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Abstract: In this study differential quadrature method based on quintic B-spline functions is setup for numer-
ical solutions for nonlinear viscous Burgers’ equation. After space discretization with differential quadrature
and application of boundary conditions, the resultant ordinary differential equation system is integrated in
time by using Runge-Kutta method of order four. The method is validated by solving two initial value
problems for the Burgers’ equation. The errors of the numerical solutions are measured by using discrete
maximum norm. A comparison with some earlier works also given for the problem modeling fadeout of an
initial shock.
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1. Introduction

One dimensional nonlinear Burgers’ equation (NBE)

∂U(x, t)
∂ t

+U(x, t)
∂U(x, t)

∂x
−β

∂ 2U(x, t)
∂x2 = 0 (1)

where β > 0 denotes the constant viscosity coefficient was first proposed by Bateman with its

steady state solutions [1, 2]. Burgers[3] used the NBE as a simple mathematical model to illustrate

the theory of turbulence due to its analogy to Navier-Stokes equations[4]. In the equation, the

terms UUx and βUxx represent simple nonlinear advection and linear diffusion, respectively[5].

The NBE models a competition of wave steepening UUx and diffusion βUxx[6].

Different types of the NBE is used as a model in various areas covering physics, engineering, etc.

The NBE was used as a model in gas dynamics and continuous stochastic process[2]. Formation,

propagation and decay of shock waves can be modeled by the NBE[7]. Kachroo et al. showed that

the NBE is a model for traffic flow problem[8].

In astrophysics, the evolution of density inhomogenities and the velocity field in an expanding

continuous medium was studied based on the NBE[9]. Katz and Green considered the NBE as

a very simple model of interstellar dynamics with the assumption of isobaric gases and impulse
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giving random supernova explosions[10]. Kofman and Raga also used one dimensional viscous

NBE to model structures of knots in jet flows[11].

According to Wazwaz, the NBE is a completely integrable and an approximation of lowest order

for one-dimensional weak shock wave motion in a fluid, description of a highway traffic phenom-

ena, and a model for acoustic transmission[12]. Cole used the same equation for heat conduction

problems[13]. In the same study, he solved the NBE analytically after reducing it linear diffusion

equation by using a nonlinear transformation based upon logarithmic functions[13]. Hopf also

solved the NBE simultaneously by using the same reduction with Cole and showed that it can be

solved for arbitrary initial conditions[14]. Some more exact solutions were reported by Benton

and Platzman[15].

Having analytical solutions for various initial boundary value problems attracts many researchers

to validate the developed numerical algorithms. So far, various methods included in finite el-

ement, finite difference, and spectral method families have been proposed for solutions of the

NBE. Implicit fourth-order compact finite difference method was developed by Liao to solve the

NBE, which is converted to the linear heat equation by Cole-Hopf transformation[16]. Sari and

Gürarslan used a compact finite difference method of order six to discretize the NBE in space and

then integrated the obtained ordinary differential equation system in time with third-order Runge-

Kutta method. They compared their results with some earlier results for two initial boundary value

problems containing trigonometric and polynomial initial conditions and homogenous Dirichlet

boundary conditions at both ends of the finite problem interval[17]. Zhu and Wang’ s study aimed

to obtain the solutions of the NBE by implementation of cubic B-spline quasi-interpolation[19].

Many finite element methods covering Galerkin approaches [18, 21, 22] or B-spline based finite

elements[23] were also constructed for the numerical solutions the NBE. Moreover some colloca-

tion methods[24, 25, 20], and differential quadrature methods based upon various basis functions

such as Lagrange polynomials with nonuniform grid distrubiton, cubic and quartic B-splines were

constructed for different initial boundary value problems for the NBE[26, 27, 28].

This study aims to solve initial boundary value problems for the NBE by setting a differential

quadrature algorithm based upon quintic B-spline functions. The accuracy and validity of the

proposed algorithm will be checked by comparison with the exact solutions and some studies in

literature. In the study, the general form of an initial boundary value problem for the NBE defined

by
∂U(x, t)

∂ t
+U(x, t)

∂U(x, t)
∂x

−β
∂ 2U(x, t)

∂x2 = 0, a < x < b, t > t0

U(x, t0) =U0(x)

U(a, t) = s1(t),

U(b, t) = s2(t)

(2)
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over a finite problem interval [a,b] will be considered. Two different initial boundary value prob-

lems modeling fadeout of an initial shock and sinusoidal disturbance will be solved by application

of the proposed method.

