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A new class of generalized polynomials involving
Laguerre and Euler polynomials

Nabiullah Khan1, Talha Usman2, Junesang Choi∗3

1Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim
University, Aligarh 202002, India

2Department of Mathematics, School of Basic and Applied Sciences, Lingaya’s Vidyapeeth, Faridabad
121002, Haryana, India
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Abstract
Motivated by their importance and potential for applications in a variety of research
fields, recently, numerous polynomials and their extensions have been introduced and
investigated. In this paper, we modify the known generating functions of polynomials,
due to both Milne-Thomsons and Dere-Simsek, to introduce a new class of polynomials
and present some involved properties. As obvious special cases of the newly introduced
polynomials, we also introduce power sum-Laguerre-Hermite polynomials and generalized
Laguerre and Euler polynomials and give certain involved identities and formulas. We
point out that our main results, being very general, are specialised to yield a number of
known and new identities involving relatively simple and familiar polynomials.

Mathematics Subject Classification (2020). 05A10, 05A15, 11B68

Keywords. Milne-Thomsons polynomials, Dere-Simsek polynomials, Laguerre
polynomials, Hermite polynomials, Euler polynomials, generalized Laguerre-Euler
polynomials, summation formulae, symmetric identities

1. Introduction and preliminaries
The two variable Laguerre polynomials Ln(x, y) are generated by (see [8, 18])

1
1 − yt

exp
( −xt

1 − yt

)
=

∞∑
n=0

Ln(x, y) tn (|yt| < 1). (1.1)

Also, equivalently, the polynomials Ln(x, y) are given by (see [9, 18])

eyt C0(xt) =
∞∑

n=0
Ln(x, y) tn

n!
, (1.2)

∗Corresponding Author.
Email addresses: nukhanmath@gmail.com (N.U. Khan), talhausman.maths@gmail.com (T. Usman),

junesang@dongguk.ac.kr (J. Choi)
Received: 19.04.2019; Accepted: 05.04.2020

https://orcid.org/0000-0003-0389-7899
https://orcid.org/0000-0002-4208-6784
https://orcid.org/0000-0002-7240-7737


2 N.U. Khan, T. Usman, J. Choi

where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi functions
Cn(x) are generated by

exp
(

t − x

t

)
=

∞∑
n=0

Cn(x) tn (t ∈ C \ {0}, x ∈ C) . (1.3)

We have

Cn(x) =
∞∑

r=0

(−1)rxr

r!(n + r)!
(n ∈ N0) . (1.4)

The Tricomi functions Cn(x) are connected with the Bessel function of the first kind Jn(x)
(see [7]):

Cn(x) = x− n
2 Jn(2

√
x). (1.5)

Here and throughout, we denote C, R, R+, Z, and N by the sets of complex numbers,
real numbers, positive real numbers, integers, and positive integers, respectively, and let
N0 := N ∪ {0}.

From (1.2) and (1.4), we find

Ln(x, y) = n!
n∑

s=0

(−1)sxsyn−s

(s!)2(n − s)!
= ynLn(x/y), (1.6)

where Ln(x) are the ordinary Laguerre polynomials (see, e.g., [1, 26]). We thus have

Ln(x, 0) = (−1)nxn

n!
, Ln(0, y) = yn, Ln(x, 1) = Ln(x). (1.7)

Milne-Thomson [22] defined polynomials Φ(α)
n (x) of degree n and order α by the follow-

ing generating function

f(t, α) ext+g(t) =
∞∑

n=0
Φ(α)

n (x) tn

n!
, (1.8)

where f(t, α) is a function of t and α ∈ Z and g(t) is a function of t. Then, by choosing some
explicit functions of f(t, α) and g(t), Milne-Thomsons [22] presented several interesting
properties for polynomials such as Bernoulli polynomials and Hermite polynomials.

Derre and Simsek [10] made a slight modification of the Milne-Thomson’s polynomials
Φ(α)

n (x) to give polynomials Φ(α)
n (x, ν) of degree n and order α by means of the following

generating function

G(t, x; α, ν) := f(t, α) ext+h(t,ν) =
∞∑

n=0
Φ(α)

n (x, ν) tn

n!
, (1.9)

where f(t, α) and h(t, ν) are functions of t and α ∈ Z and t and ν ∈ N0, respectively,
which are analytic in a neighborhood of t = 0. Observe that Φ(α)

n (x, 0) = Φ(α)
n (x) (see, for

details, [22]).
By setting f(t, α) =

(
t

et−1

)α
in (1.9), in [18], we introduced the polynomials B

(α)
n (x, ν)

defined by (
t

et − 1

)α

ext+h(t,ν) =
∞∑

n=0
B(α)

n (x, ν) tn

n!
. (1.10)

Here, by choosing f(t, α) =
(

2
et+1

)α
in (1.9), we introduce the following polynomials

E
(α)
n (x, ν) defined by ( 2

et + 1

)α

ext+h(t,ν) :=
∞∑

n=0
E(α)

n (x, ν) tn

n!
. (1.11)
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We find that the polynomials E
(α)
n (x, ν) are related to not only Euler polynomials but also

the Hermite polynomials. For example, if h(t, 0) = 0 in (1.11), we have

E(α)
n (x, 0) = E(α)

n (x)

where E
(α)
n (x) denote the Euler polynomials of higher order defined by means of the

following generating function (see, e.g., [27, p. 88])

FE(t, x; α) :=
( 2

et + 1

)α

ext =
∞∑

n=0
E(α)

n (x) tn

n!
. (1.12)

We find

FE(t, 0; α) := FE(t; α) =
( 2

et + 1

)α

=
∞∑

n=0
E(α)

n

tn

n!
, (1.13)

where E
(α)
n are generalized Euler numbers. For more information about Euler numbers

and Euler polynomials, we refer the reader, for example, to [3, 20,21,27].
Taking h(t, y) = yt2 in (1.11), we get the generalized Hermite-Euler polynomials of two

variables HE
(α)
n (x, y) introduced by Pathan [23]:( 2

et + 1

)α

ext+yt2 =
∞∑

n=0
HE(α)

n (x, y) tn

n!
. (1.14)

Note that the polynomials HE
(α)
n (x, y) generalize Euler numbers, Euler polynomials, Her-

mite polynomials, and Hermite-Euler polynomials HEn(x, y) introduced by Dattoli et al.
[6, p. 386, Eq. (1.6)]:

2
et + 1

ext+yt2 =
∞∑

n=0
HEn(x, y) tn

n!
. (1.15)

The sum of integer power (simply, power sum)

Sk(n) :=
n∑

j=0
jk (k ∈ N0; n ∈ N)

is generated by
∞∑

k=0
Sk(n) tk

k!
= 1 + et + e2t + · · · + ent = e(n+1)t − 1

et − 1
. (1.16)

Luo et al. [20, 21] introduced the generalized Euler numbers En(a, b) generated by

Φ(t; a, b) = 2
at + bt

=
∞∑

n=0
En(a, b) tn

n!
(1.17)

(
|t| < 2π; n ∈ N0; a, b ∈ R+ with a ̸= b

)
.

Also, Luo et al. [20] introduced the generalized Euler polynomials En(x; a, b, e) generated
by

Φ(x, t; a, b, e) = 2ext

at + bt
=

∞∑
n=0

En(x; a, b, e) tn

n!
(1.18)

(
|t| < 2π; n ∈ N0; a, b ∈ R+ with a ̸= b

)
.

The 2-variable Hermite-Kampé de Fériet polynomials Hn(x, y) (see [2,6]) are generated
by

ext+yt2 =
∞∑

n=0
Hn(x, y) tn

n!
. (1.19)
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Note that

Hn(x, y) = n!
[ n

2 ]∑
r=0

yrxn−2r

r!(n − 2r)!
(1.20)

and Hn(2x, −1) = Hn(x) are the ordinary Hermite polynomials (see, e.g., [2]; see also
[26, Chapter 11]). Dere and Simsek [10] generalized the polynomials Hn(x, y) in (1.19) to
define two variable Hermite polynomials H

(ℓ)
n (x, y) by the following generating function

ext+ytℓ =
∞∑

n=0
H(ℓ)

n (x, y) tn

n!
(ℓ ∈ N \ {1}). (1.21)

Very recently, Khan et al. [18, Eq. (20)] have introduced and investigated the following
generalized Laguerre-Bernoulli polynomials(

t

at − bt

)α

eyt+zt2
C0(xt) =

∞∑
n=0

LB(α)
n (x, y, z; a, b, e) tn

n!
(1.22)

(
α, x, y, z ∈ C, a, b ∈ R+, a ̸= b, |t| <

2π

| ln a − ln b|

)
.

Motivated by their importance and potential for applications in certain problems in
number theory, combinatorics, classical and numerical analysis and other fields of applied
mathematics, a number of certain numbers and polynomials, and their generalizations
have recently been extensively investigated (see, e.g., [1–30]). Here, we also make a slight
modification of Milne-Thomson polynomials Φ(α)

n (x) in (1.8) and Derre and Simsek poly-
nomials Φ(α)

n (x, ν) in (1.9) to define polynomials Φ(α)
n,ℓ (x, y, ν) by the following generating

function

H(t, x, y; α, ν) := f(t, α) ext+ytℓ+h(t,ν) =
∞∑

n=0
Φ(α,ℓ)

n (x, y, ν) tn

n!
(1.23)

(x, y ∈ C; ℓ ∈ N \ {1}) ,

where f(t, α) and h(t, ν) are functions of t and α ∈ Z and t and ν ∈ N0, respectively, which
are analytic in a neighborhood of t = 0. Obviously Φ(α,ℓ)

n (x, 0, ν) = Φ(α)
n (x, ν). Then we

establish various identities involving the polynomials Φ(α,ℓ)
n (x, y, ν). Also, as special cases

of the generalized generating function in (1.23), we introduce two new polynomials: power
sum-Laguerre-Hermite polynomials and generalized Laguerre-Euler polynomials and in-
vestigate some involved properties.

Some of the results presented here will include certain known identities and formulas
involving relatively simple and familiar numbers and polynomials as particular cases, which
are easy for the interested reader to check (see, e.g., [8, 12–17,21,23,24,29,30]).

Remark 1.1. The substitution

f(t, α) =
(

t

at − bt

)α

C0(xt), h(t, ν) = 0, and ℓ = 2

in (1.23) yields (1.22). So it may imply that the polynomials in (1.23) are more general
than those in (1.22). The process and methods used in this paper follow from those
employed in such works as [5,13,15–17] including, in particular, the very recent work [18].

2. Some formulas involving the polynomials Φ(α)
n,ℓ (x, y, ν)

Here, we present certain formulas associated with the polynomials Φ(α)
n,ℓ (x, y, ν). To do

this, we recall some formal manipulations of double series in the following lemma (see,
e.g., [4], [17], [26, pp. 56-57], and [28, p. 52]).
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Lemma 2.1. The following identities hold:
∞∑

n=0

∞∑
k=0

Ak,n =
∞∑

n=0

[n/p]∑
k=0

Ak,n−pk (p ∈ N); (2.1)

∞∑
n=0

[n/p]∑
k=0

Ak,n =
∞∑

n=0

∞∑
k=0

Ak,n+pk (p ∈ N); (2.2)

∞∑
N=0

f(N)(x + y)N

N !
=

∞∑
n,m=0

f(m + n)xn

n!
ym

m!
. (2.3)

Here, the Ak,n and f(N) (k, n, N ∈ N0) are real or complex valued functions indexed
by the k, n and N , respectively, and x and y are real or complex numbers. Also, for
possible rearrangements of the involved double series, all the associated series should be
absolutely convergent.

Theorem 2.2. Let α ∈ Z, ν ∈ N0, and ℓ ∈ N \ {1}. Then

Φ(α,ℓ)
n (x1 + x2, y, ν) =

n∑
k=0

(
n

k

)
xk

1 Φ(α,ℓ)
n−k (x2, y, ν)

=
n∑

k=0

(
n

k

)
xk

2 Φ(α,ℓ)
n−k (x1, y, ν) (n ∈ N0, x1, x2, y ∈ C) ;

(2.4)

Φ(α,ℓ)
n (x, y1 + y2, ν) =

[ n
ℓ ]∑

k=0

n! yk
1

(n − ℓk)! k!
Φ(α,ℓ)

n−ℓk (x, y2, ν)

=
[ n

ℓ ]∑
k=0

n! yk
2

(n − ℓk)! k!
Φ(α,ℓ)

n−ℓk (x, y1, ν)

(2.5)

(n ∈ N0, x, y1, y2 ∈ C) ;

Φ(α,ℓ)
n (x, y, ν) =

n∑
k=0

(
n

k

)
xk Φ(α,ℓ)

n−k (0, y, ν) ; (n ∈ N0, x, y ∈ C) ; (2.6)

Φ(α,ℓ)
n (x, y, ν) =

[ n
ℓ ]∑

k=0

n! yk

(n − ℓk)! k!
Φ(α,ℓ)

n−ℓk (x, 0, ν) (2.7)

(n ∈ N0, x, y ∈ C) ;

∂

∂x
Φ(α,ℓ)

n (x, y, ν) = n Φ(α,ℓ)
n−1 (x, y, ν) (n ∈ N, x, y ∈ C) ; (2.8)

∂r

∂xr
Φ(α,ℓ)

n (x, y, ν) = n!
(n − r)!

Φ(α,ℓ)
n−r (x, y, ν) (2.9)

(n, r ∈ N with 1 ≤ r ≤ n; x, y ∈ C) ;

∂

∂y
Φ(α,ℓ)

n (x, y, ν) = n!
(n − ℓ)!

Φ(α,ℓ)
n−ℓ (x, y, ν) (2.10)

(n, ℓ ∈ N with 1 ≤ ℓ ≤ n; x, y ∈ C) ;

∫ x

a
Φ(α,ℓ)

n (u, y, ν) du =
Φ(α,ℓ)

n+1 (x, y, ν) − Φ(α,ℓ)
n+1 (a, y, ν)

n + 1
(2.11)

(n ∈ N0, a, x ∈ R, y ∈ C) .
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∫ y

a
Φ(α,ℓ)

n (x, u, ν) du = n!
(n + ℓ)!

{
Φ(α,ℓ)

n+ℓ (x, y, ν) − Φ(α,ℓ)
n+ℓ (x, a, ν)

}
(2.12)

(n ∈ N0, x ∈ C, a, y ∈ R) .

Proof. From (1.23), we write
∞∑

n=0
Φ(α,ℓ)

n (x1 + x2, y, ν) tn

n!
= ex1t · f(t, α) ex2t+ytℓ+h(t,ν).

Expanding ex1t as the Maclaurin series and using (1.23) to expand the second factor, with
the aid of (2.1) with p = 1, we find

∞∑
n=0

Φ(α,ℓ)
n (x1 + x2, y, ν) tn

n!
=

∞∑
n=0

n∑
k=0

xk
1

(n − k)!k!
Φ(α,ℓ)

n−k (x2, y, ν) tn,

which, upon equating the coefficients of tn, yields the first equality of (2.4). For the second
equality of (2.4), we just change the role of x1 and x2 in the above proof.

Similarly as in the proof of (2.4), with the aid of (2.1) with p = ℓ, we prove (2.5).

Setting x1 = x and x2 = 0 in the first equality in (2.4), we obtain (2.6). Similarly,
setting y1 = y and y2 = 0 in the first equality in (2.5), we get (2.7).

Differentiating both sides of (2.6) with respect to the variable x, we have

∂

∂x
Φ(α,ℓ)

n (x, y, ν) =
n∑

k=1
k

(
n

k

)
xk−1 Φ(α,ℓ)

n−k (0, y, ν)

= n
n−1∑
k=0

(
n − 1

k

)
xk Φ(α,ℓ)

n−1−k (0, y, ν)

= n Φ(α,ℓ)
n−1 (x, y, ν) ,

(2.13)

where the identity (2.6) is used for the last equality. This proves (2.8).

Then, differentiating both sides of (2.8) with respect to the variable x by using the
identity (2.8) on the right side of each resulting identity, consecutively, r − 1 times, we
obtain (2.9).

Differentiating both sides of (2.7) with respect to the variable y, we have

∂

∂y
Φ(α,ℓ)

n (x, y, ν) =
[ n

ℓ ]∑
k=1

n! yk−1

(n − ℓk)! (k − 1)!
Φ(α,ℓ)

n−ℓk (x, 0, ν) . (2.14)

Taking k − 1 = k′ on the right side of (2.14) and considering[
n

ℓ

]
− 1 =

[
n

ℓ
− 1

]
=
[

n − ℓ

ℓ

]
,

we get

∂

∂y
Φ(α,ℓ)

n (x, y, ν) = n!
(n − ℓ)!

[ n−ℓ
ℓ ]∑

k=0

(n − ℓ)! yk

(n − ℓ − ℓk)! k!
Φ(α,ℓ)

n−ℓ−ℓk (x, 0, ν) ,

which, upon using (2.7), proves (2.10).

Replacing x by u in (2.8) and integrating both sides of the resulting identity with
respect to the variable u from a to x by using the fundamental theorem of calculus, and
substituting n + 1 for n in the last resulting identity, we obtain (2.11).

Similarly as in getting (2.11), using (2.10), we get (2.12). �
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3. Power sum-Laguerre-Hermite polynomials
Here, replacing x by y and ν by z in (1.9) and setting h(t, z) = z t2 and

f(x; t, n) = e(n+1)t − 1
et − 1

C0(xt),

we introduce a new class of power sum-Laguerre-Hermite polynomials S
HLn(x, y, z; n) by

the following generating function:

e(n+1)t − 1
et − 1

eyt+z t2
C0(xt) =

∞∑
n=0

S
HLn(x, y, z; n) tn

n!
(|t| < 2π). (3.1)

Now, we present various implicit summation formulae for the power sum-Laguerre-
Hermite polynomials.

Theorem 3.1. The following implicit summation formulas for the power sum-Laguerre-
Hermite polynomials hold.

S
HLn(x, y, 0; n) =

n∑
k=0

(
n

k

)
Ln−k(x, y) Sk(n) (n ∈ N0; n ∈ N) ; (3.2)

S
HLn(x, y, z; n) = n!

n∑
r=0

n−r∑
k=0

(−1)r xr Hn−k−r(y, z) Sk(n)
(r!)2 k! (n − k − r)!

(n ∈ N0; n ∈ N) ; (3.3)

S
HLn(x, u + v, z; n) =

n∑
k=0

(
n

k

)
uk S

HLn−k(x, v, z; n) (n ∈ N0; n ∈ N) ; (3.4)

S
HLn(x, y, a + b; n) =

[ n
2 ]∑

k=0

n!
k!(n − 2k)!

bk S
HLn−2k(x, y, a; n) (n ∈ N0; n ∈ N) . (3.5)

Proof. Setting z = 0 in (3.1) and using (1.2) and (1.16) with the aid of (2.1) with p = 1,
we obtain

∞∑
n=0

S
HLn(x, y, z; n) tn

n!
=

∞∑
n=0

n∑
k=0

Ln−k(x, y) Sk(n) tn

(n − k)!k!
,

which, upon equating the coefficients of tn, yields the desired result (3.2).

The other identities can be proved as in the proof of (3.2). We omit the details. �

4. Generalized Laguerre-Euler polynomials

Here, replacing x by y and ν by z in (1.9) and f(x; t, α) =
(

2
at+bt

)α
C0(xt), we introduce

a new class of the generalized Laguerre-Euler polynomials.

Let α ∈ R or C be a parameter. Also, let a, b ∈ R+ with a ̸= b. The generalized Euler
polynomials E

(α)
n (x, y, z; a, b, e) are defined by the following generating function( 2

at + bt

)α

eyt+h(t,z)C0(xt) =
∞∑

n=0
E(α)

n (x, y, z; a, b, e) tn

n!
(4.1)

(
x ∈ R; |t| <

2π

| ln a − ln b|

)
.

In particular, setting h(t, z) = zt2 in (4.1), we get
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Let α ∈ R or C be a parameter. Also, let a, b ∈ R+ with a ̸= b. The generalized
Laguerre-Euler polynomials LE

(α)
n (x, y, z; a, b, e) are defined by( 2

at + bt

)α

eyt+zt2
C0(xt) =

∞∑
n=0

LE(α)
n (x, y, z; a, b, e) tn

n!
(4.2)

(
x ∈ R; |t| <

2π

| ln a − ln b|

)
.

We have

LE(α)
n (x, y, z; a, b, e) =

n∑
m=0

[ m
2 ]∑

k=0

E
(α)
n−m Lm−2k(x, y)zkn!
(m − 2k)!k!(n − m)!

. (4.3)

Remark 4.1. Consider some special cases of (4.2).
(i) The case x = 0 of (4.2) reduces to the known generalized Hermite-Bernoulli poly-

nomials defined by (see [24])( 2
at + bt

)α

eyt+zt2 =
∞∑

n=0
HE(α)

n (y, z; a, b, e) tn

n!
(4.4)

(
|t| <

2π

| ln a − ln b|

)
.

(ii) The case x = z = 0 of (4.2) reduces to the known generalized Euler polynomials
defined by (see [20])( 2

at + bt

)α

eyt =
∞∑

n=0
E(α)

n (y; a, b, e) tn

n!
(4.5)

(
|t| <

2π

| ln a − ln b|

)
.

(iii) The case x = y = z = 0 of (4.2) reduces to the generalized Euler number E
(α)
n (a, b)

defined by ( 2
at + bt

)α

=
∞∑

n=0
E(α)

n (a, b) tn

n!
(4.6)(

|t| <
2π

| ln a − ln b|

)
.

We find that E
(1)
n (a, b) = En(a, b) in (1.17) and

E(α+β)
n (a, b) =

n∑
k=0

(
n

k

)
E

(α)
k (a, b) E

(β)
n−k(a, b) (n ∈ N0) . (4.7)

Here, we present various implicit summation formulae for the generalized Laguerre-Euler
polynomials.

Theorem 4.2. Let α, β ∈ R or C be parameters. Also, let a, b ∈ R+ with a ̸= b. Further,
let u, v, w, x, y, z ∈ R, and n ∈ N0. Then the following implicit summation formulas for
the generalized Laguerre-Euler polynomials in (4.2) hold:

LE
(α)
m+n(x, w, z; a, b, e)

=
m∑

s=0

n∑
k=0

(
m

s

)(
n

k

)
(w − y)s+k

LE
(α)
m+n−s−k(x, y, z; a, b, e);

(4.8)
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LE(α)
n (x, y + α, z; a, b, e) = n!

[ n
2 ]∑

j=0

n−2j∑
k=0

(−1)kxkzjE
(α)
n−2j−k(y; a

e , b
e , e)

(n − 2j − k)! j! (k!)2 ; (4.9)

LE(α+β)
n (x, y + v, z; a, b, e)

=
n∑

k=0

(
n

k

)
LE

(α)
n−k(x, y, z; a, b, e)E(β)

k (v; a, b, e);
(4.10)

LE(α+β)
n (x, y + z, v + u; a, b, e)

=
n∑

k=0

(
n

k

)
E

(α)
n−k(x, z, v; a, b, e)HE

(β)
k (y, u; a, b, e);

(4.11)

LE(α)
n (x, y, z; a, b, e) = n!

[ n
2 ]∑

j=0

n−2j∑
k=0

E
(α)
k (a, b, e) Ln−k−2j(x, y) zj

k! j! (n − k − 2j)!
. (4.12)

Proof. For (4.8), replacing t by t + u in (4.2) and using the binomial theorem, we have( 2
at+u + bt+u

)α

ey(t+u)+z(t+u)2
C0(x(t + u))

=
∞∑

n=0
LE(α)

n (x, y, z; a, b, e)(t + u)n

n!

=
∞∑

n=0

n∑
m=0

LE(α)
n (x, y, z; a, b, e) tn−mum

(n − m)! m!
.

(4.13)

Using (2.2) with p = 1 in the last double summation in (4.13), we obtain( 2
at+u + bt+u

)α

ez(t+u)2
C0(x(t + u))

= e−y(t+u)
∞∑

n=0

∞∑
m=0

LE
(α)
n+m(x, y, z; a, b, e) tnum

n! m!
.

(4.14)

Since the left side of (4.14) is independent of the variable y, we introduce another variable
w for the variable y in the right side of (4.14) and equate the two resulting identities to
find

∞∑
n=0

∞∑
m=0

LE
(α)
n+m(x, w, z; a, b, e) tnum

n! m!

= e(w−y)(t+u)
∞∑

n=0

∞∑
m=0

LE
(α)
n+m(x, y, z; a, b, e) tnum

n! m!
.

(4.15)

We use (2.3) to find

e(w−y)(t+u) =
∞∑

N=0
(w − y)N (t + u)N

N !
=

∞∑
k,s=0

(w − y)k+s tk us

k! s!
. (4.16)

Using (4.16) in the right side of (4.15) and applying (2.1) with p = 1 in the resulting
quadruple series, two times, we get

∞∑
n=0

∞∑
m=0

LE
(α)
n+m(x, w, z; a, b, e) tnum

n! m!

=
∞∑

n=0

∞∑
m=0

n∑
k=0

m∑
s=0

LE
(α)
n+m−s−k(x, y, z; a, b, e) (w − y)k+s tn um

(n − k)! k! (m − s)! s!
.

(4.17)
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Finally, equating the coefficients of tn and um in both sides of (4.17), consecutively, we
obtain the identity (4.8).

For (4.9), we find from (4.2) that
∞∑

n=0
LE(α)

n (x, y + α, z; a, b, e) tn

n!
=
(

2
(a

e )t + ( b
e)t

)α

eyt · ezt2 · C0(xt) (4.18)

By using (4.5) and (2.1) with p = 2, we have(
2

(a
e )t + ( b

e)t

)α

eyt · ezt2 =
∞∑

n=0
E(α)

n

(
y; a

e
,

b

e
, e
)

tn

n!
·

∞∑
j=0

zj t2j

j!

=
∞∑

n=0

[ n
2 ]∑

j=0
E

(α)
n−2j

(
y; a

e
,

b

e
, e
)

zj tn

(n − 2j)! j!
.

(4.19)

Setting the result (4.19) in (4.18) and using (1.4) with n = 0, with the help of (2.1) with
p = 1, we obtain

∞∑
n=0

LE(α)
n (x, y + α, z; a, b, e) tn

n!

=
∞∑

n=0


[ n

2 ]∑
j=0

n−2j∑
k=0

E
(α)
n−2j−k

(
y; a

e
,

b

e
, e
)

zjxk(−1)k

(n − 2j − k)! j!(k!)2

 tn.

(4.20)

Finally, equating the coefficients of tn on both sides of (4.20), we get the identity (4.9).

Similarly as above, we can prove the other identities. We omit the details. �

5. Symmetry identities for the generalized Laguerre-Euler polynomials
A number of interesting symmetry identities for various polynomials have been pre-

sented (see, e.g., [12–18, 29, 30]). Here, we give symmetry identities for the generalized
Laguerre-Euler polynomials LE

(α)
n (x, y, z; a, b, e) in (4.2). To do this, we consider the

following function:

g(t) :=
{ 4

(cat + dat)(cbt + dbt)

}α { 4
(cat + dat)(cbt + dbt)

}β

× e(a+b)(y1+y2)t+(a2+b2)(z1+z2)t2

× C0(x1at) C0(x1bt) C0(x2at) C0(x2bt).

(5.1)

We see that the function g(t) in (5.1) is symmetric with respect to α and β, a and b, c and
d, x1 and x2, y1 and y2, z1 and z2, respectively. So, to make the generalized Laguerre-Euler
polynomials in (4.2), we have 16 combinations. Then we will get 15 symmetry identities
for the generalized Laguerre-Euler polynomials in (4.2), two of which will be asserted in
the following theorem and the other 13 of which are left to the interested reader.

Theorem 5.1. Let α, β ∈ R or C be parameters. Also, let c, d ∈ R+ with c ̸= d. Further,
let a, b, x1, x2, y1, y2, z1, z2 ∈ R and n ∈ N0. Then

n∑
r=0

n−r∑
m=0

r∑
s=0

LE
(α)
n−m−r(x1, y1, z1; c, d, e) LE(α)

m (x1, y1, z1; c, d, e)

× LE
(β)
r−s(x2, y2, z2; c, d, e) LE(β)

s (x2, y2, z2; c, d, e) an−m−s bm+s

(n − m − r)! m! (r − s)! s!
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=
n∑

r=0

n−r∑
m=0

r∑
s=0

LE
(α)
n−m−r(x2, y2, z2; c, d, e) LE(α)

m (x2, y2, z2; c, d, e)

× LE
(β)
r−s(x1, y1, z1; c, d, e) LE(β)

s (x1, y1, z1; c, d, e) an−m−s bm+s

(n − m − r)! m! (r − s)! s!

(5.2)

=
n∑

r=0

n−r∑
m=0

r∑
s=0

E
(β)
n−m−r(x2, y1, z1; c, d, e) LE(β)

m (x2, y1, z1; c, d, e)

× LE
(α)
r−s(x1, y2, z2; c, d, e) LE(α)

s (x1, y2, z2; c, d, e) bn−m−s am+s

(n − m − r)! m! (r − s)! s!
.

(5.3)

Proof. We try to combine g(t) as follows:

g(t) =
{ 2

cat + dat

}α

eay1t+a2z1t C0(x1at)

×
{ 2

cbt + dbt

}α

eby1t+b2z1t C0(x1bt)

×
{ 2

cat + dat

}β

eay2t+a2z2t C0(x2at)

×
{ 2

cbt + dbt

}β

eby2t+b2z2t C0(x2bt),

(5.4)

which, upon using (4.2), gives

g(t) =
∞∑

n=0
LE(α)

n (x1, y1, z1; c, d, e)(at)n

n!

×
∞∑

m=0
LE(α)

m (x1, y1, z1; c, d, e)(bt)m

m!

×
∞∑

r=0
LE(β)

r (x2, y2, z2; c, d, e)(at)r

r!

×
∞∑

s=0
LE(β)

s (x2, y2, z2; c, d, e)(bt)s

s!

(5.5)

Now, we apply (2.1) with p = 1 to combine the first and second series into a single series
and the third and fourth series into another single series. Then we use (2.1) with p = 1
to combine the two resulting single series into one series to find

g(t) =
∞∑

n=0

{
n∑

r=0

n−r∑
m=0

r∑
s=0

LE
(α)
n−m−r(x1, y1, z1; c, d, e) LE(α)

m (x1, y1, z1; c, d, e)

× LE
(β)
r−s(x2, y2, z2; c, d, e) LE(β)

s (x2, y2, z2; c, d, e) an−m−s bm+s

(n − m − r)! m! (r − s)! s!

}
tn.

(5.6)

Considering another combination of g(t) as in (5.4), similarly as above, we can get another
single series of g(t) as in (5.6). Then, equating the coefficients of tn in both sides of the
two single series, we can find 15 identities, two of which are recorded. �
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6. Concluding remarks
The results presented here, being very general, can be specialised to yield a number

of known and new identities involving relatively simple and familiar polynomials. For
example, setting x = 0 in (4.8), we have

HE
(α)
m+n(w, z; a, b, e)

=
m∑

s=0

n∑
k=0

(
m

s

)(
n

k

)
(w − y)s+k

HE
(α)
m+n−s−k(y, z; a, b, e).

The power sum-Laguerre-Hermite polynomials S
HLn(x, y, z; n) in (3) and the generalized

Laguerre-Euler polynomials E
(α)
n (x, y, z; a, b, e) in (4.2) can be further extended and have

their differential and integral formulas as in Theorem 2.2.

Acknowledgment. The authors would like to express their deep thanks for the reviewer
whose useful comments improve this paper as it stands.
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Abstract
Using Cayley-Hamilton equation for matrices, we obtain a simple formula for trace of pow-
ers of a square matrix. The formula becomes simpler in particular cases. As a consequence,
we also demonstrate the formula for trace of negative powers of a matrix.
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1. Introduction
With the advancement of highly complex computer network topologies and eternally

growing number of nodes in the existing networks, certain applications require to find the
number of cliques in the graph of a given network. Using the adjacency matrix A of the
graph, one clique of vertices v1, v2, v3 contributes the 2 to each of the a11, a22, a33. Thus
the count of cliques will be T r(A3)

6 [2]. In [6], an identity involving the Eulerian congruence
on trace of powers of integer matrices modulo pr is obtained, where p is prime, and r ∈ N.
[4] makes a short survey of related results. For a square matrix A = [aij ], the trace of A
denoted by Tr(A), is the sum of main diagonal entries of A, that is Tr(A) =

∑
i aii. [5]

obtains the formula of computation of the eigenvalue with maximum modulus of a matrix
using the trace of its higher powers. Our formula thus contributes to finding the spectral
radius of a matrix. [1] also developes the similar formula for nth power of a 2 × 2 matrix.
Our formula is a general one and does not require computation of entries of nth power.

The current paper is in the sequel of [3], wherein we have obtained the formula for the
sum of the powers of matrices and its consequences. In Section 2, we set the required
notations and recall the terminology. We also state the main result Theorem 2.1. The
simplification of the long computations in the proofs are achieved by introducing the
functions lm(n, k0, k1, . . . , km−2) used for finding trace of nth power of an m × m matrix
A. The introduction of lm(·) is motivated by the list of expression of Tr(An) for a 3 × 3
matrix A for first few powers of A. The jargon of notations, as one will be convinced, is
used only for the proof to be simplified. However, the actual application of our formulae
to real computation does not require much of knowledge except the definition of the
Trace and a couple of related definitions. The proof of the main theorem is discussed in
Section 3. In fact, a technical formula (3.1) for lm(·) is obtained in a series of Lemmas
using Mathematical Induction. Very important and useful particular cases are discussed
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in Section 4. Finally the formula for the trace of negative powers of nonsingular matrices is
demonstrated in Section 5. To maintain the brevity, we restrict ourselves to 2×2 matrices
for negative powers. However, we should impress upon the reader that this restrictions
can easily be done away with.

2. Main result
In what follows, A = [aij ] denotes an m × m matrix. For any integer 1 ≤ k ≤ m and

the integers 1 ≤ i1 ≤ i2 ≤ i3 ≤ · · · ≤ ik ≤ m, the determinant of the k × k submatrix
obtained by removing all rows except i1, i2, i3, . . . , ik rows and i1, i2, i3, . . . , ik columns is
called a principal minor of A of order k, thereby obtaining

(m
k

)
minors. We denote their

sum as Sk(A) or for Sk for brevity whenever there is no confusion. Thus, S1 will become
the trace of the given matrix and Sn will be the determinant of A.

The characteristic equation of A is given by

det(A − λI) = 0,

where I is m × m identity matrix. The roots of the characteristic equation are called the
characteristic roots of A. We shall denote them by λ1, λ2, . . . , λm.

The motivation for defining ingredients required for the formula of trace of powers of
A lies in the analysis of a 3 × 3 matrix, and hence, for time being, A will denote a 3 × 3
matrix.

The characteristic equation of A is

λ3 − S1λ2 + S2λ − S3 = 0,

where S1 = Tr(A) = λ1 + λ2 + λ3 =
3∑

i=1
aii, S2 =

∑
i ̸=j

λiλj and S3 = λ1λ2λ3 = det(A).

By the Cayley-Hamilton theorem, we have A3 − S1A2 + S2A − S3I = 0. This, in turn,
implies the following for n ∈ N.

An+3 − S1An+2 + S2An+1 − S3An = 0. (2.1)

Applying the trace, a linear operator, on (2.1) gives a recursive relation,

Tr(An+3) = S1Tr(An+2) − S2Tr(An+1) + S3Tr(An), (2.2)

which is central to this note. Observe that

Tr(A2) = λ2
1 + λ2

2 + λ2
3 = (λ1 + λ2 + λ3)2 − 2 (λ1λ2 + λ2λ3 + λ1λ3)

= S2
1 − 2S2.

Putting particular values of n ∈ Z+ ∪ {0} in (2.2) and simplifying, we have the following.

Tr(A3) = S3
1 − 3S1S2 + 3S3.

T r(A4) = S4
1 − 4S2

1S2 + 2S2
2 + 4S1S3.

T r(A5) = S5
1 − 5S3

1S2 + 5S1S2
2 + (5S2

1 − 5S2)S3.

T r(A6) = S6
1 − 6S4

1S2 + 9S2
1S2

2 − 2S3
2 + (6S3

1 − 12S1S2)S3 + 3(S3)2.

T r(A7) = S7
1 − 7S5

1S2 + 14S3
1S2

2 − 7S1S3
2 + (7S4

1 − 21S2
1S2 + 7S2

2)S3 + (7S1)S2
3 .

It is quite apparent that the complexity of the formula increases as the power increases.
Well within the ninth power, the formula really becomes highly involved.

Tr(A9) = S9
1 − 9S7

1S2 + 27S5
1S2

2 − 30S3
1S3

2 + 9S1S4
2 + (9S6

1 − 45S4
1S2 + 54S2

1S2
2 − 9S3

2)S3

+ (18S3
1 − 27S1S2)S2

3 + 3S3
3
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=
⌊ 9

3 ⌋∑
k1=0

⌊ 9−3k1
2

⌋∑
k0=0

(−1)k0

k0!k1!

[
9(9 − k0 − 2k1 − 1)(9 − k0 − 2k1 − 2) · · ·

(9 − 2k0 − 3k1 + 1)

]
×

[
S9−3k1−2k0

1 Sk0
2 Sk1

3

]
.

Before we conclude the general formula for Tr(An), we define

l3(n, k0, k1) =



1
k0!k1!

n(n − k0 − 2k1 − 1)(n − k0 − 2k1 − 2)
×(n − k0 − 2k1 − 3) · · · (n − 2k0 − 3k1 + 1), if k0 + k1 ≥ 2;

n, if k0 + k1 = 1;
1, if k0 + k1 = 0.

The above definition is applied only when each ki ≥ 0. In the course of different order
of matrices we get different lm(n, k0, k1, · · · , km−2). Throughout this note, we adopt the
convention that if at least one ki < 0, then we define lm(n, k0, k1, · · · , km−2) = 0. As a
consequence, In general, for m × m matrix

lm(n, k0, k1, . . . , km−2) = n

k0!k1! · · ·!km−2!


(n − k0 − 2k1 − · · · − (m − 1)km−2 − 1)

×(n − k0 − 2k1 − · · · − (m − 1)km−2 − 2)
× · · ·

×(n − 2k0 − 3k1 − · · · − mkm−2 + 1)

 .

To shorten the displayed identities, when n, k0, k1, . . . , km−2 are already mentioned in the
summation, we write lm for lm(n, k0, k1, . . . , km−2). Our main result in terms of a function
lm is Theorem 2.1.

Theorem 2.1. For a m × m matrix A = [aij ], we have

Tr(An) =
∑

kj≥0

⌊
n−3k1−4k2−···−mkm−2

2

⌋
∑

k0=0
(−1)

k0+k2+k4+···k⌊ m−2
2 ⌋ lm

× [Sn−2k0−3k1−4k2−···−mkm−2
1 Sk0

2 Sk1
3 Sk2

4 · · · S
km−3
m−1 Skm−2

m ]. (2.3)

For a nonsingular m × m matrix A, one observes that

S1(A−1) = Tr(A−1) = 1
λ1

+ 1
λ2

+ · · · + 1
λm

= Sm−1(A)
Sm(A)

.

S2(A−1) =
m∑

i,j=1
i<j

1
λiλj

= Sm−2(A)
Sm(A)

.

· · · = · · ·

Sm−1(A−1) =
m∑

i=1

1
λ1λ2 · · · λi−1λi+1 · · · λm

= S1(A)
Sm(A)

.

Sm(A−1) = 1
λ1λ2 · · · λm

= 1
Sm(A)

.

Using all this, and replacing A by A−1 in the Theorem 2.1, the following is at once.

Theorem 2.2. For a m × m nonsingular matrix A = [aij ], we have

Tr(A−n) = 1
[det(A)]n

∑
kj≥0

⌊
n−3k1−4k2−···−mkm−2

2

⌋
∑

k0=0
(−1)

k0+k2+k4+···k⌊ m−2
2 ⌋ lm

× [Skm−3
1 S

km−4
2 · · · S

n−2k0−3k1−···−mkm−2
m−1 Sk0+2k1+3k2+···+(m−1)km−2

m ]. (2.4)
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3. Proof of the main theorem
In order to prove the main theorem, we first prove the following.

lm(n, k0, k1, . . . , km−2) = lm(n − 1, k0, k1, . . . , km−2)

+
m∑

i=2
lm(n − i, k0, k1, . . . , ki−2 − 1, . . . , km−2). (3.1)

We establish (3.1) by applying mathematical induction on the order of the matrix
A = [aij ]. The proof is divided into a couple of Lemmas.

Lemma 3.1. l2(n, k0) = l2(n − 1, k0) + l2(n − 2, k0 − 1).

Proof. Since the cases k0 = 0 and k0 = 1 are trivial, we can assume that k0 ≥ 2. Now

l2(n − 1, k0) + l2(n − 2, k0 − 1) =(n − 1)(n − k0 − 2)(n − k0 − 3) · · · (n − 2k0)
k0!

+ (n − 2)(n − k0 − 2)(n − k0 − 3) · · · (n − 2k0 + 1)
(k0 − 1)!

=(n − k0 − 2)(n − k0 − 3) · · · (n − 2k0 + 1)
(k0 − 1)!

×
[(n − 1)(n − 2k0)

k0
+ n − 2

]
=(n − k0 − 2)(n − k0 − 3) · · · (n − 2k0 + 1)

(k0 − 1)!

×
[

n2 − 2nk0 − n + 2k0 + nk0 − 2k0
k0

]

=(n − k0 − 2)(n − k0 − 3) · · · (n − 2k0 + 1)
(k0 − 1)!

×
[

n(n − k0 − 1)
k0

]
=l2(n, k0).

�
Lemma 3.2. l3(n, k0, k1) = l3(n − 1, k0, k1) + l3(n − 2, k0 − 1, k1) + l3(n − 3, k0, k1 − 1).

Proof. If k1 = 0, then l3(n, k0, k1) = l2(n, k0) and l3(n − 3, k0, k1 − 1) = 0. Consequently,
our case reduces to the Lemma 3.1. For k0 = 0 and k1 ≥ 1, we have,

R.H.S. =l3(n − 1, 0, k1) + l3(n − 3, 0, k1 − 1)

=(n − 1)(n − 2k1 − 2)(n − 2k1 − 3) · · · (n − 3k1)
k1!

+ (n − 3)(n − 2k1 − 2)(n − 2k1 − 3) · · · (n − 3k1 + 1)
(k1 − 1)!

=(n − 2k1 − 2)(n − 2k1 − 3) · · · (n − 3k1 + 1)
(k1 − 1)!

[(n − 1)(n − 3k1)
k1

+ n − 3
]

=(n − 2k1 − 2)(n − 2k1 − 3) · · · (n − 3k1 + 1)
(k1 − 1)

[
n(n − 2k1 − 1)

k1

]
=l3(n, 0, k1)
=L.H.S.
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Since the case k0 = 0 = k1 is trivial, we assume now k0, k ≥ 1.
R.H.S. =l3(n − 1, k0, k1) + l3(n − 2, k0 − 1, k1) + l3(n − 3, k0, k1 − 1)

=(n − 1)(n − k0 − 2k1 − 2)(n − k0 − 2k1 − 3) · · · (n − 2k0 − 3k1)
k0!k1!

+ (n − 2)(n − k0 − 2k1 − 2)(n − k0 − 2k1 − 3) · · · (n − 2k0 − 3k1 + 1)
(k0 − 1)!k1!

+ (n − 3)(n − k0 − 2k1 − 2)(n − k0 − 2k1 − 3) · · · (n − 2k0 − 3k1 + 1)
k0!(k1 − 1)!

=(n − k0 − 2k1 − 2)(n − k0 − 2k1 − 3) · · · (n − 2k0 − 3k1 + 1)
(k0 − 1)!(k1 − 1)!

×
[(n − 1)(n − 2k0 − 3k1)

k0k1
+ n − 2

k1
+ n − 3

k0

]
=(n − k0 − 2k1 − 2)(n − k0 − 2k1 − 3) · · · (n − 2k0 − 3k1 + 1)

(k0 − 1)!(k1 − 1)!

×
[

n(n − k0 − 2k1 − 1)
k0k1

]
=l3(n, k0, k1)
=L.H.S.

�
Lemma 3.3. As an induction hypothesis, assume that

lt(n, k0, k1, k2, . . . , kt−2) = lt−1(n − 1, k0, k1, k2, . . . , kt−2)

+
t∑

i=2
lt−1(n − i, k0, k1, k2, . . . , ki−2 − 1, . . . , kt−2) (3.2)

for t ≤ m − 1. Then

lm(n, k0, . . . , km−2) = lm(n − 1, k0, . . . , km−2)

+
m∑

i=2
lm(n − i, k0, k1, . . . , ki−2 − 1, . . . , km−2). (3.3)

Proof. If km−2 = 0, then lm(n, k0, . . . , km−2) = lm−1(n, k0, . . . , km−3)
and lm(n, k0, k1, . . . , km−2−1) = 0. Therefore, (3.3) follows from the Induction Hypothesis
(3.2). Let kj = 0 for some 0 ≤ j ≤ m − 1. Then

L.H.S. =lm(n − 1, k0, . . . , kj−1, 0, kj+1, . . . , km−2)

+
m∑

i=2,i ̸=j+2
lm(n − i, k0, . . . , ki−2 − 1, . . . , km−2)

= 1
k0! · · · kj−1!kj+1! · · · km−2!

×


(n − 1)(n − k0 − 2k1 − · · · − jkj−1 − (j + 1)kj+1 − (m − 1)km−2 − 2)
(n − k0 − 2k1 − · · · − jkj−1 − (j + 2)kj+1 − · · · − (m − 1)km−2 − 3)

· · ·
(n − 2k0 − 3k1 − · · · − (j + 1)kj−1 − (j + 3)kj+1 − · · · − mkm−2)


+

m∑
i=2,i ̸=j+2

1
k0!k1! · · · (ki−2 − 1)!ki−1!ki! · · · km−2!
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×


(n − i)(n − k0 − 2k1 − · · · − (i − 1)ki−2 − · · · − (m − 1)km−2 − 2)

(n − k0 − 2k1 − · · · − (i − 1)ki−2 − · · · − (m − 1)km−2 − 3)
· · ·

(n − 2k0 − 3k1 − · · · − (j + 1)kj−1 − (j + 3)kj+1 − · · · − mkm−2 + 1)


= 1

(k0 − 1)! · · · (kj−1 − 1)!(kj+1 − 1)! · · · (km−2 − 1)!

×


(n − k0 − 2k1 − · · · jkj−1 − (j + 2)kj+1 − · · · − (m − 1)km−2 − 2)

(n − k0 − 2k1 − · · · − jkj−1 − (j + 2)kj+1 − · · · − (m − 1)km−2 − 3)
· · ·

(n − 2k0 − 3k1 − · · · − (j + 1)kj−1 − (j + 3)kj+1 − · · · − mkm−2 + 1)



×



(n − 1)(n − 2k0 − 3k1 − · · · − (j + 1)kj−1 − (j + 3)kj+1 · · · − mkm−2)
k0k1 · · · kj−1kj+1 · · · km−2

+ n − 2
k1k2 · · · kj−1kj+1 · · · km−2

+ n − 3
k0k2 · · · kj−1kj+1 · · · km−2

+ · · ·

+ n − m

k0k1 · · · kj−1kj+1 · · · km−3


= 1

k0!k1! · · · kj−1!kj+1! · · · km−2!

×


n(n − k0 − 2k1 − · · · − jkj−1 − (j + 2)kj+1 − · · · − (m − 1)km−2 − 1)
(n − k0 − 2k1 − · · · − jkj−1 − (j + 2)kj+1 − · · · − (m − 1)km−2 − 2)

· · ·
(n − 2k0 − 3k1 − · · · − (j + 1)kj−1 − (j + 3)kj+1 − · · · − mkm−2 + 1)


=lm(n, k0, k1, · · · , kj−1, jkj+1, · · · , km−2)
=R.H.S.

For other possibilities of more than one ki = 0, the proof is analogous to the previous case
or follows from the induction hypothesis. The following takes care of the case when each
ki ≥ 1:

(n − 1)(n − 2k0 − 3k1 − 4k2 − · · · − mkm−2)
k0k1k2 · · · km−2

+ n − 2
k1k2 · · · km−2

+ n − 3
k0k2k3 · · · km−2

+ · · · + n − m

k0k1k2 · · · km−3

= 1
k0k1k2 · · · km−2

 (n2 − 2nk0 − 3nk1 − 4nk2 − · · · − mnkm−2)
+(−n + 2k0 + 3k1 + 4k2 + · · · + mkm−2)

nk0 − 2k0 + nk1 − 3k1 + · · · + nkm−2 − mkm−2


= n(n − k0 − 2k1 − 3k2 − · · · − (m − 1)km−2 − 1)

k0k1k2 · · · km−2

�

Proof of the Theorem 2.1. Let λ1, λ2, · · · , λm be the eigenvalues of A. We prove the-
orem by mathematical induction on the power of the matrix, that is, n. For n = 1, it is
trivial and for n = 2,

Tr(A2) = λ2
1 + λ2

2 + · · · + λ2
m

= (λ1 + λ2 + · · · + λm)2 − 2
∑
i ̸=j

λiλj

= S2
1 − 2S2.

In the similar way, the direct computation using the manipulation of eigenvalues yields
the proof of the identity (2.4) for 3 ≤ n ≤ m − 1. Henceforth we assume that (2.4) holds
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for any positive integer less than n, where n ≥ m. The characteristic equation of A is

λm − S1λm−1 + S2λm−2 − S3λm−3 + · · · + (−1)mSm = 0.

This, in turn, by the Cayley-Hamilton theorem implies the following:

Am − S1Am−1 + S2Am−2 − S3Am−3 + · · · + (−1)mSmI = 0.

The trace being a linear operator, gives, a recursive relation,

Tr(An) =S1Tr(An−1) − S2Tr(An−2) + S3Tr(An−3) − · · · − (−1)mSmTr(An−m)

=
∑

kj≥0

⌊
n−1−3k1−4k2−···−mkm−2

2

⌋
∑

k0=0

 (−1)
k0+k2+k4+···+k⌊ m−2

2 ⌋
lm(n − 1, k0, · · · , km−2)

S
n−2k0−3k1−···−mkm−2
1 Sk0

2 · · · S
km−2
m



+
∑

kj≥0

⌊
n−2−3k1−4k2−···−mkm−2

2 +1
⌋

∑
k0=1

 (−1)
k0+k2+k4+···+k⌊ m−2

2 ⌋
lm(n − 2, k0 − 1, k1 · · · , km−2)

S
n−2k0−3k1−···−mkm−2
1 Sk0

2 · · · S
km−2
m



+
∑

kj≥0
k1≥1

⌊
n−3k1−4k2−···−mkm−2

2

⌋
∑

k0=0

 (−1)
k0+k2+k4+···+k⌊ m−2

2 ⌋
lm(n − 3, k0, k1 − 1, k2, · · · , km−2)
S

n−2k0−3k1−···−mkm−2
1 Sk0

2 · · · S
km−2
m


+ · · ·

+
∑

kj≥0
km−2≥1

⌊
n−3k1−4k2−···−mkm−2

2

⌋
∑

k0=0

 (−1)
k0+k2+k4+···+k⌊ m−2

2 ⌋
lm(n − m, k0, · · · , km−3, km−2 − 1)
S

n−2k0−3k1−···−mkm−2
1 Sk0

2 · · · S
km−2
m

 .

Taking certain terms out of the summations and using Lemma 3.3 the theorem follows. �

4. Particular cases
As the particular cases, we put on record some interesting observations in this section.

Corollary 4.1. For a 2 × 2 matrix A = [aij ],

Tr(An) =
⌊ n

2 ⌋∑
k0=0

(−1)k0 l2(n, k0) [Tr(A)]n−2k0 [det(A)]k0 .

The following is an interesting fact stating that power and trace commute in case of a
singular matrix.

Corollary 4.2. If A is a singular matrix, then Tr(An) = [Tr(A)]n.

Corollary 4.3. If Tr(A)=0, then

Tr(An) =
{

2(−1)
n
2 [det(A)]

n
2 , if n is even;

0, if n is odd.

Corollary 4.4. If Tr(A) = 0 = det(A), then Tr(An) = 0.

Now, we apply our scheme of computation to a block matrix. It’s noteworthy that in
statistics block matrices play a crucial role.
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Corollary 4.5. For a block matrix A of order 2m of the type

A =


A1 · · · 0

A2
...

... . . .
0 · · · Am



Tr(An) =
m∑

r=1

⌊ n
2 ⌋∑

k0=0
(−1)k0 l2(n, k0) [Tr(Ar)]n−2k0 [det(Ar)]k0 .

Proof. Clearly An =


An

1 · · · 0

An
2

...
... . . .
0 · · · An

m

 for all n ∈ N. Consequently,

Tr(An) =
m∑

r=1
Tr(An

r )

=
m∑

r=1

⌊ n
2 ⌋∑

k0=0
(−1)k0 l2(n, k0) [Tr(Ar)]n−2k0 [det(Ar)]k0 .

�

The following is an analogue of [3, Theorem 2.10].

Proposition 4.6. If A =
[
a b
b c

]
, with a, b, c ≥ 0, then 2Tr(A3) ≥ Tr(A) · Tr(A2).

Proof.

2Tr(A3) − Tr(A) · Tr(A2) = 2 [Tr(A)]3 − 6Tr(A) det(A)
− [Tr(A)]3 + 2Tr(A) det(A)

= Tr(A)
[
[Tr(A)]2 − 4 det(A)

]
= Tr(A)

[
(a + c)2 − 4(ac − b2)

]
= Tr(A)

[
(a − c)2 + 4b2

]
≥ 0.

�

5. Trace of a negative power of A

The analogue of the formula (2.4) also holds for the trace of negative powers. We
limit ourselves to the matrices of order 2 × 2, and hence, A will denote a 2 × 2 matrices
throughout the rest. The proof is on the same line following Lemma 3.3. The proofs are
either direct evidence of the results in the previous sections or an obvious workout. From
the characteristic equation and the linearity of the trace, we have

Tr(An) = 1
det(A)

[
Tr(A)Tr(An+1) − Tr(An+2)

]
. (5.1)

For different values of n in (5.1), we have the following

Tr(A−1) = Tr(A)
det(A)

(5.2)
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Tr(A−2) = 1
[det(A)]2

[
[Tr(A)]2 − 2 det(A)

]
(5.3)

Tr(A−3) = 1
[det(A)]3

[
[Tr(A)]3 − 3Tr(A) det(A)

]
(5.4)

Tr(A−4) = 1
[det(A)]4

[
[Tr(A)]4 − 4 [Tr(A)]2 det(A) + 2 [det(A)]2

]
.

We conclude the following on the basis of the above observations.

Theorem 5.1. If A is nonsingular, then

Tr(A−n) = 1
[det(A)]n

⌊ n
2 ⌋∑

k0=0
(−1)k0 l2(n, k0) [Tr(A)]n−2k0 [det(A)]k0 .

Proof. Follows from Lemma 3.3. �
Corollary 5.2. If A is nonsingular and Tr(A) = 0, then

Tr(An) =

 2(−1)
n
2

[det(A)]
n
2

, if n is even;
0, if n is odd.

Now we obtain the inequality which is completely analogous to the Proposition 4.6.

Proposition 5.3. For a nonsingular matrix A =
[
a b
b c

]
with a, b, c ≥ 0,

2Tr(A−3) ≥ Tr(A−1) · Tr(A−2); if det(A) > 0. (5.5)
2Tr(A−3) ≤ Tr(A−1) · Tr(A−2); if det(A) < 0. (5.6)

Proof. From (5.2), (5.3) and (5.4),

2Tr(A−3) − Tr(A−1) · Tr(A−2) = 2
[det(A)]3

[
[Tr(A)]3 − 3Tr(A) det(A)

]
− Tr(A)

[det(A)]3
[
[Tr(A)]2 − 2 det(A)

]
= Tr(A)

[det(A)]3
[
[Tr(A)]2 − 4 det(A)

]
= Tr(A)

[det(A)]3
[
(a − c)2 + 4b2

]
.

Hence, inequalities (5.5) and (5.6) follow. �
Remark 5.4. Similar observations could be made for 3×3 and even higher order matrices.
However, we have limited ourselves to just one order in this note.

Acknowledgment. The author is thankful to the referee for a careful reading and
constructive suggestions making the paper readable to more people.

References
[1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of

generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435,
2013.

[2] H. Avron, Counting triangles in large graphs using randomized matrix trace estima-
tion, Proceedings of Kdd-Ldmta’10, 2010.

[3] D.J. Karia, K.M. Patil and H.P. Singh, On the sum of powers of square matrices,
Oper. Matrices 13 (1), 221–229, 2019.



On the trace of powers of square matrices 23

[4] J.K. Merikoski, On the trace and the sum of elements of a matrix, Linear Algebra
Appl. 60, 177–185, 1984.

[5] V.P. Pugačev, Application of the trace of a matrix to the calculation of its eigenvalues,
Ž. Vyčisl. Mat. i Mat. Fiz. 5, 114–116, 1965.

[6] A.V. Zarelua, On congruences for the traces of powers of some matrices, Tr. Mat.
Inst. Steklova, 263 (Geometriya, Topologiya i Matematicheskaya Fizika. I), 85–105,
2008.



Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 50 (1) (2021), 24 – 32

DOI : 10.15672/hujms.638900

Research Article

The multiplicative norm convergence in normed
Riesz algebras

Abdullah Aydın
Department of Mathematics, Muş Alparslan University, Muş, Turkey

Abstract
A net (xα)α∈A in an f -algebra E is called multiplicative order convergent to x ∈ E if
|xα −x| ·u o−→ 0 for all u ∈ E+. This convergence was introduced and studied on f -algebras
with the order convergence. In this paper, we study a variation of this convergence for
normed Riesz algebras with respect to the norm convergence. A net (xα)α∈A in a normed
Riesz algebra E is said to be multiplicative norm convergent to x ∈ E if

∥∥|xα − x| · u
∥∥ → 0

for each u ∈ E+. We study this concept and investigate its relationship with the other
convergences, and also we introduce the mn-topology on normed Riesz algebras.
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1. Introduction and preliminaries
Let us recall some notations and terminologies used in this paper. An ordered vector

space E is said to be vector lattice (or, Riesz space) if, for each pair of vectors x, y ∈ E, the
supremum x∨y = sup{x, y} and the infimum x∧y = inf{x, y} both exist in E. For x ∈ E,
x+ := x ∨ 0, x− := (−x) ∨ 0, and |x| := x ∨ (−x) are called the positive part, the negative
part, and the absolute value of x, respectively. A vector lattice E is called order complete if
every nonempty bounded above subset has a supremum (or, equivalently, whenever every
nonempty bounded below subset has an infimum). A vector lattice is order complete if
and only if 0 ≤ xα ↑≤ x implies the existence of the sup xα. A partially ordered set A
is called directed if, for each a1, a2 ∈ A, there is another a ∈ A such that a ≥ a1 and
a ≥ a2 (or, equivalently, a ≤ a1 and a ≤ a2). A function from a directed set A into a
set E is called a net in E. A net (xα)α∈A in a vector lattice E is order convergent (or
o-convergent, for short) to x ∈ E, if there exists another net (yβ)β∈B satisfying yβ ↓ 0,
and for any β ∈ B there exists αβ ∈ A such that |xα − x| ≤ yβ for all α ≥ αβ. In this
case, we write xα

o−→ x. An operator T : E → F between two vector lattices is called order
continuous whenever xα

o−→ 0 in E implies Txα
o−→ 0 in F . A vector e ≥ 0 in a vector lattice

E is said to be a weak order unit whenever the band generated by e satisfies Be = E, or
equivalently, whenever for each x ∈ E+ we have x ∧ ne ↑ x; see much more information of
vector lattices for example [1, 2, 16, 17]. Recall that a net (xα)α∈A in a vector lattice E is
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unbounded order convergent (or shortly, uo-convergent) to x ∈ E if |xα − x| ∧ u
o−→ 0 for

every u ∈ E+. In this case, we write xα
uo−→ x, we refer the reader for an exposition on

uo-convergence to [3, 5–11].
A vector lattice E under an associative multiplication is said to be a Riesz algebra

(or, shortly, l-algebra) whenever the multiplication makes E an algebra (with the usual
properties), and besides, it satisfies the following property: x · y ∈ E+ for every x, y ∈ E+.
A Riesz algebra E is called commutative whenever x · y = y · x for all x, y ∈ E. Also, a
subset A of an l-algebra E is called l-subalgebre of E whenever it is also an l-algebra under
the multiplication operation in E

An l-algebra X is called: d-algebra whenever u · (x∧y) = (u ·x)∧ (u ·y) and (x∧y) ·u =
(x · u) ∧ (y · u) holds for all u, x, y ∈ X+; almost f -algebra if x ∧ y = 0 implies x · y = 0 for
all x, y ∈ X+; f -algebra if, for all u, x, y ∈ X+, x∧y = 0 implies (u ·x)∧y = (x ·u)∧y = 0;
semiprime whenever the only nilpotent element in X is zero; unital if X has a multiplicative
unit. Moreover, any f -algebra is both d- and almost f -algebra (cf. [2, 12, 13, 17]). A
vector lattice E is called Archimedean whenever 1

nx ↓ 0 holds in E for each x ∈ E+.
Every Archimedean f -algebra is commutative; see for example [13, p.7]. Assume E is
an Archimedean f -algebra with a multiplicative unit vector e. Then, by applying [17,
Thm.142.1(v)], in view of e = e · e = e2 ≥ 0, it can be seen that e is a positive vector. On
the other hand, since e ∧ x = 0 implies x = x ∧ x = (x · e) ∧ x = 0, it follows that e is a
weak order unit (cf.[12, Cor.1.10]). In this article, unless otherwise, all vector lattices are
assumed to be real and Archimedean and all l-algebras are assumed to be commutative.

A net (xα)α∈A in an f -algebra E is called multiplicative order convergent (or shortly,
mo-convergent) to x ∈ E whenever |xα − x| · u

o−→ 0 for all u ∈ E+. Also, it is called
mo-Cauchy if the net (xα − xα′)(α,α′)∈A×A mo-converges to zero. E is called mo-complete
if every mo-Cauchy net in E is mo-convergent, and it is also called mo-continuous if
xα

o−→ 0 implies xα
mo−−→ 0; see much more detail information [4]. Recall that a norm ∥·∥

on a vector lattice is said to be a lattice norm whenever |x| ≤ |y| implies ∥x∥ ≤ ∥y∥. A
vector lattice equipped with a lattice norm is known as a normed Riesz space or normed
vector lattice. Moreover, a normed complete vector lattice is called Banach lattice. A net
(xα)α∈A in a Banach lattice E is unbounded norm convergent (or un-convergent) to x ∈ E
if

∥∥|xα − x| ∧ u
∥∥ → 0 for all u ∈ E+ (cf. [8–10, 15]). We routinely use the following fact:

y ≤ x implies u · y ≤ u · x for all positive elements u in l-algebras. So, we can give the
following notion.

Definition 1.1. An l-algebra E which is at the same time a normed Riesz space is called
a normed l-algebra whenever ∥x · y∥ ≤ ∥x∥.∥y∥ holds for all x, y ∈ E.

Motivated by the above definitions, we give the following notion.

Definition 1.2. A net (xα)α∈A in a normed l-algebra E is said to be multiplicative norm
convergent (or shortly, mn-convergent) to x ∈ E if

∥∥|xα−x|·u
∥∥ → 0 for all u ∈ E+. Abbre-

viated as xα
mn−−→ x. If the condition holds only for sequences then it is called sequentially

mn-convergence.

In this paper, we study only the mn- cases because the sequential cases are analogous
in general.

Remark 1.3. (i) For a net (xα)α∈A in a normed l-algebra E, xα
mn−−→ x implies xα ·

y
mn−−→ x · y for all y ∈ E because of

∥∥|xα · y − x · y| · u
∥∥ ≤

∥∥|xα − x| · |y| · u
∥∥ for all

u ∈ E+; see for example [12, p.1]. The converse holds true in normed l-algebras
with the multiplication unit. Indeed, assume xα · y

mn−−→ x · y for each y ∈ E. Fix
u ∈ E+. So,

∥∥|xα − x| · u
∥∥ =

∥∥|xα · e − x · e| · u
∥∥ mn−−→ 0.
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(ii) In normed l-algebras, the norm convergence implies the mn-convergence. Indeed,
by considering the inequality

∥∥|xα − x| · u
∥∥ ≤ ∥xα − x∥.∥u∥ for any net xα

mn−−→ x,
we can get the desired result.

(iii) If a net (xα)α∈A is order Cauchy and xα
mn−−→ x in a normed l-algebra then we have

xα
mo−−→ x. Indeed, since the order Cauchy norm convergent net is order convergent

to its norm limit, we can get the desired result.
(iv) In order continuous normed l-algebras, it is clear that the mo-convergence implies

the mn-convergence.
(v) In order continuous normed l-algebras, following from the inequality

∥∥|xα−x|·u
∥∥ ≤

∥xα − x∥.∥u∥, the order convergence implies the mn-convergence.
(vi) In atomic and order continuous Banach lattice l-algebras, an order bounded and

mn-convergent to zero sequence is sequentially mo-convergent to zero; see [9,
Lem.5.1.].

(vii) For an mn-convergent to zero sequence (xn) in a Banach lattice l-algebra, there is
a subsequence (xnk

) which sequentially mo-converges to zero; see [11, Lem.3.11.].

Example 1.4. Let E be a Banach lattice. Fix an element x ∈ E. Then the principal
ideal Ix = {y ∈ E : ∃λ > 0 with |y| ≤ λx}, generated by x in E under the norm ∥·∥∞
which is defined by ∥y∥∞ = inf{λ > 0 : |y| ≤ λx}, is an AM -space; see [2, Thm.4.21.].

Recall that a vector e > 0 is called order unit whenever for each x there exists some
λ > 0 with |x| ≤ λe (cf. [1, p.20]). Thus, we have (Ix, ∥·∥∞) is AM -space with the unit |x|.
Since every AM -space with the unit, besides being a Banach lattice, has also an l-algebra
structure (cf. [2, p.259]). So, we can say that (Ix, ∥·∥∞) is a Banach lattice l-algebra.
Therefore, for a net (xα)α∈A in Ix and y ∈ Ix, by applying [2, Cor.4.4.], we get xα

mn−−→ y

in the original norm of E on Ix if and only if xα
mn−−→ y in the norm ∥·∥∞. In particular,

take x as the unit element e of E. Then we have Ee = E. Thus, for a net (xα)α∈A in E,
we have xα

mn−−→ y in the (E, ∥·∥∞) if and only if xα
mn−−→ y in the (E, ∥·∥).

2. The mn-convergence on normed l-algebras
We begin the section with the next list of properties of mn-convergence which follows

directly from the inequalities |x − y| ≤ |x − xα| + |xα − y| and
∣∣|xα| − |x|

∣∣ ≤ |xα − x| for
arbitrary net in (xα)α∈A in vector lattice.

Lemma 2.1. Let (xα)α∈A and (yβ)β∈B be two nets in a normed l-algebra E. Then the
followings hold:

(i) xα
mn−−→ x ⇐⇒ (xα − x) mn−−→ 0 ⇐⇒ |xα − x| mn−−→ 0;

(ii) if xα
mn−−→ x then yβ

mn−−→ x for each subnet (yβ) of (xα);
(iii) suppose xα

mn−−→ x and yβ
mn−−→ y, then axα + byβ

mn−−→ ax + by for any a, b ∈ R;
(iv) if xα

mn−−→ x then |xα| mn−−→|x|.

The lattice operations in normed l-algebras are mn-continuous in the following sense.

Proposition 2.2. Let (xα)α∈A and (yβ)β∈B be two nets in a normed l-algebra E. If
xα

mn−−→ x and yβ
mn−−→ y then (xα ∨ yβ)(α,β)∈A×B

mn−−→ x ∨ y.

Proof. Assume xα
mn−−→ x and yβ

mn−−→ y. Then, for a given ε > 0, there exist indexes α0 ∈ A

and β0 ∈ B such that
∥∥|xα − x| · u

∥∥ ≤ 1
2ε and

∥∥|yβ − y| · u
∥∥ ≤ 1

2ε for every u ∈ E+ and
for all α ≥ α0 and β ≥ β0. It follows from the inequality |a ∨ b − a ∨ c| ≤ |b − c| in vector
lattices (cf. [2, Thm.1.9(2)]) that∥∥|xα ∨ yβ − x ∨ y| · u

∥∥ ≤
∥∥|xα ∨ yβ − xα ∨ y| · u + |xα ∨ y − x ∨ y| · u

∥∥
≤

∥∥|yβ − y| · u
∥∥ +

∥∥|xα − x| · u
∥∥ ≤ 1

2
ε + 1

2
ε = ε



The multiplicative norm convergence in normed Riesz algebras 27

for all α ≥ α0 and β ≥ β0 and for every u ∈ E+. That is, (xα ∨yβ)(α,β)∈A×B
mn−−→ x∨y. �

The following proposition is similar to [4, Prop.2.7.], and so we omit its proof.

Proposition 2.3. Let B be a projection band in a normed l-algebra E and PB be the
corresponding band projection. Then xα

mn−−→ x in E implies PB(xα) mn−−→ PB(x) in both E
and B.

A positive vector e in a normed vector lattice E is called quasi-interior point if and only
if ∥x − x ∧ ne∥ → 0 for each x ∈ E+. If (xα) is a net in a vector lattice with a weak unit e

then xα
uo−→ 0 if and only if |xα| ∧ e

o−→ 0; see [10, Lem. 3.5]. Also, there exist some results
for the quasi-interior point case in [9, Lem. 2.11] and for p-unit case in [5, Thm. 3.2]. We
give an expansion to normed l-algebras with the mn-convergence for quasi-interior points
in the next result.

Proposition 2.4. Let (xα)α∈A be a positive and decreasing net in a normed l-algebra E

with a quasi-interior point e. Then xα
mn−−→ 0 if and only if (xα · e)α∈A norm converges to

zero.

Proof. The forward implication is immediate because of e ∈ E+. For the converse im-
plication, fix a positive vector u ∈ E+ and ε > 0. Thus, for a fixed index α1, we have
xα ≤ xα1 for all α ≥ α0 because of (xα)α∈A ↓. Then we have

xα · u ≤ xα · (u − u ∧ ne) + xα · (u ∧ ne) ≤ xα1 · (u − u ∧ ne) + n(xα · e)

for all α ≥ α1 and each n ∈ N. Hence, we get

∥xα · u∥ ≤ ∥xα1∥.∥u − u ∧ ne∥ + n∥xα · e∥

for every α ≥ α1 and each n ∈ N. So, we can find n such that ∥u − u ∧ ne∥ < ε
2∥xα1 ∥

because e is a quasi-interior point. On the other hand, it follows from xα · e
∥·∥−−→ 0 that

there exists an index α2 such that ∥xα · e∥ < ε
2n whenever α ≥ α2. Since index set A is

directed, there exists another index α0 ∈ A such that α0 ≥ α1 and α0 ≥ α2. Therefore,
we get

∥xα · u∥ < ∥xα0∥ ε

2∥xα0∥
+ n

ε

2n
= ε,

and so ∥xα · u∥ → 0. �

Remark 2.5. A positive and decreasing net (xα)α∈A in an order continuous Banach l-
algebra E with weak unit e is mn-convergent to zero if and only if xα ·e ∥·∥−−→ 0. Indeed, it is
known that e is a weak unit if and only if e is a quasi-interior point in an order continuous
Banach lattice; see for example [1, p.135]. Thus, following from Proposition 2.4, one can
get the desired result.

The mn-convergence passes obviously to any normed l-subalgebra Y of a normed l-
algebra E, i.e., for any net (yα)α∈A in Y with yα

mn−−→ 0 in E implies yα
mn−−→ 0 in Y . For

the converse, we give the following theorem whose proof is similar to [4, Thm. 2.10], and
so we omit it.

Theorem 2.6. Let Y be a normed l-subalgebra of a normed l-algebra E and (yα)α∈A be
a net in Y . If yα

mn−−→ 0 in Y then it mn-converges to zero in E for both of the following
cases hold;

(i) Y is majorizing in E;
(ii) Y is a projection band in E.
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It is known that every Archimedean vector lattice has a unique order completion; see
[2, Thm. 2.24]. Moreover, Archimedean commutative l-algebra admits the unique exten-
sion multiplication to the order completion of it.

Theorem 2.7. Let E and Eδ be order continuous normed l-algebras with Eδ being order
completion of E. Then, for a sequence (xn) in E, the followings hold true:

(i) If xn
mn−−→ 0 in E then there is a subsequence (xnk

) of (xn) such that xnk

mn−−→ 0 in
Eδ;

(ii) If xn
mn−−→ 0 in Eδ then there is a subsequence (xnk

) of (xn) such that xnk

mn−−→ 0 in
E.

Proof. Let xn
mn−−→ 0 in E, i.e., |xn| · u

∥·∥−−→ 0 in E for all u ∈ E+. Now, let’s fix v ∈ Eδ
+.

Then there exists uv ∈ E+ such that v ≤ uv because E majorizes Eδ. Since |xn| · uv
∥·∥−−→ 0,

by the standard fact in [1, Exer.13., p.25], there exists a subsequence (xnk
) of (xn) such that

(|xnk
| ·uv) order converges to zero in E. Thus, we get |xnk

| ·uv
o−→ 0 in Eδ; see [10, Cor.2.9.].

Then it follows from the inequality |xnk
| · v ≤ |xnk

| · uv that we have |xnk
| · v

o−→ 0 in Eδ.
That is, xnk

mo−−→ 0 in the order completion Eδ because v ∈ Eδ
+ is arbitrary. It follows from

the order continuous norm that xnk

mn−−→ 0 in the order completion Eδ.
For the converse, put xn

mn−−→ 0 in Eδ. Then, for all u ∈ Eδ
+, we have |xn| · u

∥·∥−−→ 0 in
Eδ. In particular, for all w ∈ E+,

∥∥|xn| · w
∥∥ → 0 in Eδ. Fix w ∈ E+. Then, again by the

standard fact in [1, Exer.13., p.25], we have a subsequence (xnk
) of (xn) such that (xnk

)
is order convergent to zero in Eδ. Thus, we get |xnk

| · w
o−→ 0 in E. As a result, since w

is arbitrary, xnk

mo−−→ 0 in E. Therefore, one can get the result by using order continuous
norm. �

Recall that a subset A in a normed lattice (E, |·∥) is said to almost order bounded if,
for any ϵ > 0, there is uϵ ∈ E+ such that |(|x| − uϵ)+∥ =

∥∥|x| − uϵ ∧ |x|
∥∥ ≤ ϵ for any

x ∈ A. For a given normed l-algebra E, one can give the following definition: a subset
A of E is called an l-almost order bounded if, for any ϵ > 0, there is uε ∈ E+ such that∥∥|x| − uϵ · |x|

∥∥ ≤ ϵ for any x ∈ A. Similar to [11, Prop.3.7.], we give the following work.

Proposition 2.8. Let E be a normed l-algebra. If (xα)α∈A is l-almost order bounded and
mn-converges to x, then (xα)α∈A converges to x in norm.

Proof. Assume (xα)α∈A is an l-almost order bounded net. Then the net (|xα − x|)α∈A is
also l-almost order bounded. For any fixed ε > 0, there exists uε > 0 such that∥∥|xα − x| − uϵ · |xα − x|

∥∥ ≤ ϵ.

Since xα
mn−−→ x, we have

∥∥|xα − x| · uε

∥∥ → 0. Therefore, following from Proposition 2.2, we
get ∥xα − x∥ ≤ ε, i.e., xα → x in the norm. �
Proposition 2.9. In an order continuous Banach l-algebra, every l-almost order bounded
mo-Cauchy net converges mn and in norm to the same limit.

Proof. Assume a net (xα)α∈A is l-almost order bounded and mo-Cauchy in an order con-
tinuous Banach l-algebra E. Then the net (xα − xα′)(α,α′)∈A×A is l-almost order bounded
and is mo-convergent to zero. Thus, it mn-converges to zero by the order continuity of
the norm. Hence, by applying Proposition 2.8, we get that the net (xα − xα′)(α,α′)∈A×A

converges to zero in the norm. It follows that the net (xα) is norm Cauchy, and so it is
norm convergent because E is Banach lattice. As a result, we have that (xα) mn-converges
to its norm limit by Remark 1.3(ii). �

The multiplication in normed l-algebra is mn-continuous in the following sense.
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Theorem 2.10. Let E be a normed l-algebra, and (xα)α∈A and (yβ)β∈B be two nets in E.
If xα

mn−−→ x and yβ
mn−−→ y for some x, y ∈ E and each positive element of E can be written

as a multiplication of two positive elements then we have xα · yβ
mn−−→ x · y.

Proof. Assume xα
mn−−→ x and yβ

mn−−→ y. Then |xα − x| · u
∥·∥−−→ 0 and |yβ − y| · u

∥·∥−−→ 0 for
every u ∈ E+. Let’s fix u ∈ E+ and ε > 0. So, there exist indexes α0 and β0 such that∥∥|xα − x| · u

∥∥ ≤ ε and
∥∥|yβ − y| · u

∥∥ ≤ ε for all α ≥ α0 and β ≥ β0.
Next, we show the mn-convergence of (xα · yβ) to x · y. By considering the equality

|x · y| ≤ |x| · |y| (cf. [12, p.1]), we have∥∥|xα · yβ − x · y|u
∥∥ =

∥∥|xα · yβ − xα · y + xα · y − x · y| · u
∥∥

≤
∥∥|xα| · |yβ − y| · u

∥∥ +
∥∥|xα − x| · |y| · u

∥∥
≤

∥∥|xα − x| · |yβ − y| · u
∥∥ +

∥∥|yβ − y| · |x| · u
∥∥ +

∥∥|xα − x| · |y| · u
∥∥.

The second and the third terms in the last inequality both order converge to zero as
β → ∞ and α → ∞ respectively because of |x| · u, |y| · u ∈ E+ and xα

mn−−→ x and yβ
mn−−→ y.

Now, let’s show the mn-convergence of the first term of last inequality. For fixed u, we can
find two positive elements u1, u2 ∈ E+ such that u = u1 · u2 because the positive element
of E can be written as a multiplication of two positive elements. So, we can get∥∥|xα − x| · |yβ − y| · u

∥∥ =
∥∥(|xα − x| · u1) · (|yβ − y| · u2)

∥∥ ≤
∥∥|xα − x| · u1

∥∥.
∥∥|yβ − y| · u2

∥∥.

Therefore, we see |xα − x| · |yβ − y| · u
∥·∥−−→ 0. Hence, we get xα · yβ

mn−−→ x · y. �

In Theorem 2.10, the case of each positive element of E can be written as a multiplication
of two positive elements is called the factorization property for f -algebras in [13, Def.12.10].
But, instead of that property, we can give another easy condition in the following result.

Corollary 2.11. Let E be a normed l-algebra, and (xα)α∈A and (yβ)β∈B be two nets in
E. If xα

mn−−→ x and yβ
mn−−→ y for some x, y ∈ E and at least one of two nets is eventually

norm bounded then we have xα · yβ
mn−−→ x · y.

Proof. Modify Theorem 2.10. �

We give some basic notions motivated by their analogies from vector lattice theory.

Definition 2.12. Let (xα)α∈A be a net in a normed l-algebra E. Then
(1) (xα) is said to be mn-Cauchy if the net (xα − xα′)(α,α′)∈A×A mn-converges to 0,
(2) E is called mn-complete if every mn-Cauchy net in E is mn-convergent,
(3) E is called mn-continuous if xα

o−→ 0 implies that xα
mn−−→ 0,

Proposition 2.13. A normed l-algebra is mn-continuous if and only if xα ↓ 0 implies
xα

mn−−→ 0.

Proof. Suppose any decreasing to zero net is mn-convergent to zero. We show mn-
continuity. Let (xα)α∈A be an order convergent to zero net in a normed l-algebra E. Then
there exists another net zβ ↓ 0 in E such that, for any β there exists αβ so that |xα| ≤ zβ,
and so ∥xα∥ ≤ ∥zβ∥ for all α ≥ αβ. Since zβ ↓ 0, by assumption, we have zβ

mn−−→ 0, i.e.,
for fixed ε > 0 and u ∈ E+, there is β0 such that ∥zβ · u∥ < ε for all β ≥ β0. Thus, there
exists an index αβ0 so that

∥∥|xα| · u∥ ≤ ε for all α ≥ αβ0 . Hence, xα
mn−−→ 0. The other case

is obvious. �

Proposition 2.14. Let E be an mn-continuous and mn-complete normed l-algebra. Then
every l-almost order bounded and order Cauchy net is mn-convergent.
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Proof. Let (xα)α∈A be an l-almost order bounded order Cauchy net. Then the net (xα −
xα′)(α,α′)∈A×A is l-almost order bounded and is order convergent to zero. Since E is mn-

continuous, xα−xα′
mn−−→ 0. By using Proposition 2.8, we have xα−xα′

∥·∥−−→ 0. Hence, we get
that (xα)α∈A is mn-Cauchy, and so it is mn-convergent because of mn-completeness. �

3. The mn-topology on normed l-algebra
In this section, we now turn our attention to topology on normed l-algebras. We

show that the mn-convergence in a normed l-algebra is topological. While mo- and uo-
convergence need not be given by a topology. But, it was observed in [9] that the un-
convergence is topological. Motivated from that definition of the mn-convergence, we give
the following construction of the mn-topology.

Let ε > 0 be given. For a non-zero positive vector u ∈ E+, we put
Vu,ε = {x ∈ E :

∥∥|x| · u
∥∥ < ε}.

Let N be the collection of all the sets of this form. We claim that N is a base of neighbor-
hoods of zero for some Hausdorff linear topology. It is obvious that xα

mn−−→ 0 if and only
if every set of N contains a tail of this net, hence the mn-convergence is the convergence
induced by the mentioned topology.

We have to show that N is a base of neighborhoods of zero. To show this we apply
[14, Thm.3.1.10.]. First, note that every element in N contains zero. Now, we show that
for every two elements of N, their intersection is again in N. Take any two set Vu1,ε1 and
Vu2,ε2 in N. Put ε = ε1 ∧ ε2 and u = u1 ∨ u2. We show that Vu,ε ⊆ Vu1,ε1 ∩ Vu2,ε2 . For any
x ∈ Vu,ε, we have

∥∥|x| · u
∥∥ < ε. Thus, it follows from |x| · u1 ≤ |x| · u that∥∥|x| · u1

∥∥ ≤
∥∥|x| · u

∥∥ < ε ≤ ε1.

Thus, we get x ∈ Vu1,ε1 . By a similar way, we also have x ∈ Vu2,ε2 .

Next, it is not a hard job to see that Vu,ε + Vu,ε ⊆ Vu,2ε, so that for each U ∈ N, there
is another V ∈ N such that V + V ⊆ U . In addition, one can easily verify that, for every
U ∈ N and every scalar λ with |λ| ≤ 1, we have λU ⊆ U .

Now, we show that, for each U ∈ N and each y ∈ U , there exists V ∈ N with y+V ⊆ U .
Suppose y ∈ Vu,ε. We should find δ > 0 and a non-zero v ∈ E+ such that y + Vv,δ ⊆ Vu,ε.
Take v := u. Hence, since y ∈ Vu,ε, we have

∥∥|y| · u
∥∥ < ε. Put δ := ε −

∥∥|y| · u
∥∥. We

claim that y + Vv,δ ⊆ Vu,ε. Let’s take x ∈ Vv,δ. We show that y + x ∈ Vu,ε. Consider the
inequality |y + x| · u ≤ |y| · u + |x| · u. Then we have∥∥|y + x| · u

∥∥ ≤
∥∥|y| · u

∥∥ +
∥∥|x| · u

∥∥ <
∥∥|y| · u

∥∥ + δ = ε.

Finally, we show that this topology is Hausdorff. It is enough to show that
⋂
N = {0}.

Suppose that it is not hold true, i.e., assume that 0 ̸= x ∈ Vu,ε for all non-zero u ∈ E+ and
for all ε > 0. In particular, take x ∈ V|x|,ε. Thus, we have ∥|x|2∥ < ε. Since ε is arbitrary,
we get |x|2 = 0, i.e., x = 0 by using [17, Thm.142.3.]; a contradiction.

Recall that the statement Vu,ε is either contained in [−u, u] or contains a non-trivial
ideal holds true for the un-topology. However, it is not true for the mn-topology. To see
this, we give the following counterexample.

Example 3.1. Consider the l-algebra E = C[0, 1] with the sup-norm topology τ . Take
a = 1 and A = B(0, 10). The set Ua,A = {x ∈ E : |x| · a ∈ A} = B(0, 10) is neither
contained in [−a, a] = [−1,1] = B(0, 1) nor contains a non-trivial ideal.



The multiplicative norm convergence in normed Riesz algebras 31

Lemma 3.2. If Vu,ε is contained in [−u, u], then u is a strong unit.

Proof. Take a positive element x ∈ E+. Then we have a positive scalar λ such that
(λx) · a ∈ A. Thus we get λx ∈ Ua,A and so, λx ∈ [−a, a]. Then one can see that a is a
strong unit. �

4. The mn-convergence on semiprime normed f-algebras
Recall that an element x in an f -algebra E is called nilpotent whenever xn = 0 for some

natural number n ∈ N. The algebra E is called semiprime if the only nilpotent element
in E is the null element ([17, p.670]). We begin the section with the next useful result.

Proposition 4.1. Let (xα)α∈A be a net in nilpotent elements of a normed f -algebra E.
If xα

mn−−→ x then x is also a nilpotent element.

Proof. Take a fixed positive element u ∈ E+. Then, by using [13, Prop.10.2(iii)] and
[17, Thm.142.1(ii)], we get∥∥|xα − x| · u

∥∥ =
∥∥|xα · u − x · u|

∥∥ = ∥xα · u − x · u∥ = ∥x · u∥ → 0.

Thus ∥x · u∥ = 0 and hence x · u = 0 for every u ∈ X+. Then y · x = 0 for all y ∈ E. It
follows now from [12, p.157] that x is nilpotent in E. �
Remark 4.2. By considering Proposition 4.1, it is easy to see that mn-convergence in
normed f -algebra E has an unique limit if and only if E is semiprime normed f -algebra.

Unless stated otherwise, we will assume that E is a semiprime normed f -algebra and
all nets and vectors lie in E.

Proposition 4.3. Let (xα)α∈A be a net in E. Then we have that
(i) 0 ≤ xα

mn−−→ x implies x ∈ E+,

(ii) if (xα) is monotone and xα
mn−−→ x then xα

o−→ x.

Proof. (i) Assume (xα)α∈A consists of non-zero elements and mn-converges to x ∈ E.
Then, by using Proposition 2.2, we have xα = x+

α
mn−−→ x+. Also, following from Remark

4.2, we get x+ = x. Therefore, we get x ∈ E+.
(ii) For the order convergence of (xα)α∈A, it is enough to show that xα ↑ and xα

mn−−→ x

implies xα
o−→ x. For a fixed index α, we have xβ − xα ∈ X+ for all β ≥ α. By applying

(i), we can see xβ − xα
mn−−→ x − xα ∈ X+ as β → ∞. Therefore, x ≥ xα for the index α.

Since α is arbitrary, x is an upper bound of (xα). Assume y is another upper bound of
(xα), i.e., y ≥ xα for all α. So, y − xα

mn−−→ y − x ∈ X+, or y ≥ x, and so xα ↑ x. �
Theorem 4.4. The following statements are equivalent:

(i) E is mn-continuous;
(ii) if 0 ≤ xα ↑≤ x holds in E then (xα) is an mn-Cauchy net;

(iii) xα ↓ 0 implies xα
mn−−→ 0 in E.

Proof. (i)⇒(ii) Take a net 0 ≤ xα ↑≤ x in E. Then there exists another net (yβ) in E
such that (yβ − xα)α,β ↓ 0; see [2, Lem.4.8]. Thus, by applying Proposition 2.13, we have
(yβ − xα)α,β

mn−−→ 0 because E is mn-continuous. Therefore, the net (xα) is mn-Cauchy
because of ∥xα − xα′∥α,α′∈A ≤ ∥xα − yβ∥ + ∥yβ − xα′∥.

(ii)⇒(iii) Put xα ↓ 0 in E and fix arbitrary α0. Thus, we have xα ≤ xα0 for all α ≥ α0,
and so we can get 0 ≤ (xα0 − xα)α≥α0 ↑≤ xα0 . Then it follows from (ii) that the net
(xα0 − xα)α≥α0 is mn-Cauchy, i.e., (xα′ − xα) mn−−→ 0 as α0 ≤ α, α

′ → ∞. Since E is mn-
complete, there exists an element x ∈ E satisfying xα

mo−−→ x as α0 ≤ α → ∞. It follows
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from Proposition 4.3 that xα ↓ 0 because of xα ↓ and xα
mn−−→ 0, and so, following from

Remark 4.2 tha we have x = 0. Therefore, we get xα
mn−−→ 0.

(iii)⇒(i) It is just the implication of Proposition 2.13. �
Corollary 4.5. Every mn-continuous and mn-complete normed f -algebra E is order com-
plete.

Proof. Suppose E is mn-continuous and mn-complete. For y ∈ E+, put a net 0 ≤ xα ↑≤ y
in E. By applying Theorem 4.4 (ii), the net (xα) is mn-Cauchy. Thus, there exists an
element x ∈ E such that xα

mn−−→ x because of mn-completeness. Since xα ↑ and xα
mo−−→ x,

it follows from Lemma 4.3 that xα ↑ x. Therefore, E is order complete. �
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Abstract
For α ∈ [0, 1], let Aα(G) = αD(G)+(1−α)A(G) be Aα-matrix, where A(G) is the adjacent
matrix and D(G) is the diagonal matrix of the degrees of a graph G. Clearly, A0(G) is the
adjacent matrix and 2A 1

2
is the signless Laplacian matrix. A connected graph is a cactus

graph if any two cycles of G have at most one common vertex. We first propose the result
for subdivision graphs, and determine the cacti maximizing Aα-spectral radius subject to
fixed pendant vertices. In addition, the corresponding extremal graphs are provided. As
consequences, we determine the graph with the Aα-spectral radius among all the cacti
with n vertices; we also characterize the n-vertex cacti with a perfect matching having the
largest Aα-spectral radius.
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1. Introduction
Throughout this paper, we consider finite simple connected graph G with vertex set

V (G) and edge set E(G). The order of a graph is the number of vertices |V (G)| = n and
the size is the number of edges |E(G)|. Let v ∈ V (G) be a vertex of G, N(v) = NG(v) =
{w ∈ V (G), vw ∈ E(G)} be the neighborhood of v , and dG(v) (or briefly dv) be the degree
of v with dG(v) = |N(v)|. If e is an edge of G and G−e contains at least two components,
then e is a cut edge of G. If Pk = v1v2 · · · vk is a subgraph of G such that v1 is a cut vertex
of degree at least 3, d(vk) = 1 and d(vi) = 2 for i ∈ [2, k − 1], then Pk is called a pendant
path in G. For other undefined notations and terminologies, refer to [2].

It’s known that A(G) is the adjacency matrix and D(G) is the diagonal matrix of the
degrees of G. The signless Laplacian matrix of G is Q(G) = D(G) + A(G). For α ∈ [0, 1],
the Aα-matrix

Aα(G) = αD(G) + (1 − α)A(G)
is given by Nikiforov [15]. Clearly, A0(G) is the adjacent matrix and 2A 1

2
is the signless

Laplacian matrix of G, respectively.
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The studies of the (adjacency, signless Laplacian) spectral radius are interesting and
meaningful [7, 10–12, 19–23]. As examples, the spectral radius of trees are proposed by
Lovász and J. Pelikán [14]. Feng et al.[10] studied the minimal Laplacian spectral radius
of trees with given matching number. Chen [4] found the properties of spectra of graphs
and their line graphs. Cvetković [8] explored the signless Laplacian spectra of graphs
and a spectral theory in graphs. The bounds of signless Laplacian spectral radius and
its hamiltonicity are studied by Zhou [24]. Lin and Zhou [13] obtained graphs with at
most one signless Laplacian eigenvalue larger than three. In addition to the successful
considerations of these spectral radius, Aα-spectral radius is provided as a general version
of adjacency and signless Laplacian radius, and this area would be challenging. For the
Aα-spectral radius, Nikiforov et al. [15, 16]introduced some properties of this spectral
radius and provided the upper bounds on trees.

