrence relations to deduce miscellaneous properties
for a plethora of sequences: see for example, [1, 4, 8-11, 19, 20]. In [5-7, 14-16, 21-23], the authors defined
some linear recurrence sequences and gave their various properties by matrix methods. In this paper,
we discuss connections between the Jacobsthal numbers and Fibonacci p-numbers. Firstly, we define the
Fibonacci-Jacobsthal p-sequence and then we study recurrence relation among this sequence, Jacobsthal
sequence and Fibonacci p-sequence. Also, we give the relations between the generating matrix of the
Fibonacci-Jacobsthal p-numbers and the elements of Jacobsthal sequence and Fibonacci p-sequence. Fur-
thermore, using the generating matrix the Fibonacci-Jacobsthal p-sequence, we obtain some new structural
properties of the Fibonacci p-numbers such as the Binet formula and combinatorial representations. Finally,
we derive the exponential, permanental, and determinantal representations and the sums of Fibonacci-
Jacobsthal p-sequences.

2. On The Connections Between Jacobsthal Numbers and Fibonacci p-Numbers

Now we define the Fibonacci-Jacobsthal p-sequence {P{;p } by the following homogeneous linear recur-
rence relation for any givenp(3,4,5,...)and n > 0

Jip _ nrphp Jp Jp Jip Jp Jp
Fn+p+3 - 2Fn+p+2 + Fn+p+1 - 2F71+P + Fn+2 - Fn+1 - 2F” (1)
inwhichF// =...=F” =0and F” =1
0 p+1 p+2 :

First, we consider the relationship between the Fibonacci-Jacobsthal p-sequence which is defined above,
Jacobsthal sequence, and Fibonacci p-sequences.

Theorem 2.1. Let ], F, (n) and F{;p be the nth Jacobsthal number, Fibonacci p-number, and Fibonacci-Jacobsthal
p-numbers, respectively. Then,

Jo+Fy(n+1)=F7  —3F 7

n+p+2 n+p

forn>0andp > 3.

Proof. The assertion may be proved by induction on n. It is clear that Jo + F, (1) = F;jﬁz - 3F{;p - F(])’p = 0.
Suppose that the equation holds for n > 1. Then we must show that the equation holds for n + 1. Since the

characteristic polynomial of Fibonacci-Jacobsthal p-sequence {FL’”}, is

h(x) =2 —20P2 — P ol — x4 x4+ 2
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and
h(x) = g1(x) 92 (x),

where g1 (x) and g, (x) are the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence,
respectively, we obtain the following relations:

In+p+3 = 2]n+p+2 + ]n+p+1 - 2]n+p + Jnr2 = Jn+1 = 2]u
and
F,(n+p+3)=2F,(n+p+2)+F,(n+p+1)-2F,(n+p)+F,(n+2)—F,(n+1) - 2F, (n)

for n > 1. Thus, by a simple calculation, we have the conclusion. [

Theorem 2.2. Let |, and F{;p be the nth Jacobsthal number and Fibonacci-Jacobsthal p-numbers. Then,
i.

]n — FLP _ F]rp _ Fﬁp,

n+p+1 n+p

Ju+Ju =Bl =By —El ~F

n+p n+1

forn>0andp > 3.

Proof. Consider the case ii. The assertion may be proved by induction on n. It is clear that Jo + J; =
Fé’p - Fé’p - F{’p - P{)’p = 1. Now we assume that the equation holds for n > 0. Then we show that the equation
holds for n + 1. Since the characteristic polynomial of Jacobsthal sequence {],}, is

71 (x) =x-x-2
we obtain the following relations:

]n+p+3 = 2]n+p+2 + ]n+p+1 - 2]n+p + ]n+2 - ]n+1 - 2]n

for n > 1. Thus, by a simple calculation, we have the conclusion.
There is a similar proof fori. O

By the recurrence relation (1), we have

2 1 -2 0 001 -1 -2
1.0 0 0 000 0 O
FZM 01 0 0 000 0 O Fﬁﬁp+3
Ip 00 1 0 000 0 O P
w1100 01 000 0 O ey
Fiep : . R T LS
: 00 0 0 100 0 O :
Ef [jo o 0 0 010 0 0 F?
00 0 O 001 0 0
|0 0 0 0 000 1 0
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for the Fibonacci-Jacobsthal p-sequence {Fi’p } Letting