2. Quintic B-spline Differential Quadrature Method (QBSDQ)

Differential quadrature method (DQM) is a direct derivative approximate technique and is used

to solve differential equations (possible for both ordinary and partial) numerically[29]. Since the

derivatives of the functions at nodes is approximated by the weighted sum of nodal functional val-

ues at the whole domain, the main idea of the approximation can be analogous to finite difference.

However, the application of the method has two fundamental steps. Following the determination

of the weights of nodal functional values by using basis functions spanning the problem interval,

the derivative approximations are substituted into the related derivative terms in the equation.

Let P : a = x1 < x2 < .. . < xN = b be a uniform node distribution of the finite problem interval

[a,b]. The approximation to ∂U r(x,t)
∂xr at xi is written as

∂U r(xi, t)
∂xr =

N

∑
j=1

w(r)
i, j U(x j, t), i = 1,2, ...,N,r = 1,2 (3)

where w(r)
i, j is the weights the function U(x, t) at the grid xi. So far, the determination of the weights

w(1)
i, j and w(2)

i, j has been accomplished by using different basis function sets such as spline functions,

radial basis functions, harmonic functions and Lagrange polynomials[29, 30, 31, 32, 33, 34, 35,

36, 37]. In this study, we will calculate the weights by substituting the quintic B-spline functions

spanning the problem interval [a,b].

Let Lm(x),m =−1,0, . . . ,N +2 be a quintic B-spline functions defined as

Lm(x) =
1
h5



τ1 , [xm−3,xm−2]

τ1−6τ2 , [xm−2,xm−1]

τ1−6τ2 +15τ3 , [xm−1,xm]

τ1−6τ2 +15τ3−20τ4 , [xm,xm+1]

τ1−6τ2 +15τ3−20τ4 +15τ5 , [xm+1,xm+2]

τ1−6τ2 +15τ3−20τ4 +15τ5−6τ6 , [xm+2,xm+3]

(4)

where τ1 = (x−xm−3)
5,τ2 = (x−xm−2)

5,τ3 = (x−xm−1)
5,τ4 = (x−xm)

5,τ5 = (x−xm+1)
5,τ6 =

(x− xm+2)
5[38]. Each quintic B-spline Lm(x) has zero value out of the interval [xm−3,xm+3] and

the set {Lm(x)}N+2
m=−1 spans [a,b] and forms a basis for the functions defined in this interval. Sub-

stitution of each of the basis functions into Eq.(3) for fixed xi and r leads to

drLm(xi)

dxr =
m+2

∑
j=m−2

w(r)
i j Lm(x j), m =−1,0, ...,N +2, (5)



CUJSE 15, No. 1 (2018) Quintic B-spline Differential Quadrature for Burgers’ Equation 41

Let Lm, j be Lm(x j). Then, this equation system can be written in matrix form as

Aw = C (6)

where

A =



L−1,−3 L−1,−2 L−1,−1 L−1,0 L−1,1

L0,−2 L0,−1 L0,0 L0,1 L0,2

. . .
. . .

. . .
. . .

. . .

LN+1,N−1 LN+1,N LN+1,N+1 LN+1,N+2 LN+1,N+3

LN+2,N LN+2,N+1 LN+2,N+2 LN+2,N+3 LN+2,N+4


,

w =
[
w(r)

i,−3,w
(r)
i,−1, ...,w

(r)
i,N+4

]T

and
C =

[
drL−1(xi)

dxr ,
drL0(xi)

dxr , ...,
drLN+2(xi)

dxr

]T

Since the linear equation system (7) has N +4 equations with N +8 unknowns, it is not uniquely

solvable in its present form. Adjoining the equations

dr+1L−1(xi)

dxr+1 =
1

∑
j=−3

w(r)
i, j

dL−1(x j)

dx

dr+1L0(xi)

dxr+1 =
2

∑
j=−2

w(r)
i, j

dL0(x j)

dx

dr+1LN+1(xi)

dxr+1 =
N+3

∑
j=N−1

w(r)
i, j

dLN+1(x j)

dx

dr+1LN+2(xi)

dxr+1 =
N+4

∑
j=N

w(r)
i, j

dLN+2(x j)

dx

to the system (7), converts it to a solvable system

Ãw = C̃ (7)
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where

Ã =



L−1,−3 L−1,−2 L−1,−1 L−1,0 L−1,1

L′−1,−3 L′−1,−2 L′−1,−1 L′−1,0 L′−1,1

L0,−2 L0,−1 L0,0 L0,1 L0,2

L′0,−2 L′0,−1 L′0,0 L′0,1 L′0,2
. . .