It is known that a tree is a noncyclic graph. If some vertices in a tree are replaced by
cycles, then this graph has some cycles. The trees are extended as the definition that a
cactus graph is a connected graph such that any two cycles have at most one common
vertex. Denoted by Ck

n the set of all cacti with n vertices and k pendant vertices.
The cactus graphs have attracted many interests among the mathematical literature

including algebra and graph theory. For instance, the properties of cacti with n vertices
[3] are explored by Borovićanin and Petrović. Chen and Zhou [5] investigated some upper
bounds of the signless Laplacian spectral radius of cactus graphs. The signless Laplacian
spectral radius of cacti with given matching number are obtained by Shen et al. [17].
Some results for spectral radius on cacti with k pendant vertices are studied Wu et al.
[18]. Ye et al. [22] gave the maximal adjacency or signless Laplacian spectral radius of
graphs subject to fixed connectivity.

Motivated by the above results, in this paper, we generalize the results of Aα-spectra
from the trees to the cacti subject to fixed pendant vertices. For α ∈ [0, 1], we first propose
the result for subdivision graphs, and determine the cacti maximizing Aα-spectral radius
subject to fixed pendant vertices. In addition, the corresponding extremal graphs are
determined. As consequences, we determine the graph with the Aα-spectral radius among
all the cacti with n vertices; we also characterize the n-vertex cacti with a perfect matching
having the largest Aα-spectral radius.

2. Preliminary
In this section, we provide some important concepts and lemmas that will be used in

the main proofs.
If G is a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G), then the

Aα−matrix Aα(G) of G has the (i, j)-entry of Aα(G) is 1 − α if vivj ∈ E(G); αd(vi) if
i = j, and otherwise 0. For α ∈ [0, 1], let λ1(Aα(G)) ≥ λ2(Aα(G)) ≥ · · · ≥ λn(Aα(G))
be the eigenvalues of Aα(G). The Aα-spectral radius of G is considered as the maximal
eigenvalue ρ(G) := λ1(Aα(G)). Let X = (xv1 , xv2 , · · · , xvn)T be a real vector of ρ(G). By
Aα(G) = αD(G) + (1 − α)A(G), we have the quadratic formula of XT Aα(G)X can be
expressed that

XT Aα(G)X = α
∑

vi∈V (G)
x2

vi
dvi + 2(1 − α)

∑
vivj∈E(G)

xvixvj .

Because Aα(G) is a real symmetric matrix, and by Rayleigh principle, we have the formula
ρ(G) = maxX ̸=0

XT Aα(G)X
XT X

. Furthermore, if X is a unit eigenvector ofAα(G) corresponding
to ρ(G), then we have the formula ρ(G) = XT Aα(G)X.



Sharp upper bounds of Aα-spectral radius of cacti with given pendant vertices 35

As we know that once X is an eigenvector of ρ(G) for a connected graph G, X should
be unique and positive. The corresponding eigenequations for Aα(G) is rewritten as

ρ(G)xvi = αdvixvi + (1 − α)
∑

vivj∈E(G)
xvj . (2.1)

As A1(G) = D(G), we study the Aα−matrix for α ∈ [0, 1) below. Based on the
definition of Aα-spectral radius, we have

Lemma 2.1 ([16, 21]). Denote by Aα(G) the Aα-matrix of a connected graph G with
α ∈ [0, 1), v, w ∈ V (G), u ∈ S ⊂ V (G) such that S ⊂ N(v) \ (N(w) ∪ {w}). Let H be a
graph with vertex set V (G) and edge set E(G) \ {uv, u ∈ S} ∪ {uw, u ∈ S}, and X a unit
eigenvector to ρ(Aα(G)). If xw ≥ xv and |S| ̸= 0, then ρ(H) ≥ ρ(G).

Lemma 2.2 ([22]). Let Aα(G) the Aα-matrix of a connected graph G with α ∈ [0, 1),
s, t, u, v ∈ V (G), st, uv ∈ E(G), sv, tu /∈ E(G). Let H be a graph with vertex set
V (G) and edge set E(G) \ {uv, st} ∪ {sv, ut}, and X a unit eigenvector to ρ(Aα(G)). If
(xs − xu)(xv − xt) ≥ 0, then ρ(H) ≥ ρ(G).

If G is a connected graph, then Aα(G) is a nonnegative irreducible symmetric matrix.
By the results of [1, 6, 15], if we add some edges to a connected graph, then Aα-spectral
radius will increase and the following lemma is straightforward.

Lemma 2.3. If H is a proper subgraph of a connected graph G, and ρ is the Aα-spectral
radius, then ρ(H) < ρ(G).

Let Pt = v0v1v2 · · · vt be a subgraph of G. If v0 is a cut vertex of degree at least 3,
d(vt) = 1 and d(vj) = 2 with j ∈ [1, t − 1], then Pt is called a pendant path in G. The
following lemma is useful below.

Lemma 2.4. Let G ∈ Ck
n. If ρ(G) is maximal, then all pendant paths share a common

vertex.

Proof. Assume that G is a cactus graph with k pendant vertices and contains at least two
pendant paths Pt = v0v1 · · · vt and Ps = u0u1 · · · us. Note that d(u0), d(v0) ≥ 3. Without
loss of generality, let xv0 ≥ xu0 . Suppose that u0 is a vertex in a cycle and this cycle
contains at least one edge of the shortest path P [u0, v0] between u0 and v0. Set G1 to be
a new graph with vertex set V (G) and edge set E(G)\{u0v, v ∈ N} ∪ {v0v, v ∈ N} with
N = N(u0) \ {w1, w2}, where w1 is in P [u0, v0], and v0, w1, w2 are in the same cycle; if
u0 is not in any cycle, then let G2 be a new graph with vertex set V (G) and edge set
E(G) − {u0v, v ∈ N} ∪ {v0v, v ∈ N} with N = N(u0) \ {w1, w2}, where w1 is in the
shortest path between v0 and u0, and w2 is another neighbor of u0.

Note that both G1 and G2 are cacti with k pendant vertices. By Lemma 2.1, we have
ρ(G1) ≥ ρ(G) and ρ(G2) ≥ ρ(G). We can continue this process and move all pendant
paths to a common vertex such that ρ(G) is increasing. Then this lemma is proved. �
Lemma 2.5. Let G ∈ Ck

n. If ρ(G) is maximal, then the length of any pendant path is at
most 2, and there is at most one pendant path of the length 2.

Proof. First we prove the length of any pendant path is at most 2. We prove it by a
contradiction. Assume there are have a pendent path P , P = v0v1 · · · vm, m ≥ 3. Let
G1 be a new graph with vertex set V (G) and E(G) + v1vm−1, then G1 is a cactus with
k pendent vertices and ρ(G1) > ρ(G) (by Lemma 2.3). Then there exists a contradicted
graph. Thus, if ρ(G) is maximal, then the length of any pendant path is at most 2. Next we
prove there is at most one pendant path of length 2. Suppose there are r, (r > 1) pendent
path of the length 2. Without loss of generality Pi = v0vi1vi2; (i = 1, 2, · · · , r). Let G2
be a new graph with vertex set V (G) and E(G) ∪ {v11v21, v31v41, · · · , v(2⌊ r

2 ⌋−1)1v(2⌊ r
2 ⌋)1},



36 S. Wang, C. Wang, J.-B. Liu

then G2 is a cactus with k pendent vertices and ρ(G2) > ρ(G) (by Lemma 2.3). Then
there exists a contradicted graph. Thus, if ρ(G) is maximal, there is at most one pendant
path of the length 2. This completes the proof. �
Lemma 2.6. Let G ∈ Ck

n. If ρ(G) is maximal, then there does not exist an internal path
such that it is built by cut edges.

Proof. We prove it by a contradiction. Note that d(v0), d(vt) ≥ 3. Let Pt = v0v1 · · · vt

be an internal path of G such that every edge of Pt is an cut edge. If t ≥ 2, then let
G1 = G + v0vt. Then G1 is a cactus with k pendant vertices and G is a proper subgraph
of G1. By Lemma 2.3, we have ρ(G1) > ρ(G), which is a contradiction. Next we consider
t = 1. Without loss of generality, let x0 ≥ x1 and w ∈ N(v1) \ {v0, v′

1} such that v′
1 is

a neighbor except for v0. Denote a new graph G2 with vertex set V (G2) = V (G) and
edge set E(G2) = E(G) \ {v1w, w ∈ N(v1) \ {v0, v′

1}} ∪ {v0w, w ∈ N(v1) \ {v0, v′
1}}. Then

G2 is a cactus with k pendant vertices and ρ(G2) ≥ ρ(G) (by Lemma 2.1). These are
contradictions and this lemma is proved. �
Lemma 2.7. Let G ∈ Ck

n. If ρ(G) is maximal, then all cycles share a common vertex.

Proof. Suppose that there are two cut vertices v0, v1 in G such that not all cycles contain
them. If there are only two cycles, then it is proved by Lemma 2.6: there does not exist an
internal path such that it is built by cut edges. If there are more 3 cycles, then choose such
v0 and v1 having the longest distance. Then d(v0), d(v1) ≥ 4. Without loss of generality,
let xv0 ≥ xv1 and w ∈ N(v1)\{v0}. Denote a new graph G1 with vertex set V (G1) = V (G)
and edge set E(G1) = E(G) \ {v1w, w ∈ N(v1) \ {vl, v′

l}} ∪ {v0w, w ∈ N(v1) \ {vl, v′
l}},

where vl, v′
l are neighbors of v1 and on a same cycle. Then G2 is a cactus with k pendant

vertices and ρ(G1) ≥ ρ(G) (by Lemma 2.1). We can continue this method to increase ρ(G)
until there exist a unique cut vertex sharing with all cycles. So, the result is proved. �
Lemma 2.8. Let G ∈ Ck

n. If ρ(G) is maximal, then the length of any cycle is at most 4,
and there is at most one cycle of length 4.

Proof. Let Ct = v1v2 · · · vtv1 be a cycle of length t in G and v1 is a cut vertex. If xv1 ≥ xv3 ,
we build a new graph G1 such that V (G1) = V (G) and E(G1) = E(G) \ {v3v4} ∪ {v1v4}.
Then ρ(G) ≤ ρ(G1) (by Lemma 2.1). In addition, G1 is a subgraph of G2 = G1 ∪ {v1v3},
which yields that ρ(G1) < ρ(G2) (by Lemma 2.3). If xv1 ≤ xv3 , then we set up a graph
G3 such that V (G3) = V (G) and E(G3) = E(G) \ {vtv1} ∪ {vtv3}. We have ρ(G) ≤ ρ(G3)
(by Lemma 2.1). G4 is a graph by connecting v1 and v3 from G3. So, G3 is a subgraph of
G4. By Lemma 2.3, we have ρ(G4) > ρ(G3). Thus, if G contains a cycle of length at least
5, then there exists a contradicted graph.

Next we show that there is at most one cycle of length 4. Suppose that there at at
least two 4-cycles C1 and C2 in G. By Lemma 2.7, these two cycles share a common
cut vertex. Let C1 = v0v1v2v3v0 and C2 = v0u1u2u3v0. If xv0 ≥ min{xv1 , xv3} and
xv0 ≥ min{xu1 , xu3}, say xv0 ≥ xv1 , xv0 ≥ xu1 , then we set a new graph H1 such that
V (H1) = V (G) and E(H1) = E(G) \ {v2v1, u2u1} ∪ {v2v0, u2v0}. By Lemma 2.1, we have
ρ(G) ≤ ρ(H1). Let H2 be a graph from H1 by connecting u1v1. Since H2 is a proper
subgraph of H1, then ρ(H1) < ρ(H2). This is a contradiction to the assumption that ρ(G)
is maximal.

If xv0 ≤ min{xv1 , xv3} and xv0 ≤ min{xu1 , xu3}, say xv0 ≤ xv1 , xv0 ≤ xu1 , then we
set new graphs H3 with vertex set V (H3) = V (G) and E(H3) = E(G) \ {v3v0, u3u0} ∪
{v3v1, u3u1}, H4 from H3 by connecting v1u1. By Lemmas 2.1,2.3, we have ρ(G) <
ρ(H3) < ρ(H4). We can use Lemma 2.7 to find a graph in Ck

n with only one common
vertex among cycles. This is a contradiction to the choice of G.

Lastly, without loss of generality, we consider the case of max{xu1 , xu3} ≤ xv0 ≤
min{xv1 , xv3}, say xu1 ≤ xv0 and xv0 ≤ xv1 . Let H5 be a graph with V (H5) = V (G)
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and E(H5) = E(G) \ {u2u1, v3v0} ∪ {u2v0, v3v1}. By Lemma 2.1, ρ(G) ≤ ρ(H5). We build
a new graph H6 by adding v1u1. Then H5 is a proper subgraph of H6 and ρ(H5) < ρ(H6).
We can use Lemma 2.7 to find a graph in Ck

n with only one common vertex among cycles.
This is a contradiction to the choice of G. So, this lemma is true. �

3. Main results
In this section, we determine the cacti maximizing Aα-spectral radius subject to fixed

pendant vertices. In addition, we find the graph with the Aα-spectral radius among all the
cacti with n vertices, and we also characterize the n-vertex cacti with a perfect matching
having the largest Aα-spectral radius.

Since Ck
n is the set of all cacti with n > 0 vertices and k > 0 pendant vertices, then let

Ce be a cactus graph in Ck
n such that n − k − 1 is even and all cycles (if any) have length

3, that is, Ce contains n−k−1
2 cycles vv1v′

1v, vv2v′
2v, · · · ,

vv n−k−1
2

v′
n−k−1

2
v and k pendant edges (if any) vu1, vu2, · · · , vuk. Similarly, let Co be a

cactus graph in Ck
n such that n − k − 1 is odd and all cycles (if any) have length 3, that

is Co contains n−k−2
2 cycles vv1v′

1v, vv2v′
2v, · · · , vv n−k−2

2
v′

n−k−2
2

v, k − 1 pendant edges (if
any) vu1, vu2, · · · , vuk−1 and 1 pendant path vu′

kuk.

Figure 1. Ce: n − k − 1 is even, contains n−k−1
2 cycles and k pendant edges (if

any); Co: n − k − 1 is odd, contains n−k−2
2 cycles,k − 1 pendant edges (if any)

and 1 pendant path.

Theorem 3.1. (i) If n − k is odd and G is a graph with the maximum Aα−spectral
radius in Ck

n, then G ∼= Ce;
(ii) If n − k is even and G is a graph with the maximum Aα−spectral radius in Ck

n,
then G ∼= Co.

Proof. Choose a cactus graph G ∈ Ck
n such that ρ(G) is maximal. Assume V (G) =

{v0, v2, · · · , vn−1}. By Lemma 2.4, we have all pendant paths share a common vertex. By
Lemma 2.5 implies that the length of any pendant path is at most 2 and there is at most
one pendant path of length 2. By Lemma 2.6 yields that there does not exist an internal
path such that it is built by cut edges. By Lemma 2.8 all cycles share a common vertex.
By Lemma 2.8 we have the length of any cycle is at most 4, and there is at most one cycle
of length 4. In order to find the main results, we need the following two claims.
Claim 1. The pendant paths and cycles share a common vertex.
Proof. Suppose that all cycles share a vertex v and all pendant paths share a vertex u,
u, v ∈ {v0, v1, · · · , vn−1}. Clearly, u and v is in a same cycle C ′. Let N ′(u) = N(u)\V (C ′)
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and N ′(v) = N(v) \ V (C ′). If xu ≥ xv, then set a new graph G1 with vertex set V (G1) =
V (G) \ {wv, ∈ w ∈ N ′(v)} ∪ {wu, ∈ w ∈ N ′(v)}; Otherwise, if xu ≤ xv, let a new graph
G2 with vertex set V (G2) = V (G) \ {wu, ∈ w ∈ N ′(u)} ∪ {wv, ∈ w ∈ N ′(u)}. By Lemma
2.1, we have ρ(G) ≤ ρ(G1) or ρ(G) ≤ ρ(G2). A contradiction yields this claim.
Claim 2. If there is a pendant path P with the length at most 2, then there is no cycle
of length 4.
Proof. Let v0v1v2v3v0 be a cycle of length 4 and P is a pendant path in G. By lemma 2.5 we
know the length of P is 1 or 2. Next we prove xv0 ≥ max{xv1 , xv2 , xv3}. Assume xv1 > xv0 .
Let S = N(v0) \ {v1, v3}, set a new graph H with vertex set V (G), E(G) \ {wv0, w ∈
S} ∪ {wv1, w ∈ S}. Note that H is a cactus graph with k pendent vertices. By Lemma
2.1, we have ρ(G) < ρ(H). It contradicts that ρ(G) is maximal, thus, xv0 ≥ xv1 . Similarity,
we have xv0 ≥ xv2 and xv0 ≥ xv3 . Thus, xv0 ≥ max{xv1 , xv2 , xv3}.
Case 1. |P | = 2. Assume P = v0v4v5.
Let H1 be a new graph with vertex set V (G), E(G)\{v2v3} ∪ {v0v2}. Since xv0 ≥ xv3 ,
then ρ(G) ≤ ρ(H1) (by Lemma 2.1). Let H2 be a new graph with vertex set V (G),
E(H1) + v3v4. H1 is proper subgraph of H2 . By Lemma 2.3, we have ρ(H1) < ρ(H2).
Then, ρ(G) < ρ(H2). Note that H2 is a cactus graph with k pendent vertices.
Case 2. |P | = 1. Assume P = v0v6.
Subcase 2.1. xv2 ≤ xv6 .
Let H3 be a new graph with vertex set V (G), E(G)\{v2v3} ∪ {v3v6}. Note that H3 is a
cactus graph with k pendent vertices. By Lemma 2.1, we have ρ(G) ≤ ρ(H3).
Subcase 2.2. xv2 > xv6 .
Let H4 be a new graph with vertex set V (G), E(G)\{v2v3, v0v6} ∪ {v0v2, v3v6}. Note
that H4 is a cactus graph with k pendent vertices. Since xv0 ≥ xv3 and xv2 > xv6 , then
(xv2 − xv6)(xv0 − xv3) ≥ 0. By Lemma 2.2, we have ρ(G) ≤ ρ(H4). Note that H4 is a
cactus graph with k pendent vertices. It is a contradiction and this claim is proved.

Therefore, if n − k is odd, then ρ(G) ≤ ρ(Ce); if n − k is even, then ρ(G) ≤ ρ(Co). So,
this theorem is proved. �
Lemma 3.2 ([9]). Given a partition {1, 2, · · · , n} =∆1 ∪∆2 ∪· · ·∪∆m with |∆i| = ni > 0,
A be any matrix partitioned into blocks Aij , where Aij is an ni × nj block. Suppose that
the block Aij has constant row sums bij , and let B = (bij). Then the spectrum of B is
contained in the spectrum of A (taking into account the multiplicities of the eigenvalues).

Next we provide all eigenvalues of Ce and Co in the proposition.

Proposition 3.3. Let α ∈ [0, 1). The following statements hold. (i) The maximum
eigenvalues of Aα(Ce) satisfy the equation: f(ρ) = (α − ρ)3 + (nα − 2α + 1)(α − ρ)2 +
[(1 − n)α2 + (3n − 4)α + 1 − n](α − ρ) − k(1 − α)2 = 0. (ii) The maximum eigenvalues
of Aα(Co) satisfy the equation: g(ρ) = (nα − 2α − ρ)(α − ρ)(α − ρ + 1)(ρ2 − 3αρ + α2 +
2α − 1) − (k − 1)(1 − α)2(α − ρ + 1)(ρ2 − 3αρ + α2 + 2α − 1) − (n − k − 2)(1 − α)2(α −
ρ)(ρ2 − 3αρ + α2 + 2α − 1) − (1 − α)2(α − ρ)2(α − ρ + 1) = 0.

Proof. Since the matrix Aα = αD + (1 − α)A, where D has on the diagonal the vector
(n−1, 2, 1) and A consists of the following three row-vectors, in the order: (0, n−k −1, k);
(1, 1, 0); (1, 0, 0). By Lemma 3.2, thus, the eigenvector x of ρ(Aα(Ce)) ( Ce, see Figure
1)is a constant value β2 on the vertex set {v1, v′

1, v2, v′
2, · · · , v n−k−1

2
, v′

n−k−1
2

}, and constant
value β3 on the vertex set {u1, u2, · · · , uk}. Defining x(v) =: β1, ρ(Ce) =: ρ, also by (1),
we get (ρ − (n − 1)α)β1 = (1 − α)((n − k − 1)β2 + kβ3), (ρ − 2α)β2 = (1 − α)(β1 + β2) and
(ρ − α)β3 = (1 − α)β1).

Then we get:
f(ρ) = (α−ρ)3+(nα−2α+1)(α−ρ)2+[(1−n)α2+(3n−4)α+1−n](α−ρ)−k(1−α)2 = 0.
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Next we consider Aα(Co) ( Co, see Figure 1), since the matrix Aα = αD + (1 − α)A,
where D has on the diagonal the vector (n−2, 2, 1, 2, 1) and A consists of the following five
row-vectors, in the order: (0, n − k − 2, k − 1, 1, 0); (1, 1, 0, 0, 0); (1, 0, 0, 0, 0); (1, 0, 0, 0, 1)
(0, 0, 0, 1, 0). By Lemma 3.2, thus, the eigenvector x of ρ(Aα(Co)) is a constant value
β2 on the vertex set {v1, v′

1, · · · , v n−k−2
2

, v′
n−k−2

2
}, and constant value β3 on the vertex set

{u1, u2, · · · , uk−1}. Defining x(v) =: β1, and x(u′
k) =: β4, and x(uk) =: β5. ρ(Ce) =: ρ,

also by (1), similarly as above the computation of Aα(Ce), we obtain:
g(ρ) = (nα − 2α − ρ)(α − ρ)(α − ρ + 1)(ρ2 − 3αρ + α2 + 2α − 1) − (k − 1)(1 − α)2(α −

ρ + 1)(ρ2 − 3αρ + α2 + 2α − 1) − (n − k − 2)(1 − α)2(α − ρ)(ρ2 − 3αρ + α2 + 2α − 1) −
(1 − α)2(α − ρ)2(α − ρ + 1) = 0.

Thus, our proof is finished. �
Denote by C∗

n be the set of all cacti with n vertices. Let C∗1
n be a cactus graph in C∗

n

such that n is odd and C∗1
n contains n−1

2 cycles of length 3 (if any). Let C∗2
n be a cactus

graph in C∗
n such that n is even and C∗2

n contains n−2
2 cycles of length 3 (if any) and one

pendant edge.

Theorem 3.4. (i) If n is odd and G is a graph with the maximum Aα−spectral radius
in C∗

n, then G ∼= C∗1
n ;

(ii) If n is even and G is a graph with the maximum Aα−spectral radius in C∗
n, then

G ∼= C∗2
n .

Proof. By the proof of Theorem 3.1, we have the sharp upper bounds of Aα−spectral
radius attain at Ce and Co. We can set up a new graph by connecting any two pendant
vertices and the original graph is the proper subgraph of this new graph. By Lemma 2.2,
we have ρ(G) is increasing by this operation. Therefore, ρ(G) ≤ ρ(C∗1) if n is odd, and
ρ(G) ≤ ρ(C∗2) if n is even. Since C∗1 is the cactus graph Ce when k = 0, and C∗2 is the
cactus graph Co when k = 1. Thus, this theorem is proved.

By Proposition 3.3, and letting k = 0, 1, we can also obtain their corresponding eigen-
values. �

Based on the above outcomes, we can determine the sharp upper bound for the Aα-
spectral radius of cacti with a perfect matching. Let Cm

2k be the set of all 2k-vertex cacti
with a perfect matching.

Theorem 3.5. If G is a graph with the maximum Aα−spectral radius in Cm
2k, then G ∼=

C∗2
2k .
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1. Introduction
We first recall the following.
An element a in a unital ring R is clean (see [5]) if a = e + u with an idempotent e ∈ R

and a unit u ∈ R, and, nil-clean (see [4]) if a = e + t with an idempotent e and a nilpotent
t. It is strongly nil-clean if et = te. A nil-clean element is called trivial if e ∈ {0, 1}, the
trivial idempotents. A unit u is called unipotent if u = 1 + t, for some nilpotent t.

A ring is clean (or nil-clean) if so are all its elements. Via unipotent units, it is easy to
see that nil-clean rings are clean.

Though all these notions are well-known for some time, very little is known about which
clean elements of a ring are nil-clean. Actually, besides the unipotent units (indeed, a unit
is strongly nil-clean if and only if it is unipotent), we do not know which units of a ring
are nil-clean.

We can discard the trivial nil-clean elements. Indeed, if e = 0, then there is no unit
which is nilpotent (unless R = 0), and if e = 1, a = 1 + t, are precisely the unipotent
units. Over any commutative domain, such 2 × 2 matrices M , are easily characterized by
det(M − I2) = Tr(M − I2) = 0.

In this note, using an adequate (but nontrivial) Number Theory machinery, we charac-
terize the (nontrivial) nil-clean units in the matrix ring M2(Z).

Notice that non-trivial nil-clean 2×2 matrices over any commutative domain have trace
1.

As our main result, conversely, we show that trace 1, 2 × 2 units over Z are nil-clean,
that is, a 2 × 2 unit over Z is non-trivial nil-clean if and only if it has trace 1.

Up to similarity, we also prove that all trace 1, 2 × 2 units are similar to
[

0 1
−1 1

]
or

to
[

2 1
−1 −1

]
.
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2. Binary quadratic forms preliminaries
The proof of our main result requires some preparation.
First consider a particular Diophantine equation, namely

(x + y)2 + xy = m (*)

where m is a positive integer.

Lemma 2.1. For any divisor m of a positive integer A(A + 1) − 1, A > 1, the equation
(*) is solvable.

Proof. From the general theory of quadratic binary forms, we know that the integer
m is represented by a binary quadratic form of discriminant d only if the congruence
u2 ≡ d(mod4k) is solvable, where k is the square-free part of m (see [2], Theorem 7, p.
145). In our case, i.e. for the form G(x, y) = (x + y)2 + xy, d = 5 and the class number
of Q[

√
5] is 1, hence the above condition becomes necessary and sufficient. The solvability

of the congruence u2 ≡ 5(mod4k) is equivalent to the property that all prime factors of
form 5s + 2 or 5s + 3 from the factorization of m have even exponent.

Since we have to solve this equation for a divisor m of A(A + 1) − 1, this reduces to
show that if m divides A(A + 1) − 1, then m has this property. But this holds because if
a prime p divides A(A + 1) − 1, then it also divides (2A + 1)2 − 5 = 4[A(A + 1) − 1], so 5
must be a quadratic residue modulo p.

On the other hand, denoting by
(

a

p

)
the Legendre symbol, according to the Gauss

reciprocity law (see [1], Theorem 9.1.3),
(5

p

) (
p

5

)
= (−1)

p − 1
2

·
5 − 1

2 = 1. Because(5
p

)
= 1, it follows

(
p

5

)
= 1 and so p is a quadratic residue modulo 5, i.e., p is congruent

to 0, 1 or 4 modulo 5, as desired. �

Next, we consider another particular Diophantine equation, namely

(x − y)2 + xy = m (**)

where m is a positive integer.

Lemma 2.2. For any divisor m of a positive integer A(A + 1) + 1, A > 1, the equation
(**) is solvable.

Proof. The proof is similar to the proof of the previous lemma. Just notice that now the
discriminant is −3 and the corresponding class number is also 1. Moreover, if a prime p
divides A(A + 1) + 1, then it also divides (2A + 1)2 + 3 = 4[A(A + 1) + 1], −3 must be a
quadratic residue modulo p and so on. �

Secondly, we need the following

Proposition 2.3. Suppose A(A+1)+ BC = 1 for integers A, B, −C > 1. We can always
chose solutions (b, d) and (a, c) of the equation (*) with m = B and m = −C, respectively,
such that ad − bc = 1.

Proof. Again we use the theory of binary quadratic forms.
Consider the quadratic form F (x, y) = Bx2 + (2A + 1)xy − Cy2.
Its discriminant is equal to (2A + 1)2 + 4BC = 5 (by our hypothesis). Using the

reduction theory of quadratic forms, since the class number of Q[
√

5] is 1, it is well-known
that (see [3]) all integer quadratic forms with discriminant 5 are SL(2,Z)-equivalent to
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G(x, y) = (x + y)2 + xy, which has also discriminant 5. The equivalence means that there
exist integers a, b, c, d with ad − bc = 1 such that G(ax + by, cx + dy) = F (x, y).

If we set x = 1, y = 0 we get G(a, c) = B and if we set x = 0, y = 1 we get G(b, d) = −C
and we are done. �

Proposition 2.4. Suppose A(A + 1) + BC = −1 for integers A, B, −C > 1. We can
always chose solutions (b, d) and (a, c) of the equation (**) with m = B and m = −C,
respectively, such that ad − bc = 1.

Proof. We consider again the quadratic form F (x, y) = Bx2 + (2A + 1)xy − Cy2. Its
discriminant is (2A + 1)2 + 4BC = −3 and so is the discriminant of G(x, y) = (x − y)2 +
xy. Since the corresponding class number is 1, these are SL(2,Z)-equivalent, there exist
integers a, b, c, d with ad− bc = 1 such that G(ax+ by, cx+dy) = F (x, y) and we complete
the proof as for the previous proposition. �

3. The main result
By E11 we denote the matrix with all entries zero, excepting the NW corner, which is 1.

Recall that over any principal ideal domain, every non-trivial 2 × 2 idempotent matrix is
similar to E11. The result holds also in a more general setting (see [6]), but this hypothesis
suffices for our proof below.

We first give a characterization, up to similarity, of the non-trivial nil-clean units in
M2(Z).

Proposition 3.1. An integral 2×2 matrix U is a non-trivial nil-clean unit iff it is similar

to one of the following two matrices: V1 =
[

0 1
−1 1

]
, V−1 =

[
2 1

−1 −1

]
. More precisely,

if det U = 1, it is similar to V1 and if det U = −1, it is similar to V−1.

Proof. Since nil-clean and unit are invariant (properties) to conjugation, up to similar-
ity, owing to the previous paragraph, we can suppose the idempotent in the nil-clean
decomposition being E11. Nilpotent matrices having zero trace and zero determinant,

we deal with (nil-clean) matrices M =
[

a + 1 b
c −a

]
such that a2 + bc = 0. Since

det M = −(a + 1)a − bc = −a ∈ {±1} we distinguish two cases.

Case 1. If a = −1 then bc = −1 which give two matrices: V1 = E11 +
[

−1 1
−1 1

]
and

transpose (which is similar to V1: just conjugate by
[

1 0
0 −1

]
).

Case 2. If a = 1 then bc = −1 which give two matrices: V−1 = E11 +
[

1 1
−1 −1

]
and

transpose (which is similar to V−1: the same conjugation). �

Example. A =
[

8 5
−11 −7

]
=

[
9 6

−12 −8

]
+

[
−1 −1
1 1

]
. Here U =

[
3 2

−4 −3

]
and

U−1AU =
[

2 1
1 1

]
U = V−1, as stated.

Just taking the conjugates of these two matrices we can find the form of all the non-
trivial nil-clean units in M2(Z). This is[

(a + c)(b + d) + ad (b + d)2 + bd
−(a + c)2 − ac −(a + c)(b + d) − bc

]
for integers a, b, c, d with ad − bc = 1.
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Theorem 3.2. Trace 1, 2 × 2 units over Z are nil-clean.

Proof. In the sequel M =
[

A + 1 B
C −A

]
denotes a trace 1, 2 × 2 integral matrix.

We first discuss the det M = −1 case (i.e. A(A + 1) + BC = 1) and (owing to the form
of the non-trivial nil-clean units deduced above) prove that there are integers a, b, c, d with
ad − bc = 1 such that

M =
[

(a + c)(b + d) + ad (b + d)2 + bd
−(a + c)2 − ac −(a + c)(b + d) − bc

]
.

Finding the integers a, b, c, d amounts to solve the system
(i) A = (a + c)(b + d) + bc
(ii) B = (b + d)2 + bd
(iii) C = −(a + c)2 − ac
(iv) 1 = ad − bc, with integer unknowns a, b, c, d.

First notice that A(A + 1) − 1 > 0 with only two (integer) exceptions: A = −1 and A = 0.

The case A = 0 reduces to A = −1, by conjugation with
[

0 1
1 0

]
and the case A = −1

was already settled as Case 1, Proposition 3.1.
Hence we can assume BC < 0 and even B > 0, C < 0 (otherwise we conjugate with[
1 0
0 −1

]
), together with A ≥ 1 (the case A ≤ −2 also reduces to A ≥ 1, by conjugation

with
[

0 1
1 0

]
).

Secondly observe that (ii) and (iii) are equations of type (x + y)2 + xy = m, that is (*).
According to Proposition 2.3, the equations (ii), (iii) and (iv) have an integer solution.
Finally, we show that any solution of (ii), (iii) and (iv) (denoted again by a, b, c, d) also

verifies (i) and we are done.
Indeed, −BC = [(b+d)2+bd][(a+c)2+ac] = (b+d)2(a+c)2+ac(b+d)2+bd(a+c)2+abcd

and so we have to check whether the degree 2 equation A(A + 1) = 1 + (b + d)2(a + c)2 +
ac(b + d)2 + bd(a + c)2 + abcd has A = (a + c)(b + d) + bc as one root, i.e.

(b+d)2(a+c)2+bc(bc+1)+(2bc+1)(a+c)(b+d) = 1+(b+d)2(a+c)2+ac(b+d)2+bd(a+c)2+abcd.

Equivalently bc(bc+1−ad)+(2bc+1)(ab+ad+bc+cd) = 1+ab2c+acd2+a2bd+bc2d+4abcd
or else (bc + 1 − ad)(ab + cd + 3bc − 1) = 0. This holds since ad − bc = 1.

Next, we settle the det M = 1 case (i.e. A(A + 1) + BC = −1) and prove that there are
integers a, b, c, d with ad − bc = 1 such that

M =
[

(a − c)(b − d) + ad (b − d)2 + bd
−(a − c)2 − ac −(a − c)(b − d) − bc

]
.

Finding the integers a, b, c, d amounts to solve the system
(i) A = (a − c)(b − d) + bc

(ii) B = (b − d)2 + bd

(iii) C = −(a − c)2 − ac

(iv) 1 = ad − bc, with integer unknowns a, b, c, d.
Therefore now we deal with the equation (**). What remains for the proof is now deduced
from Proposition 2.4 and a similar verification that any solution of (ii), (iii) and (iv)
actually satisfies also (i). �

In closing we mention that this result fails for higher dimensions of matrices. Here is a
3 × 3 example:



The nil-clean 2 × 2 integral units 45

take U =

 1 0 0
0 1 2
0 −1 −1

 and V =

 1 0 1
1 0 0
0 1 0

, both with trace=determinant=1. Then

Tr(U2) = −1 ̸= 1 = Tr(V 2) and so the matrices U , V have different characteristic poly-
nomials. Consequently, U and V are not similar.

Acknowledgment. Thanks are due to D. Andrica for the proof of Lemma 2.1 and to
F. Beukers for pointing out the use of the theory of binary quadratic forms in the proof
of Proposition 2.3.
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1. Introduction
Let 0 < x < π/2. Then

sin x < x < tan x, (1.1)
which can be rewrited as

sin x

x
< 1 <

tan x

x
, (1.2)

or
x

tan x
< 1 <

x

sin x
. (1.3)

When the functions involved in (1.2) are taken into account in two forms of size relations,
two famous inequalities called the first Wilker’s inequality (see [7, 21, 29, 30, 37, 39]), the
first Huygens inequality (see [3–5,8,9,11,28,32,43]), it comes to the conclusions (1.4) and
(1.5). The comparison of these two inequalities (see [6]) is shown as follows in (1.6).

1
2

((sin x

x

)2
+ tan x

x

)
> 1, (1.4)

1
3

(2 sin x

x
+ tan x

x

)
> 1, (1.5)
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1
2

((sin x

x

)2
+ tan x

x

)
>

1
3

(2 sin x

x
+ tan x

x

)
> 1. (1.6)

Similar to (1.4) − (1.6), there are some conclusions (1.7) and (1.8) about the second
Wilker’s inequality (see [23, 24, 32, 43]), the second Huygens inequality (see [23, 24]), and
the comparison of the two inequalities as follows.

1
2

((
x

sin x

)2
+ x

tan x

)
> 1, (1.7)

1
3

( 2x

sin x
+ x

tan x

)
> 1, (1.8)

1
2

((
x

sin x

)2
+ x

tan x

)
>

1
3

( 2x

sin x
+ x

tan x

)
> 1. (1.9)

The last inequality chain is true due to

1
2

((
x

sin x

)2
+ x

tan x

)
− 1

3

( 2x

sin x
+ x

tan x

)

= 1
6

(
2
(

x

sin x

)2
+
(

x

sin x

)2
+ x

tan x
− 4 x

sin x

)

>
1
6

(
2
(

x

sin x

)2
+ 2 − 4 x

sin x

)
= 1

3

(
1 − x

sin x

)2
> 0

and (1.8). At the same time, we find that the inequality (1.7) plays a key role in the
above derivation. Furthermore, the relationships between the first and second Wilker’s
inequality (see [3, 42]), the first and second Huygens inequality (see [23, 24]) are given
below.

1
2

((sin x

x

)2
+ tan x

x

)
>

1
2

((
x

sin x

)2
+ x

tan x

)
> 1, (1.10)

1
3

(2 sin x

x
+ tan x

x

)
>

1
3

( 2x

sin x
+ x

tan x

)
> 1. (1.11)

The same case occurs in the hyperbolic functions (see [23,24,36,39,41–44]).
Now let’s turn to the discussion of similar inequalities for inverse circular functions. Let

0 < x < 1. Then
tan−1 x < x < sin−1 x, (1.12)

which can be rewritten as
tan−1 x

x
< 1 <

sin−1 x

x
, (1.13)

or
x

sin−1 x
< 1 <

x

tan−1 x
. (1.14)

Chen and Cheung [6] obtained an important conclusion about the inverse circular functions
as follows. (

x

sin−1 x

)2
+ x

tan−1 x
< 2, 0 < x < 1. (1.15)

Then, they used the arithmetic–geometric–harmonic mean inequality to prove the follow-
ing inequality chain for x ∈ (0, 1):

1
2

(sin−1 x

x

)2

+ tan−1 x

x

 >
1
3

(
2 sin−1 x

x
+ tan−1 x

x

)
(1.16)
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>

(sin−1 x

x

)2 tan−1 x

x

1/3

>

(
2

1/
((

sin−1 x
)

/x
)2 + 1/

((
tan−1 x

)
/x
))1/3

> 1.

They established the inverse hyperbolic version of above results for x ∈ (0, 1):(
x

sinh−1 x

)2
+ x

tanh−1 x
< 2, (1.17)

and
1
2

(sinh−1 x

x

)2

+ tanh−1 x

x

 >
1
3

(
2 sinh−1 x

x
+ tanh−1 x

x

)
(1.18)

>

(sinh−1 x

x

)2 tanh−1 x

x

1/3

>

 2

1/
((

sinh−1 x
)

/x
)2

+ 1/
((

tanh−1 x
)

/x
)


1/3

> 1.

The first task of this paper is to determine the relationship between the first Wilker’s
inequality, the second Wilker’s inequality, the first Huygens inequality and the second
Huygens inequality. The second one is to consider the results according to the form of the
inequality (1.6) or (1.9) for two function pairs, x/ sin−1 x and x/ tan−1 x, x/ sinh−1 x and
x/ tanh−1 x. Finally, we obtain some more general conclusions than the first work of this
paper, which reveal the absolute monotonicity of four functions involving the above four
inequalities.

2. Main results
This paper obtains the following main results.

Theorem 2.1. Let x ∈ (0, π/2). Then the inequality chain

1
2

((sin x

x

)2
+ tan x

x

)
>

1
3

(2 sin x

x
+ tan x

x

)

>
1
2

((
x

sin x

)2
+ x

tan x

)
>

1
3

( 2x

sin x
+ x

tan x

)
(2.1)

> 1.

holds.

Theorem 2.2. Let x ∈ (0, ∞). Then the inequality chain

1
2

((sinh x

x

)2
+ tanh x

x

)
>

1
3

(2 sinh x

x
+ tanh x

x

)

>
1
2

((
x

sinh x

)2
+ x

tanh x

)
>

1
3

( 2x

sinh x
+ x

tanh x

)
(2.2)

> 1.

holds.
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Theorem 2.3. Let x ∈ (0, 1). Then the inequality chain

1
2

((
x

sin−1 x

)2
+ x

tan−1 x

)
<

1
3

( 2x

sin−1 x
+ x

tan−1 x

)
< 1 (2.3)

holds.

Theorem 2.4. Let x ∈ (0, 1). Then the inequality chain

1
2

((
x

sinh−1 x

)2
+ x

tanh−1 x

)
<

1
3

( 2x

sinh−1 x
+ x

tanh−1 x

)
< 1 (2.4)

holds.

Then we can obtain the following corollaries.

Corollary 2.5. Let x ∈ (0, 1). Then

1
2

(sin−1 x

x

)2

+ tan−1 x

x

 >
1
3

(
2 sin−1 x

x
+ tan−1 x

x

)
> 1 (2.5)

>
1
3

( 2x

sin−1 x
+ x

tan−1 x

)
>

1
2

((
x

sin−1 x

)2
+ x

tan−1 x

)
.

Corollary 2.6. Let x ∈ (0, 1). Then

1
2

(sinh−1 x

x

)2

+ tanh−1 x

x

 >
1
3

(
2 sinh−1 x

x
+ tanh−1 x

x

)
> 1 (2.6)

>
1
3

( 2x

sinh−1 x
+ x

tanh−1 x

)
>

1
2

((
x

sinh−1 x

)2
+ x

tanh−1 x

)
.

3. Proofs
3.1. Proof of Theorem 2.1

We shall complete the proof of Theorem 2.1 when proving second inequality of (2.1).
Computing directly gives

1
3

(2 sin x

x
+ tan x

x

)
− 1

2

((
x

sin x

)2
+ x

tan x

)
= sin2 x

6x cos x
F (x), (3.1)

where

F (x) = 4 cos x sin3 x + 2 sin3 x − 3x3 cos x − 3x2 cos2 x sin x

sin4 x

= 4 cot x + 3x2 1
sin x

− 3x2 1
sin3 x

+ 2 1
sin x

+ x3
(

−3 cos x

sin4 x

)
. (3.2)

Since ( 1
sin x

)′
= − cos x

sin2 x
,( 1

sin x

)′′
=

(
− cos x

sin2 x

)′
= 2

sin3 x
− 1

sin x
,( 1

sin3 x

)′
= −3 cos x

sin4 x
,

from
1

sin x
= 1

x
+

∞∑
n=1

22n − 2
(2n)!

|B2n|x2n−1, 0 < |x| < π, (see [12]) (3.3)
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we have
1

sin3 x
= 1

2

(( 1
sin x

)′′
+ 1

sin x

)
(3.4)

= 1
2

(
2
x3 +

∞∑
n=2

(
22n − 2

)
(2n − 1) (2n − 2)
(2n)!

|B2n|x2n−3
)

+1
2

(
1
x

+
∞∑

n=1

22n − 2
(2n)!

|B2n|x2n−1
)

= 1
x3 +

∞∑
n=2

(
22n − 2

)
(2n − 1) (2n − 2)
2 (2n)!

|B2n|x2n−3

+ 1
2x

+
∞∑

n=1

22n − 2
2 (2n)!

|B2n|x2n−1,

and

−3 cos x

sin4 x
= 1

2

(
− 6

x4 +
∞∑

n=2

(
22n − 2

)
(2n − 1) (2n − 2) (2n − 3)

(2n)!
|B2n|x2n−4

)

+1
2

(
− 1

x2 +
∞∑

n=1

(
22n − 2

)
(2n − 1)

(2n)!
|B2n|x2n−2

)

= − 3
x4 +

∞∑
n=2

(
22n − 2

)
(2n − 1) (2n − 2) (2n − 3)

2 (2n)!
|B2n|x2n−4

− 1
2x2 +

∞∑
n=1

(
22n − 2

)
(2n − 1)

2 (2n)!
|B2n|x2n−2.

We substitute the power series expansions of these functions into (3.2), and obtain

F (x) =4 cot x + 3x2 1
sin x

+ 2 1
sin x

− 3x2 1
sin3 x

+ x3
(

−3 cos x

sin4 x

)
=4
(

1
x

−
∞∑

n=1

22n

(2n)!
|B2n|x2n−1

)
+ 3x2

(
1
x

+
∞∑

n=1

22n − 2
(2n)!

|B2n|x2n−1
)

+ 2
(

1
x

+
∞∑

n=1

22n − 2
(2n)!

|B2n|x2n−1
)

− 3x2
(

1
x3 +

∞∑
n=2

(
22n − 2

)
(2n − 1) (2n − 2)
2 (2n)!

|B2n|x2n−3
)

− 3x2
(

1
2x

+
∞∑

n=1

22n − 2
2 (2n)!

|B2n|x2n−1
)

+ x3
(

− 3
x4 +

∞∑
n=2

(
22n − 2

)
(2n − 1) (2n − 2) (2n − 3)

2 (2n)!
|B2n|x2n−4

)

+ x3
(

− 1
2x2 +

∞∑
n=1

(
22n − 2

)
(2n − 1)

2 (2n)!
|B2n|x2n−2

)

=
∞∑

n=2

(
22n − 2

)
(2n − 1) (2n − 2) (2n − 3)

2 (2n)!
|B2n|x2n−1

− 3
∞∑

n=2

(
22n − 2

)
(2n − 1) (2n − 2)
2 (2n)!

|B2n|x2n−1
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+ 2
∞∑

n=2

22n − 2
(2n)!

|B2n|x2n−1 − 4
∞∑

n=2

22n

(2n)!
|B2n|x2n−1

+ 3
∞∑

n=1

22n − 2
(2n)!

|B2n|x2n+1 − 3
∞∑

n=1

22n − 2
2 (2n)!

|B2n|x2n+1

+
∞∑

n=1

(
22n − 2

)
(2n − 1)

2 (2n)!
|B2n|x2n+1

=
∞∑

n=2

(
8n3 − 36n2 + 40n − 16

)
22n − 16n3 + 72n2 + 16 − 80n

2 (2n)!
|B2n|x2n−1

+
∞∑

n=1

2 (n + 1)
(
22n − 2

)
2 (2n)!

|B2n|x2n+1

=
∞∑

n=2
422n−1 (2n3 + 10n − 9n2 − 4

)
−
(
2n3 + 10n − 9n2 − 2

)
(2n)!

|B2n|x2n−1

+
∞∑

n=2

n
(
22n−2 − 2

)
(2n − 2)!

|B2n−2|x2n−1

:=
∞∑

n=2
anx2n−1,

where

an = 422n−1 (2n3 − 9n2 + 10n − 4
)

−
(
2n3 − 9n2 + 10n − 2

)
(2n)!

|B2n|

+n
(
22n−2 − 2

)
(2n − 2)!

|B2n−2|

for n ≥ 2.
Since

|B2| = 1
6

, |B4| = 1
30

, |B6| = 1
42

, |B8| = 1
30

,

we first compute to obtain that

a2 = 1
6

, a3 = 17
315

, a4 = 2509
151 200

.

Then using mathematical induction we can prove

22n−1
(
2n3 − 9n2 + 10n − 4

)
−
(
2n3 − 9n2 + 10n − 2

)
> 0

or
22n−1 >

2n3 − 9n2 + 10n − 2
2n3 − 9n2 + 10n − 4

(3.5)

for n ≥ 4. In fact, when n = 4, the inequality (3.5) holds. Now, we assume that the (3.5)
holds for n = m. Then, in order to complete the proof of (3.5) is also true for n = m + 1
it suffices to show that

42m3 − 9m2 + 10m − 2
2m3 − 9m2 + 10m − 4

>
2 (m + 1)3 − 9 (m + 1)2 + 10 (m + 1) − 2
2 (m + 1)3 − 9 (m + 1)2 + 10 (m + 1) − 4

,

which is true due to
4
(
2m3 − 9m2 + 10m − 2

) (
2 (m + 1)3 − 9 (m + 1)2 + 10 (m + 1) − 4

)
−
(
2m3 − 9m2 + 10m − 4

) (
2 (m + 1)3 − 9 (m + 1)2 + 10 (m + 1) − 2

)
= 12m6 − 72m5 + 129m4 − 54m3 − 3m2 − 42m + 12
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= 12 (m − 4)6 + 216 (m − 4)5 + 1569 (m − 4)4 + 5850 (m − 4)3

+11 733 (m − 4)2 + 11 934 (m − 4) + 4788
> 0.

So an > 0 for n ≥ 2. This leads to F (x) > 0 for all x ∈ (0, π/2) . The proof of (2.1) is
complete via (3.1).

3.2. Proof of Theorem 2.2
Similarly, if we can prove second inequality of (2.2), we then complete the proof of

Theorem 2.2.
Computing gives

1
3

(2 sinh x

x
+ tanh x

x

)
− 1

2

((
x

sinh x

)2
+ x

tanh x

)
:= 1

24x cosh x sinh3 x
G(x), (3.6)

where

G(x) = cosh 4x − 3 cosh 3x − 4 cosh 2x + cosh 5x + 2 cosh x (3.7)

−3
2

x2 cosh 4x − 6x3 sinh 2x + 3
2

x2 + 3.

Using the power series expansions of these hyperbolic functions, we have

G(x) =
∞∑

n=0

42n

(2n)!
x2n − 3

∞∑
n=0

32n

(2n)!
x2n − 4

∞∑
n=0

22n

(2n)!
x2n +

∞∑
n=0

52n

(2n)!
x2n

+ 2
∞∑

n=0

1
(2n)!

x2n − 3
2

x2
∞∑

n=0

42n

(2n)!
x2n − 6x3

∞∑
n=0

22n+1

(2n + 1)!
x2n+1

+ 3
2

x2 + 3

=
∞∑

n=4

42n − 3 · 32n − 4 · 22n + 52n + 2
(2n)!

x2n

− 3
2

∞∑
n=3

42n

(2n)!
x2n+2 − 6

∞∑
n=2

22n+1

(2n + 1)!
x2n+4

=
∞∑

n=4

42n − 3 · 32n − 4 · 22n + 52n + 2
(2n)!

x2n

−
∞∑

n=4

3 · 42n−2

2 (2n − 2)!
x2n −

∞∑
n=4

6 · 22n−3

(2n − 3)!
x2n

:=
∞∑

n=4

1
32 (2n)!

bnx2n,

where

bn = 32 · 52n −
(
6n2 − 3n − 16

)
24n+1 − 32 · 32n+1

−
(
6n3 − 9n2 + 3n + 4

)
22n+5 + 64

for n ≥ 4. We compute

cn := bn+1 − 25bn (3.8)

= 1536 · 32n +
(
108n2 − 438n − 384

)
24n

+
(
126n3 − 261n2 + 63n + 84

)
22n+5 − 1536
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and obtain that
108n2 − 438n − 384 > 0,(

126n3 − 261n2 + 63n + 84
)

22n+5 − 1536 > 0

hold for all n ≥ 5. So cn > 0 for n ≥ 5. This together with c4 = 17 940 480 > 0 gives that
cn > 0 for n ≥ 4. Then via (3.8) we have bn+1 > 25bn holds for n ≥ 4. This together with
b4 = 860 160 > 0 gives that bn > 0 for n ≥ 4. Then G(x) > 0 for all x ∈ (0, π/2). The
proof of (2.2) is complete via (3.6).

3.3. Proof of Theorem 2.3
In order to prove Theorem 2.3 as simple as possible, we need a tool which offers a simple

but efficient criterion to determine the sign of a kind of special power series, which we call
as "sign rule of a kind of special power series".

Lemma 3.1 ([34], [33]). Let {ak}∞
k=0 be a nonnegative real sequence with am > 0 and∑∞

k=m+1 ak > 0 and let

S (t) = −
m∑

k=0
aktk +

∞∑
k=m+1

aktk

be a convergent power series on the interval (0, r) (r > 0). (i) If S (r−) ≤ 0 then S (t) < 0
for all t ∈ (0, r). (ii) If S (r−) > 0 then there is the unique t0 ∈ (0, r) such that S (t) < 0
for t ∈ (0, t0) and S (t) > 0 for t ∈ (t0, r).

(1) We first prove the left hand side of (2.3).
Let arcsin x = t. Then the desired inequality is equivalent to

1
2

(sin t

t

)2
− 2

3
sin t

t
+ 1

6
sin t

arctan (sin t)
= sin t

6

( 1
arctan (sin t)

− 4t − 3 sin t

t2

)
< 0,

which is in turn equivalent to

H (t) := t2

4t − 3 sin t
− arctan (sin t) < 0

for t ∈ (0, π/2). Differentiation yields

H ′ (t) = sin3 t(
1 + sin2 t

)
(4t − 3 sin t)2 h (t) ,

where

h (t) = 4 t2

sin t
− 6 t

sin2 t
− 9 cot t − 6t + 4 t2

sin3 t
+ 24t

cos t

sin2 t
+ 3t2 cot t − 13t2 cos t

sin3 t
.

From

cot x = 1
x

−
∞∑

n=1

22n

(2n)!
|B2n|x2n−1, 0 < |x| < π, (see [10]) (3.9)

and (3.3) we have
1

sin2 t
= − (cot t)′ = 1

t2 +
∞∑

n=1

(2n − 1) 22n

(2n)!
|B2n|t2n−2, (3.10)

cos t

sin2 t
= −

( 1
sin t

)′
= 1

t2 −
∞∑

n=1

(2n − 1)
(
22n − 2

)
(2n)!

|B2n|t2n−2,

cos t

sin3 t
= −1

2

( 1
sin2 t

)′
= 1

t3 −
∞∑

n=2

(2n − 1) (n − 1) 22n

(2n)!
|B2n|t2n−3.

The above power series expansions and (3.4) give
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h (t) =4t + 4
∞∑

n=1

22n − 2
(2n)!

|B2n|t2n+1 − 6t

(
1
t2 +

∞∑
n=1

(2n − 1) 22n

(2n)!
|B2n|t2n−2

)

− 9
(

1
t

−
∞∑

n=1

22n

(2n)!
|B2n|t2n−1

)
+ 4t2

(
1
2t

+ 1
2

∞∑
n=1

22n − 2
(2n)!

|B2n|t2n−1
)

+ 4t2
(

1
t3 + 1

2

∞∑
n=2

(2n − 1) (2n − 2)
(
22n − 2

)
(2n)!

|B2n|t2n−3
)

+ 24t

(
1
t2 −

∞∑
n=1

(2n − 1)
(
22n − 2

)
(2n)!

|B2n|t2n−2
)

+ 3t2
(

1
t

−
∞∑

n=1

22n

(2n)!
|B2n|t2n−1

)

− 13t2
(

1
t3 −

∞∑
n=2

(2n − 1) (n − 1) 22n

(2n)!
|B2n|t2n−3

)
− 6t

=4t + 4
∞∑

n=1

22n − 2
(2n)!

|B2n|t2n+1 − 6
t

− 6
∞∑

n=1

(2n − 1) 22n

(2n)!
|B2n|t2n−1

− 9
t

+ 9
∞∑

n=1

22n

(2n)!
|B2n|t2n−1 + 4t2

( 1
2t

+ 1
t3

)
+ 2

∞∑
n=1

22n − 2
(2n)!

|B2n|t2n+1

+ 2
∞∑

n=2

(2n − 1) (2n − 2)
(
22n − 2

)
(2n)!

|B2n|t2n−1 + 24
t

− 24
∞∑

n=1

(2n − 1)
(
22n − 2

)
(2n)!

|B2n|t2n−1 + 3t − 3
∞∑

n=1

22n

(2n)!
|B2n|t2n+1

− 13
t

+ 13
∞∑

n=2

(2n − 1) (n − 1) 22n

(2n)!
|B2n|t2n−1 − 6t

=
∞∑

n=1

3
(
22n − 4

)
(2n)!

|B2n| t2n+1

+
∞∑

n=2

(
34n2 − 111n + 56

)
22n − 8 (2n − 1) (n − 7)

(2n)!
|B2n| t2n−1

:=
∞∑

n=2

kn |B2n−2| + ln |B2n|
(2n)!

t2n−1 :=
∞∑

n=2
pnt2n−1,

where

kn = 24n (2n − 1)
(
22n−4 − 1

)
,

ln =
(
34n2 − 111n + 56

)
22n − 8 (2n − 1) (n − 7) .

A simple computation shows that p2 = −1/2. We claim that pn > 0 for n ≥ 3. In fact,
kn > 0 for n ≥ 3. Also, since

(
34n2 − 111n + 56

)
> 0, so for n ≥ 3,

ln >
((

34n2 − 111n + 56
)

8 − 8 (2n − 1) (n − 7)
)

= 8 (32n (n − 3) + 49) > 0.

These indicate that pn > 0 for n ≥ 3.
On the other hand, we see that

h (π/2) = 2π (π − 3) > 0.
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By Lemma 3.1, there is a t0 ∈ (0, π/2) so that h (t) < 0 for t ∈ (0, t0) and h (t) > 0 for
t ∈ (t0, π/2), which in turn implies that H(t) is decreasing on (0, t0) and increasing on
(t0, π/2). Consequently, we obtain

H (t) < lim
t→0+

H (t) = 0 for t ∈ (0, t0) ,

H (t) < lim
t→(π/2)−

H (t) = −1
4

π (π − 3)
2π − 3

< 0 for t ∈ (t0, π/2) ,

that is, H (t) < 0 for t ∈ (0, π/2). This completes the proof of the left hand side of (2.3).
(2) We then prove the right hand side of (2.3).
The desired inequality is equivalent to

2 x

sin−1 x
+ x

tan−1 x
< 3.

Since
x

sin−1 x
<

2 +
√

1 − x2

3
, (see [15,16,21,38])

x

tan−1 x
< 1 + 1

3
x2, (see [6])

we have

2 x

sin−1 x
+ x

tan−1 x
<

2
(
2 +

√
1 − x2

)
3

+ 1 + 1
3

x2.

We can complete the proof of the right hand side of (2.3) as long as we can prove that

2
(
2 +

√
1 − x2

)
3

+ 1 + 1
3

x2 < 3,

which is equivalent to (1 −
√

1 − x2)2 > 0.

3.4. Proof of Theorem 2.4
(1) We first prove the left hand side of (2.4).
Since

1
3

( 2x

sinh−1 x
+ x

tanh−1 x

)
− 1

2

((
x

sinh−1 x

)2
+ x

tanh−1 x

)

= x

6

 4
sinh−1 x

− 1
tanh−1 x

− 3 x(
sinh−1 x

)2

 ,

the desired inequality is equivalent to

tanh−1 x >

(
sinh−1 x

)2

4 sinh−1 x − 3x
.

Let sinh−1 x = t. Then x = sinh t, the above inequality is equivalent to

tanh−1(sinh t) >
t2

4t − 3 sinh t
.

Let
Q(t) = tanh−1(sinh t) − t2

4t − 3 sinh t
.

Then
Q′(t) = q(t)(

1 − sinh2 t
)

(4t − 3 sinh t)2 ,
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where
q(t) = (cosh t) (4t − 3 sinh t)2 −

(
1 − sinh2 t

) (
3t2 cosh t − 6t sinh t + 4t2

)
= 9

4
cosh 3t − 9

4
cosh t + 2t2 cosh 2t + 3

4
t2 cosh 3t + 21

2
t sinh t

−12t sinh 2t − 3
2

t sinh 3t + 49
4

t2 cosh t − 6t2.

Expanding in power series of the hyperbolic functions leads to

q(t) = 9
4

∞∑
n=0

(3t)2n

(2n)!
− 9

4

∞∑
n=0

t2n

(2n)!
+ 2t2

∞∑
n=0

(2t)2n

(2n)!
+ 3

4
t2

∞∑
n=0

(3t)2n

(2n)!

+21
2

t
∞∑

n=0

t2n+1

(2n + 1)!
− 12t

∞∑
n=0

(2t)2n+1

(2n + 1)!
− 3

2
t

∞∑
n=0

(3t)2n+1

(2n + 1)!

+49
4

t2
∞∑

n=0

t2n

(2n)!
− 6t2

=
∞∑

n=2
rnt2n+2,

where
rn = 4n2 − 6n + 17

4(2n + 2)!
32n+1 + 2n − 11

(2n + 1)!
22n+1 + 196n2 + 378n + 173

4(2n + 2)!
.

We find that
r2 = 1

2
, r3 = 11

30
, r4 = 411

5600
, r5 = 403

50 400
,

and rn > 0 for n ≥ 6 due to 4n2 − 6n + 17 > 0 and 2n − 11 > 0. So rn > 0 for n ≥ 2. This
leads to that q(t) > 0. Then Q′(t) > 0. So Q(t) > Q(0+) = 0, which completes the proof
of the left hand side of (2.4).

(2) Then we prove the right hand side of (2.4).
The desired inequality is equivalent to

2 x

sinh−1 x
+ x

tanh−1 x
< 3.

Since
x

sinh−1 x
<

2 +
√

x2 + 1
3

, (see [40])

x

tanh−1 x
<

1 + 2
√

1 − x2

3
, (see [6])

we have

2 x

sinh−1 x
+ x

tanh−1 x
<

2
(
2 +

√
x2 + 1

)
3

+ 1 + 2
√

1 − x2

3
.

In order to complete the proof of the right hand side of (2.4) it suffices to show

2
(
2 +

√
x2 + 1

)
3

+ 1 + 2
√

1 − x2

3
< 3,

or
2
(
2 +

√
x2 + 1

)
+ 1 + 2

√
1 − x2 < 9

⇐⇒
√

x2 + 1 < 2 −
√

1 − x2

⇐⇒ x2 + 1 < 4 − 4
√

1 − x2 + 1 − x2

⇐⇒ x2 < 2 − 2
√

1 − x2.
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The last inequality is equivalent to (1 −
√

1 − x2)2 > 0.

4. Further discussions
Let us consider a real function f : (a, b) −→ R in case when exist finite limits f (k)(a+) =

lim
x→a+

f (k)(x) (for k = 0, 1, . . . , n and n∈N0) and f(b−) = lim
x→b−

f(x). We define

T f, a+
n (x) =

n∑
k=0

f (k)(a+)
k!

(x − a)k, (4.1)

Rf, a+
n (x) = f(x) − T f, a+

n (x), (4.2)

and

Tf ; a+, b−
n (x) =

 T f, a+
n−1 (x) + 1

(b−a)n Rf, a+
n−1 (b−)(x − a)n , n ≥ 1

f(b−) , n = 0
. (4.3)

Then the following statement is found to be true in [20, Theorem 3] and [18, Theorem 3].

Theorem 4.1. Let f : (a, b) −→ R be real analytic function with the power series:

f(x) =
∞∑

k=0
ck(x − a)k, (4.4)

where ck ∈ R and ck ≥ 0 for every k ∈ N0. Then,

T f, a+
0 (x) ≤ . . . ≤ T f, a+

n (x) ≤ T f, a+
n+1 (x) ≤ . . .

. . . ≤ f(x) ≤ . . . (4.5)

. . . ≤ Tf ; a+, b−
n+1 (x) ≤ Tf ; a+, b−

n (x) ≤ . . . ≤ Tf ; a+, b−
0 (x).

for every x ∈ (a, b). If ck ∈ R and ck ≤ 0 for every k ∈ N0, then the reversed inequality is
true.

Let us emphasize that previous theorem improves result of Theorem 2 from [31]. In-
spired by [2, 13, 14, 17, 19, 22, 27], and [31], we obtain a conclusion more general than
Theorem 2.1. The details are as follows.

Theorem 4.2. Let us form the functions

φ1(x) = 1
2

((sin x

x

)2
+ tan x

x

)
− 1

3

(2 sin x

x
+ tan x

x

)
:
(

0,
π

2

)
−→ R,

φ2(x) = 1
3

(2 sin x

x
+ tan x

x

)
− 1

2

((
x

sin x

)2
+ x

tan x

)
:
(

0,
π

2

)
−→ R,

φ3(x) = 1
2

((
x

sin x

)2
+ x

tan x

)
− 1

3

( 2x

sin x
+ x

tan x

)
:
(

0,
π

2

)
−→ R,

φ4(x) = 1
3

( 2x

sin x
+ x

tan x

)
− 1 :

(
0,

π

2

)
−→ R.

Then functions φ1(x), φ2(x), φ3(x), φ4(x) are real analytic with power series

φ1(x) =
∞∑

k=2
s

(1)
k x2k, φ2(x) =

∞∑
k=2

s
(2)
k x2k, φ3(x) =

∞∑
k=2

s
(3)
k x2k, φ3(x) =

∞∑
k=2

s
(3)
k x2k.

with positive coefficients

s(1)
n = 1

2
(−1)n22n+1

(2n + 2)!
+ 1

6
(22n+2 − 1)22n+1

(2n + 2)!
|B2n+2| − 2

3
(−1)n

(2n + 1)!
> 0,
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s(2)
n = 2 (−1)n

3 (2n + 1)!
+
(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2| − (n − 1) 22n

(2n)!
|B2n| > 0,

s(3)
n = (3n − 4) 22n + 4

3 (2n)!
|B2n| > 0,

s(4)
n = 22n − 4

3 (2n)!
|B2n| > 0

for n = 2, 3, . . .. Let it be that j ∈ {1, 2, 3, 4} and c ∈ (0, π/2) fixed. Then the double
inequality

0 < T
φj , 0+
2 (x) ≤ T

φj , 0+
3 (x) . . . ≤ T

φj , 0+
n (x) ≤ T

φj , 0+
n+1 (x) ≤ . . .

. . . ≤ φj(x) ≤ . . . (4.6)

. . . ≤ Tφj ; 0+, c−
n+1 (x) ≤ Tφj ; 0+, c−

n (x) ≤ . . .Tφj ; 0+, c−
3 (x) ≤ Tφj ; 0+, c−

2 (x)

holds for all x ∈ (0, c).

Proof. For example, let us consider only case j = 2. Since

φ(x) = φ2(x) = 1
3

(2 sin x

x
+ tan x

x

)
− 1

2

((
x

sin x

)2
+ x

tan x

)
=

∞∑
k=2

skx2k,

where

sn = s(2)
n = 2 (−1)n

3 (2n + 1)!
+
(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2| − (n − 1) 22n

(2n)!
|B2n|, n ≥ 2.

We can prove sn > 0 holds for all n ≥ 2. In [10, 1.3.1.4] or [46, 1.3.10], we can find the
following power series expansion:

tan x =
∞∑

n=1

22n − 1
(2n)!

22n|B2n|x2n−1, |x| <
π

2
. (4.7)

Based on (3.9) , (3.10) , and (4.7) follows

φ(x) =2
3

sin x

x
+ 1

3
tan x

x
− 1

2

(
x

sin x

)2
− 1

2
x

tan x

=2
3

∞∑
n=0

(−1)n

(2n + 1)!
x2n + 1

3

∞∑
n=1

22n − 1
(2n)!

22n|B2n|x2n−2

− 1
2

[
1 +

∞∑
n=1

22n(2n − 1)
(2n)!

|B2n|x2n

]
− 1

2

[
1 −

∞∑
n=1

22n

(2n)!
|B2n|x2n

]

=2
3

∞∑
n=0

(−1)n

(2n + 1)!
x2n + 1

3

∞∑
n=0

22n+2 − 1
(2n + 2)!

22n+2|B2n+2|x2n

− 1
2

[
1 +

∞∑
n=1

22n(2n − 1)
(2n)!

|B2n|x2n

]
− 1

2

[
1 −

∞∑
n=1

22n

(2n)!
|B2n|x2n

]

=
∞∑

n=2

2 (−1)n

3 (2n + 1)!
x2n +

∞∑
n=2

(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2|x2n

−
∞∑

n=2

22n−1(2n − 1)
(2n)!

|B2n|x2n +
∞∑

n=2

22n−1

(2n)!
|B2n|x2n

=
∞∑

n=2

2 (−1)n

3 (2n + 1)!
x2n +

∞∑
n=2

(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2|x2n −

∞∑
n=2

(n − 1) 22n

(2n)!
|B2n|x2n
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=
∞∑

n=2
snx2n.

Next, we shall prove that sn > 0 for all n ≥ 2.
(i) When n is even,

sn = 2
3 (2n + 1)!

+
(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2| − (n − 1) 22n

(2n)!
|B2n|,

we complete the proof of sn > 0 as long as(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2| − (n − 1) 22n

(2n)!
|B2n| > 0,

or
|B2n+2|
|B2n|

>

(n−1)22n

(2n)!
(22n+2−1)22n+2

3(2n+2)!

= (n − 1) 22n

(2n)!
3 (2n + 2)!

(22n+2 − 1) 22n+2 .

Since

|B2n+2|
|B2n|

>
22n−1 − 1
22n+1 − 1

(2n + 2)(2n + 1)
π2 , (see [1, 25,26,35,45])

we complete the proof when proving
22n−1 − 1
22n+1 − 1

(2n + 2)(2n + 1)
π2 >

(n − 1) 22n

(2n)!
3 (2n + 2)!

(22n+2 − 1) 22n+2 ,

that is,

22n >
6
[
π2 (n − 1) + 3

]
8

for n ≥ 2.

It is not difficult to prove the above formula by mathematical induction.
(ii) When n is odd,

sn = − 2
3 (2n + 1)!

+
(
22n+2 − 1

)
22n+2

3 (2n + 2)!
|B2n+2| − (n − 1) 22n

(2n)!
|B2n|.

By
2(2n)!
(2π)2n

1
1 − 2−2n

< |B2n| <
2(2n)!
(2π)2n

1
1 − 21−2n

, n = 1, 2, · · · , (see [1])

we have

sn > − 2
3 (2n + 1)!

+
(
22n+2 − 1

)
22n+2

3 (2n + 2)!
2(2n + 2)!
(2π)2n+2

1
1 − 2−2n−2

−(n − 1) 22n

(2n)!
2(2n)!
(2π)2n

1
1 − 21−2n

= − 2
3 (2n + 1)!

+
(
22n+2 − 1

)
22n+2

3 (2n + 2)!
2(2n + 2)!
(2π)2n+2

22n+2

22n+2 − 1

−(n − 1) 22n

(2n)!
2(2n)!
(2π)2n

22n−1

22n−1 − 1

= 2 · 22n+2

3π2n+2 − 22n (n − 1)
(22n−1 − 1) π2n

− 2
3 (2n + 1)!

.

Since

sn > 0 ⇐⇒ 2
3

(
4 · 22n − 3π2n + 3π2 − 8

)
22n

π2nπ2 (22n − 2)
>

2
3 (2n + 1)!
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⇐⇒
(
4 · 22n − 3π2n + 3π2 − 8

)
22n

π2n+2 (22n − 2)
>

1
(2n + 1)!

⇐⇒
(
4 · 22n − 3π2n + 3π2 − 8

)
22n (2n + 1)! > π2n+2

(
22n − 2

)
,

and
n! >

(
n

3

)n

, n ∈ N,

we have
(2n + 1)! >

(2n + 1
3

)2n+1
> 22n+1, n ∈ N0,

and (
4 · 22n − 3π2n + 3π2 − 8

)
22n (2n + 1)! >

(
4 · 22n − 3π2n + 3π2 − 8

)
22n22n+1.

Then we complete the proof when proving(
4 · 22n − 3π2n + 3π2 − 8

)
22n22n+1 > π2n+2

(
22n − 2

)
,

that is,

tn =
(
4 · 22n − 3π2n + 3π2 − 8

)
22n22n+1 − π2n+2

(
22n − 2

)
= 8 · 82n − (2π)2n π2 − 2 · 42n

[
3π2 (n − 1) + 8

]
+ 2π2π2n

> 0
for all n ≥ 2. We find

t2 = 28 672 − 14π6 − 1536π2 = 52. 839 . . . > 0,

and
tn+1 − 64tn =

[
4π2 (4 − π) (π + 4) 22n −

(
128π2 − 2π4

)]
π2n

+96 · 42n
(
3π2n − 4π2 + 8

)
> 0.

Then tn > 0 for all n ≥ 2. �
Remark 4.3. Obviously, Theorem 2.1 is a simple corollary of Theorem 4.2.
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Abstract
This paper uses the convolution theorem of the Laplace transform to derive new inverse
Laplace transforms for the product of two parabolic cylinder functions in which the argu-
ments may have opposite sign. These transforms are subsequently specialized for products
of the error function and its complement thereby yielding new integral representations for
products of the latter two functions. The transforms that are derived in this paper also
allow to correct two inverse Laplace transforms that are widely reported in the literature
and subsequently uses one of the corrected expressions to obtain two new definite integrals
for the generalized hypergeometric function.

Mathematics Subject Classification (2020). 33B20, 33C05, 33C15, 33C20, 44A10,
44A35

Keywords. confluent hypergeometric function, convolution theorem, error function,
Gaussian hypergeometric function, generalized hypergeometric function, Laplace
transform, parabolic cylinder function

1. Introduction
The parabolic cylinder function is intensively used in various domains such as chemical
physics [17], lattice field theory [8], astrophysics [30], finance [20], neurophysiology [5] and
estimation theory [4]. Products of parabolic cylinder functions involving both positive and
negative arguments arise in, for instance, problems of condensed matter physics [7,18] and
the study of real zeros of parabolic cylinder functions [9–11]. The error function erf(x)
and its complement erfc(x) emerge as special cases of the parabolic cylinder function and
play a prominent role in, for instance, the conduction of heat [6], statistics and probability
theory [15,23] and hydrology [2].

However, the extensive tables of inverse Laplace transforms [14,21,26] present relatively
few expressions for products of parabolic cylinder functions especially when signs of the
arguments differ. For example, [26] only specifies the following inverse Laplace transforms
for such set–up
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Dν

(
a

√
p +

√
p2 + b2

){
Dν

(
−a

√√
p2 + b2 − p

)
± Dν

(
a

√√
p2 + b2 − p

)}

Dν

(
a

√
p +

√
p2 − b2

){
Dν

(
−a

√
p −

√
p2 − b2

)
± Dν

(
a

√
p −

√
p2 − b2

)}
see Equations (3.11.4.9) and (3.11.4.10).

This paper uses the convolution theorem of the Laplace transform to derive inverse
Laplace transforms for

pi exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

){
Dν

(
−21/2x1/2p1/2

)
± Dν

(
21/2x1/2p1/2

)}
with i = 0 or −1

2 , i.e. for expressions in which the arguments have opposite sign and
differ, and where also the orders take on different values.

These results also offer inverse Laplace transforms for the product of (complementary)
error functions as the parabolic cylinder function for order −1 specializes into the com-
plementary error function. As a result, novel integral representations are obtained for
products of the (complementary) error functions and, for instance, the integral represen-
tation for 1 – erf(a)2 in [19] can be generalized into 1 – erf(a)erf(b).

The paper also corrects two inverse Laplace transforms that are reported in [14,21,26].
Combinations of one of the corrected results with the results derived in this paper are par-
ticularly interesting as they yield two definite integrals for the generalized hypergeometric
function that are not reported in, for instance, the comprehensive overview in [16].

The remainder of this paper is organized as follows. Section 2 presents the relation
between the parabolic cylinder function and the Kummer confluent hypergeometric func-
tion that is central to the subsequent derivations. Also, more detail is presented on the
formulation of the convolution theorem for the Laplace transform given that the limits of
integration in the integrals in the product differ. Section 3 presents the inverse Laplace
transforms for products of the parabolic cylinder function and uses these results to obtain
novel integral representations for products of (complementary) error functions. Section
4 corrects two widely-reported inverse Laplace transforms. Section 5 uses one of these
corrected expressions together with the results of Section 3 to derive two novel definite
integrals for the generalized hypergeometric function.

2. Notation and background
The parabolic cylinder function in the definition of Whittaker [29] is denoted by Dν (z),
where ν and z represent the order and the argument, respectively. Equation (4) on p. 117
in [13] defines the parabolic cylinder function as follows

Dν (z) = 2ν/2 exp
(
−1

4z2
){ Γ [1/2]

Γ [(1 − ν) /2]
Φ
(

−ν

2
; 1
2

; 1
2

z2
)

+ z

21/2

Γ [−1/2]
Γ [−ν/2]

Φ
(1 − ν

2
; 3
2

; 1
2

z2
)}

(2.1)

where Φ (a; b; z) is Kummer’s confluent hypergeometric function

Φ (a; b; z) =
∞∑

n=0

(a)n

(b)n

zn

n!
,

Γ [z] denotes the gamma function

Γ [z] =
∫ ∞

0
tz−1 exp (−t) dt
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and (z)n denotes the Pochhammer symbol

(z)n = Γ [z + n]
Γ [z]

,

see Equation (1) on p. 434 in [24], Equations (6.1.1) and (6.1.22) in [1], respectively.
Note that the definition (2.1) holds for z as well as −z and adding the corresponding

relation for Dν (−z) to (2.1) then gives

Dν (−z) − Dν (z) = z2(ν+3)/2√
π

Γ [−ν/2]
exp

(
−1

4z2
)

Φ
(1 − ν

2
; 3
2

; 1
2

z2
)

(2.2)

Dν (−z) + Dν (z) = 2(ν+2)/2√
π

Γ [(1 − ν) /2]
exp

(
−1

4z2
)

Φ
(

−ν

2
; 1
2

; 1
2

z2
)

(2.3)

see Equations (46:5:4) and (46:5:3) in [22].
The convolution theorem of the Laplace transform will be used to derive inverse Laplace

transforms for products of two parabolic cylinder functions. The functions in the products
are taken from inverse Laplace transforms for the parabolic cylinder function and the
Kummer confluent hypergeometric function, respectively. The inverse Laplace transforms
that will be used for Φ (a; b; z) and Dν (z) are not both defined over the half–line (0, ∞).
As a result, the convolution theorem becomes somewhat more involved. The Laplace
transforms of the original functions f1 (t) and f2 (t) are defined as

f1 (p) =
∫ β1

α1
exp (−pt) f1 (t) dt β1 > α1

f2 (p) =
∫ β2

α2
exp (−pt) f2 (t) dt β2 > α2

where Re p > 0. The convolution theorem then can be specified, see [25], as

f1 (p) f2 (p) =
∫ β1+β2

α1+α2
exp (−pt) f1 (t) ∗ f2 (t) dt (2.4)

where f1 (t) ∗ f2 (t) is the convolution of f1 (t) and f2 (t) that is to be obtained from

f1 (t) ∗ f2 (t) =
∫ min(β1; t−α2)

max(α1; t−β2)
f1 (τ) f2 (t − τ) dτ (2.5)

3. Inverse Laplace transforms for products of parabolic cylinder functions
This section derives several inverse Laplace transforms for products of parabolic cylinder
functions in which the sign of the arguments may differ and utilizes these results to obtain
new integral representations for products of (complementary) error functions.

Theorem 3.1. Let ν and µ be two complex numbers with Re ν < 1 and Re µ < min [1 − Re ν,
2 + Re ν]. Then, the following inverse Laplace transform holds for Re p > 0, x > 0,
|arg y| < π, y > 0

p−1/2 exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

)
{Dν

(
−21/2x1/2p1/2

)
− Dν

(
21/2x1/2p1/2

)
}

= 2(µ−ν)/2√
π

Γ [1 + (ν − µ) /2] Γ [−ν]

∫ x

0
exp (−pt) t(ν−µ)/2 (x − t)−(1+ν)/2 (3.1)

× (y + t)µ/2
2F1

(
−µ

2
,
1 + ν

2
; 1 + ν − µ

2
; t (x − y − t)
(x − t) (y + t)

)
dt

+ 22+(µ+ν)/2√
πy1/2x1/2

Γ [−µ/2] Γ [−ν/2]

∫ ∞

x
exp (−pt) t(ν−1)/2 (t − x)−(1+µ+ν)/2

× (y − x + t)(µ−1)/2
2F1

(1 − µ

2
,
1 − ν

2
; 3
2

; xy

t (y − x + t)

)
dt
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where 2F1(a, b; c; z) denotes the Gaussian hypergeometric function

2F1(a, b; c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

n!
|z| < 1,

see Equation (1) on p. 430 in [24].

Proof. The inverse Laplace transform in Equation (5) on p. 290 in [14] is

Γ [ν] exp
(

1
2ap

)
D−2ν

(
21/2a1/2p1/2

)
=
∫ ∞

0
exp (−pt) 2−νa1/2tν−1 (t + a)−ν−1/2 dt (3.2)

[Re p > 0, Re ν > 0, |arg a| < π]

and the inverse Laplace transform in Equation (3.33.2.2) in [26] is

exp (−xp) Φ (a; b; xp) = x1−bΓ [b]
Γ [b − a] Γ [a]

∫ x

0
exp (−pt) tb−a−1 (x − t)a−1 dt (3.3)

[Re p > 0, Re b > Re a > 0, x > 0]

These two inverse Laplace transforms, in the notation of Theorem 3.1, are rewritten as

Γ [−µ/2] exp
(

1
2yp

)
Dµ

(
21/2y1/2p1/2

)
=
∫ ∞

0
exp (−pt) 2µ/2y1/2t−µ/2−1 (t + y)(µ−1)/2 dt

[Re p > 0, Re µ < 0, |arg y| < π] (3.4)

and

x1/2 2√
π

Γ [1 + ν/2] Γ [(1 − ν) /2] exp (−xp) Φ
(1 − ν

2
; 3
2

; px

)
=
∫ x

0
exp (−pt) tν/2 (x − t)−(1+ν)/2 dt

[Re p > 0, −2 < Re ν < 1, x > 0] (3.5)

The original functions f1 (t) and f2 (t) are taken from the inverse Laplace transforms (3.4)
and (3.5), respectively, with

f1 (t) = 2µ/2y1/2t−µ/2−1 (t + y)(µ−1)/2 and f2 (t) = tν/2 (x − t)−(1+ν)/2

The integration limits in (2.4) and (2.5) are β1 = ∞, β2 = x and α1 = α2 = 0 such that
the convolution integral is given by

f1 (t) ∗ f2 (t) =
∫ t

0
f1 (τ) f2 (t − τ) dτ t < x

=
∫ t

t−x
f1 (τ) f2 (t − τ) dτ t > x

(3.6)

First, the convolution integral for t < x is

f1 (t) ∗ f2 (t) =
∫ t

0
2µ/2y1/2τ−µ/2−1 (τ + y)(µ−1)/2 (t − τ)ν/2 (x − (t − τ))−(1+ν)/2 dτ

The substitution τ = tu allows to rewrite the integral as

f1 (t) ∗ f2 (t) = 2µ/2t(ν−µ)/2yµ/2 (x − t)−(1+ν)/2

×
∫ 1

0
u−µ/2−1

(
1 + t

y
u

)(µ−1)/2
(1 − u)ν/2

(
1 − t

t − x
u

)−(1+ν)/2
du
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The integral in the latter equation will be expressed in terms of the Appell hypergeometric
function F1 (a, b1, b2; c; z1, z2), which is defined as

F1 (a, b1, b2; c; z1, z2) =
∞∑

m=0

∞∑
n=0

(a)m+n (b1)m (b2)n

(c)m+n

zm
1 zn

2
m!n!

max {|z1| , |z2|} < 1,

see Equation (1) on p. 448 in [24]. In particular, the following integral representation of
the Appell hypergeometric function F1 (a, b1, b2; c; z1, z2) will be used

Γ [a] Γ [c − a]
Γ [c]

F1 (a, b1, b2; c; z1, z2) =∫ 1

0
ua−1 (1 − u)c−a−1 (1 − z1u)−b1 (1 − z2u)−b2 du

for Re c > Re a > 0, see Equation (5) on p. 231 in [12]. This gives

f1 (t) ∗ f2 (t) = 2µ/2t(ν−µ)/2yµ/2 (x − t)−(1+ν)/2 Γ [−µ/2] Γ [1 + (ν/2)]
Γ [1 + (ν − µ) /2]

× F1

(
−µ

2
,
1 + ν

2
,
1 − µ

2
; 1 + ν − µ

2
; t

t − x
, − t

y

)
The above Appell hypergeometric function can further be simplified into the Gaussian
hypergeometric function given

F1 (a, b1, b2; b1 + b2; z1, z2) = (1 − z2)−a
2F1

(
a, b1; b1 + b2; z1 − z2

1 − z2

)
see Equation (1) on p. 238 in [12]. The final expression for the convolution integral for
t < x then is

f1 (t) ∗ f2 (t) = 2µ/2t(ν−µ)/2 (x − t)−(1+ν)/2 (y + t)µ/2 Γ [−µ/2] Γ [1 + (ν/2)]
Γ [1 + (ν − µ) /2]

× 2F1

(
−µ

2
,
1 + ν

2
; 1 + ν − µ

2
; t (t + y − x)
(t − x) (y + t)

)
t < x (3.7)

Second, the convolution integral for t > x is given by

f1 (t) ∗ f2 (t) =
∫ t

t−x
2µ/2y1/2τ−µ/2−1 (τ + y)(µ−1)/2 (t − τ)ν/2 (x − (t − τ))−(1+ν)/2 dτ

The treatment of this convolution integral is similar to that of the integral for t < x such
that only the main steps are mentioned. The substitutions τ = s − x + t and s = xu
express the integral in terms of the Appell hypergeometric function F1 (a, b1, b2; c; z1, z2)
that again can be simplified into the Gaussian hypergeometric function. The convolution
integral for t > x then is given by

f1 (t) ∗ f2 (t) = 1√
π

x1/2y1/221+(µ/2) (t − x)−(1+µ+ν)/2 (y + t − x)(µ−1)/2 t(ν−1)/2

× Γ [(1 − ν) /2] Γ [1 + (ν/2)] 2F1

(1 − µ

2
,
1 − ν

2
; 3
2

; xy

t (t + y − x)

)
t > x (3.8)

of which the derivation also used the following linear transformation formula

2F1 (a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z − 1

)
see Equation (15.3.4) in [1].

Plugging (3.7) and (3.8) into the convolution integral (3.6) then gives

exp
(

1
2py − px

)
Dµ

(
21/2y1/2p1/2

)
Φ
(1 − ν

2
; 3
2

; px

)
(3.9)
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= 2(µ/2)−1√
πx−1/2

Γ [1 + (ν − µ) /2] Γ [(1 − ν) /2]

∫ x

0
exp (−pt) t(ν−µ)/2 (x − t)−(1+ν)/2

× (y + t)µ/2
2F1

(
−µ

2
,
1 + ν

2
; 1 + ν − µ

2
; t (x − y − t)
(x − t) (y + t)

)
dt

+ 2µ/2y1/2

Γ [−µ/2]

∫ ∞

x
exp (−pt) t(ν−1)/2 (t − x)−(1+µ+ν)/2

× (y − x + t)(µ−1)/2
2F1

(1 − µ

2
,
1 − ν

2
; 3
2

; xy

t (y − x + t)

)
dt

in which the recurrence and duplication formulas of the gamma function were employed
to simplify expressions given that

Γ [1 + z] = zΓ [z] , Γ [2z] = 1√
2π

22z− 1
2 Γ [z] Γ

[
z + 1

2

]
,

see Equations (6.1.15) and (6.1.18) in [1].
Finally, plugging the definition (2.2) into (3.9) and simplifying gives the inverse Laplace

transform (3.1). �
The parabolic cylinder function specializes into the complementary error function when
its order is at −1. The inverse Laplace transform (3.1) thus can be used to obtain an
integral representation for the product of complementary error functions. However, this
result will not be shown here as its integrand contains an inverse trigonometric function
rather than the rational functions that are typical for existing integral representations, see
for instance [16, 19]. Instead, the term p−1/2 in inverse Laplace transforms such as (3.1)
will be removed given that the resulting relations yield integrands in which such rational
functions emerge. This will be illustrated in Theorem 3.2 and Corollary 3.3.

Theorem 3.2. Let ν and µ be two complex numbers with Re ν < 1 and Re µ < min [1 − Re ν,
2 + Re ν]. Then, the following inverse Laplace transform holds for Re p > 0, x > 0,
|arg y| < π, y > 0

exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

){
Dν

(
−21/2x1/2p1/2

)
−Dν

(
21/2x1/2p1/2

)}
(3.10)

= 2(µ−ν)/2√
πy−1/2

Γ [(1 − µ + ν) /2] Γ [−ν]

∫ x

0
exp (−pt) t−(1+µ−ν)/2 (x − t)−(1+ν)/2

× (y + t)(1+µ)/2
{

2F1

(
−1 + µ

2
,
1 + ν

2
; 1 − µ + ν

2
; t (x − y − t)
(x − t) (y + t)

)
+ µt

(1 − µ + ν) (y + t)2F1

(1 − µ

2
,
1 + ν

2
; 3 − µ + ν

2
; t (x − y − t)
(x − t) (y + t)

)}
dt

+ 2(4+µ+ν)/2√
πx1/2

Γ [− (1 + µ) /2] Γ [−ν/2]

∫ ∞

x
exp (−pt) t(ν−1)/2 (t − x)−(2+µ+ν)/2

× (y − x + t)µ/2
{

2F1

(
−µ

2
,
1 − ν

2
; 3
2

; xy

t (y − x + t)

)
− µ (t − x)

(1 + µ) (y − x + t)2F1

(2 − µ

2
,
1 − ν

2
; 3
2

; xy

t (y − x + t)

)}
dt

Proof. The recurrence relation of the parabolic cylinder function is given by
zDµ (z) = Dµ+1 (z) + µDµ−1 (z)

see Equation (14) on p. 119 in [13]. Replacing z by 21/2y1/2p1/2 and multiplying by
p−1/2 exp

(
1
2p (y − x)

){
Dν

(
−21/2x1/2p1/2

)
− Dν

(
21/2x1/2p1/2

)}
gives

21/2y1/2 exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

){
Dν

(
−21/2x1/2p1/2

)
−Dν

(
21/2x1/2p1/2

)}
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= p−1/2 exp
(

1
2p (y − x)

)
Dµ+1

(
21/2y1/2p1/2

){
Dν

(
−21/2x1/2p1/2

)
(3.11)

−Dν

(
21/2x1/2p1/2

)}
+ µp−1/2 exp

(
1
2p (y − x)

)
Dµ−1

(
21/2y1/2p1/2

)
×
{

Dν

(
−21/2x1/2p1/2

)
−Dν

(
21/2x1/2p1/2

)}
Plugging the transform (3.1) into (3.11) and simplifying gives (3.10). �
Corollary 3.3. The relation between the parabolic cylinder function and the complemen-
tary error function is given by

D−1 (z) =
√

π

2
exp

(
z2

4

)
erfc

(
z√
2

)
see Equation (9.254.1) in [16] in which erfc(z) denotes the complementary error function.
Equations (E.3c) and (E.3d) in [3] specify the following relations between the error function
and its complement

erfc (z) + erf (z) = 1
erfc (−z) = 1 + erf (z)

and thus
erfc (−z) − erfc (z) = 2 erf (z) (3.12)

where erf(z) denotes the error function. The below derivations also use the following
properties of the Gaussian hypergeometric function

2F1 (0, b; c; z) = 2F1 (a, 0; c; z) = 1

2F1

(
1,

3
2

; 3
2

; z

)
= 1

1 − z

see Equations (15.1.1) and (15.1.8) in [1]. Plugging the transform (3.1) into (3.11), using
µ = ν = −1 and (3.12) gives the following inverse Laplace transform for the product of
two (complementary) error functions

exp (py) erfc
(
y1/2p1/2

)
erf
(
x1/2p1/2

)
= (3.13)

1
π

∫ x

0
exp (−pt)

√
y√

t (y + t)
dt − 1

π

∫ ∞

x
exp (−pt)

√
x√

y − x + t (y + t)
dt

[Re p > 0, |arg y| < π, y > 0, |arg x| < π, x > 0]

Using p = 1 and setting a and b at y1/2 and x1/2, respectively, then gives the following
integral representation

erfc (a) erf (b) = (3.14)
a exp

(
−a2)

π

∫ b2

0

exp (−t)
(t + a2)

√
t
dt − b exp

(
−
(
a2 + b2))

π

∫ ∞

0

exp (−t)
(t + a2 + b2)

√
t + a2

dt

[Re a > 0, Re b > 0]

which is not present in, for instance, the extensive overview in [19].