2 1 -2 0 001 -1 -2]
1 0 0 O 000 0 O
0o 1 0 O 000 0 O
o 0 1 0 000 0 O
0 0 0 1 000 0 O
M, = .o .
0 0 0 O 100 0 O
o 0 0 O 010 0 O
o 0 0 O 001 0 O
0 0 0 0 000 1 0 | (+3)x(p+3).
The companion matrix M, = [m,- j] is said to be the Fibonacci-Jacobsthal p-matrix. For detailed
(p+3)x(p+3)

information about the companion matrices, see [17, 18]. It can be readily established by mathematical
induction that forp > 3and a > 2p

r op Jp Jp Jp
F}1+p+2 F}x+p+3 - 2F§(+p+2 Fy (a-p+2)- 2F(x;»p+1 Ep (a-p+3)
P i P P
Fafp” Fa]+p+2 - ZFa;errl Fpla-p+1) —]ZFMp Fpla—p+2)
P P P P *
o | Fhy  Ela-2E, Fyla=p)=2F] Fpla-p+1) - M,
(M) =] . ‘ .
P PP o Fy(a—2 . 1)-2F7  F,(a ot 2)
a/+] (x]+2 a]+l P P ; a P P
F Fh —2F7 Fy(a—2p)-2F",  Fy(a-2p+1)
where
F@  Fa+D-FL ., —2F)
Fy(a-1) Fy(@-F -2F,
) Fy(a—2) Fyla—1)- Fl;’ip —21-"{’;‘_1{]_1
Mp =
Fyla=p-1)  F(a-p)-F -2r!

"
Fo(a-p-2) Fp(a—p—l)—F]ﬁp —ZFfjil

We easily derive that det M, = (=1y *1.2. In [21], Stakhov defined the generalized Fibonacci p-matrix Q,
and derived the nth power of the matrix Q,. In [13], Kilic gave a Binet formula for the Fibonacci p-numbers
by matrix method. Now we concentrate on finding another Binet formula for the Fibonacci-Jacobsthal

p-numbers by the aid of the matrix (Mp)a.

Lemma 2.3. The characteristic equation of all the Fibonacci-Jacobsthal p-numbers xP*3 —2xP*2 —xP+1 4 xP —x2 +x+2 =
0 does not have multiple roots for p > 3.

Proof. 1t is clear that xP*3 — 2xP*2 — xP*l 4+ 3P —x2 + x +2 = (x’ngl - - 1) (x2 -x- 2). In [13], it was shown
that the equation x**! — x7 — 1 = 0 does not have multiple roots for p > 1. It is easy to see that the roots of
the equation x> — x — 2 = 0 are 2 and —1. Since 2)’*' — (2 =1 # 0 and (-1)"*' = (=1)V =1 # 0 for p > 1, the
equation xP*3 — 2xP*2 — xP*1 4 ¥ — x2 + x + 2 = 0 does not have multiple roots forp > 3. O

Let /1 (x) be the characteristic polynomial of matrix M,. Then we have h (x) = x7*3 = 2x7+2 — xP*1 4 x —x2 +
x + 2, which is a well-known fact from the companion matrices. If A1, A, ..., A,13 are roots of the equation
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xP¥3 — 2xP+2 — Pt 4 ¥ — x2 + x + 2 = 0, then by Lemma 2.3, it is known that A1, 5,..., A,.3 are distinct.
Define the (p + 3) X (p + 3) Vandermonde matrix V, as follows:

_ -
WP P ()
+1
MY A (As)
Vp = : : :
M Ar e A
1 1 1

Assume that V), (i, j) is a (p + 3) X (p + 3) matrix derived from the Vandermonde matrix V, by replacing the
j™ column of V, by W, (i), where, W, (i) is a (p + 3) X 1 matrix as follows:

(Al )a+p+3—i
(Az)a+p+3—i
W, (i) =

a+p+3—i
(Apss)

Theorem 2.4. Let p be a positive integer such that p > 3 and let (Mp)a = ml(l;’a) fora > 1, then

m(p'a) _ detV, (i, )

i detV, -
Proof. Since the equation xP*3 — 2xP*2 — xP*1 + x¥ — x? + x + 2 = 0 does not have multiple roots for p > 3, the
eigenvalues of the Fibonacci-Jacobsthal p-matrix M, are distinct. Then, it is clear that M, is diagonalizable.
Let D, = diag (Al,/lz, .. .,/\p+3), then we may write M,V, = V,D,. Since the matrix V) is invertible, we

-1 q
obtain the equation (VP) M,V, = D,. Therefore, M, is similar to Dj; hence, (Mp)a V, =V, (D,,) ' fora > 1.
So we have the following linear system of equations:

ml.(?’a) (/\1)704'2 + mi(,g,a) (Al)p+1 4o m(p'“) — (Al)a+p+3—i

ip+3
p. 2 p. 1 p.a 3—i
m0) Aoy £ m8D oyt e w8 = (A

mi(i’a) (/\p+3)p+2 + ml(;’a) (Ap+3)p+1 +oe m(f’f“) ( Ap+3)a+P+3—i .