. . .
. . .

. . .
. . .

LN+1,N−1 LN+1,N LN+1,N+1 LN+1,N+2 LN+1,N+3

L′N+1,N−1 L′N+1,N L′N+1,N+1 L′N+1,N+2 L′N+1,N+3

LN+2,N LN+2,N+1 LN+2,N+2 LN+2,N+3 LN+2,N+4

L′N+2,N L′N+2,N+1 L′N+2,N+2 L′N+2,N+3 L′N+2,N+4


,

C̃ =

[
drL−1(xi)

dxr ,
dr+1L−1(xi)

dxr+1 ,
drL0(xi)

dxr ,
dr+1L0(xi)

dxr+1 , . . . ,
drLN+2(xi)

dxr ,
dr+1LN+2(xi)

dxr+1

]T

for w(r)
i j with equal numbers of unknowns and equations. The system (7) can be modified to a

system with a five banded coefficient matrix and then can be solved by using compatible Thomas

algorithm. Solving the last system for r = 1 and substitutions of each xi gives the weights w(1)
i j

(N×N coefficients for i, j = 1,2, . . . ,N, the other coefficients are not used in the approximation) of

the first order derivative approximation. Similarly, when r = 2, this system generates the weights

of the second order derivative term approximation w(2)
i j .

3. Discretization of the NBE

Substitution of the approximations given in Eq.(3) into the NBE (1) instead of the derivative terms

Ux and Uxx and the boundary conditions leads to the ODE system

∂U(xi, t)
∂ t

=−U(xi, t)
N−1

∑
j=2

w(1)
i j U(x j, t)+β

N−1

∑
j=2

w(2)
i j U(x j, t)+κi, i = 2,3, ...,N−1 (8)

where κi = −s1(t)
[
w(1)

i,1 s1(t)+w(1)
i,Ns2(t)

]
+β

[
w(2)

i,1 s1(t)+w(2)
i,Ns2(t)

]
. Then, the time integration

of (8) is accomplished by Runge-Kutta method of order four owing to its high accuracy with low

memory usage properties.

4. Problems

The designed algorithm is used for two initial boundary value problems modeling fadeout of an

initial shock and sinusoidal disturbance. The accuracy of the method is calculated by measuring
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the error between the numerical solutions and the analytical solutions via discrete norm L∞ The

approximate numerical values of vector norms L∞ for discrete nodes are computed using

L∞[U(xi, t)] = max
2≤i≤N−1

∣∣Uanalytical(xi, t)−Udqm(xi, t)
∣∣

where Uanalytical(xi, t) and Udqm(xi, t) are analytical and computed solutions at the node xi at a fixed

time t , respectively.

4.1. Fadeout of an initial Shock

The shock-like behaviors of the solutions of the NBE originate from the solutions of inviscid

Burgers’ equation(β = 0 in Eqn.(1)). In many cases, those solutions both become steeper and fade

out as time goes. In fact, the NBE takes the form of inviscid Burgers’ equation as β → 0.

Consider the fadeout of a shock solution for the NBE represented by [6, 39]:

U(x, t) =
x
t

1+ exp(
x2

4β t
)

√√√√ t

exp(
1

8β
)

, t ≥ 1,0≤ x≤ 1.2

This anti-symmetric solution in fact is determined by using a particular solution of the one di-

mensional heat equation and the reduction of the NBE to the one dimensional heat equation with

Cole-Hopf transformation[6]. The fadeout simulations of this solution are generated by using the

compatible initial condition, derived by substitution of t = 1 in the analytical solution,

U(x, t) =
x

1+ exp(
x2

4β
)

√√√√ 1

exp(
1

8β
)

and the homogenous boundary conditions at both ends of the problem interval. The fadeout of

the shock is simulated to the terminating time t = 3.8 by the designed routine with the viscosity

coefficients β = 0.005, Fig 1(a), and β = 0.0005, Fig 1(b). It is clear that when the viscosity

coefficient is reduced to 0.0005 from 0.005, the right side of the shock becomes steeper but the

velocity of diffusion to the right decreases. The initial shock fades out while moving to the right

along the horizontal axis as time goes.