Theorem 3.4. Let ν and µ be two complex numbers with Re ν < 1 and Re µ < min [1 − Re ν,
2 + Re ν]. Then, the following inverse Laplace transform holds for Re p > 0, |arg x| < π,
x > 0, |arg y| < π, y > 0

p−1/2 exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

)
{Dν

(
−21/2x1/2p1/2

)
+ Dν

(
21/2x1/2p1/2

)
}

= 2(µ−ν)/2√
π

Γ [1 + (ν − µ) /2] Γ [−ν]

∫ x

0
exp (−pt) t(ν−µ)/2 (x − t)−(1+ν)/2 (3.15)
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× (y + t)µ/2
2F1

(
−µ

2
,
1 + ν

2
; 1 + ν − µ

2
; t (x − y − t)
(x − t) (y + t)

)
dt

+ 21+(µ+ν)/2√
π

Γ [(1 − ν) /2] Γ [(1 − µ) /2]

∫ ∞

x
exp (−pt) tν/2 (t − x)−(1+µ+ν)/2

× (y − x + t)µ/2
2F1

(
−µ

2
, −ν

2
; 1
2

; xy

t (y − x + t)

)
dt

Proof. The inverse Laplace transform in Equation (6) on p. 290 in [14] is

Γ [ν] p−1/2 exp
(

1
2ap

)
D1−2ν

(
21/2a1/2p1/2

)
=
∫ ∞

0
exp (−pt) 21/2−νtν−1 (t + a)1/2−ν dt

[Re p > 0, Re ν > 0, |arg a| < π]
which in the notation of Theorem 3.3 gives

Γ [(1 − µ) /2] p−1/2 exp
(

1
2yp

)
Dµ

(
21/2y1/2p1/2

)
=
∫ ∞

0
exp (−pt) 2µ/2t−(µ+1)/2 (t + y)µ/2 dt

[Re p > 0, Re µ < 1, |arg y| < π] (3.16)

The inverse Laplace transform (3.3) is specialized for a = −ν
2 and b = 1

2 and gives

x−1/2
√

π
Γ [(1 + ν) /2] Γ [−ν/2] exp (−xp) Φ

(
−ν

2
; 1
2

; xp

)
=
∫ x

0
exp (−pt) t(ν−1)/2 (x − t)−(ν/2)−1 dt

[Re p > 0, −1 < Re ν < 0, x > 0] (3.17)
The original functions f1 (t) and f2 (t) are taken from the inverse Laplace transforms (3.16)
and (3.17), respectively

f1 (t) = 2µ/2t−(µ+1)/2 (t + y)µ/2 and f2 (t) = t(ν−1)/2 (x − t)−(ν/2)−1

Using steps akin to those used in the proof of Theorem 3.1 then yields

p−1/2 exp
(

1
2py − px

)
Dµ

(
21/2y1/2p1/2

)
Φ
(

−ν

2
; 1
2

; px

)
(3.18)

= 2µ/2√
πx1/2y1/2

Γ [1 + (ν − µ) /2] Γ [−ν/2]

∫ x

0
exp (−pt) t(ν−µ)/2 (x − t)−1−(ν/2)

× (y + t)(µ−1)/2
2F1

(1 − µ

2
, 1 + ν

2
; 1 + ν − µ

2
; t (x − y − t)
(x − t) (y + t)

)
dt

+ 2µ/2

Γ [(1 − µ) /2]

∫ ∞

x
exp (−pt) tν/2 (t − x)−(1+µ+ν)/2

× (y − x + t)µ/2
2F1

(
−µ

2
, −ν

2
; 1
2

; xy

t (y − x + t)

)
dt

The first integral in (3.18) can be rewritten via the following linear transformation formula
for the Gaussian hypergeometric function

2F1 (a, b; c; z) = (1 − z)c−a−b
2F1 (c − a, c − b; c; z) (3.19)

see Equation (15.3.3) in [1]. Combining the resulting expression for the transform (3.18)
with the definition (2.3) then gives the inverse Laplace transform (3.15). �
Theorem 3.5 specifies the inverse Laplace transform for the product of two parabolic
cylinder functions of which the arguments have opposite sign and Corollary 3.6 specializes
this expression for a single parabolic cylinder function with negative sign in the argument.
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Theorem 3.5. Let ν and µ be two complex numbers with Re ν < 1 and Re µ < min [1 − Re ν,
2 + Re ν]. Then, the following inverse Laplace transform holds for Re p > 0, x > 0,
|arg y| < π, y > 0

p−1/2 exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

)
Dν

(
−21/2x1/2p1/2

)
(3.20)

= 2(µ−ν)/2√
π

Γ [1 + (ν − µ) /2] Γ [−ν]

∫ x

0
exp (−pt) t(ν−µ)/2 (x − t)−(1+ν)/2

× (y + t)µ/2
2F1

(
−µ

2
,
1 + ν

2
; 1 + ν − µ

2
; t (x − y − t)
(x − t) (y + t)

)
dt

+ 21+(µ+ν)/2√
πx1/2y1/2

Γ [−µ/2] Γ [−ν/2]

∫ ∞

x
exp (−pt) t(ν−1)/2 (t − x)−(1+µ+ν)/2

× (y − x + t)(µ−1)/2
{

2F1

(1 − µ

2
,
1 − ν

2
; 3
2

; xy

t (y − x + t)

)

+ Γ [−µ/2] Γ [−ν/2]
Γ [(1 − µ) /2] Γ [(1 − ν) /2]

(
t (y − x + t)

4xy

)1/2

2F1

(
−µ

2
, −ν

2
; 1
2

; xy

t (y − x + t)

)}
dt

Proof. The transform (3.20) is obtained by adding the inverse Laplace transforms (3.1)
and (3.15) and simplifying the resulting expression. �
Corollary 3.6. Using y = 0, the properties

Dµ (0) = 2µ/2√
π

Γ [(1 − µ)/2]

2F1 (a, b; c; 1) = Γ [c] Γ [c − a − b]
Γ [c − a] Γ [c − b]

see Equations (46:7:1) in [22] and (15.1.20) in [1], and µ = 0 gives

p−1/2 exp
(
−1

2px
)

Dv

(
−21/2x1/2p1/2

)
= (3.21)

2−ν/2√
π

Γ [−ν] Γ [1 + ν/2]

∫ x

0
exp (−pt) tν/2 (x − t)−(1+ν)/2 dt

+ 2ν/2

Γ [(1 − ν) /2]

∫ ∞

x
exp (−pt) tν/2 (t − x)−(1+ν)/2 dt

[Re p > 0, Re ν < 1, x > 0]

Theorem 3.7. Let ν and µ be two complex numbers with Re(ν + µ) < 1. Then, the
following inverse Laplace transform holds for Re p > 0, |arg x| < π, x > 0, |arg y| < π,
y > 0, |arg x + arg y| < π

p−1/2 exp
(

1
2p (y + x)

)
Dµ

(
21/2y1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
= (3.22)

2(µ+ν)/2

Γ [(1 − µ − ν) /2]

∫ ∞

0
exp (−pt) t−(1+µ+ν)/2 (y + t)µ/2 (x + t)ν/2

× 2F1

(
−µ

2
, −ν

2
; 1 − µ − ν

2
; t (x + y + t)
(x + t) (y + t)

)
dt

which is identical to the transform in Equation (2.1) in [28].

Proof. Subtracting the inverse Laplace transform (3.1) from (3.10) gives

p−1/2 exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
=

+ 2(µ+ν)/2

Γ [(1 − µ − ν) /2]

∫ ∞

x
exp (−pt) tν/2 (t − x)−(1+µ+ν)/2
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× (y − x + t)µ/2
{ √

πΓ [(1 − µ − ν) /2]
Γ [(1 − µ) /2] Γ [(1 − ν) /2]2F1

(
−µ

2
, −ν

2
; 1
2

; xy

t (y − x + t)

)

−
√

πΓ [(1 − µ − ν) /2]
Γ [−µ/2] Γ [−ν/2]

( 4xy

t (y − x + t)

)1/2
2F1

(1 − µ

2
,
1 − ν

2
; 3
2

; xy

t (y − x + t)

)}
dt

in which the linear transformation formula (3.19) was used. Subsequently, using the linear
transformation formula

2F1 (a, b; c; z) = Γ [c] Γ [c − a − b]
Γ [c − a] Γ [c − b]2F1 (a, b; a + b − c + 1; 1 − z)

+ (1 − z)c−a−b Γ [c] Γ [a + b − c]
Γ [a] Γ [b] 2F1 (c − a, c − b; c − a − b + 1; 1 − z)

in Equation (15.3.6) in [1] gives

p−1/2 exp
(

1
2p (y − x)

)
Dµ

(
21/2y1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
=

2(ν+µ)/2

Γ [(1 − µ − ν] /2)

∫ ∞

x
exp (−pt) tν/2 (t − x)−(1+µ+ν)/2 (y − x + t)µ/2

× 2F1

(
−µ

2
, −ν

2
; 1 − µ − ν

2
; (t − x) (y + t)

t (y − x + t)

)
dt

Multiplying both sides by exp (px), using the substitution s = t − x and subsequently
re-introducing t then gives (3.22). �

As noted earlier, removing the term p−1/2 from transforms such as (3.22) allows obtaining
integral representations for (complementary) error functions in which the integrand con-
tains rational functions. This is illustrated in Theorem 3.8 and Corollary 3.9 in which the
integral representation for 1 – erf(a)2 in [19] is generalized into 1 – erf(a)erf(b).

Theorem 3.8. Let ν and µ be two complex numbers with Re(ν + µ) < 1. Then, the
following inverse Laplace transform holds for Re p > 0, |arg x| < π, x > 0, |arg y| < π,
y > 0, |arg x + arg y| < π

exp
(

1
2p (y + x)

)
Dµ

(
21/2y1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
= (3.23)

2(µ+ν)/2x−1/2

Γ [− (µ + ν) /2]

∫ ∞

0
exp (−pt) t−1−(ν+µ)/2 (y + t)µ/2

× (x + t)(1+ν)/2
{

2F1

(
−µ

2
, −1 + ν

2
; −µ + ν

2
; t (x + y + t)
(x + t) (y + t)

)
− νt

(µ + ν) (x + t)2F1

(
−µ

2
,
1 − ν

2
; 1 − µ + ν

2
; t (x + y + t)
(x + t) (y + t)

)}
dt

Proof. The inverse Laplace transform (3.23) is obtained via the above recurrence relation
of the parabolic cylinder function. Replacing z by 21/2x1/2p1/2 in the recurrence relation
and multiplying by p−1/2 exp

(
1
2p (y + x)

)
Dµ

(
21/2y1/2p1/2

)
gives

exp
(

1
2p (y + x)

)
Dµ

(
21/2y1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
=

2−1/2x−1/2p−1/2 exp
(

1
2p (y + x)

)
Dµ

(
21/2y1/2p1/2

)
Dν+1

(
21/2x1/2p1/2

)
+ ν2−1/2x−1/2p−1/2 exp

(
1
2p (y + x)

)
Dµ

(
21/2y1/2p1/2

)
Dν−1

(
21/2x1/2p1/2

)
Plugging the transform (3.22) into the latter expression and simplifying the result via the
linear transformation formula (3.19) gives (3.23). �
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Corollary 3.9. The below derivations employ the following property of the Gaussian hy-
pergeometric function

2F1

(
1,

1
2

; 2; z

)
= 2F1

(1
2

, 1; 2; z

)
= 2

1 +
√

1 − z

see Equation (84) on p. 473 in [24]. Using µ = ν = −1 in (3.23) gives the following
inverse Laplace transform for the product of two complementary error functions

exp (p (x + y)) erfc
(
y1/2p1/2

)
erfc

(
x1/2p1/2

)
= (3.24)

1
π

∫ ∞

0
exp (−pt)

√
x

√
x + t + √

y
√

y + t

(x + y + t)
√

(x + t) (y + t)
dt

[Re p > 0, |arg y| < π, y > 0, |arg x| < π, x > 0, |arg x + arg y| < π]

Using p = 1, y1/2 = a and x1/2 = b then gives the following integral representation for the
product of two complementary error functions

erfc (a) erfc (b) = (3.25)

1
π

exp
(
−
(
a2 + b2

)) ∫ ∞

0
exp (−t) a

√
t + a2 + b

√
t + b2

(t + a2 + b2)
√

(t + a2) (t + b2)
dt

[Re a > 0, Re b > 0]
which gives an alternative to the representation given on p. 70 in [27]. Using a = 0 and
erfc (0) = 1, see Equation (40:7) in [22], gives

erfc (b) = b

π
exp

(
−b2

) ∫ ∞

0

exp (−t)
(t + b2)

√
t
dt

[Re b > 0]

erf (b) = 1 − b

π
exp

(
−b2

) ∫ ∞

0

exp (−t)
(t + b2)

√
t
dt (3.26)

[Re b > 0]
The definition of the complementary error function gives erf(a) erf(b) = erf(b)−erfc(a) erf(b)
such that plugging (3.26) and (3.14) into the latter relation gives

1 − erf(a) erf(b) = (3.27)

b

π
exp

(
−b2

) ∫ ∞

0
exp (−t)

{
1

(t + b2)
√

t
− exp

(
−a2)

(t + a2 + b2)
√

t + a2

}
dt

+ a

π
exp

(
−a2

) ∫ b2

0

exp (−t)
(t + a2)

√
t
dt

[Re a > 0, Re b > 0]

which generalizes the expression for 1–erf(a)2 in Equation (8) on p. 4 in [19] to differing
arguments. Note that the representation in [19] can easily be obtained from (3.27) by using
a = b which gives

1 − erf(a)2 = 2a

π
exp

(
−a2

) ∫ a2

0

exp (−t)
(t + a2)

√
t
dt

The substitution t = a2s2 then gives

1 − erf(a)2 = 4
π

exp
(
−a2

) ∫ 1

0

exp
(
−a2s2)

(s2 + 1)
ds

which is the integral representation in [19].
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4. Correcting two inverse Laplace transforms
This Section utilizes the above results to correct two inverse Laplace transforms that are
frequently found.

4.1. First correction
The following inverse Laplace transform is specified in Equation (3.11.4.3) in [26]

Dν (a√
p) D−ν−1 (a√

p) =∫ ∞

a
exp (−pt)

(
t2 − a2)−1/2

√
2t

cos
[(

ν + 1
2

)
arccos

[
a2

2t

]]
dt ∗ ∗

where ∗∗ indicates that the expression is not correct. The corrected expression, however,
can easily be obtained from the results in Section 3.

Theorem 4.1. Let ν be a complex number. Then, the following inverse Laplace transform
holds for Re p > 0 and Re a > 0

Dν (a√
p) D−ν−1 (a√

p) = (4.1)

∫ ∞

1
2 a2

exp (−pt)
a
(
t2 − a4

4

)−1/2

√
2πt

cos

(2ν + 1) arcsin

√2t − a2

4t

 dt

Proof. Using a = 21/2x1/2 = 21/2y1/2 and µ = −ν − 1 allows to rewrite (3.23) as follows

exp
(

1
2a2p

)
Dν (a√

p) D−ν−1 (a√
p) =

1
a
√

π

∫ ∞

0
exp (−pt) t−1/2

{
2F1

(
−1 + ν

2
,
1 + ν

2
; 1
2

; 4t
(
a2 + t

)
(a2 + 2t)2

)

+ 2νt

a2 + 2t
2F1

(
1 − ν

2
,
1 + ν

2
; 3
2

; 4t
(
a2 + t

)
(a2 + 2t)2

)}
dt

Multiplying both sides by exp
(
−1

2a2p
)
, using the substitution s = t + 1

2a2 and subse-
quently re-introducing t gives

Dν (a√
p) D−ν−1 (a√

p) =

21/2

a
√

π

∫ ∞

1
2 a2

exp (−pt)
(
2t − a2

)−1/2
{

2F1

(
−1 + ν

2
,
1 + ν

2
; 1
2

; 4t2 − a4

4t2

)

+ν
(
2t − a2)

2t
2F1

(
1 − ν

2
,
1 + ν

2
; 3
2

; 4t2 − a4

4t2

)}
dt

The quadratic transformation formula in Equation (15.3.22) in [1] states

2F1

(
a, b; a + b + 1

2
; z

)
= 2F1

(
2a, 2b; a + b + 1

2
; 1
2

− 1
2

√
1 − z

)
Using the latter relation gives

Dν (a√
p) D−ν−1 (a√

p) =

21/2

a
√

π

∫ ∞

1
2 a2

exp (−pt)
(
2t − a2

)−1/2
{

2F1

(
−1 − ν, 1 + ν; 1

2
; 2t − a2

4t

)

+ν
(
2t − a2)

2t
2F1

(
1 − ν, 1 + ν; 3

2
; 2t − a2

4t

)}
dt
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The latter result can be simplified on the basis of the relations (15.2.10) and (15.2.20) in
[1], respectively

(c − a) 2F1 (a − 1, b; c; z) + (2a − c − az + bz) 2F1 (a, b; c; z)
+ a (z − 1) 2F1 (a + 1, b; c; z) = 0

c (1 − z) 2F1 (a, b; c; z) − c2F1 (a − 1, b; c; z) + (c − b) z2F1 (a, b; c + 1; z) = 0
The latter two relations can be combined into(

ac − c2
)

2F1 (a − 1, b; c; z) +
(
c2 − ac + c (a − b) z

)
2F1 (a, b; c; z)

+ a (b − c) z2F1 (a + 1, b; c + 1; z) = 0
which gives

a2

2t
2F1

(
1 + ν, −ν; 1

2
; 2t − a2

4t

)
= 2F1

(
−1 − ν, 1 + ν; 1

2
; 2t − a2

4t

)

+ ν
(
2t − a2)

2t
2F1

(
1 − ν, 1 + ν; 3

2
; 2t − a2

4t

)
This allows to rewrite the inverse Laplace transform as

Dν (a√
p) D−ν−1 (a√

p) =

a√
2π

∫ ∞

1
2 a2

exp (−pt)
(
2t − a2)−1/2

t
2F1

(
1 + ν, −ν; 1

2
; 2t − a2

4t

)
dt

Equation (90) on p. 460 in [24] states

2F1

(
a, 1 − a; 1

2
; z

)
= 2F1

(
1 − a, a; 1

2
; z

)
= 1√

1 − z
cos

[
(2a − 1) arcsin

[√
z
]]

Employing the latter property then gives (4.1). �

4.2. Second correction
The following inverse Laplace transform can be found in Equation (11) on p. 218 in [14],
in Equation (16.7) on p. 379 in [21] and in Equation (3.11.5.1) in [26]

exp
(

1
4a2p2

)
Dµ (ap) Dν (ap) =

1
Γ [−µ − ν]

∫ ∞

0
exp (−pt) aµ+νt−(1+µ+ν) exp

(
− t2

2a2

)

× 2F2

(
−µ, −ν; −µ + ν

2
,
1 − µ − ν

2
; t2

4a2

)
dt ∗ ∗

Theorem 4.2. Let ν and µ be two complex numbers with Re (µ + ν) < 0. Then, the
following inverse Laplace transform holds for Re p > 0 and Re a > 0

exp
(

1
2a2p2

)
Dµ (ap) Dν (ap) = (4.2)

1
Γ [−µ − ν]

∫ ∞

0
exp (−pt) aµ+νt−(1+µ+ν) exp

(
− t2

2a2

)

× 2F2

(
−µ, −ν; −µ + ν

2
,
1 − µ − ν

2
; t2

4a2

)
dt

Proof. From the specification of, for instance, the inverse Laplace transform (3.23), it
is clear that the left-hand side of the expression in [14, 21, 26] contains a misprint as the
exponential term should be exp

(
1
2a2p2

)
rather than exp

(
1
4a2p2

)
. �
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5. Two new definite integrals for the generalized hypergeometric function
The below definite integrals for the generalized hypergeometric function are derived from
the inverse Laplace transform (4.2) in combination with two results from Section 3.

5.1. First integral
Using a = 21/2x1/2 in (4.2) gives

exp
(
p2x

)
Dµ

(
21/2x1/2p

)
Dν

(
21/2x1/2p

)
= (5.1)

(2x)(µ+ν)/2

Γ [−µ − ν]

∫ ∞

0
exp (−pt) t−(1+µ+ν) exp

(
− t2

4x

)

× 2F2

(
−µ, −ν; −µ + ν

2
,
1 − µ − ν

2
; t2

8x

)
dt

and the inverse Laplace transform (3.23) for y = x is

exp (px) Dµ

(
21/2x1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
= (5.2)

2(µ+ν)/2x−1/2

Γ [− (µ + ν) /2]

∫ ∞

0
exp (−pt) t−1−(ν+µ)/2 (x + t)(1+µ+ν)/2

×
{

2F1

(
−µ

2
, −1 + ν

2
; −µ + ν

2
; t (2x + t)

(x + t)2

)

− νt

(µ + ν) (x + t)2F1

(
−µ

2
,
1 − ν

2
; 1 − µ + ν

2
; t (2x + t)

(x + t)2

)}
dt

Let f (t) be the original function in the Laplace transform (5.1) and F (p) be the corre-
sponding image function. Equation (26) on p. 4 of [26] states that the original function
of the image function F

(
p1/2

)
then is related to f (t) as follows

1
2
√

πt3

∫ ∞

0
τ exp

(
−τ2

4t

)
f (τ) dτ (5.3)

Hence, plugging the original function for the inverse Laplace transform (5.1) into the
expression (5.3) gives the original function of expression (5.2). Straightforward simpli-
fications and redefinitions of variables then give the following definite integral for the
generalized hypergeometric function∫ ∞

0
t−(µ+ν) exp

(
−x + y

4xy
t2
)

2F2

(
−µ, −ν; −µ + ν

2
,
1 − µ − ν

2
; t2

8x

)
dt =

2−(µ+ν)Γ
[1 − µ − ν

2

]
y

(
x + y

xy

)(1+µ+ν)/2
{

2F1

(
−µ

2
, −1 + ν

2
; −µ + ν

2
; y (2x + y)

(x + y)2

)

− νy

(µ + ν) (x + y)2F1

(
−µ

2
,
1 − ν

2
; 1 − µ + ν

2
; y (2x + y)

(x + y)2

)}
(5.4)

[Re (µ + ν) < 1, Re x > 0, Re y > 0]
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5.2. Second integral
Again, let f (t) be the original function in the Laplace transform (5.1) and F (p) be the
corresponding image function. Equation (29) on p. 5 of [26] states that the original
function of the image function p−1/2F

(
p1/2

)
is given by

1√
πt

∫ ∞

0
exp

(
−τ2

4t

)
f (τ) dτ (5.5)

The property in (5.5) establishes a relation between the inverse Laplace transforms for
exp

(
p2x

)
Dµ

(
21/2x1/2p

)
Dν

(
21/2x1/2p

)
and

p−1/2 exp (px) Dµ

(
21/2x1/2p1/2

)
Dν

(
21/2x1/2p1/2

)
. Equation (5.5) then allows us to ob-

tain the following indefinite integral∫ ∞

0
t−(1+µ+ν) exp

(
−x + y

4xy
t2
)

2F2

(
−µ, −ν; −µ + ν

2
,
1 − µ − ν

2
; t2

8x

)
dt =

2−(1+µ+ν)Γ
[
−µ + ν

2

](
x + y

xy

)(µ+ν)/2
2F1

(
−µ

2
, −ν

2
; 1 − µ − ν

2
; y (2x + y)

(x + y)2

)
(5.6)

[Re (µ + ν) < 0, Re x > 0, Re y > 0]
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Abstract
In this paper, a new version of mean value theorem for interval-valued functions on time
scales is established. Meantime, some basic concepts and results associated with semi-
groups of operators for interval-valued functions on time scales are presented. As an
application of semigroups of operators, under certain conditions, we consider the initial
value problem for interval-valued differential equations on time scales. Finally, two issues
worthy of further discussion are presented.
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1. Introduction
In 1988, the notion of time scale was introduced by Hilger [6] to unify continuous and

discrete analysis. There is no doubt that the time scale calculus provide a unified frame-
work for the study of differential equations and difference equations. In practice, many
problems involve various types of uncertainty. Usually, the knowledge about the param-
eters of a real world system is imprecise or uncertain because, generally, it is difficult to
accurately observe or measure the true value of these parameters. In these cases, the value
of a parameter cannot be characterized by an ordinary real number. Accordingly, interval
numbers and fuzzy numbers are two important tools to deal with these problems. In fact,
interval numbers can be regarded as a special case of fuzzy numbers. Taking into account
the shortcoming of the difference of fuzzy numbers, it is necessary to carry out the study of
interval analysis. More importantly, interval analysis can provide important methodologies
and foundations for fuzzy analysis. In 1993, Markov [8] first studied the differentiability
and integrability of interval-valued functions. Later, Stefanini and Bede [11] together with
Chalco-Cano et al. [3] further extended the theory of calculus of interval-valued functions.
In 2013, Lupulescu [7] introduced the differentiability and integrability for interval-valued
functions on time scales by using the generalized Hukuhara differentiability.

The mean value theorem for real-valued functions has important and extensive applica-
tion in the classical calculus. In [8], the mean value theorem for interval-valued functions
was established. Afterwards, the work was extended to the interval-valued functions on
time scales by Lupulescu [7]. One purpose of this paper is to give a new version of the
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mean value theorem for interval-valued functions on time scales. In addition, semigroups
of operators are very important in the study of differential equations. In 2005, the semi-
groups of operators on spaces of fuzzy-number-valued functions were proposed by Gal and
Gal [4] and were applied to study fuzzy differential equations. Recently, Hamza and Oraby
[5] developed the theory of semigroups of operators on time scales. Motivated by these
works, the other purpose of the present paper is to present some basic concepts and results
related to semigroups of operators for interval-valued functions on time scales.

2. Preliminaries
Let Z+

0 , R+
0 and R denote the set of all nonnegative integers, nonnegative real numbers

and real numbers, respectively. Denote by K the set of all nonempty compact convex
subsets (i.e., bounded and closed intervals) of the real line R. For A = [a−, a+], B =
[b−, b+] ∈ K, λ ∈ R, the Minkowski addition A+B and scalar multiplication λ ·A (denoted
by λA) can be defined by

A + B = [a−, a+] + [b−, b+] = [a− + b−, a+ + b+]
and

λ · A = λA = λ[a−, a+] = [min{λa−, λa+}, max{λa−, λa+}].
It is well know that the addition is associative and commutative and with the neutral
element {0}. Especially, if λ = −1, then the scalar multiplication gives the opposite
−A = (−1)A = [−a+, −a−]. However, in general, A + (−A) 6= {0}. That is to say, the
opposite of A is not the inverse of A with respect to the Minkowski addition, unless A is
a singleton.

Let A, B ∈ K. If there exists C ∈ K such that A = B + C, then C is called the
Hukuhara difference (or H-difference) of A and B, and it is denoted by C := A 	 B. Note
that the H-difference is unique, but it does not always exist for any two intervals. Given
two intervals A, B ∈ K, it is easy to know that the H-difference A 	 B exists if and only if
len(A) ≥ len(B), where len(·) denotes the length of the interval, i.e., len(A) = a+ − a−.
In order to overcome this shortcoming, the generalized difference is introduced as follows.

Definition 2.1 (Markov [8], Stefanini [10]). Let A, B ∈ K. The generalized Hukuhara
difference (gH-difference for short) is defined as

A 	g B = C ⇔
{

(i) A = B + C ⇔ A 	 B = C,

or (ii) B = A + (−C) ⇔ B 	 A = −C.

According to Def. 2.1, if A = [a−, a+], B = [b−, b+] ∈ K, then we have
A 	g B = [a−, a+] 	g [b−, b+]

= [min{a− − b−, a+ − b+}, max{a− − b−, a+ − b+}]

=
{

[a− − b−, a+ − b+], len(A) ≥ len(B),
[a+ − b+, a− − b−], len(A) < len(B).

From [8,10,12], some basic properties of gH-difference can be summarized as follows.
(i) A 	g A = {0}, A 	g {0} = A, {0} 	g A = −A;
(ii) A 	g B = (−B) 	g (−A) = −(B 	g A);
(iii) A 	g (−B) = B 	g (−A), (−A) 	g B = (−B) 	g A;
(iv) (A + B) 	g B = A, A 	g (A + B) = −B;
(v) (A 	g B) + B = A if len(A) ≥ len(B), A + (−1)(A 	g B) = B if len(A) < len(B);
(vi) λ(A 	g B) = λA 	g λB, λ ∈ R;
(vii) (λ + µ)A = λA + µA if λµ ≥ 0, (λ + µ)A = λA 	g (−µA) if λµ < 0.
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Lemma 2.2. Let A = [a−, a+], B = [b−, b+] and C = [c−, c+] belong to K. Then:
(i) If len(A) ≥ len(C), then (A + B) 	g C = (A 	g C) + B;
(ii) If len(A) < len(C), then (A + B) 	g C = (A 	g C) 	g (−B).

Proof. For simplicity, we write (A + B) 	g C = D, where D = [d−, d+].
(i) If len(A) ≥ len(C), then (A + B) 	g C = (A + B) 	 C. Using the representation of
endpoints, we have

(A + B) 	g C = (A + B) 	 C

= [a− + b− − c−, a+ + b+ − c+]
= [a− − c−, a+ − c+] + [b−, b+]
= (A 	 C) + B

= (A 	g C) + B.

(ii) If len(A) < len(C), then A 	g C = −(C 	 A). Therefore, we can infer from Definition
2.1 that

(A 	g C) 	g (−B)
= [a+ − c+, a− − c−] 	g [−b+, −b−]
= [min{a+ − c+ + b+, a− − c− + b−}, max{a+ − c+ + b+, a− − c− + b−}]
= (A + B) 	g C.

�
Now we define a functional ‖ · ‖ : K → [0, ∞) by ‖A‖ = max{|a−|, |a+|} for every

A = [a−, a+] ∈ K. It can easily be shown that ‖·‖ is a norm on K, and thus the quadruple
(K, +, ·, ‖ · ‖) is a normed quasilinear space [9].

Given two intervals A = [a−, a+], B = [b−, b+] ∈ K, the Hausdorff-Pompeiu metric
between A and B is defined by dH(A, B) = max{|a−−b−|, |a+−b+|}. It is well known that
(K, dH) is a complete and separable metric space. Furthermore, the following relationships
exist between the Hausdorff-Pompeiu metric dH and the norm ‖ · ‖:

‖A‖ = dH(A, {0}), dH(A, B) = ‖A 	g B‖.

In addition, for all A, B, C, D ∈ K, the metric dH has the following properties:
(i) dH(A + B, A + C) = dH(B, C),
(ii) dH(λA, λ, B) = |λ|dH(A, B), λ ∈ R,
(iii) dH(A + C, B + D) ≤ dH(A, B) + dH(C, D),
(iv) dH(A 	g B, A 	g C) ≤ dH(B, C).

Here, we briefly recall some basic notions related to the time scale. For more details, we
recommend two excellent monographs [1,2] written by Bohner and Peterson. A time scale
T is a nonempty closed subset of R. For t ∈ T, the forward jump operator σ and the back
jump operator ρ are defined as σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},
respectively. Especially, inf ∅ = supT, sup ∅ = inf T.

A point t ∈ T is said to be right-scattered, right-dense, left-scattered and left-dense if
σ(t) > t, σ(t) = t, ρ(t) < t and ρ(t) = t, respectively. Given a time scale T, the graininess
function µ : T → [0, ∞) is defined by µ(t) = σ(t) − t. The set Tκ is derived from the time
scale T as follows: If T has a left-scattered maximum γ, then Tκ = T − {γ}. Otherwise,
Tκ = T. Especially, given a time scale interval [a, b]T = {t ∈ T| a ≤ t ≤ b}, if ρ(b) = b,
then [a, b]κ = [a, b]T. Otherwise, [a, b]κ = [a, b)T. In essence, [a, b)T = [a, ρ(b)]T.

Let g : T → R be a real-valued function and let t ∈ Tκ. Given any ε > 0, if there exist
a number α and a neighborhood U of t such that

|g(σ(t)) − g(s) − α(σ(t) − s)| ≤ ε|σ(t) − s|



82 Y.H. Shen

for all s ∈ U , then we say that g is delta differentiable (or in short: ∆-differentiable) at
t. Correspondingly, the number α is called the ∆-derivative and it is denoted by g∆(t).
More generally, the function g is said to be delta differentiable (∆-differentiable) on Tκ

provided the ∆-derivative g∆(t) exists for all t ∈ Tκ.

Definition 2.3 (Lupulescu [7]). Let F : T → K be an interval-valued function. Then
we say that F is l-nondecreasing (or l-nonincreasing) on T if the real-valued function
t → len(F (t)) is nondecreasing (or nonincreasing) on T. Generally, if F is l-nondecreasing
or l-nonincreasing on T, then we say that F is l-monotonic on T.

Definition 2.4 (Lupulescu [7]). Let F : T → K be an interval-valued function and let
A ∈ K. If for every ε > 0, there exists δ > 0 such that ‖F (t) 	g A‖ = dH(F (t), A) ≤ ε for
all t ∈ UT(t0, δ) (i.e., UT(t0, δ) = (t0 − δ, t0 + δ)∩T), then we say that A is the T-limit of F
at t0 ∈ T. If F has a T-limit A at t0, then it is unique and is denoted by A = T− lim

t→t0
F (t).

An interval-valued function F : T → K is called rd-continuous if it is continuous at all
right-dense points in T and its left-sided T-limits exist at all left-dense points in T.

Definition 2.5 (Lupulescu [7]). Let F : T → K be an interval-valued function and let
t ∈ Tκ. Then we define F ∆

gH(t) to be the interval (provided it exists) with the property
that for every ε > 0, there exists δ > 0 such that

dH(F (σ(t)) 	g F (s), (σ(t) − s)F ∆
gH(t)) ≤ ε|σ(t) − s|

for all s ∈ UT(t, δ). Here, F ∆
gH(t) is called the delta generalized Hukuhara derivative (∆gH -

derivative for short) of F at t. Meantime, if F ∆
gH(t) exists for each t ∈ Tκ, then we say

that F is delta generalized Hukuhara differentiable (∆gH -differentiable for short) on Tκ.
In particular, the ∆gH -derivative F ∆

gH degenerates into the gH-derivative F ′
gH if the time

scale T = R.

Theorem 2.6 (Lupulescu [7]). Assume that F : T → K is an interval-valued function and
let t ∈ Tκ. Then, the following statements are true:

(i) If F : T → K is ∆gH-differentiable at t ∈ Tκ, then it is continuous at t;
(ii) If F is continuous at t and t is right-scattered, then F is ∆gH-differentiable at t

with
F ∆

gH(t) = F (σ(t)) 	g F (t)
µ(t)

;

(iii) If t is right-dense, then F is ∆gH-differentiable at t if and only if the T-limit

T − lim
s→t

F (t) 	g F (s)
t − s

exists as a closed interval. In this case

F ∆
gH(t) = T − lim

s→t

F (t) 	g F (s)
t − s

;

(iv) If F is ∆gH-differentiable at t, then

F (σ(t)) 	g F (t) = µ(t)F ∆
gH(t).

Finally, the induction principle on time scales is provided, which is useful in the next
section.

Theorem 2.7 (Bohner and Peterson [7]). Let t0 ∈ T and let {S(t) : t ∈ [t0, +∞)} be a
family of statements satisfying:

(I) S(t0) is true;
(II) If t ∈ [t0, +∞) is right-scattered and S(t) is true, then S(σ(t)) is also true;
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(III) If t ∈ [t0, +∞) is right-dense and S(t) is true, then there is a neighborhood U of t
such that S(s) is true for all s ∈ U ∩ (t, +∞);

(IV) If t ∈ (t0, +∞) is left-dense and S(s) is true for all s ∈ [t0, t), then S(t) is true.
Then S(t) is true for all t ∈ [t0, +∞).

3. Mean value theorem for interval-valued functions on time scales
Based on the works of Markov [8] and Lupulescu [7], in this section, we shall establish

another version of the mean value theorem for interval-valued functions on time scales.

Theorem 3.1 (Markov [8]). Let F be a continuous interval-valued function on [a, b] and
gH-differentiable in (a, b). Then

F (b) 	g F (a) ⊂ (b − a)F ′
gH([a, b]),

where F ′
gH([a, b]) =

⋃
ξ∈[a,b] F ′

gH(ξ).

Remark 3.2. In general, it is not true that there exists ξ ∈ [a, b] such that F (b)	g F (a) ⊂
(b − a)F ′

gH(ξ).

Theorem 3.3 (Lupulescu [7]). Let F be a continuous and l-monotonic interval-valued
function on [a, b]T and let F be ∆gH-differentiable in [a, b)T. Then

F (b) 	g F (a) ⊂ (b − a)F ∆
gH([a, b)T),

where F ∆
gH([a, b)T) =

⋃
ξ∈[a,b)T F ∆

gH(ξ).

Theorem 3.4. Let F and g be an interval-valued function and a real-valued function
defined on T, respectively. Assume that F is ∆gH-differentiable and g is ∆-differentiable
on Tκ. If

‖F ∆
gH(t)‖ ≤ g∆(t)

for all t ∈ Tκ, then
‖F (t) 	g F (r)‖ ≤ g(t) − g(r)

for all t ∈ [r, s]T with r, s ∈ T and r ≤ s.

Proof. Let r, s ∈ T with r ≤ s. For any ε > 0, we can show by the induction principle as
shown in Theorem 2.7 that

S(t) : ‖F (t) 	g F (r)‖ ≤ g(t) − g(r) + ε(t − r)
holds for all t ∈ [r, s]T. The proof is divided into four steps.

(I) If t = r, then the statement S(r) is obviously true.
(II) Assume that t is right-scattered and S(t) is satisfied. According to Definition 2.1

and Theorem 2.6 (iv), we have the following two cases:
Case (a):

‖F (σ(t)) 	g F (r)‖ = dH(F (σ(t)), F (r))

= dH(F (t) + µ(t)F ∆
gH(t), F (r))

≤ dH(F (t), F (r)) + dH(µ(t)F ∆
gH(t), {0})

= dH(F (t), F (r)) + µ(t)dH(F ∆
gH(t), {0})

= dH(F (t), F (r)) + µ(t)‖F ∆
gH(t)‖

≤ dH(F (t), F (r)) + µ(t)g∆(t)
≤ g(t) − g(r) + ε(t − r) + g(σ(t)) − g(t)
= g(σ(t)) − g(r) + ε(t − r)
≤ g(σ(t)) − g(r) + ε(σ(t) − r).
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Case (b):
‖F (σ(t)) 	g F (r)‖ = dH(F (σ(t)), F (r))

= dH(F (σ(t)) + (−1)µ(t)F ∆
gH(t), F (r) + (−1)µ(t)F ∆

gH(t))

= dH(F (t), F (r) + (−1)µ(t)F ∆
gH(t))

≤ dH(F (t), F (r)) + dH({0}, (−1)µ(t)F ∆
gH(t))

= dH(F (t), F (r)) + µ(t)dH({0}, F ∆
gH(t))

= dH(F (t), F (r)) + µ(t)‖F ∆
gH(t)‖

≤ g(σ(t)) − g(r) + ε(σ(t) − r).

Thus, the statement S(σ(t)) is satisfied.
(III) Suppose that S(t) holds and t 6= s is right-dense. Clearly, σ(t) = t. Since F is

∆gH -differentiable and g is ∆-differentiable at t, there exists a neighborhood UT of
t such that

dH(F (t) 	g F (s), F ∆
gH(t)(t − s)) ≤ ε

2
|t − s|

for all s ∈ UT and

|g(t) − g(s) − g∆(t)(t − s)| ≤ ε

2
|t − s|

for all s ∈ UT. Therefore, we can obtain that
dH(F (t), F (s)) = dH(F (t) 	g F (s), {0})

≤ dH(F (t) 	g F (s), F ∆
gH(t)(t − s)) + dH({0}, F ∆

gH(t)(t − s))

≤
(
‖F ∆

gH(t)‖ + ε

2

)
|t − s|

and
g(s) − g(t) − g∆(t)(s − t) ≥ −ε

2
|t − s|

for all s ∈ UT. Hence, for all s ∈ UT ∩ (t, ∞), we have
‖F (s) 	g F (r)‖ = dH(F (s), F (r))

≤ dH(F (s), F (t)) + dH(F (t), F (r))

≤
(
‖F ∆

gH(t)‖ + ε

2

)
|t − s| + dH(F (t), F (r))

≤
(
g∆(t) + ε

2

)
|t − s| + dH(F (t), F (r))

≤
(
g∆(t) + ε

2

)
|t − s| + g(t) − g(r) + ε(t − r)

= g∆(t)(s − t) + ε

2
(s − t) + g(t) − g(r) + ε(t − r)

≤ g(s) − g(t) + ε

2
|t − s| + ε

2
(s − t) + g(t) − g(r) + ε(t − r)

= g(s) − g(r) + ε(s − r),

which implies that S(s) holds for all s ∈ UT ∩ (t, ∞).
(IV) Let t be left-dense and assume that S(τ) holds for all τ < t. By the continuity of F

and g, we then obtain that
‖F (t) 	g F (r)‖ = lim

τ→t−
‖F (τ) 	g F (r)‖

≤ lim
τ→t−

g(τ) − g(r) + ε(τ − r)

= g(t) − g(r) + ε(t − r),



Mean value theorem and semigroups of operators... 85

which means that the statement S(t) is true.
Due to the arbitrariness of ε, we have obtained the desired result and completed the

proof of this theorem. �
As an application of Theorem 3.4, we can obtain the following results.

Corollary 3.5. Let F, G : T → K be two ∆gH-differentiable interval-valued functions on
Tκ. Then

(i) If D is a compact interval with endpoints r, s ∈ T, then

‖F (s) 	g F (r)‖ ≤
(

sup
t∈Dκ

‖F ∆
gH(t)‖

)
|s − r|.

(ii) If F ∆
gH(t) = {0} for all t ∈ Tκ, then F is a constant interval.

(ii) If both F and G are l-nondecreasing or l-nonincreasing, and F ∆
gH(t) = G∆

gH(t) for
all t ∈ Tκ, then

F (t) 	g G(t) = C

for all t ∈ T, where C is a constant interval.
(iv) If F and G are such that one is l-nondecreasing and the other is l-nonincreasing,

and F ∆
gH(t) = −G∆

gH(t) for all t ∈ Tκ, then
F (t) + G(t) = C

for all t ∈ T, where C is a constant interval.

Proof. (i) Let r, s ∈ T with r ≤ s. Define

g(t) :=
(

sup
τ∈[r,s]κ

‖F ∆
gH(τ)‖

)
(t − r)

for t ∈ T. Then, it is easy to know that
g∆(t) = sup

τ∈[r,s]κ
‖F ∆

gH(τ)‖ ≥ ‖F ∆
gH(t)‖

for all τ ∈ [r, s]κ. By Theorem 3.4, the desired result can be obtained.
(ii) It is a direct consequence of part (i).
(iii) By Theorem 4 in [7], we have

(F (t) 	g G(t))∆
gH = F ∆

gH(t) 	g G∆
gH(t) = F ∆

gH(t) 	g F ∆
gH(t) = {0}

for t ∈ Tκ. The desired result follows immediately from (ii).
(iv) Similar to part (iii), since

(F (t) + G(t))∆
gH = F ∆(t) 	g (−G∆

gH(t)) = F ∆
gH(t) 	g F ∆

gH(t) = {0}
for t ∈ Tκ. �
Remark 3.6. If F and G are differently l-monotonic in (iii) of Corollary 3.5, in general,
there is no constant interval C such that F (t) 	g G(t) = C. Analogously, F and G are
equally l-monotonic in (iv), then the result is not necessarily true.

Remark 3.7. The results (iii) and (iv) of Corollary 3.4 coincide with Corollary 2 in [7].

Example 3.8. (i) Let T = [0, 1] and let F (t) = [t, 2t] and G(t) = [2t − 1, t]. Note that
len(F (t)) = t is nondecreasing on T and len(G(t)) = 1− t is nonincreasing on T. It is easy
to check that F (t) and G(t) are ∆gH -differentiable on Tκ = [0, 1] and F ∆

gH(t) = F ′
gH(t) =

[1, 2] = G′
gH(t) = G∆

gH(t) for each t ∈ [0, 1](Only consider the unilateral derivative at the
endpoints 0 and 1). However, there is no constant interval C such that F (t) 	g G(t) = C.

(ii) Let T = [0, 1] and let F (t) = [−t, 2t] and G(t) = [t−1, 2(1−t)]. Clearly, len(F (t)) =
3t is nondecreasing and len(G(t)) = 3(1−t) in nonincreasing on T. It can easily be verified
that F (t) and G(t) are ∆gH -differentiable on Tκ = [0, 1]. Moreover, F ∆

gH(t) = F ′
gH(t) =
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[−1, 2], G∆
gH(t) = G′

gH(t) = [−2, 1] for each t ∈ [0, 1]. Then, we have F ∆
gH(t) = −G∆

gH(t)
for each t ∈ [0, 1]. By Corollary 3.5, there exists an interval C = [−1, 2] such that
F (t) + G(t) = [−1, 2] = C.

Example 3.9. Let T = hZ+
0 = {hk : k ∈ Z+

0 }, h > 0. Suppose F (t) = [t, t2] and
G(t) = [t + a, t2 + b], where a and b are two fixed constants with a ≤ b. Obviously, both
len(F (t)) = t(t−1) and len(G(t)) = t(t−1)+b−a are l-nondecreasing on T. By Theorem
2.6, we can obtain F ∆

gH(t) = [1, 2t] = G∆
gH(t) for each t ∈ T. Therefore, we can find an

interval C = [−b, −a] such that F (t) 	g G(t) = C on T.

Example 3.10. Let T = R and let F (t) = [−2e−t −1, e−t +2] and G(t) = [−2e−t, e−t +1].
Obviously, len(F (t)) = 3 + 3e−t and len(G(t)) = 1 + 3e−t are nonincreasing on R. It is
easy to know that F (t) and G(t) are ∆gH -differentiable on R and F ∆

gH(t) = F ′
gH(t) =

[−1, 2]e−t = G′
gH(t) = G∆

gH(t) for each t ∈ R. By Corollary 3.5, we can find an interval
C = [−1, 1] such that F (t) 	g G(t) = C.

Example 3.11. Let T = qZ = {qk|k ∈ Z}, where q > 1. Assume F (t) = [−t, 2t2] and
G(t) = [−2t2 + 1, t + 2]. According to Theorem 2.6, for each t ∈ T, it follows that

F ∆
gH(t) = F (σ(t)) 	g F (t)

µ(t)

= F (qt) 	g F (t)
(q − 1)t

= [−qt, 2q2t2] 	g [−t, 2t2]
(q − 1)t

= [−(q − 1)t, 2(q2 − 1)t2]
(q − 1)t

= [−1, 2(q + 1)t].

Using the similar method, we can obtain G∆
gH(t) = [−2(q + 1)t, 1] = −F ∆

gH(t). However,
len(F (t)) = 2t2 + t and len(G(t)) = 2t2 + t + 1 are nondecreasing on T. Therefore, the
conditions of Corollary 3.5 are not satisfied. Indeed, there does not exist an interval C
such that F (t) + G(t) = C.

Example 3.12. Let T = N2
0 = {n2|n ∈ N0} and let F (t) = [−

√
t,

√
t] and G(t) =

[min{1 −
√

t,
√

t}, max{1 −
√

t,
√

t}]. For every t ∈ T, it is easy to know that t is right-
scattered. By Theorem 2.6, we can obtain

F ∆
gH(t) = F (σ(t)) 	g F (t)

µ(t)

= F ((
√

t + 1)2) 	g F (t)
2
√

t + 1

= [−
√

t − 1,
√

t + 1] 	g [−
√

t,
√

t]
2
√

t + 1

= 1
2
√

t + 1
[−1, 1].

Similarly, we can infer that G∆
gH(t) = 1

2
√

t+1 [−1, 1] = F ∆
gH(t). Although len(F (t)) = 2

√
t

is nondecreasing on T, len(G(t)) = |2
√

t − 1| is not monotonic on T. Therefore, the
conditions of Corollary 3.5 are not satisfied. In fact, there does not exist an interval C
such that F (t) 	g G(t) = C.
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4. C0-Semigroups for interval-valued functions on time scales
In this section, we shall introduce some basic notions and results associated with semi-

groups of operators for interval-valued functions on time scales.

Definition 4.1. Let Ã : K → K. Ã is said to be a linear operator on K if

Ã(α · x + β · y) = α · Ã(x) + β · Ã(y)

for all x, y ∈ K and α, β ∈ R.

Remark 4.2. Unlike the property of linear operators on a linear space, it should be noticed
that the continuity of a linear operator Ã at {0} ∈ K does not imply the continuity of Ã at
each x ∈ K, because (K, +, ·) is not a linear space, in general, the equality x0 = (x0	gx)+x
does not hold, unless len(x0) ≥ len(x).

Lemma 4.3. Let Ã be a linear operator on K. Then, for all x, y ∈ K, we have

Ã(x 	g y) = Ã(x) 	g Ã(y).

Proof. Let z = x 	g y. Then, we get x = y + z or y = x + (−z). According to Definition
4.1, it follows that {

Ã(x) = Ã(y + z) = Ã(y) + Ã(z),
or Ã(y) = Ã(x + (−z)) = Ã(x) + Ã(−z),

which is equivalent to {
Ã(x) = Ã(y) + Ã(z),
or Ã(y) = Ã(x) + (−1)Ã(z).

Therefore, Ã(x 	g y) = Ã(z) = Ã(x) 	g Ã(y). �

L(K) = {Ã : K → K| Ã is linear and continuous at each x ∈ K}.

Let us introduce the addition and scalar multiplication in L(K) as follows

(Ã + B̃)(x) = Ã(x) + B̃(x), (λ · Ã)(x) = λ · Ã(x),

for Ã, B̃ ∈ L(K) and λ ∈ R. Consider the metric DH : L(K) × L(K) → [0, +∞) defined
by

DH(Ã, B̃) = sup{dH(Ã(x), B̃(x)) : ‖x‖ ≤ 1},

where ‖x‖ = dH(x, 0). From the properties of dH , it can easily be verified that
(i) DH(Ã + B̃, C̃ + D̃) ≤ DH(Ã, C̃) + DH(B̃, D̃);
(ii) DH(λ · Ã, λ · B̃) = |λ|DH(Ã, B̃);
(iii) DH(Ã, B̃) ≤ DH(Ã, 0) + DH(0, B̃) = ‖Ã‖ + ‖B̃‖;
(iv) DH(Ã + B̃, C̃) ≤ DH(Ã, C̃) + DH(B̃, C̃),
where Ã, B̃, C̃, D̃ ∈ L(K) and λ ∈ R.

As a special case of Corollary 3.6 in [4], it is easy to know that (L(K), DH) is a complete
metric space.

Definition 4.4. Let T ⊆ R+
0 be a semigroup time scale. A C0-semigroup T on K is a

family of continuous linear operators {T (t) : t ∈ T} ⊂ L(K), which satisfies
(i) T (0) = I, I is the identity operator on K;
(ii) T (t + s) = T (t)T (s) for every t, s ∈ T;
(iii) lim

t→0+
T (t)x = x for each x ∈ K, i.e., T (·)x : T → K is continuous at 0.
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Definition 4.5. Let T be a C0-semigroup on K. A linear operator Ã is called the generator
of the C0-semigroup T if for all x ∈ K, the limit

lim
s→0+

T (µ(t))x 	g T (s)x
µ(t) − s

= Ãx

exists uniformly in t. Here the limit are considered in the metric dH .

Example 4.6. Let T = hZ+
0 = {hk : k ∈ Z+

0 }, h > 0 and Ã be a continuous linear
operator on K. Then Ã is the generator of T (t) = (I + tÃ)t/h for t ∈ hZ+

0 . In fact, for
x ∈ K, we have

lim
s→0+

T (µ(t))x 	g T (s)x
µ(t) − s

= lim
s→0+

T (h)x 	g T (s)x
h − s

= T (h)x 	g Ix

h

= (I + hÃ)x 	g x

h
= Ãx.

Lemma 4.7. Let Ã ∈ L(K) and Ã0 = I, Ãk+1 = ÃkÃ, k = 0, 1, 2, . . .. Then the sequence

of operators {Sn(t)}, t ∈ R+
0 , is a Cauchy sequence in L(K), where Sn(t) =

n∑
k=0

tk

k!
· Ãk.

Proof. It is a direct consequence of Theorem 3.9 in [4]. �

In view of the completeness of L(K) and Lemma 4.3, there exists T (t) ∈ L(K) such
that the sequence of operators {Sn(t)} converges to T (t) for each t ∈ R+

0 . Formally, we
denote T (t) by

et·Ã ,
∞∑

k=0

tk

k!
· Ãk.

Lemma 4.8. Let T = R+
0 and Ã ∈ L(K). Define T (t) = et·Ã, t ∈ T, then

(i) T (t + s) = T (t)T (s) for all t, s ∈ T;

(ii) lim
s→0+

T (s)x 	g x

s
= Ãx for each x ∈ K.

Proof. (i) By Theorem 3.9 (ii) in [4], it is obvious.
(ii) According to Proposition 5 in [7], this result can be proved in a similar way as in
Theorem 3.9 in [4]. �

Example 4.9. Let T = R+
0 and Ã ∈ L(K). Then Ã is the generator of T (t) = et·Ã for

t ∈ R+
0 . In fact, by Lemma 4.8, for x ∈ K, we have

lim
s→0+

T (µ(t))x 	g T (s)x
µ(t) − s

= lim
s→0+

T (s)x 	g T (0)x
s

= Ãx.

Lemma 4.10. Let T ⊆ R+
0 be a semigroup time scale. Then for each x ∈ K, the function

T (·)x : t 7→ T (t)x is continuous from T into K.
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Proof. Let t ∈ T. For all 0 < s ∈ T, we get
dH(T (t + s)x, T (t)x) = dH(T (t + s)x 	g T (t)x, 0)

= dH(T (t)T (s)x 	g T (t)x, 0)
= ‖T (t)(T (s)x 	g x)‖
≤ ‖T (t)‖‖T (s)x 	g x‖.

Letting s → 0+, ‖T (s)x 	g x‖ → 0, which implies the continuity of T (t)x at t ∈ T. �

Theorem 4.11. Let T ⊆ R+
0 be a semigroup time scale with the constant graininess func-

tion µ(t) = h. Suppose that T is a C0-semigroup on K. Then T (t) is ∆gH-differentiable
in t ∈ T, and

T ∆
gH(t) = Ã[T (t)].

Proof. (i) If µ(t) = h > 0, then t is right-scattered. By Lemma 2.3 in [5], we know
T = hZ+

0 . Furthermore, according to Lemma 4.4, T (t) is continuous at t, so T (t) is
∆gH -differentiable. From Example 4.6, we can obtain

T ∆
gH(t) = T (σ(t)) 	g T (t)

µ(t)

= T (t + h) 	g T (t)
h

= T (h)T (t) 	g T (t)
h

= Ã[T (t)].

(ii) If µ(t) = h = 0, then t is right-dense. In view of Lemma 2.3 in [5], T = R+
0 . Based on

Lemma 4.8, we can obtain the above result by using a similar argument as in Theorem
3.9 (iv) in [4]. �
Definition 4.12. Let T ⊆ R+

0 be a semigroup time scale and let T be a C0-semigroup
on K. We say that T is a l-monotonic C0-semigroup on K if the interval-valued function
T (·)x : T → K is l-monotonic for every x ∈ K.

Lemma 4.13. Let T ⊆ R+
0 be a semigroup time scale and let T be a C0-semigroup on K.

Assume that g : T → K is rd-continuous on T. Define F (t) =
∫ t

0 T (t − s)g(s)∆s. If T is
l-nondecreasing on K, then F is also l-nondecreasing on K.

Proof. Let t1, t2 ∈ T with t1 < t2. Then, we have

T (t2 − t1)F (t1) =
∫ t1

0
T (t2 − s)g(s)∆s

⊆
∫ t1

0
T (t2 − s)g(s)∆s +

∫ t2

t1
T (t2 − s)g(s)∆s

=
∫ t2

0
T (t2 − s)g(s)∆s = F (t2).

Since T is l-nondecreasing on K, it follows that
F (t1) ⊆ T (t2 − t1)F (t1) ⊆ F (t2),

which implies len(F (t1)) ≤ len(F (t2)). Namely, F is l-nondecreasing on K. �
Theorem 4.14. Let T ⊆ R+

0 be a semigroup time scale with the constant graininess
function µ(t) = h. Assume that x0 ∈ K and g : T → K is rd-continuous on T. If T is a
l-nondecreasing C0-semigroup on K, then

x(t) = T (t)(x0) +
∫ t

0
T (t − s)g(s)∆s (4.1)
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is ∆gH-differentiable on Tκ. And then, x(t) satisfies{
x∆

gH(t) = Ã[x(t)] + T (µ(t))(g(t)),
x(0) = x0,

t ∈ Tκ, (4.2)

where the integral (including the integral in Lemma 4.13) for interval-valued functions
defined on [0, t)T is considered in the Riemann sense (the detailed definition can be seen
in [7]).

Proof. For every Tκ, we set

F (t) =
∫ t

0
T (t − s)g(s)∆s.

Since T is a l-nondecreasing C0-semigroup on K, by Lemma 4.13, it is easy to know that
F (t) is l-nondecreasing on Tκ. Now, we distinguish two cases.
(i) If t ∈ Tκ is right-scattered, then we get

F (σ(t)) = F (t + h) =
∫ t+h

0
T (t − s + h)g(s)∆s

= T (h)
( ∫ t+h

0
T (t − s)g(s)∆s

)
= T (h)

(
F (t) +

∫ t+h

t
T (t − s)g(s)∆s

)
= T (h)(F (t)) + T (h)

( ∫ t+h

t
T (t − s)g(s)∆s

)
= T (h)(F (t)) + T (h)(hT (0)(g(t)))
= T (h)(F (t)) + hT (h)((g(t)))

(4.3)

By Lemma 2.2, it follows from (4.3), Theorems 2.6 and 4.11 that

F ∆
gH(t) = F (t + h) 	g F (t)

h
= Ã[F (t)] + T (h)g(t), (4.4)

since F is l-nondecreasing. By Theorem 4.11, we know that x(t) is ∆gH -differentiable.
Furthermore, we can infer from (4.1), (4.4) and Theorem 4 in [7] that

x∆(t) =
(
T (t)(x0) +

∫ t

0
T (t − s)g(s)∆s

)∆

gH

=
(
T (t)(x0)

)∆

gH
+

( ∫ t

0
T (t − s)g(s)∆s

)∆

gH

= Ã[T (t)(x0)] + Ã[F (t)] + T (h)g(t)

= Ã[T (t)(x0) + F (t)] + T (h)g(t)

= Ã[x(t)] + T (µ(t))g(t),
which means that x(t) satisfies (4.2).
(ii) If t ∈ Tκ is right-dense, the proof is similar to Theorem 3.9 in [4] and so is omitted. �
Remark 4.15. From Lemma 4.13, we know that F is l-nondecreasing on T if T is l-
nondecreasing C0-semigroup on K. Apparently, a question that deserves further consid-
eration is whether F is l-monotonic on T if T is l-nonincreasing C0-semigroup on K.
Furthermore, if F is l-monotonic on T, then we can consider another question from The-
orem 4.14. In detail, what is the solution to the initial value problem (4.2) when T is
l-nonincreasing C0-semigroup on K?
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Abstract
In this paper, we study depth and Stanley depth of the edge ideals and quotient rings of
the edge ideals, associated with classes of graphs obtained by the strong product of two
graphs. We consider the cases when either both graphs are arbitrary paths or one is an
arbitrary path and the other is an arbitrary cycle. We give exact formula for values of
depth and Stanley depth for some subclasses. We also give some sharp upper bounds for
depth and Stanley depth in the general cases.
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1. Introduction
Let S := K[x1, . . . , xn] be the polynomial ring over a field K. Let M be a finitely generated
Zn-graded S-module. A Stanley decomposition of M is a presentation of K-vector space
M as a finite direct sum D : M =

⊕r
i=1 wiK[Ai], where wi ∈ M is a homogeneous

element in M , Ai ⊆ {x1, . . . , xn} such that wiK[Ai] denote the K-subspace of M , which is
generated by all elements wiu, where u is a monomial in K[Ai]. The Zn-graded K-subspace
wiK[Ai] ⊂ M is called a Stanley space of dimension |Ai|, if wiK[Ai] is a free K[Ai]-module,
where |Ai| denotes the number of indeterminates of Ai. Define sdepth(D) = min{|Ai| :
i = 1, . . . , r}, and sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}.
The number sdepth(D) is called the Stanley depth of decomposition D and sdepth(M) is
called the Stanley depth of M . For an introduction to Stanley depth, we refer the reader
to [7, 10, 23]. Stanley conjectured in [26] that sdepth(M) ≥ depth(M) for any Zn-graded
S-module M . This conjecture was disproved by Duval et al. [6]. However, there still looks
to be a deep and interesting relationship between depth and Stanley depth, which is yet to
be exactly understood. Also it is interesting to find new classes of modules which satisfy
Stanley’s inequality because in this case we have a lower bound for the Stanley depth.
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Let I ⊂ J ⊂ S be monomial ideals, Herzog et al. [11] showed that the invariant Stanley
depth of J/I is combinatorial in nature. The strange thing about Stanley depth is that it
shares some properties and bounds with homological invariant depth see ([11, 15, 22, 24]).
Until now mathematicians are not too much familiar with Stanley depth as it is hard to
compute, for computation and some known results we refer the readers to ([1,12,16,17,19]).
Let Pn and Cn represent path and cycle respectively on n vertices and � represents the
strong product of two graphs. The aim of this paper is to study depth and Stanley depth
of the edge ideals and quotient ring of the edge ideals associated with classes of graphs
H := {Pn �Pm : n, m ≥ 1} and K := {Cn �Pm : n ≥ 3, m ≥ 1}. In Section 3 we compute
depth and Stanley depth of quotient ring of edge ideals associated with some subclasses
of H and K. For the monomial ideal I ⊂ S it is clear that depth(I) = depth(S/I)+1,
this means that once you know about depth(S/I) then you also know about depth(I) and
vice versa, whereas for Stanley depth this is not the case. So far all examples show that
sdepth(I) ≥ sdepth(S/I), as Herzog conjectured:

Conjecture 1 ([10, Conjecture 64]). Let I ⊂ S be a monomial ideal then sdepth(I) ≥
sdepth(S/I).

In Section 4 of this paper, we confirm the above conjecture for the edge ideals associated
with some subclasses of H and K. For recent works on the above conjecture, we refer the
reader to [13, 14, 18]. In Section 5, we give sharp upper bounds for depth and Stanley
depth of quotient ring of the edge ideals associated to H and K. In the same section, we
also propose some open questions. We gratefully acknowledge the use of the computer
algebra system CoCoA ([5]) for our experiments.

2. Definitions and notations
In this section, we review some standard terminologies and notations from graph theory

and algebra. For more details, one may consult [9, 28]. Let G := (V (G), E(G)) be a
graph with vertex set V (G) := {x1, x2, . . . , xn} and edge set E(G). The edge ideal I(G)
associated with G is a squarefree monomial ideal of S, that is I(G) = (xixj : {xi, xj} ∈
E(G)). A graph G on n ≥ 2 vertices is called a path on n vertices if E(G) = {{xi, xi+1} :
i = 1, 2 . . . , n − 1}. We denote a path on n vertices by Pn. A graph G on n ≥ 3 vertices is
called a cycle if E(G) = {{xi, xi+1} : i = 1, 2, . . . , n−1}∪{{x1, xn}}. A cycle on n vertices
is denoted by Cn. For vertices xi and xj of a graph G, the length of a shortest path from
xi to xj is called the distance between xi and xj denoted by dG(xi, xj). If no such path
exists between xi and xj , then dG(xi, xj) = ∞. The diameter of a connected graph G is
diam(G) := max{dG(xi, xj) : xi, xj ∈ V (G)}. For a monomial u, supp(u) := {xi : xi | u}.

Definition 2.1 ([9]). The strong product G1 � G2 of graphs G1 and G2 is a graph, with
V (G1 � G2) = V (G1) × V (G2) (the Cartesian product of sets), and for (v1, u1), (v2, u2) ∈
V (G1 � G2), {(v1, u1), (v2, u2)} ∈ E(G1 � G2), whenever

• {v1, v2} ∈ E(G1) and u1 = u2 or
• v1 = v2 and {u1, u2} ∈ E(G2) or
• {v1, v2} ∈ E(G1) and {u1, u2} ∈ E(G2).

Let P1 denote the null graph on one vertex that is V (P1) := {x1} and E(P1) := ∅. Let
Pn,m := Pn � Pm

∼= Pm � Pn, if n = m = 1, then P1,1 ∼= P1, this trivial case is excluded.
For n ≥ 3 and m ≥ 1, let Cn,m := Cn � Pm

∼= Pm � Cn.

Remark 2.2. |V (Pn,m)| = nm, |E(Pn,m)| = 4(n−1)(m−1)+(n−1)+(m−1), |V (Cn,m)| =
nm and |E(Cn,m)| = |E(Pn,m)| + 3(m − 1) + 1.

Since both graphs Pn,m and Cn,m are on nm vertices, for the sake of convenience, we
label the vertices of Pn,m and Cn,m by using m sets of variables {x1j , x2j , . . . , xnj} where
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1 ≤ j ≤ m. We set Sn,m := K[∪m
j=1{x1j , x2j , . . . , xnj}]. For examples of Pn,m and Cn,m

see Fig 1.
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Figure 1. From left to right; P6,4 and C6,4.

Remark 2.3. Let G(I) denote the unique minimal set of monomial generators of the
monomial ideal I.

(1) For positive integers m, n such that m and n are not equal to 1 simultaneously,
the minimal set of monomial generators of the edge ideal of Pn,m is given as:

G(I(Pn,m)) = ∪n−1
i=1

{
∪m−1

j=1 {xijxi(j+1), xijx(i+1)(j+1), xijx(i+1)j , x(i+1)jxi(j+1), xnjxn(j+1)},

ximx(i+1)m

}
.

(2) For n ≥ 3, m ≥ 1, the minimal set of monomial generators for I(Cn,m) is:
G(I(Cn,m)) = G(I(Pn,m)) ∪

{
∪m−1

j=1 {x1jxn(j+1), x1jxnj , x1(j+1)xnj}, x1mxnm

}
.

(3) Pn,1 ∼= Pn and Cn,1 ∼= Cn.
(4) For n, m ≥ 1, Pn,m

∼= Pm,n, so without loss of generality the strong product of two
paths can be represented as Pn,m with m ≤ n. Thus in some proofs by induction
on n, whenever we are reduced to the case where we have Pn′,m with n′ < m, after
a suitable relabeling of vertices we have Pn′,m

∼= Pm,n′ . Therefore, we can simply
replace I(Pn′,m) by I(Pm,n′) and Sn′,m/I(Pn′,m) by Sm,n′/I(Pm,n′).

The method of Herzog et al. [11] for determining the Stanley depth of modules of the
type M = J/I (where I ⊂ J ⊂ S are monomial ideals) using posets can be summarized in
the following way. We define a natural partial order on Nn as follows: a ≤ b if and only if
a(l) ≤ b(l) for l = 1, . . . , n. Note that xa | xb if and only if a ≤ b. Here for c ∈ Nn, xc denote
the monomial x

c(1)
1 x

c(2)
2 · · · x

c(n)
n . Let J = (xa1 , xa2 , . . . , xar ) and I = (xb1 , xb2 , . . . , xbt)

where ai, bj ∈ Nn. Let h ∈ Nn such that h(l) = max{ai(l), bj(l)) : 1 ≤ i ≤ r, 1 ≤ j ≤ t}
(the component-wise maximum of the ai and bj). Then the characteristic poset of J/I

with respect to h, denoted P h
J/I , is the induced subposet of Nn with ground set

{c ∈ Nn|c ≤ h, there is i such that c ≥ ai, and for all j, c � bj}.

Let x, y ∈ P h
J/I , α := [x, y] = {z ∈ P h

J/I : x ≤ z ≤ y} be a subset of P h
J/I called interval and

P be a partition of P h
J/I into intervals. Let Zα := {l : y(l) = h(l)}, define the Stanley depth

of a partition P to be sdepth(P) := minα∈P |Zα| and the Stanley depth of the poset P h
J/I

to be sdepth(P h
J/I) := maxP sdepth(P), where the maximum is taken over all partitions

P of P h
J/I . Herzog et al. showed in [11] that sdepth(J/I) = sdepth(P h

J/I). By considering
all partitions of the characteristic poset, this correspondence provides an algorithm (albeit
inefficient) to find the Stanley depth of J/I. Now we recall some known results that are
heavily used in this paper.
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Lemma 2.4. (Depth Lemma) If 0 → U → M → N → 0 is a short exact sequence of
modules over a local ring S, or a Noetherian graded ring with local S0, then

(1) depth(M) ≥ min{depth(N), depth(U)}.
(2) depth(U) ≥ min{depth(M), depth(N) + 1}.
(3) depth(N) ≥ min{depth(U) − 1, depth(M)}.

Lemma 2.5 ([24, Lemma 2.2]). Let 0 → U → V → W → 0 be a short exact sequence of
Zn-graded S-modules. Then sdepth(V ) ≥ min{sdepth(U), sdepth(W )}.

Remark 2.6. Let I ⊂ S be a monomial ideal. Then for 1 ≤ i ≤ n with xi /∈ I, the short
exact sequence

0 −→ S/(I : xi)
·xi−→ S/I −→ S/(I, xi) −→ 0,

implies that
depth(S/I) ≥ min{depth(S/(I : xi)), depth(S/(I, xi))},

sdepth(S/I) ≥ min{sdepth(S/(I : xi)), sdepth(S/(I, xi))}.

This will be used frequently throughout the paper.

Lemma 2.7 ([11, Lemma 3.6]). Let I ⊂ J be monomial ideals of S and S̄ = S[xn+1] be
a polynomial ring in n + 1 variables. Then

depth(JS̄/IS̄) = depth(JS/IS) + 1 and sdepth(JS̄/IS̄) = sdepth(JS/IS) + 1.

Corollary 2.8 ([24, Corollary 1.3]). Let J ⊂ S be a monomial ideal. Then depth(S/J) ≤
depth(S/(J : v)) for all monomials v /∈ J .

Proposition 2.9 ([2, Proposition 2.7]). Let J ⊂ S be a monomial ideal. Then for all
monomials v /∈ J sdepth(S/J) ≤ sdepth(S/(J : v)).

Let q ∈ Q, then ⌈q⌉ denote the smallest integer greater than or equal to q, and ⌊q⌋
denote the greatest integer less than or equal to q.

Theorem 2.10 ([21, Theorem 2.3]). Let I ⊂ S be a monomial ideal of S and m be the
number of minimal monomial generators of I, then sdepth(I) ≥ max

{
1, n − ⌊m

2 ⌋
}
.

Corollary 2.11 ([8, Corollary 3.2]). Let G be a connected graph of diameter d ≥ 1 and
let I = I(G). Then depth(S/I) ≥ ⌈d+1

3 ⌉.

Theorem 2.12 ([8, Theorem 4.18]). Let G be a graph with p connected components,
I = I(G), and let d = d(G) be the diameter of G. Then, for 1 ≤ t ≤ 3 we have

sdepth(S/It) ≥ ⌈d − 4t + 5
3

⌉ + p − 1.

Corollary 2.13. Let G be a connected graph of diameter d ≥ 1 and let I = I(G). Then
sdepth(S/I) ≥ ⌈d+1

3 ⌉.

3. Depth and Stanley depth of cyclic modules associated to Pn,m and Cn,m

when 1 ≤ m ≤ 3
Let n ≥ 2 and 1 ≤ i ≤ n, for convenience we take xi := xi1, yi := xi2 and zi := xi3, see

Figures 2 and 3. We set Sn,1 := K[x1, x2, . . . , xn], Sn,2 := K[x1, x2, . . . xn, y1, y2, . . . , yn]
and Sn,3 := K[x1, x2, . . . xn, y1, y2, . . . , yn, z1, z2, . . . , zn]. Clearly Pn,1 ∼= Pn and Cn,1 ∼= Cn,
the minimal sets of monomial generators of the edge ideals of Pn,2, Pn,3, Cn,2 and Cn,3 are
given as:

G(I(Pn,2)) = ∪n−1
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1} ∪ {xnyn},

G(I(Pn,3)) = ∪n−1
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1} ∪ {xnyn, ynzn},

G(I(Cn,2)) = G(I(Pn,2)) ∪
{
x1yn, x1xn, y1xn, y1yn

}
and
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G(I(Cn,3)) = G(I(Pn,3)) ∪
{
x1yn, x1xn, y1xn, y1yn, y1zn, z1yn, z1zn}.

In this section, we compute depth and Stanley depth of the cyclic modules Sn,m/I(Pn,m)
and Sn,m/I(Cn,m), when m = 1, 2, 3.

x1 x2 x3 x4 x5

y1 y4y2 y3 y5

x1 x2 x3 x4 x5

z1 z2 z3
z4 z5

y1 y4y2 y3 y5

x1 x2 x3 x4 x5

Figure 2. From left to right; P5,1, P5,2 and P5,3.
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Figure 3. From left to right; C6,1, C6,2 and C6,3.

Remark 3.1. Note that for n ≥ 2, Sn,1/I(Pn,1) ∼= S/I(Pn), thus by [20, Lemma 2.8]
and [27, Lemma 4] depth(Sn,1/I(Pn,1)) = sdepth(Sn,1/I(Pn,1)) = ⌈n

3 ⌉. Let n ≥ 3, then
Sn,1/I(Cn,1) ∼= S/I(Cn), and by [4, Propositions 1.3,1.8] depth(Sn,1/I(Cn,1)) = ⌈n−1

3 ⌉ ≤
sdepth(Sn,1/I(Cn,1)) ≤ ⌈n

3 ⌉.

Lemma 3.2. For n ≥ 1 and m = 2, 3, depth(Sn,m/I(Pn,m)) = sdepth(Sn,m/I(Pn,m)) =
⌈n

3 ⌉.

Proof. If n = 1, then proof follows from Remark 3.1. Let n ≥ 2. First we prove the
result for depth. If (n, m) ∈ {(2, 2), (3, 2), (3, 3)} then the result is trivial. Let n ≥ 4.
Since diam(Pn,m) = n − 1, thus by Corollary 2.11 depth(Sn,m/I(Pn,m)) ≥ ⌈n

3 ⌉. Now we
prove that depth(Sn,m/I(Pn,m)) ≤ ⌈n

3 ⌉, we prove this inequality by induction on n. Since
yn−1 ̸∈ I(Pn,m), then by Corollary 2.8

depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : yn−1)).
As we can see that Sn,m/(I(Pn,m) : yn−1) ∼= Sn−3,m/I(Pn−3,m)[yn−1], therefore by induc-
tion and Lemma 2.7 depth(Sn,m/(I(Pn,m) : yn−1)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. This completes

the proof for depth.
Now we prove the result for Stanley depth. If n = m = 2, then I(P2,2) is a squarefree

Veronese ideal of degree 2. Thus by [3, Theorem 1.1] we have sdepth(Sn,2/I(Pn,2)) = 1,
as required. If n = 3 and m = 2 or 3, then diam(P3,m) = 2, thus by Corollary 2.13,
we have sdepth(S3,m/I(P3,m)) ≥ 1. By Proposition 2.9 we have sdepth(S3,m/I(P3,m)) ≤
sdepth(S3,m/(I(P3,m) : y2)) it is easy to see that S3,m/(I(P3,m) : y2) ∼= K[y2], therefore
sdepth(S3,m/I(P3,m)) ≤ 1, thus sdepth(S3,m/I(P3,m)) = 1. Let n ≥ 4, using Corollary
2.13 instead of Corollary 2.11 and Proposition 2.9 instead of Corollary 2.8, the proof for
depth also works for Stanley depth. �
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Theorem 3.3. For n ≥ 3, sdepth(Sn,2/I(Cn,2)) ≥ depth(Sn,2/I(Cn,2)) = ⌈n−1
3 ⌉.

Proof. We first prove that depth(Sn,2/I(Cn,2)) = ⌈n−1
3 ⌉. For n = 3, 4 the result is trivial.

For n ≥ 5 using Remark 2.6 one has
depth(Sn,2/I(Cn,2)) ≥ min{depth(Sn,2/(I(Cn,2) : xn)), depth(Sn,2/(I(Cn,2), xn))}.

(I(Cn,2) : xn) =
(
∪n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2, x1, y1, xn−1, yn−1, yn
)
.

After renumbering the variables, we have Sn,2/(I(Cn,2) : xn) ∼= Sn−3,2/I(Pn−3,2)[xn]. Thus
by Lemmas 3.2 and 2.7 depth(Sn,2/(I(Cn,2) : xn)) = ⌈n−3

3 ⌉+1 = ⌈n
3 ⌉. Let J be a monomial

ideal such that;

J = (I(Cn,2), xn) =
(

∪n−2
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1, xn, xn−1yn,

yn−1yn, y1yn, x1yn
)

= (I(Pn−1,2), xn, xn−1yn, yn−1yn, y1yn, x1yn).
By Remark 2.6 we have depth(Sn,2/J) ≥ min{depth(Sn,2/(J : yn)), depth(Sn,2/(J, yn))}.
As (J, yn) = (I(Pn−1,2), xn, yn) and Sn,2/(J, yn) ∼= Sn−1,2/I(Pn−1,2). Therefore by Lemma
3.2 depth(Sn,2/(J, yn)) = ⌈n−1

3 ⌉. Also

(J : yn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2, x1, y1, xn−1, yn−1, xn

)
.

After renumbering the variables, we get Sn,2/(J : yn) ∼= Sn−3,2/I(Pn−3,2)[yn]. Therefore
by Lemmas 3.2 and 2.7 depth(Sn,2/(J : yn)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. If n ≡ 0(mod 3) or n ≡

2(mod 3), then depth(Sn,2/(I(Cn,2) : xn)) = ⌈n
3 ⌉ = ⌈n−1

3 ⌉ ≤ depth(Sn,2/(I(Cn,2), xn)),
thus Depth Lemma implies depth(Sn,2/I(Cn,2)) = ⌈n−1

3 ⌉, as required. Now for n ≡
1(mod 3), assume that n ≥ 7, then we have the following Sn,2-module isomorphism:

(I(Cn,2) : xn)/I(Cn,2) ∼= x1
K[x3, . . . , xn−1, y3, . . . , yn−1]

(
⋃n−2

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1
) [x1]

⊕ y1
K[x3, . . . , xn−1, y3, . . . , yn−1]

(
⋃n−2

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1
) [y1]

⊕ yn
K[x2, . . . , xn−2, y2, . . . , yn−2]

(
⋃n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2
) [yn]

⊕ xn−1
K[x2, . . . , xn−3, y2, . . . , yn−3]

(
⋃n−4

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−3yn−3
) [xn−1]

⊕ yn−1
K[x2, . . . , xn−3, y2, . . . , yn−3]

(
⋃n−4

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−3yn−3
) [yn−1].

Indeed, if u ∈ (I(Cn,2) : xn) is a monomial such that u /∈ I(Cn,2). Then u is divisible by
at most one variable from the set {x1, y1, yn, xn−1, yn−1}, if u is divisible by two or more
variables from {x1, y1, yn, xn−1, yn−1} then u ∈ I(Cn,2), a contradiction. If x1 | u then u =
xa

1w with a ≥ 1, since u /∈ I(Cn,2) it follows that w ∈ S′ := K[x3, . . . , xn−1, y3, . . . , yn−1]
and w /∈ J := (

⋃n−2
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1

)
, thus u ∈ x1(S′/J)[x1]

which is the first summand in the direct sum. Let S′′ := S′[x1] then x1(S′/J)[x1] ∼=
x1(S′′/JS′′), it is easy to see that x1 is regular on S′′/JS′′, therefore we have the S′′-
module isomorphism x1(S′′/JS′′) = (S′′/JS′′). After a suitable renumbering of variables
we have (S′′/JS′′) ∼= Sn−3,2/I(Pn−3,2)[xn]. If y1 | u, then we get the second summand
and if yn | u then we get the third summand. Proceeding in the same way one can easily
show that these two summands are also isomorphic to Sn−3,2/I(Pn−3,2)[xn]. If xn−1 | u
then we get the forth summand and if yn−1|u then we get the last summand. Similarly
one can show that the last two summands are isomorphic to Sn−4,2/I(Pn−4,2)[xn]. Thus
by Lemmas 3.2 and 2.7, we have

depth(I(Cn,2) : xn)/I(Cn,2)) = min{⌈n − 3
3

⌉ + 1, ⌈n − 4
3

⌉ + 1} = ⌈n − 1
3

⌉.



98 Z. Iqbal, M. Ishaq, M.A. Binyamin

Now by using Depth Lemma on the following short exact sequence we get the required
result.

0 −→ (I(Cn,2) : xn)/I(Cn,2) ·xn−−→ Sn,2/I(Cn,2) −→ Sn,2/(I(Cn,2) : xn) −→ 0.

Now we prove the result for Stanley depth. If n = 3, then I(C3,2) is a squarefree Veronese
ideal of degree 2. Thus by [3, Theorem 1.1] sdepth(S3,2/I(C3,2)) = 1, as required. If n = 4,
then by using [11] we have the following Stanley decomposition

S4,2/I(C4,2) = K[x1, x3] ⊕ y1K[x3, y1] ⊕ x2K[x2, x4] ⊕ y2K[y2, y4]⊕
y3K[x1, y3] ⊕ x4K[x4, y2] ⊕ y4K[x2, y4] ⊕ y1y3K[y1, y3].

Thus sdepth(S4,2/I(C4,2)) ≥ 2. For upper bound by Proposition 2.9 we have
sdepth(S4,2/I(C4,2)) ≤ sdepth(S4,2/(I(C4,2) : x1x3)),

since S4,2/(I(C4,2) : x1x3) ∼= K[x1, x3], therefore sdepth(S4,2/I(C4,2)) ≤ 2, thus we get
sdepth(S4,2/I(C4,2)) = 2. Let n ≥ 5, using Remark 2.6 we have

sdepth(Sn,2/I(Cn,2)) ≥

min{sdepth(Sn,2/(I(Cn,2) : xn)), sdepth(Sn,2/(J : yn)), sdepth(Sn,2/(J, yn))} ≥ ⌈n − 1
3

⌉.

�
Corollary 3.4. For n ≥ 3, ⌈n−1

3 ⌉ ≤ sdepth(Sn,2/I(Cn,2)) ≤ ⌈n
3 ⌉.

Proof. Since I(C3,2) is a squarefree Veronese ideal, by using [3, Theorem 1.1], it follows
that sdepth(S3,2/I(C3,2)) = 1. For n ≥ 4, by Proposition 2.9 sdepth(Sn,2/I(Cn,2)) ≤
sdepth(Sn,2/(I(Cn,2) : xn)). Since Sn,2/(I(Cn,2) : xn) ∼= Sn−3,2/I(Pn−3,2)[xn], using Lem-
mas 3.2 and 2.7, we have sdepth(Sn,2/(I(Cn,2) : xn)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. �

For n ≥ 2 we define a supergraph of Pn,3 denoted by P⋆
n,3 with the set of vertices

V (P⋆
n,3) := V (Pn,3) ∪ {zn+1} and edge set E(P⋆

n,3) := E(Pn,3) ∪ {znzn+1, ynzn+1}. Also we
define a supergraph of P⋆

n,3 denoted by P⋆⋆
n,3 with the set of vertices V (P⋆⋆

n,3) := V (P⋆
n,3) ∪

{zn+2} and edge set E(P⋆⋆
n,3) := E(P⋆

n,3)∪{z1zn+2, y1zn+2}. For examples of P⋆
n,3 and P⋆⋆

n,3
see Fig. 4. Let S⋆

n,3 := Sn,3[zn+1] and S⋆⋆
n,3 := Sn,3[zn+1, zn+2] then we have the following

lemma:

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

y1 y4y2 y3 y5

z6

x1 x2 x3 x4 x5

z1 z2 z3
z4 z5

y1 y4y2 y3 y5

z6
z7

Figure 4. From left to right; P⋆
5,3 and P⋆⋆

5,3.

Lemma 3.5. For n ≥ 2,
(a) depth(S⋆

n,3/I(P⋆
n,3)) = sdepth(S⋆

n,3/I(P⋆
n,3)) = ⌈n+1

3 ⌉.
(b) depth(S⋆⋆

n,3/I(P⋆⋆
n,3)) = sdepth(S⋆⋆

n,3/I(P⋆⋆
n,3)) = ⌈n+2

3 ⌉.

Proof. (a). First we prove the result for depth. Since diam(P⋆
n,3) = n, then by Corol-

lary 2.11 we have depth(S⋆
n,3/I(P⋆

n,3)) ≥ ⌈n+1
3 ⌉. Now we prove the reverse inequal-

ity, if n = 2 then the result is trivial. For n ≥ 3, as yn /∈ I(P⋆
n,3) so by Corollary

2.8 depth(S⋆
n,3/I(P⋆

n,3)) ≤ depth(S⋆
n,3/(I(P⋆

n,3) : yn)). We have S⋆
n,3/(I(P⋆

n,3) : yn) ∼=
(Sn−2,3/I(Pn−2,3))[yn]. By Lemmas 3.2 and 2.7 depth(S⋆

n,3/(I(P⋆
n,3) : yn)) = ⌈n−2

3 ⌉ + 1 =
⌈n+1

3 ⌉. Thus depth(S⋆
n,3/I(P⋆

n,3)) ≤ ⌈n+1
3 ⌉. Proof for Stanley depth is similar by using
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Proposition 2.9 and Corollary 2.13.
(b). Clearly diam(P⋆⋆

n,3) = n + 1, by Corollary 2.11 we have depth(S⋆⋆
n,3/I(P⋆⋆

n,3)) ≥ ⌈n+2
3 ⌉.

Now we prove the reverse inequality, it is true when n = 2, 3. For n ≥ 4, as
yn /∈ I(P⋆⋆

n,3) so by Corollary 2.8 depth(S⋆⋆
n,3/I(P⋆⋆

n,3)) ≤ depth(S⋆⋆
n,3/(I(P⋆⋆

n,3) : yn)).
Since S⋆⋆

n,3/(I(P⋆⋆
n,3) : yn) ∼= (S⋆

n−2,3/I(P⋆
n−2,3))[yn]. By (a) and Lemma 2.7 we obtain

depth(S⋆
n,3/I(P⋆

n,3) : yn) = ⌈n−2+1
3 ⌉+1 = ⌈n+2

3 ⌉. Thus depth(S⋆⋆
n,3/I(P⋆⋆

n,3)) ≤ ⌈n+2
3 ⌉. Sim-

ilarly one can prove the result for Stanley depth by using Proposition 2.9 and Corollary
2.13. �
Theorem 3.6. For n ≥ 3, and n ≡ 0, 2 (mod 3), sdepth(Sn,3/I(Cn,3)) = ⌈n−1

3 ⌉ =
depth(Sn,3/I(Cn,3)), and otherwise, ⌈n−1

3 ⌉ ≤ depth(Sn,3/I(Cn,3)), sdepth(Sn,3/I(Cn,3)) ≤
⌈n

3 ⌉.

Proof. We first prove the result for depth. For n = 3, 4 the result is clear. Let n ≥ 5,

A := (I(Cn,3) : xn) =
(
∪n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, x1, y1, xn−1, yn−1, yn, znzn−1, zn−1zn−2, yn−2zn−1, znz1, z1z2, y2z1
)
,

and

A := (I(Cn,3), xn) =
(

∪n−2
i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn,

xn−1yn−1, yn−1zn−1, xn−1yn, yn−1yn, ynzn−1, yn−1zn, zn−1zn, ynzn, y1yn, x1yn, y1zn, ynz1, z1zn

)
= (I(Pn−1,3), xn, xn−1yn, yn−1yn, ynzn−1, yn−1zn, zn−1zn, ynzn, y1yn, x1yn, y1zn, ynz1, z1zn),

then by Remark 2.6 we have
depth(Sn,3/I(Cn,3)) ≥ min{depth(Sn,3/A), depth(Sn,3/A)}. (3.1)

Since (A, zn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, x1, y1, xn−1, yn−1, yn, zn, zn−1zn−2, yn−2zn−1, z1z2, y2z1
)
,

after renumbering the variables we have Sn,3/(A, zn) ∼= (S⋆⋆
n−3,3/I(P⋆⋆

n−3,3))[xn]. Thus by
Lemmas 3.5 and 2.7 depth(Sn,3/(A, zn)) = ⌈n−3+2

3 ⌉ + 1 = ⌈n−1
3 ⌉ + 1. Also

(A : zn) =
(
∪n−3

i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn−2yn−2,

yn−2zn−2, x1, y1, xn−1, yn−1, yn, zn−1, z1
)
,

after renumbering the variables we get Sn,3/(A : zn) ∼= (Sn−3,3/I(Pn−3,3))[xn, zn]. Thus
by Lemmas 3.2 and 2.7 depth(Sn,3/(A : zn)) = ⌈n−3

3 ⌉ + 2 = ⌈n
3 ⌉ + 1. Using Remark 2.6

depth(Sn,3/(A)) ≥

min{depth(Sn,3/(A : zn)), depth(Sn,3/(A, zn))} = min{⌈n

3
⌉ + 1, ⌈n − 1

3
⌉ + 1}. (3.2)

As (A : yn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, xn, x1, y1, z1, xn−1, yn−1, zn−1, zn
)
,

after renumbering the variables we get Sn,3/(A : yn) ∼= Sn−3,3/I(Pn−3,3)[yn]. Therefore by
Lemmas 3.2 and 2.7 depth(Sn,3/(A : yn)) = ⌈n−3

3 ⌉ + 1 = ⌈n
3 ⌉. Now let

Â := (A, yn) = (I(Pn−1,3), xn, yn, yn−1zn, zn−1zn, y1zn, z1zn),

depth(Sn,3/A) ≥ min{depth(Sn,3/(A : yn)), depth(Sn,3/Â)}

= min{⌈n

3
⌉, depth(Sn,3/Â)}. (3.3)
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Since (Â : zn) =
(

∪n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, z1, y1, zn−1, yn−1, yn, xn, xn−1xn−2, xn−1yn−2, x1x2, x1y2
)
,

after renumbering the variables, we have Sn,3/(Â : zn) ∼= (S⋆⋆
n−3,3/I(P⋆⋆

n−3,3))[zn]. Thus by
Lemmas 3.5 and 2.7 depth(Sn,3/(Â : zn)) = ⌈n−3+2

3 ⌉ + 1 = ⌈n−1
3 ⌉ + 1. Also Sn,3/(Â, zn) ∼=

Sn−1,3/I(Pn−1,3). Therefore by Lemma 3.2 depth(Sn,3/(Â, zn)) = ⌈n−1
3 ⌉. By Remark 2.6

depth(Sn,3/Â) ≥

min{depth(Sn,3/(Â : zn)) depth(Sn,3/(Â, zn))} = min{⌈n − 1
3

⌉ + 1, ⌈n − 1
3

⌉} (3.4)

Hence combining Eq. 3.1, Eq. 3.2, Eq. 3.3 and Eq. 3.4 we get depth(Sn,3/I(Cn,3)) ≥
⌈n−1

3 ⌉. By Corollary 2.8 we have depth(Sn,3/I(Cn,3)) ≤ depth(Sn,3/(I(Cn,3) : yn)).
Since (Sn,3/(I(Cn,3) : yn)) ∼= (Sn−3,3/(I(Pn−3,3))[yn], by Lemmas 3.2 and 2.7, we have
depth(Sn,3/I(Cn,3)) ≤ ⌈n

3 ⌉, if n ≡ 0(mod 3) or n ≡ 2(mod 3) then ⌈n−1
3 ⌉ = ⌈n

3 ⌉. If
n ≡ 1(mod 3) then ⌈n−1

3 ⌉ ≤ depth(Sn,3/I(Cn,3)) ≤ ⌈n
3 ⌉.

Now we prove the result for Stanley depth. If n = 3, then by using [11] we have the
following Stanley decomposition

S3,3/I(C3,3) = K[x1] ⊕ y1K[y1] ⊕ z1K[z1] ⊕ x2K[x2] ⊕ y2K[y2] ⊕ z2K[z2]⊕
⊕ x3K[x3] ⊕ z3K[z3],

Thus sdepth(S3,3/I(C3,3)) ≥ 1. For upper bound by Proposition 2.9 we have
sdepth(S3,3/I(C3,3)) ≤ sdepth(S3,3/(I(C3,3) : y2)),

since S3,3/(I(C3,3) : y2) ∼= K[y2], therefore sdepth(S3,3/I(C3,3)) ≤ 1, as desired. For n = 4,

let T := K[x1, z1] ⊕ y1K[x3, y1] ⊕ x2K[x2, z1] ⊕ y2K[y2, x4] ⊕ y3K[x1, y3] ⊕ x4K[x4, z1]
⊕ y4K[x2, y4] ⊕ z4K[x1, z4] ⊕ z2K[x1, z2] ⊕ x3K[x1, x3] ⊕ z3K[x1, z3],

if u ∈ S4,3/I(C4,3) such that u /∈ T , then deg(ui) ≥ 2. It is easy to see that S4,3/I(C4,3) =
T ⊕u uK[ supp(u)], Thus sdepth(S4,3/I(C4,3)) ≥ 2. For upper bound by Proposition 2.9
we have sdepth(S4,3/I(C4,3)) ≤ sdepth(S4,3/(I(C4,3) : y2y4)), since S4,3/(I(C4,3) : y2y4) ∼=
K[y2, y4], therefore sdepth(S4,3/I(C4,3)) ≤ 2. Hence sdepth(S4,3/I(C4,3)) = 2. Let n ≥ 5,
using Proposition 2.9 instead of Corollary 2.8 the proof for depth also works for Stanley
depth. �
Example 3.7. One can expect that depth(Sn,3/I(Cn,3)) = ⌈n−1

3 ⌉ as we have in [4,
Proposition 1.3] and Theorem 3.3. But examples show that in the essential case when
n ≡ 1(mod 3) the upper bound in Theorem 3.6 is reached. For instance, when n = 4, then
depth(S4,3/I(C4,3)) = sdepth(S4,3/I(C4,3)) = 2 = ⌈4

3⌉.