Then we conclude that o
m(p’a) _ detV, (i, f)
i det v,

foreachi,j=1,2,...,p+3. O

Thus by Theorem 2.4 and the matrix (Mp)a, we have the following useful result for the Fibonacci-
Jacobsthal p-numbers.

Corollary 2.5. Let p be a positive integer such that p > 3 and let Fﬁp be the nth element of Fibonacci-Jacobsthal
p-sequence, then

£ detV,(p+3,1)
" detV,
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and
detV,(p+2,p+3)

Iy _
F
" 2-detV,

forn > 1.
It is easy to see that the generating function of Fibonacci-Jacobsthal p-sequence {Fﬁp } is as follows:

xp+2

1 —2x — x2 + 203 — xP+1 4 xP+2 4 QP37

g(x) =

where p > 3.
Then we can give an exponential representation for the Fibonacci-Jacobsthal p-numbers by the aid of
the generating function with the following Theorem.

Theorem 2.6. The Fibonacci-Jacobsthal p-sequence {F{;p } have the following exponential representation:
g(x) ="+ exp i(i)] (2 +x =20+ xP — ¥t 2x7’+2)i
= ,

where p > 3.

Proof. Since
Ing(x) = Inx"*? —1In (1 —2x — x4+ 2x% — Pt Pt 4 2x”+3)

and

—ln(1—2x—x2+2x3—x”+1+xp+2+2xp+3) = —[—x(2+x—2x2+x”—x”’+1—2x’“+2)—
1 2 2 P p+1 p+22
5% (2+x—2x +aF = A" = 2% ) -

i_ -]

1.
—=x' (2 +x =2+ ¥ — P - 2x‘”*2)
i

it is clear that

00 i .
— p+2 Q2+ _22+ p_ p+1_2p+21
g(x) =x""exp ; - ( x—2x"+xf —x X )

by a simple calculation, we obtain the conclusion. [

Let K (ky, ks, ..., k,) be a v X v companion matrix as follows:

ki ky - ky
1 0 0
K(kllkZI"-/k'(/) =

Theorem 2.7. (Chen and Louck [3]) The (i, j) entry kl(.';.) (k1,k, ..., ky) in the matrix K" (k1, ko, ..., ky) is given by
the following formula:

Lt +tty (4 tt
(n) - jT 1 AP
K k1o, ) = Z x( )k1 K )

ot H+bh+--+1 t,..., ty

. . . . . . . . HAetty)! -
where the summation is over nonnegative integers satisfying t1 + 2t +--- +vt, =n—i+j, “t:' ey = (1;,—:,) isa
reeerbo by

multinomial coefficient, and the coefficients in (2) are defined to be 1 if n =i — j.
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Then we can give other combinatorial representations than for the Fibonacci-Jacobsthal p-numbers by
the following Corollary.

Corollary 2.8. Let F{;p be the nth Fibonacci-Jacobsthal p-number for n > 1. Then
i
FlY =

(fl +ht+ ot
(tl/t2/~~'/tp+3)

oh (_1)tp+2 (_2)f3+tp+3
f1,82, ¢ /tp+3 )

where the summation is over nonnegative integers satisfying ti + 2t +--- + (p +3) tyy3 =n—p - 2.
ii.

| L tp+s (t1 +h+ o+t
n

2f1 _1 tp+2 _2 t3+tp+3
t1+t2+-~'+i’p+3 ) ( ) ( )

f1,62,5+  tpes
(tlrt27~--rtp+3) o P

where the summation is over nonnegative integers satisfying t; + 2t +--- + (p +3) tpy3 =n + 1.

Proof. If wetakei=p+3,j=1forthecasei. andi=p+2,j=p+3forthe caseii. in Theorem 2.7, then we
can directly see the conclusions from (Mp)a. O

Now we consider the relationship between the Fibonacci-Jacobsthal p-numbers and the permanent of a
certain matrix which is obtained using the Fibonacci-Jacobsthal p-matrix (Mp)a.

Definition 2.9. A u X v real matrix M = [m,-,]-] is called a contractible matrix in the k™ column (resp. row.) if the
k" colummn (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, ...,x, are row vectors of the matrix M. If M is contractible in the kth column such
that m;; # 0,m;x # 0 and i # j, then the (u — 1) X (v — 1) matrix M;;x obtained from M by replacing the ith
row with m;rx; + mjxx; and deleting the jth row. The k" column is called the contraction in the k™ column
relative to the i row and the j™ row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order @ > 1 and N is a
contraction of M.