The accuracy of the proposed method is determined by the calculation of the discrete maximum

error norm for β = 0.005, ∆t = 0.001, and N = 101. A comparison with some earlier studies in

literature is also tabulated in Table 1. According to the comparison, the results generated by the

QBSDQ have four decimal digits accuracy at the time t = 2.4 almost similar to the accuracy of the

results generated by QBCM2 and QRTDQ, as the BSQI and the CBSFEM are accurate to three

decimal digits, the QBCM1 is five decimal digits. Here the results of Galerkin method has only

two decimal digits accuracy. At the time t = 3.1, the results obtained by the BSQI, the CBSFEM,
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(a) For β = 0.005

(b) For β = 0.0005

FIGURE 1. The simulation of fadeout of an initial shock

the QBCM1 and the QBCM2 are accurate to three decimal digits as the QRTDQ and the QBSDQ

generate four decimal digits accurate results. In fact the main reason of this error is the forced

right boundary condition. In this case, the accuracy of the Galerkin method is computed in two

decimal digits. The comparison of the L∞ at the simulation terminating time t = 3.6 shows that

all the results obtained by the QBSDQ, the MCBC, the CBSDQ-I, the CBSDQ-II, the CBSDQ-III

and the QRTDQ are accurate to four decimal digits.
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TABLE 1. A comparison of the error with some earlier works for β = 0.005

L∞×103

Method N ∆t t = 2.4 t = 3.1 t = 3.6
QBSDQ(present) 101 0.001 0.67 0.54 0.39
Galerkin[18] 11.66 15.87
BSQI[19] 51 0.01 6.31 6.85 (t = 3.2)
MCBC[20] 101 0.001 0.17
CBSFEM[21] 101 0.01 1.68 1.30
QBCM1[24] 200 0.01 0.06 4.43
QBCM2[24] 200 0.01 0.80 4.79
CBSDQ-I[26] 101 0.001 0.59
CBSDQ-II[26] 101 0.001 0.64
CBSDQ-III[26] 101 0.001 0.63
QRTDQ[27] 101 0.001 0.34 0.27 0.23

4.2. Sinusoidal Disturbance

Consider the initial boundary value problem

∂U(x, t)
∂ t

+U(x, t)
∂U(x, t)

∂x
−β

∂ 2U(x, t)
∂x2 = 0, t > 0, 0 < x < 1

U(x,0) = sin2πx

U(0, t) = 0

U(1, t) = 0

(9)

The solution of this problem is a sinusoidal disturbance of an initial sine wave in the interval [0,1]

as the time increases. The analytic solution of this problem is given by

U(x, t) =

∞∫
−∞

(x−ξ )A(x, t,ξ )dξ

t
∞∫
−∞

A(x, t,ξ )dξ

(10)

where

A(x, t,ξ ) = e
−

(x−ξ )2

4β t
+

1
2β

ξ∫
0

U(0,η)dη


using the Cole-Hopf transformation[40]. The solution of the problem is simulated with β = π/100

for t ∈ [0,0.5], Fig 2. The solutions are obtained by using different space step sizes with a fixed

time increment size ∆t = 0.0025. The error between the numerical and analytical solutions are

calculated by the maximum error norm L∞, Table 2. The calculation of the analytical solution (10)

is accomplished by using Gauss-Hermite quadrature rule. When number of nodes is chosen as

N = 16, the results obtained by the proposed method are accurate to two decimal digits at t = 0.14

and only one decimal digit at t = 0.26,0.38 and the simulation terminating time t = 0.50. The
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FIGURE 2. The simulation of sinusoidal disturbance for β = π

100

TABLE 2. A comparison with analytical solutions for β = π/100

L∞×102

N ∆t t = 0.14 t = 0.26 t = 0.38 t = 0.50
16 0.0025 5.55 23.90 22.22 21.09
32 0.0025 1.33 19.53 19.08 15.57
64 0.0025 0.66 10.15 8.14 4.79
128 0.0025 0.19 1.33 0.72 0.22

increase of the number of nodes to N = 32 does not affect the accuracy in decimal digits, but

the choice of N = 64 generates three decimal digits, one decimal digit, two decimal digits and

two decimal digits accurate results at the times 0.14, 0.26, 0.38 and 0.50, respectively. When

the number of nodes are taken as 128, the results are improved in one digit decimal more at all

calculation times except t = 0.14.