Remark 3.8. If 3 ≤ n ≤ 10, then using SdepthLib:coc [25] we have
sdepth(Sn,3/I(Cn,3)) = ⌈n

3 ⌉. Also for 3 ≤ n ≤ 6, we have depth(Sn,3/I(Cn,3)) = ⌈n
3 ⌉

that is the upper bound in Theorem 3.6 is reached for both depth and Stanley depth in all
known cases. In order to show that sdepth(Sn,3/I(Cn,3)) ≥ depth(Sn,3/I(Cn,3)) (Stanley’s
inequality) one needs to show that sdepth(Sn,3/I(Cn,3)) = ⌈n

3 ⌉, for all n. For this one
needs to find a suitable Stanley decomposition which we don’t know at the moment and
could be hard to find.

4. Lower bounds for Stanley depth of I(Pn,m) and I(Cn,m) when 1 ≤ m ≤ 3
In this section, we give some lower bounds for Stanley depth of I(Pn,m) and I(Cn,m),

when m ≤ 3. These bounds together with the results of the previous section allow us to
give a positive answer to Conjecture 1 in some special cases. We begin this section with
the following useful lemma:
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Lemma 4.1. Let A and B be two disjoint sets of variables, I1 ⊂ K[A] and I2 ⊂ K[B] be
square free monomial ideals such that sdepthK[A](I1) > sdepth(K[A]/I1). Then

sdepthK[A∪B](I1 + I2) ≥ sdepth(K[A]/I1) + sdepthK[B](I2).

Proof. By [2, Theorem 1.3(1)] we have

sdepthK[A∪B](I1 + I2) ≥ min{sdepthK[A∪B](I1), sdepth(K[A]/I1) + sdepthK[B](I2)}.

Now by Lemma 2.7 we have

sdepthK[A∪B](I1 + I2) ≥ min{sdepthK[A](I1) + |B|, sdepth(K[A]/I1) + sdepthK[B](I2)}.

Since |B| ≥ sdepthK[B](I2), therefore

sdepthK[A](I1) + |B| > sdepth(K[A]/I1) + sdepthK[B](I2),

this proves the desired inequality. �

Now we introduce some notations for the case m = 3. For 3 ≤ l ≤ n − 2, let

Jl := (xn−l, zn−l, xn−l+1, yn−l−1, zn−l+1, xn−l−1, zn−l−1),

I(P ′
l−1) := (xn−l+2xn−l+3, . . . , xn−1xn),

I(P ′′
l−1) := (zn−l+2zn−l+3, . . . , zn−1zn),

be the monomial ideals of Sn,3. Consider the subsets of variables

Dl := {xn−l+2, xn−l+3, . . . , xn−1, xn},

D′
l := {zn−l+2, zn−l+3, . . . , zn−1, zn},

D′′
l := {xn−l, zn−l, xn−l+1, yn−l−1, zn−l+1, xn−l−1, zn−l−1}.

Let Ll be a monomial ideal of Sn,3 such that Ll = I(P ′
l−1) + I(P ′′

l−1) + Jl. With these
notations we have the following lemma:

Lemma 4.2. For 3 ≤ l ≤ n − 2, sdepthK[Dl∪D′
l
∪D′′

l
](Ll) ≥ ⌈ l+2

3 ⌉ + 1.

Proof. Since Ll = I(P ′
l−1) + I(P ′′

l−1) + Jl, by [2, Theorem 1.3], we have

sdepthK[Dl∪D′
l
∪D′′

l
](Ll) ≥ min

{
sdepthK[Dl∪D′

l
∪D′′

l
](Jl), min{sdepthK[Dl∪D′

l
](I(P ′

l−1)),

sdepthK[Dl](K[Dl]/I(P ′
l−1)) + sdepthK[D′

l
](I(P ′′

l−1))}
}
. (4.1)

By using [21, Theorem 2.3] and [22, Proposition 2.1], Eq. 4.1 implies that

sdepthK[Dl∪D′
l
∪D′′

l
](Ll) ≥ min{4 + 2(l − 2), min{2l − 2 − ⌊ l − 2

2
⌋, ⌈ l − 1

3
⌉ + l − 1 − ⌊ l − 2

2
⌋}}

≥ ⌈ l + 2
3

⌉ + 1.

�

Theorem 4.3. For n ≥ 1 and 1 ≤ m ≤ 3,

sdepth(I(Pn,m)) > sdepth(Sn,m/I(Pn,m)) = ⌈n

3
⌉.

Proof. By Lemma 3.2 and Remark 3.1 we have sdepth(Sn,m/I(Pn,m)) = ⌈n
3 ⌉, we use this

fact frequently in the proof without referring it again and again.
(a) If m = 1, clearly I(Pn,1) ∼= I(Pn), thus by [21, Theorem 2.3] and [22, Proposition

2.1] we have sdepth(I(Pn,1)) > sdepth(Sn,1/I(Pn,1)) = ⌈n
3 ⌉.
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(b) If m = 2, we prove the result by induction on n. If n = 1 then by (a) the required
result follows. If n = 2, 3, then by [19, Lemma 2.1], sdepth(I(Pn,2)) > ⌈n

3 ⌉. Now
assume that n ≥ 4. Since xn−1 ̸∈ I(Pn,2), thus we have

I(Pn,2) = I(Pn,2) ∩ S′ ⊕ xn−1
(
I(Pn,2) : xn−1

)
Sn,2,

where S′ = K[x1, x2, . . . , xn−2, xn, y1, y2, . . . , yn]. Now
I(Pn,2) ∩ S′ =

(
G(I(Pn−2,2)), xn−2yn−1, yn−2yn−1, xnyn, yn−1xn, yn−1yn

)
and(

I(Pn,2) : xn−1
)
Sn,2 =

(
G(I(Pn−3,2)), xn−2, yn−2, yn−1, xn, yn

)
Sn,2.

As yn−1 ̸∈ I(Pn,2) ∩ S′, so we get

I(Pn,2) ∩ S′ = (I(Pn,2) ∩ S′) ∩ S′′ ⊕ yn−1
(
I(Pn,2) ∩ S′ : yn−1

)
S′,

where S′′ = K[x1, . . . , xn−2, xn, y1, . . . , yn−2, yn]. Thus
I(Pn,2) = (I(Pn,2) ∩ S′) ∩ S′′ ⊕ yn−1

(
I(Pn,2) ∩ S′ : yn−1

)
S′ ⊕ xn−1

(
I(Pn,2) : xn−1

)
Sn,2,

where
(I(Pn,2) ∩ S′) ∩ S′′ = (G(I(Pn−2,2)), xnyn)S′′

and
(I(Pn,2) ∩ S′ : yn−1

)
S′ =

(
G(I(Pn−3,2)), xn−2, yn−2, xn, yn

)
S′.

By induction on n and Lemma 4.1 we have
sdepth((I(Pn,2) ∩ S′) ∩ S′′) ≥ sdepth(Sn−2,2/I(Pn−2,2)) + sdepthK[xn,yn](xnyn).

Again by induction on n, Lemma 4.1 and Lemma 2.7 we have

sdepth((I(Pn,2)∩S′ : yn−1
)
S′) ≥ sdepth(Sn−3,2/I(Pn−3,2))+sdepthT (xn−2, yn−2, xn, yn)+1

and

sdepth
((

I(Pn,2) : xn−1
)
Sn,2

)
≥

sdepth(Sn−3,2/I(Pn−3,2)) + sdepthR(xn−2, yn−2, yn−1, xn, yn
)

+ 1,

where T = [xn−2, yn−2, xn, yn] and R = K[xn−2, yn−2, yn−1, xn, yn]. Thus

sdepth((I(Pn,2) ∩ S′) ∩ S′′) > ⌈n

3
⌉

as sdepthK[xn,yn](xnyn) = 2. By [1, Theorem 2.2] we have sdepth((I(Pn,2) ∩ S′ :
yn−1

)
S′) > ⌈n

3 ⌉ and sdepth(
(
I(Pn,2) : xn−1

)
Sn,2) > ⌈n

3 ⌉. This completes the proof
for m = 2.

(c) If m = 3, we proceed again by induction on n. If n = 1, then by (a) the required
result follows. If n = 2, the result follows by (b). If n = 3 then by [19, Lemma 2.1]
sdepth(I(P3,3)) > ⌈3

3⌉. If n ≥ 4, then we consider the following decomposition of
I(Pn,3) as a vector space:

I(Pn,3) = I(Pn,3) ∩ R1 ⊕ yn(I(Pn,3) : yn)Sn,3.

Similarly, we can decompose I(Pn,3) ∩ R1 by the following:
I(Pn,3) ∩ R1 = I(Pn,3) ∩ R2 ⊕ yn−1(I(Pn,3) ∩ R1 : yn−1)R1.

Continuing in the same way for 1 ≤ l ≤ n − 1 we have
I(Pn,3) ∩ Rl = I(Pn,3) ∩ Rl+1 ⊕ yn−l(I(Pn,3) ∩ Rl : yn−l)Rl,

where Rl := K[x1, x2, . . . xn, y1, y2, . . . , yn−l, z1, z2, . . . , zn]. Finally, we get the
following decomposition of I(Pn,3):

I(Pn,3) = I(Pn,3) ∩ Rn ⊕ ⊕n−1
l=1 yn−l(I(Pn,3) ∩ Rl : yn−l)Rl ⊕ yn(I(Pn,3) : yn)Sn,3.
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Therefore

sdepth(I(Pn,3)) ≥ min
{

sdepth(I(Pn,3) ∩ Rn), sdepth((I(Pn,3) : yn)Sn,3),
n−1
min
l=1

{sdepth((I(Pn,3) ∩ Rl : yn−l)Rl)}
}
. (4.2)

Since
I(Pn,3)∩Rn =

(
(x1x2, x2x3, . . . , xn−1xn)+(z1z2, z2z3, . . . , zn−1zn)

)
K[x1, . . . , xn, z1, . . . , zn],

thus by [2, Theorem 1.3] and [22, Proposition 2.1] we have sdepth(I(Pn,3) ∩ Rn) >
⌈n

3 ⌉. As we can see that
(I(Pn,3) : yn)Sn,3 = (G(I(Pn−2,3)) + (xn, zn, xn−1, zn−1, yn−1))[yn].

Let B := K[xn, zn, xn−1, zn−1, yn−1] thus by induction on n, Lemmas 4.1 and 2.7
sdepth((I(Pn,3) : yn)Sn,3) > sdepth(Sn−2,3/I(Pn−2,3))+sdepthB(xn, zn, xn−1, zn−1, yn−1)+1.

By [1, Theorem 2.2] we have sdepth((I(Pn,3) : yn)Sn,3) > ⌈n
3 ⌉.

(1): If l = 1, then (I(Pn,3) ∩ R1 : yn−1)R1 =
(
G(I(Pn−3,3)) + J1

)
[yn−1], where

J1 := (xn−1, zn−1, xn, yn−2, zn, xn−2, zn−2), then by induction on n, Lemmas
4.1 and 2.7, we have

sdepth((I(Pn,3) ∩ R1 : yn−1)R1) > sdepth(Sn−3,3/I(Pn−3,3)) + sdepthK[supp(J1)](J1) + 1,

by [1, Theorem 2.2] we have sdepth((I(Pn,3) ∩ R1 : yn−1)R1) > ⌈n
3 ⌉.

(2): If l = 2 and n ̸= 4, then

(I(Pn,3) ∩ R2 : yn−2)R2 =
(
G(I(Pn−4,3)) + J2

)
[yn−2, xn, zn],

where J2 := (xn−2, zn−2, xn−1, zn−1, xn−3, yn−3, zn−3), using the same argu-
ments as in case(1) we have sdepth((I(Pn,3) ∩ R2 : yn−2)R2) > ⌈n

3 ⌉.

(3): If 3 ≤ l ≤ n − 3, then (I(Pn,3) ∩ Rl : yn−l)Rl =
(
G(I(Pn−(l+2),3)) +

G(Ll)
)
[yn−l], by induction on n, Lemmas 4.1 and 2.7, we have

sdepth((I(Pn,3) ∩ Rl : yn−l)Rl) > sdepth(Sn−(l+2),3/(I(Pn−(l+2),3)))
+ sdepthK[Dl∪D′

l
∪D′′

l
](Ll) + 1, (4.3)

By Eq. 4.3 and Lemma 4.2 we have

sdepth((I(Pn,3) ∩ Rl : yn−l)Rl) > ⌈n − (l + 2)
3

⌉ + ⌈ l + 2
3

⌉ + 1 + 1 > ⌈n

3
⌉.

(4): If l = n − 2, then (I(Pn,3) ∩ Rn−2 : y2)Rn−2 = (G(Ln−2))[y2], by Lemmas
4.2 and 2.7 we have sdepth((I(Pn,3) ∩ Rn−2 : y2)Rn−2) > ⌈n

3 ⌉.
(5): If l = n − 1, then

(I(Pn,3) ∩ Rn−1 : y1)Rn−1 =
(
I(P ′

n−2) + I(P ′′
n−2) + Jn−1

)
K[Dn−1 ∪ D′

n−1 ∪ D′′
n−1 ∪ {y1}],

where G(Jn−1) = {x1, z1, x2, z2}, Dn−1 = {x3, x4, . . . , xn}, D′
n−1 =

{z3, z4, . . . , zn} and D′′
n−1 = {x1, z1, x2, z2}. Using the proof of Lemma 4.2

and by Lemma 2.7

sdepthK[Dn−1∪D′
n−1∪D′′

n−1∪{y1}]
(
I(P ′

n−2) + I(P ′′
n−2) + Jn−1

)
> ⌈n

3
⌉,

that is sdepth((I(Pn,3) ∩ Rn−1 : y1)Rn−1) > ⌈n
3 ⌉.

Thus by Eq. 4.2 we get sdepth(I(Pn,3)) > ⌈n
3 ⌉.
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�
Proposition 4.4. For n ≥ 3, sdepth(I(Cn,2)/I(Pn,2)) ≥ ⌈n+2

3 ⌉.

Proof. For 3 ≤ n ≤ 5, we use [11] to show that there exist Stanley decompositions of
desired Stanley depth. When n = 3 or 4, then

I(Cn,2)/I(Pn,2) = x1xnK[x1, xn] ⊕ x1ynK[x1, yn] ⊕ y1xnK[y1, xn] ⊕ y1ynK[y1, yn].
If n = 5, then
I(C5,2)/I(P5,2) = x1x5K[x1, x3, x5] ⊕ x1y5K[x1, x3, y5] ⊕ y1x5K[y1, x3, x5] ⊕ y1y5K[y1, x3, y5]

⊕x1y3x5K[x1, y3, x5] ⊕ x1y3y5K[x1, y3, y5] ⊕ y1y3y5K[y1, y3, y5] ⊕ y1y3x5K[y1, y3, x5].
Let n ≥ 6 and T := (

⋃n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2

)
⊂ S̃, where

S̃ := K[x3, x4, . . . , xn−2, y3, y4 . . . , yn−2]. Then we have the following K-vector space iso-
morphism:

I(Cn,2)/I(Pn,2) ∼= x1xn
S̃

T
[x1, xn] ⊕ y1yn

S̃

T
[y1, yn] ⊕ x1yn

S̃

T
[x1, yn] ⊕ y1xn

S̃

T
[y1, xn].

Thus by Lemmas 3.2 and 2.7, we have sdepth(I(Cn,2)/I(Pn,2)) ≥ ⌈n+2
3 ⌉. �

For n ≥ 6, let Q = {x1, y1, x2, y2, xn, yn, xn−1, yn−1}. Consider a subgraph C⋄
n,3 of Cn,3

with vertex set V (C⋄
n,3) = V (Cn,3) \ Q and edge set

E(C⋄
n,3) = E(Cn,3) \ {e ∈ E(Cn,3) : where e has at least one end vertex in Q}.

For example of C⋄
n,3 see Fig. 5.

z6
y6

z7

z8

z1

z2

z3

z4

z5

y5
x5

x6

y4

x4 y3
x3

Figure 5. C⋄
8,3.

Lemma 4.5. Let n ≥ 6, if n ≡ 0 (mod 3), then sdepth(S⋄
n,3/I(C⋄

n,3)) = ⌈n−2
3 ⌉. Otherwise,

⌈n−2
3 ⌉ ≤ sdepth(S⋄

n,3/I(C⋄
n,3)) ≤ ⌈n

3 ⌉.

Proof. By Remark 2.6
sdepth(S⋄

n,3/I(C⋄
n,3)) ≥ min{sdepth(S⋄

n,3/(I(C⋄
n,3) : z1)), sdepth(S⋄

n,3/(I(C⋄
n,3), z1))}.

(4.4)

Since (I(C⋄
n,3) : z1) = ((∪n−3

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, z2, zn
)
,

so after renumbering the variables we have S⋄
n,3/(I(C⋄

n,3) : z1) ∼= S⋆
n−4,3/I(P⋆

n−4,3)[z1].
Therefore, by Lemmas 2.7 and 3.5,

sdepth(S⋄
n,3/(I(C⋄

n,3) : z1)) = ⌈n − 4 + 1
3

⌉ + 1 = ⌈n

3
⌉.
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Now let

B := (I(C⋄
n,3), z1) = ((∪n−3

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, zn−1zn, y3z2, z2z3, z1
)
,

so by Remark 2.6

sdepth(S⋄
n,3/B) ≥ min{sdepth(S⋄

n,3/(B : zn)), sdepth(S⋄
n,3/(B, zn))}. (4.5)

Since

(B : zn) = ((∪n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), y3z2, z2z3, z1, zn−1
)
,

after renumbering the variables we have S⋄
n,3/(B : zn) ∼= S⋆

n−4,3/I(P⋆
n−4,3)[zn]. Therefore

by Lemmas 2.7 and 3.5, sdepth(S⋄
n,3/(B : zn)) = ⌈n−4+1

3 ⌉ + 1 = ⌈n
3 ⌉. Now

(B, zn) = ((
⋃n−3

i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, y3z2, z2z3, z1, zn
)
,

after renumbering the variables we have S⋄
n,3/(B, zn) ∼= S⋆⋆

n−4,3/I(P⋆⋆
n−4,3). Therefore by

Lemma 3.5, we have

sdepth(S⋄
n,3/(B, zn)) = ⌈n − 4 + 2

3
⌉ = ⌈n − 2

3
⌉.

Combining Eq. 4.4 and Eq. 4.5 we get ⌈n−2
3 ⌉ ≤ sdepth(S⋄

n,3/I(C⋄
n,3)). For upper bound,

as z1 /∈ I(C⋄
n,3) so by Proposition 2.9

sdepth(S⋄
n,3/I(C⋄

n,3)) ≤ sdepth(S⋄
n,3/(I(C⋄

n,3) : z1)).

Since (S⋄
n,3/(I(C⋄

n,3) : z1)) ∼= (S⋆
n−4,3/I(P⋆

n−4,3))[z1]. Thus by Lemmas 2.7 and 3.5,

sdepth(S⋄
n,3/I(C⋄

n,3)) ≤ ⌈n

3
⌉,

if n ≡ 0(mod 3) then ⌈n−2
3 ⌉ = ⌈n

3 ⌉. If n ≡ 1(mod 3) or n ≡ 2(mod 3) then

⌈n − 2
3

⌉ ≤ sdepth(S⋄
n,3/I(C⋄

n,3)) ≤ ⌈n

3
⌉.

�

Proposition 4.6. For n ≥ 3, sdepth(I(Cn,3)/I(Pn,3)) ≥ ⌈n+2
3 ⌉.

Proof. For 3 ≤ n ≤ 4, as the minimal generators of I(Cn,3)/I(Pn,3) have degree 2, so by
[19, Lemma 2.1] sdepth(I(Cn,3)/I(Pn,3)) ≥ 2 = ⌈n+2

3 ⌉. If n = 5 then we use [11] to show
that there exist Stanley decompositions of desired Stanley depth. Let

H := x1x5K[x1, x3, x5] ⊕ x1y5K[x1, x3, y5] ⊕ y1x5K[x3, x5, y1] ⊕ y1y5K[x3, y1, y5]
⊕z1y5K[x3, y5, z1] ⊕ z1z5K[z1, z3, z5] ⊕ y1z5K[y1, y3, z5]

Clearly, H ⊂ I(C5,3)/I(P5,3). Let v ∈ I(C5,3)/I(P5,3) be a sqaurefree monomial such that
v /∈ H then deg(v) ≥ 3. Since

I(C5,3)/I(P5,3) = H ⊕v vK[supp(v)],

thus we have sdepth(I(C5,3)/I(P5,3)) ≥ 3 = ⌈5+2
3 ⌉. Now for n ≥ 6, let

U := (∪n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn−2yn−2, yn−2zn−2)
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be a squarefree monomial ideal of R := K[x3, . . . , xn−2, y3, . . . , yn−2, z3, . . . , zn−2]. Then
we have the following K-vector space isomorphism:

I(Cn,3)/I(Pn,3) ∼=

y1yn
R

U
[y1, yn] ⊕ x1yn

R[z2](
G(U), y3z2, z2z3

) [x1, yn] ⊕ z1yn
R[x2](

G(U), y3x2, x2x3
) [z1, yn]

⊕ y1xn
R[zn−1](

G(U), yn−2zn−1, zn−2zn−1
) [y1, xn] ⊕ y1zn

R[xn−1](
G(U), yn−2xn−1, xn−2xn−1

) [y1, zn]

⊕ x1xn
R[z1, z2, zn−1, zn](

G(U), yn−2zn−1, zn−2zn−1, zn−1zn, znz1, z1z2, y3z2, z2z3
) [x1, xn]

⊕ z1zn
R[x1, x2, xn−1, xn](

G(U), yn−2xn−1, xn−2xn−1, xn−1xn, xnx1, x1x2, y3x2, x2x3
) [z1, zn].

Clearly we can see that R/U ∼= Sn−4,3/I(Pn−4,3),

R[z2](
G(U), y3z2, z2z3

) ∼=
R[x2](

G(U), y3x2, x2x3
) ∼=

R[zn−1](
G(U), yn−2zn−1, zn−2zn−1

)
∼=

R[xn−1](
G(U), yn−2xn−1, xn−2xn−1

) ∼= S⋆
n−4,3/I(P⋆

n−4,3),

and
R[z1, z2, zn−1, zn](

G(U), yn−2zn−1, zn−2zn−1, zn−1zn, znz1, z1z2, y3z2, z2z3
)

∼=
R[x1, x2, xn−1, xn](

G(U), yn−2xn−1, xn−2xn−1, xn−1xn, xnx1, x1x2, y3x2, x2x3
) ∼= S⋄

n,3/I(C⋄
n,3).

Thus by Lemmas 3.2, 3.5, 4.5 and 2.7 we have

sdepth(I(Cn,3)/I(Pn,3)) ≥ min
{

⌈n − 4
3

⌉ + 2, ⌈n − 4 + 1
3

⌉ + 2, ⌈n − 2
3

⌉ + 2
}

= ⌈n + 2
3

⌉.

�

Theorem 4.7. For 1 ≤ m ≤ 3, n ≥ 3, sdepth(I(Cn,m)) ≥ sdepth(Sn,m/I(Cn,m)).

Proof. For m = 1, I(Cn,1) = Cn. Then the result follows by [4, Theorem 1.9] and
[21, Theorem 2.3]. If m = 2 or 3, consider the short exact sequence

0 −→ I(Pn,m) −→ I(Cn,m) −→ I(Cn,m)/I(Pn,m) −→ 0,

then by Lemma 2.5, sdepth(I(Cn,m)) ≥ min{sdepth(I(Pn,m)), sdepth(I(Cn,m)/I(Pn,m))}.
By Theorem 4.3 and we have sdepth(I(Pn,m)) ≥ ⌈n

3 ⌉+1, and by Propositions 4.4 and 4.6,
we have sdepth(I(Cn,m)/I(Pn,m)) ≥ ⌈n+2

3 ⌉ = ⌈n−1
3 ⌉ + 1, this completes the proof. �

5. Upper bounds for depth and Stanley depth of cyclic modules associ-
ated to Pn,m and Cn,m

Let m ≤ n, in general, we don’t know the values of depth and Stanley depth of
Sn,m/I(Pn,m). However, in the light of our observations, we propose the following question.

Question 1. Is depth(Sn,m/I(Pn,m)) = sdepth(Sn,m/I(Pn,m)) = ⌈n
3 ⌉⌈m

3 ⌉?

Let n ≥ 2, we have confirmed this question for the cases when 1 ≤ m ≤ 3 see Remark
3.1, and Lemma 3.2. If m = 4, we make some calculations for depth and Stanley depth
by using CoCoA, (for sdepth we use SdepthLib:coc [25]). Calculations give an affirmative
answer to Question 1 in the case (n, m) ∈ {(4, 4), (5, 4), (6, 4)}.



Depth and Stanley depth of the edge ideals... 107

Theorem 5.1. For n ≥ 2, depth(Sn,m/I(Pn,m)), sdepth(Sn,m/I(Pn,m)) ≤ ⌈n
3 ⌉⌈m

3 ⌉.

Proof. Without loss of generality, we assume that m ≤ n. We first prove the result for
depth. When m = 1, then I(Pn,1) = I(Pn), we have the required result by Remark 3.1.
For m = 2, 3 the result follows from Lemma 3.2. Let m ≥ 4, we will prove this result by
induction on m. Let v be a monomial such that

v :=


x2(m−1)x5(m−1) . . . x(n−4)(m−1)x(n−1)(m−1), if n ≡ 0(mod 3);
x1(m−1)x4(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 1(mod 3);
x2(m−1)x5(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 2(mod 3).

clearly v /∈ I(Pn,m) so by Corollary 2.8
depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : v)).

In all three cases | supp(v)| = ⌈n
3 ⌉ and Sn,m/(I(Pn,m) : v) ∼= (Sn,m−3/I(Pn,m−3))[supp(v)],

so by induction and Lemma 2.7

depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : v)) ≤ ⌈n

3
⌉⌈m − 3

3
⌉ + ⌈n

3
⌉ = ⌈m

3
⌉⌈n

3
⌉.

Similarly, we can prove the result for Stanley depth by using Proposition 2.9. �
Remark 5.2. For a positive answer to Question 1, one needs to prove that ⌈n

3 ⌉⌈m
3 ⌉ is a

lower bound for depth and Stanley depth of Sn,m/I(Pn,m). The lower bound ⌈diam(Pn,m)+1
3 ⌉

from Corollaries 2.11 and 2.13 which was helpful for the cases when 1 ≤ m ≤ 3 is
no more useful if m ≥ 4. For instance, depth(S4,4/I(P4,4)) = sdepth(S4,4/I(P4,4)) =
4, but this lower bound shows that depth(S4,4/I(P4,4)) ≥ 2 = ⌈diam(P4,4)+1

3 ⌉ and
sdepth(S4,4/I(P4,4)) ≥ 2 = ⌈diam(P4,4)+1

3 ⌉.
Theorem 5.3. For n ≥ 3 and m ≥ 1,

depth(Sn,m/I(Cn,m)) ≤
{

⌈n−1
3 ⌉ + (⌈m

3 ⌉ − 1)⌈n
3 ⌉, if m ≡ 1, 2(mod 3);

⌈n
3 ⌉⌈m

3 ⌉, if m ≡ 0(mod 3).
Proof. We prove this result by induction on m. If m = 1, then I(Cn,1) = I(Cn), by
[4, Proposition 1.3], we have the required result. For m = 2, 3 the result follows by
Theorems 3.3 and 3.6, respectively. Let m ≥ 4,

u :=


x3(m−1)x6(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 0(mod 3);
x1(m−1)x4(m−1) . . . x(n−6)(m−1)x(n−3)(m−1)x(n−1)(m−1), if n ≡ 1(mod 3);
x2(m−1)x5(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 2(mod 3).

Clearly u /∈ I(Cn,m) and Sn,m/(I(Cn,m) : u) ∼= (Sn,m−3/I(Cn,m−3))[supp(u)], since in all
the cases | supp(u)| = ⌈n

3 ⌉, if m ≡ 1, 2(mod 3) so by induction and Lemma 2.7

depth(Sn,m/(I(Cn,m) : u)) ≤ ⌈n − 1
3

⌉+(⌈m − 3
3

⌉−1)⌈n

3
⌉+⌈n

3
⌉ = ⌈n − 1

3
⌉+(⌈m

3
⌉−1)⌈n

3
⌉.

Otherwise, by induction and Lemma 2.7 we have

depth(Sn,m/(I(Cn,m) : u)) ≤ ⌈n

3
⌉⌈m − 3

3
⌉ + ⌈n

3
⌉ = ⌈n

3
⌉⌈m

3
⌉.

�
Theorem 5.4. For n ≥ 3 and m ≥ 1, sdepth(Sn,m/I(Cn,m)) ≤ ⌈n

3 ⌉⌈m
3 ⌉.

Proof. The proof is similar to the proof of Theorem 5.3 by using Corollary 3.4 instead of
Theorems 3.3. �
Remark 5.5. The upper bounds for Stanley depth of Sn,m/I(Pn,m) and Sn,m/I(Cn,m)
as proved in Theorems 5.1 and 5.4 are too sharp. On the bases of our observations, we
formulate the following question. A positive answer to this question will prove Conjecture
1.
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Question 2. Is sdepth(I(Pn,m)), sdepth(I(Cn,m)) ≥ ⌈n
3 ⌉⌈m

3 ⌉?
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Abstract
Let R be a commutative ring with non-zero identity, and Z(R) be its set of all zero-divisors.
The total graph of R, denoted by T (Γ(R)), is an undirected graph with all elements of R
as vertices, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R).
In this article, we characterize, up to isomorphism, all of finite commutative rings whose
total graphs have vertex-arboricity (arboricity) two or three. Also, we show that, for a
positive integer v, the number of finite rings whose total graphs have vertex-arboricity
(arboricity) v is finite.
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1. Introduction
In [1], D.F. Anderson and A. Badawi introduced the total graph of ring R, denoted

by T (Γ(R)), as the graph with all elements of R as vertices, and for distinct x, y ∈ R,
the vertices x and y are adjacent if and only if x + y ∈ Z(R), where Z(R) is the set of
zero-divisors of R. They studied some graph theoretical parameters of T (Γ(R)) such as
diameter and girth. In addition, they showed that the total graph of a commutative ring
is connected if and only if Z(R) is not an ideal of R. In [7], H.R. Maimani et al. gave the
necessary and sufficient conditions for the total graphs of finite commutative rings to be
planar or toroidal and in [5] T. Chelvam and T. Asir characterized all commutative rings
such that their total graphs have genus two.

Suppose that G is a graph, and let V (G) and E(G) be the vertex set and edge set of
G, respectively. The vertex-arboricity of a graph G, denoted by va(G), is the minimum
positive integer k such that V (G) can be partitioned into k sets V1, V2 . . . , Vk such that
G[Vi] is a forest for each i ∈ {1, 2, . . . , k}, where G[Vi] is the induced subgraph of G
whose vertex set is Vi and its edge set consists of all of the edges in E(G) that have both
endpoints in Vi. This partition is called acyclic partition. The vertex-arboricity can be
viewed as a vertex coloring f with k colors, where each color class Vi induces a forest;
namely, G[f−1(i)] is an acyclic graph for each i ∈ {1, 2, . . . , k}. Vertex-arboricity, also
known as point arboricity, was first introduced by G. Chartrand, H.V. Kronk, and C.E.
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Wall [4] in 1968. Note that a graph with no cycles is a forest, and it has vertex-arboricity
one.

Likewise, the arboricity of a graph G, denoted by ν(G), is the least number of line-
disjoint spanning forests into which G can be partitioned, that is, there is some collection
of ν(G) subgraphs of G, where each subgraph is a forest and each edge in G is in exactly one
such subgraph. Arboricity of a graph was first introduced by C. St. J. A. Nash-Williams
[4] in 1964.

The main purpose of this paper is to characterize all finite commutative rings whose
total graph has vertex-arboricity (arboricity) two or three. In addition, we show that,
for a positive integer v, there are only finitely many finite rings whose total graph has
vertex-arboricity (arboricity) v.

Now, we recall some definitions of graph theory which are necessary in this article. Let
G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). We use n and
e to denote the number of vertices and the number of edges of G, respectively. A graph
in which each pair of distinct vertices is joined by an edge is called a complete graph. We
use Kn to denote the complete graph with n vertices. A bipartite graph G is a graph
whose vertex set V (G) can be partitioned into two subsets V1 and V2 such that the edge
set of such a graph consists of precisely those edges which join vertices in V1 to vertices
of V2. In particular, if E(G) consists of all possible such edges, then G is called the
complete bipartite graph and denoted by the symbol Kr,s, where |V1| = r and |V2| = s.
For a vertex x ∈ V (G), deg(x) is the degree of vertex x, δ(G) =min{deg(x) : x ∈ V (G)},
∆(G) =max{deg(x) : x ∈ V (G)}. For a nonnegative integer d, a graph is called d-regular if
every vertex has degree d. Let S ⊂ V (G) be any subset of vertices of G. Then the induced
subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the
edges in E(G) that have both endpoints in S. A spanning subgraph for G is a subgraph of
G which contains every vertex of G. A graph without any cycle is called acyclic graph. A
forest is an acyclic graph. Let G1 and G2 be subgraphs of G, we say that G1 and G2 are
disjoint if they have no vertex and no edge in common. The union of two disjoint graphs
G1 and G2, which is denoted by G1 ∪ G2 is a graph with V (G1 ∪ G2) = V (G1) ∪ V (G2)
and E(G1 ∪ G2) = E(G1) ∪ E(G2). For any graph G, the disjoint union of k copies of
G is denoted by kG. Graphs G and H are said to be isomorphic to one another, written
G ∼= H, if there exists a one-to-one correspondence f : V (G) → V (H) such that for each
pair x, y of vertices of G, xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). Also, for a rational
number p, ⌈p⌉ is the first integer number greater than or equal to p, and ⌊p⌋ is the first
integer number less than or equal to p.

2. Basic properties
First of all, let us recall some of the basic facts about total graphs and vertex arboricity,

which we shall use in the rest of the paper.

Lemma 2.1 ([7, Lemma 1.1]). Let x be a vertex of T (Γ(R)). Then the following state-
ments are true.

(i) If 2 ∈ Z(R), then deg(x) = |Z(R)| − 1.
(ii) If 2 /∈ Z(R), then deg(x) = |Z(R)| − 1 for every x ∈ Z(R) and deg(x) =

|Z(R)| for every vertex x /∈ Z(R).

Remark 2.2. It is clear that va(G) = 1 if and only if G is acyclic. For a few classes of
graphs, the vertex-arboricity is easily determined. For example, va(Cn) = 2, where Cn is
a cycle graph with n vertices. If n is even, va(Kn) = n

2 ; while if n is odd, va(Kn) = n+1
2 .

So, in general, va(Kn) = ⌈n
2 ⌉. Also, va(Kr,s) = 1 if r = 1 or s = 1, and va(Kr,s) = 2

otherwise.
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Lemma 2.3 ([3, Lemma 1]). Let G be the disjoint union of graphs G1, G2, . . . , Gk. Then,
for all i with 1 ≤ i ≤ k,

va(G) = max va(Gi).
Now, we are ready to show that for a positive integer v, there are only finitely many

finite rings whose total graph has vertex-arboricity v.
Theorem 2.4. For any positive integer v, the number of finite rings whose total graphs
have vertex-arboricity v is finite.
Proof. Let R be a finite ring. We want to obtain a complete subgraph (with vertex set
T ) of T (Γ(R)). To achieve this, we consider the following two cases:

(a) R is local. In this case Z(R) is the maximal ideal of R and |R| ≤ |Z(R)|2 [8]. In
this situation, we put T = Z(R).

(b) R is not local. Then there is a natural number n ≥ 2 and there are local rings
R1, R2, . . . , Rn such that R = R1 × R2 × · · · × Rn. We may assume that |R1| ≤ |R2| ≤
· · · ≤ |Rn|. Now put R∗

1 = 0 × R2 × · · · × Rn. Since |R| = |R1||R∗
1|, we have |R| ≤ |R∗

1|2.
In this situation, we put T = R∗

1.
Now, it is easy to see that, for every elements x and y of T , x is adjacent to y in

T (Γ(R)). Thus there is an induced subgraph K|T | in T (Γ(R)). Hence Remark 2.2 implies
that va(K|T |) ≤ v, and so ⌈ |T |

2 ⌉ ≤ v. Thus |R| ≤ 4v2, and so the proof is complete. �
Let Reg(Γ(R)) be the induced subgraph of T (Γ(R)) with vertices Reg(R) = R − Z(R),

and Z(Γ(R)) be the induced subgraph of T (Γ(R)) with vertices Z(R). Next, we record
some facts concerning total graphs. If Z(R) is an ideal of R, then Z(Γ(R)) is a complete
subgraph of T (Γ(R)) and is disjoint from Reg(Γ(R)). Thus, the following theorem of D.F.
Anderson and A. Badawi gives a complete description of T (Γ(R)).
Theorem 2.5 ([1, Theorem 2.2]). Let R be a commutative ring such that Z(R) is an ideal
of R, and let |Z(R)| = n and | R

Z(R) | = m. Then the following statements hold.
(i) If 2 ∈ Z(R), then Reg(Γ(R)) is the union of m − 1 disjoint Kn’s.
(ii) If 2 /∈ Z(R), then Reg(Γ(R)) is the union of m−1

2 disjoint Kn,n’s.
Theorem 2.6. Let R be a finite commutative ring with identity and I be a nontrivial ideal
contained in Z(R). Set |I| = n and |R

I | = m. Then the following statements hold.
(i) If 2 ∈ I, then va(T (Γ(R))) ≥ ⌈n

2 ⌉.
(ii) If 2 /∈ I, then va(T (Γ(R))) ≥ max{⌈n

2 ⌉, 2}.
Proof. Let G be the spanning subgraph of T (Γ(R)) such that, for every two vertices
x, y ∈ R, x is adjacent to y in G if x + y ∈ I. Now, since I is an ideal of R contained in
Z(R), by making obvious modification to the proof of Theorem 2.5, one can show that

G =
{

mKn if 2 ∈ I
Kn

∪
(m−1

2 )Kn,n if 2 /∈ I.

Now, by Remark 2.2 in conjunction with Lemma 2.3, we have the following equalities

va(G) =
{

⌈n
2 ⌉ if 2 ∈ I

max{⌈n
2 ⌉, 2} if 2 /∈ I.

Now, since G is a subgraph of T (Γ(R)), we have that va(G) ≤ va(T (Γ(R))), and so the
proof is complete. �

The following corollary is immediate from Theorem 2.5.
Corollary 2.7. Let R be a finite commutative ring with identity, Z(R) be nontrivial ideal
of R and set |Z(R)| = n and | R

Z(R) | = m. Then the following statements hold.
(i) If 2 ∈ Z(R), then va(T (Γ(R))) = ⌈n

2 ⌉.
(ii) If 2 /∈ Z(R), then va(T (Γ(R))) = max{⌈n

2 ⌉, 2}.
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3. The vertex-arboricity of the total graph
For any graph G, the girth of G, denoted by gr(G), is the length of a shortest cycle in

G (gr(G) = ∞ if G contains no cycles). The following Theorem of Anderson and Badawi
implies that T (Γ(R)) has vertex-arboricity one if and only if either R is an integral domain
or R is isomorphic to Z4 or Z2[x]

(x2) .

Theorem 3.1 ([2, Theorem 4.7]). Let R be a commutative ring. Then gr(T (Γ(R))) ∈
{3, 4, ∞}. Moreover,

(i) gr(T (Γ(R))) = ∞ if and only if either R is an integral domain or R is isomorphic
to Z4 or Z2[x]

(x2) ,
(ii) gr(T (Γ(R))) = 4 if and only if R is isomorphic to Z2 × Z2, and
(iii) gr(T (Γ(R))) = 3 otherwise.

Now, we will classify, up to isomorphism, all finite commutative rings whose total graphs
have vertex-arboricity two or three. We begin with a following result which is essentially
due to Raghavendran.

Theorem 3.2 ([10, Theorem 2]). Let R be a finite commutative local ring with nonzero
identity and U(R) be the set of all unit elements of R. Then |R| = pnr, |Z(R)| = p(n−1)r

and |U(R)| = p(n−1)r(pr − 1) for some prime p and some positive integers n and r.

In sequel, we state two remarks which we will use throughout this paper.

Remark 3.3. Let R1 and R2 be two finite commutative rings with |R1| = m, |R2| = n
and m ≤ n. It is easy to see that the subgraph of the total graph of R1 × R2 induced by
the set {0} × R2 is a copy of Kn.

Remark 3.4. Let R1, R2, S1 and S2 be finite commutative rings such that T (Γ(R1)) ∼=
T (Γ(R2) and T (Γ(S1)) ∼= T (Γ(S2). Then T (Γ(R1 × S1)) ∼= T (Γ(R2 × S2). However, this
property does not hold in general for other widely studied graphs associated to rings (for
example, the zero-divisor graphs).

Lemma 3.5. va(T (Γ(Z2 × Z2 × Z2))) = va(T (Γ(F4 × F4))) = 3.

Proof. First of all, note that, in view of Remark 3.3, va(T (Γ(Z2 × Z2 × Z2))) > 1. Now,
we show that va(T (Γ(Z2 × Z2 × Z2))) > 2. To this, we consider a set of vertices of the
graph T (Γ(Z2 × Z2 × Z2)) of the form

A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Let the set {V1, V2} be an acyclic partition of V (T (Γ(Z2 × Z2 × Z2))). Since G[A] is a
complete graph isomorphic to K4 and G[Vi](1 ≤ i ≤ 2) have no triangle, so |A ∩ V1| =
|A∩V2| = 2. Without the loss of generality, we may assume that (0, 0, 0), (1, 0, 0) ∈ V1 and
(0, 1, 0), (0, 0, 1) ∈ V2. Now, consider the vertex (0, 1, 1) of T (Γ(Z2 × Z2 × Z2)). It is clear
that (0, 1, 1) ∈ V1. Therefore, each of the remaining vertex of the graph T (Γ(Z2 ×Z2 ×Z2))
forms a triangle with two vertices of V1. Hence, all of these vertices must be in V2, which
is a contradiction.

Now, consider the partition of V (T (Γ(Z2 × Z2 × Z2))) with sets V1 = {(0, 0, 0),
(0, 1, 0), (1, 1, 1)}, V2 = {(1, 0, 0), (0, 0, 1), (0, 1, 1)} and V3 = {(1, 0, 1), (1, 1, 0)}. It is clear
that the subgraphs of T (Γ(Z2 ×Z2 ×Z2)) induced by sets V1, V2 and V3 are acyclic. Hence
va(T (Γ(Z2 × Z2 × Z2))) = 3.

By Remark 3.3, we have va(T (Γ(F4 × F4))) > 1. Assume that By = {(a, y) : a ∈ F4}
and Cx = {(x, b) : b ∈ F4} for all x, y ∈ F4. Obviously, {By : y ∈ F4} and {Cx : x ∈
F4} both form partitions for V (T (Γ(F4 × F4))). Let {V1, V2} be an acyclic partition of
V (T (Γ(F4 × F4))). Since the subgraphs of T (Γ(F4 × F4)) induced by sets V1 and V2 have
no triangles, each of these sets has exactly two vertices of the sets By and Cx for all
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x, y ∈ F4. Hence, each of the sets V1 and V2 has exactly two vertices such that their first
components are the same and have exactly two vertices such that the second components
are the same. So, each vertex in V1 and V2 has degree 2, which is a contradiction, since
the subgraphs of T (Γ(F4 × F4)) induced by the sets V1 and V2 are union of cycles. Thus
we have va(T (Γ(F4 × F4))) > 2.

Now, according to the Figure 1, we have va(T (Γ(F4 × F4))) = 3.
�

(0, 0)

(0, 1)

(a2, 0)

(a, 1)

(a2, a)(1, a) (1, a2)
(a)

(0, a)

(0, a2)

(a, a) (a2, 1)(a, 0) (1, 0) (1, 1)

(b)

(a, a2) (a2, a2)
(c)

Figure 1

Theorem 3.6. Let R be a finite commutative ring such that va(T (Γ(R))) = 2. Then the
following statements hold.

(i) If R is local, then R is isomorphic to one of the following rings:
Z9, Z3[x]

(x2) , Z8, Z2[x]
(x3) , Z4[x]

(2x,x2−2) , Z2[x,y]
(x,y)2 , Z4[x]

(2,x)2 , F4[x]
(x2) , Z4[x]

(x2+x+1) .
(ii) If R is not local, then R is isomorphic to one of the following rings:

Z2 × Z2, Z6, Z2 × Z4, Z2 × Z2[x]
(x2) , Z2 × F4, Z3 × Z3, Z3 × F4.

Proof. (i) Assume that R is a local ring, and let |Z(R)| = n and | R
Z(R) | = m. Then by

Theorem 2.5, T (Γ(R)) has an induced subgraph isomorphic to Kn and so by Remark 2.2,
|Z(R)| ≤ 4. Now, we consider the following two cases:

(a) If 2 ∈ Z(R), then by Theorem 3.2, |R| = 2k and k ≤ 4. Since va(T (Γ(R))) = 2,
Theorem 3.1 implies that |R| = 16, 8. According to Corbas and Williams [6] there are
two non-isomorphic rings of order 16 with maximal ideals of order 4, namely F4[x]

(x2) and
Z4[x]

(x2+x+1) (see also Redmond [11]), so for these rings have T (Γ(R)) ∼= 4K4. Therefore, by
Remark 2.2, these rings have vertex-arboricity 2. In [6] it is also shown that there are 5
local rings of order 8 (except F8) as follows:

Z8,
Z2[x]
(x3)

,
Z4[x]

(2x, x2 − 2)
,
Z2[x, y]
(x, y)2 ,

Z4[x]
(2, x)2 .

In all of these rings we have |Z(R)| = 4 and hence T (Γ(R)) ∼= 2K4. Then, by Remark 2.2,
these rings have vertex-arboricity 2.

(b) If 2 /∈ Z(R), then |Z(R)| = 3. According to [6], there are two rings of order 9
namely, Z9 and Z3[x]

(x2) . For these rings, we have T (Γ(R)) ∼= K3
∪

K3,3. Hence, by Corollary
2.7, these rings have vertex-arboricity 2.

(ii) Suppose that R is not local. Since R is finite, there are finite local rings R1, . . . , Rt

(with t ≥ 2) such that R = R1 × R2 × · · · × Rt. Now, according to Remarks 2.2 and 3.3,
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we have the following candidates:
Z2 × Z2, Z6, Z2 × Z4, Z2 × Z2[x]

(x2) , Z2 × F4, Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2) , Z3 × F4,

Z2 × Z2 × Z2, Z4 × Z4, Z4 × Z2[x]
(x2) , Z2[x]

(x2) × Z2[x]
(x2) , Z4 × F4, Z2[x]

(x2) × F4, F4 × F4.
Now we examine each of the above rings.

The total graph of the ring Z2 × Z2 is isomorphic to the cycle of size 4. We consider
the acyclic partition V1 = {(0, 0), (1, 0)} and V2 = {(0, 1), (1, 1)} of V (T (Γ(Z2 × Z2))).
Hence, the subgraphs of T (Γ(Z2 × Z2)) induced by sets V1 and V2 are acyclic. Thus
va(T (Γ(Z2 × Z2))) = 2.

For Z6, by considering the acyclic partition V1 = {0, 1, 3} and V2 = {2, 4, 6} of V (T (Γ(Z6))),
we have va(T (Γ(Z6))) = 2.

For Z2×Z4, we put V1 = {(0, 0), (0, 2), (1, 1), (1, 3)} and V2 = {(0, 1), (0, 3), (1, 0), (1, 2)}.
Now, it is easy to see that va(T (Γ(Z2 × Z4))) = 2. Since T (Γ(Z4)) ∼= T (Γ(Z2[x]

(x2) )), by
Remark 3.4, we have T (Γ(Z2 × Z4)) ∼= T (Γ(Z2 × Z2[x]

(x2) )). Thus va(T (Γ(Z2 × Z2[x]
(x2) ))) = 2.

For Z2 × F4, by using the acyclic partition

V1 = {(0, 0), (0, 1), (1, 0), (1, a)} and V2 = {(0, a), (0, a2), (1, 1), (1, a2)}

of V (T (Γ(Z2 × F4))), we have va(T (Γ(Z2 × F4))) = 2.
For Z3 ×Z3, we consider the acyclic partition V1 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 1)} and

V2 = {(0, 2), (2, 0), (1, 2), (2, 2)} of V (T (Γ(Z3 × Z3))). Hence va(T (Γ(Z3 × Z3))) = 2.
For Z3×Z4, the graph T (Γ(Z3×Z4)) has a complete graph K6 as a subgraph with vertex

set {(0, 0), (1, 0), (2, 0), (0, 2), (1, 2), (2, 2)}, and so, by Remark 2.2, we have va(T (Γ(Z3 ×
Z4))) > 2. Also by Remark 3.4, we have T (Γ(Z3 × Z4)) ∼= T (Γ(Z3 × Z2[x]

(x2) )). Thus
va(T (Γ(Z3 × Z2[x]

(x2) ))) > 2.
For Z3 × F4, according to the Figure 2 we have va(T (Γ(Z3 × F4))) = 2.

(0, 0)

(1, 0)

(0, 1)

(2, a)

(1, a)

(1, a2)

(a)

(0, a2)
(0, a)

(2, a2)
(1, 1)

(2, 0)

(2, 1)
(b)

Figure 2

For Z2 × Z2 × Z2, by Lemma 3.5, we have va(T (Γ(Z2 × Z2 × Z2))) > 2.
For Z4 × Z4, the graph T (Γ(Z4 × Z4)) has a K8 as a subgraph with vertex set

{(0, 0), (1, 0), (2, 0), (3, 0), (0, 2), (1, 2), (2, 2), (3, 2)},

and so, by Remark 2.2, we have va(T (Γ(Z4 × Z4))) > 3.
According to Remark 3.4, T (Γ(Z4 × Z4)) ∼= T (Γ(Z4 × Z2[x]

(x2) )) ∼= T (Γ(Z2[x]
(x2) × Z2[x]

(x2) )). So
the vertex-arboricity of graphs T (Γ(Z4 × Z2[x]

(x2) )) and T (Γ(Z2[x]
(x2) × Z2[x]

(x2) )) is greater than
three.

For Z4 × F4, the graph T (Γ(Z4 × F4)) has a K8 as a subgraph with vertex set

{(0, 0), (0, 1), (0, a), (0, a2), (2, 0), (2, 1), (2, a), (2, a2)},
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and so, by Remark 2.2, we have va(T (Γ(Z4 × F4))) > 3. Also by Remark 3.4, T (Γ(Z4 ×
F4)) ∼= T (Γ(Z2[x]

(x2) × F4)). Therefore va(T (Γ(Z2[x]
(x2) × F4))) > 3.

For F4 × F4, by Lemma 3.5, we have va(T (Γ(F4 × F4))) > 2. �
Lemma 3.7. For the ring Z2 × Z2 × Z3, va(T (Γ(Z2 × Z2 × Z3))) = 4.
Proof. First, by Remark 3.3, we have va(T (Γ(Z2 × Z2 × Z3))) > 2.

Now, let T (Γ(Z2 × Z2 × Z3)) = G and A = A0 ∪ A1, where A0 = {(0, 0, z) : z ∈ Z3}
and A1 = {(0, 1, z) : z ∈ Z3}. Also put B = B0 ∪ B1, where B0 = {(1, 0, z) : z ∈ Z3} and
B1 = {(1, 1, z) : z ∈ Z3}. It is clear that the two sets A and B are partition for V (G).
Let {V1, V2, V3} be an acyclic partition for V (G). If |Vj | ≥ 5 for some j ∈ {1, 2, 3}, then
|A∩Vj | ≥ 3 or |B ∩Vj | ≥ 3, which is impossible, since G[A] and G[B] are complete graphs
isomorphic to K6 and G[Vi] (1 ≤ i ≤ 3) are acyclic induced subgraphs of G. Therefore
|Vi| = 4 for some i ∈ {1, 2, 3}.

We know that every vertex of G[A0] (G[A1]) are adjacent to every vertex of G[B0]
(G[B1]) and G[Vi] (1 ≤ i ≤ 3) are acyclic induced subgraphs of G. Hence without the loss
of generality we can assume that |A0 ∩ V1| = |B1 ∩ V1| = 2 and |A1 ∩ V2| = |B0 ∩ V2| = 2.
Then V3 = {a0, a1, b0, b1 : as ∈ As, bt ∈ Bt, 0 ≤ s, t ≤ 1}. It follows that G[V3] is a cycle of
length 4, which is a contradiction and so va(G) > 3.

Now, by using the following partition of V (G), we have that va(G) = 4.
V1 = {(0, 0, 0), (1, 0, 0), (1, 1, 2)}, V2 = {(0, 1, 0), (1, 1, 1), (1, 0, 1)},

V3 = {(0, 1, 2), (0, 0, 2), (1, 0, 2)}, V4 = {(0, 0, 1), (0, 1, 1), (1, 1, 0)}.

�
Theorem 3.8. Let R be a finite commutative ring such that va(T (Γ(R))) = 3. Then the
following statements hold.

(i) If R is local, then R is isomorphic to Z25 or Z5[x]
(x2) .

(ii) If R is not local, then R is isomorphic to one of the following rings:
Z3 × Z4, Z3 × Z2[x]

(x2) , Z2 × Z2 × Z2, F4 × F4, Z2 × Z5, Z3 × Z5, F4 × Z5, Z5 × Z5.

Proof. (i) Assume that R is a local ring. We consider the following two cases:
(a) If 2 ∈ Z(R), then, by Theorem 2.5, we have T (Γ(R)) ∼= mKn. Hence, by Remark

2.2, 5 ≤ |Z(R)| ≤ 6. But, in this situation 2 ∈ Z(R), and so, there are no such local rings.

(b) If 2 /∈ Z(R), then, by Theorem 2.5, we have T (Γ(R)) ∼= Kn
∪

(m−1
2 )Kn,n. Hence, by

Remark 2.2, 5 ≤ |Z(R)| ≤ 6. Therefore |Z(R)| = 5 and so there exist two local rings, Z25
and Z5[x]

(x2) of order 25. For these rings we have T (Γ(R)) ∼= K5
∪

2K5,5. Hence, by Corollary
2.7, we have va(T (Γ(R))) = 3.

(ii) Suppose that R is not a local ring. Arguments similar to those used in proof of
Theorem 3.6 (ii), in conjunction with Remarks 2.2 and 3.3 show that we have the following
candidates:
Z2 × Z2, Z6, Z2 × Z4, Z2 × Z2[x]

(x2) , Z2 × F4, Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2) , Z3 × F4,

Z2 × Z2 × Z2, Z4 × Z4, Z4 × Z2[x]
(x2) , Z2[x]

(x2) × Z2[x]
(x2) , Z4 × F4, Z2[x]

(x2) × F4, F4 × F4,
Z2 × Z5, Z2 × Z2 × Z3, Z3 × Z5, Z4 × Z5, Z2[x]

(x2) × Z5, F4 × Z5, Z5 × Z5.
According to the proof of Theorem 3.6 (ii), we examine the following cases:

For Z3 × Z4, we consider the partition
V1 = {(0, 0), (1, 1), (1, 2), (1, 3)},

V2 = {(0, 2), (2, 0), (2, 1), (2, 3)}
and

V3 = {(0, 1), (0, 3), (1, 0), (2, 2)}
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of V (T (Γ(Z3 × Z4))). The subgraphs of T (Γ(Z3 × Z4)) induced by the sets V1, V2 and V3
are acyclic graphs. Hence, we have va(T (Γ(Z3 × Z4))) = 3. The Remark 3.4 implies that
T (Γ(Z3 × Z4)) ∼= T (Γ(Z3 × Z2[x]

(x2) )) and so va(T (Γ(Z3 × Z2[x]
(x2) ))) = 3.

For rings Z2 ×Z2 ×Z2 and F4 × F4, by Lemma 3.5, we have va(T (Γ(Z2 ×Z2 ×Z2))) =
va(T (Γ(F4 × F4))) = 3.

For Z2 ×Z5, consider the acyclic partition V1 = {(0, 0), (0, 1), (1, 1), (1, 2)}, V2 = {(0, 2),
(0, 3), (1, 0), (1, 4)} and V3 = {(0, 4), (1, 3)} of V (T (Γ(Z2 × Z5))). Now, it is easy to see
that va(T (Γ(Z2 × Z5))) = 3.

For Z2 × Z2 × Z3, by Lemma 3.7, we have va(T (Γ(Z2 × Z2 × Z3))) > 3.
For Z3 × Z5, by using the acyclic partition

V1 = {(0, 4), (1, 0), (1, 3), (2, 3)},

V2 = {(0, 0), (0, 1), (1, 2), (1, 4), (2, 1)}
and

V3 = {(0, 2), (0, 3), (1, 1), (2, 0), (2, 2), (2, 4)}
of V (T (Γ(Z3 × Z5))), we have va(T (Γ(Z3 × Z5))) = 3.

For Z4 × Z5, the graph T (Γ(Z4 × Z5)) has a complete graph K10 as a subgraph with
vertex set {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)}, and so, we have
va(T (Γ(Z4 × Z5))) ≥ 5. Also, Remark 3.4, T (Γ(Z4 × Z5)) ∼= T (Γ(Z2[x]

(x2) × Z5)) and so
va(T (Γ(Z2[x]

(x2) × Z5))) ≥ 5.
For F4 × Z5, according to Figure 3, we have va(T (Γ(F4 × Z5))) = 3.

(1, 4)

(0, 1)

(a2, 1)

(1, 1)

(0, 0)

(a2, 2) (a, 3) (a, 2)

(a)

(0, 2)
(0, 3) (1, 2) (1, 0) (a, 0) (a, 1)

(a2, 4)

(b)

(a2, 0)(a2, 3) (0, 4) (1, 3) (a, 4)

(c)

Figure 3

For Z5 × Z5, by Figure 4, we conclude that va(T (Γ(Z5 × Z5))) = 3.
Thus the proof is complete. �

4. The arboricity of the total graph
In this section, we characterize all finite commutative rings whose total graph has ar-

boricity two or three. In addition, we show that, for a positive integer v, there are only
finitely many finite rings whose total graph has arboricity v. We begin the section with
the following result of C. St. J. A. Nash-Williams.

Theorem 4.1 ([9]). For a graph G, ν(G) = max⌈ eH
nH−1⌉, where nH = |V (H)|, eH =

|E(H)| and H ranges over all non-trivial induced subgraphs of G.
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(1, 4)

(0, 1)

(2, 1)

(1, 1)

(0, 0)

(3, 2) (1, 3) (1, 2)

(1, 0)

(a)

(3, 1)

(3, 4)

(0, 4)

(4, 4)
(4, 0)

(0, 2) (3, 3) (4, 2)

(3, 0)

(b)

(2, 2)

(0, 3)

(4, 3)

(2, 3)
(2, 4) (2, 0)(4, 1)

(c)

Figure 4

Theorem 4.2. For a graph G, ⌈ δ(G)+1
2 ⌉ ≤ ν(G) ≤ ⌈∆(G)+1

2 ⌉. In particular, if G is
d-regular, then ν(G) = ⌈d+1

2 ⌉ = ⌈ e
n−1⌉, where n = |V (G)| and e = |E(G)|.

Proof. First, it is clear that, if G has some isolated vertices, say X = {x1, x2, . . . , xk},
then ν(G) = ν(G[V (G) \ X]). So, we can assume that G has no isolated vertices. Let H
be a subgraph of G with |V (H)| = n′ and |E(H)| = e′. Then we have

e′

n′ − 1
≤ ∆(H)n′

2(n′ − 1)
= 1

2
(∆(H) + ∆(H)

n′ − 1
).

Since ∆(H) ≤ min{∆(G), n′ − 1}, we have e′

n′−1 ≤ ∆(G)+1
2 , and hence, by Theorem 4.1,

ν(G) ≤ ⌈∆(G)+1
2 ⌉. On the other hand e

n−1 ≥ δ(G)n
2(n−1) > δ(G)

2 . Since ν(G) is an integer,
ν(G) ≥ ⌈ δ(G)+1

2 ⌉, as required. �
Clearly, in view of the above theorem, ν(Kn) = ⌈n

2 ⌉. So, by arguing as in the proof of
Theorem 2.4, we have the following theorem.

Theorem 4.3. For any positive integer v, the number of finite rings R whose total graph
has arboricity v is finite.

Theorem 3.1 implies that T (Γ(R)) has arboricity one if and only if either R is an integral
domain or R is isomorphic to Z4 or Z2[x]

(x2) . Now, we will classify, up to isomorphism, all
the finite commutative rings whose total graph has arboricity two or three.

Theorem 4.4. Let R be a finite ring such that ν(T (Γ(R))) = 2. Then the following
statements hold.

(i) If R is local, then R is isomorphic to one of the following rings:
Z9, Z3[x]

(x2) , Z8, Z2[x]
(x3) , Z4[x]

(2x,x2−2) , Z2[x,y]
(x,y)2 , Z4[x]

(2,x)2 , F4[x]
(x2) , Z4[x]

(x2+x+1) .
(ii) If R is not local, then R is isomorphic to Z2 × Z2 or Z6.

Proof. (i) Assume that R is a local ring. If 2 ∈ Z(R), then, by Lemma 2.1 and Theorem
4.2, we have |Z(R)| = 4. Then by Theorem 3.2, |R| = 16, 8. Now, by same argument of
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Theorem 3.6, R is isomorphic to one of the following rings:

Z8,
Z2[x]
(x3)

,
Z4[x]

(2x, x2 − 2)
,
Z2[x, y]
(x, y)2 ,

Z4[x]
(2, x)2 ,

F4[x]
(x2)

,
Z4[x]

(x2 + x + 1)
.

If 2 /∈ Z(R), then |Z(R)| = 3. So, R is isomorphic to Z9 or Z3[x]
(x2) .

(ii) If R is not a local ring, then, by Theorem 4.2, we have 3 ≤ |Z(R)| ≤ 4. When
|Z(R)| = 3, it is clear that R is isomorphic to Z2 × Z2. Moreover, if |Z(R)| = 4, then R
is isomorphic to Z6, and so the proof is complete. �

By slight modifications in the proof of Theorem 4.4, one can prove the following theorem.

Theorem 4.5. Let R be a finite ring such that ν(T (Γ(R))) = 3. Then the following
statements hold.

(i) If R is local, then R is isomorphic to Z25 or Z5[x]
(x2) .

(ii) If R is not local, then R is isomorphic to one of the following rings:

Z2 × F4,Z3 × Z3,Z2 × Z4,Z2 × Z2[x]
(x2)

,Z2 × Z5,Z3 × F4.

In general, we can determine the arboricity of the total graph as in the following theorem.

Theorem 4.6. Let R be a finite ring.
(i) If 2 ∈ Z(R), then ν(T (Γ(R))) = ⌈ |Z(R)|

2 ⌉.
(ii) If 2 /∈ Z(R), then the following statements hold.

(1) If |Z(R)| = 2k + 1, then ν(T (Γ(R))) = k + 1.
(2) If |Z(R)| = 2k, then k ≤ ν(T (Γ(R))) ≤ k + 1.

Proof. It follows from Lemma 2.1 and Theorem 4.2. �
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Abstract
Recall that a ring R is said to be a quasi regular ring if its total quotient ring q(R) is
von Neumann regular. It is well known that a ring R is quasi regular if and only if it is
a reduced ring satisfying the property: for each a ∈ R, annR(annR(a)) = annR(b) for
some b ∈ R. Here, in this study, we extend the notion of quasi regular rings and rings
which satisfy the aforementioned property to modules. We give many characterizations
and properties of these two classes of modules. Moreover, we investigate the (weak) quasi
regular property of trivial extension.
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1. Introduction
In this paper, all rings are assumed to be commutative with 1 ̸= 0 and all modules are

nonzero unital. Let R always denote such a ring and M always denote such an R-module.
The concept of von Neumann regular rings has an important place in commutative algebra.
There have been many generalizations and applications of von Neumann regular rings to
other areas such as graph theory. See, for example, [2] and [10]. Previously, recall that
a ring R is said to be a von Neumann regular (for short, vn-regular) ring if for each
x ∈ R, x = x2y for some y ∈ R [14]. Note that a ring R is vn-regular if and only if for
each x ∈ R, (x) = (e) for some idempotent element e ∈ R, where (x) is the principal
ideal generated by x ∈ R if and only if it is a reduced and zero dimensional ring, i.e, every
prime ideal is maximal if and only if the localization RP of R at P is a field for each
prime ideal P of R. Jayaram and Tekir extend the notion of vn-regular rings to modules
in terms of M -regular elements [8]. Let M be an R-module. Then e ∈ R is said to be an
M -regular (resp., a weak idempotent) element if eM = e2M (resp., em = e2m for each
m ∈ M). Note that all idempotent elements are weak idempotent and these concepts
are equal when M is a faithful module. M is called a vn-regular R-module if for each
m ∈M, there is an e ∈ R such that Rm = eM = e2M [8]. It is well known that a finitely
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generated R-module M is a vn-regular module if and only if for each m ∈ M, there is a
weak idempotent element e ∈ R such that Rm = eM [8, Lemma 5].

One of the generalization of vn-regular rings is quasi regular (sometimes called comple-
mented) rings. A ring R is called a quasi regular ring if its total quotient ring q(R) is a
vn-regular ring. In [4, Theorem 2.2], it was shown that a ring R is a quasi regular ring if and
only if R is a reduced ring and satisfies the condition: for each a ∈ R, annR(annR(a)) =
annR(b) for some b ∈ R, where annR(a) = {x ∈ R : xa = 0}. Here, we call a ring R
weak quasi regular (for short, wq-regular) if for each a ∈ R, annR(annR(a)) = annR(b)
for some b ∈ R. Note that all quasi regular rings are wq-regular. But the converse is not
true: just consider a non-reduced principal ideal ring. For instance, Z4 is a wq-regular
ring, but is not a quasi regular ring.

Our aim in this article is to extend the notion of quasi regular rings and wq-regular
rings to modules. For the sake of thoroughness we give some definitions which we will
need throughout this study. For each submodules N and K of M, the residual of N by
K is defined by (N :R K) = {r ∈ R : rK ⊆ N}. In particular, if N = 0, we use
annR(K) to denote (0 :R K). Also for each cyclic submodule Rm, we use annR(m) instead
of annR(Rm). Similarly, for each ideal J of R and each submodule K of N, one can define
residual of N by J as (N :M J) = {m ∈ M : Jm ⊆ N}. In case N = 0, we will use
annM (J) instead of (0 :M J) and also for each a ∈ R, we denote annM (Ra) by annM (a).

Also the set Z(M) of zero divisors on M and the set T (M) of all torsion elements of
M are defined as follows:

Z(M) = {a ∈ R : annM (a) ̸= 0} and
T (M) = {m ∈M : annR(m) ̸= 0}.

Note that T (M) is not always a submodule of M and similarly Z(M) may not be an
ideal of R. M is called a torsion free module if T (M) = 0. Also if T (M) = M, then
M is called a torsion module. Otherwise, we call that M is a non-torsion module. Assume
that S = R − Z(M). It is easily seen that S is a multiplicatively closed subset (briefly
m.c.s) of R. Also the localization MS is an RS-module and it is called the total quotient
module of M. We denote the total quotient module by q(M). We call that M is a quasi
regular R-module if its total quotient module q(M) is a vn-regular RS module, where
S = R − Z(M). Moreover, M is said to be a wq-regular module if for each m ∈ M, there
is an a ∈ R such that

annM (annR(m)) = annM (a).

A submodule N of M is said to be a ∗-submodule if

N = O(S) = {m ∈M : sm = 0 for some s ∈ S}

for some m.c.s S ⊆ R. N is said to be an α-submodule if for each m1, m2 ∈ N with
annR(m1) ∩ annR(m2) = annR(m3), we have m3 ∈ N. Also N is called an annihila-
tor submodule if annM (annR(N)) = N. We study relations between these submodules
and establish many characterizations of wq-regular modules in terms of ∗-submodules,
α-submodules and annihilator submodules (see Theorem 2.9-2.31). Also we prove that
if q(M) is a finitely generated multiplication module (not necessarily M is) and M is
a non-torsion module, then M is a quasi regular module if and only if M is a reduced
wq-regular module (compare the result [4, Theorem 2.2]). We also investigate whether
the notion of wq-regular modules is invariant under homomorphism and direct products.
In Section 3, we determine when the trivial extension R ∝M (idealization) of M is quasi
regular and wq-regular, respectively (see Proposition 3.1 and Theoerem 3.4). In Section
4, we investigate the extension of wq-regular modules. In particular, we show that when
polynomial modules and formal power series modules are wq-regular (see Theorem 4.6).
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2. Characterizations of quasi regular modules
Throughout the section, we will examine ∗-submodules, α-submodules, annihilator sub-

modules and use them to characterize wq-regular modules.
Definition 2.1. Let q(M) be the total quotient module of an R-module M . Then

(i) M is called a quasi regular module if its total quotient module is vn-regular.
(ii) M is called a wq-regular module if for each m ∈ M, there is an a ∈ R such that

annM (annR(m)) = annM (a).
Example 2.2. (i) Every torsion free module is wq-regular. To see this, take a nonzero
element m ∈M. Then annR(m) = 0, and so annM (annR(m)) = M = annM (0).

(ii) Every simple module is a wq-regular module. Assume M is a simple R-module.
Then Rm = M or Rm = 0 for every m ∈ M. If Rm = 0, then annM (annR(m)) = 0 =
annM (1). Otherwise, we would have annM (annR(m)) = M = annM (0).

(iii) Assume R is a principal ideal ring. Then for any m ∈M, annR(m) = (a) for some
a ∈ R. Then we can conclude that annM (annR(m)) = annM (a). Hence every module over
a principal ideal ring R is wq-regular.
Example 2.3. (i) Every vn-regular module is a quasi-regular module. To see this, take a
vn-regular R-module M. Let m

s ∈ q(M) for some m ∈ M, s ∈ S = R − Z(M). Then note
that RS(m

s ) = (Rm)S . Also we have Rm = xM = x2M for some x ∈ R because M is
vn-regular. Then we can conclude that

RS(m

s
) = (Rm)S = (xM)S = x

1
q(M)

= (x2M)S = (x

1
)2q(M).

Hence, M is quasi regular R-module.
(ii) Every simple module is vn-regular [8, Example 2], hence a quasi regular module by

(i). In particular, the Z-module Zp is a quasi regular module for each prime number p.
(iii) Let n > 1 be a square free integer, i.e, n = p1p2 · · · pr, where pi’s are distinct prime

numbers. Consider the Z-module Zn. Then by [8, Example 5], Zn is vn-regular and thus
a quasi regular module by (i).

(iv) Let n > 1 be a non-square free integer. We may assume that n = pα1
1 pα2

2 . . . pαr
r for

some distinct prime numbers p1, p2, . . . , pr, where α1 ≥ 2 and α2, α3, . . . , αr ≥ 1. Consider
the Z-module Zn. Then note that Z(Zn) = p1Z ∪ p2Z ∪ · · · ∪ prZ is a union of prime
ideals of Z. Now, take S = Z− Z(Zn). Then it is clear that q(Zn) is a finitely generated
multiplication ZS-module. Since Zn is not a reduced ring, by [4, Theorem 2.2] its total
quotient ring is not vn-regular. Now, it can be easily verified that

S = π(S) = {a + nZ : gcd(a, pi) = 1 for each 1 ≤ i ≤ r}
is the set of regular elements of Z/nZ, where π : Z → Z/nZ is the canonical homomor-
phism. Furthermore,

annZS
(q(Zn)) = (annZ(Zn))S = (nZ)S

and also ZS/annZS
(q(Zn)) ∼= (Z/nZ)S . Again by [4, Theorem 2.2], ZS/annZS

(q(Zn)) is
not a vn-regular ring. Then by [8, Theorem 1], q(Zn) is not a vn-regular ZS-module.
Hence, Zn is not a quasi regular Z-module but wq-regular.
Definition 2.4. Let N be a submodule of an R-module M. Then,

(i) N is called a ∗-submodule if N = O(S) = {m ∈M : sm = 0 for some s ∈ S}, where
S ⊆ R is a m.c.s of R.

(ii) (N :R M) is a ∗-ideal if it is a ∗-submodule of the R-module R.

Let N be a submodule of M. Then N is called an m-submodule if N = (N :R M)M. Note
that an R-module M is called a multiplication module if each submodule is an m-submodule
[3].
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Lemma 2.5. (i) Let M be a non-torsion module and N a ∗-submodule of M . Then
(N : M) is a ∗-ideal of R.

(ii) Let N be a prime m-submodule of M in which (N : M) is a ∗-ideal. Then N is a
∗-submodule.

Proof. (i) Assume N is a ∗-submodule of M. Then N = O(S) for some m.c.s S of R. As
M is non-torsion, we get annR(m) = 0 for some m ∈ M. Let r ∈ (N :R M). Then
rm ∈ N , and so s(rm) = 0 for some s ∈ S. As annR(m) = 0, we have sr = 0. Now set
←−−−
O(S) = {x ∈ R : sx = 0 for some s ∈ S}. Note that r ∈

←−−−
O(S), and so (N :R M) ⊆

←−−−
O(S). Let x ∈

←−−−
O(S). Then sx = 0 for some s ∈ S. This implies that s(xM) = 0, and

so xM ⊆ O(S) = N and this yields x ∈ (N :R M). Accordingly, (N :R M) =
←−−−
O(S) is a

∗-ideal of R.
(ii) Since (N : M) is a ∗-ideal, (N :R M) =

←−−−
O(S) = {x ∈ R : sx = 0 for some

s ∈ S}, where S is a m.c.s of R. Now, we will show that N = O(S). Let m ∈ N. Since
N = (N :R M)M, we get m =

n∑
i=1

aimi, ai ∈ (N :R M) and mi ∈ M. As (N :R M) =
←−−−
O(S), there is si ∈ S such that siai = 0 for each i = 1, 2, ..., n. Put s = s1s2...sn. Then
note that sm =

n∑
i=1

(sai)mi = 0, and so m ∈ O(S). Then we conclude that N ⊆ O(S). For

the converse, take m ∈ O(S). Then sm = 0 for some s ∈ S. It is clear that S ∩ (N :R
M) = ∅ since (N :R M) =

←−−−
O(S) and 0 /∈ S. This implies s /∈ (N :R M), and so m ∈ N as

N is a prime submodule. Accordingly, N = O(S). �
A submodule N of an R-module M is said to be a Baer submodule if for each m ∈

N, annM (annR(m)) ⊆ N.

Definition 2.6. A submodule N of an R-module M is said to be an α-submodule if for
each m1, m2 ∈ N with annR(m1) ∩ annR(m2) = annR(m3), we have m3 ∈ N.

Baer ideals and α-ideals are defined as Baer submodules and α-submodules of the R-
module R, respectively. In fact, α-ideals are exactly strong Baer ideals of R [7].

Proposition 2.7. (i) Every ∗-submodule is a Baer submodule.
(ii) Assume M is a module over a reduced ring R satisfying the condition: for each m ∈

M, annR(m) = annR(r) for some r ∈ R. Then every α-submodule is a Baer submodule.
(iii) Every ∗-submodule is an α-submodule.

Proof. (i) Assume that N = O(S) for some m.c.s S of R. Take m ∈ N. Then there is
an s ∈ S so that sm = 0. Let m′ ∈ annM (annR(m)). Then we have annR(m)m′ = 0,
and so sm′ = 0 since s ∈ annR(m). This implies that m′ ∈ O(S) = N. Thus N is a Baer
submodule.

(ii) Let m′ ∈ annM (annR(m)) with m ∈ N. Then annR(m)m′ = 0, and so annR(m) ⊆
annR(m′). By assumption, we have annR(m) = annR(x) and annR(m′) = annR(y) for
some x, y ∈ R. Then annR(x) ⊆ annR(y). Since R is a reduced ring, we have annR(m′) =
annR(y) = annR(xy) = annR(ym). Since N is an α-submodule and ym ∈ N, we get
m′ ∈ N , and so annM (annR(m)) ⊆ N. Accordingly, N is a Baer submodule.

(iii) Let N be a ∗-submodule, i.e, N = O(S) for some m.c.s S of R. Assume that
annR(m) ∩ annR(m′) = annR(m′′) with m, m′ ∈ N and m′′ ∈ M. Then there are s, s′ ∈
S such that sm = s′m′ = 0. Now put t = ss′. Then t ∈ S and t ∈ annR(m)∩annR(m′) and
this yields that tm′′ = 0. Thus we have m′′ ∈ O(S) = N. Accordingly, N is an α-submodule
of M. �

Remember that M is said to be a reduced R-module if for r ∈ R, m ∈ M and rm = 0,
we have rM ∩Rm = 0, or equivalently, r2m = 0 implies rm = 0 [9].
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Proposition 2.8. (i) Let N be a prime m-submodule of a non-torsion module M . Then
N is a ∗-submodule if and only if (N :R M) is a ∗-ideal of R.

(ii) Let M be a non-torsion reduced module over a quasi-regular ring R. Then any prime
m-submodule N of M is a Baer submodule if and only if (N :R M) is a Baer ideal.

Proof. (i) It can be obtained from Lemma 2.5 (i) and (ii).
(ii) Assume (N :R M) is a Baer ideal and N is a prime m-submodule of M. First note

that R is a reduced ring. By [7, Corollary 3], (N :R M) is a ∗-ideal of R. By Lemma 2.5
(ii), N is a ∗-submodule. Then by Proposition 2.7 (i), N is a Baer submodule of M. For the
converse, assume N is a Baer submodule. Let r ∈ (N :R M). As M is non-torsion, we get
annR(m) = 0 for some m ∈M. Then note that rm ∈ N and annR(rm) = annR(r). As N is
a Baer submodule, we can conclude that annM (annR(rm)) = annM (annR(r)) ⊆ N. Now
we will show that, for each ideal I of R, (annM (I) : M) = annR(I). The containment
annR(I) ⊆ (annM (I) : M) always holds. Let x ∈ (annM (I) : M). Then xM ⊆ annM (I),
and so I(xM) = 0. This implies that I(xm) = 0, and so Ix ⊆ annR(m) = 0. Then we
have x ∈ annR(I), which yields (annM (I) : M) = annR(I). Since annM (annR(r)) ⊆ N,
we have (annM (annR(r)) :R M) = annR(annR(r)) ⊆ (N :R M). Thus (N :R M) is a Baer
ideal. �

We now characterize wq-regular modules in terms of ∗-submodules.

Theorem 2.9. Let M be a reduced faithful module. Then M is a wq-regular module if
and only if annM (annR(m)) is a ∗-submodule for each m ∈ T (M).

Proof. Assume that M is a wq-regular module. Take an element m ∈ T (M). Then
annR(m) ̸= 0. As M is a wq-regular module, annM (annR(m)) = annM (r) for some
r ∈ R. Since M is faithful, r ̸= 0. Otherwise, we would have annR(m) = annR(M) = 0, a
contradiction. As M is a reduced module, R is a reduced ring, and so S = {rn : n ∈
N} is an m.c.s of R. Also note that annM (annR(m)) = annM (r) = O(S), and so
annM (annR(m)) is a ∗-submodule. For the converse, assume annM (annR(m)) is a ∗-
submodule for each m ∈ T (M). Let m ∈ M. If annR(m) = 0, then annM (annR(m)) =
M = annM (0). Assume that m ∈ T (M). By assumption, annM (annR(m)) = O(S) for
some m.c.s S of R. This yields rm = 0 for some r ∈ S, which yields annM (annR(m)) ⊆
annM (r). Let m′ ∈ annM (r). Then we have rm′ = 0, and so m′ ∈ O(S) = annM (annR(m)).
Thus annM (annR(m)) = annM (r). �
Proposition 2.10. Let M be a non-torsion wq-regular module. Then R is a wq-regular
ring and for each m ∈M, there is an r ∈ R such that annR(m) = annR(r).

Proof. Let r ∈ R. Since M ̸= T (M), we get annR(m) = 0 for some m ∈ M and
also note that annR(r) = annR(rm). As M is wq-regular, there is an s ∈ R such that
annM (s) = annM (annR(rm)), and so annM (s) = annM (annR(r)). Then we conclude
that

annR(annR(r)) = (annM (annR(r)) :R M)
= (annM (s) :R M)
= annR(s).

Therefore, R is a wq-regular ring. Take an element m∗ ∈ M. As M is wq-regular,
annM (annR(m∗)) = annM (a) for some a ∈ R. This yields annR(annR(m∗)) = annR(a),
and so annR(m∗) = annR(annR(a)) = annR(b) for some b ∈ R because R is a wq-regular
ring. �
Proposition 2.11. Assume M is a non-torsion module and annM (I) is an m-submodule
of M for each ideal I of R. If R is a wq-regular ring and for each m ∈ M, annR(m) =
annR(r) for some r ∈ R, then M is a wq-regular module.
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Proof. Assume R is a wq-regular ring and for each m ∈M, annR(m) = annR(r) for some
r ∈ R. Let m ∈M. Then by assumption, annR(m) = annR(r) for some r ∈ R. As R is wq-
regular, there is an s ∈ R so that annR(annR(r)) = annR(s), and so (annM (annR(r)) :R
M) = annR(s). This yields that (annM (annR(r)) :R M) = (annM (s) :R M). Since
annM (I) is an m-submodule for each ideal I of R, we get

annM (annR(r)) = (annM (annR(r)) :R M)M
= (annM (s) :R M)M
= annM (s).

Accordingly, M is a wq-regular module. �
The following example shows that an R-module satisfying all conditions in Proposition

2.11 may not be a multiplication module.

Example 2.12. Consider a torsion free module but not a multiplication module, e.g, a
vector space V over a field F with dimF (V ) > 1. Note that V is a non-torsion module and
for each 0 ̸= m ∈ V, annF (m) = 0 = annF (1). Also it is easily seen that annV (0) = V and
annV (F ) = 0 are m-submodules of V. But V can not be a multiplication module.

The next Theorem 2.13 characterizes wq-regular modules in terms of wq-regular rings.

Theorem 2.13. Let M be a non-torsion module and annM (I) is an m-submodule for
each ideal I of R. Then the followings are equivalent:

(i) M is wq-regular module.
(ii) R is wq-regular ring and for each m ∈M, there is an r ∈ R such that annR(m) =

annR(r).

Proof. It can be obtained from Proposition 2.10 and Proposition 2.11. �
Definition 2.14. Let M be a finitely generated R-module. Then,

(i) M is said to satisfy the condition (#) if K is a minimal prime submodule, then
K = (K :R M)M.

(ii) M is said to satisfy the condition (P) if
∩

(PM) = (
∩

P )M for all prime ideals
P minimal over annR(M).

(iii) M is said to satisfy the condition (##) if it satisfies the condition (#) and (P).

Remark that a finitely generated multiplication module satisfies the conditions (#) and
(##). But the converse is not true.

Example 2.15. Every finite dimensional vector space satisfies (#) and (##). In partic-
ular, consider the Euclidean Plane R-module R2. Since 0 is a prime submodule, it is a
minimal prime submodule. It is straightforward that the R-module R2 satisfies (#) and
(##). But it is not a multiplication module.

Proposition 2.16. Let M be a finitely generated module and K be a submodule of M .
Assume that M satisfies the condition (#). Then

(i) If P is a prime minimal over annR(M), then PM is a minimal prime submodule.
(ii) If K is a minimal prime submodule, then (K :R M) is a prime ideal minimal over

annR(M).

Proof. (i) Assume P is a prime ideal minimal over annR(M). By [11, Proposition 8],
(PM :R M) = P . By [12, Theorem 3.3], PM is contained in some prime submodule N
with (N :R M) = P . Again by Zorn’s Lemma, PM is contained in N1 where N1 is a prime
submodule minimal over PM such that (N1 :R M) = P . The reader can easily verify that
N1 is a minimal prime submodule.

(ii) Assume K is a minimal prime submodule. Thus (K :R M) is a prime ideal. Since
annR(M) is contained in (K :R M), there is a prime P minimal over annR(M) such that
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P is contained in (K :R M). So PM is contained in K. By (i), PM is a minimal prime
submodule, thereby PM = K. Again (K :R M) = (PM :R M) = P by [11, Proposition
8]. �
Proposition 2.17. Let M be a finitely generated module and I be an ideal containing
annR(M). Assume that every prime submodule minimal over IM is an m-submodule.
Then

(i) If P is minimal over I, then PM is a prime minimal over IM .
(ii) If K is minimal over IM , then (K :R M) is minimal over I.

Proof. The proof is similar to the proof of Proposition 2.16. �
We shall now prove several lemmas that we need.

Lemma 2.18. Let M be a non-torsion wq-regular module over a reduced ring R. Then
M satisfies annihilator condition, i.e, for any m1, m2 ∈M, there is an m3 ∈M such that

annR(m1) ∩ annR(m2) = annR(m3).
Proof. By Proposition 2.10, annR(m1) = annR(r1) and annR(m2) = annR(r2) for some
r1, r2 ∈ R. Since R is a reduced wq-regular ring, it is quasi regular, and so satisfies
annihilator condition, i.e, annR(r1) ∩ annR(r2) = annR(r3) for some r3 ∈ R. Choose
m ∈ M − T (M). Then annR(r3) = annR(r3m). Put m3 = r3m. So we have annR(m1) ∩
annR(m2) = annR(m3). Thus M satisfies annihilator condition. �
Lemma 2.19. Let N be a Baer submodule of an R-module M . If annR(m) = annR(r) with
m ∈ N, then r ∈ (N :R M).
Proof. Since N is a Baer submodule, we have annM (annR(m)) = annM (annR(r)) ⊆ N ,
and so (annM (annR(r)) :R M) ⊆ (N :R M). This yields r ∈ (N :R M). �
Lemma 2.20. Assume that M is a finitely generated module satisfying the condition (P)
and I is an ideal containing annR(M). Assume that every prime submodule minimal over
IM is an m-submodule. Then rad(IM) = rad(I)M.

Proof. rad(IM) =
∩

Nα∈Min(IM)
Nα = [

∩
(Nα :R M)M ] = [

∩
(Nα :R M)]M =

√
IM . �

Definition 2.21. An m-submodule N is said to be a strong m-submodule if all prime
submodules minimal over N are m-submodules.

Note that M is a multiplication module if and only if every submodule is a strong
m-submodule.
Lemma 2.22. Assume that M is a finitely generated reduced module and N is a strong
m-submodule which is also a Baer submodule. Then every prime submodule minimal over
N is a Baer submodule.
Proof. Let N ′ be a minimal over N. Assume annR(m) ⊆ annR(m′) with m ∈ N ′. By
Proposition 2.17, (N ′ :R M) is a minimal over (N :R M). As m ∈ N ′ = (N ′ :R M)M, m =
n∑

i=1
aimi for some ai ∈ (N ′ :R M) and mi ∈M. Then there exist bi /∈ (N ′ :R M) and ni ∈ N

so that ani
i bi ∈ (N :R M). Since N is a Baer submodule, (N :R M) =

√
(N :R M), and

so aibi ∈ (N :R M). Put b = b1b2....bn. Then b /∈ (N ′ :R M) and aib ∈ (N :R M), and so
aibmi ∈ (N :R M)M = N, and we have bm ∈ N. Since annR(bm) ⊆ annR(bm′) and N is
a Baer submodule, bm′ ∈ N ⊆ N ′. As b /∈ (N ′ :R M), we deduce m′ ∈ N ′, and so N ′ is a
Baer submodule. �
Lemma 2.23. Let M be a finitely generated reduced module satisfying the condition (P)
and N a strong m-submodule which is also a Baer submodule. Then N is the intersection
of prime Baer submodules.
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Proof. It can be obtained from Lemma 2.20 and Lemma 2.22. �

Lemma 2.24. Assume M is a non-torsion reduced module and N is a Baer submodule
which is also a prime submodule. Then (N :R M) is a prime and Baer ideal.

Proof. We claim that R is a reduced ring. Assume that a2 = 0 for some a ∈ R. As M
is a non-torsion module, we have annR(m) = 0 for some m ∈ M. Then a2m = 0 and
thereby am = 0 since M is reduced. This yields a = 0, and thus R is a reduced ring. Let
annR(x) = annR(y) for some x ∈ (N :R M) and y ∈ R. Then annR(xm) = annR(x) =
annR(ym). Since xm ∈ N and N is a Baer submodule, we conclude that ym ∈ N. Also
note that m /∈ N. As N is a prime submodule, y ∈ (N :R M). Then by [7, Lemma 1],
(N :R M) is a Baer ideal. Since N is a prime submodule, it follows that (N :R M) is a
Baer and prime ideal. �

Lemma 2.25. Let M be a finitely generated reduced non-torsion wq-regular module. Fur-
ther, assume M satisfies the condition (P). Let N be a strong m-submodule which is also
a Baer submodule. Then N is an α-submodule.

Proof. Assume annR(m1) ∩ annR(m2) = annR(m3) with m1, m2 ∈ N but m3 /∈ N. By
Lemma 2.23, there is a prime Baer submodule N ′ with m3 /∈ N ′. By Proposition 2.10,
annR(mi) = annR(ri) for some ri ∈ R, i = 1, 2, 3. By Lemma 2.19, r1, r2 ∈ (N ′ :R
M). Since R is quasi-regular, there are r′

1, r′
2 ∈ R so that r1r′

1 = 0 = r2r′
2 with annR(r1 +

r′
1) = annR(r2 + r′

2) = 0. Since r′
1r′

2m3 = 0 ∈ N ′ and m3 /∈ N ′, we have either r′
1 ∈ (N ′ :R

M) or r′
2 ∈ (N ′ :R M). By Lemma 2.24, (N ′ :R M) is a Baer ideal and either r1 + r′

1 ∈
(N ′ :R M) or r2 + r′

2 ∈ (N ′ :R M), a contradiction. Thus N is an α-submodule. �

Lemma 2.26. Let M be a non-torsion wq-regular module over a reduced ring R. Then
every α-submodule is a ∗-submodule.

Proof. Let N be an α-submodule. Put S = {r ∈ R : annR(m) = annR(annR(r)) for
some m ∈ N}. Note that by Proposition 2.10, for each m ∈ M, annR(m) = annR(r) for
some r ∈ R. Also by Proposition 2.7, N is a Baer submodule. It can be easily seen
that S is a m.c.s. Let m ∈ N . Then annR(m) = annR(a) for some a ∈ R. As R is a
wq-regular, annR(a) = annR(annR(r)) for some r ∈ R. So annR(m) = annR(annR(r))
and this implies that rm = 0 and r ∈ S. Then we have m ∈ O(S), i.e, N ⊆ O(S). Let
m′ ∈ O(S). Then we have r′m′ = 0 for some r′ ∈ S. Also annR(m) = annR(annR(r′)) for
some m ∈ N. As R is wq-regular, annR(m′) = annR(a′) for some a′ ∈ R. Then r′ ∈
annR(a′), and so annR(annR(a′)) = annR(annR(m′)) ⊆ annR(r′) = annR(annR(m)).
Since m ∈ N and N is a Baer submodule, we have m′ ∈ N and thus N = O(S). Hence
N is a ∗-submodule. �

Lemma 2.27. Let M be an R-module. Assume that every α-submodule is also a ∗-
submodule. Then M is a wq-regular.

Proof. First we prove that, N = annM (annR(m)) is an α-submodule for each m ∈
T (M). Let annR(m′)∩annR(m′′) = annR(m′′′) with m′, m′′ ∈ N. Then we have annR(m) ⊆
annR(m′) and annR(m) ⊆ annR(m′′). This implies that annR(m) ⊆ annR(m′)∩annR(m′′) =
annR(m′′′) and this yields that m′′′ ∈ annM (annR(m′′′)) ⊆ annM (annR(m)) = N. Thus
N is an α-submodule. The rest is similar to Theorem 2.9. �

The following Theorem 2.28 characterizes wq-regular modules in terms of ∗-submodules
and α-submodules.

Theorem 2.28. Let M be a non-torsion reduced module. Then M is a wq-regular module
if and only if every Baer submodule is a ∗-submodule if and only if every α-submodule is
a ∗-submodule.
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Proof. It can be obtained from Lemma 2.26, Lemma 2.27, Proposition 2.7 and Theorem
2.9. �
Definition 2.29. Let N be a submodule of M. Then N is called an annihilator submodule
if annM (annR(N)) = N. In particular, an annihilator ideal is an ideal I of R which is an
annihilator submodule of the R-module R.