Now we concentrate on finding relationships among the Fibonacci-Jacobsthal p-numbers and the per-
manents of certain matrices which are obtained by using the generating matrix of Fibonacci-Jacobsthal

p-numbers. Let Kﬁp = [kl.(?)] be the m X m super-diagonal matrix, defined by
2 ifi=tand j=tfor1 <7 <m,
ifi=tand j=t+1forl<t<m-1,
1 i=tand j=t+pforl<t<m-p
and
P i=t+landj=tforl<t<m-1,
ki(rf)z -1 ifz':Tandj:T+]p+1for1STSm—p—l, form 2 p+3.
ifi=tand j=7t+2forl1<7<m-2
-2 and
i=tand j=t+p+2forl<t<m-p-2,
0 otherwise.

Then we have the following Theorem.

Theorem 2.10. Form >p + 3,
F, ,
peer{p ="

m+p+2°
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Proof. Let us consider matrix KF’] and let the equation be hold for m > p + 3. Then we show that the
equation holds for m + 1. If we expand the perKy/ » by the Laplace expansion of permanent with respect to

the first row, then we obtain

= ZperK + perK - ZperKP’]

perK m—2,p

m+1,p +per m PP peerplp_zpeerpr

Since
perKF] = F] P

m+p+2/

perK" = ="

m=1,p m+p+17

perK = F] "

m—2 P m+p’/

perKF’ ="

m-p,p m+27
EJ] _pr
peer -p=1,p Fm+1
and ;
EJ] _
perK,_ p2p =F,,

we easily obtain that perk? = =P So the proof is complete. [J

m+1,p m+p+3°

Let Lﬁ;{p = [ l(p )] be the m X m matrix, defined by

2 ifi=tand j=tforl<t<m-3,

ifi=tand j=tform—-2<t<m,

i=tand j=t+1forl<t<m-1,
1 i=tand j=t+pforl<t<m-p-2

and

i=7+landj=7forl<7<m-4, ,form>p+3.
-1 ifi=tandj=t+p+1lforl<t<m-p-1,

ifi=tand j=t+2for1<7<m-3

1©) _
L]

-2 and
i=tand j=t+p+2forl<t<m-p-2,
0 otherwise.

Then we have the following Theorem.

Theorem 2.11. Form >p + 3,
Proof. Letus consider matrix LF’] and let the equation be hold for m > p+3. Then we show that the equation

holds for m + 1. If we expand the peer '» by the Laplace expansion of permanent with respect to the first
row, then we obtain

EJ F E,
peer = 2perL +perL,” 4 —Zpeer] 2t peer op peer -1y —Zpeer —p2p"
Since - ,
— php
perL,,, =F,; iyt

—r
peer 1p Fm+p 27
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v
peer 2p Fm+p—3’
_phr
perL,] m-pp = Fp1r
EJ _rhr
peer -p=1p Fm—2
and ,
— P
peer —p=2,p Fm 37

Jp

we easily obtain that perL iy = = Fip-

So the proof is complete. [J

Assume that N [ l(p)] be the m X m matrix, defined by

(m—-3)th
3
1 - 1 0 0O
1
NZ,’;;: 0 ,form>p+3,
: 12
: Lm—l,p
0
0
then we have the following results:
Theorem 2.12. Form > p + 3,
m+p—2
peer P = F{’p .
i=0
Proof. If we extend per Nm]p with respect to the first row, we write
peer];7 = perNZ]_ 1T perLi]_ 1

Thus, by the results and an inductive argument, the proof is easily seen. [

A matrix M is called convertible if there is an n X n (1, —1)-matrix K such that perM = det (M o K), where
M o K denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci-Jacobsthal p-numbers and the determinants of certain
matrices which are obtained by using the matrix Km]p, LF] and NF] Let m > p + 3 and let H be the m X m
matrix, defined by

11 1 - 1 1]

-1 1 1 --- 1 1

1 -1 1 - 1 1
H= :

1 1 -1 1 1

1 1 1 -1 1

Corollary 2.13. Form > p +3,
det(K};), o H) = P/

m+p+2’/
F J;
det( m]p oH) Fmp+p »
and
m+p—2
det EJ OH F{’p.

m p
i=0
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Proof. Since perKﬁ;{p = det (Kﬁ;{p ° H), perLE;{p = det (LZ{,, o H) and perN,f;{p = det (N,f;{p o H) form > p+3, by
Theorem 2.10, Theorem 2.11 and Theorem 2.12, we have the conclusion. [

Now we consider the sums of the Fibonacci-Jacobsthal p-numbers. Let

Sy = Z Pl
u=0
fora>1landp >3, and let T,f’] and (T;f'] )a be the (p + 4) X (p + 4) matrix such that

100 -+ 0 0]
1
T = 0
p :
: M,

If we use induction on &, then we obtain

(7 -
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