5. Conclusion

In the present study, the quintic B-spline differential quadrature method on uniform grid distri-

bution is setup for solutions of the one dimensional NBE. The weight coefficients required for

the derivative approximation in differential quarature method are determined by solving algebraic
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equation systems with five-banded coefficient matrices. The time integration of the space dis-

cretized system is completed using classical Runge-Kutta method of order four. The validity of

the proposed method is checked by solving two initial boundary value problems modeling fadeout

of an initial shock and sinusoidal disturbance for the NBE. The accuracy of the method is mea-

sured by discrete maximum error norm. The error of the solution of shock fadeout problem is

compared with some results given in the literature. The results show that the proposed method

generates acceptable accurate solutions for both problems.
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[18] A. Doğan, A Galerkin finite element approach to Burgers’ equation, Applied Mathematics and Computation, 157,

331- 346, 2004.

[19] C. G. Zhu, R. H. Wang, Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation, Applied

Mathematics and Computation, 208, 260-272, 2009.

[20] R. C. Mittal, R. K. Jain, Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collo-

cation method, Applied Mathematics and Computation, 218, 7839-7855, 2012.



48 A. Korkmaz

[21] A. A. Soliman, A Galerkin Solution for Burgers’ Equation Using Cubic B-Spline Finite Elements, Abstract and

Applied Analysis, 2012, Article ID 527467, 1-15, 2012.

[22] A. H. A. Ali, L. R. T. Gardner, G. A. Gardner, A Galerkin Approach to the Solution of Burgers’ Equation, Maths

Preprint Series, no. 90.04, University College of North Wales, Bangor, 1990.

[23] L. R. T. Gardner, G. A. Gardner, B-spline Finite Elements, U.C.N.W. Maths Preprint, 91.10.
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[28] A. Korkmaz, İ. Dağ, Polynomial based differential quadrature method for numerical solution of nonlinear Burgers’

equation, Journal of the Franklin Institute, 348, 10, 2863-2875, 2011.

[29] R. Bellman, B. G. Kashef, J. Casti, Differential Quadrature: A Tecnique for the Rapid Solution of Nonlinear

Differential Equations, Journal of Computational Physics 10, 40-52, 1972.

[30] R. Bellman , Kashef Bayesteh, Lee E. S., Vasudevan R., Differential quadrature and splines, Computers and

mathematics with applications, pp. 371-376. Pergamon, Oxford, 1976.

[31] C. Shu, Y.L. Wu, Integrated radial basis functions-based differential quadrature method and its performance, Int.

J. Numer. Meth. Fluids 2007; 53:969–984.

[32] J. R. Quan, C. T. Chang, New sightings in involving distributed system equations by the quadrature methods-I,

Comput. Chem. Engrg., Vol 13, 779-788, 1989.

[33] J. R. Quan, C. T. Chang, New sightings in involving distributed system equations by the quadrature methods-II,

Comput. Chem. Engrg., Vol 13, 1017-1024, 1989.

[34] C. Shu, H. Xue, Explicit Computation of Weighting Coefficients in the Harmonic Differential Quadrature, Journal

of Sound and Vibration,204, 3, 549-555, 1997.

[35] Q. Guo, H. Zhong, Non-linear vibration analysis of beams by a spline-based differential quadrature method,

Journal of Sound and Vibration, 269, 413-420, 2004.

[36] H. Zhong, Spline-based differential quadrature for fourth order differential equations and its application to Kirch-

hoff plates, Applied Mathematical Modelling, 28, 353-366, 2004.

[37] H. Zhong, M. Lan, Solution of nonlinear initial-value problems by the spline-based differential quadrature method,

Journal of Sound and Vibration, 296, 908-918, 2006.

[38] P. M. Prenter, Splines and Variational Methods, John Wiley & Sons, New York, NY, USA, 1989.

[39] H. Nguyen, J. Reynen, A space-time finite element approach to Burgers equation, in Taylor, C., Hinton, E., Owen,

D.R.J. and Onate, E. (Eds), Numerical Methods for Non-linear Problems, Vol. 2, Pineridge Publisher, Swansea,

718-728,1982.

[40] B. V. R. Kumar, M. Mehra, Wavelet-Taylor Galerkin Method for the Burgers Equation, BIT Numerical Mathe-

matics, 45, 543-560, 2005.