Note that a cyclic submodule Rm is an annihilator submodule if and only if it is a Baer
submodule.

Lemma 2.30. Let M be an R-module. Then,
(i) Every annihilator submodule is an α-submodule.
(ii) Let M be a non-torsion module and N an annihilator submodule. Then (N :R M) is

an annihilator ideal.

Proof. (i) Assume N is an annihilator submodule, i.e, N = annM (annR(N)). Suppose
annR(m) ∩ annR(m′) = annR(m′′) for some m, m′ ∈ N. This yields annR(N)m =
0 = annR(N)m′, and so annR(N) ⊆ annR(m) ∩ annR(m′). Then we can conclude that
annR(N) ⊆ annR(m′′), and so m′′ ∈ annM (annR(m′′)) ⊆ annM (annR(N)) = N. So that
N is an α-submodule.

(ii) Let N = annM (annR(N)). Since M is non-torsion, (N :R M) = annR(annR(N)).
Let r ∈ annR(N). Then rN = 0, and so r(N :R M)M = 0. Choose m ∈M − T (M). This
implies r(N :R M)m = 0, and so r(N :R M) = 0 and hence r ∈ annR(N :R M). Then
we can conclude annR(annR(N :R M)) ⊆ annR(annR(N)), and so annR(annR(N :R
M)) ⊆ (N :R M). This implies that (N :R M) = annR(annR(N :R M)). Consequently,
(N :R M) is an annihilator ideal. �

The following Theorem 2.31 characterizes wq-regular modules in terms of annihilator
submodules.

Theorem 2.31. Let M be a non-torsion module over a reduced ring R. Then M is a
wq-regular module if and only if every annihilator submodule is a ∗-submodule.

Proof. Assume M is a wq-regular module. By Lemma 2.30, every annihilator submodule
is an α-submodule, and so by Lemma 2.26, every annihilator submodule is a ∗-submodule.
For the converse, assume every annihilator submodule is a ∗-submodule. Let m ∈ N. Put
N = annM (annR(m)). Then it is easily seen that N is an annihilator submodule and thus
a ∗-submodule. Then there is a m.c.s S of R so that annM (annR(m)) = O(S). The rest
is similar to Theorem 2.9. �

We now study quasi regular modules.

Theorem 2.32. (i) Let M be a non-torsion reduced wq-regular module. Assume that
q(M) is a multiplication module. Then q(M) is a vn-regular module.

(ii) Assume that q(M) is a finitely generated vn-regular module. Then M is a reduced
wq-regular module.

Proof. (i) Let m
t ∈ q(M) and S = R−Z(M). Put N = RS(m

t ). As q(M) is a multiplication
module and N is a finitely generated submodule of q(M), then N = Jq(M) for some finitely
generated ideal J of RS . Then there are a1

s1
, . . . , an

sn
∈ RS such that J = RS(a1

s1
) + . . . +

RS(an
sn

). Now, we will show that RS(a1
s1

) = RS(a1
s1

)2, and so RS(a1
s1

) = RS( e1
t1

) for some
idempotent e1

t1
∈ RS . As M is non-torsion, we have ann(m∗) = 0 for some m∗ ∈M. Since

M is wq-regular, annM (annR(a1m∗)) = annM (b1) and thereby annR(annR(a1m∗)) =
annR(b1). Note that annR(a1m∗) = annR(a1), and so annR(annR(a1)) = annR(b1). As
M is a reduced non-torsion module and M is a wq-regular module, by Proposition 2.10
and [4, Theorem 2.1], R is quasi-regular and thus a1 + b1 is a regular element and a1x =
a2

1, where x = a1 + b1. Now we will show that x ∈ S. Let m′ ∈M such that xm′ = 0. Since
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M is wq-regular, M satisfies the condition annR(m′) = annR(r) for some r ∈ R, and
so x ∈ annR(m′) = annR(r) and this yields that xr = 0. Since x is regular, r = 0,
and so annR(r) = R = annR(m′) and thus m′ = 0 and this yields x ∈ S. This implies
that RS(a1

s1
)2 = RS(a2

1
s2

1
) = RS(a1x

s2
1

) = RS(a1
s1

x
s1

) = RS(a1
s1

) since x
s1

is a unit element of
RS . Thus we have RS(a1

s1
) = RS( e1

t1
) for some idempotent e1

t1
∈ RS . Similarly, we get

RS(ai
si

) = RS( ei
ti

) for some idempotent ei
ti
∈ RS , and so J = RS( e

s) for some idempotent
e
s ∈ RS . Note that e

s is weak idempotent RS-module q(M). Also RS(m
t ) = Jq(M) =

e
sq(M). Thus q(M) is a vn-regular module.

(ii) By [8, Lemma 10], q(M) is a reduced RS-module, where S = R − Z(M). Then
it is easily seen that M is reduced. Take an element m ∈ M. As q(M) is a finitely
generated vn-regular RS-module, we deduce RS(m

1 ) = e
sq(M) for some weak idempotent

e
s ∈ RS . Note that (1 − e

s) e
sq(M) = (1 − e

s)RS(m
1 ) = 0, and so (1 − e

s)m
1 = 0 and this

yields (1 − e
s) ∈ annRS

(m
1 ) and thus we have annMS

(annRS
(m

1 )) ⊆ annMS
(1 − e

s). Let
m∗

s∗ ∈ annMS
(1 − e

s). Then we have m∗

s∗ = e
s

m∗

s∗ . Take an element r′

s′ ∈ annRS
(m

1 ). Then
we conclude that r′

s′
e
sq(M) = 0. Note that m∗

s∗ = e
s

m∗

s∗ ∈ e
sq(M), and so r′

s′
m∗

s∗ = 0 and this
yields m∗

s∗ ∈ annMS
(annRS

(m
1 )). Then we conclude that

annMS
(annRS

(m

1
)) = (annM (annR(m)))S

= annMS
(1− e

s
)

= (annM (s− e))S .

Then one can easily show that annM (annR(m)) = annM (s − e). Accordingly, M is a
wq-regular module. �

Compare the following result with [4, Theorem 2.1 ].
Corollary 2.33. Let M be a non-torsion module in which q(M) is a finitely generated
multiplication module. The followings are equivalent:

(i) M is a quasi regular module.
(ii) M is a reduced wq-regular module.

Proposition 2.34. Assume f : M → M ′ is a monomorphism, where M ′ is a wq-regular
module. Then M is wq-regular.
Proof. Take m ∈M. As M ′ is wq-regular, annM ′(annR(f(m)) = annM ′(r) for some r ∈
R. Thus we have rf(m) = f(rm) = 0, and so rm = 0. This yields that annM (annR(m)) ⊆
annM (r). Let n ∈ annM (r). Then we have rn = 0, and so rf(n) = f(rn) = 0, i.e,
f(n) ∈ annM ′(r) = annM ′(annR(f(m)). Thus we conclude that annR(f(m))f(n) = 0,
and so annR(m) ⊆ annR(n). This yields that n ∈ annM (annR(n)) ⊆ annM (annR(m)).
Accordingly, we have annM (annR(m)) = annM (r). �
Corollary 2.35. Every submodule of a wq-regular module is wq-regular.
Proposition 2.36. Assume Mi is an Ri-module for each i ∈ ∆. Then M =

∏
i∈∆

Mi is a

wq-regular R =
∏

i∈∆
Ri-module if and only if Mi is a wq-regular Ri-module for each i ∈ ∆.

Proof. Assume that Mi is a wq-regular Ri-module for each i ∈ ∆. Let (mj)j∈∆ ∈M and
(rj)j∈∆ ∈ R. For every j ∈ ∆, annMj (annRj (mj)) = annMj (rj) for some rj ∈ Rj . Also
note that

annM (annR((mj)j∈∆) =
∏

j∈∆
annMj (annRj (mj)).

Thus we conclude that
annM (annR((mj)j∈∆) =

∏
j∈∆

annMj (rj) = annM ((rj)j∈∆).
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Accordingly, M is wq-regular. For the converse, assume M is wq-regular. Let mi ∈
Mi. Put the sequence

(nj)j∈∆ =
{

mi ; j = i

0 ; j ̸= i

Since M is wq-regular, we have
annM (annR((nj)j∈∆)) =

∏
j∈∆

annMj (annRj (nj))

= annM ((rj)j∈∆)
=

∏
j∈∆

annMj (rj)

for some (rj)j∈∆ ∈ R. This implies that annMi(annRi(mi)) = annMi(ri) for some ri ∈
Ri which shows that Mi is a wq-regular Ri-module. �

3. Trivial extension of weakly quasi regular modules
This section deals with trivial extension (idealization) of wq-regular modules. The triv-

ial extension R ∝M = R⊕M of an R-module M is a commutative ring with componen-
twise addition and multiplication (a, m)(b, m′) = (ab, am′ + bm) for any a, b ∈ R; m, m′ ∈
M [13]. Also the nilradical of R ∝M is characterized as

√
0R∝M =

√
0 ∝M

in [1] and [6]. So one can easily see that R ∝M is reduced if and only if R is reduced and
M = 0 and hence R ∝M ∼= R.

Proposition 3.1. R ∝ M is a quasi regular ring if and only if M = 0 and R is a quasi
regular ring.
Proof. Follows from the fact that all quasi regular rings are reduced rings. �
Proposition 3.2. (i) Let R ∝M be a wq-regular ring. Then M is a wq-regular module.

(ii) Let M be a non-torsion module in which annM (I) is an m-submodule for all ideals
I of R. If R ∝M is a wq-regular ring, then R is a wq-regular ring.
Proof. (i) Take an element m ∈ M. Since R ∝ M is wq-regular, we can conclude
ann(ann(0, m)) = ann(r, m′) for some r ∈ R, m′ ∈ M. This yields (0, m)(r, m′) =
(0, rm) = (0, 0), and so r ∈ annR(m). This yields that annM (annR(m)) ⊆ annM (r).
Let n ∈ annM (r). Then we have rn = 0 and thereby (r, m′)(0, n) = (0, 0), that is, (0, n) ∈
ann(r, m′) = ann(ann(0, m)). Also note that ann(0, m) = annR(m) ∝ M. Then we have
(0, n) ∈ ann(annR(m) ∝ M), and so annR(m)n = 0. This gives n ∈ annM (annR(m)).
Hence we have annM (annR(m)) = annM (r), i.e, M is a wq-regular module.

(ii) Let a ∈ R. Then ann(a, 0) = {(r, m′) : (a, 0)(r, m′) = (ar, am′) = (0, 0)} =
annR(a) ∝ annM (a). Then (s, m′) ∈ ann(ann(a, 0)) if and only if (s, m′) ∈ ann(annR(a) ∝
annM (a))) if and only if sannR(a) = 0 and sannM (a) + annR(a)m′ = 0. As M is non-
torsion, we can conclude (annM (a) : M) = annR(a), and so sannR(a) = 0 implies that
s(annM (a) : M) = 0. Thus by assumption, we also get sannM (a) = 0. Then we get
annR(a)m′ = 0 and note that

ann(ann(a, 0)) = annR(annR(a)) ∝ annM (annR(a)).
Since R ∝ M is wq-regular, we have ann(ann(a, 0)) = ann(s, m) for some s ∈ R, m ∈
M. Thus we get (a, 0)(s, m) = (sa, am) = (0, 0). This yields that s ∈ ann(a), and so
annR(annR(a)) ⊆ annR(s). Now take t ∈ annR(s). Then st = 0. Now choose m∗ ∈
M − T (M). Then note that (s, m)(0, tm∗) = (0, 0), and so (0, tm∗) ∈ ann(s, m). This
yields that tm∗ ∈ annM (annR(a)), and so annR(a)tm∗ = 0. Therefore we conclude that
annR(a)t = 0, and so t ∈ annR(annR(a)). Hence we get annR(annR(a)) = annR(s), that
is, R is a wq-regular ring. �
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Proposition 3.3. Let R be a wq-regular ring and let M be a non-torsion reduced module
satisfying the condition annR(m) = annR(r). Further assume that annM (I) is an m-
submodule of M for each ideal I of R. Then R ∝M is a wq-regular ring.

Proof. Let (r, m) ∈ R ∝ M. Then note that (s, m′) ∈ ann(r, m) implies that sr = 0 and
sm + rm′ = 0. So we conclude that s(sm + rm′) = s2m = 0. Since M is reduced, we can
conclude sm = 0, and hence rm′ = 0. Thus we deduce

ann(r, m) = (annR(r) ∩ annR(m)) ∝ annM (r).

Since R is quasi-regular, by assumption we have annR(m) = annR(a) and so annR(r) ∩
annR(a) = annR(b) for some b ∈ R by [5, Theorem 3.4]. So ann(r, m) = annR(b) ∝
annM (r). Then (s, m′) ∈ ann(ann(r, m)) implies that sannR(b) = 0 and sannM (r) +
annR(b)m′ = 0. Thus we conclude that s(sannM (r)+annR(b)m′) = 0, and so s2annM (r) =
0. Since M is a reduced module, sannM (r) = 0, and thus annR(b)m′ = 0. So it follows
that

ann(ann(r, m)) = (annR(annR(b)) ∩ annR(annM (r))) ∝ annM (annR(b)).

By assumption, t ∈ annR(annM (r)) if and only if t(annM (r)) = t(annM (r) : M)M =
t(annR(r))M = 0 if and only if t ∈ annR(annR(r)). Since R is quasi-regular, annR(annR(b)) =
annR(x) and also annR(annR(r)) = annR(y) for some x, y ∈ R. Also note that
annM (annR(b)) = annM (x). Now choose m∗ ∈ M − T (M). Then we have annR(y) =
annR(ym∗), and so

ann(ann(r, m)) = (annR(x) ∩ annR(ym∗)) ∝ annM (x)
= ann(x, ym∗).

Accordingly, R ∝M is a wq-regular ring. �

Theorem 3.4. Let M be a non-torsion reduced module in which annM (I) is an m-
submodule of M for all ideals I of R. Then R ∝ M is a wq-regular ring if and only
if M is a wq-regular module.

Proof. It can be obtained from Proposition 3.3 and Proposition 3.2. �

4. Extension of weakly quasi regular modules
In this section, we study polynomial modules and power series modules. Let M be

an R-module and let M [X] denote the set of all polynomials in indeterminate X with
coefficients in R. Then M [X] becomes an R[X]-module. Note that if M is a reduced
module, then for any m(X) = m0 + m1X + ... + mnXn ∈M [X], where mi ∈M,

annR[X](m(x)) = [
n∩

i=0
annR(mi)][X].

Proposition 4.1. Assume M is a reduced non-torsion wq-regular module. Then M [X] is
a wq-regular R[X] module.

Proof. Let m(X) = m0 + m1X + ... + mnXn ∈M [X]. Since M is reduced, we have
annR[X](m(x)) = [

n∩
i=0

annR(mi)][X]. As M is a non-torsion reduced module, R is a reduced

ring. To see this, take an element a2 = 0. As M is a non torsion module, there is an
m∗ ∈ M with annR(m∗) = 0. Then note that a2m∗ = 0. As M is a reduced module, we
get am∗ = 0, and thus a = 0. As M is a non-torsion wq-regular module over a reduced ring
R, by Lemma 2.18, M satisfies annihilator condition, so that

n∩
i=0

annR(mi) = annR(m′) for
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some m′ ∈M. Thus annR[X](m(X)) = (annR(m′))[X]. Also it can be easily verified that
annM [X](I[X]) = (annM (I))[X] for any ideal I of R. Then we conclude that

annM [X](annR[X](m(X)) = annM [X]((annR(m′))[X])
= [annM (annR(m′))][X].

Since M is a quasi regular module, there is an a ∈ R so that annM (annR(m′)) = annM (a),
and so

annM [X](annR[X](m(X)) = (annM (a))[X].
Put r(X) = a ∈ R[X]. Then we have

annM [X](annR[X](m(X)) = annM [X](r(X)).

Hence M [X] is a wq-regular R[X] module. �

Proposition 4.2. Assume M is a reduced non-torsion R-module in which annM (I) is an
m-submodule for each ideal I of R. Further assume that M satisfies annihilator condition
and for each m ∈M, annR(m) = annR(r) for some r ∈ R. If M [X] is a wq-regular R[X]
module, then M is a wq-regular R-module.

Proof. Let m ∈M. Put m(X) = m ∈M [X]. As M [X] is a wq-regular R[X] module, we
can conclude

annM [X](annR[X](m(X)) = [annM (annR(m))][X] = annM [X](r(X)),

where r(X) = r0 + r1X + ... + rkXk, ri ∈ R. Note that

annM [X](r(X)) = [
k∩

i=0
annM (ri)][X].

Now we will show that for any a, b ∈ R there is c ∈ R such that

annM (a) ∩ annM (b) = annM (c).

Since M is non-torsion, we have ann(m∗) = 0 for some m∗ ∈ M , and so annR(a) =
annR(am∗), annR(b) = annR(bm∗). By annihilator condition, annR(am∗)∩ annR(bm∗) =
annR(m′) for some m′ ∈ M. By assumption, there is an c ∈ R so that annR(m′) =
annR(c). Since M is non-torsion,

(annM (Ra + Rb) :R M) = annR(Ra + Rb)
= annR(a) ∩ annR(b)
= annR(am∗) ∩ annR(bm∗)
= annR(c) = (annM (c) :R M).

This implies that

(annM (Ra + Rb) :R M)M = annM (Ra + Rb)
= annM (a) ∩ annM (b)
= (annM (c) :R M)M
= annM (c).

Then for r0, r1, ..., rk ∈ R,
k∩

i=0
annM (ri) = annM (y) for some y ∈ R. This yields

annM [X](annR[X](m(X)) = [annM (annR(m))][X]
= (annM (y))[X].

Thus we have annM (annR(m)) = annM (y). Accordingly, M is a wq-regular R-module. �
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Let M be an R-module and let M [[X]] denote the formal power series module over
R[[X]].

Definition 4.3. An R-module M is said to satisfy the countably annihilator condition if
for each family of {mn}n∈N, then

∞∩
i=1

annR(mi) = annR(m) for some m ∈M.

Proposition 4.4. Assume M is a reduced wq-regular module satisfying the countably
annihilator condition. Then M [[X]] is a wq-regular R[[X]]-module.

Proof. Let f(X) =
∞∑

i=0
miX

i ∈ M [[X]]. As M is a reduced module, annR[[X]](f(X)) =

(
∞∩

i=0
annR(mi))[[X]]. As M satisfies the countably annihilator condition, annR[[X]](f(X)) =

(annR(m))[[X]] for some m ∈M . This yields
annM [[X]](annR[[X]](f(X))) = annM [[X]]((annR(m))[[X]]).

It is obvious that annM [[X]]((annR(m))[[X]]) = (annM (annR(m))[[X]]. As M is wq-
regular, annM (annR(m)) = annM (a) for some a ∈ R. Thus

annM [[X]](annR[[X]](f(X))) = (annM (a))[[X]].

Now put g(X) = a ∈ R[[X]] and note that (annM (a))[[X]] = annM [[X]](g(X)). Accordingly,
M [[X]] is a wq-regular R[[X]]-module. �

Proposition 4.5. Assume M is a reduced non-torsion R-module in which annM (I) is an
m-submodule for each ideal I of R. Further, suppose M satisfies the countably annihilator
condition and for each m ∈ M, annR(m) = annR(r) for some r ∈ R. If M [[X]] is a
wq-regular R[[X]]-module, then M is a wq-regular R-module.

Proof. Let m ∈ M . Put f(X) = m ∈ M [[X]]. Then annM [[X]](annR[[X]](f(X))) =

annM [[X]](g(X)) for some g(X) =
∞∑

i=0
aiX

i, where ai ∈ R. This implies that

(annM (annR(m)))[[X]] = (
∞∩

i=0
annM (ai))[[X]]

. As M is non-torsion, we get m∗ ∈ M − T (M). Then
∞∩

i=0
annR(aim

∗) = annR(m′) for

some m′ ∈ M by the countably annihilator condition. By assumption, there is b ∈ R so
that annR(m′) = annR(b), and so

(annM (
∞∑

i=0
Rai) :R M) = annR(

∞∑
i=0

Rai)

= annR(
∞∑

i=0
Raim

∗) = annR(m′)

= annR(b) = (annM (b) :R M).
Then

(annM (
∞∑

i=0
Rai) :R M)M =

∞∩
i=0

annM (ai)

= (annM (b) :R M)M = annM (b).
This implies that

annM [[X]](annR[[X]](f(X))) = (annM (annR(m)))[[X]]
= (annM (b))[[X]],

and so annM (annR(m)) = annM (b). This gives that M is a wq-regular R-module. �
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Theorem 4.6. Let M be a reduced non-torsion module in which annM (I) is an m-
submodule for each ideal I of R. Assume M satisfies the countably annihilator condition
and for each m ∈ M, annR(m) = annR(r) for some r ∈ R. Then the following are
equivalent:

(i) M is a wq-regular R-module.
(ii) M [X] is a wq-regular R[X]-module.
(iii) M [[X]] is a wq-regular R[[X]]-module.

Proof. (i)⇔ (ii) It can be obtained from Proposition 4.1 and Proposition 4.2.
(i)⇔ (iii) It can be obtained from Proposition 4.4 and Proposition 4.5. �
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Abstract
For a positive integer N and A, a subset of Q, let A-KS(N) denote the set of α =
α1
α2

∈ A\{0, N}, where α2r − α1 divides α2N − α1 for every prime divisor r of N . The
set A-KS(N) is called the set of N -Korselt bases in A. Let p, q be two distinct prime
numbers. In this paper, we prove that each pq-Korselt base in Z\{q + p − 1} generates
at least one other in Q-KS(pq). More precisely, we prove that if (Q\Z)-KS(pq) = ∅, then
Z-KS(pq) = {q + p − 1}.
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1. Introduction
A Carmichael number [2] N is a positive composite integer that satisfies aN ≡ 1

(mod N) for any a with gcd(a, N) = 1, it follows that a Carmichael number N meets
Korselt’s criterion:

Korselt’s criterion 1.1 ([10]). A squarefree composite integer N > 1 is a Carmichael
number if and only if p − 1 divides N − 1 for all prime factors p of N .

In [1, 3], Bouallègue-Echi-Pinch introduced the notion of an α-Korselt number, where
α ∈ Z\{0}, as a generalized Carmichael number when α = 1 as follows:

Definition 1.2. An α-Korselt number is a number N such that p − α divides N − α for
all prime divisors p of N .

The α-Korselt numbers for α ∈ Z have been thoroughly investigated in recent years,
especially in [1, 3, 4, 8, 9]. In [5], Ghanmi proposed another generalization for α = α1

α2
∈

Q\{0} by setting the following definitions:

Definition 1.3. Let N ∈ N\{0, 1}, α = α1
α2

∈ Q\{0} with gcd(α1, α2) = 1 and A a subset
of Q. Then,

(1) N is said to be an α-Korselt number (Kα-number) if N ̸= α and α2p − α1 divides
α2N − α1 for every prime divisor p of N .
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(2) By the A-Korselt set of a number N (or the Korselt set of N over A), we mean
the set A-KS(N) of all β ∈ A\{0, N} such that N is a Kβ-number.

(3) If A-KS(N) has a finite number of elements, then its cardinality is the A-Korselt
weight of N . Otherwise, if the cardinality is infinite, we say that N has an infinite
weight over A. The A-Korselt weight of N is simply denoted by A-KW(N).

Carmichael numbers are exactly the 1-Korselt squarefree composite numbers. Further-
more, in [6, 7], Ghanmi defined the notion of Korselt bases as follows:

Definition 1.4. Let N ∈ N\{0, 1}, α ∈ Q\{0} and B be a subset of N. Then,
(1) α is called an N -Korselt base (KN -base) if N is a Kα-number.
(2) By the B-Korselt set of base α (or the Korselt set of base α over B), we mean the

set B-KS(B(α)) of all M ∈ B such that α is a KM -base.
(3) If B-KS(B(α)) has a finite number of elements, then its cardinality is called the

B-Korselt weight of base α. Otherwise, if the cardinality is infinite, we say that
α has an infinite weight over B. The B-Korselt weight of base α is denoted by
B-KW(B(α)).

The set Q-KS(N) is simply called the rational Korselt set of N . In this paper, we are
concerned only with a squarefree composite number N .

After extending the notion of a Korselt number to Q, and in order to study the Korselt
numbers and their Korselt sets over Q, it is natural to ask about the existence of connec-
tions between the Korselt bases of a number N over the sets Z and Q\Z. The answer is
affirmative for a squarefree composite number N with two prime factors. Indeed, when we
look deeply at a list of Korselt numbers and their Korselt sets (see Table 1 and Table 2),
we note the absence of any squarefree composite number N with two prime factors such
that Z-KW(N) ≥ 2 and (Q\Z)-KS(N) = ∅. This finding inspired us to claim that such a
relation between Z-KS(N) and (Q\Z)-KS(N) exists. The case when N is squarefree and
has more than two prime factors remains untreated. To explain this (these) connection(s),
we organize our work as follows. In Section 2, we give some numerical data showing con-
nections between the Korselt bases of N over Z and (Q\Z). In Section 3, we prove that
for each squarefree composite number N with two prime factors, some N -Korselt bases
in Z generate others in the same set Z-KS(N). Finally, in Section 4, we show that for
each squarefree composite number N = pq with two prime factors, each N -Korselt base
in Z\{q + p − 1} generates a Korselt base in Q\Z.

2. Preliminaries
The following data illustrate some cases of Korselt numbers and their Korselt sets.

Table 1 provides all N = pq and Z-KS(N) with p, q primes and p < q ≤ 53 for which
(Q\Z)-KS(N) = ∅. Table 2 lists, for each integer 1 ≤ i ≤ 7, the smallest squarefree
composite number Ni = pq with p, q primes, p < q < 103 such that Z-KW(Ni) = i and
(Q\Z)-KW(Ni) is the smallest.

N Z-KS(N) N Z-KS(N) N Z-KS(N)
2 × 11 {12} 2 × 31 {32} 5 × 43 {47}
2 × 13 {14} 3 × 31 {33} 2 × 47 {48}
2 × 17 {18} 2 × 37 {38} 3 × 47 {49}
2 × 19 {20} 3 × 37 {39} 5 × 47 {51}
3 × 19 {21} 2 × 41 {42} 13 × 47 {59}
2 × 23 {24} 3 × 41 {43} 2 × 53 {54}
3 × 23 {25} 5 × 41 {45} 3 × 53 {55}
2 × 29 {30} 2 × 43 {44} 5 × 53 {57}
3 × 29 {31} 3 × 43 {45}

Table 2. Z-KS(N) where N = pq; p, q primes , p < q ≤ 53 and (Q\Z)-KS(N) = ∅.
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i Ni Z-KS(Ni) (Q\Z)-KW(Ni)
1 2 × 11 {12} 0
2 2 × 7 {6, 8} 1
3 5 × 19 {15, 20, 23} 2
4 31 × 59 {29, 60, 62, 89} 5
5 67 × 97 {64, 75, 91, 99, 163} 12
6 757 × 881 {755, 773, 797, 845, 867, 1637} 17
7 37 × 61 {25, 43, 49, 52, 57, 67, 97} 22

Table 2. The smallest Ni = pq with p, q primes, p < q < 103 such that Z-KW(Ni) = i and
(Q\Z)-KW(Ni) is the smallest.

Based on Table 1 and Table 2, we remark that there is no squarefree composite number
N with two prime factors such that Z-KW(N) ≥ 2 and (Q\Z)-KS(N) = ∅. This leads to
the following result:

Theorem 2.1 (Main Theorem). Let N = pq. If (Q\Z)-KS(N) = ∅, then Z-KS(N) =
{q + p − 1}.

Moreover, it appears that for numbers N that satisfy Theorem 2.1, the sets Z-KS(N)
and (Q\Z)-KS(N) are somewhat related. To highlight this relation, we show that each
N -Korselt base in Z\{p+q−1} induces at least one other N -Korselt base in (Q\Z)-KS(N).
Hence, the main theorem is deduced immediately.

For the rest of this paper, let p < q be two primes and let N = pq and i, s be the
integers given by the Euclidian division of q by p: q = ip + s with s ∈ {1, . . . , p − 1}.

Our work is based on the following result given by Echi-Ghanmi [4].

Theorem 2.2. [4, Theorem 14] Let N = pq such that p < q. Then, the following properties
hold:

(1) If q > 2p2, then Z-KS(N) = {p + q − 1}.
(2) If p2 − p < q < 2p2 and p ≥ 5, then

Z-KS(N) ⊆ {ip, p + q − 1}.

(3) If 4p < q < p2 − p, then

Z-KS(N) ⊆ {ip, (i + 1)p, p + q − 1}.

(4) Suppose that 3p < q < 4p. Then, the following conditions are satisfied:
(a) If q = 4p − 3, then the following properties hold:

(i) If p ≡ 1 (mod 3), then

Z-KS(N) = {4p, q − p + 1, p + q − 1}.

(ii) If p ̸≡ 1 (mod 3), then

Z-KS(N) = {q − p + 1, p + q − 1}.

(b) If q ̸= 4p − 3, then

Z-KS(N) ⊆ {3p, 4p, p + q − 1}.

(5) If 2p < q < 3p, then

Z-KS(N) ⊆ {2p, 3p, 3q − 5p + 3,
2p + q − 1

2
, q − p + 1, p + q − 1}.

(6) If p < q < 2p, then

Z-KS(N) ⊆ {q + p − 1} ∪ [2, 2p] \ {p}.

Next, we establish the following two results to serve us for the rest of the paper:
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Lemma 2.3. For each N = pq with p < q and both being prime, the set Z-KS(N) is
characterized by Theorem 2.2, except for (p, q) ∈ {(3, 13), (3, 17)}, where Z-KS(3 × 13) =
{12, 15} and Z-KS(3 × 17) = {15, 19}.

Proof. Let N = pq with p < q both being prime.
- If p ≥ 5, then Z-KS(N) is simply given by one of the six cases of Theorem 2.2.
- Suppose that p = 2. If q < 8 = 4p (resp. q > 8 = 2p2), then Z-KS(N) is completely

determined by one of states 4, 5, and 6 (resp. state 1) of Theorem 2.2.
- Similarly, for the case p = 3, if q < 4p = 12 (resp. q > 2p2 = 18), then Z-KS(N)

is determined by one of cases 4, 5, and 6 (resp. case 1) of Theorem 2.2. Therefore, the
remaining values for the prime number q are 13 and 17, where Z-KS(3 × 13) = {12, 15}
and Z-KS(3 × 17) = {15, 19} (see [4, Proposition 15]). �

Proposition 2.4. [9, Corollary 3.6] Let p and q be two prime numbers such that p < q
and N = pq. If α ∈ Z-KS(N), then the following statements hold:

(1) gcd(α, q) = 1.
(2) 2 ≤ q − p + 1 ≤ α ≤ p + q − 1.
(3) If p divides α, then α ∈ {ip, (i + 1)p}.

3. Connections in Z-KS(N)
In the following result, we prove that certain N -Korselt bases in Z induce others in the

same set Z-KS(N).

Proposition 3.1. Suppose that 2p < q < 3p. Then, the following statements hold:

(1) 2p + q − 1
2

∈ Z-KS(N) if and only if q − p + 1 ∈ Z-KS(N).
(2) If 3q − 5p + 3 ∈ Z-KS(N), then q − p + 1 ∈ Z-KS(N).

Proof. First, since q = 2p + s, the integer s must be odd, and therefore, s < p − 1.
(1) We have α = 2p + q − 1

2
∈ Z-KS(N) if and only if

p − α = −q + 1
2

| p(q − 1)

q − α = s + 1
2

| q(p − 1)

which is equivalent to s + 1 divides 2q(p − 1).
However, we have gcd(q, s + 1) = 1 (as s < p − 1 < q − 1) and 2(p − 1) = q − 1 − (s + 1).

Therefore, we conclude that

2p + q − 1
2

∈ Z-KS(N) if and only if s + 1 | q − 1. (3.1)

Similarly, β = q − p + 1 ∈ Z-KS(N) is equivalent to{
p − β = −s − 1 | p(q − 1)

q − β = p − 1 | q(p − 1)
which is equivalent to s + 1 divides p(q − 1).
However, we know that gcd(p, s + 1) = 1 since s < p − 1, which shows that

q − p + 1 ∈ Z-KS(N) if and only if s + 1 | q − 1. (3.2)

Therefore, by (3.1) and (3.2), we conclude that
2p + q − 1

2
∈ Z-KS(N) if and only if q − p + 1 ∈ Z-KS(N).
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(2) Suppose that γ = 3q − 5p + 3 ∈ Z-KS(N). Then,

p − γ = 6p − 3q − 3 = −3(s + 1) | p(q − 1). (3.3)

We consider two cases:
• If p ̸= 3, then since s < p − 1, we have gcd(p, 3(s + 1)) = 1. Hence, by (3.3), 3(s + 1)

divides q − 1. Thus, by (3.2), q − p + 1 ∈ Z-KS(N).
• Now, assume that p = 3. First, because 1 ≤ s ≤ p − 2 = 1, we know that s = 1,

q = 2p + s = 7 and q − p + 1 = 5. Therefore, we can easily check that N = 3 × 7 = 21 is
a 5-Korselt number. �

Corollary 3.2. If q > 2p and q − p + 1 /∈ Z-KS(N), then

Z-KS(N) ⊆ {ip, (i + 1)p, p + q − 1}.

Proof. By Theorem 2.2 and Lemma 2.3, the solution is straightforward when q > 3p.
Now, suppose that 2p < q < 3p (i.e., i = 2). Let β ∈ Z-KS(N). Then, again by

Theorem 2.2, we obtain

β ∈ {2p, 3p, 3q − 5p + 3,
2p + q − 1

2
, q − p + 1, p + q − 1}.

However, since q − p + 1 /∈ Z-KS(N), using Proposition 3.1, we obtain β ̸= 3q − 5p +
3,

2p + q − 1
2

. Thus, β ∈ {2p, 3p, p + q − 1}, as desired. �

4. Connections between Z-KS(N) and (Q\Z)-KS(N)
The following result concerns the case when q < 2p.

Proposition 4.1. Suppose that q < 2p and β ∈ Z\{0} with β ̸= p + q − 1 and gcd(p, β) =
gcd(pq, p + q − β) = 1. Then, β ∈ Z-KS(N) if and only if qp

p + q − β
∈ (Q\Z)-KS(N).

Proof. Since gcd(p, β) = gcd(pq, p + q − β) = 1, we have

β ∈ Z-KS(N) ⇔
{

p − β | q − 1
q − β | p − 1

⇔
{

(p + q − β)p − pq = (p − β)p | p(q − 1)
(p + q − β)q − pq = (q − β)q | q(p − 1)

⇔ qp

p + q − β
∈ Q-KS(N).

Because β /∈ {p, q}, p+q−β /∈ {p, q}. Moreover, if β ∈ Z-KS(N), then since p < q < 2p,
we have 2 ≤ β < 2p by Theorem 2.2; hence, p+q−β ≥ 2p−β+1 ≥ 2, that is, p+q−β ̸= 1.
Therefore, qp

p + q − β
/∈ Z, and we conclude that qp

p + q − β
∈ (Q\Z)-KS(N). �

The next two results concern the case when p divides β.

Proposition 4.2. If ip ∈ Z-KS(N), then there exists k1 ∈ N\{0, 1} such that (k1 + 1)q
ik1 + 1

∈
(Q\Z)-KS(N) .

Proof. Let ip ∈ Z-KS(N). Then,{
p − ip | pq − ip = p(q − 1) + p − ip
q − ip | pq − ip = q(p − 1) + q − ip.
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As gcd(s, q) = 1, this is equivalent to{
i − 1 | q − 1

s | p − 1
and hence, there exist k1 and k2 in Z such that{

q − 1 = k2(i − 1)
p − 1 = k1s.

As q = ip + s, k1q = ik1p + k1s = ik1p + p − 1, and therefore,
(k1 + 1)q − (ik1 + 1)p = q − 1. (4.1)

Let k = gcd(k1 + 1, ik1 + 1), α
′
1 = k1 + 1

k
and α2 = ik1 + 1

k
. Therefore, using (4.1), we

obtain
α

′
1q − α2p = q − 1

k
. (4.2)

Now, let us prove that α2 − α
′
1 divides p − 1. First, note that

α2 − α
′
1 = k1

k
(i − 1). (4.3)

Since q−1 = (i−1)p+(k1+1)s and i−1 | q−1, we deduce that i−1 | (k1+1)s. Furthermore,

because gcd(k1 + 1, i − 1) = gcd(k1 + 1, ik1 + 1) = k, it follows that m = i − 1
k

| k1 + 1
k

s.

However, gcd
(

k1 + 1
k

,
i − 1

k

)
= 1; hence, m | s. Therefore, we conclude by (4.3) that

α2 − α
′
1 = k1m | k1s = p − 1. (4.4)

Now, by (4.2) and (4.4), we obtain{
α2p − α

′
1q | q − 1

α2 − α
′
1 | p − 1.

Thus,

α = α
′
1q

α2
= (k1 + 1)q

ik1 + 1
∈ Q-KS(N).

As gcd(α′
1, α2) = 1, gcd(q, α2) = 1 by (4.2) and α2 ̸= 1, we conclude that (k1 + 1)q

ik1 + 1
∈

(Q\Z)-KS(N). �
In the following result, we need (i + 1)p ̸= q + p − 1 (i.e., s > 1) to show that (i + 1)p

generates an element in Q\Z)-KS(N).

Proposition 4.3. If (i + 1)p ∈ Z-KS(N) and s > 1, then there exists k1 ∈ N\{0, 1} such

that (k1 − 1)q
(i + 1)k1 − 1

∈ (Q\Z)-KS(N).

Proof. If (i + 1)p ∈ Z-KS(N), then{
p − (i + 1)p | pq − (i + 1)p = p(q − 1) + p − (i + 1)p
q − (i + 1)p | pq − (i + 1)p = q(p − 1) + q − (i + 1)p.

This is equivalent to {
i | q − 1

p − s | p − 1
and hence, there exist k1 and k2 in N\{0} such that{

q − 1 = k2i
p − 1 = k1(p − s).
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First, as s > 1, it follows that k1 > 1. Since q = (i+1)p+s−p, k1q = (i+1)k1p−p+1.
Therefore, we can write

((i + 1)k1 − 1)p − (k1 − 1)q = q − 1. (4.5)

Let k = gcd(k1 − 1, (i + 1)k1 − 1), α
′
1 = k1 − 1

k
and α2 = (i + 1)k1 − 1

k
.

Then, we use (4.5) to obtain

α2p − α
′
1q = q − 1

k
. (4.6)

Next, let us prove that α2 − α
′
1 | p − 1. First, we have

α2 − α
′
1 = ik1

k
. (4.7)

Since i | q − 1 = ip + s − 1, we know that i | s − 1 = (k1 − 1)(p − s). Moreover, as

gcd(k1 −1, i) = gcd(k1 −1, (i+1)k1 −1) = k, it follows that m = i

k
| k1 − 1

k
(p−s). Hence,

m | p − s since gcd
(

k1 − 1
k

,
i

k

)
= 1. Therefore, we deduce by (4.7) that

α2 − α
′
1 = k1m | k1(p − s) = p − 1. (4.8)

Now, by (4.6) and (4.8), we obtain{
α2p − α

′
1q | q − 1

α2 − α
′
1 | p − 1.

Therefore,

α = α
′
1q

α2
= (k1 − 1)q

(i + 1)k1 − 1
∈ Q-KS(N).

As gcd(α′
1, α2) = 1, gcd(q, α2) = 1 by (4.6) and α2 ̸= 1, we deduce that (k1 − 1)q

(i + 1)k1 − 1
∈

(Q\Z)-KS(N). �
Now, it remains to prove that each N -Korselt base β ∈ Z generates an N -Korselt base

in (Q\Z), where gcd(β, p) = 1, 2p < q < 4p and β ̸= q +p−1. This is equivalent to discuss
only the cases when β ∈ {3q − 5p + 3,

2p + q − 1
2

, q − p + 1}. It follows by Corollary 3.2
that we can restrain our work only for β = q − p + 1 with gcd(q + 1, p) = gcd(β, p) = 1.

Proposition 4.4. Suppose that 2p < q < 4p with gcd(q+1, p) = 1. If q−p+1 ∈ Z-KS(N),
then pq

2p − 1
∈ (Q\Z)-KS(N).

Proof. First, if i = 3, then by Theorem 2.2, we must have q = 4p − 3, and it is easy
to verify that pq

2p − 1
is an N -Korselt base. Furthermore, since gcd(pq, 2p − 1) = 1 and

2p−1 ̸= 1, we know that pq

2p − 1
/∈ Z. Therefore, we conclude that pq

2p − 1
∈ (Q\Z)-KS(N).

Next, assume that q = 2p + s. Then, s is odd, so s ̸= p − 1. If q − p + 1 ∈ Z-KS(N),
then s + 1 | p(q − 1). However, we know that gcd(p, s + 1) = 1 because s < p − 1, which
implies that s + 1 | q − 1. Hence, by taking α

′′
1 = 1 and α2 = 2p − 1, we show that

α2p − α
′′
1pq = −p(s + 1) | p(q − 1). Thus, as α2q − α

′′
1pq = q(p − 1), we can write{

α2p − α
′′
1pq | p(q − 1)

α2q − α
′′
1pq | q(p − 1).

This implies that pq

2p − 1
is an N -Korselt base.
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Now, as gcd(pq, 2p−1) = gcd(q, q −1−s) = gcd(q, s+1) = 1 and 2p−1 ̸= 1, we deduce
that pq

2p − 1
/∈ Z. Thus, pq

2p − 1
∈ (Q\Z)-KS(N). �

Example 4.5. Let N = 2 × 7. Then, Z-KS(N) = {6, 8} and (Q\Z)-KS(N) =
{7

2

}
is

exactly the set generated by Z-KS(N). However, for N = 3 × 7, we have Z-KS(N) =
{5, 6, 9} and (Q\Z)-KS(N) =

{7
2

,
7
3

,
21
5

,
21
4

,
15
2

,
33
5

}
, which is composed of more than the

N -Korselt bases in (Q\Z) generated by Z-KS(N).

Proof of the Main Theorem. Let N = pq, where p < q are two prime numbers
such that (Q\Z)-KS(N) = ∅. Assume by contradiction that there exists β ̸= q + p − 1 in
Z-KS(N). By Propositions 4.2 and 4.3, we know that β ̸= ip and β ̸= (i+1)p, respectively.
It follows that gcd(p, β) = gcd(q, β) = 1 by Proposition 2.4 and q < 4p by Theorem 2.2.

Suppose that q > 2p. Then, by Corollary 3.2, we should have β = q − p + 1, and by
Proposition 4.4, gcd(q + 1, p) ̸= 1. However, since in our case, 2p < q = ip + s < 4p and
q is prime, this forces q = 4p − 1, and therefore, β = q − p + 1 = 3p, which contradicts
gcd(p, β) = 1.

Next, assume that q < 2p. Then, by Proposition 4.1, gcd(pq, p + q − β) ̸= 1; otherwise,
β generates an element in (Q\Z)-KS(N) = ∅, which is impossible. This result implies that
either p or q divides p + q − β, and one of the following holds:

• If p divides p + q − β, then since 1 ≤ p + q − β ≤ 2p − 1 by Proposition 2.4, we obtain
p = p + q − β. Therefore, β = q, which is impossible.

• If q divides p + q − β, then as 1 ≤ p + q − β ≤ 2p − 1 < 2q by Proposition 2.4, we
obtain q = p + q − β. Hence, β = p, which is also impossible.

Thus, all cases lead to absurdity. Therefore, we conclude that β = q + p − 1 and
Z-KS(N) = {q + p − 1}. �
Remark 4.6. The converse of the main theorem is not true. For instance, if N = 6 = 2×3,
then

Q-KS(N) =
{

4,
3
2

,
10
3

,
14
5

,
8
3

,
5
2

,
18
7

,
12
5

,
9
4

}
.

This study motivates us to begin a deeper investigation of the rational Korselt set of
a number N with more than two prime factors. We believe that the study of a possible
relation or relations between (Q\Z)-KS(N) and Z-KS(N) can simplify this task, but not
enough. The simple case when N = pq is still full of unsolved problems. For instance,
after examining the Korselt sets over Q of some values of N = pq, since Q-KW(N) is finite
(see [5, Theorem 2.3]), we state the following conjecture:

Conjecture 4.7. For all N = pq, Q-KW(N) is odd.

Acknowledgment. I am grateful to the referee for his comments which have led to
improvements in the paper.
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Abstract
In this addendum we give an example to show that there is an error in Theorem 3.7 in
“Ideal Rothberger spaces" [Hacet. J. Math. Stat. 47(1), 69-75, 2018]. We also prove the
theorem with different hypothesis.
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We use notation and terminology from [2]. In [2], the author gave the following theorem
for inverse invariant.

A function f from a topological space X to a space Y is said to be perfect map [1] if
(1) f is onto
(2) f is continuous
(3) f is closed map
(4) f−1(y) is compact in X for each y ∈ Y .

Theorem 1 ([2]). Let f : X → Y be a perfect map and I be an ideal in Y . If Y is
Rothberger modulo I, then X is Rothberger modulo f−1(I).

Here we give an example which contradicts the Theorem 1 given in [2].

Example 2. Let R be set of real numbers with usual topology and I = {ϕ} be an ideal in
{a}. Take a constant function f from [0, 1] to one point Rothberger space or {a}, where
[0, 1] is compact closed subspace of R. Then f is closed, open, onto and continuous map.
Also f−1(a) = [0, 1] is compact but [0, 1] is not Rothberger [3] since {a} is Rothberger.

Now we give positive result regarding this and provide maps under which Rothberger
modulo an ideal spaces are inverse invariant.

Theorem 3. Let f be an open bijective map from a space X to Y and I be an ideal in Y .
If Y is Rothberger modulo I, then X is Rothberger modulo f−1(I).

Proof. Let < Un : n ∈ ω > be a sequence of open covers of X. Then for each n,

Vn = {f(U) : U ∈ Un}
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is an open cover of Y . Since Y is Rothberger modulo I, there are J ∈ I and a sequence
< Wn : n ∈ ω > such that for each n, Wn is a singleton subset of Un and for each y ∈ Y \J ,
belongs to

∪
Wn for some n. Now assume that for each n,

Wn = {f(Un,1)} and Gn = {Un,1}.

Then f−1(J) ∈ f−1(I) and sequence < Gn : n ∈ ω > witnesses Rothberger modulo f−1(I)
property of X for the sequence < Un : n ∈ ω >. Let x ∈ X \ f−1(J). Then

y = f(x) ∈ Y \ J and y ∈
∪
Wn for some n.

This implies that y ∈ f(Un,1). Since f is one-to-one, x ∈ Un,1. So x ∈
∪
Gn for some n.

This completes the proof. �
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Abstract
The paper is devoted to studying new classes of chains of evolution algebras and their
time-depending dynamics and property transition.
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1. Introduction
In the 1920s and 1930s, a new object, the general genetic algebra, was introduced into

mathematics as a consequence of the synergy between Mendelian genetics and mathe-
matics. Recognizing algebraic structures and properties in Mendelian genetics was one of
the essential steps to start to study genetic algebras. Firstly, Mendel made use of some
symbols [17], which expressed his genetic laws in an entirely algebraic manner. They were
later named “Mendelian algebras” by several authors. Mendel’s laws were mathematically
formulated by Serebrowsky [25], who was the first to provide an algebraic interpretation
of the sign “×”, which suggested sexual reproduction. Later, Glivenkov [10] introduced
the so-called Mendelian algebras. Independently, Kostitzin [15] also set forth a “symbolic
multiplication” to express Mendel’s laws. Etherington [6–8] made a systematic study of
the algebras occurring in genetics and introduced the formal language of abstract algebra
in the field of genetics. These algebras, in general, are non-associative.

The research on several classes of non-associative algebras (baric, evolution, Bernstein,
train, stochastic, etc.) has rendered a notable enrichment to theoretical population genet-
ics. Such classes have been defined at different times by various authors, and all algebras
included in these classes are generally referred to as “genetic”.

Essential contributions have also been made by Gonshor [11], Schafer [24], Holgate [13,
14], Heuch [12], Reiersöl [21], Abraham [1]. Until the 1980s, the most extensive reference
in this area was Wörz-Busekros’ book [28]. More recent results, such as evolution theory
in genetic algebras, can be seen in Lyubich’s book [16]. An excellent survey article is
Reed’s paper [20]. All algebras studied by these authors are generally called “genetic”.
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In the present days, non-Mendelian genetics has become an essential language for molec-
ular geneticists. Some questions arise naturally in this context, such as what new subjects
non-Mendelian genetics brings to mathematics, or what type of mathematics leads to a
better understanding of non-Mendelian genetics. The systematic formulation of reproduc-
tion in non-Mendelian genetics as multiplication in algebras was introduced in [27], leading
to the so-called “evolution algebras”. These are algebras in which the multiplication tables
are motivated by evolution laws of genetics.

Tian in [26] develops the framework of evolution algebra theory and applications in
non-Mendelian genetics and Markov chains. The concept of evolution algebra is situated
between algebras and dynamical systems. Evolution algebras associated with function
spaces defined by graphs, state spaces, and Gibbs measures are studied in [23].

A notion of a chain of evolution algebras was introduced in [4], where the sequence of
matrices of structural constants of the chain of evolution algebras satisfies an analogue
of the Chapman-Kolmogorov equation. In [22], twenty-five distinct examples of chains of
two-dimensional evolution algebras are constructed.

In this paper, we present examples of chains of two-dimensional evolution algebras other
than those of [22], by studying the behavior of the baric property, of the set of absolute
nilpotent elements and the time-depending dynamics of the set of idempotent elements.

The paper is organized as follows. In Section 2, we give the main concepts related to
a chain of evolution algebras. In Section 3, we construct new chains of evolution algebras
(CEAs) and study their time-depending dynamics. Finally, in Section 4, we analyze the
property transitions of the new CEAs.

2. Chain of evolution algebras
Evolution algebras are defined as follows.

Definition 2.1. Let (E, ·) be an algebra over a field K. If it admits a basis {e1, e2, . . . },
such that

ei · ej =


0, if i ̸= j;∑

k

aikek, if i = j,

then this algebra is called an evolution algebra. The basis is called a natural basis.

The matrix M = (aij) is called the matrix of structural constants.
Evolution algebras have the following primary properties (see [26]). Evolution algebras

are not associative, in general; they are commutative, flexible, but not power-associative, in
general; direct sums of evolution algebras are also evolution algebras; Kronecker products
of evolutions algebras are also evolution algebras.

Let {e1, e2} be a basis of the two-dimensional evolution algebra E. It is evident that if
dim E2 = 0, then E is an abelian algebra, i.e. an algebra with all products equal to zero.
The next theorem gives the classification of the real two-dimensional evolution algebras.

Theorem 2.2 ([19]). Any two-dimensional real evolution algebra E is isomorphic to one
of the following pairwise non-isomorphic algebras:

(i) dim E2 = 1.

E1 : e1e1 = e1, e2e2 = 0, with matrix M1 =
(

1 0
0 0

)
;

E2 : e1e1 = e1, e2e2 = e1, with matrix M2 =
(

1 1
0 0

)
;

E3 : e1e1 = e1 + e2, e2e2 = −e1 − e2, with matrix M3 =
(

1 −1
1 −1

)
;
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E4 : e1e1 = e2, e2e2 = 0, with matrix M4 =
(

0 0
1 0

)
;

E5 : e1e1 = e2, e2e2 = −e2, with matrix M5 =
(

0 0
1 −1

)
;

(ii) dim E2 = 2.
E6(a2, a3) : e1e1 = e1 + a2e2, e2e2 = a3e1 + e2, 1 − a2a3 ̸= 0, a2, a3 ∈ R, with

matrix M6 =
(

1 a3
a2 1

)
. Moreover, E6(a2, a3) is isomorphic to E6(a3, a2).

E7(a4) : e1e1 = e2, e2e2 = e1 +a4e2, where a4 ∈ R, with matrix M7 =
(

0 1
1 a4

)
.

Different authors performed the classification of two-dimensional evolution algebras over
several fields. In [5] for the field of complex numbers, in [2] over a field that is closed under
all square and cubic roots, and in [3, 9] without restrictions on the underlying field.

Remark 2.3. We notice that the classification of the two-dimensional real evolution
algebras consists of an alternative of the complex case [5] or the case [3]. E5 only appears

in the real case. Observe that E5 is isomorphic to the algebra with matrix
(

−1 1
0 0

)
. In

the proof of [3, Theorem 3.3], case 1.2.2, the algebra E5 does not appear since the author
considers c1 ̸= 0, but if c1 is negative there is no √

c1, and therefore there is one more
case. Moreover, the cases (f), (g) and (h) of [3, Theorem 3.3] correspond to E6(0, a3) with
a3 ̸= 0, E6(0, 0), and E7(0), respectively.

Following [4] we consider a family
{

E[s,t] : s, t ∈ R, 0 ≤ s ≤ t
}

of n-dimensional evolu-
tion algebras over the field R, with basis e1, . . . , en, and the multiplication table

eiei =
n∑

j=1
a

[s,t]
ij ej , i = 1, . . . , n; eiej = 0, i ̸= j.

Here parameters s, t are considered as time, and we define T = {(s, t) : 0 ≤ s ≤
t, where s, t ∈ R}.

Denote by M [s,t] =
(
a

[s,t]
ij

)
i,j=1,...,n

the matrix of structural constants.

Definition 2.4. A family
{

E[s,t] : s, t ∈ R, 0 ≤ s ≤ t
}

of n-dimensional evolution alge-
bras over the field R is called a chain of evolution algebras (CEA) if the matrix M [s,t] of
structural constants satisfies the Chapman-Kolmogorov equation

M [s,t] = M [s,τ ]M [τ,t], for any s < τ < t. (2.1)

3. Construction of chains of evolution algebras
To construct a chain of two-dimensional evolution algebras, we need to solve equation

(2.1) for the 2 × 2 matrix M[s,t]. This equation provides the following system of functional
equations (with four unknown functions):

a
[s,t]
11 = a

[s,τ ]
11 a

[τ,t]
11 + a

[s,τ ]
12 a

[τ,t]
21 ,

a
[s,t]
12 = a

[s,τ ]
11 a

[τ,t]
12 + a

[s,τ ]
12 a

[τ,t]
22 ,

a
[s,t]
21 = a

[s,τ ]
21 a

[τ,t]
11 + a

[s,τ ]
22 a

[τ,t]
21 ,

a
[s,t]
22 = a

[s,τ ]
21 a

[τ,t]
12 + a

[s,τ ]
22 a

[τ,t]
22 .

(3.1)

But the general analysis of system (3.1) is complicated.
In [18] we studied the classification dynamics of known two-dimensional chains of evo-

lution algebras constructed in [22] and showed that known chains of evolution algebras
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never contain an evolution algebra isomorphic to E4 in any time s, t (see Theorem 2.2).
In this section, we will construct CEAs, including E4 for some period of time.

To construct a CEA that will be isomorphic to E4 at some time interval, we need the
following theorem.

Theorem 3.1 ([18]). An evolution algebra EM is isomorphic to E4 if and only if EM has
the matrix of structural constants in the following form:

M1 =
(

0 β
0 0

)
or M2 =

(
0 0
γ 0

)
, where β, γ ∈ R. (3.2)

Thus, we should construct CEAs with the matrix of structural constants that are listed
in (3.2).

Consider (3.1) with a
[s,t]
11 = α(s, t), a

[s,t]
12 = β(s, t), a

[s,t]
21 = γ(s, t), a

[s,t]
22 = δ(s, t).

Therefore, to find a CEA, we should solve the next equation:(
α(s, τ) β(s, τ)
γ(s, τ) δ(s, τ)

)
·
(

α(τ, t) β(τ, t)
γ(τ, t) δ(τ, t)

)
=
(

α(s, t) β(s, t)
γ(s, t) δ(s, t)

)
. (3.3)

Case 1.1. If we consider in (3.3), α(s, t) = γ(s, t) ≡ 0, β(s, t) ̸= 0, δ(s, t) ̸= 0, then we
have the following: (

0 β(s, τ)
0 δ(s, τ)

)
·
(

0 β(τ, t)
0 δ(τ, t)

)
=
(

0 β(s, t)
0 δ(s, t)

)
. (3.4)

From (3.4), we get the following system of functional equations: β(s, τ)δ(τ, t) = β(s, t),

δ(s, τ)δ(τ, t) = δ(s, t).
(3.5)

The second equation of system (3.5) is known as Cantor’s second equation, which has
the following solutions:

(1) δ(s, t) ≡ 0;
(2) δ(s, t) = ϕ(t)

ϕ(s) , where ϕ is an arbitrary function with ϕ(s) ̸= 0;

(3) δ(s, t) =
{

1, if 0 < s ≤ t < a;
0, if t ≥ a.

Substituting these solutions into the first equation of (3.5), we find β(s, t):
(1) β(s, t) ≡ 0;
(2) β(s, t) = ρ(s)ϕ(t), where ρ is an arbitrary function;

(3) β(s, t) =
{

σ(s), if 0 < s ≤ t < a;
0, if t ≥ a,

where σ is an arbitrary function;
From these solutions, we have the following matrices of structural constants of CEAs:

M
[s,t]
0 =

(
0 0
0 0

)
,

M
[s,t]
1 =

0 ρ(s)ϕ(t)

0 ϕ(t)
ϕ(s)

 ,
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where ρ, ϕ are arbitrary functions, with ϕ(s) ̸= 0;

M
[s,t]
2 =



(
0 σ(s)
0 1

)
, if 0 < s ≤ t < a;(

0 0
0 0

)
, if t ≥ a,

where a > 0 and σ is an arbitrary function.
Case 1.2. Consider the case α(s, t) = β(s, t) ≡ 0, γ(s, t) ̸= 0, δ(s, t) ̸= 0. Then from

(3.3), we have the following:(
0 0

γ(s, τ) δ(s, τ)

)
·
(

0 0
γ(τ, t) δ(τ, t)

)
=
(

0 0
γ(s, t) δ(s, t)

)
.

From the last equality, we have the following system of equations: δ(s, τ)γ(τ, t) = γ(s, t),

δ(s, τ)δ(τ, t) = δ(s, t).
(3.6)

The second equation (Cantor’s second equation) of system (3.6) has the following solu-
tions:

(1) δ(s, t) ≡ 0;
(2) δ(s, t) = φ(t)

φ(s) , where φ is an arbitrary function with φ(s) ̸= 0;

(3) δ(s, t) =
{

1, if 0 < s ≤ t < a;
0, if t ≥ a.

Substituting these solutions into the first equation of (3.6), we find b(s, t):
(1) γ(s, t) ≡ 0;
(2) γ(s, t) = f(t)

φ(s) , where f is an arbitrary function;

(3) γ(s, t) =
{

g(t), if 0 < s ≤ t < a;
0, if t ≥ a.

where g is an arbitrary function.

From these solutions, we have the next matrices of structural constants of CEAs:

M
[s,t]
0 =

(
0 0
0 0

)
,

M
[s,t]
3 =

 0 0
f(t)
φ(s)

φ(t)
φ(s)

 ,

where f, φ are arbitrary functions, φ(s) ̸= 0;

M
[s,t]
4 =



(
0 0

g(t) 1

)
, if 0 < s ≤ t < a;(

0 0
0 0

)
, if t ≥ a,

where a > 0 and g is an arbitrary function.
Case 1.3. Let us try to find the solution satisfying the following:(

α(s, τ) β(s, τ)
γ(s, τ) δ(s, τ)

)
·
(

α(τ, t) β(τ, t)
γ(τ, t) δ(τ, t)

)
=
(

0 β(s, t)
0 0

)
. (3.7)
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From (3.7) we have the next system of functional equations:

α(s, τ)α(τ, t) + β(s, τ)γ(τ, t) = 0,

α(s, τ)β(τ, t) + β(s, τ)δ(τ, t) = β(s, t),

γ(s, τ)α(τ, t) + δ(s, τ)γ(τ, t) = 0,

γ(s, τ)β(τ, t) + δ(s, τ)δ(τ, t) = 0.

(3.8)

Let α(s, t) = γ(s, t) = 0. Then we get: β(s, τ)δ(τ, t) = β(s, t),

δ(s, τ)δ(τ, t) = 0.
(3.9)

To find a non-zero solution of the system of equations (3.9), we should prove that the
equation

δ(s, τ)δ(τ, t) = 0, for all s < τ < t, (3.10)
has a non-zero solution. Indeed, take C > 0 and

δ(s, t) =

0, if 0 < C ≤ s < t or 0 < s < t ≤ C;

f(s, t), if 0 < s < C < t,
(3.11)

where f(s, t) is an arbitrary non-zero function.
Now, we show that independently on f(s, t) the function (3.11) satisfies (3.10): for a

given C > 0, we only have two possibilities by taking an arbitrary τ such that s < τ < t:
Case 1.3.1. Let τ ≤ C. By the defined function (3.11), we have that δ(s, τ) = 0 and

for δ(τ, t):

δ(τ, t) =
{

0, if t ≤ C;
f(τ, t), if t > C,

(3.12)

where f(τ, t) is the function fixed in (3.11).
Therefore, δ(s, τ)δ(τ, t) = 0.
Case 1.3.2. τ > C. Also from (3.11), we have that δ(τ, t) = 0 and for δ(s, τ):

δ(s, τ) =
{

f(s, τ), if s < C;
0, if s ≥ C,

where f(s, τ) is the function fixed in (3.11).
Therefore, δ(s, τ)δ(τ, t) = 0.
Thus, we have proved that the function (3.11) satisfies equation (3.10).
Now we should find solutions to the first equation of system (3.9):

β(s, τ)δ(τ, t) = β(s, t), s < τ < t, (3.13)

where δ(τ, t) is given by (3.11).
To find a solution, we have the next possibilities:
Case 1.3.3. Let τ ≤ C. Then by the defined function (3.11) we have that δ(s, τ) = 0

and from (3.12) in a period of time t ≤ C, δ(τ, t) = 0, and so from (3.13) we have
β(s, t) = 0. When t > C, δ(τ, t) = f(τ, t) and by (3.13) we have to solve the next
equation:

β(s, τ)f(τ, t) = β(s, t), s < τ < t. (3.14)
We solve (3.14) for some particular cases:
Case 1.3.3.1 Consider β(s, t) = f(s, t). Then from (3.14), we have f(s, τ)f(τ, t) =

f(s, t), which is Cantor’s second equation. As f(s, t) is a non-zero function, then we have
the next solution:
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f(s, t) = Φ(t)
Φ(s)

,

where Φ is an arbitrary function, with Φ(s) ̸= 0.
Thus we have the next solution of system (3.8):

α(s, t) ≡ 0,

β(s, t) =
{

0, if s < t ≤ C;
Φ(t)
Φ(s) , if t > C,

γ(s, t) ≡ 0,

δ(s, t) =
{

0, if 0 < C ≤ s < t or 0 < s < t ≤ C;
Φ(t)
Φ(s) , if s < C < t,

where C > 0 and Φ is an arbitrary function, with Φ(s) ̸= 0.
Then we have the next matrix of structural constants:

M
[s,t]
5 =



(
0 0
0 0

)
, if s < t ≤ C;(

0 Φ(t)
Φ(s)

0 0

)
, if t > C,

where C > 0 and Φ is an arbitrary function, with Φ(t) ̸= 0.
Case 1.3.3.2. Let β(s, t) ̸= f(s, t). As f(τ, t) is an arbitrary non-zero function, consider

f(τ, t) = ϕ(τ)
ϕ(t) , with ϕ(t) ̸= 0. Then from (3.14) we have the following:

β(s, τ) · ϕ(τ)
ϕ(t)

= β(s, t),

β(s, t)ϕ(t) = β(s, τ)ϕ(τ).

From the last equality, we can see β(s, t)ϕ(t) does not depend on t, i.e. there exists a
function ρ(s) such that β(s, t)ϕ(t) = ρ(s). Therefore, β(s, t) = ρ(s)

ϕ(t) .
Then we get the next solution of system (3.8):

α(s, t) ≡ 0,

β(s, t) =
{

0, if s < t ≤ C;
ρ(s)
ϕ(t) , if t > C,

γ(s, t) ≡ 0,

δ(s, t) =
{

0, if 0 < C ≤ s < t or 0 < s < t ≤ C;
ϕ(s)
ϕ(t) , if s < C < t,

where C > 0 and ϕ, ρ are arbitrary functions with ϕ(t) ̸= 0.
Then we have, respectively, the next matrix of structural constants to the solution:

M
[s,t]
6 =



(
0 0
0 0

)
, if s < t ≤ C;(

0 ρ(s)
ϕ(t)

0 0

)
, if t > C,

where C > 0 and ϕ, ρ are arbitrary functions with ϕ(t) ̸= 0.
Case 1.3.4. When τ > C, then by the defined function (3.11) we have that δ(τ, t) = 0.

So from (3.13), we have β(s, t) = 0. Thus we get the trivial CEA.
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Case 1.4. Let us try to find the solution satisfying:

(
α(s, τ) β(s, τ)
γ(s, τ) δ(s, τ)

)
·
(

α(τ, t) β(τ, t)
γ(τ, t) δ(τ, t)

)
=
(

0 0
γ(s, t) 0

)
. (3.15)

From equality (3.15) we have the next system of functional equations:



α(s, τ)α(τ, t) + β(s, τ)γ(τ, t) = 0,

α(s, τ)β(τ, t) + β(s, τ)δ(τ, t) = 0,

γ(s, τ)α(τ, t) + δ(s, τ)γ(τ, t) = γ(s, t),

γ(s, τ)β(τ, t) + δ(s, τ)δ(τ, t) = 0.

Let α(s, t) = β(s, t) = 0. Then we have the next system:

 δ(s, τ)γ(τ, t) = γ(s, t),

δ(s, τ)δ(τ, t) = 0.

The analysis of this system is similar to (3.9), and we get the following CEAs:

M
[s,t]
7 =



(
0 0

Ψ(t)
Ψ(s) 0

)
, if s < C;(

0 0
0 0

)
, if s ≥ C,

where C > 0 and Ψ is an arbitrary function, with Ψ(t) ̸= 0;

M
[s,t]
8 =



(
0 0

σ(t)
φ(s) 0

)
, if s < C;(

0 0
0 0

)
, if s ≥ C,

where C > 0 and φ, σ are arbitrary functions with φ(s) ̸= 0.
Denote by E

[s,t]
i the CEA with matrix M

[s,t]
i .

Remark 3.2. We should note that from the CEAs E
[s,t]
i , i = 1, . . . , 8, only E

[s,t]
3 coincides

with the CEA E
[s,t]
16 constructed in [22] and it has the same dynamic. All other CEAs are

different from CEAs constructed in [22] and have different dynamics.

Now, we provide the time-depending dynamics of these CEAs:
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Theorem 3.3. For the next CEAs hold:

E
[s,t]
1 ≃

{
E1 for all (s, t) ∈ {(s, t) : s < t, ρ(s) = 0} ,

E2 for all (s, t) ∈ {(s, t) : s < t, ρ(s) ̸= 0} ;

E
[s,t]
2 ≃


E1 for all (s, t) ∈ {(s, t) : s < t < a, σ(s) = 0} ,

E2 for all (s, t) ∈ {(s, t) : s < t < a, σ(s) ̸= 0} ,

E0 for all (s, t) ∈ {(s, t) : t ≥ a} ;

E
[s,t]
3 ≃ E1 for any (s, t) ∈ T;

E
[s,t]
4 ≃

{
E1 for all (s, t) ∈ {(s, t) : s < t < a} ,

E0 for all (s, t) ∈ {(s, t) : t ≥ a} ;

E
[s,t]
5 ≃

{
E0 for all (s, t) ∈ {(s, t) : s < t ≤ C} ,

E4 for all (s, t) ∈ {(s, t) : t > C} ;

E
[s,t]
6 ≃


E0 for all (s, t) ∈ {(s, t) : s < t ≤ C} ,

E0 for all (s, t) ∈ {(s, t) : t > C, ρ(s) = 0} ,

E4 for all (s, t) ∈ {(s, t) : t > C, ρ(s) ̸= 0} ;

E
[s,t]
7 ≃

{
E4 for all (s, t) ∈ {(s, t) : s < C} ,

E0 for all (s, t) ∈ {(s, t) : s ≥ C} ;

E
[s,t]
8 ≃


E0 for all (s, t) ∈ {(s, t) : s < C, σ(t) = 0} ,

E4 for all (s, t) ∈ {(s, t) : s < C, σ(t) ̸= 0} ,

E0 for all (s, t) ∈ {(s, t) : s ≥ C} .

Proof. When ρ(s) = 0, then E
[s,t]
1 ≃ E1, for all s, t ∈ T by the change of basis e′

1 =
e1, e′

2 = ϕ(s)
ϕ(t) e2, and when ρ(s) ̸= 0, it is isomorphic to E2, for all s, t ∈ T by the change

of basis e′
1 = 1

ρ(s)ϕ(t)e1, e′
2 = ϕ(s)

ϕ(t) e2.
When σ(s) = 0, then E

[s,t]
2 ≃ E1, for all s, t ∈ T, s < t < a, by the change of basis

e′
1 = e1, e′

2 = e2, and when σ(s) ̸= 0, it is isomorphic to E2, for all s, t ∈ T, s < t < a, by
the change of basis e′

1 = 1
σ(s)e1, e′

2 = e2. In the period of time t ≥ a, it will be isomorphic
to the trivial evolution algebra E0.

E
[s,t]
3 ≃ E1, for all s, t ∈ T by the change of basis e′

2 = f(t)φ(s)
φ2(t) e1 + φ(s)

φ(t) e2, e′
2 = e1.

E
[s,t]
4 ≃ E1, for all s, t ∈ T, s < t < a, by the change of basis e′

1 = σ(t)e1 + e2, e′
2 = e1,

in the period of time t ≥ a, it will be isomorphic to the trivial evolution algebra E0.
E

[s,t]
5 ≃ E4, for all s, t ∈ T, t > C, by the change of basis e′

1 = Φ(s)
Φ(t) e1, e′

2 = e2, in the
period of time s < t ≤ C, it will be isomorphic to the trivial evolution algebra E0.

When ρ(s) ̸= 0, then E
[s,t]
6 ≃ E4, for all s, t ∈ T, t > C, by the change of basis

e′
1 = ϕ(t)

ρ(s)e1, e′
2 = e2, in the period of time s < t ≤ C, and when ρ(s) = 0, then it will be

isomorphic to the trivial evolution algebra E0.
E

[s,t]
7 ≃ E4, for all s, t ∈ T, s < C, by the change of basis e′

1 = Ψ(s)
Ψ(t) e1, e′

2 = e2, in the
period of time s ≥ C, it will be isomorphic to the trivial evolution algebra E0.

When σ(t) ̸= 0, then E
[s,t]
6 ≃ E4, for all s, t ∈ T, s < C, by the change of basis

e′
1 = φ(s)

σ(t) e1, e′
2 = e2, in the period of time s ≥ C, and when σ(t) = 0, then it will be

isomorphic to the trivial evolution algebra E0. �
Thus, we proved that there exist CEAs that for some values of time will be isomorphic

to E4.
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4. Property transition
In this section, we will study property transitions of the CEAs Es,t

i , i = 0. . . . , 8.
In [4], we provided the ideas of property transition for CEAs. We recall these definitions.

Definition 4.1. Assume a CEA, E[s,t], has a property, say P , at pair of times (s0, t0);
one says that the CEA has P property transition if there is a pair (s, t) ̸= (s0, t0) at which
the CEA has no property P .

Denote
T = {(s, t) : 0 ≤ s ≤ t};

TP = {(s, t) ∈ T : E[s,t] has property P};

T0
P = T \ TP = {(s, t) ∈ T : E[s,t] has no property P}.

The sets have the following meaning:
• TP -the duration of the property P ;
• T0

P -the lost duration of the property P .
The partition {TP ,T0

P } of the set T is called the P property diagram.
For example, if P =commutativity, then we determine that any CEA has not commu-

tativity property transition because any evolution algebra is commutative.

4.1. Baric property transition
A character for an algebra A is a nonzero multiplicative linear form on A, i.e. a nonzero

algebra homomorphism σ : A → R (see [16]). Not every algebra carries a character. For
example, an algebra with the zero multiplication has no character.

Definition 4.2. A pair (A, σ) consisting of an algebra A and a character σ on A is called
a baric algebra. The homomorphism σ is called the weight (or baric) function of A and
σ(x) the weight (baric value) of x.

There is a character σ(x) =
∑

i xi for the evolution algebra of a free population (see [16]);
therefore, that algebra is baric. But the evolution algebra E introduced in [26] is not baric,
in general. The following theorem provides a criterion for an evolution algebra E to be
baric.

Theorem 4.3 ([4]). An n-dimensional evolution algebra E, over the field R, is baric
if and only if there is a column (a1i0 , . . . , ani0)T of its structural constants matrix M =
(aij)i,j=1,...,n, such that ai0i0 ̸= 0 and aii0 = 0, for all i ̸= i0. Moreover, the corresponding
weight function is σ(x) = ai0i0xi0.

Since an evolution algebra is not a baric algebra, in general, using Theorem 4.3, we
can give the baric property diagram. Let us do this for the above-given chains E

[s,t]
i ,

i = 0, . . . , 8.
Denote by T

(i)
b the baric property duration of the CEA E

[s,t]
i , i = 0, . . . , 8.

Theorem 4.4.
(i) (There is no non-baric property transition) The algebras E

[s,t]
i , i = 0, 1, 2, 5, 6, 7, 8,

are not baric for any time (s, t) ∈ T;
(ii) (There is no baric property transition) The algebra E

[s,t]
3 is baric for any time

(s, t) ∈ T;
(iii) (There is baric property transition) The CEA E

[s,t]
4 has baric property transition

with baric property duration set as the following

T
(4)
b = {(s, t) ∈ T : s ≤ t < a} .
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Proof. By Theorem 4.3, a two-dimensional evolution algebra E[s,t] is baric if and only if
a

[s,t]
11 ̸= 0, a

[s,t]
21 = 0 or a

[s,t]
22 ̸= 0, a

[s,t]
12 = 0. The assertions of the theorem are results of the

meticulous checking of these conditions. �

4.2. Absolute nilpotent elements transition
Recall that the element x of an algebra A is called an absolute nilpotent if x2 = 0.
Let E = Rn be an evolution algebra over the field R with structural constant coefficients

matrix M = (aij). Then for arbitrary x =
∑

i xiei and y =
∑

i yiei ∈ Rn, we have

xy =
∑

j

(∑
i

aijxiyi

)
ej , x2 =

∑
j

(∑
i

aijx2
i

)
ej .

For an n-dimensional evolution algebra Rn consider the operator V : Rn → Rn, x 7→
V (x) = x′, defined as

x′
j =

n∑
i=1

aijx2
i , j = 1, . . . , n. (4.1)

This operator is called an evolution operator [16].
We have V (x) = x2, hence the equation V (x) = x2 = 0 is given by the following system∑

i

aijx2
i = 0, j = 1, . . . , n. (4.2)

In this section, we shall solve system (4.2) for E
[s,t]
i , i = 0, . . . , 8.

For a CEA E
[s,t]
i with matrix M

[s,t]
i denote

T
(i)
nil = {(s, t) ∈ T : E

[s,t]
i has a unique absolute nilpotent}, T0

nil = T \ Tnil.

The following theorem answers the problem of the existence of “uniqueness of absolute
nilpotent element” property transition.
Theorem 4.5.

(1) There CEAs E
[s,t]
i , i = 0, 3, 4, 5, 6, 7, 8, have infinitely many of absolute nilpotent

elements for any time (s, t) ∈ T.
(2) The CEAs E

[s,t]
i , i = 1, 2, have “uniqueness of absolute nilpotent element” property

transition with the property duration sets as the following

T
(1)
nil = {(s, t) ∈ T : ρ(s)ϕ(s) > 0} ,

T
(2)
nil = {(s, t) ∈ T : s ≤ t < a, σ(s) > 0} .

Proof. The proof consists of the simple examination of the solutions of system (4.2) for
each E

[s,t]
i , i = 0, . . . , 8. �

4.3. Idempotent elements transition
A element x of an algebra A is called idempotent if x2 = x. The idempotents of

an evolution algebra are especially significant because they are the fixed points of the
evolution operator V (4.1), i.e. V (x) = x. We denote by Id(E) the set of idempotent
elements of an algebra E. Using (4.1) the equation x2 = x can be written as

xj =
n∑

i=1
aijx2

i , j = 1, . . . , n. (4.3)

The extensive analysis of the solutions of system (4.3) is very hard. We shall solve this
problem for the CEAs E

[s,t]
i , i = 0, . . . , 8.

The following theorem provides the time-dynamics of the idempotent elements for the
algebras E

[s,t]
i , i = 0, . . . , 8.
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Theorem 4.6.
(1) The algebras E

[s,t]
i , i = 0, 5, 6, 7, 8, have a unique idempotent (0, 0) in any time

(s, t) ∈ T.
(2) The algebra E

[s,t]
1 has two idempotents (0, 0), (0, ϕ(s)

ϕ(t) ) for all (s, t) ∈ {(s, t) : s ≤ t < a}.
(3) The algebra E

[s,t]
2 has two idempotents (0, 0), (0, 1) in any time (s, t) ∈ T.

(4) The algebra E
[s,t]
3 has two idempotents (0, 0), (f(t)ϕ(s)

ϕ2(t) , ϕ(s)
ϕ(t) ) in any time (s, t) ∈ T.

(5) The algebra E
[s,t]
4 has two idempotents (0, 0), (g(t), 1) for all (s, t) ∈ {(s, t) : s ≤ t < a}.

Proof. The proof contains a precise analysis of the solutions of system (4.3) for each E
[s,t]
i ,

i = 0, . . . , 8. �
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Abstract
In this study, we analyze the performance of a numerical scheme based on 3-scale Haar
wavelets for dynamic Euler-Bernoulli equation, which is a fourth order time dependent
partial differential equation. This type of equations governs the behaviour of a vibrating
beam and have many applications in elasticity. For its solution, we first rewrite the
fourth order time dependent partial differential equation as a system of partial differential
equations by introducing a new variable, and then use finite difference approximations
to discretize in time, as well as 3-scale Haar wavelets to discretize in space. By doing
so, we obtain a system of algebraic equations whose solution gives wavelet coefficients
for constructing the numerical solution of the partial differential equation. To test the
accuracy and reliability of the numerical scheme based on 3-scale Haar wavelets, we apply
it to five test problems including variable and constant coefficient, as well as homogeneous
and non-homogeneous partial differential equations. The obtained results are compared
wherever possible with those from previous studies. Numerical results are tabulated and
depicted graphically. In the applications of the proposed method, we achieve high accuracy
even with small number of collocation points.
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1. Introduction
The fourth-order problem considered in this paper is

µ(x)∂
2u

∂t2
+ EI(x)∂

4u

∂x4 = F (x, t), a ≤ x ≤ b, 0 ≤ t ≤ T, (1.1)
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subject to the initial conditions
u(x, 0) = ξ(x),
ut(x, 0) = η(x), a ≤ x ≤ b,

and the boundary conditions of the form
u(a, t) = f1(t), u(b, t) = f2(t),

uxx(a, t) = f3(t), uxx(b, t) = f4(t), 0 ≤ t ≤ T.

Such problems occur in the study of the transverse displacements of a flexible beam hinged
at both ends. Here u = u(x, t) is the transverse displacement of the beam, t and x are
time and spatial variables, µ(x) > 0 is the density of the beam, EI(x) > 0 is the beam
bending stiffness and F (x, t) is dynamic driving force per unit mass. Such an equation
is also called dynamic Euler-Bernoulli equation, and its solution is important in many
applications such as control of large flexible space structures or the development of robotics
designs [3, 28,41,50].

The analytic solutions of variable coefficient nonhomogeneous Euler–Bernoulli equation
are obtained by Wazwaz [52] using the Adomian decomposition method. Some exact solu-
tions of variable coefficient homogeneous and nonhomogeneous Euler–Bernoulli equation
are obtained by Adomian method in [14]. Analytical solutions of partial differential equa-
tions are very useful. However, it is not always possible to obtain the analytical solutions
or it is possible only for limited initial and boundary conditions. So it is crucial to develop
efficient numerical methods. For obtaining numerical solutions of Eq. (1.1), finite differ-
ence methods are employed in [1,7–13,20,25,47,51]. A fully Sinc-Galerkin method is used
in [49] by Smith et al. for solving fourth-order partial differential equations. A three level
scheme based on parametric quintic spline is proposed by Aziz et al. [2] for the solution
of fourth-order parabolic partial differential equations with constant coefficients. Khan et
al. used sextic splines for solving a fourth-order parabolic partial differential equation in
[26].

Caglar and Caglar [4] have developed a fifth degree B-spline method to obtain the
numerical solution of constant coefficient fourth-order parabolic partial differential equa-
tions. Free vibration of an Euler–Bernoulli beam is obtained by Liu and Gurram [32] using
He’s variational iteration method. For variable coefficient fourth order parabolic partial
differential equations a new three level implicit method based on sextic spline is proposed
by Rashidinia and Mohammadi [46]. Mittal and Jain [36] used cubic and quintic B-spline
method with redefined basis functions for obtaining numerical solutions of fourth-order
parabolic partial differential equations with constant coefficients. Recently, Mohammadi
[41] developed a numerical method based on sextic B-splines to solve the fourth-order
time dependent partial differential equations subjected to fixed and cantilever boundary
conditions.

Due to attractiveness of Haar wavelets for their simplicity, accuracy, computational
cost, and so on, in recent years they have got much attention in numerical solutions of
differential equations. A brief review of the literature can be given as follows. Chen and
Hsiao[5] used Haar wavelet method for solving lumped and distributed parameter systems.
In [6], they also discussed an optimal control problem. Hsiao and Wang [16,17] used Haar
wavelets for solving singular bilinear and nonlinear systems and [18] investigated nonlinear
stiff systems. Hsiao [15] showed that the Haar wavelet approach is also effective for solving
variational problems. Lepik applied this method to some well known problems [29–31]. Zhi
Shi et al. [48] applied Haar wavelets to solve 2D and 3D Poisson equations and biharmonic
equations.

Jiwari [21] used a hybrid numerical scheme based on implicit Euler method, quasi-
linearization and uniform Haar wavelets for the numerical solutions of Burgers’ equa-
tion. Kaur et al. [24] solved Lane-Emden equations arising in astrophysics with Haar
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Wavelets. Pandit et al. [45] solved second-order hyperbolic telegraph type equations by
Haar wavelets. Majak et al. [33–35] studied functionally graded material (FGM) beams
by means of Haar wavelet discretization method and convergence of Haar wavelet method.
An efficient numerical scheme based on uniform Haar wavelets and the quasilinearization
process is proposed for the numerical simulation of time dependent nonlinear Burgers’
equation by Jiwari [22].

Oruç et al. [42–44] solved modified Burgers’ equation, coupled Schrödinger-KdV equa-
tions and regularized long wave equation with the help of a Haar wavelet based method.
Vibration analysis of nanobeams is investigated by Haar wavelets in [27]. A new type of
solutions was obtained for the MHD Falkner–Skan boundary layer flow problem using the
Haar wavelet quasilinearization approach via Lie symmetric analysis by Jiwari et. al. [23].
Mittal and Pandit [38] used Haar wavelet operational matrix along with quasi-linearization
to detect the spin flow of fractional Bloch equations. Mittal and Pandit [40] developed
a novel algorithm based on Scale-3 Haar wavelets and quasilinearization for numerical
solution of a dynamical system of ordinary differential equations. Recently, Scale-3 Haar
wavelet-based algorithm has been extended to find numerical approximations of second
order initial and boundary value problems by Mittal and Pandit [39]. Most of the papers
mentioned above are based on classical Haar wavelets (2-scale Haar wavelets).

In this study our aim is to analyze the performance of the 3-scale Haar wavelet colloca-
tion method (HWCM), recently introduced by Mittal and Pandit in their paper [37], for
fourth order partial differential equations with variable and constant coefficients. As far
as we know, the 3-scale Haar wavelets have not been employed to solve high order partial
differential equations such as Euler-Bernoulli problems, which motivates us for conducting
this study. This paper is organized as follows. In Section 2, 3-scale Haar wavelets and
their integrals are introduced. In Section 3, a method based on discretization of time
and space variables is described. Numerical results and discussion are given in Section 4.
Finally, we summarize our findings in Section 5.

2. 3-Scale Haar wavelets and their integrals
The 3-scale Haar wavelets are constructed from two wavelet functions, namely sym-

metric and antisymmetric wavelet functions. This is the main difference with the 2-scale
Haar wavelets, which employ only one wavelet function. The 3-scale Haar wavelets have
advantages over the 2-scale ones: they converge rapidly, they can be represented by sparse
matrices, in numerical applications solutions can be found at any point in the range, and
they can easily detect singularity and discontinuity [37].

Using the orthogonality properties of 3-scale Haar wavelets, one can express any square
integrable function f(x) on the interval [0, 1) as an infinite series in the following form
[37,39]:

f(x) ≈ c1ϕ1(x) +
∞∑

even index i, i≥2
ciψ

(1)
i (x) +

∞∑
odd index i, i≥3

ciψ
(2)
i (x). (2.1)

Herein, ϕ1, ψ
(1)
i and ψ

(2)
i are given by

ϕ1(x) =
{

1
0

a ≤ x ≤ b,

elsewhere,
(2.2)

ψ
(1)
i (x) = 1√

2


−1
2
−1

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i),

(2.3)
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ψ
(2)
i (x) =

√
3
2


1
0
−1

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i),

(2.4)

and

α(i) = a+ (b− a) k
m
,

β(i) = a+ (b− a)k + 1/3
m

,

γ(i) = a+ (b− a)k + 2/3
m

,

δ(i) = a+ (b− a)k + 1
m

,

where m is defined as 3j (j = 0, 1, ...), and integer k = 0, 1, ..,m − 1 is the translation
parameter. The index i in α(i), β(i), γ(i) and δ(i) shows the relation between wavelet
level m and translation parameter k. If i = 1, then we get scaling function ϕ1(x) which
is defined in (2.2) and shown in Fig. 1 for [a, b] = [0, 1]. In case of i > 1, the index i is
calculated according to formulae i = m+ 2k or i = m+ 2k + 1. If i is even then consider
ψ

(1)
i , if i is odd then consider ψ(2)

i . In Figs. 2 and 3, first wavelets ψ(1)
i and ψ(2)

i are plotted
for [a, b] = [0, 1].

Figure 1. 3-scale Haar wavelet scaling function ϕ1(x)
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Figure 3. First anti-symmetric wavelet ψ(2)
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Eq. (2.1) is an infinite series. We truncate this series to 3-scale Haar wavelets as [37]:

f(x) ≈ c1ϕ1(x) +
3m∑

even index i, i≥2
ciψ

(1)
i (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i (x) = cTH3m.

where cT = [c1, ..., c3m] and H3m = [ϕ1(x), ψ(1)
2 (x), ψ(2)

3 (x), ..., ψ(1)
3m−1(x), ψ(2)

3m(x)]T are in
size of 1 × 3m.

In the solution process of a differential equation of any order, we need to integrate
3-scale Haar wavelets, that is we employ the integrals

ϕ1,1(x) =
∫ x

0
ϕ1(t)dt =

{
x

0
[a, b),
elsewhere,

ψ
(1)
i,1 (x) =

∫ x

0
ψ

(1)
i (t)dt = 1√

2


α(i) − x

2x− 3β(i) + α(i)
α(i) + 3γ(i) − 3β(i) − x

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i),

ψ
(2)
i,1 (x) =

∫ x

0
ψ

(2)
i (t)dt =

√
3
2


x− α(i)
β(i) − α(i)
γ(i) + β(i) − α(i) − x

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i).

Moreover, we introduce

ϕ1,n+1(x) =
∫ x

0
ϕ1,n(t)dt, ψ

(1)
1,n+1 =

∫ x

0
ψ

(1)
1,n(t)dt, ψ

(2)
1,n+1 =

∫ x

0
ψ

(2)
1,n(t)dt

which can explicitly be written as

ϕ1,n+1(x) =
{

xn+1

(n+1)!
0

[a, b),
elsewhere,

ψ
(1)
i,n+1(x) = 1√

2



−(x−α(i))n+1

(n+1)! α(i) ≤ x < β(i),
3(x−β(i))n+1−(x−α(i))n+1

(n+1)! β(i) ≤ x < γ(i),
3(x−β(i))n+1−3(x−γ(i))n+1−(x−α(i))n+1

(n+1)! γ(i) ≤ x < δ(i),
3(x−β(i))n+1−3(x−γ(i))n+1−(x−α(i))n+1+(x−δ(i))n+1

(n+1)! δ(i) ≤ x < 1,
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ψ
(2)
i,n+1(x) =

√
3
2



(x−α(i))n+1

(n+1)! α(i) ≤ x < β(i),
(x−α(i))n+1−(x−β(i))n+1

(n+1)! β(i) ≤ x < γ(i),
(x−α(i))n+1−(x−β(i))n+1−(x−γ(i))n+1

(n+1)! γ(i) ≤ x < δ(i),
(x−α(i))n+1−(x−β(i))n+1−(x−γ(i))n+1+(x−δ(i))n+1

(n+1)! δ(i) ≤ x < 1.

3. Discretization scheme for fourth order partial differential equations
To solve Eq. (1.1) we introduce a new variable, namely

v =∂u

∂t
.

Now Eq. (1.1) can be rewritten as the system of partial differential equations that is first
order in time given below.

ut − v = 0,
µ(x)vt + EI(x)uxxxx = F (x, t). (3.1)

We describe the discretization process of the equations above in the subsequent sections.

3.1. Time discretization
We use explicit finite difference schemes for time derivatives, as well as the time average

for v and uxxxx in Eq. (3.1). By doing so, we get

uj+1 − uj

∆t
− vj+1 + vj

2
= 0,

µ(x)v
j+1 − vj

∆t
+ EI(x)u

j+1
xxxx + uj

xxxx

2
= F (x, tj+1).

The equations above can be rearranged as

uj+1 − ∆t
2
vj+1 = uj + ∆t

2
vj ,

µ(x)vj+1 + ∆tEI(x)
2

uj+1
xxxx = µ(x)vj − ∆t · EI(x)

2
uj

xxxx + ∆tF (x, tj+1), (3.2)

with initial conditions

u0(x) = ξ(x),
v0(x) = η(x), a ≤ x ≤ b (3.3)

and with the boundary conditions

uj+1(a) = f1(tj+1), uj+1(b) = f2(tj+1),
uj+1

xx (a) = f3(tj+1), uj+1
xx (b) = f4(tj+1), (3.4)

where uj+1 and vj+1 are the solutions of Eq. (3.2) at the (j + 1)th time step and tj+1 =
∆t(j + 1), j = 0, 1, ..., N − 1, ∆t ·N = T .
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3.2. Space discretization by Haar wavelets
Since Haar wavelets are generally defined for [0, 1]. We have to transform the domain

into unit interval. By introducing y = (x−a)/L , L = b−a, the interval a ≤ x ≤ b can be
transformed into the unit interval 0 ≤ y ≤ 1. Using this transformation, we can reduce a
problem defined on [a, b] to a problem defined on [0, 1]. Hence, without loss of generality,
the PDE we have at hand is defined over [0, 1] in space.

For the description of space discretization, we introduce notations

3m∑
i=1

cihi(x) := c1ϕ1(x) +
3m∑

even index i, i≥2
ciψ

(1)
i (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i (x)

3m∑
i=1

cipi,j(x) := c1ϕ1,j(x) +
3m∑

even index i, i≥2
ciψ

(1)
i,j (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i,j (x)

for j = 1, 2, 3, 4. Now we expand uj+1
xxxx(x) term in (3.2) into Haar wavelets, that is

uj+1
xxxx(x) =

3m∑
i=1

cihi(x). (3.5)

By integrating the equation above from 0 to x, we get

uj+1
xxx(x) = uj+1

xxx(0) +
3m∑
i=1

cipi,1(x) (3.6)

We do not know the value of uj+1
xxx(0) term in Eq. (3.6), but we can calculate it by

integrating Eq. (3.6) from 0 to 1 and using boundary conditions from Eq. (3.4) as follows:

uj+1
xxx(0) = f4(tj+1) − f3(tj+1) −

3m∑
i=1

cipi,2(1).

Now by integrating Eq. (3.6) from 0 to x we obtain the second derivative uj+1
xx (x) as

uj+1
xx (x) =

3m∑
i=1

cipi,2(x) + f3(tj+1) +
[
f4(tj+1) − f3(tj+1)

]
x− x

3m∑
i=1

cipi,2(1). (3.7)

By integrating Eq. (3.7) once again from 0 to x, we deduce

uj+1
x (x) − uj+1

x (0) =
3m∑
i=1

cipi,3(x) + xf3(tj+1)

+
[
f4(tj+1) − f3(tj+1)

] x2

2
− x2

2

3m∑
i=1

cipi,2(1), (3.8)

which we integrate again from 0 to 1 to obtain

uj+1(1) − uj+1(0) − uj+1
x (0) =

3m∑
i=1

cipi,4(1) + 1
2
f3(tj+1)

+
[
f4(tj+1) − f3(tj+1)

] 1
6

− 1
6

3m∑
i=1

cipi,2(1). (3.9)
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By exploiting the boundary conditions uj+1(1) = f2(tj+1) and uj+1(0) = f1(tj+1) in the
equation above, we retrieve

uj+1
x (0) =f2(tj+1) − f1(tj+1) −

3m∑
i=1

cipi,4(1)

− 1
2
f3(tj+1) −

[
f4(tj+1) − f3(tj+1)

] 1
6

+ 1
6

3m∑
i=1

cipi,2(1).

Plugging the right-hand side of the equation above for uj+1
x (0) in Eq.(3.8), we have

uj+1
x (x) =

3m∑
i=1

cipi,3(x) + f2(tj+1) − f1(tj+1) − 1
3
f3(tj+1)

− 1
6
f4(tj+1) −

3m∑
i=1

ci

[
pi,4(1) − 1

6
pi,2(1)

]
(3.10)

+ f3(tj+1)x+ x2

2

[
f4(tj+1) − f3(tj+1)

]
− x2

2

3m∑
i=1

cipi,2(1), (3.11)

which in turn yields

uj+1(x) =
3m∑
i=1

cipi,4(x) + f1(tj+1) +
[
f2(tj+1) − f1(tj+1) − 1

3
f3(tj+1) − 1

6
f4(tj+1)

]
x

− x
3m∑
i=1

ci

[
pi,4(1) − 1

6
pi,2(1)

]

+ f3(tj+1)x
2

2
+ x3

6

[
f4(tj+1) − f3(tj+1)

]
− x3

6

3m∑
i=1

cipi,2(1). (3.12)

Additionally we express vj+1(x) in terms of Haar wavelets in the form

vj+1(x) =
3m∑
i=1

dihi(x). (3.13)

By plugging Eqs. (3.5), (3.12) and (3.13) into Eq. (3.2) and discretizing at collocation
points xl = l−0.5

3m , l = 1, 2, ..., 3m yields a system of linear equations whose solution gives
the wavelet coefficients ci and di. Then by plugging these wavelet coefficients into Eqs.
(3.12) and (3.13) we can obtain the numerical solutions uj+1(x) and vj+1(x).

3.3. Convergence analysis of Haar wavelets
Let

u(x) = c1ϕ1(x) +
∞∑

even index i, i≥2
ciψ

(1)
i (x) +

∞∑
odd index i, i≥3

ciψ
(2)
i (x)

and

u3m(x) = c1ϕ1(x) +
3m∑

even index i, i≥2
ciψ

(1)
i (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i (x)

be exact and numerical solutions of Eq. (1.1) with a = 0 and b = 1. Furthermore,
EJ = u(x) − u3m(x) with J = 3m and

∥∥∥u(x)
∥∥∥ =

(∫ 1
0 |u(x)|2dx

)1/2
.
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Theorem 3.1. [37] Let the exact solution u(x) be square integrable on [0, 1] with bounded
derivatives on (0, 1). Then the error EJ satisfies

∥EJ∥ ≤ M√
24

1
3J

for some constant M independent of J .

Proof. See [37]. �

Theorem 3.1 implies that the error bound is inverse proportional to the level of resolution
of scale-3 Haar wavelets. Therefore the error decreases as we increase J .

4. Numerical examples
Numerical computations have been done with python programming language and graph-

ical outputs were generated by Matplotlib package [19].
In problem 1, we calculate the maximal absolute relative errors which are defined as

follows:

E =maxi=1,...,3m

∣∣∣∣∣uexact
i − unum

i

uexact
i

∣∣∣∣∣ .
In problems 2, 3, 4 and 5, for the sake of comparison with earlier studies, we calculate the
absolute errors |u(x) − unum(x)| at the points x = 0.1, 0.2, 0.3, 0.4, 0.5, where u(x) and
unum(x) denote the exact and numerical solutions at x. Here we should note that, uexact

i and
unum

i denote exact and numerical solutions at collocation points xi at a certain final time t.
Since in the solution process we took the collocation points as xi = i−0.5

3m , i = 1, 2, ..., 3m,
for calculating numerical results at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 we have used
interpolation techniques.

Also for every problem, at the bottom of the tables, we provide the error norm L∞
which is defined by

L∞(u, .) = max
i

∣∣∣uexact
i − unum

i

∣∣∣ , i = 1, 2, ..., 3m.

Convergence rates are calculated according to the formula

Rate =
log

(
L∞(u,3∆x)
L∞(u,∆x)

)
log

(
3∆x
∆x

) (4.1)

where ∆x = 1
3m is the step size of spatial variable x.

4.1. Problem 1
We consider

120x∂
2u

∂t2
+
(
120 + x5

) ∂4u

∂x4 = 0

subject to the initial conditions

u(x, 0) = 0, ut(x, 0) = 1 + x5

120
,

1
2

≤ x ≤ 1

and with the boundary conditions at x = 1/2 and x = 1 of the form

u(1
2
, t) = 3841

3840
sin t, u(1, t) = 121

120
sin t,

uxx(1
2
, t) = 1

48
sin t, uxx(1, t) = 1

6
sin t, t ≥ 0.
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This equation is also studied by [46], [1] and [25]. The exact solution of this problem is

u(x, t) =
(

1 + x5

120

)
sin t.

In Table 1, to see convergence in time variable we set 3m = 27 and compute the errors
at t = 0.01 for decreasing values of ∆t. From Table 1, it is obvious that as the values of
∆t are diminished, the error also decreases. Also to see convergence in space variable we
fix ∆t = 0.00025 and compute the errors at t = 0.01 for increasing values of collocation
points in Table 2. It is clearly seen from Table 2 that the errors get smaller by increasing
the number of collocation points. Using various values of ∆t and t = 0.01 we compared
the maximum absolute relative errors of the present method with the results from existing
methods in the literature in Table 3. We choose the number of collocation points as
3m = 9 for the present method for comparison. Table 3 shows that the obtained results
from the present method, are more accurate in comparison to the sextic spline method
[46], A.D.I methods [1] and difference scheme method [25] for this problem. Numerical
and exact solutions are plotted for 3m = 9, ∆t = 0.0025 at t = 1 in Fig. 4.

Table 1. Maximum absolute relative errors for different values of ∆t and 3m = 27
at t = 0.01 for Problem 1

∆t E
0.001 4.5780e-09
0.0005 1.2246e-09

3m = 27 0.00025 2.8163e-10
0.000125 6.7723e-11
6.25e-05 1.9763e-11
3.125e-05 3.5833e-13

Table 2. Maximum absolute relative errors for different values of 3m and ∆t =
0.00025 at t = 0.01 for Problem 1

3m E
3 3.4277e-09
9 8.8387e-10

∆t = 0.00025 27 2.8162e-10
81 9.4109e-11
243 3.1088e-11
729 1.0436e-11

Table 3. Maximum absolute relative errors at t = 0.01 in Problem 1

Methods
Rashidinia and Andrade and Khaliq and

HWCM Mohammadi [46] Mckee [1] Twizell [25]
Parameters 3m = 9 h = 0.05 h = 0.05 h = 0.05

∆t = 0.000625 5.8883e-009 3.51e-08 4.10e-07 3.30e-07
E ∆t = 0.00025 8.8387e-010 9.97e-08 7.20e-07 3.30e-07

∆t = 0.000125 2.2098e-010 5.33e-08 1.90e-06 3.30e-07
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Figure 4. Exact solution versus numerical solution for 3m = 9, ∆t = 0.0025 at
t = 1 in Problem 1

4.2. Problem 2
We consider

sin x∂
2u

∂t2
+ (x− sin x) ∂

4u

∂x4 = 0

subject to the initial conditions
u(x, 0) = x− sin x, ut(x, 0) = − (x− sin x) , 0 ≤ x ≤ 1

and with the boundary conditions
u(0, t) = 0, u(1, t) = e−t (1 − sin 1) ,

uxx(0, t) = 0, uxx(1, t) = e−t sin 1, t ≥ 0.

This problem is also also studied in [46]. The exact solution for this problem is

u(x, t) = (x− sin x) e−t.

We solve the problem for 3m = 27 and ∆t = 0.05 with 10 and 16 time steps. We
compared the approximate solutions obtained by the present method with exact solutions
and tabulated the absolute errors for the present method and for the sextic spline method
by Rashidinia and Mohammadi [46] at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 and at times
t = 0.5 and t = 0.8 in Table 4. It can be seen from the Table 4 that the present method
gives more accurate results in comparison to [46] for all points. We plot the error with
respect to ∆t in Fig. 5 for 3m = 27 at t = 1. Also a plot of the error with respect to the
number of collocation points is given in Fig. 6 for ∆t = 0.0025 at t = 1. From Figs. 5-6
we can deduce that, for fixed 3m, lowering the value of ∆t also reduces the error, and,
for fixed ∆t, increasing 3m decreases the error. Finally graphical representation of the
exact solution and numerical solution are illustrated in Fig. 7 for 3m = 27, ∆t = 0.005 at
t = 0.08. In Table 5 we tabulated the convergence rates in view of the errors calculated
according to Eq. (4.1).
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Table 4. L∞ and Absolute errors for Problem 2

Methods Time Steps Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
HWCM 10 3m = 27 6.17e-11 3.55e-11 1.12e-09 8.03e-10 2.81e-10
HWCM 16 3m = 27 5.77e-11 1.41e-10 1.31e-09 1.85e-09 6.58e-10

[46] 10 h = 0.05 8.35e-08 4.51e-08 8.25e-08 2.33e-08 4.52e-08
[46] 16 h = 0.05 8.42e-08 2.62e-08 5.32e-08 1.45e-08 2.89e-08

HWCM 10 3m = 27 L∞ = 3.0466e− 09
HWCM 16 3m = 27 L∞ = 4.2367e− 09
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Figure 5. Error versus ∆t for 3m = 27 at t = 1 in Problem 2
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Table 5. Convergence rates for ∆t = 0.005 at time t = 1 in Problem 2

L∞ Rate
3m = 3 1.0535e-05 -
3m = 9 1.3257e-06 1.887
3m = 27 1.5933e-07 1.928
3m = 81 2.7831e-08 1.588

4.3. Problem 3
We consider a constant coefficient (µ(x) = EI(x) = 1) fourth order non-homogeneous

parabolic partial differential equation given by
∂2u

∂t2
+ ∂4u

∂x4 =
(
π4 − 1

)
sin(πx) cos t

subject to the initial conditions
u(x, 0) = sin(πx), ut(x, 0) = 0, 0 ≤ x ≤ 1

and with the boundary conditions
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.

The exact solution for this problem is [12]
u(x, t) = sin(πx) cos t.

In Table 6, we give absolute errors at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 using
3m = 27, 81 and ∆t = 0.00125, 0.005 at t = 0.02, 0.05. Also we give results from the
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previous studies for comparison. It can be seen from Table 6 that the present method
gives more accurate results than AGE method [12], Fifth degree B-spline method [4], B-
spline methods with redefined basis functions [36] and gives comparable results with other
methods studied in [2,26,41,46]. Note that n stands for the number of collocation points
in Table 6. Figure 8 shows the evolution of numerical solution in time during simulation
for 3m = 81 and ∆t = 0.05.

Table 6. L∞ and Absolute errors for Problem 3

Methods Time Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

HWCM

t = 0.02 3m = 81, ∆t = 0.00125 3.80e-07 7.22e-07 9.92e-07 1.16e-06 1.22e-06
t = 0.05 3m = 81, ∆t = 0.005 3.63e-06 6.91e-06 9.51e-06 1.12e-05 1.18e-05

t = 0.02 3m = 27, ∆t = 0.00125 3.23e-06 6.13e-05 8.75e-06 1.02e-05 1.04e-05
t = 0.05 3m = 27, ∆t = 0.005 2.04e-05 3.88e-05 5.37e-05 6.31e-05 6.60e-05

Evans and
Yousif [12]

t = 0.02 h = 0.05, ∆t = 0.00125 2.50e- 05 4.70e- 05 6.60e- 05 7.80e- 05 8.20e- 05
t = 0.05 h = 0.05, ∆t = 0.005 2.20e- 04 4.10e- 04 5.40e- 04 6.20e- 04 6.50e- 04

Caglar and
Caglar [4]

t = 0.02 n = 121, ∆t = 0.005 4.80e-06 9.70e-06 1.40e-05 1.90e-05 2.40e-05
t = 0.02 n = 191, ∆t = 0.005 5.20e-06 2.10e-06 3.10e-06 4.20e-06 5.20e-06

Mittal and Jain
[36] Method 1

t = 0.02 n = 181, ∆t = 0.005 8.00e-06 1.52e-05 2.09e-05 2.46e-05 2.59e-05
t = 0.05 n = 181, ∆t = 0.005 8.97e-06 1.71e-05 2.35e-05 2.76e-05 2.90e-05

Mittal and Jain
[36] Method 2

t = 0.02 n = 181, ∆t = 0.005 1.50e-07 2.90e-07 3.90e-07 4.60e-07 4.90e-07
t = 0.05 n = 181, ∆t = 0.005 1.10e-06 2.09e-06 2.88e-06 3.38e-06 3.56e-06

Khan et al [26]
t = 0.02 h = 0.05, ∆t = 0.00125 9.07e-06 7.79e-06 2.75e-06 1.01e-06 2.59e-06
t = 0.05 h = 0.05, ∆t = 0.005 1.87e-06 2.13e-05 1.49e-05 8.60e-06 5.96e-06

Rashidinia and
Mohammadi [46]

t = 0.02 h = 0.05, ∆t = 0.00125 4.47e-07 2.66e-07 1.39e-07 1.55e-07 1.57e-07
t = 0.05 h = 0.05, ∆t = 0.005 2.91e-06 1.73e-06 1.60e-06 2.23e-06 2.60e-07

Aziz et al. [2]
t = 0.02 h = 0.05, ∆t = 0.00125 9.20e-06 7.90e-06 2.80e-06 9.80e-07 2.50e-06
t = 0.05 h = 0.05, ∆t = 0.005 9.30e-06 8.00e-06 2.80e-06 1.00e-06 2.70e-06

Mohammadi [41]
t = 0.02 h = 0.05, ∆t = 0.00125 4.29e-07 2.51e-07 1.24e-07 1.38e-07 1.40e-07
t = 0.05 h = 0.05, ∆t = 0.005 2.96e-06 1.77e-06 1.64e-06 2.28e-06 2.65e-07

HWCM
t = 0.02 3m = 81, ∆t = 0.00125 L∞ = 1.2239e − 06
t = 0.05 3m = 81, ∆t = 0.005 L∞ = 1.1752e − 05
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4.4. Problem 4
We consider a constant coefficient (µ(x) = EI(x) = 1) fourth order homogeneous para-

bolic partial differential equation given by

∂2u

∂t2
+ ∂4u

∂x4 = 0

subject to the initial conditions

u(x, 0) = x

12

(
2x2 − x3 − 1

)
, ut(x, 0) = 0, 0 ≤ x ≤ 1

and boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.

The exact solution of this problem [11] is

u(x, t) =
∞∑

s=1
as sin(sπx) cos(s2π2t)

where

as = 4
s5π5 (cos(sπ) − 1).
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For the sake of comparing our results with existing results, we choose the number of
collocation points as 3m = 27 and 3m = 81. We observe from the Table 7 that for 3m = 27
the present method gives more accurate results in comparison to existing methods except
H.O.C.M. [13] at t = 0.02, and while at t = 1 the present method gives the best results
among other methods. When we increase the number of collocation points to 3m = 81,
we see from the Table 7 that none of the existing methods can reach to the performance
of the present method in terms of accuracy. In Fig. 9, evolution of numerical solution
for 3m = 81 and ∆t = 0.01 from t = 0 to t = 1 is given. In Table 8 we tabulated the
convergence rates in view of the errors calculated according to Eq. (4.1).

Table 7. L∞ and Absolute errors for Problem 4

Methods Time Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

HWCM

t = 0.02 3m = 27, ∆t = 0.00125 3.33e-07 4.58e-07 1.45e-07 3.84e-07 1.97e-07
t = 1 3m = 27, ∆t = 0.005 2.04e-05 3.76e-05 2.16e-05 1.22e-05 2.45e-05

t = 0.02 3m = 81, ∆t = 0.00125 1.78e-07 1.35e-08 4.27e-07 4.07e-07 1.41e-07
t = 1 3m = 81, ∆t = 0.005 1.54e-05 1.06e-05 1.17e-05 3.13e-05 3.85e-05

H.O.C.M. [13]
t = 0.02 h = 0.05, ∆t = 0.00125 1.40e-07 2.90e-07 5.60e-07 3.40e-07 1.70e-07

t = 1 h = 0.05, ∆t = 0.005 2.59e-03 1.91e-03 7.17e-04 2.20e-03 6.65e-04

Danea and Evans [10]
t = 0.02 h = 0.05, ∆t = 0.00125 2.50e-06 3.90e-06 1.37e-05 2.60e-06 9.80e-06

t = 1 h = 0.05, ∆t = 0.005 3.19e-03 2.73e-03 9.80e-03 1.25e-02 1.40e-02

Evans [11]
t = 0.02 h = 0.05, ∆t = 0.00125 8.44e-06 1.42e-05 1.74e-05 1.40e-06 1.20e-05

t = 1 h = 0.05, ∆t = 0.005 3.20e-03 2.73e-03 9.80e-03 1.25e-02 1.40e-02

Richtmyer [47]
t = 0.02 h = 0.05, ∆t = 0.00125 2.24e-04 3.67e-04 4.03e-04 3.64e-04 3.35e-04

t = 1 h = 0.05, ∆t = 0.005 2.73e-03 9.48e-03 1.74e-02 2.30e-02 2.24e-02

Semi-explicit [13]
t = 0.02 h = 0.05, ∆t = 0.00125 3.01e-05 6.19e-05 6.69e-05 5.10e-05 1.34e-05

t = 1 h = 0.05, ∆t = 0.005 2.74e-03 5.93e-03 4.48e-03 2.32e-03 6.51e-03

Mittal and Jain[36]
t = 0.02 n = 181, ∆t = 0.005 1.14e-05 1.41e-05 9.70e-06 8.02e-06 1.92e-05

t = 1 n = 181, ∆t = 0.005 7.33e-04 1.44e-03 2.04e-03 2.47e-03 2.63e-03

HWCM
t = 0.02 3m = 81, ∆t = 0.00125 L∞ = 4.4750e-07

t = 1 3m = 81, ∆t = 0.005 L∞ = 3.8503e-05
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Figure 9. Evolution of numerical solution for 3m = 81 and ∆t = 0.01 from t = 0
to t = 1 in Problem 4

Table 8. Convergence rates for ∆t = 0.0001 at final time t = 1 in Problem 4

L∞ Rate
3m = 9 4.693704e-04 -
3m = 27 4.495959e-05 2.135
3m = 81 4.810131e-06 2.034
3m = 243 6.716085e-07 1.792

4.5. Problem 5
We consider a constant coefficient (µ(x) = 1, EI(x) = −1) fourth order homogeneous

parabolic partial differential equation which is also studied in [36]

∂2u

∂t2
= ∂4u

∂x4

subject to the initial conditions

u(x, 0) = sin(πx), ut(x, 0) = −π2 sin(πx), 0 ≤ x ≤ 1
and with boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.
The exact solution of the problem is given by



176 Ö. Oruç, A. Esen, F. Bulut

u(x, t) = sin(πx)e−π2t.

In Table 9, we give computed results by the present method for 3m = 27 and ∆t = 0.005
at t = 0.02, 0.05. We also give the results of [36] for comparison. We observe in Table 9
that the present method gives more accurate results than B-spline methods with redefined
basis functions [36].

Table 9. L∞ and Absolute errors for Problem 5

Methods Time Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
HWCM t = 0.02 3m = 27, ∆t = 0.005 7.74e-06 1.47e-05 2.05e-05 2.40e-05 2.50e-05
HWCM t = 0.05 3m = 27, ∆t = 0.005 5.99e-05 3.07e-05 2.89e-05 6.52e-05 8.15e-06

Mittal and Jain[36] t = 0.02 n = 31, ∆t = 0.005 2.80e-04 5.33e-04 7.33e-04 8.62e-04 9.06e-04
Method 1 t = 0.05 n = 31, ∆t = 0.005 2.62e-04 4.98e-04 6.86e-04 8.07e-04 8.48e-04

Mittal and Jain [36] t = 0.02 n = 31, ∆t = 0.005 1.08e-04 2.06e-04 2.83e-04 3.33e-04 3.50e-04
Method 2 t = 0.05 n = 31, ∆t = 0.005 6.13e-04 1.35e-03 1.95e-03 2.18e-03 2.20e-03

HWCM t = 0.02 3m = 27, ∆t = 0.005 L∞ = 2.4987e − 05
HWCM t = 0.05 3m = 27, ∆t = 0.005 L∞ = 6.7356e − 05

5. Conclusion
Our main goal in this study is to propose a new 3-scale Haar wavelet based method to

high order partial differential equations and analyze the performance of the method. The
comparisons of numerical solutions with exact solutions and the results from the previous
studies that are based on numerical techniques such as finite differences, B-splines and high
order spline methods indicate the power of the new 3-scale Haar wavelet based method in
dealing with variable coefficient, constant coefficient, homogeneous and non-homogeneous
partial differential equations. The implementation of the method is straight-forward and
simpler than the existing methods. The advantages of the Haar wavelet based method
can be listed as follows.

• High accuracy is attained even with small number of collocation points.
• Small computational costs are required, and the implementation of the method in

computers is easy
• Coping with boundary conditions is very easy compared with other known meth-

ods.
We also note that the new 3-scale Haar wavelet based method introduced here with suitable
modifications can be easily applied to similar problems.
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Abstract
In this study, our main objective is to determine some monotonic and log-concavity prop-
erties of generalized k-Bessel function by using its Hadamard product representation and
some earlier results on power series. In addition, by using the relationships between Bessel-
type special functions and some basic functions, we present some specific examples related
to the monotonic and log-concavity properties of some trigonometric and hyperbolic func-
tions.
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1. Introduction and preliminaries
In the recent years many geometric and monotonic properties of some special functions

like Bessel, Struve, Lommel, Mittag-Leffler, Wright and their generalizations were inves-
tigated by many authors. Comprehensive information about these investigations can be
found in [1–8, 10, 14] and references therein. Especially, some inequalities and monotonic
properties of the above mentioned functions are usefull in engineering, physics, probability
and statistics, and economics. It is known that log-concavity and log-convexity properties
have a crucial role in economics. Comprehensive information about the log-concavity and
the log-convexity properties can be found in [13] and its references. In this study, moti-
vated by the some earlier results which are given in [14, 15], our main aim is to present
some monotonic and log-concavity properties of generalized k-Bessel functions. Moreover,
we give some specific examples regarding our obtained result by using the relationships
between Bessel-type functions and elementary trigonometric and hyperbolic functions.

It is known that, most of special functions can be defined with the help of Euler’s gamma
function. Therefore, we would like to remind the definitions of gamma function and its
k-generalization. The Euler’s gamma function Γ is defined by the following improper
integral, for x > 0:

Γ(x) =
∫ ∞

0
tx−1e−tdt.
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Also, the k-gamma function is defined by (see [12])

Γk(x) =
∫ ∞

0
tx−1e

−tk

k dt

for k > 0. We know that the k-gamma function Γk reduces to the classical gamma function
Γ when k → 1. In addition, Pochammer k-symbol is defined by

(λ)n,k = λ(λ + k)(λ + 2k) . . . ((λ + (n − 1)k))
for λ ∈ C, k ∈ R and n ∈ N+. Other properties of Pochammer k-symbol and k-gamma
function can be found in [12].

In this paper, we are considering the generalized k-Bessel function defined by the fol-
lowing series representation (see [14]):

W k
ν,c(x) =

∞∑
n=0

(−c)n

n!Γk(nk + ν + k)

(
x

2

)2n+ ν
k

(1.1)

for k > 0, ν > −1 and c ∈ R. It is clear that the generalized k-Bessel function reduces
to classical Bessel and modified Bessel functions for appropriate values of the parameters
k and c, respectively. More precisely, taking k = c = 1 and k = −c = 1 in (1.1), we have
that

W 1
ν,1(x) =

∞∑
n=0

(−1)n

n!Γ(n + ν + 1)

(
x

2

)2n+ν

= Jν(x) (1.2)

and
W 1

ν,−1(x) =
∞∑

n=0

1
n!Γ(n + ν + 1)

(
x

2

)2n+ν

= Iν(x), (1.3)

where Jν(x) and Iν(x) denote classical Bessel and modified Bessel functions of the first
kind, respectively. In [15], the author studied some geomertric properties such as radii of
starlikeness and convexity of generalized k-Bessel function. Also, the author gave an infi-
nite product representation of generalized k-Bessel function by using Hadamard’s theorem
as follow (see [15, Lemma 1.1]):

W k
ν,c(x) =

(
x
2
) ν

k

Γk(ν + k)
∏
n≥1

(
1 − x2

kw2
ν,c,n

)
, (1.4)

where kwν,c,n denotes nth positive zero of generalized k-Bessel function W k
ν,c(x).

Now, we would like to give the definition of logarithmic concavity of a function.

Definition 1.1 ([13]). A function f is said to be log-concave on interval (a, b) if the
function log f is a concave function on (a, b).

To show log-concavity of a function f on the interval (a, b), it is sufficient to show one
of the following two conditions:

i. f ′

f monotone decreasing on (a, b).
ii. log f ′′ < 0.

Also the following lemma due to Biernacki and Krzyż (see [11]) will be used in order to
prove some monotonic properties of the mentioned functions.

Lemma 1.2. Consider the power series f(x) =
∑

n≥0 anxn and g(x) =
∑

n≥0 bnxn, where
an ∈ R and bn > 0 for all n ∈ {0, 1, . . . }, and suppose that both converge on (−r, r), r > 0.
If the sequence {an

bn
}n≥0 is increasing(decreasing), then the function x 7→

(
f(x)
g(x)

)
is also

increasing(decreasing) on (0, r).

It is important to note that the above result remains true for the even or odd functions.
The outcomes of our paper is as follow: In Section 2, we give our main results and their

consequences, while the Section 3 is devoted for some applications of our main results.
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2. Main results
In this section, we present our main results and their consequences.

Theorem 2.1. Let k > 0, k + ν > 0, c ∈ R and kwν,c,n denote the nth positive zero of the
generalized k-Bessel function W k

ν,c(x). Further, consider the following sets:

δ1 =
∪

n≥1
(kwν,c,2n−1, kwν,c,2n) , δ2 =

∪
n≥1

(kwν,c,2n, kwν,c,2n+1) and δ3 = [0, kwν,c,1) ∪ δ2.

The generalized k-Bessel function

Θk
ν,c(x) = Γk(ν + k)2

ν
k x− ν

k W k
ν,c(x) =

∞∑
n=0

(−c)n

n! (ν + k)n,k

(
x

2

)2n

(2.1)

has the following properties:
a. the function x 7→ Θk

ν,c(x) is negative on δ1 and it is positive on δ3,

b. the function x 7→ Θk
ν,c(x) is a decreasing function on [0, kwν,c,1),

c. the function x 7→ Θk
ν,c(x) is strictly log-concave on δ3.

Proof. a. If we consider the infinite product representation of generalized k-Bessel func-
tion W k

ν,c(x) which is given by (1.4), then it can be easily seen that the function Θk
ν,c(x)

can be written by the following product representation:

Θk
ν,c(x) =

∏
n≥1

(
1 − x2

kw2
ν,c,n

)
. (2.2)

In order to investigate the sign of the function x 7→ Θk
ν,c(x) on the mentioned sets, we

rewrite the function x 7→ Θk
ν,c(x) as

Θk
ν,c(x) = UnVn,

where
Un =

∏
n≥1

kwν,c,n + x

kw2
ν,c,n

and Vn =
∏
n≥1

(kwν,c,n − x) .

It is clear that Un > 0 for all x ∈ R+ ∪ {0}. On the other hand, since

0 < kwν,c,1 < kwν,c,2 < · · · < kwν,c,n < · · · ,

we can say that, if x ∈ (kwν,c,2n−1, kwν,c,2n), then the first (2n − 1) terms of Vn are strictly
negative and remained terms are strictly positive. Also, if x ∈ (kwν,c,2n, kwν,c,2n+1), then
the first 2n terms of Vn are strictly negative and the rest is strictly positive. In addition,
all the terms of Vn are strictly positive for x ∈ [0, kwν,c,1). As a consequence, the function
x 7→ Θk

ν,c(x) is negative on δ1 and it is positive on δ3.

b. We know from part a. that the function x 7→ Θk
ν,c(x) is positive on the interval

[0, kwν,c,1). The logarithmic differentation of (2.2) implies that(
Θk

ν,c(x)
)′

Θk
ν,c(x)

=
∞∑

n=1

2x

x2 − kw2
ν,c,n

.

Thus, we get (
Θk

ν,c(x)
)′

= Θk
ν,c(x)

∞∑
n=1

2x

x2 − kw2
ν,c,n

< 0

for all x ∈ [0, kwν,c,1). As a result, the function x 7→ Θk
ν,c(x) is a decreasing function on

[0, kwν,c,1) .
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c. In order to prove log-concavity of the function x 7→ Θk
ν,c(x), we need to show that

d2

dx2

[
log Θk

ν,c(x)
]

< 0

for all x ∈ δ3. Now, by using the infinite product representation of the function Θk
ν,c(x)

which is given by (2.2) we infer that

d2

dx2

[
log Θk

ν,c(x)
]

= d2

dx2

log
∏
n≥1

(
1 − x2

kw2
ν,c,n

)
= d

dx

[
d

dx

∞∑
n=1

log
(

1 − x2

kw2
ν,c,n

)]

= d

dx

∞∑
n=1

−2x

kw2
ν,c,n − x2

= −2
∞∑

n=1

kw2
ν,c,n + x2(

kw2
ν,c,n − x2

)2

< 0

for x ∈ δ3. Thus, the proof is completed. �

By setting k = c = 1 and k = 1, c = −1 in the Theorem 2.1 we have the following
properties for the classical Bessel and modified Bessel functions, respectively.

Corollary 2.2. Let ν > −1 and jν,n denote the nth positive zero of the classical Bessel
function Jν(x). Further, consider the next sets:

A1 =
∪

n≥1
(jν,2n−1, jν,2n) , A2 =

∪
n≥1

(jν,2n, jν,2n+1) and A3 = [0, jν,1) ∪ A2.

The following assertions are true:
a. the function Θ1

ν,1(x) = Γ(ν + 1)2νx−νJν(x) is negative on A1 and it is positive on
A3,

b. the function Θ1
ν,1(x) = Γ(ν + 1)2νx−νJν(x) is a decreasing function on [0, jν,1) ,

c. the function Θ1
ν,1(x) = Γ(ν + 1)2νx−νJν(x) is strictly log-concave on A3.

Corollary 2.3. Let ν > −1 and ϵν,n denote the nth positive zero of the modified Bessel
function Iν(x). Further, consider the next sets:

B1 =
∪

n≥1
(ϵν,2n−1, ϵν,2n) , B2 =

∪
n≥1

(ϵν,2n, ϵν,2n+1) and B3 = [0, ϵν,1) ∪ B2.

The following assertions are true:
a. the function Θ1

ν,−1(x) = Γ(ν +1)2νx−νIν(x) is negative on B1 and it is positive on
B3,

b. the function Θ1
ν,−1(x) = Γ(ν + 1)2νx−νIν(x) is a decreasing function on [0, ϵν,1) ,

c. the function Θ1
ν,−1(x) = Γ(ν + 1)2νx−νIν(x) is strictly log-concave on B3.

Theorem 2.4. Let k > 0, ν > 0, c ∈ R and kwν,c,n denote the nth positive zero of the
generalized k-Bessel function W k

ν,c(x). Then, the function x 7→ W k
ν,c(x) is strictly log-

concave on (0, kwν,c,1) ∪ δ2.

Proof. It is known that the product of two strictly log-concave function is also strictly
log-concave. By using this fact it is possible to prove the log-concavity of the generalized
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k-Bessel function W k
ν,c(x) on δ3. Hence, we rewrite the function W k

ν,c(x) as follow:

W k
ν,c(x) =

(
x
2
) ν

k

Γk(ν + k)
Θk

ν,c(x).

Since
d2

dx2

[
log

(
x

2

) ν
k

]
= − ν

kx2 < 0

for ν > 0, k > 0 and x ∈ R+, the function x 7→
(

x
2
) ν

k is strictly log-concave on R+. In
addition, it is known from part c. of Theorem 2.1 that the function Θk

ν,c(x) is strictly log-
concave on δ3. As a result, the function W k

ν,c(x) is strictly log-concave on (0, kwν,c,1) ∪ δ2
as a product of two strictly log-concave functions. �

Now, by taking k = c = 1 and k = 1, c = −1 in Theorem 2.4, we deduce the following
properties for the classical Bessel and modified Bessel functions, respectively.

Corollary 2.5. The function x 7→ Jν(x) is strictly log-concave on (0, jν,1) ∪ A2, while the
function x 7→ Iν(x) is strictly log-concave on (0, ϵν,1) ∪ B2.

Our last main result is the following theorem.

Theorem 2.6. The function Φk
ν,−1(x) = x(Θk

ν,−1(x))′

Θk
ν,−1(x) is increasing on (0, ∞) for v > −1

and ν + k > 0.

Proof. If we put c = −1 in definition of the function Θk
ν,c(x), then we get the following

infinite series representation for the function Θk
ν,−1(x), that is,

Θk
ν,−1(x) =

∞∑
n=0

Pn,ν,kx2n, (2.3)

where Pn,ν,k = 1
n!4n(ν+k)n,k

. Differentiating both sides of the equality (2.3) and by multi-
plying by x obtained equality, we get that

x
(
Θk

ν,−1(x)
)′

=
∞∑

n=0
Rn,ν,kx2n,

where Rn,ν,k = 2n
n!4n(ν+k)n,k

. According to Cauchy-Hadamard theorem for power series,
it can be easily shown that both power series

∑∞
n=0 Pn,ν,kx2n and

∑∞
n=0 Rn,ν,kx2n are

convergent on (−∞, ∞), since

lim
n→∞

∣∣∣∣∣ Pn,ν,k

Pn+1,ν,k

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ Rn,ν,k

Rn+1,ν,k

∣∣∣∣∣ = ∞.

Here we used the equality (ν + k)n+1,k = (ν + k + nk)(ν + k)n,k for the Pochammer k-
symbol. On the other hand, it can be easily seen that Rn,ν,k ∈ R and Pn,ν,k > 0 for all
n ∈ {0, 1, . . . }, ν > −1 and ν + k > 0. Now, if we consider the sequence

Un = Rn,ν,k

Pn,ν,k
= 2n,

then we have
Un+1
Un

= n + 1
n

> 1.

So the sequence {Un}n≥0 is increasing. The proof is completed by applying Lemma 1.2. �
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3. Applications
In this section, we want to give some applications of our main results. Therefore, we

consider the relationships among of the functions x 7→ Θk
ν,c(x), x 7→ Jν(x) and x 7→ Iν(x).

We know from (1.2) and (1.3) that, the following equalities

W 1
ν,1(x) = Jν(x) and W 1

ν,−1(x) = Iν(x)

hold true for k = c = 1 and k = 1, c = −1, respectively. On the other hand, we know from
[9] that some basic trigonometric and hyperbolic functions can be written in terms of Bessel
and modified Bessel functions for some special values of ν. Especially, for ν = −1

2 , ν = 1
2

and ν = 3
2 we have the following basic trigonometric and hyperbolic functions:

J− 1
2
(x) =

√
2

πx
cos x, J 1

2
(x) =

√
2

πx
sin x, J 3

2
(x) =

√
2

πx

(sin x

x
− cos x

)
and

I− 1
2
(x) =

√
2

πx
cosh x, I 1

2
(x) =

√
2

πx
sinh x, I 3

2
(x) = −

√
2

πx

(sinh x

x
− cosh x

)
.

By using above relationships, we have the followings:

Θ1
− 1

2 ,1(x) = cos x, Θ1
1
2 ,1(x) = sin x

x
, Θ1

3
2 ,1(x) = 3

(sin x − x cos x

x3

)
and

Θ1
− 1

2 ,−1(x) = cosh x, Θ1
1
2 ,−1(x) = sinh x

x
, Θ1

3
2 ,−1(x) = 3

(
x cosh x − sinh x

x3

)
respectively.

Now, by using the above relationships in Corollary 2.2, Corollary 2.3, Corollary 2.5 and
Theorem 2.6, respectively, we can give the following some interesting examples.

Example 3.1. The following assertions hold true.

i. The function x 7→ Θ1
− 1

2 ,1(x) = cos x is strictly log-concave on
[
0, j− 1

2 ,1

)
∪ T1,

where T1 =
∪

n≥1

(
j− 1

2 ,2n, j− 1
2 ,2n+1

)
and j− 1

2 ,n denotes the nth positive zero of the
equation cos x = 0.

ii. The function x 7→ Θ1
1
2 ,1(x) = sin x

x is strictly log-concave on
[
0, j 1

2 ,1

)
∪ T2, where

T2 =
∪

n≥1

(
j 1

2 ,2n, j 1
2 ,2n+1

)
and j 1

2 ,n denotes the nth positive zero of the equation
sin x = 0.

iii. The function x 7→ Θ1
3
2 ,1(x) = 3

(
sin x−x cos x

x3

)
is strictly log-concave on

[
0, j 3

2 ,1

)
∪T3,

where T3 =
∪

n≥1

(
j 3

2 ,2n, j 3
2 ,2n+1

)
and j 3

2 ,n denotes the nth positive zero of the
equation tan x = x.

Example 3.2. The following statements are valid.

i. The function x 7→ Θ1
− 1

2 ,−1(x) = cosh x is strictly log-concave on
[
0, ϵ− 1

2 ,1

)
∪ S1,

where S1 =
∪

n≥1

(
ϵ− 1

2 ,2n, ϵ− 1
2 ,2n+1

)
and ϵ− 1

2 ,n denotes the nth positive zero of the
equation cosh x = 0.

ii. The function x 7→ Θ1
1
2 ,−1(x) = sinh x

x is strictly log-concave on
[
0, ϵ 1

2 ,1

)
∪ S2, where

S2 =
∪

n≥1

(
ϵ 1

2 ,2n, ϵ 1
2 ,2n+1

)
and ϵ 1

2 ,n denotes the nth positive zero of the equation
sinh x = 0.
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iii. The function x 7→ Θ1
3
2 ,−1(x) = 3

(
sinh x−x cosh x

x3

)
is strictly log-concave on

[
0, ϵ 3

2 ,1

)
∪

S3, where S3 =
∪

n≥1

(
ϵ 3

2 ,2n, ϵ 3
2 ,2n+1

)
and ϵ 3

2 ,n denotes the nth positive zero of the
equation tanh x = x.

Example 3.3. The following assertions hold true.
i. The function J− 1

2
(x) =

√
2

πx cos x is strictly log-concave on
[
0, j− 1

2 ,1

)
∪ T1.

ii. The function J 1
2
(x) =

√
2

πx sin x is strictly log-concave on
[
0, j 1

2 ,1

)
∪ T2.

iii. The function J 3
2
(x) =

√
2

πx

(
sin x

x − cos x
)

is strictly log-concave on
[
0, j 3

2 ,1

)
∪ T3.

iv. The function I− 1
2
(x) =

√
2

πx cosh x is strictly log-concave on
[
0, ϵ− 1

2 ,1

)
∪ S1.

v. The function I 1
2
(x) =

√
2

πx sinh x is strictly log-concave on
[
0, ϵ 1

2 ,1

)
∪ S2.

vi. The function I 3
2
(x) = −

√
2

πx

(
sinh x

x − cosh x
)

is strictly log-concave on
[
0, ϵ 3

2 ,1

)
∪

S3.

Example 3.4. The following functions
Φ1

− 1
2 ,−1(x) = x tanh x, Φ1

1
2 ,−1(x) = x coth x − 1

and
Φ1

3
2 ,−1(x) = (x2 + 3) sinh x − 3x cosh x

x cosh x − sinh x
are increasing functions on (0, ∞).
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1. Introduction
Since semigroups of self-mappings generalize powers of a self-mapping, it is natural to

study their fixed points using the well-known technique of applying a contracting mapping
principle to some power of that self-mapping. We will, in this paper, use the following
generalized version of Banach contraction principle in the framework of partially ordered
metric spaces; see also [13, Th. 2.1] for the first result given in this direction.

Theorem 1.1 ([12, Theorems 2.2–2.5]). Let (X, d) be a complete metric space endowed
with a partial ordering ≤. Let T : X → X be a nondecreasing (order-preserving) mapping
with the contraction condition

∃k ∈ (0, 1) ∀x, y ∈ X (x ≤ y ⇒ d(Tx, Ty) ≤ kd(x, y)). (1.1)
Assume that (X, d, ≤) is such that one of the the following conditions holds:

for any nondecreasing sequence (xn) ⊂ X, if xn → x in X, then xn ≤ x ∀n ∈ N,
and there exists x0 ∈ X with x0 ≤ Tx0;

(1.2)
for any nonincreasing sequence (xn) ⊂ X, if xn → x in X, then x ≤ xn ∀n ∈ N,

and there exists x0 ∈ X with Tx0 ≤ x0.
(1.3)
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Assume furthermore that every pair of elements of X has a lower or an upper bound.
Then, T has a unique fixed point x∗ in X and the iterative sequence (T nx) converges to
x∗ for every x ∈ X.

Conditions (1.2) and (1.3) hold in the setting of ordered Banach spaces E, in which we
will improve the following two known fixed point theorems when we restrict our attention
to monotone operators T on a closed set C ⊂ E (this is so common since we deal in this
case with operators preserving the order structure) with a lower (resp. upper) fixed point,
i.e., x0 ∈ C with x0 ≤ Tx0 (resp. Tx0 ≤ x0). Fixed point results for operators having
lower or upper fixed points were considered in the literature to solve ordinary as well as
functional-differential equations with lower or upper solutions; see for instance [6,8,10,12].

Theorem 1.2 ([15, Theorem 1], [16, Theorem 1.2.12 ]). Let (E, ∥.∥) be a (real) Banach
space with a transitive binary relation ≺ and a mapping m : E → E satisfying the following
conditions:

(1) θ ≺ m (x) , x ∈ E and θ denotes the zero element in E.
(2) ∥m (x)∥ = ∥x∥ , x ∈ E.

Furthermore, assume that the norm on E is monotone, that is
θ ≺ x ≺ y ⇒ ∥x∥ ≤ ∥y∥ , x, y ∈ E. (1.4)

Let the operator T : E → E be given with the following contraction condition:
m (Tx − Ty) ≺ Am (x − y) , x, y ∈ E (1.5)

for some bounded linear operator A on E with the following properties:
(3) θ ≺ x ≺ y ⇒ Ax ≺ Ay.
(4) r (A) < 1, where r (A) stands for the spectral radius of A.

Then, T has a unique fixed point x∗ in E and the iterative sequence (T nx) converges to
x∗ for every x ∈ E.

Theorem 1.3 ([8, Theorem 3.1.14]). Let E be an ordered Banach space with a normal
generating cone E+ and T : E → E be an operator. If there exists a positive linear bounded
operator A : E → E, ∥A∥ < 1 such that

− A (x − y) ≤ Tx − Ty ≤ A (x − y) , x, y ∈ E, y ≤ x, (1.6)
then T has a unique fixed point x∗ in E and the iterative sequence (T nx) converges to x∗

for every x ∈ E.

We will improve the above theorems through the followings:
- We will consider semigroups of operators instead of a single one. In this case, the

notion of a lower (resp. upper) fixed point of an operator will be naturally extended to
the existence of an element with a monotone orbit for that semigroup of operators.

- As a less restrictive contraction condition than (1.5) and (1.6), we will consider the
following one:

− A (x − y) ≤ Tx − Ty ≤ A (x − y) , x, y ∈ C, y ≤ x, (1.7)
where A is some positive bounded linear operator on E with r (A) < 1. While conditions of
Theorem 1.2 and Theorem 1.3 (see for the latter theorem [8, p 118]) imply necessarily the
uniform continuity of the operator T , such operator is not necessarily continuous under
conditions of our main theorems (hence, our results are stated for discontinuous operators
in general).

- Comparing (1.5) and (1.7) , one observes that the structure of the underlying space is
relaxed by avoiding the mapping m on E. In this case, monotonicity of the norm of E, or
its weak alternative, namely, the normality of the cone of E will suffice to state our fixed
point results. This fact is motivated by the following example from [2, Example 3].
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Let us recall first that a cone K of an ordered normed vector space (E, ∥.∥ , ≤) is said
to be normal, if there exists a constant N > 0 such that

θ ≤ x ≤ y ⇒ ∥x∥ ≤ N ∥y∥ , x, y ∈ E,

equivalently, if E admits an equivalent monotone norm, i.e., an equivalent norm satisfying
condition (1.4) for the partial order relation of E; see [1, Theorem 2.38]. Moreover, K
is said to be generating if the vector subspace generated by K coincides with E, i.e.,
E = K − K. Lattice cones of the classical function spaces that are Banach lattices are
special examples of normal and generating cones. More details on cone theory can be
found in [1, 8].

Example 1.4. Let l2 be equipped with its standard inner product norm ∥.∥ and the
ordering ≤ given by the closed positive cone,

K = {(xk)∞
k=1 : x2k−1 ≥ kx2k ≥ 0 for all k} .

It follows from [2, Example 3] that the ordered normed vector space E = K − K is a
vector lattice that admits no equivalent absolute norm |||.||| (i.e. ||| |x| ||| = |||x|||, x ∈ E,
where |x| := x∨−x the join of {x, −x}), and hence no equivalent norm satisfying condition
(2) of Theorem 1.2, where m : E → E is given by m (x) = |x| (which is the so common
case in function spaces). However, since K is a subset of the standard cone l+2 ⊂ l2 with
respect to which the norm ∥.∥ is monotone, the latter is also monotone with respect to
the cone K.

The last section of the paper is devoted to the application of our results in solving the
order counterpart of the following initial value problem for nonlinear functional-differential
equations:{

u′ (t) = f (t, u (h1 (t)) , ..., u (hr (t)) , u′ (t)) for a.e. t ∈ [0, R] (resp. ∀t ∈ [0, R] );
u (0) = 0,

(1.8)
where R > 0, the unknown u belongs to AC [0, R] (resp. C1 [0, R]) the space of real-valued
absolutely continuous (resp. continuously differentiable) functions on [0, R] ,

(t, x1, ..., xr+1) → f(t, x1, ..., xr+1)

is a given real-valued function defined on the set [0, R] × Rr+1 and Lebesgue measurable
with respect to t for all (x1, ..., xr+1) ∈ Rr+1, and hi : [0, R] → [0, R] are continuous
functions. This means solving Problem (1.8) under suitable hypotheses involving the
order structure of the underlying space, while the same problem has been studied in [15, p
183] under hypotheses that do not involve this structure; see also [16, p 49].

The essential order-type hypothesis here is the existence of a lower or an upper solution
of Problem (1.8) that will generate its solution. This problem is said to have a lower
solution if there exists u0 ∈ AC [0, R] (resp. C1 [0, R]) such that{

u′
0 (t) ≤ f (t, u0 (h1 (t)) , ..., u0 (hr (t)) , u′

0 (t)) for a.e. t ∈ [0, R] (resp. ∀t ∈ [0, R] );
u0 (0) ≤ 0.

An upper solution is defined similarly with the reversed inequalities. Assuming the
existence of a lower (resp. upper) solution u0 of Problem (1.8), we are able to localize
its solution in the order interval of functions satisfying u0 (t) ≤ u (t) , t ∈ [0, R] (resp.
u (t) ≤ u0 (t) , t ∈ [0, R]). Solutions of nonlinear integro-differential equations having a
lower or an upper solution have been studied in the literature in many works; see for
instance [8, 10,12].

Also, the assumption of continuity of the function f in [15, Theorem 3] is replaced here
with its increasing monotonicity with respect to (x1, ..., xr+1) on Rr+1 (see Sec. 4). The
lack of continuity in problems for nonlinear functional-differential equations may appear
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in many situations and motivations for this kind of problems which were developed in
[3, Chap. 4].

As a consequence, we prove the existence of a positive solution of Problem (1.8) under
some natural hypotheses. Positive solutions of nonlinear integro-differential equations have
been, in their turn, studied intensively in the literature; see for instance [4, 7, 11,14].

2. Preliminaries
Throughout the paper, C will denote a nonempty and closed subset of a (non-trivial)

ordered Banach space E, i.e., a real Banach space E with an ordering ≤ induced by a
closed cone in E that will be denoted by E+. The norm of E will be denoted by ∥.∥ .
For x ∈ E, the intervals [x), (x] are the closed sets defined by [x) = {z ∈ E : x ≤ z} ,
(x] = {z ∈ E : z ≤ x} . For two vectors x, y ∈ E, if x ≤ y or y ≤ x then x and y are said
to be comparable.

The term operator on C will mean a self-mapping of C. An operator T on C is said to
be monotone, if it is order-preserving, i.e., for every x, y ∈ C,

x ≤ y ⇒ Tx ≤ Ty.
Note that a linear operator A on E is monotone if and only if A is a positive operator,
i.e.,

θ ≤ x ⇒ θ ≤ Ax, x ∈ E.

In the sequel, the Banach space of bounded linear operators on E and the set of positive
bounded linear operators on E will be denoted by B (E) and B+ (E) respectively. The
spectral radius of A ∈ B (E) is defined by

r (A) = max {|λ| : λ ∈ σ (A)}
where σ (A) := σ (Ac) the spectrum of Ac and Ac ∈ B (Ec) is the complexification of A
defined on the complex Banach space Ec, the complexification of E, by

Ac (x + iy) = Ax + iAy, x, y ∈ E.

The spectral radius of A is given in terms of its norm via the following formula (well-
known as Gelfand’s formula):

r (A) = lim
n→∞

∥An∥
1
n = inf

n∈N
∥An∥

1
n .

In the setting of ordered Banach spaces, it is more convenient to calculate the spectral
radius of a positive operator A ∈ B (E) through its local spectral radius r (A, x) at some
element x ∈ E. This is defined for an operator A ∈ B (E) by

r (A, x) = lim sup
n→∞

∥Anx∥
1
n .

The details are in the following lemma which will be useful in proving some forthcoming
results.

Lemma 2.1 ([5, Proposition 5]). Let the cone E+ be normal and generating, A ∈ B+ (E) ,
and x0 ∈ E+\ {θ} such that A is bounded from above by x0, that is, for every x ∈ E+

there is a positive number n (x) with Ax ≤ n (x) x0. Then, r (A) = r (A, x0) .

Let us consider now a commutative semitopological semigroup S, i.e., a semigroup with
a Hausdorff topology such that for each s ∈ S, the mapping t → st is continuous from
S into S. This includes particularly the discrete case S = (N∪ {0} , +) . We will use the
notation sn to mean the nth power of s ∈ S. Since S is commutative, then S will be
directed by the binary relation ≼ defined on S by the following:

s ≼ t if {s} ∪ sS ⊇ {t} ∪ tS. (2.1)
More on semitopological semigroups and their properties can be found in [9].
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A family T = {Ti}i∈S of operators on C is said to be a semigroup if it satisfies the
following:

(1) TsTt = Tst for all s, t ∈ S;
(2) the mapping s → Tsx is continuous from S into C, for every x ∈ C.

For a family T = {Ti}i∈S of operators on a nonempty set C, an element x ∈ C is said
to be a fixed point of T if it is a fixed point of Ti for every i ∈ S, i.e., Tix = x for every
i ∈ S.

3. Main results
We formulate the following lemma, generalizing the lemma in [15, p 179], that will be

used in the proof of our main result. Its proof is simple and therefore omitted.

Lemma 3.1. A sufficient condition for a commuting family T = {Ti}i∈S of operators on
a nonempty set to have a unique fixed point x∗ is that x∗ is the unique fixed point of some
operator from the family Ti0 , where i0 ∈ S.

Theorem 3.2. Let the cone E+ be normal, S be a commutative semitopological semigroup
and T = {Ts}s∈S be a semigroup of monotone operators on C. Assume that

(1) there exists s0 ∈ S such that Ts0 satisfies the contraction condition (1.7) with
respect to some operator A ∈ B+ (E);

(2) there exists x0 ∈ C such that its orbit {Tsx0}s∈S is an increasing (resp. decreasing)
net.

Then T has a unique fixed point x∗ in C0 = C ∩ [y0) (resp. C0 = C ∩ (y0]), where
y0 = Ts0x0. Moreover, if C is bounded, then lims ∥Tsx − x∗∥ = 0 for every x ∈ C, x and
x∗ are comparable.

Proof. Assume that the net {Tsx0}s∈S is increasing (the other case can be dealt in a
similar way). Then for every s ∈ S, Ts maps C0 into itself. Indeed, since s0 ≼ ss0, s ∈ S
and Ts is monotone, then

Ts0x0 ≤ Tss0x0 ≤ Tsx,

so Tsx ∈ C0 for every x ∈ C0. Now, if x, y ∈ C with y ≤ x, one has
θ ≤ Ts0x − Ts0y ≤ A (x − y) . (3.1)

Again, since Ts0y ≤ Ts0x, then
θ ≤ T 2

s0x − T 2
s0y ≤ A (Ts0x − Ts0y) .

Applying the operator A to the inequality (3.1), we get
θ ≤ T 2

s0x − T 2
s0y ≤ A2 (x − y) .

Proceeding inductively, we have
θ ≤ T n

s0x − T n
s0y ≤ An (x − y) (3.2)

for each n ∈ N. Since the cone E+ is normal, we may assume that the norm ∥.∥ is
monotone. It follows that∥∥T n

s0x − T n
s0y
∥∥ ≤ ∥An (x − y)∥ ≤ ∥An∥ ∥x − y∥ , (3.3)

for each n ∈ N and for every x, y ∈ C with y ≤ x. Since r (A) < 1, by Gelfand’s formula
there exists n0 ∈ N such that ∥An0∥ < 1. Assuming 0 < ∥An0∥ < 1, then we are in position
to apply Theorem 1.1 for the mapping T n0

s0 |C0 : C0 → C0 to infer that T n0
s0 has a unique

fixed point x∗ in C0, where C0 is endowed with the metric induced by the norm of E and
y0 ≤ T n0

s0 y0 (as the net {Tsx0}s∈S is increasing). Since Ts maps C0 into itself for every
s ∈ S, then we infer from Lemma 3.1 that x∗ is the unique fixed point of T in C0. Now, if
An0 = 0 then it follows from (3.2) that T n0

s0 is the constant mapping on C0 equal to T n0
s0 y0.
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Since y0 ≤ T n0
s0 y0, then clearly T n0

s0 y0 is the unique fixed point of T n0
s0 in C0. Therefore, by

the same above argument T n0
s0 y0 is the unique fixed point of T in C0.

Assume now that C is bounded with a diameter M ≥ 0. Let x ∈ C, x and x∗ be
comparable, t0 = sn0

0 , and k = ∥An0∥. We will show that for every ε > 0 there exists
n ∈ N such that ∥∥∥Ttn

0 sx − x∗
∥∥∥ < ε for every s ∈ S. (3.4)

Let ε > 0 and choose n ∈ N with knM < ε. Since the operators of T are monotone, for
every s ∈ S, from (3.3) one has∥∥∥Ttn

0 sx − x∗
∥∥∥ =

∥∥∥Ttn
0 sx − Ttn

0 sx∗
∥∥∥

≤ kn ∥Tsx − Tsx∗∥
≤ knM < ε,

as desired. Now, if s ∈ S with tn
0 ≼ s, then s ∈ {tn

0 } ∪ tn
0 S. Therefore, it suffices to show

the case s ∈ tn
0 S. Let (sα) ⊂ S be a net with limα tn

0 sα = s. It follows from (3.4) and the
continuity of s → Tsx from S into C that ∥Tsx − x∗∥ ≤ ε, that is lims ∥Tsx − x∗∥ = 0.
This ends the proof. �
Remark 3.3. (1) It is easy to see that in the particular case S = (N∪ {0} , +) and
Tn := T n, T : C → C is a monotone operator, condition (2) of the above theorem is
equivalent to x0 is a lower (resp. upper) fixed point of T, and hence it is a natural
extension of the existence of a lower (resp. upper) fixed point of a single operator to the
case of a semigroup of operators.

(2) The hypothesis of boundedness in the above theorem is realised if there exist two
elements x0, z0 ∈ C, x0 ≤ z0, such that the orbits {Tsx0}s∈S , {Tsz0}s∈S are an increasing
and a decreasing nets respectively. Indeed, by the arguments as shown before, for every
s ∈ S, Ts maps the (closed) order interval [Ts0x0, Ts0z0] ∩ C into itself, and in this case T

has a unique fixed point x∗ in C0 = C ∩ [Ts0x0, Ts0z0]. Note that each order interval [x, y]
of E, x ≤ y, is bounded since the cone E+ is normal; see [1, Theorem 2.40].

As a consequence of our main theorem, taking the particular case S = (N∪ {0} , +) and
Tn := T n, T : C → C, we get an improvement of Theorem 1.2 and Theorem 1.3 in case
the operator T is assumed to be monotone with a lower (resp. upper) fixed point.
Corollary 3.4. Let the cone E+ be normal, T be a monotone operator on C with a lower
(resp. upper) fixed point x0 ∈ C. Assume that there exists a positive integer n0 such
that the power T n0 satisfies the contraction condition (1.7) with respect to some operator
A ∈ B+ (E). Then, T has a unique fixed point x∗ in C0 = C ∩ [x0) (resp. C0 = C ∩ (x0]).
Moreover, if C is bounded, then the iterative sequence (T nx) converges to x∗ for every
x ∈ C, x and x∗ are comparable.

4. An initial value problem for functional-differential equations
In this section, we illustrate the applicability of our results by using Corollary 3.4 to

solve Problem (1.8) under some natural order-type hypotheses. So, we will assume that
(H1) Problem (1.8), u ∈ AC [0, R] admits a lower solution u0 with u′

0 (t) ≥ a for almost
all t ∈ [0, R] and for some a ∈ R+, and the function

f
(
., u0 (h1 (.)) − u0 (0) , ..., u0 (hr (.)) − u0 (0) , u′

0 (.)
)

belongs to L1[0, R], the Lebesgue space of real-valued integrable functions on [0, R].
Moreover, the function f is assumed to be increasing with respect to (x1, ..., xr+1) on

Rr+1, that is
(H2) for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R] × Rr+1 we have

x1 ≤ y1, x2 ≤ y2, ..., xr+1 ≤ yr+1 ⇒ f (t, x1, ..., xr+1) ≤ f (t, y1, ..., yr+1) .
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On the other hand, the hypothesis in [15, Theorem 3] consisting of the standard Lips-
chitz condition of f

|f (t, x1, ..., xr+1) − f (t, y1, ..., yr+1)| ≤
r+1∑
i=1

Li (t) |xi − yi| (4.1)

for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R] ×Rr+1, the Li’s are continuous and positive
functions on the interval [0, R], will be weakened to the Lipschitz condition:

(H3) for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R]×Rr+1 with x1 ≥ y1 ≥ x0, x2 ≥ y2 ≥
x0, ..., xr+1 ≥ yr+1 ≥ x0, we have

f (t, x1, ..., xr+1) − f (t, y1, ..., yr+1) ≤
r+1∑
i=1

Li (t) (xi − yi) (4.2)

where x0 = min (a, aH) and H = minr
i=1 mint∈[0,R] hi (t) .

Finally, we make the estimate hi (t) ≤ t, t ∈ [0, R] satisfying by the functions hi in
[15, Theorem 3] less restrictive. This is

(H4) the functions hi, Li satisfy the estimates
(a) h (t) := supr

i=1 hi (t) ≤ ctα, t ∈ [0, R] , where c > 0, α ∈ (0, 1] are some
constants;

(b) Lr (1 − α) c
1

1−α + Lr+1 < 1 if α ̸= 1 and Lr+1 < 1 if α = 1 and c ≤ 1, where
Lr := maxr

i=1

(
max[0,R] Li (t)

)
r and Lr+1 := max[0,R] Lr+1 (t).

The following theorem provides a solution of Problem (1.8), u ∈ AC [0, R] under the
above-mentioned hypotheses.

Theorem 4.1. Under the hypotheses (H1) − (H4) , Problem (1.8), u ∈ AC [0, R] has a
unique solution with u′ (t) ≥ u′

0 (t) for a.e. t ∈ [0, R] (and hence u (t) ≥ u0 (t) , t ∈ [0, R]).

In what follows, we let E = L1 [0, R] be endowed with its standard norm and the
ordering ≤ induced by the cone

E+ = {u : u (t) ≥ 0 for a.e. t ∈ [0, R]} .

We will use the following lemma that provides an estimation of the spectral radius of a
Voltera-type operator on E.

Lemma 4.2. Let A ∈ B (E) be the operator defined by

Au (t) = L

h(t)∫
0

u (s) ds, t ∈ [0, R],

where L > 0 is some constant. Then, r (A) ≤ L (1 − α) c
1

1−α if α ̸= 1 and r (A) = 0 if
α = 1 and c ≤ 1.

Proof. Let u1 ∈ E be the constant function equal to 1. Since the cone E+ is normal
and generating, A ∈ B+ (E) and Au ≤ L ∥u∥ u1 for every u ∈ E+, then by Lemma 2.1
r (A) = r (A, u1). Now, for t ∈ [0, R] we see from h (t) ≤ ctα that

A (u1) (t) = L

h(t)∫
0

u1 (s) ds ≤ L

ctα∫
0

ds = Lctα.

Again, we have

A2 (u1) (t) = L

h(t)∫
0

Au1 (s) ds ≤ L

ctα∫
0

Lcsαds = L2 c1+α+1

α + 1
tα(α+1),
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and by induction, we have

An (u1) (t) ≤ Ln c1+α+1+...+αn−1+...+α+1

(α + 1) (α2 + α + 1) ... (αn−1 + ... + α + 1)
tα(αn−1+...+α+1)

for every n ≥ 1. Therefore, we have

∥An (u1)∥ ≤ Ln c1+α+1+...+αn−1+...+α+1

(α + 1) (α2 + α + 1) ... (αn + ... + α + 1)
Rαn+...+α+1

for every n ≥ 1. Let an be the right hand side in the last inequality. If α ̸= 1, then
an+1
an

= L
cαn+...+α+1

αn+1 + ... + α + 1
Rαn+1 → L (1 − α) c

1
1−α

as n → ∞, from which we get a
1
n
n → L (1 − α) c

1
1−α as n → ∞. Hence,

r (A, u1) = lim sup
n→∞

∥An (u1)∥
1
n ≤ lim

n→∞
a

1
n
n = L (1 − α) c

1
1−α ,

as desired. Similarly, we have r (A) = 0 if α = 1 and c ≤ 1. �
Remark 4.3. The above lemma remains similarly true in the standard Banach lattice
E = C ([0, R]) of real-valued continuous functions on [0, R] , where the ordering of functions
is the pointwise ordering.

Proof of Theorem 4.1. It is easily shown that Problem (1.8), u ∈ AC [0, R] and u′ (t) ≥
u′

0 (t) for a.e. t ∈ [0, R] is equivalent to the following integral-functional equation: z (t) = f(t,
h1(t)∫

0
z (s) ds,

h2(t)∫
0

z (s) ds, ...,
hr(t)∫

0
z (s) ds, z (t))

z (t) ≥ z0 (t) , for a.e. t ∈ [0, R], z, z0 ∈ E,

(4.3)

where u (t) =
t∫

0
z (s) ds and u0 (t) =

t∫
0

z0 (s) ds + u0 (0) , t ∈ [0, R]. Define the operator T

on the interval [z0) of E by

Tz (t) = f(t,
h1(t)∫
0

z (s) ds,

h2(t)∫
0

z (s) ds, ...,

hr(t)∫
0

z (s) ds, z (t)), t ∈ [0, R]. (4.4)

It follows easily from the hypotheses (H1) − (H3) that T is a monotone operator on [z0)
with z0 as a lower fixed point. Furthermore, for every z, w ∈ [z0) with w ≤ z, from (H3) ,
one has

Tz (t) − Tw (t) ≤
r∑

i=1
Li (t)

hi(t)∫
0

(z − w) (s) ds + Lr+1 (z − w) (t)

≤ Lr

h(t)∫
0

(z − w) (s) ds + Lr+1 (z − w) (t)

= (A + Lr+1I) (z − w) (t) ,

for almost all t ∈ [0, R], where I is the identity operator of E and A ∈ B+ (E) is the
operator of Lemma 4.2 with respect to the constant Lr. Since σ (A + Lr+1I) = σ (A) +
Lr+1, it follows from Lemma 4.2 and the hypothesis (H4) that

r (A + Lr+1I) ≤ r (A) + Lr+1 < 1.

Therefore, applying Corollary 3.4, we see that T has a unique fixed point z ∈ [z0), that
is z is the unique solution of (4.3). This completes the proof. �
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We get as a consequence a positive solution of Problem (1.8), u ∈ AC [0, R] under
natural hypotheses.

Corollary 4.4. Assume that the hypotheses (H2) , (H4) are satisfied, that the Lipschitz
condition (4.2) is satisfied for all (t, x1, ..., xr+1) , (t, y1, ..., yr+1) ∈ [0, R] ×Rr+1

+ with x1 ≥
y1, x2 ≥ y2, ..., xr+1 ≥ yr+1, and that the function f (., 0, ..., 0) belongs to (L1[0, R])+.
Then, Problem (1.8), u ∈ AC [0, R] has a unique solution with a positive derivative (and
hence the solution u is itself positive).

Proof. It follows from the hypotheses that Problem (1.8), u ∈ AC [0, R] has the (every-
where) null function as a lower solution. The desired conclusion follows from Theorem
4.1. �

In case the function f is assumed to be continuous on [0, R] × Rr+1, we get similar
results for Problem (1.8), u ∈ C1 [0, R]. We omit the proofs since they follow by similar
arguments applied in the setting of the standard Banach lattice E = C [0, R].

Theorem 4.5. Assume that f is continuous on [0, R] × Rr+1, that Problem (1.8), u ∈
C1 [0, R] has a lower solution u0 with u′

0 (t) ≥ a for every t ∈ [0, R] and for some a ∈ R+,
and that the hypotheses (H2) − (H4) are satisfied. Then, Problem (1.8) , u ∈ C1 [0, R] has
a unique solution with u′ (t) ≥ u′

0 (t), t ∈ [0, R] (and hence u (t) ≥ u0 (t) , t ∈ [0, R]).

Corollary 4.6. Assume that f is continuous on [0, R] × Rr+1, that the hypotheses (H2) ,
(H4) are satisfied, that the Lipschitz condition (4.2) is satisfied for all (t, x1, ..., xr+1) ,
(t, y1, ..., yr+1) ∈ [0, R] × Rr+1

+ with x1 ≥ y1, x2 ≥ y2, ..., xr+1 ≥ yr+1, and that the
function f (., 0, ..., 0) belongs to (C[0, R])+. Then, Problem (1.8), u ∈ C1 [0, R] has a
unique solution with a positive derivative (and hence the solution u is itself positive).

5. Concluding remarks
(1) The case α = 1 and c ≤ 1 in Theorem 4.5 is the order counterpart of [15, Theorem

3]. Moreover, since there are many functions f which satisfy the Lipschitz condition (4.2)
without the standard one (4.1), we see the need of Corollary 3.4 instead of Theorem 1.2 to
get a fixed point of the operator defined by (4.4). Indeed, as a simple example, consider
the discontinuous function f : [0, R] × R2 → R defined by

f(t, x, y) =
{ 1

2x + 1 if x > −1,
1 − x2 if x ≤ −1,

and let h1(t) = t for every t ∈ [0, R]. In this case, the null function on [0, R] is a lower
solution of Problem (1.8), u ∈ AC [0, R], all the hypotheses (H1) − (H4) are fulfilled, and
Problem (1.8), u ∈ AC [0, R] and u′ (t) ≥ 0 for a.e t ∈ [0, R] reduces to the simple initial
value problem

u′ (t) = 1
2

u (t) + 1 for a.e. t ∈ [0, R], u(0) = 0,

which has a unique solution u ∈ AC [0, R] with a positive derivative.
(2) On the other hand, the following easy situation illustrates the need of Corollary

3.4 instead of Theorem 1.1 or Theorem 1.3. Let R2 be endowed with their Euclidean
norm and coordinatewise ordering. Let T : R2 → R2 be equal to A =

(
0 1
0 0

)
. Clearly,

all conditions of Corollary 3.4 are fulfilled and (0, 0) is the unique fixed point of T . In
particular, the pair T, A satisfies the contraction condition (1.7). However, it is easy to see
that the contraction condition of Theorem 1.1 fails and that for any operator B ∈ B+ (R2)
with ∥B∥ < 1, the pair T, B does not satisfy the contraction condition of Theorem 1.3.

(3) Theorems 4.1 and 4.5 can be stated under slight suitable modifications if we assume
the existence of an upper solution instead of a lower solution of Problem (1.8) .
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(4) The monotone iterative sequences of approximate solutions for Problem
(1.8).

This is for the case when this problem admits simultaneously a lower and an upper
solutions u0 and v0 with a ≤ u′

0 (t) ≤ v′
0 (t) ≤ b for almost all (resp. for all) t ∈ [0, R] and

for some a, b ∈ R+. If the other hypotheses of Theorem 4.1 (resp. 4.5) hold true for both
the lower and the upper solutions u0 and v0 (with the suitable modifications for the upper
solution v0) and if we keep the notations of the proof of Theorem 4.1, then the operator
T is now defined on the order interval [z0, w0] of L1 [0, R] (resp. C1 [0, R]), where w0 is
generated similarly from the upper solution v0, with z0 and w0 as a lower and an upper
fixed points, respectively. In this case, the latter two theorems provide a unique solution
u of Problem (1.8) with u′

0 (t) ≤ u′ (t) ≤ v′
0 (t) for almost all (resp. for all) t ∈ [0, R] (and

hence u0 (t) ≤ u (t) ≤ v0 (t), t ∈ [0, R]). Define the sequences of functions on [0, R]
(
f(n)

)
and

(
f (n)

)
by f(0) (t) = z0 (t) , f (0) (t) = w0 (t) , and inductively by

f(n) (t) = f(t,
h1(t)∫
0

f(n−1) (s) ds, ...,

hr(t)∫
0

f(n−1) (s) ds, f(n−1) (t)),

f (n) (t) = f(t,
h1(t)∫
0

f (n−1) (s) ds, ...,

hr(t)∫
0

f (n−1) (s) ds, f (n−1) (t)).

It follows easily from f(n) = T nz0, f (n) = T nw0, and Corollary 3.4 that the monotone

sequences of functions
(

.∫
0

f(n) (s) ds

)
and

(
.∫

0
f (n) (s) ds

)
converge uniformly on [0, R] to

the solution of Problem (1.8) .
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1. Introduction
In 1992, T. Iwaniec and C. Sbordone [22] introduced the grand Lebesgue spaces Lp) (Ω),

1 < p < ∞, on bounded sets Ω ⊂ Rd, with applications to differential equations. A
generalized version Lp),θ (Ω) appeared in L. Greco, T. Iwaniec and C. Sbordone [18].
During last years these spaces were intensively studied for various applications (see, e.g.,
[1, 16–18, 20, 22, 23]). The variable exponent Lebesgue spaces (or generalized Lebesgue
spaces) Lp(.) appeared in literature for the first time in 1931 with an article written by
Orlicz [25]. Kováčik and Rákosník [24] introduced the variable exponent Lebesgue space
Lp(.)(Rd) and Sobolev space Wk,p(.)(Rd) in higher dimensional Euclidean spaces. There are
several applications of these spaces, such as, elastic mechanics, electrorheological fluids,
image restoration and nonlinear degenerated partial differential equations (see [10,11,14]).
The spaces Lp(.)(Rd) and Lp(Rd) have many common properties, such as Banach space,
reflexivity, separability, uniform convexity, Hölder inequalities and embeddings. A crucial
difference between Lp(.)(Rd) and Lp(Rd) is that the variable exponent Lebesgue space is
not invariant under translation in general, see [13, Lemma 2.3] and [24, Example 2.9]. For
more information see [10,14]. The grand variable exponent Lebesgue space Lp(.),θ (Ω) was
introduced and studied by Kokilasvili and Meski [23]. In their studies they established
the boundedness of maximal and Calderon operators in these spaces. The space Lp(.),θ (Ω)
is not reflexive, separable, rearrangement invariant and translation invariant. There are
several published papers about direct and inverse theorems of approximation theory in
some function spaces weighted, variable or non-weighted, see, [2–8,12,19,21].
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In this study we obtain some inequalities involving trigonometric polynomial approx-
imation in a certain subspace of the weighted variable exponent grand Lebesgue space
L

p(.),θ
w . Also we give some basic properties of these spaces. Finally, we prove some direct

and inverse theorems of approximation in L
p(.),θ
w .

2. Notations and preliminaries
In this section, we give some essential definitions, theorems and remarks for weighted

grand variable exponent Lebesgue spaces.

Definition 2.1. Let T := [0, 2π] and let p (.) : T −→ [1, ∞) be a measurable 2π-periodic
function such that

1 ≤ p− = ess inf
x∈T

p(x) ≤ ess sup
x∈T

p(x):=p+ < ∞.

Assume that p (.) satisfies the local log-continuity condition, i.e., there exists a constant
C > 0 such that the inequality

|p(x) − p(y)| ≤ C

− log |x − y|
holds for all x, y ∈ T with |x − y| ≤ 1

2 (briefly p (.) ∈ P (T)). We also define a subclass

P0 (T) =
{
p (.) ∈ P (T) : 1 < p−} .

Definition 2.2. Let p (.) ∈ P (T). Variable exponent Lebesgue space Lp(.) := Lp(.)(T) is
defined as the set of all measurable, 2π-periodic functions f on T such that ϱp(.)(λf) < ∞
for some λ > 0, equipped with the Luxemburg norm

∥f∥p(.) = inf
{

λ > 0 : ϱp(.)

(
f

λ

)
≤ 1

}
,

where ϱp(.)(f) =
∫
T

|f(x)|p(x) dx. The space Lp(.) is a Banach space with the norm ∥.∥p(.).

Moreover, the norm ∥.∥p(.) coincides with the usual Lebesgue norm ∥.∥p whenever p(.) = p

is a constant function. If p+ < ∞, then f ∈ Lp(.) if and only if ϱp(.)(f) < ∞.

Definition 2.3. A Lebesgue measurable and locally integrable function w : T −→ (0, ∞)
is called a weight function. Suppose that p (.) ∈ P (T). The weighted modular is defined
by

ϱp(.),w(f) =
∫
T

|f(x)|p(x) w(x)dx.

The weighted variable exponent Lebesgue space L
p(.)
w := L

p(.)
w (T) consists of all measurable

functions f on T for which ∥f∥p(.),w =
∥∥∥∥fw

1
p(.)

∥∥∥∥
p(.)

< ∞. Also, L
p(.)
w is a uniformly convex

Banach space, thus reflexive.

Remark 2.4. Let w be a weight on T and p (.) ∈ P (T) .
(i) Relations between the modular ϱp(.),w(.) and ∥.∥p(.),w are as follows:

min
{

ϱp(.),w(f)
1

p− , ϱp(.),w(f)
1

p+

}
≤ ∥f∥p(.),w ≤ max

{
ϱp(.),w(f)

1
p− , ϱp(.),w(f)

1
p+

}
,

min
{

∥f∥p+

p(.),w , ∥f∥p−

p(.),w

}
≤ ϱp(.),w(f) ≤ max

{
∥f∥p+

p(.),w , ∥f∥p−

p(.),w

}
.

(ii) If 0 < C ≤ w, then we have L
p(.)
w ↪→ Lp(.), since one gets easily that

C

∫
T

|f(x)|p(x) dx ≤
∫
T

|f(x)|p(x) w(x)dx
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and C ∥f∥p(.) ≤ ∥f∥p(.),w (see [9]). Moreover, due to |T| < ∞ and 1 ≤ p(.) we have
L

p(.)
w (T) ↪→ Lp(.)(T) ↪→ L1(T).

Definition 2.5. Let θ > 0 and p (.) ∈ P (T). The grand variable exponent Lebesgue
space, Lp(.),θ, is the class of all measurable functions f for which

∥f∥p(.),θ := sup
0<ε<p−−1

ε
θ

p−−ε ∥f∥p(.)−ε < ∞.

When p(.) = p is a constant function, these spaces coincide with the grand Lebesgue
spaces Lp),θ (T).

Definition 2.6. Let w be a weight on T and p (.) ∈ P (T) . The weighted grand variable
exponent Lebesgue spaces L

p(.),θ
w := L

p(.),θ
w (T) is the class of all measurable functions f

for which
∥f∥p(.),w,θ := sup

0<ε<p−−1
ε

θ
p−−ε ∥f∥p(.)−ε,w < ∞.

Remark 2.7. Let w be a weight on T and p (.) ∈ P (T) .
(i) It is easy to see that the following continuous embeddings hold

Lp(.) ↪→ Lp(.),θ ↪→ Lp(.)−ε ↪→ L1, 0 < ε < p− − 1

due to |T| < ∞ (see [12,23]).
(ii) For f ∈ L

p(.),θ
w (T) the norm equality ∥f∥p(.),w,θ =

∥∥∥∥fw
1

p(.)

∥∥∥∥
p(.),θ

is not valid in

L
p(.),θ
w (T) (see [17]).

Example 2.8. Let α > 0, θ = 1, p(.) = p =constant and choose a weight w(x) = xα. If
we take f(x) = xβ for β > −α − 1, then we have f ∈ L

p)
w (0, 1). But,

(
fw

1
p

)p−ε
is not

integrable in (0, 1) for any 0 < ε < p − 1 and so fw
1
p /∈ Lp) (0, 1) (see [16]).

Proposition 2.9 (Nesting Property). If 0 < C ≤ w, p (.) ∈ P (T) and θ1 < θ2, then we
have the following continuous embeddings

Lp(.)
w ↪→ Lp(.),θ1

w ↪→ Lp(.),θ2
w ↪→ Lp(.)−ε

w ↪→ Lp(.)−ε ↪→ L1, 0 < ε < p− − 1

due to |T| < ∞ (see [12, 23]).

Remark 2.10. Let w be a weight on T and p (.) ∈ P (T) . There are several differences
between L

p(.)
w and L

p(.),θ
w . For instance, the set of the bounded functions is not dense

in L
p(.),θ
w , and the closure of L∞ (T) in the norm of L

p(.),θ
w can be characterized by the

functions f such that

lim
ε→0

sup ε
θ

p−−ε ∥f∥p(.)−ε,w = 0

(see [1]). Moreover, the closure of simple functions is not dense in L
p(.),θ
w . Also, the space

L
p(.),θ
w is not reflexive, not separable and not rearrangement invariant. Since the closure of

L
p(.)
w in L

p(.),θ
w does not coincide with the latter space, that is, L

p(.)
w is not dense in L

p(.),θ
w ,

then we redefine this set in the following theorem as a subspace of L
p(.),θ
w (see [12,23]).

Theorem 2.11. Let w be a weight on T and p (.) ∈ P (T). The following statements hold:
(i) The space L

p(.),θ
w is complete.

(ii) The closure of L
p(.)
w in L

p(.),θ
w consists of functions f , which belong to L

p(.),θ
w , for

which limε→0 ε
θ

p−−ε ∥f∥p(.)−ε,w = 0.
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Proof. (i) Let (fn)n∈N be a Cauchy sequence in L
p(.),θ
w . Then for all η > 0 there exists

N (η) > 0 such that, whenever n, m > N (η) we have

ε
θ

p−−ε ∥fn − fm∥p(.)−ε,w <
η

3
(2.1)

for any ε ∈ (0, p− − 1). Therefore (fn)n∈N is a Cauchy sequence in L
p(.)−ε
w for arbitrary

ε ∈ (0, p− − 1). Then there is an f in L
p(.)−ε
w such that

∥f − fn∥p(.)−ε,w → 0 (2.2)

for every ε ∈ (0, p− − 1) (note that the function f is unique for all ε ∈ (0, p− − 1) , see
[23]). For n > N (η), there is an ε0(n) ∈ (0, p− − 1) such that

∥f − fn∥p(.),w,θ ≤ ε0(n)
θ

p−−ε ∥f − fn∥p(.)−ε0(n),w + η

3
(2.3)

by using the definition of the supremum. Moreover, there exists N1 ∈ N such that for
m > N1 we have

ε
θ

p−−ε0(n) ∥f − fm∥p(.)−ε0(n),w ≤ η

3
(2.4)

due to (2.2). If we combine (2.3), (2.4) and (2.1), then we get

∥f − fn∥p(.),w,θ ≤ ε0(n)
θ

p−−ε ∥f − fn∥p(.)−ε0(n),w + η

3

≤ ε0(n)
θ

p−−ε ∥fn − fm∥p(.)−ε0(n),w + ε0(n)
θ

p−−ε ∥f − fm∥p(.)−ε0(n),w + η

3
≤ η

3
+ η

3
+ η

3
= η

for n > N (η) and m > N1. This completes the proof of (i).

(ii) Denote by
[
L

p(.)
w

]
p(.),w,θ

the closure of L
p(.)
w in L

p(.),θ
w . For f ∈

[
L

p(.)
w

]
p(.),w,θ

we can

obtain that there is a sequence (fn)n∈N in L
p(.)
w such that ∥f − fn∥p(.),w,θ → 0 by the

definition of the closure set. Then, for fixed δ > 0, there exists N = N (δ) > 0 such that,
whenever n > N (δ) we obtain

∥f − fn∥p(.),w,θ <
δ

2
. (2.5)

It is well-known that the continuous embedding L
q(.)
w (T) ↪→ L

p(.)
w (T) holds if and only if

q(.) ≥ p(.) because of |T| < ∞ [24]. Hence we get

ε
θ

p−−ε ∥fn∥p(.)−ε,w ≤ (1 + |T|)ε
θ

p−−ε ∥fn∥p(.),w → 0 (2.6)

as ε → 0. If we take ε0 > 0 such that 0 < ε < ε0, then we can write

ε
θ

p−−ε ∥fn∥p(.)−ε,w <
δ

2
. (2.7)

Finally, if we collect (2.5) and (2.7), then we have

ε
θ

p−−ε ∥f∥p(.)−ε,w ≤ ε
θ

p−−ε ∥f − fn∥p(.)−ε,w + ε
θ

p−−ε ∥fn∥p(.)−ε,w

≤ ∥f − fn∥p(.),w,θ + δ

2
≤ δ

as ε → 0. �
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Definition 2.12. We denote the closure of L
p(.)
w by L

p(.),θ
0,w . For f ∈ L

p(.),θ
0,w (T) we have

lim
ε→0

ε
θ

p−−ε ∥f∥p(.)−ε,w = 0

by the last theorem (see [12]).

Proposition 2.13. Let w be a weight on T and p (.) ∈ P (T). Then,
(
L

p(.),θ
w (T) , ∥.∥p(.),w,θ

)
is a Banach function space (see [1]).

We denote the Hardy-Littlewood maximal operator Mf of f by

Mf(x) = sup
I

1
|I|

∫
I

|f(t)| dt, t ∈ T,

where the supremum is taken over all intervals I whose length is less than 2π.
The boundedness of the Hardy-Littlewood maximal operator M on the space L

p(.),θ
W ,

θ > 0, p(.) ∈ P0 (T), was proved in the following theorem for power weights of the form
W (x) = |x − x0|γ , where x0 ∈ T, −1 < γ < p(x0) − 1.

Theorem 2.14. ([17]) Let p(.) ∈ P0 (T), x0 ∈ (−π, π), θ > 0, and −1 < γ < p(x0) − 1.
Then the operator M is bounded in L

p(.),θ
W , i.e. for all f ∈ L

p(.),θ
W there exists a C > 0 such

that the inequality
∥Mf∥p(.),W,θ ≤ C ∥f∥p(.),W,θ

holds with W (x) = |x − x0|γ .

In what follows, all weights W considered will be power weight of the form W (x) =
|x − x0|γ satisfying the hypothesis of the last theorem.

Since W (x) = |x − x0|γ satisfies the Ap(.) condition of Muckenhoupt weights, then we
have the continuous embedding L

p(.),θ
W ↪→ L1(T) [8]. This means that we can consider the

corresponding Fourier series of f ∈ L
p(.),θ
W given by

f(x) ∼ a0 (f)
2

+
∞∑

k=1
(ak (f) cos kx + bk (f) sin kx) , (2.8)

where a0(f) = π−1 ∫
T f (t) dt and

ak(f) = π−1
∫
T

f (t) cos ktdt, bk (f) = π−1
∫
T

f (t) sin ktdt, k = 1, 2, ... .

The n-th partial sums of the series (2.8) is defined by

Sn(x, f) :=
n∑

k=0
Ak(f)(x) = a0 (f)

2
+

n∑
k=1

(ak (f) cos kx + bk (f) sin kx) .

Definition 2.15. Let W (x) = |x − x0|γ , θ > 0, p(.) ∈ P0 (T), r = 1, 2, ... and f ∈ L
p(.),θ
0,W .

Then the r-th modulus of smoothness Ωr (f, .)p(.),W,θ : [0, ∞) → [0, ∞) is defined as

Ωr (f, δ)p(.),W,θ = sup
0<h≤δ

∥ρr
hf∥p(.),W,θ , r ∈ N,

where

ρr
hf(x) := 1

h

h∫
0

△r
t f(x)dt,

△r
t f(x) :=

r∑
s=0

(−1)r+s+1br,sf(x + st), t > 0,

and br,s are binomial coefficients.
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Remark 2.16. Using Theorem 2.14 we get

sup
0<h≤δ

∥ρr
hf∥p(.),W,θ ≤ C ∥f∥p(.),W,θ < ∞.

This shows that the function Ωr (f, δ)p(.),W,θ is well defined.

Remark 2.17. The modulus of smoothness Ωr (f, δ)p(.),W,θ has the following properties:
(i) Ωr (f, δ)p(.),W,θ is a non-negative, non-decreasing function of δ > 0.
(ii) Ωr (f1 + f2, .)p(.),W,θ ≤ Ωr (f1, .)p(.),W,θ + Ωr (f2, .)p(.),W,θ .

(iii) limδ→0 Ωr (f, δ)p(.),W,θ = 0.

Definition 2.18. The best approximation error En (f)p(.),W,θ of f ∈ L
p(.),θ
0,W is defined by

En (f)p(.),W,θ := inf
{

∥f − Tn∥p(.),W,θ : Tn ∈ Πn

}
where Πn is the set of trigonometric polynomials of degree at most n.

Definition 2.19. The Sobolev space Wr
p(.),W,θ is the class of functions f ∈ L

p(.),θ
W such

that f (r) ∈ L
p(.),θ
W and

∥f∥r
p(.),W,θ = ∥f∥p(.),W,θ +

∥∥∥f (r)
∥∥∥

p(.),W,θ
< ∞,

for r = 1, 2, ... . Also the space Wr
p(.),W,θ is a Banach space with respect to ∥.∥r

p(.),W,θ . We
define

Wr
0,p(.),W,θ =

{
f : f ∈ L

p(.),θ
0,W ∩ Wr

p(.),W,θ

}
.

3. Main results
The main results of this paper are the following theorems.

Theorem 3.1. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T) and r, n ∈ N. If f ∈ Wr
0,p(.),W,θ,

then
En (f)p(.),W,θ ≤ c

nr
En

(
f (r)

)
p(.),W,θ

with a constant c > 0 independent of n.

Corollary 3.2. Under the conditions of Theorem 3.1,

En (f)p(.),W,θ ≤ c

nr

∥∥∥f (r)
∥∥∥

p(.),W,θ

with a constant c > 0 independent of n = 0, 1, 2, 3, ... .

Theorem 3.3. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T) and r, n ∈ N. If f ∈ L
p(.),θ
0,W ,

then
En (f)p(.),W,θ ≤ cΩr

(
f,

1
n

)
p(.),W,θ

with a constant c > 0 independent of n.

Theorem 3.4. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T) and r, n ∈ N. If f ∈ L
p(.),θ
0,W ,

then

Ωr

(
f,

1
n

)
p(.),W,θ

≤ c

nr

n∑
k=0

(k + 1)r−1 Ek (f)p(.),W,θ

with a constant c > 0 independent of n.

To prove main results we need some lemmas and propositions given below.
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Lemma 3.5. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T) and r ∈ N. If f ∈ Wr
0,p(.),W,θ,

then
Ωr (f, δ)p(.),W,θ ≤ cδr

∥∥∥f (r)
∥∥∥

p(.),W,θ

with a constant c > 0 independent of n.

Proof. Since

△r
t f(.) =

t∫
0

t∫
0

...

t∫
0

f (r) (. + t1 + ... + tr) dt1...dtr,

applying (r times) the generalized Minkowski’s inequality we get∥∥∥∥∥∥1
h

h∫
0

△r
t fdt

∥∥∥∥∥∥
p(.),W,θ

≤ c1(p)
h

h∫
0

∥△r
t f∥p(.),W,θ dt

≤ hr c1(p)
hr+1

h∫
0

∥∥∥∥∥∥
t∫

0

...

t∫
0

f (r) (. + t1 + ... + tr) dt1...dtr

∥∥∥∥∥∥
p(.),W,θ

dt

= hr c1(p)
h

h∫
0

∥∥∥∥∥∥1
h

t∫
0

∣∣∣∣∣∣ 1
hr−1

t∫
0

...

t∫
0

f (r) (. + t1 + ... + tr) dt1...dtr−1

∣∣∣∣∣∣ dtr

∥∥∥∥∥∥
p(.),W,θ

dt

≤ hr c2(p)
h

h∫
0

∥∥∥∥∥∥ 1
hr−1

t∫
0

...

t∫
0

f (r) (. + t1 + ... + tr−1) dt1...dtr−1

∥∥∥∥∥∥
p(.),W,θ

dt

≤ ... ≤ hr c3(p, r)
h

h∫
0

∥∥∥∥∥∥
1

h

h∫
0

f (r) (. + t1) dt1


∥∥∥∥∥∥

p(.),W,θ

dt

≤ c4(p, r)hr
∥∥∥f (r)

∥∥∥
p(.),W,θ

1
h

h∫
0

dt = c4(p, r)hr
∥∥∥f (r)

∥∥∥
p(.),W,θ

,

and taking supremum on 0 < h ≤ δ, we obtain the required inequality

Ωr (f, δ)p(.),W,θ ≤ cδr
∥∥∥f (r)

∥∥∥
p(.),W,θ

.

�

Definition 3.6. Let W (x) = |x − x0|γ , θ > 0, p(.) ∈ P0 (T), r ∈ N and f ∈ L
p(.),θ
0,W . We

define Peetre’s K-functional as

Kr (f, δ)p(.),W,θ := inf
{

∥f − g∥p(.),W,θ + δr
∥∥∥g(r)

∥∥∥
p(.),W,θ

: g ∈ Wr
0,p(.),W,θ, δ > 0

}
.

Theorem 3.7. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), r ∈ N. If f ∈ L
p(.),θ
0,W , then

there are some constants c6, c7 > 0 independent of δ such that

c6Ωr (f, δ)p(.),W,θ ≤ Kr (f, δ)p(.),W,θ ≤ c7Ωr (f, δ)p(.),W,θ .

Proof. Let f ∈ L
p(.),θ
0,W and g ∈ Wr

0,p(.),W,θ. By Lemma 3.5 and Remark 2.17,

Ωr (f, δ)p(.),W,θ ≤ Ωr (f − g, δ)p(.),W,θ + Ωr (g, δ)p(.),W,θ

≤ c

(
∥f − g∥p(.),W,θ + δr

∥∥∥g(r)
∥∥∥

p(.),W,θ

)
,
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and taking infimum with respect to g ∈ Wr
0,p(.),W,θ in the last inequality we have

Ωr (f, δ)p(.),W,θ ≤ cKr (f, δ)p(.),W,θ .

In order to prove the reverse of the last inequality we define the function

fr,δ(x) = 2
δ

δ∫
δ
2

( 1
hr

r−1∑
s=0

(−1)r+s+1
(

r

s

) h∫
0

...

h∫
0

f(x + r − s

r
[t1 + ... + tr])dt1...dtr)dh (3.1)

for δ > 0 and r ≥ 1. Then, differentiating r − 1 times and setting t := r−s
r tr we see that

h∫
0

...

h∫
0

f

(
x + r − s

r
[t1 + ... + tr]

)
dt1...dtr


(r−1)

=


h∫

0

(
r

r − s

)r−1 r−1∑
m=0

(
r − 1

m

)
(−1)r+m f(x + r − s

r
tr + m

r − s

r
h)dtr


=

h∫
0

(
r

r − s

)r−1
△r−1

r−s
r

h
f (x + t) dt,

and then by (3.1)

f
(r−1)
r,δ (x) := 2

δ

δ∫
δ
2

1
hr


r−1∑
s=0

x+ r−s
r

h∫
x

(−1)r+s+1
(

r

s

)
△r−1

r−s
r

h
f(t)dt

 dh. (3.2)

Now we prove f
(r)
r,δ ∈ L

p(.),θ
0,W . Differentiating the relation (3.2) we obtain

f
(r)
r,δ (x) := 2

δ

δ∫
δ
2

1
hr

{
r−1∑
s=0

(−1)r+s+1
(

r

s

)(
r

r − s

)r

△r
r−s

r
h
f(x)

}
dh

and denoting t := r−s
r h we have

∣∣∣f (r)
r,δ (x)

∣∣∣ ≤ 2r+1

δr

r−1∑
s=0

(
r

s

)(
r

r − s

)r

∣∣∣∣∣∣∣∣
1
δ

δ∫
δ
2

△r
r−s

r
h
f(x)dh

∣∣∣∣∣∣∣∣
= 2r+1

δr

r−1∑
s=0

(
r

s

)(
r

r − s

)r

∣∣∣∣∣∣∣∣
1

r−s
r δ

r−s
r

δ∫
r−s

r ( δ
2 )

△r
t f(x)dt

∣∣∣∣∣∣∣∣
≤ 2r+1

δr

r−1∑
s=0

(
r

s

)(
r

r − s

)r


∣∣∣∣∣∣∣∣

1
r−s

r δ

r−s
r

δ∫
0

△r
t f(x)dt

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

1
r−s

r δ

r−s
r ( δ

2 )∫
0

△r
t f(x)dt

∣∣∣∣∣∣∣∣
 ,

which implies the inequality∥∥∥f (r)
r,δ

∥∥∥
p(.),W,θ

≤ 2c(r)δ−rΩr (f, δ)p(.),W,θ ≤ c5(p, r) ∥f∥p(.),W,θ . (3.3)

Since f ∈ L
p(.),θ
0,W , then f

(r)
r,δ ∈ L

p(.),θ
0,W .
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Let f ∈ L
p(.),θ
0,W . For δ > 0 and r = 1, 2, ..., we have

|fr,δ(x) − f(x)| =

∣∣∣∣∣∣∣∣
2
δ

δ∫
δ
2

 1
hr

h∫
0

...

h∫
0

△r
t1+...+tr

r

f(x)dt1...dtr

 dh

∣∣∣∣∣∣∣∣
and by the generalized Minkowski’s inequality

∥fr,δ − f∥p(.),W,θ ≤ c6(p, r)2
δ

δ∫
δ
2

 1
hr−1

h∫
0

...

h∫
0

∥∥∥∥∥∥1
h

h∫
0

△r
t1+...+tr

r

fdt1

∥∥∥∥∥∥
p(.),W,θ

dt2...dtr

 dh

= c6(p, r)2
δ

δ∫
δ
2

 1
hr−1

h∫
0

...

h∫
0

∥∥∥∥∥∥1
h

h+t2+...+tr∫
t2+...+tr

△r
t
r
fdt

∥∥∥∥∥∥
p(.),W,θ

dt2...dtr

 dh. (3.4)

Since∥∥∥∥∥∥1
h

h+t2+...+tr∫
t2+...+tr

△r
t
r
fdt

∥∥∥∥∥∥
p(.),W,θ

=

∥∥∥∥∥∥1
h

 h+t2+...+tr∫
0

△r
t
r
fdt −

t2+...+tr∫
0

△r
t
r
fdt

∥∥∥∥∥∥
p(.),W,θ

≤

∥∥∥∥∥∥∥
1

(h + t2 + ... + tr) /r

(h+t2+...+tr)/r∫
0

△r
t
r
fdt

∥∥∥∥∥∥∥
p(.),W,θ

+

∥∥∥∥∥∥∥
1

(t2 + ... + tr) /r

(t2+...+tr)/r∫
0

△r
t
r
fdt

∥∥∥∥∥∥∥
p(.),W,θ

= sup
(h+t2+...+tr)/r≤δ

∥∥∥∥∥∥∥
1

(h + t2 + ... + tr) /r

(h+t2+...+tr)/r∫
0

△r
t
r
fdt

∥∥∥∥∥∥∥
p(.),W,θ

+ sup
(t2+...+tr)/r≤δ

∥∥∥∥∥∥∥
1

(t2 + ... + tr) /r

(t2+...+tr)/r∫
0

△r
t
r
fdt

∥∥∥∥∥∥∥
p(.),W,θ

= Ωr (f, δ)p(.),W,θ + Ωr (f, δ)p(.),W,θ = 2Ωr (f, δ)p(.),W,θ , (3.5)
then combining (3.4) and (3.5) we have

∥fr,δ − f∥p(.),W,θ ≤ c(p, r)2
δ

δ∫
δ
2

 1
hr−1

h∫
0

...

h∫
0

Ωr (f, δ)p(.),W,θ dt2...dtr

 dh

≤ c(p, r)Ωr (f, δ)p(.),W,θ

2
δ

δ∫
δ
2

dh = c(p, r)Ωr (f, δ)p(.),W,θ (3.6)

Finally, if we use (3.3) and (3.6), then we get

Kr (f, δ)p(.),W,θ ≤ ∥fr,δ − f∥p(.),W,θ + δr
∥∥∥f (r)

r,δ

∥∥∥
p(.),W,θ

≤ c7Ωr (f, δ)p(.),W,θ .

This completes the proof. �

The following lemma is a Bernstein inequality for L
p(.),θ
W .
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Lemma 3.8. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), r ∈ N. If Tn is a trigonometric
polynomial of degree at most n, then∥∥T ′

n

∥∥
p(.),W,θ ≤ cn ∥Tn∥p(.),W,θ .

Proof. It is well-known that
sup

n
|σn (x, f)| ≤ cMf(x)

with a constant c > 0 independent of f and x ∈ T, where σn (x, f) is the Cesàro means
for a function f ∈ L

p(.),θ
W [27]. Using Theorem 2.14 we have∥∥∥∥sup

n
|σn (., f)|

∥∥∥∥
p(.),W,θ

≤ c ∥f∥p(.),W,θ . (3.7)

Since
Tn(x) = 1

π

∫
T

Tn(t)Dn(t − x)dt, with Dn(t) = 1
2

+
n∑

j=1
cos jt,

it is well-known that
T ′

n(x) = 2nσn−1 (x, Tn)
and, hence, ∥∥T ′

n

∥∥
p(.),W,θ ≤ 2n ∥σn−1 (., |Tn|)∥p(.),W,θ ≤ 2cn ∥Tn∥p(.),W,θ .

This completes the proof. �
Lemma 3.8 can be generalized for r-th derivative of Tn. For this we need a Minkowski’s

inequality for integrals. The following results were proved, when W ≡ 1, by Danelia and
Kokilashvili [12, Proposition 2.4]. The same proof also suits our case below.

Lemma 3.9. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), and f ∈ L
p(.),θ
0,W . If f(x, y) a

measurable function on T × T, then, the following integral inequality holds∥∥∥∥∫
T

f(., y)dy

∥∥∥∥
p(.),W,θ

≤ C

∫
T

∥f(., y)∥p(.),W,θ dy.

As a corollary of the last two lemmas we get:
Corollary 3.10. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T) and r ∈ N. If Tn is a
trigonometric polynomial of degree at most n, then∥∥∥T (r)

n

∥∥∥
p(.),W,θ

≤ cnr ∥Tn∥p(.),W,θ .

4. Proof of main results
Let n ∈ N and

Dnf(x) := 1
π

∫
T

f(x − t)J2,⌊ n
2 ⌋+1(t)dt (4.1)

be the Jackson operator (polynomial), where ⌊n
2 ⌋ denotes the integer part of a real number

n
2 , and J2,n is the Jackson kernel

J2,n(x) := 1
κ2,n

(sin(nx/2)
sin(x/2)

)4
, κ2,n := 1

π

∫ π

−π

(sin(nt/2)
sin(t/2)

)4
dt.

It is known that ([15, p.147])
3

2
√

2
n3 ≤ κ2,n ≤ 5

2
√

2
n3.

Jackson kernel J2,n satisfies the relations
1
π

∫
T J2,n(u)du = 1,

1
π

∫ π
0 uJ2,n(u)du≤ 1

2n ,

}
(4.2)
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Lemma 4.1. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), and f ∈ L
p(.),θ
0,W . If f ∈

W1
0,p(.),W,θ, then

En (f)p(.),W,θ ≤ ∥f − Dnf∥p(.),W,θ ≤ c

n

∥∥f ′∥∥
p(.),W,θ (4.3)

holds for n ∈ N.

Proof of Lemma 4.1. From (4.1), Theorem 2.14, and (4.2), we have

∥f − Dnf∥p(.),W,θ =
∥∥∥∥ 1

π

∫
T
(f(x) − f(x − t))(1/t)tJ2,⌊ n

2 ⌋+1(t)dt

∥∥∥∥
p(.),W,θ

=
∥∥∥∥ 1

π

∫
T

tJ2,⌊ n
2 ⌋+1(t)1

t

∫ x

x−t
f ′(τ)dτdt

∥∥∥∥
p(.),W,θ

≤ 1
π

∫
T

tJ2,⌊ n
2 ⌋+1(t)

∥∥∥∥1
t

∫ x

x−t
f ′(τ)dτ

∥∥∥∥
p(.),W,θ

dt

≤
∥∥Mf ′∥∥

p(.),W,θ

1
π

∫ π

0
tJ2,⌊ n

2 ⌋+1(t)dt

≤ C

2
(
⌊n

2 ⌋ + 1
) ∥∥f ′∥∥

p(.),W,θ ≤ c

n

∥∥f ′∥∥
p(.),W,θ .

Hence (4.3) holds. �

Proof of Theorem 3.1. Let f ∈ W1
0,p(.),W,θ, n ∈ N, Θn ∈ Tn, En (f ′)p(.),W,θ = ∥f ′ − Θn∥p(.),W,θ

and β/2 be the constant term of Θn, namely,

β = 1
π

∫
T

Θn (t) dt = 1
π

∫
T

(
Θn (t) − f ′ (t)

)
dt.

Then

|β/2| ≤ 1
2π

∥∥f ′ − Θn

∥∥
L1

≤ c

2π

∥∥f ′ − Θn

∥∥
p(.),W,θ = c

2π
En
(
f ′)

p(.),W,θ .

On the other hand∥∥f ′ − (Θn − β/2)
∥∥

p(.),W,θ ≤ En
(
f ′)

p(.),W,θ + ∥β/2∥p(.),W,θ

≤ En
(
f ′)

p(.),W,θ + c

2π
∥W∥L1

En
(
f ′)

p(.),W,θ

=
(

1 + c

2π
∥W∥L1

)
En
(
f ′)

p(.),W,θ .

Set un ∈ Tn so that u′
n = Θn − β/2. Then

En (f)p(.),W,θ = En (f − un)p(.),W,θ

≤ c

n

∥∥f ′ − (Θn − β/2)
∥∥

p(.),W,θ

≤
(

c + C

2π
∥W∥L1

) 1
n

En
(
f ′)

p(.),W,θ

for all f ∈ W1
0,p(.),W,θ. If f ∈ Wr

0,p(.),W,θ for some r, the last inequality gives

En (f)p(.),W,θ ≤ C

(
1 + c

2π
∥W∥L1

)r 1
nr

En

(
f (r)

)
p(.),W,θ

= c

nr
En

(
f (r)

)
p(.),W,θ

.

�
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Proof of Theorem 3.3. Let f ∈ L
p(.),θ
0,W . Using Theorem 3.1 and Corollary 3.2 we have

En (f)p(.),W,θ ≤ En (f − g)p(.),W,θ + En (g)p(.),W,θ

≤ c

{
∥f − g∥p(.),W,θ + δr

∥∥∥g(r)
∥∥∥

p(.),W,θ

}
.

for g ∈ Wr
0,p(.),W,θ and δ = 1

n . Using Theorem 3.7 and taking infimum on g ∈ Wr
0,p(.),W,θ,

we obtain

En (f)p(.),W,θ ≤ cΩr

(
f,

1
n

)
p(.),W,θ

, n ∈ N.

�

Proof of Theorem 3.4. Let Tn be a best approximation trigonmetric polynomial for
f ∈ L

p(.),θ
0,W . For any n ∈ N we choose n ∈ N such that 2m ≤ n < 2m+1. If we use the

subadditivity property of Ωr (f, δ)p(.),W,θ , then we have

Ωr (f, δ)p(.),W,θ ≤ Ωr (f − T2m+1 , δ)p(.),W,θ + Ωr (T2m+1 , δ)p(.),W,θ . (4.4)

On the other hand, it is well-known that

2(i+1)rE2i(f)p(.),W,θ ≤ 22r
2i∑

j=2i−1+1
jr−1Ej(f)p(.),W,θ (4.5)

by Theorem 3.1 in [26]. If we take δ = 1
n , then we get

Ωr (f − T2m+1 , δ)p(.),W,θ ≤ c ∥f − T2m+1∥p(.),W,θ

= cE2m+1(f)p(.),W,θ

≤ c

nr
22(m+1)rE2m(f)p(.),W,θ

≤ cδr22r
2m∑

k=2m−1+1
kr−1Ek(f)p(.),W,θ. (4.6)

Using Lemma 3.5, Lemma 3.8 and (4.5) one can find that

Ωr (T2m+1 , δ)p(.),W,θ

≤ cδr
∥∥∥T (r)

2m+1

∥∥∥
p(.),W,θ

≤ cδr


∥∥∥∥∥T (r)

1 +
m∑

i=0

(
T

(r)
2i+1 − T

(r)
2i

)∥∥∥∥∥
p(.),W,θ


≤ cδr

{
∥T1∥p(.),W,θ +

m∑
i=0

2(i+1)r
∥∥∥T (r)

2i+1 − T
(r)
2i

∥∥∥
p(.),W,θ

}

≤ cδr

{
E0(f)p(.),W,θ +

m∑
i=0

2(i+1)rE2i(f)p(.),W,θ

}

= cδr

E0(f)p(.),W,θ + 2rE1(f)p(.),W,θ + 22r
m∑

i=1

2i∑
k=2i−1+1

kr−1Ek(f)p(.),W,θ


≤ cδr

{
E0(f)p(.),W,θ +

2m∑
k=1

kr−1Ek(f)p(.),W,θ

}
. (4.7)
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If we combine (4.4), (4.6) and (4.7), then we find

Ωr

(
f,

1
n

)
p(.),W,θ

≤ c

nr

n∑
k=0

(k + 1)r−1 Ek (f)p(.),W,θ , n ∈ N.

�
The notation O indicates that A = O (B) if and only if there exists a positive constant

c, independent of essential parameters, such that A ≤ cB.

Corollary 4.2. If En (f)p(.),W,θ = O (n−α), α > 0, then under the conditions of Theorem
3.4 we have

Ωr (f, δ)p(.),W,θ =


O (δα) , r > α,

O
(
δα log

(
1
δ

))
, r = α,

O (δr) , r < α.

Definition 4.3. Let W (x) = |x − x0|γ , θ > 0, p(.) ∈ P0 (T), f ∈ L
p(.),θ
0,W , α > 0 and

r := [α] + 1 ( [α] is the integer part of α ). We define the generalized Lipschitz class as

Lipα,r
p(.),W,θ =

{
f ∈ L

p(.),θ
W : Ωr (f, δ)p(.),W,θ = O (δα)

}
.

Corollary 4.4. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), f ∈ L
p(.),θ
0,W and α > 0. Then

the following statements are equivalent:
(i) f ∈ Lipα,r

p(.),W,θ

(ii) En (f)p(.),W,θ = O (n−α), n ∈ N.

Theorem 4.5. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), f ∈ L
p(.),θ
0,W and r ∈ N. If

∞∑
k=1

kr−1Ek (f)p(.),W,θ < ∞,

then, f ∈ Wr
p(.),0,W,θ and

En

(
f (r)

)
p(.),W,θ

≤ c

nrEn (f)p(.),W,θ +
∞∑

k=n+1
kr−1Ek (f)p(.),W,θ


with a positive constant c independent of f and n.

Proof of Theorem 4.5. For the polynomial Tn of the best approximation to f we have
by Lemma 3.8 that∥∥∥T (r)

2i+1 − T
(r)
2i

∥∥∥
p(.),W,θ

≤ C (r) 2(i+1)r ∥T2i+1 − T2i∥p(.),W,θ

≤ 2C (r) 2(i+1)rE2i (f)p(.),W,θ .

Hence
∞∑

i=1
∥T2i+1 − T2i∥r

p(.),W,θ =
∞∑

i=1

∥∥∥T (r)
2i+1 − T

(r)
2i

∥∥∥
p(.),W,θ

+
∞∑

i=1
∥T2i+1 − T2i∥p(.),W,θ

≤ c
∞∑

m=2
mr−1Em (f)p(.),W,θ < ∞.

Therefore
∥T2i+1 − T2i∥r

p(.),W,θ → 0 as i → ∞.

This means that {T2i} is a Cauchy sequence in L
p(.),θ
W . Since T2i → f in L

p(.),θ
W and Wr

p(.),W,θ

is a Banach space we obtain f ∈ Wr
p(.),W,θ.
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On the other hand since∥∥∥f (r) − T (r)
n

∥∥∥
p(.),W,θ

≤
∥∥∥T (r)

2m+2 − T (r)
n

∥∥∥
p(.),W,θ

+
∞∑

k=m+2

∥∥∥T (r)
2k+1 − T

(r)
2k

∥∥∥
p(.),W,θ

for 2m ≤ n < 2m+1, we have∥∥∥T (r)
2m+2 − T (r)

n

∥∥∥
p(.),W,θ

≤ c2(m+2)rEn (f)p(.),W,θ ≤ c (n + 1)r En (f)p(.),W,θ .

Also we find
∞∑

k=m+2

∥∥∥T (r)
2k+1 − T

(r)
2k

∥∥∥
p(.),W,θ

≤ c
∞∑

k=m+2
2(k+1)rE2k (f)p(.),W,θ

≤ c
∞∑

k=m+2

2k∑
µ=2k−1+1

µr−1Eµ (f)p(.),W,θ

= c
∞∑

ν=2m+1+1
νr−1Eν (f)p(.),W,θ

≤ c
∞∑

ν=n+1
νr−1Eν (f)p(.),W,θ .

This completes the proof. �

A polynomial T ∈ Πn is said to be a near best approximant of f ∈ L
p(.),θ
0,W for W (x) =

|x − x0|γ , θ > 0, p(.) ∈ P0 (T), if
∥f − T∥p(.),W,θ ≤ cEn (f)p(.),W,θ , n = 1, 2, . . . .

Theorem 4.6. Let W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), r, n ∈ N. If Tn ∈ Πn is a near
best approximant of f ∈ Wr

p(.),W,θ, then there exists a constant c > 0 dependent only on
r, W and p(.), such that ∥∥∥f (r) − T (r)

n

∥∥∥
p(.),W,θ

≤ cEn

(
f (r)

)
p(.),W,θ

.

Corollary 4.7. Suppose that W (x) = |x − x0|γ, θ > 0, p(.) ∈ P0 (T), r,n ∈ N, f ∈
Wα

p(.),W,θ, and
∞∑

ν=1
να−1Eν (f)p(.),W,θ < ∞

for some α > 0. Hence there exists a constant c > 0 dependent only on α, r, W and p(.)
such that

Ωr(f (α),
π

n
)p(.),W,θ ≤ c

{
1
nr

n∑
ν=0

(ν + 1)α+r−1Eν(f)p(.),W,θ +
∞∑

ν=n+1
να−1Eν)f)p(.),W,θ

}
.

Proof of Theorem 4.6. We set Wn(f) := Wn(x, f) := 1
n+1

2n∑
ν=n

Sν(x, f), n = 0, 1, 2, ... .
Since

Wn(., f (α)) = W (α)
n (., f),

then we have ∥∥∥f (α)(.) − T (α)
n (., f)

∥∥∥
p(.),W,θ

≤
∥∥∥f (α)(.) − Wn(., f (α))

∥∥∥
p(.),W,θ

+
∥∥∥T (α)

n (., Wn(f)) − T (α)
n (., f)

∥∥∥
p(.),W,θ

+
∥∥∥W (α)

n (., f) − T (α)
n (., Wn(f))

∥∥∥
p(.),W,θ

= I1 + I2 + I3.
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We denote by T ∗
n(x, f) the best approximating polynomial of degree at most n to f in

L
p(.),θ
W . In this case, from the boundedness of Wn in L

p(.),θ
W , we have

I1 ≤
∥∥∥f (α)(.) − T ∗

n(., f (α))
∥∥∥

p(.),W,θ
+
∥∥∥T ∗

n(., f (α)) − Wn(., f (α))
∥∥∥

p(.),W,θ

≤ c (p, W, θ) En

(
f (α)

)
p(.),W,θ

+
∥∥∥Wn(., T ∗

n(f (α)) − f (α))
∥∥∥

p(.),W,θ

≤ c (p, W, θ) En

(
f (α)

)
p(.),W,θ

.

From Lemma 3.8 we get

I2 ≤ c (p, W, θ) nα ∥Tn(., Wn(f)) − Tn(., f)∥p(.),W,θ

and

I3 ≤ c (p, W, θ) (2n)α ∥Wn(., f) − Tn(., Wn(f))∥p(.),W,θ

≤ c (p, W, θ) (2n)α En (Wn(f))p(.),W,θ .

Now we have

∥Tn(., Wn(f)) − Tn(., f)∥p(.),W,θ ≤ ∥Tn(., Wn(f)) − Wn(., f)∥p(.),W,θ

+ ∥Wn(., f) − f(.)∥p(.),W,θ + ∥f(.) − Tn(., f)∥p(.),W,θ

≤ c (p, W, θ) En (Wn(f))p(.),W,θ + c (p, W, θ) En (f)p(.),W,θ

+c (p, W, θ) En (f)p(.),W,θ .

Since
En (Wn(f))p(.),W,θ ≤ c (p, W, θ) En (f)p(.),W,θ ,

then we get ∥∥∥f (α)(.) − T (α)
n (., f)

∥∥∥
p(.),W,θ

≤ c (p, W, θ) En(f (α))p(.),W,θ

+c (p, W, θ) nαEn (Wn(f))p(.),W,θ

+c (p, W, θ) nαEn (f)p(.),W,θ + c (p, W, θ) (2n)α En (Wn(f))p(.),W,θ

≤ c (p, W, θ) En

(
f (α)

)
p(.),W,θ

+ c (p, W, θ) nαEn (f)p(.),W,θ .

Since, according to Theorem 3.1,

En (f)p(.),W,θ ≤ c (p, W, θ)
(n + 1)α En

(
f (α)

)
p(.),W,θ

, (4.8)

we obtain ∥∥∥f (α)(.) − T (α)
n (., f)

∥∥∥
p(.),W,θ

≤ c (p, W, θ) En

(
f (α)

)
p(.),W,θ

and the proof is completed. �
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Abstract
In this note, we construct Rota-Baxter (coalgebras) bialgebras by (co-)quasi-idempotent
elements and prove that every finite dimensional Hopf algebra admits nontrivial Rota-
Baxter bialgebra structures and tridendriform bialgebra structures. We give all the forms
of (co)-quasi-idempotent elements and related structures of tridendriform (co, bi)algebras
and Rota-Baxter (co, bi)algebras on the well-known Sweedler’s four-dimensional Hopf
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1. Introduction
Rota-Baxter algebras were introduced in [11] in the context of differential operators on

commutative Banach algebras and since [1], intensively studied in probability and combi-
natorics, and more recently in mathematical physics, such as free Rota-Baxter algebras,
Lie algebras, multiple zeta values, differential algebras and Connes-Kreimer renormaliza-
tion theory in quantum field theory, see ([2–7], etc.). One can refer to the book [2] for the
detailed theory of Rota-Baxter algebras.

In 2014, based on the dual method in the Hopf algebra theory, Jian and Zhang in
[8] defined the notion of Rota-Baxter coalgebras and also provided various examples of
the new object. Then Rota-Baxter bialgebras were presented in [9] whose examples can
be constructed from the well-known Radford biproduct. In 2017, Jian construct quasi-
idempotent Rota-Baxter operators by quasi-idempotent elements and show that every
finite dimensional Hopf algebra admits nontrivial Rota-Baxter algebra structures and tri-
dendriform algebra structures (see [7]).

So it is natural to consider if every finite dimensional Hopf algebra admits nontrivial
Rota-Baxter bialgebra structure and tridendriform bialgebra structure. In this paper, we
give a positive answer to this question. This is the motivation to write this paper.

This paper is organized as follows. In Section 2, we list some definitions that will be
used later. In Section 3, we present the notions of tridendriform coalgebras, tridendriform
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bialgebras, and co-quasi-idempotent element in a coalgebra. We use (co-)quasi-idempotent
element to construct Rota-Baxter coalgebras and bialgebras. And then we prove that every
finite dimensional Hopf algebra admits nontrivial Rota-Baxter bialgebra structures and
tridendriform bialgebra structures. All the forms of (co)-quasi-idempotent elements and
related structures of tridendriform (co, bi)algebras and Rota-Baxter (co, bi)algebras on
the well-known Sweedler’s four-dimensional Hopf algebra are provided in Section 4.

2. Preliminaries
For simplicity, we fix our ground field to be the complex number field C throughout

this paper. All the objects we discuss are defined over C unless otherwise specified. For
an algebra A, we denote its multiplication µA (or simply µ) by µA(a ⊗ b) = ab.

In what follows, we recall some useful definitions which will be used later (see [2,7,9]).

Definition 2.1. For λ ∈ C, a Rota-Baxter algebra of weight λ is an associative
algebra A together with a linear map R : A −→ A such that

R(a)R(b) = R(aR(b)) + R(R(a)b) + λR(ab) (2. 1)

for all a, b ∈ A. Such a linear operator is called a Rota-Baxter operator of weight λ
on A.

Remark 2.2. If R is a Rota-Baxter operator of weight 1, then λR is a Rota-Baxter
operator of weight λ. Conversely, if R is a Rota-Baxter operator of weight λ and λ is
invertible, then λ−1R is a Rota-Baxter operator of weight 1.

Definition 2.3. Let C be a vector space and ∆C : C −→ C ⊗ C (here we use Sweedler’s
notation and denote ∆C(c) by c1 ⊗ c2), εC : C −→ C two linear maps. Then C is a
coassociative coalgebra if

c11 ⊗ c12 ⊗ c2 = c1 ⊗ c21 ⊗ c22 and εC(c1)c2 = c1εC(c2) = c

hold for all c ∈ C.
Let γ be an element in C. A pair (C, Q) is called a Rota-Baxter coalgebra of weight

γ if C is a coassociative coalgebra and Q is a linear endomorphism of C satisfying that
for all c ∈ C,

Q(c1) ⊗ Q(c2) = Q(c)1 ⊗ Q(Q(c)2) + Q(Q(c)1) ⊗ Q(c)2 + γQ(c)1 ⊗ Q(c)2. (2. 2)

The map Q is called a Rota-Baxter operator weight γ on C.

Remark 2.4. If Q is a Rota-Baxter operator of weight 1, then γQ is a Rota-Baxter
operator of weight γ. Conversely, if Q is a Rota-Baxter operator of weight γ and γ is
invertible, then γ−1Q is a Rota-Baxter operator of weight 1.

Definition 2.5. Let H be a vector space. H is a bialgebra if (H, µH) is an associative
algebra and (H, ∆H) is a coassociative coalgebra such that ∆H and εH are algebra maps.

Let λ, γ be elements in C and H a bialgebra (maybe without unit and counit). A triple
(H, R, Q) is called a Rota-Baxter bialgebra of weight (λ, γ) if (H, R) is a Rota-Baxter
algebra of weight λ and (H, Q) is a Rota-Baxter coalgebra of weight γ.

Remark 2.6. If (H, R, Q) is a Rota-Baxter bialgebra of weight (1, 1), then (H, λR, γQ)
is a Rota-Baxter bialgebra of weight (λ, γ). Conversely, if (H, R, Q) is a Rota-Baxter
bialgebra of weight (λ, γ) and λ, γ are invertible, then (H, λ−1R, γ−1Q) is a Rota-Baxter
bialgebra of weight (1, 1).

Definition 2.7. Let A be an associative algebra and λ ∈ C. A linear endomorphism ϕ of
A is called a quasi-idempotent operator of weight λ on A if ϕ2 = −λϕ. A nonzero
element ξ ∈ A is called a quasi-idempotent element of weight λ if ξ2 = −λξ.
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Definition 2.8. Let V be a vector space, and ≺, ≻, · : V ⊗ V −→ V be three linear maps.
The quadruple (V, ≺, ≻, ·) is called a tridendriform algebra if the following conditions
are satisfied: for all x, y, z ∈ V ,

(x ≺ y) ≺ z = x ≺ (y ∗ z), (x ≻ y) ≺ z = x ≻ (y ≺ z),
(x ∗ y) ≻ z = x ≻ (y ≻ z), (x ≻ y) · z = x ≻ (y · z),
(x ≺ y) · z = x · (y ≻ z), (x · y) ≺ z = x · (y ≺ z), (x · y) · z = x · (y · z),

where x ∗ y = x ≺ y + x ≻ y + x · y.

Remark 2.9. Given a Rota-Baxter algebra (A, R) of weight 1, we define
a ≺ b = a · R(b), a ≻ b = R(a) · b,

for all a, b ∈ A. Then (V, ≺, ≻, µA) is a tridendriform algebra.

3. Construction of tridendriform co(bi)algebra and Rota-Baxter bialge-
bras

In this section, based on the dual method in Hopf algebra theory, we define tri-
dendriform co(bi)algebras, co-quasi-idempotent elements, then construct tridendriform
co(bi)algebras and Rota-Baxter co(bi)algebras through (co-)quasi-idempotent elements.

Definition 3.1. Let V be a vector space, and ∆≺, ∆≻, ∆· : V −→ V ⊗ V be three linear
maps (write ∆≺(x) = x1 ⊗ x2, ∆≻(x) = x(1) ⊗ x(2), ∆·(x) = x[1] ⊗ x[2]). The quadru-
ple (V, ∆≺, ∆≻, ∆·) is called a tridendriform coalgebra if the following conditions are
satisfied: for all x ∈ V ,

x11 ⊗ x12 ⊗ x2 = x1 ⊗ (x21 ⊗ x22 + x2(1) ⊗ x2(2) + x2[1] ⊗ x2[2]),
x1(1) ⊗ x1(2) ⊗ x2 = x(1) ⊗ x(2)1 ⊗ x(2)2,

(x(1)1 ⊗ x(1)2 + x(1)(1) ⊗ x(1)(2) + x(1)[1] ⊗ x(1)[2]) ⊗ x(2) = x(1) ⊗ x(2)(1) ⊗ x(2)(2),

x[1](1) ⊗ x[1](2) ⊗ x[2] = x(1) ⊗ x(2)[1] ⊗ x(2)[2],

x[1]1 ⊗ x[1]2 ⊗ x[2] = x[1] ⊗ x[2](1) ⊗ x[2](2),

x1[1] ⊗ x1[2] ⊗ x2 = x[1] ⊗ x[2]1 ⊗ x[2]2,

x[1][1] ⊗ x[1][2] ⊗ x[2] = x[1] ⊗ x[2][1] ⊗ x[2][2].

Rota-Baxter coalgebras are closely related to tridendriform coalgebras.

Lemma 3.2. Given a Rota-Baxter coalgebra (C, Q) of weight 1, we define
∆≺(c) = c1 ⊗ Q(c2), ∆≻(c) = Q(c1) ⊗ c2.

Then (C, ∆≺, ∆≻, ∆C) is a tridendriform coalgebra.

Proof. It can be proved by direct computation. �
Definition 3.3. Let V be a vector space. A seven-tuple (V, ≺, ≻, ·, ∆≺, ∆≻, ∆·) is called
a tridendriform bialgebra if (V, ≺, ≻, ·) is a tridendriform algebra and at the same time
(V, ∆≺, ∆≻, ∆·) is a tridendriform coalgebra.

Proposition 3.4. Let H be a bialgebra and (H, R, Q) a Rota-Baxter bialgebra of weight
(1, 1). Define

x ≺ y = xR(y), x ≻ y = R(x)y,

∆≺(x) = x1 ⊗ Q(x2), ∆≻(x) = Q(x1) ⊗ x2,

for all x, y ∈ H. Then (V, ≺, ≻, µH , ∆≺, ∆≻, ∆H) is a tridendriform bialgebra.

Proof. It is a consequence of Lemma 3.2 and the Remark 2.9. �
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Definition 3.5. Let C be a coassociative coalgebra and γ ∈ C. A linear endomorphism ϑ
of C is called a quasi-idempotent operator of weight γ on C if ϑ2 = −γϑ. A nonzero
element τ ∈ C∗ is called a co-quasi-idempotent element of weight γ if τ(c1)τ(c2) = −γτ(c)
for all c ∈ C.

Proposition 3.6. Let C be a coalgebra. Given a co-quasi-idempotent element τ ∈ C∗

of weight γ ̸= 0. Three linear maps ∆≺, ∆≻, ∆· : C −→ C ⊗ C defined below endow a
tridendriform coalgebra structure on C: for all c ∈ C,

∆≺(c) = γ−1c1 ⊗ τ(c2)c3, ∆≻(c) = γ−1τ(c1)c2 ⊗ c3, ∆·(c) = c1 ⊗ c2.

Proof. We only check the first equality in the definition of tridendreform coalgebra as
follows. For all c ∈ C, we can get

c1 ⊗ (c21 ⊗ c22 + c2(1) ⊗ c2(2) + c2[1] ⊗ c2[2])
= γ−2c1τ(c2)τ(c32) ⊗ c31 ⊗ c33 + γ−2c1τ(c2)τ(c31) ⊗ c32 ⊗ c33

+γ−1c1τ(c2) ⊗ c31 ⊗ c32

= γ−2c1τ(c2)τ(c32) ⊗ c31 ⊗ c33 − γ−1c1τ(c2) ⊗ c31 ⊗ c32

+γ−1c1τ(c2) ⊗ c31 ⊗ c32

= γ−2c1τ(c2)τ(c32) ⊗ c31 ⊗ c33

= c11 ⊗ c12 ⊗ c2,

finishing the proof. �
Theorem 3.7. Let H be a bialgebra. Given a quasi-idempotent element ξ ∈ H of weight
λ ̸= 0 and a co-quasi-idempotent element τ ∈ H∗ of weight γ ̸= 0. Six linear maps
≺, ≻, · : H⊗H −→ H and ∆≺, ∆≻, ∆· : H −→ H⊗H defined below endow a tridendriform
bialgebra structure on H: for all x, y ∈ H,

x ≺ y = λ−1xξy, x ≻ y = λ−1ξxy, x · y = xy,

and
∆≺(x) = γ−1x1 ⊗ τ(x2)x3, ∆≻(x) = γ−1τ(x1)x2 ⊗ x3, ∆·(x) = x1 ⊗ x2.

Proof. We can finish the proof by [7, Corollary 2.4] and Proposition 3.6. �
Now we use co-quasi-idempotent elements to construct quasi-idempotent Rota-Baxter

operators.

Proposition 3.8. For a fixed co-quasi-idempotent element τ ∈ C∗ of weight γ, we define
linear map Qτ : C −→ C by Qτ (c) = τ(c1)c2 for any c ∈ C. Then Qτ is a quasi-idempotent
Rota-Baxter operator of weight γ on C.

Proof. It is direct to prove that Q2
τ = −γQτ by the definition of co-quasi-idempotent

element. Next for any c ∈ C, we have
Qτ (c)1 ⊗ Qτ (Qτ (c)2) + Qτ (Qτ (c)1) ⊗ Qτ (c)2 + γQτ (c)1 ⊗ Qτ (c)2

= τ(c1)c21 ⊗ τ(c221)c222 + τ(c1)τ(c211)c212 ⊗ c22 + γτ(c1)c21 ⊗ c22

= τ(c1)c21 ⊗ τ(c221)c222 − γτ(c1)c21 ⊗ c22 + γτ(c1)c21 ⊗ c22

= τ(c11)c12 ⊗ τ(c21)c22

= Qτ (c1) ⊗ Qτ (c2),
finishing the proof. �
Theorem 3.9. Let H be a bialgebra. Suppose that ξ ∈ H is a quasi-idempotent of
weight of λ and τ ∈ H∗ is a co-quasi-idempotent element of weight γ, then (H, Rξ, Qτ ) is
a Rota-Baxter bialgebra of weight (λ, γ), where

Rξ(x) = ξx, Qτ (x) = τ(x1)x2,
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for all x ∈ H.

Proof. By [7, Prosition 2.2] and Proposition 3.8, we can finish the proof. �

Let recall the following result from [10] on finite dimensional Hopf algebra. As we know,
a Hopf algebra H is a bialgebra H with an antipode S, where the linear map S : H −→ H
is the convolution inverse of identity map idH in convolution algebra Hom(H, H).

Let H be a finite dimensional Hopf algebra. Then there is a unique element xH such
that

⟨a∗, xH⟩ = Tr(la∗), ∀ a∗ ∈ H∗.

Furthermore, the element xH has the following properties.

ε(xH) = dim(H), x2
H = ε(xH)xH .

that is to say, xH ∈ H is a quasi-idempotent element of weight −dim(H) on H.
When H is finite dimensional, H∗ is also a finite dimensional Hopf algebra and

dim(H∗)=dim(H). So using the above result to finite dimensional Hopf algebra H∗, we
can get: there is a unique element χH ∈ H∗ such that

⟨χH , a⟩ = Tr(la), ∀ a ∈ H.

Furthermore, the element χH has the following properties.

εH∗(χH) = ⟨χH , 1H⟩ = dim(H), χ2
H = εH∗(χH)χH

i.e., χH(a1)χH(a2) = ⟨χH , 1H⟩χH(a) = dim(H)χH(a),
that is to say, χ ∈ H∗ is a co-quasi-idempotent element of weight −dim(H) on H.

Also we know the integral Λ and cointegral
∧

(i.e. integral of H∗) for finite dimensional
Hopf algebra H must exist, and Λ is a quasi-idempotent element and

∧
is a co-quasi-

idempotent element.
By combining the discussions above, we see that RxH , RΛ and Qχ, Q∧ are Rota-Baxter

operators on H. As a consequence, we have

Theorem 3.10. Every finite dimensional Hopf algebra admits nontrivial Rota-Baxter
coalgebra and bialgebra structures and tridendriform coalgebra and bialgebra structures.

4. An example
The well-known Sweedler’s four-dimensional Hopf algebra H4 is a very popular exam-

ple in the theory of Hopf algebras, and many researchers pay their attention to it because
there are many nice properties on it. In this section, we will apply the above results in
Section 3 to H4, and give all the forms of (co)-quasi-idempotent elements and related
structures of tridendriform (co, bi)algebras and Rota-Baxter (co, bi)algebras.

Let H4 be the algebra generated by two elements x and y subject to

x2 = 1, y2 = 0, yx = −xy.

Then H4 is a four-dimensional algebra with a linear basis {1, x, y, xy} (see [10, 12]), ex-
plicitly, its multiplication is

µH4 1 x y xy
1 1 x y xy
x x 1 xy y
y y −xy 0 0

xy xy −y 0 0

.
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Moreover it is a Hopf algebra equipped with the following operations:

∆(x) = x ⊗ x, ∆(y) = 1 ⊗ y + y ⊗ x,

ε(x) = 1, ε(y) = 0,

S(x) = x, S(y) = xy.

Denote by {f1, f2, f3, f4} the dual basis of {1, x, y, xy}, i.e.,
1 x y xy

f1 1 0 0 0
f2 0 1 0 0
f3 0 0 1 0
f4 0 0 0 1

.

Then the multiplication of H4
∗ is

µH4
∗ f1 f2 f3 f4

f1 f1 0 f3 0
f2 0 f2 0 f4
f3 0 f3 0 0
f4 f4 0 0 0

.

Thus by the definitions of (co-)quasi-idempotent element, we have

quasi-idempotent element ξ weight λ
ξ1 l1(1 + x) + l2y + l3xy −2l1
ξ2 l1(1 − x) + l2y + l3xy −2l1
ξ3 l11 −l1

co-quasi-idempotent element τ weight γ
τ1 k1f2 + k2f3 + k3f4 −k1
τ2 k1f1 + k2f3 + k3f4 −k1
τ3 k1f1 + k1f2 −k1
τ4 k1f3 + k2f4 0

where ki, lj ∈ C, i, j = 1, 2, 3.
Next we assume that k1 ̸= 0 and l1 ̸= 0.
By [7, Corollary 2.4], if we set l = (−2l1)−1, then the tridendriform algebra structures

on H4 are given by (H4, ≺i, ≻i, µH4), i = 1, 2, 3, where

≺1 1 x y xy

1 lξ1 l(l1(1 + x) − l3y − l2xy) −1
2(y + xy) −1

2(y + xy)
x l(l1(1 + x) + l3y + l2xy) l(l1(1 + x) − l2y − l3xy) −1

2(y + xy) −1
2(y + xy)

y −1
2(y − xy) −1

2(y − xy) 0 0
xy 1

2(y + xy) 1
2(y + xy) 0 0

≻1 1 x y xy

1 lξ1 l(l1(1 + x) − l3y − l2xy) −1
2(y + xy) −1

2(y + xy)
x l(l1(1 + x) − l3y − l2xy) lξ1 −1

2(y + xy) −1
2(y + xy)

y −1
2(y + xy) 1

2(y + xy) 0 0
xy −1

2(y + xy) 1
2(y + xy) 0 0
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≺2 1 x y xy

1 lξ2 l(l1(−1 + x) − l3y − l2xy) −1
2(y − xy) −1

2(−y + xy)
x l(l1(−1 + x) + l3y + l2xy) l(l1(1 − x) − l2y − l3xy) 1

2(y − xy) −1
2(y − xy)

y −1
2(y + xy) 1

2(y + xy) 0 0
xy −1

2(y + xy) 1
2(y + xy) 0 0

≻2 1 x y xy

1 lξ2 l(l1(−1 + x) − l3y − l2xy) −1
2(y − xy) 1

2(y − xy)
x l(l1(−1 + x) − l3y − l2xy) lξ2

1
2(y − xy) −1

2(y − xy)
y −1

2(y − xy) −1
2(y − xy) 0 0

xy 1
2(y − xy) 1

2(y − xy) 0 0
and ≺3=≻3= µH4 .

By Proposition 3.6, if we set k = (−k1)−1, then the tridendriform coalgebra structures
on H4 are given by (H4, ∆≺j , ∆≻j , ∆H4), j = 1, 2, 3, where

∆≺1(1) = 0 ∆≻1(1) = 0
∆≺1(x) = −x ⊗ x ∆≻1(x) = −x ⊗ x

∆≺1(y) = lk21 ⊗ x − y ⊗ x ∆≻1(y) = lk2x ⊗ x
∆≺1(xy) = −x ⊗ xy + lk3x ⊗ 1 ∆≻1(xy) = −x ⊗ xy − xy ⊗ 1 + lk31 ⊗ 1

∆≺2(1) = −1 ⊗ 1 ∆≻2(1) = −1 ⊗ 1
∆≺2(x) = 0 ∆≻2(x) = 0

∆≺2(y) = −1 ⊗ y + lk21 ⊗ x ∆≻2(y) = −1 ⊗ y − y ⊗ x + lk2x ⊗ x
∆≺2(xy) = lk3x ⊗ 1 − xy ⊗ 1 ∆≻2(xy) = lk31 ⊗ 1

and

∆≺3(1) = ∆≻3(1) = −1 ⊗ 1,

∆≺3(x) = ∆≻3(x) = −x ⊗ x,

∆≺3(y) = ∆≻3(y) = −1 ⊗ y − y ⊗ x,

∆≺3(xy) = ∆≻3(xy) = −x ⊗ xy − xy ⊗ 1.

With notations above, then by Theorem 3.7, the tridendriform bialgebra structures on H4
are given by (H4, ≺i, ≻i, µH4 , ∆≺j , ∆≻j , ∆H4), i, j = 1, 2, 3.

By [7, Prosition 2.2], (H, Rξi
), i = 1, 2, 3 are Rota-Baxter algebras of weight λi, i =

1, 2, 3, where λ1 = λ2 = −2l1, λ3 = −l1 and

Rξ1 Rξ2 Rξ3

1 ξ1 ξ2 ξ3
x l1(1 + x) − l3y − l2xy l1(−1 + x) − l3y − l2xy l1x
y l1(y + xy) l1(y − xy) l1y

xy l1(y + xy) l1(−y + xy) l1xy

.

By Proposition 3.8, (H, Qτj ), j = 1, 2, 3, 4 are Rota-Baxter coalgebras of weight γj , j =
1, 2, 3, 4, where γ1 = γ2 = γ3 = −k1, γ4 = 0 and

Qτ1 Qτ2 Qτ3 Qτ4

1 0 k11 k11 0
x k1x 0 k1x 0
y k2x k1y k1y 0

xy k1xy + k31 k31 k1xy k21

.
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With notations above, then by Theorem 3.9, (H, Rξi
, Qτj ), i = 1, 2, 3, j = 1, 2, 3, 4 are

Rota-Baxter bialgebras of weight (λi, γj), i = 1, 2, 3, j = 1, 2, 3, 4.
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Abstract
For arbitrary monoids A and B, a presentation for the restricted wreath product of A by
B that is known as the semi-direct product of A⊕B by B has been widely studied. After
that a presentation for the Zappa product of A by B was defined which can be thought
as the mutual semidirect product of given these two monoids under a homomorphism
ψ : A → T(B) and an anti-homomorphism δ : B → T(A) into the full transformation
monoid on B, respectively on A. As a next step of these above results, by considering
the monoids A⊕B and B⊕A, we first introduce an extended version (generalization) of the
Zappa product and then we prove the existence of an implicit presentation for this new
product. Furthermore we present some other outcomes of the main theories in terms of
finite and infinite cases, and also in terms of groups. At the final part of this paper we
point out some possible future problems related to this subject.
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1. Introduction
Study on the product of groups have received much attention in the literature. During

these studies, people investigated this group product which is constructed by subgroups
either in terms of permutability (cf. [6, 9, 17]) or in terms of an extension (cf. [5, 24]).
Nevertheless, direct, semidirect and (standard) wreath products are the most famous
structures among these extension constructions (see, for instance, [10, 14, 18, 20, 25]). As
a next step of these products, some other people also studied Zappa (or Zappa-Szép)
products ([13, 16, 27, 28]) which is also referred as bilateral semidirect products ([22]),
general products ([23]) or knit products ([1, 26]). Unlikely semi-direct products, none of
the factor is normal in the Zappa product of any two groups. In other words, for a group
G with subgroups A and B that satisfy A ∩ B = {1G} and G = AB, we know that each
element g ∈ G is expressible (uniquely) as g = ab with a ∈ A and b ∈ B. Now to reserve
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certain products, let us consider an element ba ∈ G. In fact there must be unique elements
b′ ∈ B and a′ ∈ A such that ba = a′b′. This actually implies two functions

(b, a) 7−→ ba ∈ B, (b, a) 7−→ b.a = ba ∈ A (1.1)

which are unique and so satisfy

ba = (b.a)(ba) = baba, (1.2)

for all b ∈ B and a ∈ A.
According to the references [13, 22, 23, 25], by considering the action given (1.1), the

monoid version of the Zappa product of any two monoids can be defined as follows.
For any two monoids A and B, let us consider a homomorphism ψ : A → T(B) and an

anti-homomorphism δ : B → T(A) such that T(.) denotes the full transformation monoid.
For a ∈ A, b ∈ B, denote the operation of (a)ψ on B by b 7−→ (a)ψ = ba and the operation
of (b)δ on A by a 7−→ (a)δb = ba. For every elements a, a1, a2 ∈ A, b, b1, b2 ∈ B, suppose
that the conditions

b1A = b, 1aB = 1B, (1A)δb = 1A, (a)δ1B = a,

b(a1a2) = (ba1)a2 , (a)δb1b2 = ((a)δb2)δb1 ,

(b1b2)a = b
(a)δb2
1 ba2 and (a1a2)δb = (a1)δb(a2)δba1

are all true. Then the set A×B defines the Zappa product Aδ×ψB (cf. [13,22]) of A and
B which is of course a monoid with respect to the multiplication,

(a1, b1)(a2, b2) = (a1(a2)δb1 , b
a2
1 b2) . (1.3)

Assume that A has a monoid presentation PA = [X;R] while B has PB = [Y ;S]. Then,
by [23, Theorem 2], a presentation for Aδ×ψB with the structure defined by (1.3) on the
set A × B is given as P = [X, Y ; R, S, T ] in which the relator T consists of all ordered
elements (ba, baba), as given in (1.2), for (b, a) ∈ B ×A.

Since there are some difficulties in the meaning of embedding for the factors in the
product unless they are not taken as identities, throughout in this paper we will not
attempt to study the cases of Zappa products for semigroups.

To give another preliminary material for the next section, let us recall the fundamentals
of standard wreath products of any two monoids A and B. First let us consider the monoid
A⊕B which is the direct product of the number of B copies of A. In fact A⊕B can be
thought as the set of all functions f having finite support. Suppose that ψ : A⊕B → T(B)
is a homomorphism and δ : B → T(A⊕B) is an anti-homomorphism where T(.) is the
full transformation monoid on B and A⊕B, respectively, as previously. For g ∈ A⊕B and
b ∈ B, let us denote the operation of (g)ψ on B by b 7−→ b and operation of (b)δ on
A⊕B by g 7−→ (g)δb = bg. Then the set A⊕B × B defines a monoid A ≀ B (namely the
(standard) wreath product of A by B) with the operation (f, b1)(g, b2) = (f b1g, b1b2),
and the identity is (I, 1B), where (x)I = 1A (cf. [14, 18, 20, 22]). It is clear that A ≀ B is
actually the semidirect product of A⊕B by B and notated by A⊕B ×δ B. Now, by taking
into account the same presentations PA and PB for the monoids A and B as in above, for
each b ∈ B, let us assume the set Xb = {xb : x ∈ X} is a copy of X and the set Rb is the
corresponding copy of R. So, for x, x′ ∈ X, y ∈ Y , b, e ∈ B, b ̸= e, the monoid A ≀ B has
a presentation Xb, Y ; Rb, S, xbx′

e = x′
exb, yxb = (

∏
m∈by−1

xm)y

 (1.4)

(cf. [2, 14,18,25]).
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2. A higher version of the Zappa product
By combining the definitions of Zappa and (standard) wreath products, the main pur-

poses of this section are to define and study a generalized version of the Zappa product
of A⊕B by B⊕A, namely restricted generalized Zappa product A⊕B

δ×ψB
⊕A with an op-

eration adapted from (1.3). Additionally, by considering the presentation in (1.4), we will
prove the existence of an implicit presentation for this product (see Theorem 2.2 below).
Moreover, by taking into account a special case A⊕B

δ×ψB of this new product, we will
state and prove some consequences of this theorem.

Let A and B be monoids, and let the set A×B denotes the Cartesian product of the
number of B copies of the monoid A while the set A⊕B denotes the corresponding direct
product as in wreath products. Recall that A⊕B can be thought as the set of whole
functions f with finite support (in other words, functions with the property (x)f = 1A
for all but finitely many x in B). Hence a generalization of restricted and unrestricted
Zappa products of the monoid A⊕B by the monoid B⊕A are defined on A×B × B×A and
A⊕B ×B⊕A, respectively, with the multiplication

(f, h)(g, k) = (f (g)δh, (h)ψgk) = (f hg, hgk), (2.1)

where δ : B⊕A → T(A⊕B), (g)δh = hg and ψ : A⊕B → T(B⊕A), (h)ψg = hg are defined
by, for a ∈ A and b ∈ B,

hg = (ha)g and hg = h(bg).

Also, for x ∈ A and y ∈ B, we define

(x)ha = (ax)h and (y) bg = (yb)g (2.2)

such that, for all d ∈ B, c ∈ A,

(d) (ha)g = (dha)g and (c)h(bg) = (bgc)h.

Both these restricted and unrestricted generalized Zappa products are monoids under
the multiplication defined in (2.1) with the identity (1, 1̃), where 1 : B → A, (b)1 = 1A
and 1̃ : A → B, (a)1̃ = 1B, for all a ∈ A and b ∈ B.

Throughout this paper all generalized Zappa products will be assumed to be restricted
and so we will use the notation A⊕B

δ×ψB
⊕A for it. It is clear that the sets {(f, 1̃) : f ∈

A⊕B} and {(1, k) : k ∈ B⊕A} are the submonoids of A⊕B
δ×ψB

⊕A which are isomorphic
to A⊕B and B⊕A, respectively. Moreover, for f ∈ A⊕B and k ∈ B⊕A, we definitely have
(f, 1̃)(1, k) = (f, k).

For a ∈ A and b ∈ B, we now define ab : B → A and b̃a : A → B as

(m)ab =
{
a, b = m
1A, otherwise and (n)b̃a =

{
b, a = n
1B, otherwise .

Notice that if f : B → A and k : A → B have finite supports, then

f =
∏
b∈B

((b)f)b and k =
∏
a∈A

˜((a)k)a.

Also notice that if the monoid A is generated by a set X (so that every a in A is expressible
as a finite product x1x2 · · ·xn of elements of X) and if the monoid B is generated by Y
(so every b in B is expressible as a finite product y1y2 · · · ym), then

ab = x1b
x2b

· · ·xnb
and b̃a = ỹ1a ỹ2a · · · ỹma .

After all, we have the following lemma which is actually a generalization of [18, Lemma
2.1].
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Lemma 2.1. Assume that the sets X and Y generate the monoids A and B, respectively.
Further, let Xb = {(xb, 1̃) : b ∈ B, x ∈ X} and Ỹa = {(1, ỹa) : a ∈ A, y ∈ Y }. Then the
product A⊕B

δ×ψB
⊕A is generated by the set (

∪
b∈B

Xb) ∪ (
∪
a∈A

Ỹa).

In general, the generating set given in Lemma 2.1 is the best possible for the monoids
A and B. If B has an indecomposable identity (in other words, for all b, c ∈ B, bc = 1B ⇒
b = c = 1B), then any generating set of A⊕B

δ×ψB
⊕A must contain elements from the

generating set of the submonoid A⊕B ∼= {(f, 1̃) : f ∈ A⊕B} and, in fact,
∪
b∈BXb is the

smallest such a set. One may discuss same arguments for
∪
a∈A Ỹa as well.

For simplicity, we will denote the set {m ∈ B : b = my} with only by−1 (where b, y ∈ B)
and will denote the set {n ∈ A : a = xn} with only x−1a (where a, x ∈ A).

The following theorem generalizes the result presented in [13].

Theorem 2.2. Suppose that the monoids A and B are presented by [X;R] and [Y ;S],
respectively. For each b ∈ B, let Xb = {xb : x ∈ X} denote a copy of X, and let Rb denote
the corresponding copy of R. Similarly, for each a ∈ A, let Ya = {ya : y ∈ Y } be a copy
of Y , and let Sa be the corresponding copy of S. Then the (restricted) generalized Zappa
product A⊕B

δ×ψB
⊕A is defined by the generators (

∪
b∈B

Xb) ∪ (
∪
a∈A

Ya) and relations

Rb, Sa, (a ∈ A, b ∈ B) ; (2.3)
xbx

′
e = x′

exb, (x, x′ ∈ X, b, e ∈ B, b ̸= e) ; (2.4)
yay

′
s = y′

sya, (y, y′ ∈ Y, a, s ∈ A, a ̸= s) ; (2.5)

yaxb =

 ∏
m∈by′−1

xm

 ∏
n∈x′−1a

yn

 (2.6)

such that the elements x′ and y′ in Eq. (2.6) are defined as

x′ =
∏

m∈by−1

xm and y′ =
∏

n∈x−1a

yn ,

respectively.

Proof. We first recall that, for a set of alphabet M, the monoid of all words in M is
notated by M∗.

For x ∈ X, b ∈ B, y ∈ Y , a ∈ A, the mapping ρ from the monoid

(
∪
b∈B

Xb) ∪ (
∪
a∈A

Ya)

∗

,

say M , to the product A⊕B
δ×ψB

⊕A defined by (xb)ρ = (xb, 1̃) and (ya)ρ = (1, ỹa) is
surjective as a result of Lemma 2.1. Furthermore, relations in (2.3), (2.4) and (2.5) are all
held in A⊕B

δ×ψB
⊕A by the equalities and explanations presented just before Lemma 2.1.

Now the next step is to obtain relation (2.6). We easily deduce from (2.1) that

(1, ỹa)(xb, 1̃) = (ỹaxb, ỹa
xb).

Now by considering (2.2), for each x ∈ X, we can write
ỹaxb = (ỹa

x)xb ,

where for d ∈ A,

(d)ỹax = (xd)ỹa =
{
y, a = xd
1B, otherwise =

{
y, d ∈ x−1a
1B, otherwise

=
∏

n∈x−1a

(d)ỹn = (d)
∏

n∈x−1a

ỹn.
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So we have ỹax =
∏

n∈x−1a

ỹn. For simplicity, let us denote
∏

n∈x−1a

ỹn by only y′. As a result,

we obtain
(ỹa

x)xb = y′
xb.

Moreover, for e ∈ B,

(e)y′
xb = (ey′)xb =

{
x, b = ey′

1A, otherwise =
{
x, e ∈ by′−1

1A, otherwise

=
∏

m∈by′−1

(e)xm = (e)
∏

m∈by′−1

xm.

Therefore y′
xb =

∏
m∈by′−1

xm and finally we have

ỹaxb = (ỹa
x)xb = y′

xb =
∏

m∈by′−1

xm .

Additionally, for each y ∈ Y , by taking into account the second part of (2.2) and its
attachments, since

ỹa
xb = ỹa

(yxb) ,

we clearly obtain
ỹa
xb = ỹa

(yxb) = ỹa
x′

=
∏

n∈x′−1a

ỹn ,

where x′ =
∏

m∈by−1

xm.

Therefore, if we write all above results together, then we get

(1, ỹa)(xb, 1̃) =

 ∏
m∈by′−1

xm

 ∏
n∈x′−1a

yn

 ,

as required. As a result of all these above findings, we deduce that ρ defines actually an
epimorphism ρ from the monoid M obtained by relations (2.3), (2.4), (2.5) and (2.6) onto
the monoid A⊕B

δ×ψB
⊕A.

Now we need to prove that ρ is a monomorphism. Let w be a word representing an
element of M . By using relations (2.4), (2.5) and (2.6), it is easy to show that there exist
words (b)w in X∗ (b ∈ B) and (a)w in Y ∗ (a ∈ A) such that

w = (
∏
b∈B

((b)w)b)(
∏
a∈A

((a)w)a)

in M . (We note that if z ∈ X∗, t ∈ Y ∗ then zb and ta are the corresponding words in X∗
b

and Y ∗
a , respectively). Now, for each w ∈ X∗ ∪ Y ∗, c ∈ B and d ∈ A, we have

(c)wb =
{
w, b = c
1, otherwise and (d)w̃a =

{
w, a = d
1, otherwise .

Hence we get
(c)(

∏
b∈B

((b)w)b) =
∏
b∈B

(c)((b)w)b = (c)w , (2.7)

(d)(
∏
a∈A

˜((a)w)a) =
∏
a∈A

(d) ˜((a)w)a = (d)w , (2.8)

for all c ∈ B and d ∈ A.
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For any two words u, v in ((
∪
b∈B

Xb) ∪ (
∪
a∈A

Ya))∗, we have

(u)ρ = (v)ρ ⇒ ((
∏
b∈B

((b)u)b)(
∏
a∈A

((a)u)a))ρ = ((
∏
b∈B

((b)v)b)(
∏
a∈A

((a)v)a))ρ

⇒ ((
∏
b∈B

((b)u)b)ρ(
∏
a∈A

((a)u)a))ρ = ((
∏
b∈B

((b)v)b)ρ(
∏
a∈A

((a)v)a))ρ

⇒ (
∏
b∈B

((b)u)b, 1̃))(
∏
a∈A

(1, ˜((a)u)a)) = (
∏
b∈B

(((b)v)b, 1̃))(
∏
a∈A

(1, ˜((a)v)a))

⇒ (
∏
b∈B

((b)u)b,
∏
a∈A

( ˜((a)u)a)) = (
∏
b∈B

(((b)v)b,
∏
a∈A

˜((a)v)a)) .

Now from the equality of the first and second components and using equalities (2.7)-(2.8),
we deduce that (c)u = (c)v in A (for all c ∈ B) and (d)u = (d)v in B (for all d ∈ A). Also,
relations given in (2.3) imply u = v in the monoid M . Therefore ρ is injective.

These complete the proof. �

Remark 2.3. For d ∈ x−1a and e ∈ by−1, since (d)ỹax = y and (e)yxb = x, we have seen
in the above proof there exist equalities

(ỹa
x)xb = yxb = y ′xb and ỹa

(yxb) = ỹa
x = ỹa

x′
.

Therefore, by omitting the bar and tilde signs, another version of the relation given in
(2.6) can be stated as

yaxb =

( ∏
n∈x−1a

yn

)
xb y

 ∏
m∈by−1

xm


a . (2.9)

We have the following consequence of Theorem 2.2.

Corollary 2.4. Let A and B be monoids with the conditions given in Theorem 2.2 hold.
Then the standard presentation for A⊕B

δ×ψB
⊕A is given by

[Xb, Ya ; Rb, Sa (a ∈ A, b ∈ B) ,
xbx

′
e = x′

exb (x, x′ ∈ X, b, e ∈ B, b ̸= e) ,
yay

′
s = y′

sya (y, y′ ∈ Y, a, s ∈ A, a ̸= s) ,

yaxb =

( ∏
n∈x−1a

yn

)
xb y

 ∏
m∈by−1

xm


a ] .

At the rest of this section, as a special case of Theorem 2.2 (and also Corollary 2.4), we
will only consider the generalized Zappa product A⊕B

δ ×ψ B for defining a presentation
on it.

For an arbitrary monoid A with a presentation [X;R] and an arbitrary monoid B with
a presentation [Y ;S], let us consider

δ : B → T(A⊕B) and ψ : A⊕B → T(B)

b 7→ (g)δb = bg g 7→ (b)ψg = bg

such that (x) bg = (xb)g for x ∈ B and bg = b(b′
g) for b′ ∈ B. Then the generalized Zappa

product A⊕B
δ ×ψ B is defined on the set A⊕B × B with a multiplication (f, b)(g, b′) =

(f bg, bgb′).
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Theorem 2.5. A presentation for A⊕B
δ ×ψ B is defined by

[Xb, Y ; Rb, S, xbx′
e = x′

exb, yxb = (
∏

m∈by−1

xm)y
(
∏

m∈by−1

xm)
] , (2.10)

where x, x′ ∈ X, y ∈ Y, b, e ∈ B, b ̸= e.

Proof. Let us consider the presentation given in Corollary 2.4. Since we have just one
copy of B in the product A⊕B

δ ×ψ B, we must have Y instead of Ya in the generating
set and also S instead of Sa in the relators set of the requiring presentation. Moreover, by
the same reason, the relator yay′

s = y′
sya (y, y′ ∈ Y, a, s ∈ A, a ̸= s) will be disappeared.

For the last relator, again let us consider the multiplication (1, y)(xb, 1B) = (yxb, yxb),
where x ∈ X, y ∈ Y and b ∈ B. Recall that, in the proof of Theorem 2.2, we obtained the
equation

yxb =
∏

m∈by−1

xm .

Hence, by considering both (2.6) and (2.9) with the fact that there exists a single B in
the product A⊕B

δ ×ψ B, we obtain

(1, y)(xb, 1B) = (
∏

m∈by−1

xm)y
(
∏

m∈by−1

xm)
,

as required.
Notice that presentation in (2.10) is a generalization of the presentation given in (1.4)

since it presents a product having mutual actions. �
As a consequence of Theorem 2.5, we can get a much nicer presentation in the case of B

is a group which is actually a generalization of the presentation defined in [18, Corollary
2.3].

Corollary 2.6. Assume that A is a monoid but B is a group. Now consider their monoid
presentations [X;R] and [Y ;S], respectively. Thus A⊕B

δ ×ψ B has a presentation[
X,Y ; R,S, x(b−1x′bx

′′) = (b−1x′bx
′′)x

]
,

where x, x′, x′′ ∈ X, b ∈ B.

Proof. Recall from (1.2), for any a ∈ A and b ∈ B, the action satisfies ba = baba. So, for
xb ∈ A⊕B and b ∈ B, we get

bxb = bxbb
xb . (2.11)

Now, by replacing b instead of y in equations yxb =
∏
m∈by−1 xm and yxb = y(yxb), where

m ∈ B, which are obtained in Theorems 2.2 and 2.5 and also by writing those new
equations in (2.11), we obtain the relation

bxb = x1Bb

∏
m∈by−1

xm

in A⊕B
δ×ψB. For just simplicity, if we write x′ instead of x1B and x′′ instead of

∏
m∈by−1

xm,

then this above last relation becomes
xb = b−1x′bx

′′
. (2.12)

Further, by using (2.12), if we eliminate the element xb (where x ∈ X, b ∈ B− {1B}) from
the relations in presentation (2.10), the last relator of this presentation becomes trivial
while the relations Rb and xbx

′
e = x′

exb are actually consequences of the relations R and
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x(b−1x′bx
′′) = (b−1x′bx

′′)x, respectively, in the meaning of Tietze transformations, where
x, x′, x′′ ∈ X, b ∈ B.

Hence this completes the proof. �

By taking into account both A and B as any groups, Corollary 2.6 can be expressed as
in the following.

Corollary 2.7. Assume that both A and B are groups with their monoid presentations
[X;R] and [Y ;S], respectively. Hence the presentation

[X,Y ; R, S, a(b−1a′ba
′′) = (b−1a′ba

′′)a (b ∈ B, a, a′, a′′ ∈ A) ]

defines A⊕B
δ ×ψ B.

Proof. As in the proof of Corollary 2.6, for a ∈ A and b ∈ B, we can easily see that

ab = b−1a1Bb

∏
m∈by−1

am

holds in A⊕B
δ×ψB. For simplicity, let us replace a1B by a′ and

∏
m∈by−1

am by a′′. Then the

above equality becomes ab = b−1a′ba
′′ . Therefore, by replacing ab in presentation (2.10),

we obtain the required presentation given in the statement of corollary. �

3. Some applications
By considering the presentation defined in Theorem 2.5 for A⊕B

δ ×ψ B, we will give
some examples while A and B are taken as some special monoids.

3.1. Finite case
In this section we will study on finite cyclic monoids (cf. [19]). In fact some examples and

applications over other extensions for these monoids have been investigated, for instance,
in [3, 4, 15].

Suppose that A = [x ; xk = xl (k > l)] and B = [y ; ys = yt (s > t)] are finite cyclic
monoids, and consider δ and ψ as given in Theorem 2.5. We then have the following result.

Corollary 3.1. Let A and B be finite cyclic monoids as in above. Then

[ x(0), x(1), · · · , x(s−1), y ; ys = yt, x(i)x(j) = x(j)x(i) (0 ≤ i < j ≤ s− 1),
x(i)k = x(i)l (0 ≤ i ≤ s− 1),

yx(i) = x(i−1)yx
(i−1) (1 ≤ i ≤ s− 1),

yx(t) = x(s−1)yx
(s−1) ]

is a presentation for the product A⊕B
δ ×ψ B.

Proof. By considering A and B are finite cyclic monoids, we just need to convert presenta-
tion (2.10) in Theorem 2.5. For all yi ∈ B, let us label each xyi by x(i), where 0 ≤ i ≤ s−1,
for simplicity. Therefore the set of the generators for the monoid A⊕B

δ ×ψ B is {x(i), y}.
Further, since A⊕B is a direct product, we must have x(i)x(j) = x(j)x(i) (0 ≤ i < j ≤ s−1)
and x(i)k = x(i)l as relations in our presentation.

Now let us consider the relator

yxb = (
∏

m∈by−1

xm)y
(
∏

m∈by−1

xm)
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in presentation (2.10). In this relator, by taking 1, y, y2, · · · , ys−1 instead of each b ∈ B

and replacing each xb by related x(i) where 0 < i ≤ s − 1, we obtain the relator yx(i) =
x(i−1)yx

(i−1) . Moreover, for the monoid B, since we have ys = yt as a relator, we can write
this relator as yt = ys−1y which implies that, for b = yt and m = ys−1, yx(t) = x(s−1)yx

(s−1)

by keeping same idea as in the previous sentence.
Hence this completes the proof. �

We can also give the following application which is a consequence of Corollary 2.6.

Corollary 3.2. Let A be a finite monoid (not necessarily cyclic) and let B be a cyclic group
of order s. If PA = [X;R] and PB = [y ; ys = yt (s > t)] are their monoid presentations,
respectively, then the presentation

[X, y ; R, ys = yt, x(y−ix′(yi)x′) = (y−ix′(yi)x′)x (x, x′ ∈ X, 0 < i ≤ (s− t) − 1)]

defines the product A⊕B
δ ×ψ B.

Proof. From Corollary 2.6, we have the relations bxb = x1Bb
x1B , for b ∈ B, x ∈ X. If

we take 1, y, y2, · · · , y(s−t)−1 instead of for each b, we obtain x(i) = y−ix(0)(yi)x(0) where
0 < i ≤ (s− t) − 1. Also let us replace x′ by x(0). Thus we have x(i) = y−ix′(yi)x′ . Hence
this completes the proof. �

3.2. Infinite case
In this subcase, let A be the free Abelian monoid rank 2 and let B be the finite cyclic

monoid. As a consequence of Theorem 2.5, we have the following result which can be
proved quite similarly as in Corollary 3.1.

Corollary 3.3. Let PA = [x1, x2 ; x1x2 = x2x1] and PB = [y ; ys = yt (s > t)] be monoid
presentations for the above monoids A and B. Therefore, the monoid A⊕B

δ ×ψ B has a
presentation with generators

x
(0)
1 , x

(1)
1 , · · · , x(s−1)

1 , x
(0)
2 , x

(1)
2 , · · · , x(s−1)

2 , y

and relators

ys = yt, x
(m)
i x

(n)
j = x

(n)
j x

(m)
i (i, j ∈ {1, 2}, 0 ≤ m,n ≤ s− 1),

yx
(m)
1 = x

(m−1)
1 yx

(m−1)
1 (0 < m ≤ s− 1),

yx
(n)
2 = x

(n−1)
2 yx

(n−1)
2 (0 < n ≤ s− 1),

yx
(t)
1 = x

(s−1)
1 yx

(s−1)
1 , yx

(t)
2 = x

(s−1)
2 yx

(s−1)
2 .

We note that Corollary 3.3 can be easily generalized for an arbitrary free abelian monoid
A with rank greater than 2.

On the other hand another infinite case application of Theorem 2.5 is the following:
Let A be the free monoid with a presentation PA = [x ; ] and let B be the monoid

Zs × Zm with a presentation

PB = [y1, y2 ; ys1 = yt1, y
m
2 = yn2 (s > t, m > n), y1y2 = y2y1].

For a representive element yi1y
j
2 in the monoid B, let us label x

yi
1y

j
2

by x(i,j) where 0 ≤ i ≤
s− 1, 0 ≤ j ≤ m− 1. Then, for each element in B, we have a generating set {x(i,j), y1, y2}
for the monoid A⊕B

δ ×ψ B. Therefore, by suitable changes in presentation (2.10), we
obtain the following result.
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Corollary 3.4. Let A and B be as above. Then

[ x(i,j), y1, y2 ; ys1 = yt1, y
m
2 = yn2 (s > t, m > n), y1y2 = y2y1,

x(i,j)x(l,k) = x(l,k)x(i,j) (0 ≤ i ≤ s− 1, 0 ≤ j ≤ m− 1, (i, j) < (l, k)),

y1x
(i,j) = x(i−1,j)yx

(i−1,j)
1 (1 ≤ i ≤ s− 1, 0 ≤ j ≤ m− 1),

y2x
(i,j) = x(i,j−1)yx

(i,j−1)
2 (0 ≤ i ≤ s− 1, 1 ≤ j ≤ m− 1),

y1x
(t,j) = x(s−1,j)yx

(s−1,j)
1 (0 ≤ j ≤ m− 1),

y2x
(i,n) = x(i,m−1)yx

(i,m−1)
2 (0 ≤ i ≤ s− 1)

is a presentation for A⊕B
δ ×ψ B.

4. Conclusions and future problems
In this paper, we first introduced a new monoid A⊕B

δ×ψB
⊕A under the name of a

higher version of Zappa products or generalized Zappa products of the monoid A⊕B by the
monoid B⊕A which is obtained by a combination of Zappa and wreath products. Then
we defined a presentation on this new Theorem 2.2. After that, by taking A and B as
finite (or infinite) monoid examples and also taking them as groups with their monoid
presentations, we presented some consequences of Theorem 2.2.

It is clear that to define a presentation on an algebraic structure is an important tool in
geometric group theory since this implies new studying areas over this structure. So, by
considering the presentation defined in Theorem 2.2 or the presentations defined in corol-
laries of Theorem 2.2, one may study Gröbner-Shirshov bases (see, for instance, [12, 21])
over these presentations since the normal forms obtained by Gröbner-Shirshov bases im-
plies the solvability of word problems ([11]). Furthermore the existence of other decision
problems, specially the isomorphism problem, over the monoid A⊕B

δ×ψB
⊕A can be stud-

ied for a future project. Additionally, with the help of Theorem 2.2, the subjects Green‘s
relations, periodicity and local finiteness may also be studied on A⊕B

δ×ψB
⊕A.

Another future research on A⊕B
δ×ψB

⊕A would be the adaptation of the results pre-
sented in [7] and [8], that is, to investigate whether there exists a bijective correspondence
between formations of the monoid A⊕B

δ×ψB
⊕A with formations of languages.
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Abstract
In this paper, we study the geometry of rectifying curves in the 3-dimensional hyperbolic
space H3(−r). Further we obtain the distance function in terms of arc length when the
rectifying curve lying in the upper half plane. Then we find the distance function and
also give the general equations of the curvature and torsion of rectifying general helices in
H3(−r).
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1. Introduction
In [4], B.Y. Chen gave the idea that the ratio of torsion and curvature of a regular

curve is a linear function of arc length s, i.e., (τ/κ)(s) = c1s + c2 for some constants c1
and c2. If c1 = 0, we obtain generalized helices; otherwise, we obtain rectifying curves.
A space curve whose position vector always lies in its rectifying plane is called rectifying
curve. So, a curve γ is said to be rectifying curve if there exist a point r in R3 such
that γ(s) − r = C1B(s) + C2T (s), where C1, C2 are some function of arc length s. Now
the Frenet frame: T = γ

′
, N,B = T × N of a unit speed curve γ in R3 satisfies the

Serret-Frenet equations:  T
′

N
′

B
′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

  T
N
B

 ,

where the function κ(s) > 0 and τ(s) are called the curvature and the torsion of the curve
and the above matrix is skew-symmetric. Therefore at each point of the curve we always get
three planes namely: {T,N}-osculating plane, {N,B}-normal plane, {B,T}-rectifying plane
and the equations of the corresponding planes are (R−r).B = 0, (R−r).T = 0, (R−r).N =
0, where R- position vector of any point on the respective plane, r-position vector of a
specified point of the given curve. To know more about the characterization of rectifying
curve we refer the reader to see [1, 2, 6]. In [7], P. Lucas and J.A.O. Yagues, studied
rectifying curves in the three-dimensional hyperbolic space, and obtain some results of
characterization and classification for such kind of curves.
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In [5], S. Izumiya and N. Takeuchi introduced the notion of slant helix, if the principle
normal lines of γ makes a constant angle with a fixed direction, also they found a necessary
and sufficient condition for a curve γ with κ(s) > 0 to be a slant helix is that function
σ = κ2

(κ2+τ2)3/2 ( τ
κ)′ be constant. Further in [8], P. Lucas and J.A.O Yagues studied slant

helices in the three dimensional sphere. Also in [3], M. Barros gave the definition of Lancret
curve (general helix), the principle normal lines are perpendicular to a fixed direction.
Thus a general helix is the special case of a slant helix. It is clear that if σ ≡ 0 then γ is
a general helix. Also M. Barros gave a theorem that, a curve γ in H3 is a slant helix if
and only if either γ is a curve in some unit hyperbolic plane H2 ⊂ H3 with τ ≡ 0 or γ is
a helix in H3.

Thus motivated sufficiently we study general helices in the 3-dimensional hyperbolic
space H3(−r) and obtain several results corresponding to the rectifying general helix and
characterization of rectifying curve in H3(−r). Our work is organized as follows: using
the Gauss formula and the definition of rectifying curve in H3(−r), we find expressions
of T 0′

γ , N0′

γ , B0′

γ , T 0′

ϕs .T
0′

γ , N
0′

ϕs .N
0′

γ , B
0′

ϕs .B
0′

γ etc. Here we take dot product
because it gives the geometrical interpretation of curve. Further we obtain the distance
function in H3(−r) in terms of λ and µ, which satisfy some differential equation. We also
find distance function in terms of arc length when the rectifying curve lying in the upper
half plane. Next we find some characterizations of rectifying curve in H3(−r). Finally we
give the general equations of the curvature and torsion of a rectifying general helix.

2. Preliminaries
Let H3(p,−r) = {x = (x1, x2, x3, x4) ∈ R4

1| < x − p, x − p >= −r2, x1 > 0} ⊂ R4
1

be the hyperbolic space with centered at p ∈ R4
1 and radius r > 0, where R4

1 is the four
dimensional Lorentzian manifold with flat metric g = −dx2

1 + dx2
2 + dx2

3 + dx2
4. Also we

denote H3(0,−r) ≡ H3(−r) = {x ∈ R4
1| − x2

1 + x2
2 + x2

3 + x2
4 = −r2, x1 > 0} ⊂ R4

1 and
H3(0,−1) ≡ H3.

We know that if ∇̄ and ∇◦ denote the Levi-Civita connections on H3(−r) and R4
1

respectively then they are related by the Gauss formula, ∇◦
XY = ∇̄XY + 1

r2 < X,Y > ϕ,

where ϕ : H3(−r) → R4
1 denotes the position vector and X, Y are vector fields tangent to

H3(−r). Let us consider a unit speed curve γ : I ⊂ R → H3(−r) and assume that γ is not a
geodesic curve then we always get ∇◦

Tγ
Tγ = κγNγ + 1

r2γ,∇◦
Tγ
Nγ = −κγTγ +τγBγ ,∇◦

Tγ
Bγ =

−τγNγ , where two functions κγ > 0 and τγ are curvature and torsion of the curve γ. It
is also well-known that the principle normal geodesic in H3(−r) starting at γ(s) of the
curve γ can be defined as the geodesic curve parameterized by ϕs(t) = expγ(s)(tNγ(s)) =
cosh( t

r )γ(s) + r sinh( t
r )Nγ(s), t ∈ R.

In [7], authors gave two equivalent definitions of rectifying curve in the three dimensional
hyperbolic space.

Definition 2.1. A unit speed curve γ = γ(s)(s ∈ I) in H3(−r), with κγ > 0, is said
to be rectifying curve if there exists a point p ∈ H3(−r) such that p is not belongs to
Im(γ) ≡ γ(I) and the geodesics connecting p with γ(s) are orthogonal to the principle
normal geodesics at γ(s), for all s.

Definition 2.2. The geodesics connecting p with γ(s) are tangent to the rectifying plane
of γ i.e., the planes generated by {Tγ(s), Bγ(s)}.

Also in [7], two characterization theorems for rectifying curves are given.

Theorem 2.3. Let γ = γ(s)(s ∈ I) be a unit speed curve in H3(−r). Then, γ is a
rectifying curve if and only if the ratio of torsion and curvature of the curve is given by
τγ

κγ
(s) = c1 sinh( s+s0

r )+c2 cosh( s+s0
r ), for some constants c1, c2 and s0, with 1−c1

2 +c2
2 <

0.
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Theorem 2.4. Let p ∈ H3(−r) and consider a unit speed curve V (t) in S2(1) ⊂ TpH
3(−r).

Then, for any nonzero function ρ(t), the curvature κγ and the speed v of the curve
γ(t) = expp(ρ(t)V (t)), and the geodesic curvature κV of V satisfy the inequality κ2

V ≤
v4κ2

γ

r2 sinh2(ρ/r)
, with the equality sign holding identically if and only if γ is a rectifying

curve.

3. Main results
Theorem 3.1. Let γ : I ⊂ R → H3(−r) be a unit speed rectifying curve in H3(−r). If
{Tγ , Nγ , Bγ} is the Frenet frame along γ and ∇̄ and ∇◦ denote the Levi-Civita connections
on H3(−r) and R4

1 respectively then by using the Gauss formula the Frenet equations of γ
can be written as follows:

T ◦′
γ = κγNγ + 1/r2γ,N◦′

γ = −κγTγ + κγψBγ , B
◦′

γ = −κγψNγ ,

where κγ , τγ denote the curvature and torsion of γ, which satisfy any of the following
conditions:

(1) T ◦′
ϕs .T

◦′
γ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ = λ1τϕsτγ ,

B◦′
ϕs .B

◦′
γ = 0.

(2) T ◦′
ϕs .T

◦′
γ = λ4κϕsκγ̄ + 1

r2 (λ4κϕs γ̄+ϕsκγ̄).Nγ̄ + 1
r4ϕs.γ̄, N

◦′
ϕs .N

◦′
γ = −λ2τϕsκγ −

λ3κϕsτγ , B
◦′

ϕs .B
◦′

γ = −λ4τϕsτγ .

(3) T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄), N◦′

ϕs .N
◦′

γ̄ = −d1τϕsκγ̄ ,

B◦′
ϕs(t).B

◦′
γ̄ = 0.

(4) T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄), N◦′

ϕs .N
◦′

γ̄ = −d2κϕsτγ̄ ,

B◦′
ϕs(t).B

◦′
γ̄ = 0,

where λ1, λ2, λ3, λ4, d1, d2 ∈ R.

Proof. Let γ : I ⊂ R → H3(−r) be a unit speed rectifying curve in H3(−r). If
{Tγ , Nγ , Bγ} be the Frenet frame along γ and ∇̄ and ∇◦ denote the Levi-Civita con-
nections on H3(−r) and R4

1 respectively then the Frenet equations of γ are
∇̄TγTγ = κγNγ , ∇̄TγNγ = −κγTγ + τγBγ , ∇̄TγBγ = −τγNγ , (3.1)

where functions κγ > 0 and τγ are curvature and torsion of the curve γ. After using the
Gauss formula in (3.1), we get

∇◦
Tγ
Tγ = κγNγ + 1

r2γ,∇
◦
Tγ
Nγ = −κγTγ + τγBγ ,∇◦

Tγ
Bγ = −τγNγ . (3.2)

Then from ([7], Theorem 3.), using the relation of τγ and κγ for rectifying curve we obtain,

∇◦
TγTγ = κγNγ + 1

r2γ,∇
◦

TγNγ = −κγTγ + κγψBγ ,∇◦
TγBγ = −κγψNγ , (3.3)

where ψ(s) = c1f(s) + c2g(s). Now, we write the equation (3.3) in the following notation

T ◦′
γ = κγNγ + 1

r2γ,N
◦′

γ = −κγTγ + κγψBγ , B
◦′

γ = −κγψNγ . (3.4)

Now, using Definition 2.1, let ϕs(t) be geodesics connecting p with γ(s) are orthogonal to
the principle normal geodesics γ̄ at γ(s), for all s. Then we get,

T ◦′
ϕs(t) = κϕs(t)Nϕs(t) + 1

r2ϕs(t),

N◦′
ϕs(t) = −κϕs(t)Tϕs(t) + τϕs(t)Bϕs(t),

B◦′
ϕs(t) = −τϕs(t)Nϕs(t),

(3.5)
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and

T ◦′
γ̄ = κγ̄Nγ̄ + 1

r2 γ̄,

N◦′
γ̄ = −κγ̄Tγ̄ + τγ̄Bγ̄ ,

B◦′
γ̄ = −τγ̄Nγ̄ .

(3.6)

Now for the case of rectifying curve, ϕs(t) and γ̄(s) are orthogonal at γ(s) for all s i.e.,
Tϕs(t).Tγ̄ = 0 and we get two cases corresponding to the Frenet frame of the curves ϕs and γ̄.

Case 1.

�

�

�
,

s
B Bφ γ �

�

�

������������������������������������������������������������

,
s

N Tφ γ �

,
s

T Nφ γ ����������������������������������������������������������������������������������������������������������������������������������������������

Condition (i) 
�

�

�

����������

���������������������������
,

s
B Tφ γ �

�

���������������������������������������������������������������
,

s
N Nφ γ �

�

,
s

T Bφ γ �

Condition (ii) 
�����������������������������������������������������������������������������������������������������������������������������

Then using Condition (i) in the equations (3.5) and (3.6), we get

T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ̄ = λ1τϕsτγ̄Bγ̄ .Bγ̄ = λ1τϕsτγ̄ , B

◦′
ϕs(t).B

◦′
γ̄ = 0,

where Bϕs = λ1Bγ̄ . By using Condition (ii) in the equations (3.5) and (3.6), we obtain

T ◦′
ϕs .T

◦′
γ̄ = κϕsκγ̄Nϕs .Nγ̄ + 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄)

= λ4κϕsκγ̄ + 1
r2 (λ4κϕs γ̄ + κγ̄ϕs).Nγ̄ + 1

r4ϕs.γ̄,

N◦′
ϕs .N

◦′
γ̄ = −λ2τϕsκγ̄Tγ̄ .Tγ̄ − λ3κϕsτγ̄Bγ̄ .Bγ̄ = −λ2τϕsκγ̄ − λ3κϕsτγ̄ ,

B◦′
ϕs .B

◦′
γ̄ = λ4τϕsτγ̄ ,

where Bϕs = λ2Tγ̄ , Tϕs = λ3Bγ̄ and Nϕs = λ4Nγ̄ . Now we know that Tγ can be written
as Tγ = c1Tγ̄ + c2Nγ̄ + c3Bγ̄ , and Tγ = c

′
1Tϕs + c

′
2Nϕs + c

′
3Bϕs . Also we know that

Tγ .Tγ = 1, therefore after using Condition (ii), we get

c1c
′
3Tγ̄ .Bϕs + c2c

′
2Nγ̄ .Nϕs + c3c

′
1Bγ̄ .Tϕs = 1,

⇒ c1c
′
3λ2 + c2c

′
2λ4 + c3c

′
1λ3 = 1.

⇒ c1c
′
3λ2 + c3c

′
1λ3 = 1 − c2c

′
2d3,

where we consider λ4 = d3 ∈ R. Thus we get

cλ2 + dλ3 = n, (3.7)
where c = c1c

′
3, d = c3c

′
1, n = 1 − c2c

′
2d3.
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On the other hand we can write Nγ̄ = b1Tϕs + b2Nϕs + b3Bϕs and Nϕs = b
′
1Tγ̄ + b

′
2Nγ̄ +

b
′
3Bγ̄ . Now, taking the dot product of Nγ̄ and Nϕs , and then using Condition (ii), we get
b3b

′
1λ2 + b1b

′
3λ3 = (1 − b2b

′
2)d3 = m, which implies

aλ2 + bλ3 = m, (3.8)
where a = b3b

′
1, b = b1b

′
3, m = (1 − b2b

′
2)d3 and c1, c2, c3, c

′
1, c

′
2, c

′
3, b1, b2, b3, b

′
1, b

′
2, b

′
3,

a, b, c, d,m, n, λ1, λ2, λ3, λ4 ∈ R.
On solving the equations (3.7) and (3.8), we get λ2 = dm−bn

ad−cb , λ3 = cm−an
cb−ad . Similarly,

using Condition (i), λ1 can also be calculated.

Case 2.

 

 

 
,

s

B T !  

 

 

                                                            

,
s

N B !  

,
s

T N !                                                                                                                                               

Condition (i)
 

 

          

                           
,

s

B N !  

 

                                                               
,

s

N T !  

 

,
s

T B !  

Condition (ii)
                                                                                                                             

Then using Condition (i) in the equations (3.5) and (3.6), we get

T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ̄ = −τϕsκγ̄Tγ̄ .Bϕs = −d1τϕsκγ̄ , B

◦′
ϕs(t).B

◦′
γ̄ = 0,

where Bϕs = d1Tγ̄ . By using Condition (ii) in the equations (3.5) and (3.6), we get

T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ̄ = −κϕsτγ̄Tϕs .Bγ̄ = −d2κϕsτγ̄ , B

◦′
ϕs(t).B

◦′
γ̄ = 0,

where Tϕs = d2Bγ̄ . Then from above procedure we can find the values of d1, d2 ∈ R. Thus,
we obtain the required results. �
Theorem 3.2. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Then the distance
function ρ = ∥γ∥ satisfies ρ2 = −λ2 +µ2, where λ and µ satisfy the equation (1−λ

′)aTγ̄ −
(b− bλ

′ + µ
′)Bγ + λγ

r2 = λT ◦′

γ + µB◦′

γ and a, b ∈ R.

Proof. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Then position vector γ
of a curve satisfies the equation

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), (3.9)
where λ(s) and µ(s) are differential functions. Now, differentiating the equation (3.9) with
respect to s and using Frenet equations, we get Tγ(s) = λ

′(s)Tγ(s) + λ(s)(T ◦′

γ − 1
r2γ) +

µ
′(s)Bγ(s) + µB◦′

γ , which implies

(1 − λ
′)Tγ − µ

′
Bγ − λT ◦′

γ − µB◦′

γ + λγ

r2 = 0. (3.10)
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Then using Definition 2.1 of rectifying curve in H3(−r), Tγ can be written in the form,
Tγ = aTγ̄ − bBγ , where γ̄ is the geodesics connecting p with γ(s) are tangent to the
rectifying plane of γ i.e., the planes generated by {Tγ(s), Bγ(s)}. Therefore the equation
(3.10) can be rewritten as

(1 − λ
′)aTγ̄ − (b− bλ

′ + µ
′)Bγ + λγ

r2 = λT ◦′

γ + µB◦′

γ . (3.11)

Also from the equation (3.9), it is clear that the distance function ρ2 = ∥γ∥2 = |g(γ, γ)| =
−λ2 + µ2, where λ and µ satisfy the equation (3.11). Thus the proof is completed. �
Theorem 3.3. Let γ = γ(s) be a unit speed rectifying curve in H3(−r), lies in the upper
half plane U2. Then the distance function ρ = ∥γ∥ satisfies ρ2 = |as2 + bs + c| or ρ2 =
1 + f2(s), where f(s) = c1 sinh( s+s0

r ) + c2 cosh( s+s0
r ) and a, b, c ∈ R.

Proof. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Now, we know that
γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), (3.12)

where λ(s) and µ(s) are differentiable functions.
Now we know that Tγ(s) and Bγ(s) are generating a plane, let it be a subset of upper

half plane. Therefore γ(s) = (λ(s), µ(s)) be a curve in U2. Then after differentiating the
equation (3.12) and using Frenet formulas for γ, we obtain (1 − λ

′)Tγ + (µτγ − λκγ)Nγ −
µ

′(s)Bγ = 0, which implies

λ
′ = 1, µ′ = 0, µτγ − λκγ = 0. (3.13)

Therefore λ(s) = s + d1, µ(s) = d2, µ(s)τγ(s) = λ(s)κγ(s). Thus the distance function
ρ2 = |g(γ, γ)| = |λ2+µ2

µ2 | = | (s+d1)2+d2
2

d2
2

| = |as2 + bs + c|, where a = 1
d2

2
, b = 2d1

d2
2
, c =

d2
1+d2

2
d2

2
, d1, d2 ∈ R. Also from the equation (3.13), we get λ(s)

µ(s) = τγ

κγ
. Now we know that

τγ

κγ
= c1 sinh( s+s0

r ) + c2 cosh( s+s0
r ) = f(s), from [7]. Hence λ

µ = f . Therefore the distance
function, ρ2 = |g(γ, γ)| = |λ2+µ2

µ2 | = |1 + f2|. Thus, ρ2 = 1 + f2(s). This proves the
theorem. �
Note. Now, we know that γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), where λ(s) and µ(s) are differ-
ential functions.

(i) Therefore, g(γ, Tγ) = λ(s) = s+ d1. This is the tangential component of γ(s).
(ii) The normal component of γ(s) = µ(s)Bγ(s). Therefore, ∥γN ∥ = d2 ̸= 0 i.e.,the

normal component component of γ(s) has a constant length.
(iii) The binormal component of γ(s), g(γ(s), Bγ(s)) = µ(s) = d2, is constant.

Theorem 3.4. Let ψ(t) be a unit speed curve in R4
1 and γ be a rectifying curve in H3(−r)

with upper half plane as rectifying plane then it has up to a parametrization given by
γ(t) = ψ(t)ϕ(t), or γ(t) = ψ(t)h(t).

Proof. Now from Theorem 3.3, we know that ρ2 = as2 + bs + c or ρ2 = 1 + f2(s). Let
ρ2 = | (s+d1)2+d2

2
d2

2
|, we apply a translation to s, such that ρ2 = as2 + 1. Now we define

a curve ψ(t) in R4
1 by ψ(s) = γ(s)

ρ(s) , ⇒ γ(s) = ψ(s)
√
as2 + 1. Then differentiating with

respect to s, we get
Tγ(s) = ψ(s) as√

as2 + 1
+ ψ

′(s)
√
as2 + 1. (3.14)

Since, g(ψ,ψ) = 1, it follows that g(ψ,ψ′) = 0. Therefore from the equation (3.14), we
obtain 1 = g(Tγ , Tγ) = g(ψ′

, ψ
′)(as2 + 1) + a2s2

as2+1 , which implies

g(ψ′
, ψ

′) = as2(1 − a) + 1
(as2 + 1)2 . (3.15)
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Thus, ∥ψ′(s)∥ =
√

as2(1−a)+1
as2+1 . Let t =

∫ s
0 ∥ψ′(u)∥du =

∫ s
0

√
as2(1−a)+1

as2+1 du = φ(s). There-
fore t = φ(s) or s = φ−1(t). Put this into γ(s) = ψ(s)

√
as2 + 1, we get γ(t) =

ψ(t)η(φ−1(t)) = ψ(t)ϕ(t), where η(s) =
√
as2 + 1, ϕ = η ◦ φ−1. Hence γ(t) = ψ(t)ϕ(t).

Similarly if we take ρ2 = 1+f2(s) then up to parametrization for γ is in the form ψ(t)h(t),
which completes the proof. �
Theorem 3.5. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Then Tγ̄ can be
written in the form, Tγ̄ = α(s)Nγ + β(s)Bγ, where α(s) = λκγ−µτγ

a−aλ , β(s) = b−bλ+µ
′

a−aλ and
a, b ∈ R.

Proof. Let us consider γ = γ(s) be a unit speed rectifying curve in H3(−r). Then position
vector γ of a curve satisfies the equation,

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), (3.16)
where λ(s) and µ(s) are differentiable functions. On differentiating the equation (3.16),
we obtain Tγ = λ

′
Tγ + µ

′(s)Bγ + λκγNγ − µτγNγ , which implies

⇒ (1 − λ
′)Tγ + (µτγ − λκγ)Nγ − µ

′(s)Bγ = 0. (3.17)
Since γ = γ(s) is a unit speed rectifying curve in H3(−r) therefore Tγ = aTγ̄ − bBγ , where
a, b ∈ R. Thus from the equation (3.17), we get (a− aλ)Tγ̄ + (µτγ − λκγ)Nγ − (b− bλ+
µ

′)Bγ = 0, which gives
Tγ̄ = α(s)Nγ + β(s)Bγ , (3.18)

where α(s) = λκγ−µτγ

a−aλ and β(s) = b−bλ+µ
′

a−aλ , a, b ∈ R. This completes the proof. �

Theorem 3.6. Let γ = γ(s) be a unit speed curve in H3(−r). Then γ is a rectifying
general helix if and only if the torsion and curvature of the curve are given by

(i)τ2
γ (s) = sinh2(ρ

r ) cosh2( s+s0
r )[A tanh2( s+s0

r ) + C tanh( s+s0
r ) +B],

where A = c2
1κ2

V r2

v4 , B = c2
2κ2

V r2

v4 , C = 2c1c2κ2
V r2

v4 ,

(ii) κ2
γ(s) = sinh2(ρ

r ), if A = c2
1, B = c2

2, C = 2c1c2.

Proof. By using Theorem 2.3 and Theorem 2.4, we obtain

τ2
γ (s) = κ2

V r
2 sinh2(ρ/r)
v4 (c1 sinh(s+ s0

r
) + c2 cosh(s+ s0

r
))2,

which implies

τ2
γ (s) = A sinh2(ρ/r) sinh2(s+ s0

r
) + C sinh2(ρ/r) sinh(s+ s0

r
) cosh(s+ s0

r
)

+B sinh2(ρ/r) cosh2(s+ s0
r

),

where A = c2
1κ2

V r2

v4 , B = c2
2κ2

V r2

v4 , C = 2c1c2κ2
V r2

v4 . Thus

τ2
γ (s) = sinh2(ρ/r) cosh2(s+ s0

r
)[A

sinh2( s+s0
r )

cosh2( s+s0
r )

+ C
sinh( s+s0

r ) cosh( s+s0
r )

cosh2( s+s0
r )

+B],

⇒ τ2
γ (s) = sinh2(ρ/r) cosh2(s+ s0

r
)[A tanh2(s+ s0

r
) + C tanh(s+ s0

r
) +B].

Also, again by using Theorem 2.3 and Theorem 2.4, we obtain

κ2
γ(s) =

τ2
γ

(c1 sinh( s+s0
r ) + c2 cosh( s+s0

r ))2 ,
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⇒ κ2
γ(s) =

sinh2(ρ/r) cosh2( s+s0
r )[A tanh2( s+s0

r ) + C tanh( s+s0
r ) +B]

cosh2( s+s0
r )[c2

1 tanh2( s+s0
r ) + 2c1c2 tanh( s+s0

r ) + c2
2]

.

Thus κ2
γ(s) = sinh2(ρ/r) if A = c2

1, B = c2
2 and C = 2c1c2, which concludes the

theorem. �
Corollary 3.7. The geodesic curvature κV of rectifying general helix in H3(−r) is given
by κV = v2

r , where v is the speed of rectifying general helix.
Proof. The proof is obtained from Theorem 3.6. �
Theorem 3.8. A curve γ(s) = exp(ρ(s)V (s)) in H3(−r) is a rectifying general helix with
geodesic curvature κV (t) = c(cos2(t+t0)−a2)−3/2 and torsion τ(s) = d1 sinh((s+s0)/r)+
d2 cosh((s+ s0)/r) then its curvature κγ is of the form κγ = d1

c1
if and only if∣∣∣∣ c1 c2

d1 d2

∣∣∣∣ = 0.

Proof. By using Corollary 9 of [7], we obtain

κγ = d1 sinh((s+ s0)/r) + d2 cosh((s+ s0)/r)
c1 sinh( s+s0

r ) + c2 cosh( s+s0
r )

,

⇒ κγ = d1(tanh(s+ s0)/r) +A)
c1(tanh( s+s0

r ) +B)
,

where A = d2
d1

and B = c2
c1

.

Thus κγ = d1
c1

if and only if A = B i.e.∣∣∣∣ c1 c2
d1 d2

∣∣∣∣ = 0.

�

Acknowledgment. We thank to the referees for their valuable suggestions to improve
the paper.

References
[1] P. Alegre, K. Arslan, A. Carriazo, C. Murathan and G. Ozturk, Some special types

of developable ruled surface, Hacet. J. Math. Stat. 39 (3), 319–325, 2010.
[2] B. Altunkaya and L. Kula, On spacelike rectifying slant helices in Minkowski 3-space,

Turkish J. Math. 42, 1098–1110, 2018.
[3] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125

(5), 1503–1509, 1997.
[4] B.Y. Chen, When does the position vector of a space curve always lie in its rectifying

plane?, Amer. Math. Monthly 110, 147–152, 2003.
[5] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J.

Math. 28 (2), 153–163, 2004.
[6] K. Ilarslan, E. Nesovic and M.P. Torgasev, Some characterization of rectifying curves

in the Minkowski 3-space, Novi Sad J. Math. 33 (2), 23–32, 2003.
[7] P. Lucas and J.A.O. Yagues, Rectifying curves in the three dimensional hyperbolic

space, Mediterr. J. Math. 13, 2199–2214, 2016.
[8] P. Lucas and J.A.O. Yagues, Slant helices in the three dimensional sphere, J. Korean

Math. Soc. 54 (4), 1331–1343, 2017.



Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 50 (1) (2021), 243 – 254

DOI : 10.15672/hujms.605105

Research Article

Mappings between the lattices of saturated
submodules with respect to a prime ideal

Morteza Noferesti, Hosein Fazaeli Moghimi∗, Mohammad Hossein Hosseini
Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran

Abstract
Let Sp(RM) be the lattice of all saturated submodules of an R-module M with respect
to a prime ideal p of a commutative ring R. We examine the properties of the mappings
η : Sp(RR) → Sp(RM) defined by η(I) = Sp(IM) and θ : Sp(RM) → Sp(RR) defined
by θ(N) = (N : M), in particular considering when these mappings are lattice homomor-
phisms. It is proved that if M is a semisimple module or a projective module, then η is a
lattice homomorphism. Also, if M is a faithful multiplication R-module, then η is a lattice
epimorphism. In particular, if M is a finitely generated faithful multiplication R-module,
then η is a lattice isomorphism and its inverse is θ. It is shown that if M is a distributive
module over a semisimple ring R, then the lattice Sp(RM) forms a Boolean algebra and
η is a Boolean algebra homomorphism.
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Keywords. saturated submodules with respect to a prime ideal, η-modules, θ-modules,
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1. Introduction
We assume throughout this paper that all rings are commutative with nonzero identity

and all modules are unitary. Let R be a ring and M be an R-module. For any submodule
N of M , we denote the annihilator of the R-module M/N by (N : M), i.e., (N : M) =
{r ∈ R | rM ⊆ N}.

It is well-known that the collection of all submodules of M forms a lattice with respect
to the operations ∨ and ∧ defined by

L ∨ N = L + N and L ∧ N = L ∩ N.

Note that this lattice, denoted L(RM), is bounded with the least element (0) and great-
est element M . Recently, P.F. Smith has studied several mappings between L(RR) and
L(RM) [22–24]. For instance, in [22], he examined conditions under which the map-
pings λ : L(RR) → L(RM) defined by λ(I) = IM and µ : L(RM) → L(RR) defined by
µ(N) = (N : M) are injective, surjective or lattice homomorphisms. An R-module M is
called a λ-module (respectively µ-module), if λ (respectively µ) is a lattice homomorphism.
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The study of the mappings λ and µ continued in [23], considering when these mappings
are complete lattice homomorphisms.

A proper submodule P of M is called a prime submodule if for r ∈ R and x ∈ M , rx ∈ P
implies that r ∈ (P : M) or x ∈ P (see, for example, [2,6,18,19]). For a proper submodule
N of an R-module M , the intersection of all prime submodules of M containing N is called
the radical of N and denoted by rad N ; if there are no such prime submodules, rad N is
M (see, for example, [11, 14, 17]). A submodule N of M is called a radical submodule if
rad N = N . The collection of all radical submodules of M which is denoted by R(RM)
forms a lattice with respect to the following operations:

L ∨ N = rad(L + N) and L ∧ N = L ∩ N.

Note that R(RM) is a bounded lattice with the least element rad(0) and the greatest
element M .

In [20], H.F. Moghimi and J.B. Harehdashti have studied the properties of the mappings
ρ : R(RR) → R(RM) defined by ρ(I) = rad(IM) and σ : L(RR) → L(RM) defined by
σ(N) = (N : M), in particular considering when these mappings are lattice monomor-
phisms or epimorphisms. Later in [9], they investigated conditions under which these
mappings are complete homomorphisms. Note that ρ is always a lattice homomorphism,
but not necessarily a complete lattice homomorphism. An R-module M is called a σ-
module if σ is a lattice homomorphism.

Let M be an R-module. For a prime ideal p of R and a submodule N of M , the set
Sp(N) = {m ∈ M | cm ∈ N for some c ∈ R \ p} is called the saturation of N with respect
to p. It is clear that N ⊆ Sp(N). It is said that N is saturated with respect to p, if
N = Sp(N). It is easily seen that Sp(N) is a saturated submodule of M (see [15, 16], for
more details about saturation of submodules). The collection of all saturated submodules
of an R-module M with respect to a fixed prime ideal p of R is a lattice with the following
operations:

L ∨ N = Sp(L + N) and L ∧ N = L ∩ N.

We shall denote this lattice by Sp(RM), or by Sp(M) if there is no ambiguity about R.
Note that Sp(M) is bounded, with the least element Sp(0) and the greatest element M .

Let R be a ring, p a fixed prime ideal of R and M an R-module. Now consider the
mappings η : Sp(R) → Sp(M) defined by

η(I) = Sp(IM),

for every saturated ideal I of R, and θ : Sp(M) → Sp(R) defined by

θ(N) = (N : M),

for every saturated submodule N of M . It will be convenient for us to call the module
M an η-module (resp. a θ-module) in case the above mapping η (resp. θ) is a lattice
homomorphism.
In this paper, we investigate conditions under which η and θ are lattice homomorphisms,
in particular considering when η and θ are Boolean algebra homomorphisms. It is shown
that modules over Prüfer domains (Corollary 2.4), projective modules (Corollary 2.6) and
semisimple R-modules (Corollary 2.7) are three classes of η-modules. It is proved that if
M is a faithful multiplication R-module, then η is a lattice epimorphism, and in particular
Sp(M) is isomorphic to a quotient of Sp(R) (Theorem 2.8) for all prime ideals p of R. It is
shown that a finitely generated module M is a θ-module if and only if it is a multiplication
module (Corollary 2.11). In particular, every cyclic R-module is a θ-module (Corollary
2.10). Moreover, if M is a finitely generated faithful multiplication R-module then η and
θ are lattice isomorphisms (Corollary 2.17).
An R-module M is called distributive if L(RM) is a distributive lattice (see, for example,
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[8]). A ring R is called arithmetical if it is a distributive R-module. We say that an R-
module M is S-distributive with respect to a prime ideal p of R if Sp(M) is a distributive
lattice. It is proved that an R-module M is distributive if and only if it is S-distributive
with respect to any prime ideal of R (Corollary 3.4). In particular, every multiplication
module over an arithmetical ring R is S-distributive with respect to any prime ideal
of R (Corollary 3.5). It is shown that if M is a distributive module over a semisimple
ring R, then Sp(M) forms a Boolean algebra (Theorem 3.7) and η is a Boolean algebra
homomorphism (Theorem 3.13). In particular, if M is a multiplication module over a
semisimple ring R, then η is a Boolean algebra epimorphism (Corollary 3.14).

2. η-modules and θ-modules
We start with a lemma which collects some facts about saturation of submodules.

Lemma 2.1. Let R be a ring, p a prime ideal of R and M an R-module. Then
(1) Sp(L ∩ N) = Sp(L) ∩ Sp(N) for all submodules L and N of M ;
(2) Sp(Sp(IM) + Sp(JM)) = Sp(Sp(I + J)M) = Sp(IM + JM) for all ideals I and

J of R.

Proof. (1) Clear.
(2) Since IM ⊆ (I + J)M ⊆ Sp(I + J)M , we conclude that Sp(IM) ⊆ Sp(Sp(I + J)M).
Similarly, Sp(JM) ⊆ Sp(Sp(I +J)M). Therefore, we have Sp(IM)+Sp(JM) ⊆ Sp(Sp(I +
J)M). Hence we have Sp(Sp(IM) + Sp(JM)) ⊆ Sp(Sp(I + J)M). Now, let x ∈ Sp(Sp(I +
J)M). Then there exists c ∈ R \ p such that cx ∈ Sp(I + J)M . Therefore cx =

∑k
i=1 rixi

for some ri ∈ Sp(I + J) and xi ∈ M (1 ≤ i ≤ k). Thus there are ci ∈ R \ p (1 ≤ i ≤ k)
such that ciri ∈ I + J , and so c1 . . . ckcx ∈ (I + J)M . It follows that x ∈ Sp((I + J)M).
Hence we have Sp(Sp(I + J)M) ⊆ Sp(IM + JM). It is also clear that Sp(IM + JM) ⊆
Sp(Sp(IM) + Sp(JM)). �
Theorem 2.2. Let R be a ring, p a prime ideal of R and M an R-module. Then the
following statements are equivalent:

(1) M is an η-module over R;
(2) Sp((I ∩ J)M) = Sp(IM) ∩ Sp(JM) for all ideals I and J of R;
(3) (Ip ∩ Jp)Mp = IpMp ∩ JpMp for all ideals I and J of R;
(4) Mp is a λ-module over Rp.

Proof. (1) ⇒ (2) By definition.
(2) ⇒ (1) Let I, J ∈ Sp(R). By the assumption, η(I ∧ J) = η(I) ∧ η(J).
By using Lemma 2.1, we have

η(I ∨ J) = Sp((I ∨ J)M) = Sp(Sp(I + J)M)
= Sp(Sp(IM) + Sp(JM))
= Sp(IM) ∨ Sp(JM)
= η(I) ∨ η(J).

(2) ⇒ (3) Let z ∈ IpMp ∩ JpMp. Then z =
∑k

i=1 aixi/si =
∑k

i=1 biyi/ti for some ai ∈ I,
bi ∈ J , xi, yi ∈ M , si, ti ∈ R\p. Hence we have s1 . . . skt1 . . . tkz ∈ IM ∩JM which follows
that z ∈ Sp(IM) ∩ Sp(JM). Therefore by (2), z ∈ Sp((I ∩ J)M). Thus cz ∈ (I ∩ J)M for
some c ∈ R \ p, and so z ∈ (Ip ∩ Jp)Mp as desired. The reverse inclusion is clear.
(3) ⇒ (2) Let x ∈ Sp(IM) ∩ Sp(JM). Then cx ∈ IM and dx ∈ JM for some c, d ∈ R \ p.
Therefore cx =

∑k
i=1 cixi and dx =

∑k
j=1 djx′

j for some ci ∈ I, dj ∈ J and xi, x′
j ∈ M

(1 ≤ i, j ≤ k). Thus c1dx =
∑k

j=1 c1djx′
j and hence c1dx ∈ (I ∩J)M such that c1d ∈ R\p.

Thus x ∈ Sp((I ∩ J)M). The reverse inclusion is clear.
(3) ⇔ (4) Follows from [22, Lemma 2.1 (ii)]. �
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Let R be a domain with the field of fractions K. A non-zero ideal I of R is called
invertible provided I−1I = R where I−1 = {k ∈ K : kI ⊆ R}. A domain R is called
Prüfer if every non-zero finitely generated ideal of R is invertible (see, for more details,
[13]).

Corollary 2.3. Let R be a domain, p a prime ideal of R and M an R-module. Then the
following statements are equivalent:

(1) Rp is Prüfer;
(2) Every Rp-module is a λ-module;
(3) Every R-module is an η-module.

Proof. (1) ⇔ (2) By [22, Theorem 2.3].
(2) ⇔ (3) By Theorem 2.2. �

Corollary 2.4. Let R be any Prüfer domain. Then every R-module is an η-module.

Proof. Let R be a Prüfer domain and p be a prime ideal of R. Then by [13, Theorem
6.6], Rp is a valuation ring. Thus by [22, Proposition 2.4], every Rp-module is a λ-module
and hence by Corollary 2.3, every R-module is an η-module. �

Theorem 2.5. Let R be any ring.Then
(1) Every direct summand of an η-module is an η-module.
(2) Every direct sum of λ-modules is an η-module.

Proof. (1) Let K be a direct summand of an η-module M . Let I and J be any ideals of
R and p be a prime ideal of R. Then by Lemma 2.1 (1) and Theorem 2.2, we have

Sp(IK) ∩ Sp(JK) = Sp(K ∩ IM) ∩ Sp(K ∩ JM)
= Sp(K) ∩ Sp(IM) ∩ Sp(JM)
= Sp(K) ∩ Sp((I ∩ J)M)
= Sp(K ∩ (I ∩ J)M)
= Sp((I ∩ J)K).

Thus by Theorem 2.2, K is an η-module.
(2) Let Mi (i ∈ I) be any collection of λ-modules and let M = ⊕i∈IMi. Given any ideals
I and J of R, by [22, Lemma 2.1], we have

Sp(IM) ∩ Sp(JM) = Sp(⊕i∈IIMi) ∩ Sp(⊕i∈IJMi)
= Sp(⊕i∈IIMi ∩ ⊕i∈IJMi)
= Sp(⊕i∈I(IMi ∩ JMi))
= Sp(⊕i∈I(I ∩ J)Mi)
= Sp((I ∩ J)M).

Thus by Theorem 2.2, M is an η-module. �

Corollary 2.6. For any ring R, every projective R-module is an η-module.

Proof. By [22, Lemma 2.1], every ring R is a λ-module. Thus by [10, Theorem IV.2.1]
and Theorem 2.5(2), every free R-module is an η-module, and therefore by [10, Theorem
IV.3.4] and Theorem 2.5(1), every projective R-module is an η-module. �

Corollary 2.7. For any ring R, every semisimple R-module is an η-module.

Proof. Clearly every simple module is a λ-module. Since any semisimple module is a
direct sum of a family of simple submodules, the result follows from Theorem 2.5(2). �
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An R-module M is called a multiplication module if the mapping λ is surjective, i.e.,
for each submodule N of M there exist an ideal I of R such that N = IM . In this case,
we can take I = (N : M) (see, for example, [4, 7]).

Theorem 2.8. Let M be a faithful multiplication R-module. Then η is a lattice epimor-
phism.
In particular, Sp(M) is isomorphic to a quotient of Sp(R) for all prime ideals p of R.

Proof. Since M is a faithful multiplication R-module, M is a λ-module by [22, Theorem
2.12]. Thus by [22, Lemma 2.1], (I ∩ J)M = IM ∩ JM for all ideals I and J of R. It
follows that, by Lemma 2.1 (1),

Sp((I ∩ J)M) = Sp(IM ∩ JM) = Sp(IM) ∩ Sp(JM)
for all ideals I and J and prime ideals p of R. Hence by Theorem 2.2, η is a lattice
homomorphism. Now, let p be a prime ideal of R and N ∈ Sp(M). Since M is a
multiplication module, we have

η((N : M)) = Sp((N : M)M) = Sp(N) = N

and therefore η is an epimorphism. Now, we define the relation ∼ on Sp(R) by
I∼J ⇔ Sp(IM) = Sp(JM).

It is evident that ∼ is an equivalence relation on Sp(R). We show that ∼ is a congru-
ence relation. Assume that I1∼J1 and I2∼J2. Thus we have Sp(I1M) = Sp(J1M) and
Sp(I2M) = Sp(J2M). Since M is a faithful multiplication module,

Sp((I1 ∩ J1)M) = Sp(I1M) ∩ Sp(J1M)
= Sp(I2M) ∩ Sp(J2M)
= Sp((I2 ∩ J2)M),

and therefore I1 ∧ J1∼I2 ∧ J2. Also, by Lemma 2.1 (2),
Sp(Sp(I1 + J1)M) = Sp(Sp(I1M) + Sp(J1M))

= Sp(Sp(I2M) + Sp(J2M))
= Sp(Sp(I2 + J2)M)

which follows that I1 ∨ J1∼I2 ∨ J2. Thus Sp(R)/∼, the set of equivalence classes with
respect to ∼, is a lattice with the following operations:

I/∼ ∨̃ J/∼ = I ∨ J/∼ and I/∼ ∧̃ J/∼ = I ∧ J/∼.

Now, the mapping η̄ : Sp(R)/∼ → Sp(M) given by η̄(I/∼) = η(I) = Sp(IM) is a lattice
isomorphism. �

Recall that θ : Sp(M) → Sp(R) defined by θ(N) = (N : M) is the restriction of
the mapping µ : L(RM) → L(RR) to Sp(M) given in [22]. Thus every µ-module is a
θ-module.

Theorem 2.9. Let R be a ring and M an R-module. Consider the following statements:
(1) M is a θ-module over R;
(2) (L + N : M) = (L : M) + (N : M) for all saturated submodules L and N of M ;
(3) (Lp + Np : Mp) = (Lp : Mp) + (Np : Mp) for all submodules L and N of M and

for all prime ideals p of R;
(4) (L + N : M) = (L : M) + (N : M) for all submodules L and N of M ;
(5) M is a µ-module over R.

Then (1) ⇔ (2) and (4) ⇔ (5).
In particular, if M is a finitely generated R-module, then all of the above statements are
equivalent.



248 M. Noferesti, H.F. Moghimi, M.H. Hosseini

Proof. (1) ⇔ (2) Follows from definition.
(4) ⇔ (5) Follows from [22, Lemma 3.1].
(4) ⇒ (2) Clear.
(2) ⇒ (3) Suppose that M is finitely generated. Then M = Rm1 + . . . + Rmk for some
mi ∈ M (1 ≤ i ≤ k). Let L and N be two submodules of M . First we show that
(Sp(L)+Sp(N) : M)p = ((L+N)p : Mp) for all prime ideals p of R. Let p be a prime ideal
of R and assume that r/1 ∈ (Sp(L) + Sp(N) : M)p. It follows that rM ⊆ Sp(L) + Sp(N).
Thus rmi = xi + yi for some xi ∈ Sp(L), yi ∈ Sp(N) (1 ≤ i ≤ k). Therefore cixi ∈ L and
diyi ∈ N for some ci, di ∈ R \ p (1 ≤ i ≤ k). Now, since c1 . . . ckd1 . . . dkrM ⊆ L + N , we
have r/1 ∈ ((L + N)p : Mp), as requested. Hence, by using [15, Theorem 2.1], we have

(Lp : Mp) + (Np : Mp) = (Sp(L) : M)p + (Sp(N) : M)p

= ((Sp(L) : M) + (Sp(N) : M))p

= (Sp(L) + Sp(N) : M)p

= ((L + N)p : Mp)
= (Lp + Np : Mp).

(3) ⇒ (4) Follows from [3, Proposition 3.8 and Corollaries 3.4 and 3.15].
(4) ⇒ (3) Follows from [3, Corollary 3.4 and Corollary 3.15]. �

Corollary 2.10. For any ring R, every cyclic R-module is a θ-module.

Proof. Follows from [22, Corollary 3.7] and Theorem 2.9. �

Corollary 2.11. Let M be a finitely generated R-module. Then the following statements
are equivalent:

(1) M is a θ-module over R;
(2) Mp is a θ-module over Rp for every prime ideal p of R;
(3) Mm is a θ-module over Rm for every maximal ideal m of R;
(4) M is a µ-module over R;
(5) M is a σ-module over R;
(6) M is a multiplication module over R.

Proof. (1) ⇔ (4) By Theorem 2.9.
(4) ⇔ (5) ⇔ (6) By [20, Theorem 2.11 and Theorem 2.19].
(6) ⇔ (2) ⇔ (3) By [4, Lemma 2 (ii)], [20, Theorem 2.11] and Theorem 2.9. �

Corollary 2.12. Let R be a ring. If M is a finitely generated θ-module over R and
((0) : M) = Re for some idempotent e of R, then M is an η-module over R. In particular,
every finitely generated faithful θ-module is an η-module.

Proof. By Corollary 2.11 M is a multiplication R-module, and then by [21, Theorem 11]
M is a projective R-module. Thus by Corollary 2.6, M is an η-module over R. �

Now, we investigate conditions under which η and θ are injective or surjective.

Theorem 2.13. Let η and θ be as before. Then
(1) ηθη = η;
(2) θηθ = θ.

Proof. (1) Let p be a prime ideal of R and I ∈ Sp(R). Since ηθη(I) = Sp((Sp(IM) :
M)M), we must show that Sp((Sp(IM) : M)M) = Sp(IM). First note that, since I ⊆
(Sp(IM) : M), we have IM ⊆ (Sp(IM) : M)M and thus Sp(IM) ⊆ Sp((Sp(IM) : M)M).
The reverse inclusion follows from

Sp((Sp(IM) : M)M) ⊆ Sp(Sp(IM)) = Sp(IM).
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(2) Let p be a prime ideal of R and N ∈ Sp(M). Now, since θηθ(N) = (Sp((N : M)M) :
M), we must show that (Sp((N : M)M) : M) = (N : M). Since (N : M)M ⊆ Sp((N :
M)M), we have (N : M) ⊆ (Sp((N : M)M) : M). The reverse inclusion follows from

(Sp((N : M)M) : M) ⊆ (Sp(N) : M) = (N : M).
�

Corollary 2.14. Let η and θ be as before, and p be a prime ideal of R. Then the following
statements are equivalent:

(1) η : Sp(R) → Sp(M) is a surjection;
(2) ηθ = 1;
(3) Sp((N : M)M) = N for all N ∈ Sp(M);
(4) θ : Sp(M) → Sp(R) is an injection.

Proof. (1) ⇒ (2) and (4) ⇒ (2) follows from Theorem 2.13.
(2) ⇔ (3), (2) ⇒ (1) and (2) ⇒ (4) are clear. �
Corollary 2.15. Let η and θ be as before, and p be a prime ideal of R. Then the following
statements are equivalent:

(1) η : Sp(R) → Sp(M) is an injection;
(2) θη = 1;
(3) (Sp(IM) : M) = I for all I ∈ Sp(R);
(4) θ : Sp(M) → Sp(R) is a surjection.

Proof. (1) ⇒ (2) and (4) ⇒ (2) follows from Theorem 2.13.
(2) ⇔ (3), (2) ⇒ (1) and (2) ⇒ (4) are clear. �
Corollary 2.16. Let η and θ be as before. Then η is a bijection if and only if θ is a
bijection. In this case η and θ are inverse of each other.

Proof. By Corollaries 2.14 and 2.15. �
Corollary 2.17. Let R be a ring and M be a finitely generated faithful multiplication
R-module. Then the mappings η and θ are lattice isomorphisms. In particular, η and θ
are inverse of each other, and therefore Sp(R) and Sp(M) are isomorphic lattices for all
prime ideals p of R.

Proof. Since M is a faithful multiplication R-module, η is an epimorphism by Theorem
2.8, and hence θ is a monomorphism by Corollary 2.14 and [22, Theorem 3.8]. On the
other hand, by [15, Proposition 3.2], we have

(Sp(IM) : M) = Sp(IM : M) = Sp(I) = I,

for all prime ideals p of R and I ∈ Sp(R). Hence, by Corollary 2.15, η is an injection and
θ is a surjection. Hence η is an isomorphism and its inverse is θ. �

3. Sp(M) as a Boolean algebra
We start this section by recalling the following basic definition.

Definition 3.1. Let R be a ring and p be a prime ideal of R. An R-module M is called
a S-distributive module with respect to p, if Sp(M) is a distributive lattice.

First note the following simple fact.

Lemma 3.2. Let R be a ring, p a prime ideal of R and M be an R-module. Then the
following statements are equivalent:

(1) M is S-distributive with respect to p;
(2) K ∩ Sp(L + N) = Sp((K ∩ L) + (K ∩ N)) for all K, L, N ∈ Sp(M);
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(3) Sp(K + (L ∩ N)) = Sp(K + L) ∩ Sp(K + N) for all K, L, N ∈ Sp(M).
Proof. By [5, Theorem I.3.2]. �

The following example shows that a ring R may be S-distributive with respect to a
prime ideal and not with respect to another one.
Example 3.3. Let R = K[X, Y ] be the ring of polynomials with independent indetermi-
nates X and Y over a field K. It is evident that R is S-distributive with respect to (0),
since S(0)(R) = {(0), R}. However, R is not S-distributive with respect to m = RX +RY .
Let p1 = RX, p2 = RY , p3 = R(X + Y ) . Since p1, p2 and p3 are prime ideals of R, these
ideals are saturated with respect to m and hence p3 ∩ p1 and p3 ∩ p2 are saturated with
respect to m by Lemma 2.1 (1). Now, since p3 ∩ (p1 + p2) * (p3 ∩ p1) + (p3 ∩ p2), R is not
S-distributive with respect to m by Lemma 3.2.

It is remarked that some classes of R-modules are characterized by using the localization
with respect to all prime ideal of R (see for example [1]). In the next result, it is seen that
the class of distributive modules has this property.
Corollary 3.4. Let R be a ring and M be an R-module. Then the following conditions
are equivalent:

(1) M is a distributive R-module;
(2) M is S-distributive with respect to any prime ideal p of R;
(3) Mp is a distributive Rp-module for all prime ideals p of R.

Proof. (1) ⇒ (2) Let p be a prime ideal of R and K, L, N ∈ Sp(M). By Lemma 2.1 (1)
and the assumption, we have

Sp(K + L) ∩ Sp(K + N) = Sp((K + L) ∩ (K + N)) = Sp(K + (L ∩ N)).
Thus, the result follows from Lemma 3.2 (3).
(2) ⇒ (3) Let p be a prime ideal of R and K, L and N be submodules of M . It suffices
to show that (Kp + Lp) ∩ (Kp + Np) ⊆ (Kp + (Lp ∩ Np)) or equivalently, by [3, Corollary
3.4], ((K + L) ∩ (K + N))p ⊆ (K + (L ∩ N))p. For this, let x/s ∈ ((K + L) ∩ (K + N))p.
Thus there are elements k1, k2 ∈ K, l ∈ L, n ∈ N and s1, s2 ∈ R \ p such that x/s =
(k1 + l)/s1 = (k2 + n)/s2. It follows that uss1s2x = (k1 + l) = (k2 + n) for some u ∈ R \ p
so that x ∈ Sp(K + L) ∩ Sp(K + N). Hence by (2), x ∈ Sp(K + (L ∩ N)). Therefore
cx ∈ K + (L ∩ N) for some c ∈ R \ p which implies that x/s = cx/cs ∈ (K + (L ∩ N))p,
as required.
(3) ⇒ (1) Follows from [3, Corollary 3.4 and Proposition 3.8].

�
Corollary 3.5. Let R be an arithmetical ring, and M be a multiplication R-module. Then
M is a S-distributive R-module with respect to any prime ideal of R.
Proof. By [8, Proposition 1.2] and Corollary 3.4. �

Our next example shows that M being a multiplication module is needed in Corollary
3.5.
Example 3.6. Let K be a field and V = K ⊕ K be the usual two-dimensional vector
space over K. It is easy to see that every subspace of V is saturated with respect to (0).
Now if W1 = K(1, 0), W2 = K(0, 1) and W3 = K(1, 1). Then W3 ∩ (W1 + W2) = W3 while
(W3 ∩ W1) + (W3 ∩ W2) = K(0, 0). Thus V is not S-distributive

We recall that a distributive lattice (L, ∨, ∧) is a Boolean algebra if there is a unary
operation ′ on L and two constants 0 and 1 such that x ∧ x′ = 0 and x ∨ x′ = 1.

Let M be a semisimple R-module and N a submodule of M . Then, by definition, there
is a submodule L of M such that M = N ⊕ L. We define the unary operation ′ on Sp(M)
by N ′ = Sp(L).
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Theorem 3.7. Let R be a semisimple ring, p a prime ideal of R and M a distributive
R-module. Then the lattice Sp(M) is a Boolean algebra with the unary operation ′ defined
above, 0 = Sp(0) and 1 = M .

Proof. By Corollary 3.4, M is a S-distributive R-module. By using Lemma 2.1 (1),
N ∧ N ′ = N ∩ N ′ = Sp(N) ∩ Sp(L) = Sp(N ∩ L) = Sp(0) = 0.

Moreover, M = N + L ⊆ Sp(N) + Sp(L) ⊆ Sp(Sp(N) + Sp(L)), which implies
N ∨ N ′ = Sp(N + N ′) = Sp(Sp(N) + Sp(L)) = M.

Hence Sp(M) is a Boolean algebra. �
From now on, Sp(M) is assumed to be a Boolean algebra with the above assumptions.

Corollary 3.8. For any semisimple ring R, Sp(R) is a Boolean algebra with respect to
any prime ideal p of R.

Proof. Let R be a semisimple ring and p a prime ideal of R. By [12, Exercise 1.2.5] R is
an arithmetical ring. Thus by Theorem 3.7, Sp(R) is a Boolean algebra. �
Corollary 3.9. Let R be a semisimple ring and M be a distributive R-module. Then
Sp(M) is a Boolean ring with the following operations:

L + N = Sp(L ∩ Sp(Ñ) + Sp(L̃) ∩ N) and L · N = L ∩ N,

where M = L ⊕ L̃ = N ⊕ Ñ .

Proof. Follows from Theorem 3.7 and [5, Theorem IV.2.3]. �
Corollary 3.10. Let R be a semisimple ring, p a prime ideal of R and M a multiplication
R-module. Then M is cyclic and the lattice Sp(M) is a Boolean algebra.

Proof. Since R is a semisimple ring, by [12, Corollary 2.6], R is an Artinian ring. Hence
M is cyclic by [7, Corollary 2.9]. Also, by [12, Exercise 1.2.5], R is an arithmetical ring.
Thus by [8, Proposition 1.2], M is a distributive R-module. Hence by Theorem 3.7, Sp(M)
is a Boolean algebra with respect to any prime ideal p of R. �
Theorem 3.11. Let R be a ring, p a prime ideal of R, M an R-module and N a submodule
of M . Then the followings hold:

(1) For any submodule L containing N , Sp(L/N) = Sp(L)/N . In particular, the
assignment L 7→ L/N is a one to one corresponding between the set {L | L ∈
Sp(M), L ⊇ N} and Sp(M/N);

(2) If M is a S-distributive lattice over R with respect to p, then M/N is S-distributive
over R with respect to p;

(3) If R is a semisimple ring and M a distributive R-module, then Sp(M/N) is a
Boolean algebra.

Proof. (1) Clear.
(2) Let Sp(M) be a distributive lattice with the operations ∨ and ∧ and Sp(M/N) be a
lattice with the operations ∨̃ and ∧̃ . It is seen that ∨̃ and ∧̃ are expressed by ∨ and ∧
respectively as follows:

L/N ∨̃ K/N = Sp(L/N + K/N)
= Sp((L + K)/N)
= Sp(L + K)/N

= (L ∨ K)/N,

and
L/N ∧̃ K/N = L/N ∩ K/N = (L ∩ K)/N = (L ∧ K)/N.
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By these statements, the distributivity of Sp(M/N) follows immediately from the dis-
tributivity of Sp(M).
(3) Follows from Theorem 3.7 and (2). �
Theorem 3.12. Let R be a ring, T a multiplicatively closed subset of R, M an R-module
and N a submodule of M . Then the followings hold:

(1) ST −1p(T −1N) = T −1(Sp(N)) for all prime ideals p disjoint from T . In particular,
N ∈ Sp(M) if and only if T −1N ∈ ST −1p(T −1M) for all prime ideals p disjoint
from T ;

(2) If M is a S-distributive lattice over R with respect to a prime ideal p of R such
that p ∩ T = ∅, then T −1M is S-distributive over T −1R with respect to T −1p;

(3) If R is a semisimple ring, p a prime ideal of R with p∩T = ∅ and M a distributive
R-module, then ST −1p(T −1M) is a Boolean algebra.

Proof. (1) Clear.
(2) Let p be a prime ideal of R such that p ∩ T = ∅. Let Sp(M) be a distributive lattice
with the operations ∨ and ∧ and ST −1p(T −1M) be a lattice with the operations ∨̃ and
∧̃ . It is seen that ∨̃ and ∧̃ are expressed by ∨ and ∧ respectively as follows:

T −1L ∨̃ T −1N = ST −1p(T −1L + T −1N)
= ST −1p(T −1(L + N))
= T −1(Sp(L + N))
= T −1(L ∨ N),

and
T −1L ∧̃ T −1N = T −1L ∩ T −1N

= T −1(L ∩ N)
= T −1(L ∧ N).

By these statements, the distributivity of ST −1p(T −1M) follows immediately from the
distributivity of Sp(M).
(3) Since R is a semisimple ring, then so is T −1R. Thus the result follows from Theorem
3.7 and (2). �

Let A and B be Boolean algebras. A function f : A → B is called a Boolean algebra
homomorphism, if f is a lattice homomorphism, f(0) = 0, f(1) = 1 and f(a′) = f(a)′ for
all a ∈ A. It is easily proved that a lattice homomorphism f preserves 0 and 1 if and only
if it preserves ′. Thus, in order to show that a function f between two Boolean algebras is
a Boolean algebra homomorphism, it suffices to check that f preserves lattice operations
∨ and ∧ and constants 0, 1.

Theorem 3.13. Let R be a semisimple ring, p a prime ideal of R and M a distributive
R-module. Then η : Sp(R) → Sp(M) is a Boolean algebra homomorphism.

Proof. First note that Sp(M) and Sp(R) are Boolean algebras, by Theorem 3.7 and
Corollary 3.8 respectively. By Corollary 2.7, η is a lattice homomorphism. Also,

η(0) = η(Sp(0)) = Sp(Sp(0)M) = Sp(0) = 0,

and
η(1) = η(R) = Sp(RM) = Sp(M) = M = 1.

Hence, as noted above, η is a Boolean algebra homomorphism. �
Corollary 3.14. Let R be a semisimple ring, p a prime ideal of R and M a multiplication
R-module. Then η : Sp(R) → Sp(M) is a Boolean algebra epimorphism.
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Proof. By Corollaries 3.8 and 3.10, Sp(R) and Sp(M) are Boolean algebras respectively.
Also, by the proof of Corollary 3.10, M is distributive. Thus by Theorem 3.13, η is a
Boolean algebra homomorphism. Moreover, if N ∈ Sp(M), then (N : M) ∈ Sp(R) and

η(N : M) = Sp((N : M)M) = Sp(N) = N.

Thus, η is an epimorphism. �

Finally, we remark that if M is a faithful multiplication module over a semisimple ring
R, then since M is cyclic by Corollary 3.10, we conclude that M is isomorphic to R. So
it clearly follows that η and θ are Boolean algebra isomorphisms.
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Abstract
While aiming particularly at handling under-dispersion, we explore a type of models con-
structed conservatively using the minimum information of first two moments for the fitting
of binomial count data, which could have under, equal or over-dispersion. The extended
Altham distribution (EAD) families were presented in this study. The extended Altham
families are very close to the binomial distribution under equal dispersion setting, implying
that they are alternative models of the binomial distribution. The feature that extended
Altham families can reach the full range of dispersion outperforms some commonly used
models such as extended beta-binomial and quasi-binomial which have restricted ranges of
dispersion. Moreover, the extended Altham family can have double peaks at two bound-
aries, indicating they are feasible for fitting the double tail inflation phenomenon. This
study illustrated the modeling using extended Altham families for both under-dispersed
and over-dispersed binomial data resulted from disease cases within the same family.
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1. Introduction
Binomial count data, a type of count data with bounded supports, arise from many

disciplines such as toxicological study, medical research, ecology, agriculture, logistics
management, linguistics, electronic engineering, political science, and so on. This type
of data are often associated with an important quantity called proportion which is the
study purpose. For the binomial count data, the most commonly used model is binomial
distribution. The binomial random variable (rv) is the sum of independent and identically
distributed (iid) Bernoulli rv’s which have a fixed success probability for value 1. This
success probability is the interested population proportion.

However, the above binomial setting is too ideal and simple. In reality, there could exist
more complicated situations. For example, the success probability may be a rv instead of a
fixed constant, or the Bernoulli rv’s may positively or negative correlated (corresponding
to attraction or repulsion). The data could even result from an aggregation of subsets
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with varying upper bounds. Thus, observations could appear to be over-dispersion or
under-dispersion relative to the binomial distribution.

Handling over-dispersion has received a great deal of attention and is quite mature.
The common way is to us binomial mixture. Allowing varying success probabilities in
the binomial distribution can yield a mixture with over-dispersion relative to the binomial
distribution. A widely used model is the beta-binomial which is the binomial mixture of
the beta distribution, i.e., the success probability follows a beta distribution. Refer to
Wilcox [18] for a review of beta-binomial and its extensions.

However, in reality, the under-dispersion can occur, especially in the repulsion situation.
Bailey [4] reported the repulsion examples of function word counts, which are under-
dispersed relative to binomial due to the nature that a function word can not follow itself
in general. Assuming negative correlation among Bernoulli rv’s, the sum of them will result
in a distribution of under-dispersion relative to the binomial. See Theorem 7.1 in Joe [12].
Viveros-Aguilera, Balasubramanian and Balakrishnan [17] constructed a concrete example
using the homogeneous Markov chain for binary response. In addition, quasi-binomial and
its variations prescribe non-homogeneous dependence mechanisms for successive trials by
Chakraborty and Das [5]. We show another possibility leading to under-dispersion in
Section 2, which is a mixture of varying upper bounds of supports.

Prentice [15] extended the beta-binomial to allow limited under-dispersion. Consul [8]
proposed the quasi-binomial (type I) using an urn model, in which the success probability
of the i-th trial has an additional part proportional to i (i > 1). This additional part
in the success probability can be negative or positive, resulting in under-dispersion or
over-dispersion, but both under- and over-dispersions are bounded. Some extensions of
quasi-binomial can be found in Mishra, Tiwary and Singh [14], Dobson, Carreras and
Newman [9], Chakraborty and Das [5] and some advanced studies in Altham [2,3]. Other
models using particular mechanisms like Bailey [4] were practised in the literature too.
Although there are many attempts to handle the under-dispersion case, none of them
becomes a mature tool for a general case.

The descriptive statistics are not always as easy as might be expected, particularly
when data exhibit skewness and/or outliers. A relevant example is given by Chatfield [6]
which involves the number of issues of a particular monthly magazine read by 20 people
in a year. In this example, the data has bimodal U-shape which is even more difficult
to summarize than a skewed distribution. Therefore, the sample mean and standard
deviation are potentially very misleading. The proportion of regular readers is a useful
statistic, but it may be sensible to describe the data in words rather than with summary
statistics.

Since binomial count data can arise from complex situations, none of existing models
provides a unified way to handle them. Thus, there is a need to develop a unified model
capable of handling various dispersion situations. To this end, we construct models with
specified mean and variance using the entropy method. The resulted two-parameter models
can reach the full range of dispersion, providing a unified way for modelling binomial count
data with different dispersion case.Also, numerical comparison shows that the proposed
models are quite close to the binomial distribution in the equal-dispersion setting. Hence,
they are alternative to the binomial model in the equal-dispersion setting.

In summary, the proposed two-parameter models have the ability to better fit various
binomial count data in a unified way. Based on our proposed models, we have found
that the Altham distribution [1] is a special case by reparametrization. Thus, this finding
uncovers the feature of full dispersion of the Altham distribution. To credit Altham, the
models we proposed are named as the extended Altham distribution families (EAD).

The remainder of this paper is organized as follows. We define new exponential families
in Section 2, with the computational algorithm for the probability mass function (pmf).
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MLEs are derived in Section 3. We conduct simulation study and illustrate data examples
in Section 4. A brief discussion is given in Section 5.

2. Model construction
In this section, we shall present the construction of extended Altham distribution fam-

ilies by using Kullback-Leibler (KL) divergence measure. KL is non-symmetric measure
defined by

KL(pi||qi) =
M∑

i=0
pi log(pi

qi
) (2.1)

and it gives the distance between two probability distributions, P and Q, where Q is given
distribution and P is unknown probability distribution. The distribution Q is known as a
priori distribution.

For example, if a priori distribution Q is considered as a discrete uniform distribution
assigns equal probability 1/(M + 1) to every point in the support, then the closest distri-
bution in sense of KL measure will be the distribution that has the maximum uncertainty
in the support, leading to the maximum entropy. For a discrete distribution, denote the
probability mass function (pmf) as Pr[X = i] = pi, (i = 0, 1, . . . , M), the mean as µ
and variance as σ2. Given the information of a priori distribution Q, mean and variance,
KL optimization defines the distribution which obtain the probability distribution which
satisfy minimum KL distance. Encouraging probability assignment in the support as even
as possible, thus, taking advantage of given information in a minimum and conservative
sense. That is

min
{

M∑
i=0

pi log(pi

qi
)
}

, (2.2)

subject to three constrains
M∑

i=0
pi = 1,

M∑
i=0

ipi = µ,
M∑

i=0
i2pi = σ2 + µ2. (2.3)

There is no explicit form of pmf in terms of parameters µ and σ2, however, there is an
explicit form in terms of Lagrangian multipliers β’s:

pi = qiC(β1, β2)eiβ1+i2β2 , i = 0, 1, . . . , M, (2.4)
where C(β1, β2) is the normalizing constant.

Note that if Q is considered as a binomial distribution, the pmf will be Altham dis-
tribution [1]. Thus, we call this family as extended Altham distribution family. In the
following, we give a formal definition.

Definition 2.1. (extended Altham distribution family): A rv X is said to be from
the extended Altham distribution family, denoted as extended Altham(M, h, β1, β2) where
−∞ < β1, β2 < ∞, if its probability mass function (pmf) is of form:

pi ∝ hi exp(β1i + β2i2), i = 0, 1, . . . , M, (2.5)
where hi is an arbitrary function with positive values and β1 and β2 are real parameters
and satisfy

M∑
i=0

Pr[X = i] =
M∑

i=0
hiC(β1, β2) exp(iβ1 + i2β2) = 1, (2.6)
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E[X] =
M∑

i=0
i Pr[X = i] =

M∑
i=0

ihiC(β1, β2) exp(iβ1 + i2β2) = µ, (2.7)

E[X2] =
M∑

i=0
i2 Pr[X = i] =

M∑
i=0

i2hiC(β1, β2) exp(iβ1 + i2β2) = σ2 + µ2, (2.8)

where C(β1, β2) is the normalizing constant.

β1 and β2 seem to govern the increasing or decreasing speed of pmf, but no direct
connection with the mean and variance. The parametrization in terms of µ and σ2 has
clear explanation, however, no analytical pmf available. But this can be compensated by
numerical solution.

Since constrain (2.7) implies

C−1(β1, β2) =
M∑

i=0
hie

iβ1+i2β2 (2.9)

hence, there are only two independent parameters: β1 and β2. For any discrete distribution
on the support {0, 1, . . . , M}, since

µ =
M∑

i=1
ipi = E[1 × X] ≤ E[X2] ≤ E[M × X] = M

M∑
i=1

ipi = Mµ, (2.10)

the natural ranges of µ and σ2 are

0 ≤ µ ≤ M, max(0, µ − µ2) ≤ σ2 = E[X2] − µ2 ≤ Mµ − µ2. (2.11)

There is no restriction for parameters µ and σ2, thus, these two parameters can vary in
their full ranges shown in (2.14). However, the ranges of β1 and β2 can not be determined
in explicit forms.

When M = 1, the rv X degenerates to the Bernoulli case, and only one parameter is
needed. Thus, we exclude this extreme case for the upper bound of the support, and only
consider M ≥ 2.

When M = i, the pmf can be expressed in terms of hi and β = (β1, β2):

pi = log(hi) + β[(i + 1)α − iα], (2.12)

where α > 0 and hi are arbitrary positive valued function.
The extended Altham distribution has only two independent parameters: β1 and β2.
For any discrete distribution on the support {0, 1, . . . , M}, since

µ =
M∑

i=1
ipi = E[1 × X] ≤ E[X2] ≤ E[M × X] = M

M∑
i=1

ipi = Mµ, (2.13)

the natural ranges of µ and σ2 are

0 ≤ µ ≤ M, max(0, µ − µ2) ≤ σ2 = E[X2] − µ2 ≤ Mµ − µ2. (2.14)

There is no restriction for parameters µ and σ2, thus, these two parameters can vary in
their full ranges shown in (2.14). However, the ranges of β1 and β2 can not be determined
in explicit forms.

The binomial distribution is usually referred as the equally-dispersed distribution. As-
sume Y ∼ binomial(M, p) which has pmf

pi =
(

M

i

)
pi(1 − p)M−i, 0 ≤ p ≤ 1, i = 0, 1, . . . , M. (2.15)
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Then E[Y ] = Mp and V ar[Y ] = Mp(1 − p). The ratio of variance to mean is V ar[Y ]
E[Y ] =

1−p = 1− E[Y ]
M . A discrete distribution on the same support is said to be under-dispersed

or over-dispersed if its ratio is smaller or bigger than that of the binomial distribution of
the same mean. That is, the comparison is regarded to the binomial distribution of the
same mean.

For convenience, we define the dispersion index for discrete distribution on the support
{0, 1, . . . , M} as follows

D = V ar[Y ]
E[Y ] (1 − E[Y ]/M)

. (2.16)

Then, a discrete distribution on the support {0, 1, . . . , M} is said to be under-dispersed,
equally-dispersed or over-dispersed if its dispersion index defined in (2.16) is smaller than,
equal to or bigger than 1 respectively. Obviously, the binomial distribution is equally-
dispersed. However, other distributions can be equally-dispersed too.

According to (2.14), the full range of dispersion is

max
(

0,
1 − µ

1 − µ/M

)
= max(0, µ(1 − µ))

µ(1 − µ/M)
≤ D ≤ Mµ − µ2

µ(1 − µ/M)
= M. (2.17)

Note that the lower bound is 1−µ
1−µ/M > 0 when 0 ≤ µ < 1, and 0 otherwise. When M is

large, the interval (0, 1) for under-dispersion is very narrow comparing with the interval
(1, M) for over-dispersion, one might uses log(D) as the dispersion index. But to keep
consistent with the convention, we use (2.16).

The over-dispersion is usually explained by a mixture of binomial, say the beta-binomial.
We have found that under-dispersion could be caused by a mixture too, but of varying
upper bounds of supports. Here we illustrate using a simple example of two-component
binomial mixture.

Let X1 ∼ binomial(M1, p1) and X2 ∼ binomial(M2, p2), where M1 < M2. Assume
E[X1] = E[X2] = µ < M1. Denote I ∼ Bernoulli(p), and define Y conditional on I as
follows

[Y |I = 1] ∼ binomial(M1, p1), [Y |I = 0] ∼ binomial(M2, p2). (2.18)

Note that the support of Y is {0, 1, . . . , M2}. Then

E[Y ] = E{E[Y |I]} = pE[X1] + (1 − p)E[X2] = µ, (2.19)
V ar[Y ] = E[(Y − µ)2] = E{E[(Y − µ)2|I]} (2.20)

= pV ar[X1] + (1 − p)V ar[X2]
= pµ(1 − µ/M1) + (1 − p)µ(1 − µ/M1)
= µ{1 − [pµ/M1 + (1 − p)µ/M2]}
< µ(1 − µ/M2).

Thus

D = µ{1 − [pµ/M1 + (1 − p)µ/M2]}
µ(1 − µ/M2)

<
µ(1 − µ/M2)
µ(1 − µ/M2)

= 1, (2.21)

implying that Y is under-dispersed.
In order to illustrate the extended Altham distribution family, we considered the fol-

lowing models with different hi functions:
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Model 1. hi = 1; flat (Discrete Uniform) (2.22)
Model 2. hi = log(M − X + 1) + 1; decreasing (2.23)

Model 3. hi = M !
(M − X)!(X)!

; convex (Weighted Binomial) (2.24)

Model 4. hi = (M − X)!(X)!
M !

; concave (2.25)

Model 5. hi = X + 1; increasing (2.26)

Model 6. hi = 1
(X + 1)

; decreasing (2.27)

Model 7. hi = M − X + 1; decreasing (2.28)

Model 8. hi = 1
(M − X + 1)

; increasing (2.29)

Model 9. hi = X(M − X) + 1; convex (2.30)

Model 10. hi = 1
X(M − X) + 1

; concave (2.31)

Model 11. hi = log(X + 1) + 1; increasing (2.32)

Model 12. hi = 1
log(X + 1) + 1

; decreasing. (2.33)

The dispersion index for extended Altham(µ, σ2) is D = σ2

µ(1−µ/M) , which can reach the
full range of dispersion because of no restriction on parameters µ and σ2. Since σ2 is inde-
pendent of µ, D could be smaller than, equal to or bigger than 1. Therefore, the extended
Altham family covers all dispersion situations. The extended Altham distribution family
given by 2.5 includes Binomial distribution when the function hi = 1,

Weighted Binomial distributions Zelterman [19] when the function hi is the binomial
coefficient and so Altham distribution [1] because it is known to be an example of a
weighted binomial model.

For comparison purposes, we need reparametrization so that we can fix (µ, σ2). Figure 1
and 2 displays the pmf profiles of the extended Altham distributions with hi functions given
by 2.22-2.33, mean µ = 5 and various dispersions using the developed numerical algorithm.
Comparing with Binomial distribution (red line), the under-dispersed extended Altham
distributions (green lines) seem to have larger probability masses around the mean, while
the over-dispersed extended Altham distributions (blue lines) attempt to have more masses
at two boundaries. When the dispersion large enough, the pmf shows U-shape, like that
of the beta-binomial distributions.

Since the extended Altham distribution can have equal dispersion, it is natural to
compare it with the binomial distributions under the same means.

Figure 3 and 4 demonstrate some of them on the support {0, 1, . . . , 40}. We see that
both pmf’s are very close when the mean is not close to the two boundaries. When
the mean close to two boundaries, there are slight differences among two distributions,
and the extended Altham distribution assigns more masses at 0 or M . For many values
of M , we check the maximum absolute difference of pmf of two distributions under the
same mean, and find that this maximum is no more than 3% when the mean close to
boundaries, and becomes smaller when the mean close to the center of the support. The
larger the M , the smaller the maximum of probability difference. From the viewpoint of
distribution theory, this suggests that the binomial distribution can be approximated by
the extended Altham distribution. On the other hand, for the distribution constructed
using the minimum information of mean and equal-dispersion, the binomial distribution is
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Figure 1. Probability profiles of the extended Altham distributions of mean
µ = 5 and various dispersions regarding to hi given by 2.22 and 2.27 The red
line indicates the equal dispersion. The blue lines correspond to over dispersions
of 2, 3, . . . , 9, while the green lines shows under dispersions of 0.1, 0.2, . . . , 0.9.
The most centered extended Altham distributions with the largest mass at 5 has
dispersion 0.1, and the most spread extended Altham distributions with largest
masses at two boundaries has dispersion 9.

very close to it. Thus, from the aspect of modelling, such a fact implies that the extended
Altham distribution could be an alternative of the binomial distribution if the mean is not
extremely small or large.

Note that the extended beta-binomial and quasi-binomial can handle both under-
dispersion and over-dispersion too. The beta-binomial distribution is constructed us-
ing mixture. Assume the success probability in binomial distribution p ∼ beta(a, b)
(a > 0, b > 0), the pmf of beta-binomial(M, a, b) is

pi =
(

M

i

)
B(a + i, b + M − i)

B(a, b)
, i = 0, 1, . . . , M, (2.34)

where B(x, y) is the complete beta function. See Hasemann and Kupper [11].
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Figure 2. Probability profiles of the extended Altham distributions of mean
µ = 5 and various dispersions regarding to hi given by 2.28 and 2.33. The red
line indicates the equal dispersion. The blue lines correspond to over dispersions
of 2, 3, . . . , 9, while the green lines shows under dispersions of 0.1, 0.2, . . . , 0.9.
The most centered extended Altham distributions with the largest mass at 5 has
dispersion 0.1, and the most spread extended Altham distributions with largest
masses at two boundaries has dispersion 9.

The mean and variance are

E[X] = Ma

a + b
, V ar[X] = Mab(a + b + M)

(a + b)2(a + b + 1)
, (2.35)

and it is over-dispersed. Prentice [15] extended the beta-binomial, denoted as EBB(M ; p, δ),
using the following reparametrized pmf form

pi =
(

M

i

)
i−1∏
j=0

(p + γj)
M−i−1∏

j=0
(1 − p + γj)

/M−1∏
j=0

(1 + γj), i = 0, 1, . . . , M, (2.36)

where 0 ≤ p ≤ 1, γ = δ
1−δ and

δ = γ(1 + γ)−1 ≥ max
( −p

M − p − 1
,

−q

M − q − 1

)
, q = 1 − p. (2.37)
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Figure 3. Comparison of probability profiles between extended Altham distri-
butions with hi given by 2.22 - 2.27 and binomial distributions under the same
means. The blue lines indicate the extended Altham distributions, while red lines
correspond to binomial distributions. Any close pair of the extended Altham and
binomial distributions has the same mean.

The mean and variance are
E[X] = Mp, V ar[X] = Mp(1 − p)[1 + (M − 1)δ]. (2.38)

The extended beta-binomial allows under-dispersion, but bounded when δ reaches it
lower bound. For example, if M = 10 and p = 0.5, then the lower bound of δ is −1/17,
and the lower bound of dispersion is approximately D = 0.4706.

Consul [8] proposed the quasi-binomial distribution, later termed as type I QBD(M ; p, ϕ),
with pmf

pi =
(

M

i

)
p(p + iϕ)i−1(1 − p − iϕ)M−i, i = 0, 1, . . . , M, (2.39)

where 0 ≤ p ≤ 1 and −p/M < ϕ < (1 − p)/M .
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Figure 4. Comparison of probability profiles between extended Altham distri-
butions with hi given by 2.28 - 2.33 and binomial distributions under the same
means. The blue lines indicate the extended Altham distributions, while red lines
correspond to binomial distributions. Any close pair of the extended Altham and
binomial distributions has the same mean.

As pointed by Mishra, Tiwary and Singh [14], the most unfortunate result of this
distribution (and other types QBD) is that the moments are series which are not possible
to be summed. When ϕ ̸= 0, the probability of success in the i-th trial becomes p + iϕ.
Positive or negative ϕ indicates attraction or repulsion of a trial to previous trials. This
quasi-binomial distribution has lower bound for the under-dispersion and upper bound for
the over-dispersion when ϕ reaches its lower and upper bounds respectively. For example,
let M = 10 and p = 0.5. The lower and upper bounds of ϕ will be −0.05 and 0.05
respectively, and the lower and upper bounds of dispersion D will be approximately 0.4518
and 3.1847 respectively.

The range of dispersion for both extended beta-binomial and quasi-binomial distribu-
tions can be numerically displayed. However, both can not cover the full range of dis-
persion like the extended Altham. Since the extended beta-binomial distribution can be
reparametrized in terms of mean and variance analytically, we make numerical comparison
of pmf under the same mean and dispersion between this distribution and the extended
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Altham distribution, and find that they are different, matching the fact that they are
constructed from different angles.

3. Comparison and statistical inference
The pmf (2.5) is explicit in (β1, β2) and is implicit in (µ, σ2). So, for MLE, we can solve

it either by parametrization (β1, β2) or (µ, σ2). Since extended Altham distribution is a
member of general exponential family, the MLEs for (β1, β2) can be obtained by using the
form given by

p(x|θ) = h(x)c(θ)e
∑k

i=1 wi(θ)ti(x). (3.1)
Then, the Log-likelihood function is,

L(θ) =
N∑

j=1
log[h(xj)c(θ)e

∑k

i=1 wi(θ)ti(xj)] (3.2)

and the corresponding derivative is

∂L(θ)
∂θ

= N
c′(θ)
c(θ)

+
N∑
j

k∑
i=1

wi(θ)ti(xj). (3.3)

Since p(x|θ) is a probability distribution, we can write∫
p(x|θ) =

∫
h(x)c(θ)e

∑k

i=1 wi(θ)ti(x)dx = 1 (3.4)

and we can get
c(θ) = 1∫

h(x)e
∑k

i=1 wi(θ)ti(x)dx
(3.5)

c′(θ) = −c(θ)E[
k∑
i

∂wi(θ)
∂θ

ti(x)] (3.6)

If c′(θ) is replaced in the derivative of the log-likelihood function,

− NE[
k∑

i=1

∂wi(θ)
∂θ

ti(x)] +
N∑
j

k∑
i=1

wi(θ)ti(xj) = 0. (3.7)

Finally, maximum likelihood estimator of extended Altham distribution family is found as

E[
k∑

i=1

∂wi(θ)
∂θ

ti(x)] =
∑N

j

∑k
i=1 wi(θ)ti(xj)

N
, (3.8)

which means the MLE of extended Altham distribution family coincide the moment esti-
mator.

On the other hand, we need the reparametrization of extended Altham distribution
with respect to µ and σ2 in order to be able to make appropriate comparision. First,
we derive the MLE of parameter vector by employing the maximum likelihood method.
β = (β1, β2)T , and its asymptotic normality. Then we obtain the MLE of θ = (µ, σ2)T and
its asymptotic normality according to (2.7) and (2.8). Note that the normalizing constant
is the function of β1 and β2. We establish the following key results for MLEs and their
asymptotic covariance matrix. Denote the moment mj = E[Xj ] for j = 1, 2, 3, 4.
Lemma 3.1.

∂C(β1, β2)
∂β1

= −m1,
∂C(β1, β2)

∂β2
= −m2,

∂2C(β1, β2)
∂β2

1
= m2 − m2

1,
∂2C(β1, β2)

∂β2
2

= m4 − m2
2,

∂2C(β1, β2)
∂β1∂β2

= m3 − m2m1.
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Proof. Taking the first and second order partial derivatives with respect to β1 and β2
respectively for both sides of C(β1, β2), and then simplifying the equations will yield the
results. For instance,

eC(β1,β2) × ∂C(β1, β2)
∂β1

= ∂

∂β1

(
M∑

i=0
hie

iβ1+i2β2

)
= −

M∑
i=0

ihie
iβ1+i2β2 , (3.9)

eC(β1,β2) × ∂C(β1, β2)
∂β2

= ∂

∂β2

(
M∑

i=0
hie

iβ1+i2β2

)
= −

M∑
i=0

i2hie
iβ1+i2β2 , (3.10)

eC(β1,β2) × ∂2C(β1, β2)
∂β1∂β2

+ eC(β1,β2) × ∂C(β1, β2)
∂β2

× ∂C(β1, β2)
∂β1

(3.11)

= ∂

∂β2

(
−

M∑
i=0

ihie
iβ1+i2β2

)
=

M∑
i=0

i3hie
iβ1+i2β2 , (3.12)

thus
∂C(β1, β2)

∂β1
= −

M∑
i=0

ihie
iβ1+i2β2e−C(β1,β2) = −E[X] = −m1, (3.13)

∂2C(β1, β2)
∂β1∂β2

=
M∑

i=0
i3hie

iβ1+i2β2eC(β1,β2) − ∂C(β1, β2)
∂β2

× ∂C(β1, β2)
∂β1

(3.14)

= E[X3] − E[X2]E[X] = m3 − m2m1. (3.15)
�

Suppose the observations are x1, x2, . . . , xn. The log-likelihood is

log L(β | x1, . . . , xn) =
n∑

k=1
log(Pr[Xk = xk]) (3.16)

= −nC(β1, β2) − β1

n∑
k=1

xk − β2

n∑
k=1

x2
k.

The score functions are
∂ log L

∂β1
= −n

∂C(β1, β2)
∂β1

−
n∑

k=1
xk,

∂ log L

∂β2
= −n

∂C(β1, β2)
∂β2

−
n∑

k=1
x2

k, (3.17)

leading to estimating equations
M∑

i=0
ihie

iβ1+i2β2
/ M∑

i=0
hie

iβ1+i2β2 = 1
n

n∑
k=1

xk = X̄, (3.18)

M∑
i=0

i2hie
iβ1+i2β2

/ M∑
i=0

hie
iβ1+i2β2 = 1

n

n∑
k=1

x2
k. (3.19)

Applying the quasi-Newton method used before, we can obtain the MLE β̂ numerically.
Under regularity conditions, for β in the interior of the parameter space, the asymptotic
normality holds as follows:

√
n
(
β̂ − β

)
→ N

(
0, Σ−1

)
, as n → ∞, (3.20)

where the Hessian matrix is

Σ =


−E

[
∂2 log L

∂β2
1

]
−E

[
∂2 log L
∂β1∂β2

]
−E

[
∂2 log L
∂β1∂β2

]
−E

[
∂2 log L

∂β2
2

]
 = n

 m2 − m2
1 m3 − m2m1

m3 − m2m1 m4 − m2
2

 . (3.21)
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Although β̂ does not have an explicit form, the MLE of θ = (µ, σ2)T has an explicit
form. From score functions (3.17), we also obtain estimating equations for µ and σ2:

µ = X̄, σ2 + µ2 = 1
n

n∑
k=1

x2
k, (3.22)

leading to the MLEs

µ̂ = X̄, σ̂2 = 1
n

n∑
k=1

x2
k − X̄2 = 1

n

n∑
k=1

(xk − X̄)2. (3.23)

Constrains (2.7) and (2.8) imply that µ and σ2 are functions of β1 and β2 respectively.
Denote

A =


∂µ
∂β1

∂µ
∂β2

∂σ2

∂β1
∂σ2

∂β2

 , (3.24)

where

∂µ

∂β1
= ∂

∂β1

(
M∑

i=0
ihie

C(β1,β2)+iβ1+i2β2

)
= −∂C(β1, β2)

∂β1
× E[X] − E[X2] = m2

1 − m2,

∂µ

∂β2
= ∂

∂β2

(
M∑

i=0
ihie

C(β1,β2)+iβ1+i2β2

)
= −∂log(C(β1, β2))

∂β2
× E[X] − E[X3]

= m1m2 − m3,

and

∂σ2

∂β1
= ∂

∂β1

(
M∑

i=0
i2hie

C(β1,β2)+iβ1+i2β2

)
− 2µ

∂µ

∂β1

= −∂C(β1, β2)
∂β1

× E[X2] − E[X3] − 2m1(m2
1 − m2) = 3m1m2 − 2m3

1 − m3,

∂σ2

∂β2
= ∂

∂β2

(
M∑

i=0
i2hie

C(β1,β2)+iβ1+i2β2

)
− 2µ

∂µ

∂β2

= −∂C(β1, β2)
∂β2

× E[X2] − E[X4] − 2m1(m2
1 − m2)

= m2
2 − m4 − 2m2

1m2 + 2m1m3.

Then,
√

n
(
θ̂ − θ

)
→ N

(
0, AΣ−1AT

)
, as n → ∞. (3.25)

Matrix A and Σ can be estimated by replacing mj ’s as their estimates m̂j ’s. Standard
errors of µ̂ and σ̂2 can be obtained as the square root of diagonal elements of the estimated
covariance matrix. There are two approaches to estimate mj :

(1) using the sample only, m̂j = 1
n

∑n
k=1 xj

k, or
(2) using the MLEs β̂, m̂j =

∑M
i=0 ijpi(β̂).

The former has large variation when the sample size is not large. Thus, for small sample
size, the latter is recommended.

The closed form MLEs of parameters µ and σ2 simplifies the model fitting using the
extended Altham distribution.
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Under the extended Altham model, the MLE of dispersion index D is D̂ = σ̂2

µ̂(1−µ̂/M) .

Denote B =
(

∂D
∂µ , ∂D

∂σ2

)
,where

∂D

∂µ
= ∂

∂µ

[
σ2

M2

( 1
M − µ

+ 1
µ

)]
= σ2

M2

( 1
(M − µ)2 − 1

µ2

)

= σ2(2µ − M)
Mµ2(M − µ)2 = (m2 − m2

1)(2m1 − M)
Mm2

1(M − m1)2 ,

∂D

∂σ2 = 1
µ(1 − µ/M)

= 1
m1(1 − m1/M)

.

Then, √
n
(
D̂ − D

)
→ N

(
0, BAΣ−1AT BT

)
, as n → ∞. (3.26)

Let s2
D be the estimate of asymptotic variance BAΣ−1AT BT . The standard error of D̂

is sD, and an asymptotic CI of significant level α for dispersion index D is D̂ ± zα/2sD,
where zα/2 is the 100(1 − α/2)% quantile of the standard normal distribution.
Let P denote the extended Altham family (2.5),

P =
{

fθ(x) ∝ h(x)eβ1x+β2x2 |θ = (β1, β2) : −∞ < β1, β2 < ∞, h = 1, 2, . . . , 12
}

(3.27)

where X = 0, 1, 2, . . . , M . Assume fθ = fθ̃, then the expression

log(h(x)
h̃(x)

) + (β1 − β̃1)x + (β2 − β̃2)x2 = 0 (3.28)

is satisfied for all x only when all its coefficients are equal to zero, which is only possible
when h = h̃, β1 = β̃1 and β2 = β̃2. Hence, we conclude that the extended Altham family
is identifiable iff log(h(x)

h̃(x)) ̸= β1x + β2x2, β1, β2 ≠ 0.

4. Simulation study and examination of existing examples
In the literature, some scholars tried different models. Bailey [4] proposed a particular

probabilistic model based on the Markov property to study the author’s writing style
by investigation of occurrences of function word in 5-word and 10-word samples. Two
data sets from Macaulay’s ‘Essay on Milton’ [13] and from Chesterton’s essay ‘About the
workers’ [7] respectively were fitted. Chakraborty and Das [5] fitted QBD I and QBD II
models for four data sets from other authors, these examples were actually truncated count
data, not from true binomial experiments. The observed and expected frequencies, as well
as the values of goodness-of-fit of fitted models were reported in both papers, thus, we can
compare the fitting of the extended Altham models with theirs using the the quantity of
the goodness-of-fit under the same data grouping schemes. Dispersion investigation shows
that all examples are under-dispersed in Bailey [4], and over-dispersed in Chakraborty and
Das [5]. The comparison results are reported in Table 1 and Table 2. Table 1 gives the
fitting comparison of extended Altham models with the model proposed by Bailey [4] for
5-word and 10-word samples of function word occurrence from two authors (Macaulay’s
work, Chesterton’s work*). Data sets (see Appendix Table A1) and original fittings are
referred to Bailey [4].
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Table 1. Fitting comparison of extended Altham models with the model proposed
by Bailey [4] for 5-word and 10-word samples

Model 5-word 10-word 5-word* 10-word*
(0.61, 0.35, 0.66) (1.05, 0.64, 0.68) (0.61, 0.35, 0.66) (1.05, 0.64, 0.68)

Bailey’s model 8.16 6.38 2.76 4.93
1 0.0819 0.4887 0.3432 2.0268
2 0.0809 0.4869 0.3404 2.0263
3 0.1027 1.0299 0.3356 1.6936
4 0.0659 0.1549 0.3440 2.4571
5 0.0974 0.7956 0.3367 1.8095
6 0.0695 0.2599 0.3431 2.2801
7 0.0804 0.4847 0.3405 2.0307
8 0.0843 0.4925 0.3396 2.0232
9 0.2073 6.4423 0.3199 1.7605
10 0.0324 0.8428 0.3536 5.4180
11 0.1029 0.9111 0.3355 1.7519
12 0.0657 0.2019 0.3441 2.3670

Table 2. Fitting comparison of extended Altham models and the fitted QBD I
and QBD II models by Chakraborty and Das [5] for four data sets

Model Example 1 Example 2 Example 3 Example 4
(0.41, 0.51, 1.39) (0.68, 0.81, 1.37) (2.50, 3.37, 2.70) (0.92, 0.93, 1.23)

QBD I 0.075 3.608 0.457 0.941
QBD II 0.067 3.618 0.324 0.944

1 0.8834 4.0709 0.3488 2.1207
2 0.4713 4.3125 0.4443 2.4330
3 1.7661 2.5235 0.5243 0.7481
4 0.3429 6.0471 0.2100 4.5916
5 2.1230 2.8038 0.4936 0.9950
6 0.1998 5.6710 0.3157 4.1748
7 0.4870 4.3679 0.4160 2.5023
8 1.4354 3.8007 0.3871 1.8306
9 6.9637 0.5060 1.3459 3.6989
10 0.9193 15.1880 0.0016 20.2011
11 2.6102 2.4775 0.5451 0.7993
12 0.0988 6.2147 0.3025 4.9262

Table 2 gives the fitting comparison of extended Altham models and the Chakraborty
and Das [5] fitted QBD I and QBD II models for four data sets (see Appendix Tables
A2-A5). Data sets and original fittings are referred to Chakraborty and Das [5]. The
χ2-values of goodness-of-fit are obtained under the same data grouping schemes. (x̄, s2,
D̂) are given for each example, where x̄ is sample mean, s2 is sample variance and D̂ is
sample dispersion index. In all examples in Bailey [4], the extended Altham models fits
better than the model proposed by Bailey. Refering to samples from Macaulay’s work,
for the 5-word and the 10-word samples we get the appropriate extended Altham models
(2.31) with χ2 = 0.0324 and (2.25) with χ2 = 0.1549, respectively.
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Regarding to Chesterton’s work, we found that the appropriate models for the 5-word*
and for the 10*-word samples are extended Altham models (2.30) with χ2 = 0.3199 and
(2.24) with χ2 = 0.16936, respectively.

In fact, most of the extended Altham models beat the Bailey’s model. Moreover, the
χ2 testing at significant level 10% will accept the extended Altham model, but reject the
Bailey’s model. This might indicate that the original setting of probabilistic mechanism
needs further adjustment or refinement.

In Example 2, 3 and 4 in Chakraborty and Das [5], the extended Altham model is better
than QBD I and QBD II, while in first example the QBD I and QBD II are better than
the extended Altham model. However, the results of acceptance or rejection from the χ2

test at significant level 10% for all three models are the same. The above examination
shows that the extended Altham model can be a safe tool in explorative analysis without
special preference in model specification, and also can be an alternative model if other
favoured models do not fit data well.

Now we apply the proposed extended Altham model to over-dispersed binomial data re-
sulted from a survey of deaths of children in northest Brazil and the counts the frequencies
of 430 childhood deaths in 2946 families of sizes up to eight children. Maternity histories
were collected on women aged 15 to 44 over a 3-month period in 1986. The original data
was published by Sastry [16] and later it was used for demonstration of different weighted
binomial models by Zelterman [19]. We get the sample data regarding to families that has
more than three siblings (see Appendix Table A6). From this point of view, the results of
extended Altham modelling are given in Table 3.

Table 3. Fitting extended Altham models for the childhood death in Brazilian
family data

Model

Number of siblings (n)
4 5 6 7 8

x̄ = 0.49 x̄ = 0.99 x̄ = 1.34 x̄ = 1.80 x̄ = 2.33
s2 = 0.52 s2 = 1.16 s2 = 1.78 s2 = 1.48 s2 = 1.72
D̂ = 1.13 D̂ = 1.34 D̂ = 1.59 D̂ = 1.06 D̂ = 1.04

1 0.3147 1.7954 4.6315 1.4215 0.9545
2 0.3120 1.7737 4.6929 1.4044 0.9534
3 0.5310 2.2675 3.1773 2.0239 0.9450
4 0.2573 2.0807 7.2788 1.0064 1.0830
5 0.4297 2.0184 3.6284 1.7884 0.9473
6 0.2631 1.8905 6.2074 1.1332 1.0152
7 0.3100 1.7623 4.7541 1.3936 0.9555
8 0.3195 1.8329 4.5469 1.4509 0.9561
9 3.4693 9.4540 3.8744 5.2578 1.7549
10 1.1462 7.7364 25.3762 0.6005 1.8558
11 0.4698 2.0462 3.4754 1.8721 0.9594
12 0.2636 2.0075 6.5180 1.0801 1.0180

According to Table 3, it is obvious that we have huge improvement over the previously
examined models. Moreover, extended Altham model has the advantage of having only
two parameters.

The last example that we consider is the data that was collected on the sex of the first
four children carried out at the A Maxwell Evans Clinic by Elwood and Coldman [10] on
1022 newly diagnosed women with primary breast cancer who had four or fewer children
and for whom the sex of each child was known. The data shows mean ages at diagnosis



Modeling under or over-dispersed binomial count data 271

by number and sex of children. Elwood and Coldman [10] made the analysis in order to
observe a possible relationship between the age at diagnosis in women with breast cancer
and the sex of their offspring.

Table 4. Fitting extended Altham model for diagnosis of breast cancer by number
and sex of children

Model Number of siblings (n)
3 4

x̄ = 1.51 x̄ = 1.93
s2 = 0.77 s2 = 1.15
D̂ = 0.82 D̂ = 1.16

1 3.2216 4.4021
2 2.4989 3.0160
3 3.4059 4.1389
4 3.2205 4.7523
5 4.0819 5.5094
6 2.6270 3.4797
7 2.6185 3.2717
8 3.9468 5.7224
9 5.2482 3.8781
10 4.4652 6.4805
11 4.3434 5.7529
12 2.5426 3.3352

Actually, they didn’t mention any models for their data. Since their data includes
under-dispersed and over-dispersed cases in the same experiment, we decided to use their
data (see Appendix Table A7). The number of siblings bigger than two is considered. The
summary results of fitting extended Altham model is given in Table 4. In Table 4, we can
see that the distribution of the number of diagnosis of breast cancer in the family that has
3 children is under-dispersed (D̂ = 0.82) and the similar distribution for the family that
has 4 children is over-dispersed (D̂ = 1.16). And extended Altham model (2.23) is best
fit for the both cases.

5. Discussion
The extended Altham distribution family is constructed by Kullback-Leibler divergence

measure. It turns out to be a particular type of extended Altham distribution, with simple
form of pmf from the parametrization of Lagrangian multipliers, which may rendered it
to be overlooked previously. Since the construction is very conservative, it is relatively
safer than the binomial as well other models developed based on particular probabilistic
mechanisms.

The capability to reach the full range of dispersion makes the extended Altham a flexible
model for binomial data of various dispersion situations. Thus, it can serve as an explo-
rative model first to avoid wrong specification (say using the binomial model). Because
of the conservative feature of the extended Altham, its fitting can be refined or improved
by a better model like QBD or EBB, based on revealed dispersion information.

The closed form MLEs simplify the fitting for data, thus, facilitating the application for
general end-users, although the calculation of pmf requires the numerical algorithm. The
development of a regression framework is in progress.
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Appendix

Table A1. Underdispersed word counts [4]

Occurences 0 1 2 3
5-word 45 49 6 0
10-word 27 44 26 3

Table A2. Observed and expected frequencies of European Corn borer in 1296
Corn plants [5]

No. of borers per plant 0 1 2 3 ≥ 4
Observed no. of plants 907 275 88 23 3

Table A3. Distribution of yeast cells per square in a haemacytometer [5]

No. of cells per square 0 1 2 3 4 5
Observed no. of squares 213 128 37 18 3 1

Table A4. Distribution of number of seeds by time of day [5]

Time 0 1 2 3 4 5
Observed no. seeds 7 4 5 5 4 7

Table A5. Distribution of number of hits per square [5]

No. of hits 0 1 2 3 4 5
No. of 1/4 km squares 229 211 93 35 7 1

Table A6. The frequency of childhood deaths in Brazilian families [19]

Number Number Number Number of
of siblings of families of deaths affected siblings i

n fn mn 0 1 2 3 4 5 6 7+
1 267 12 255 12
2 285 48 239 44 2
3 202 80 143 41 15 3
4 110 54 69 30 9 2 0
5 104 103 43 34 15 9 3 0
6 50 67 15 18 8 5 3 0 1
7 21 38 4 4 7 4 2 0 0 0
8 12 28 1 2 4 3 1 1 0 0

Totals 2946 430
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Table A7. Diagnosis of breast cancer by number and sex of children [10]

No of Children 0 1 2 3 4
No of boys 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

No of patients 284 93 71 65 134 83 26 71 75 26 11 21 30 28 4
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Abstract
In this study, we have conducted comparative analysis between false alarm rate (FAR)
and average run length (ARL) based control charts with runs rules. In this regard, we
have considered various univariate and multivariate control charts which include mean,
standard deviation, variance, Hotelling, and generalized variance. For evaluation purpose,
we have used actual false alarm rate, power, in-control actual average run length, and out-
of-control average run length as performance indicators. Furthermore, the performance
indicators are calculated through Monte Carlo simulation procedures. Results revealed
that performance order of runs rules with FAR based control charts are persistent whereas,
performance order of runs rules with ARL based control charts are dependent on the
circumstances, that is, sample size, size of shift, type of control chart, and side of control
limit (upper-sided and lower-sided). Besides, we have provided a real life example using
the data on electrical resistance of insulation. In this approach, we have determined that
behavior of FAR and ARL based control charts using the real data is recorded similar to
the behavior using the statistical performance indicators.
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1. Introduction
The theory of control charts was first proposed by Walter A. Shewhart in 1931 [17] for

the detection of assignable causes of variations in a parameter (location and dispersion) of a
process characteristics. The assignable causes of variations are unnaturally appeared in an
ongoing process, and they are usually occurred due to improper adjustment of controller,
operators error, and low quality of batch material. A control chart based on the concept of
Shewhart [17] is often known as Shewhart-type control chart. The Shewhart-type control
chart based on classical runs rule (any single point out-of-control) is generally considered
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less efficient for detection of small variations in a parameter [13]. However, to increase
the ability of Shewhart control charts towards detection of small variations, Western [21]
recommended sensitizing rules or runs rules (also known as decision rules). With passage
of time, various authors introduced new forms of sensitizing rules as well as explored
their behavior in forms of actual in-control average run length (abbr. as AIARL and
denoted as ARLact) and out-of-control average run length (abbr. as OARL and denoted as
ARL1) such as [3–6,10,15,18–20]. The AIARL is an actual value of the average number of
sample points that stayed in-control before declaring a process out-of-control on the basis
of decision points when in-fact process is in-control. Furthermore, OARL is the average
number of sample points that stayed in-control before declaring a process out-of-control
on the basis of decision points when actually process is out-of-control.

Champ and Woodall [3] investigated the AIARL as well as OARL of different sensitizing
rules. In addition, they used Markov Chain approach as computational technique. Their
results showed that although simultaneously implementation of sensitizing rules enhanced
the detection ability of Shewhart type control chart but at the same time generated another
issue. The issue stated as AIARL deviated from intended level, that is, substantially
degraded. To overcome the issue of sensitizing or runs rules, many authors recommended
to incorporate the correct value of in-control probability of single point (abbr. as IPSP and
denoted as p0) into the design structure of Shewhart type control chart [4, 5, 8, 10, 15, 22].
The IPSP is defined as the probability of an out-of-control signal when in-fact a process
is in-control. Furthermore, IPSP is generally computed through involving an appropriate
method by taking into account an independent choice of runs rules and prefix value of
FAR (denoted as α) or in-control ARL (denoted as ARL0). The prefix value of α can
be defined as the prefix value of probability of decision points for a given choice of runs
rule when in-fact a process is in-control. On the other hand, ARL0 is the prefix value of
the average number of sample points that should be stayed in-control before declaring a
process out-of-control on the basis of decision points when in-fact process is in-control.

The appropriate method for computing the IPSP is considered important in designing
of Shewhart-type control charts. For instance, Klein [5] computed IPSP based on Markov
chain approach for designing and evaluating the mean (X̄) control chart. Khoo [4] es-
tablished graphical plots based on Markov chain approach to obtain the IPSP of existing
and proposed runs rules. In addition, he applied the probabilities of single point in the
construction of X̄ control chart. Shepherd et al. [16] computed the IPSP based on Markov
chain approach for designing and evaluation of attribute control chart under runs rules. In
continuation, Riaz et al. [15] utilized the proposed equation for designing the FAR based
upper-sided mean (symbolized as X̄U), variance (S2

U), standard deviation (SU) and range
(RU) control charts. In addition, they showed that proposed equations play its role to
maintain the AFAR of FAR based X̄U , S2

U , SU and RU control charts under runs rules at
α. The applications of polynomial equation by [15] can be seen in various studies such
as [9, 11, 12, 22]. In this particular research direction, Mehmood et al. [8] offered new
polynomial equation alternative to the study by [15] for increasing the detection ability of
two sided Shewhart-type control chart under runs rules.

The aforementioned literature review is representing the FAR and ARL based control
charts. A control chart depends on the α is termed as FAR based control chart such
as [15, 22]. Likewise, ARL based control chart depends on the ARL0 such as [4, 5]. It is
valuable to mention that numbers of studies have been seen on the topic of FAR and ARL
based control charts separately. In this research direction, it is very rare to find study on
the comparative analysis between FAR and ARL based control charts. This has taken as
the motivation of current study.

This study aims to conduct comparative analysis between FAR and ARL based con-
trol charts with runs rules. To achieve the goal, we will construct design structures of
upper-sided and lower-sided univariate and multivariate control charts with runs rules.
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The upper-sided and lower-sided univariate control charts include mean (X̄U and X̄L),
variance (S2

U and S2
L), and standard deviation (SU and SL). Furthermore, upper-sided and

lower-sided multivariate control charts contain generalized variance (|S|U , and |S|L) and
Hotelling’s (T 2

U). Besides, we will evaluate the performance of FAR and ARL based control
charts by considering the AFAR, power (denoted as P1), AIARL, and OARL as performance
measures. The P1 is defined as the probability of the decision points for a given choice
of runs rule that are declared out-of-control when in-fact the process is out-of-control. In
addition, for computation of the performance measures, we will illustrate and also employ
the Monte Carlo simulation procedures without loss of generality. Furthermore, we will
conduct comparative analysis on the behavior of FAR and ARL based control charts under
classical and additional runs rules. All of the prescribed methods for comparative analysis
cover the statistical aspects of current study. To highlight the practical significance of
the study, a real life example will be presented using the data on electrical resistance of
insulation.

Rest of the article is organized as follows: In Section 2, we will construct different
design structures of FAR and ARL based control charts with classical and additional runs
rules. In Section 3, we will discuss Monte Carlo simulation procedure for computing
different performance measures of each control chart under consideration, and also conduct
comparative analysis. In Section 4, we will give a real life example using the data on
electrical resistance of insulation to compare the behavior of FAR and ARL based control
charts with runs rules. Lastly, we will summarize and conclude the whole study in Section
5.

2. Design structures of FAR and ARL based Shewhart-type control charts
under runs rules

In this section, we construct FAR and ARL based design structures of the Shewhart-
type control charts under runs rules. Now assume that a process characteristic X follows
a normal distribution and characteristics (Y1, Y2) follow bivariate normal distribution.

2.1. X̄U control chart
Let X̄j, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive statistic X̄j falling above the control
limit UX̄ . The X̄j and UX̄ are formulated as follows:

X̄j = 1
n

n∑
i=1

Xij , UX̄ = µ0 + Z(1−p0)
σ0√

n
,

where µ0 and σ0 are known in-control mean and standard deviation of X, Z(1−p0) is (1 − p0)th
percentile of standard normal distribution [13]. Furthermore, choice of p0 depends on the
prefix value of k/k or k/k + r runs rules and α or ARL0. The correct value of p0 is desired
to sustain the αact or ARLact of a control chart at α or ARL0, respectively. To compute the
required p0 value, one of the best solutions provided by [15] in the form of a polynomial
equation for handling the FAR based control charts. Riaz et al. [15] introduced exact
polynomial equation for computing the required p0 value as per the given choice of k/k or
k/k + r and α. Thus, polynomial equation for computing the p0 as per the given choice of
k/k and α or ARL0 are given as:

p0 = k
√

α, if α is given,

ARL0(1 − p0)pk
0 + pk

0 − 1 = 0, if ARL0 is given.
(2.1)
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To cover the case of k out of k + r (denoted as k/k + r, r ≥ 1) runs rules, expressions to
obtain p0 for the given value of α or ARL0 are as follows:

α =
(k+r

k

)
pk

0(1 − p0)r, if α is given,

p0 = R(k|k + r, ARL0), if ARL0 is given,
(2.2)

where R(k|k + r, ARL0) denote a constant, lies between zero and one, and it depends on
the given value of k/k +r and ARL0. Besides, a control chart dependent on α is termed as
FAR based control chart. Similarly, a control chart contingent on ARL0 is called ARL based
control chart. The theoretical justification of Eqs.(2.1)–(2.2) when α given can be seen in
[8]. In addition, theoretical illustration of Eq.(2.1) when ARL0 given is as follows: The
probability distribution (also called run length distribution) of k/k consecutive statistics
breached the control limit is generalized geometric distribution of order k with parameter
p0 [2]. As our interest is to find out correct value of p0 so that ARLact of a Shewhart-type
control remains equal to ARL0. Therefore, we equate the mean of generalized geometric
distribution of order k with parameter p0 to ARL0. Note that value of p0 in Eq. (2.2)
when ARL0 given is hard to obtain by analytical approach. However, one may calculate
using a computational technique (e.g. Monte Carlo simulation) with a condition that
ARLact remains equal to ARL0.

2.2. X̄L control chart
Let X̄j, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive X̄j falling below the LX̄ . The X̄j and
LX̄ are formulated as follows:

X̄j = 1
n

n∑
i=1

Xij , LX̄ = µ0 + Zp0
σ0√

n
,

where Zp0 is p0th percentiles of standard normal distribution [13]. Rest of the discussion
remained similar to Section 2.1.

2.3. S2
U and S2

L control charts
Let S2

j , j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process
is said be out-of-control if k/k or k/k + r consecutive S2

j crossed the control limit (US2 for
S2

U or LS2 for S2
L control chart). The S2

j , US2 , and LS2 are formulated as follows:

S2
j = 1

n − 1

n∑
i=1

(Xij − X̄j), US2 = wU σ2
0

n − 1
, LS2 = wLσ2

0
n − 1

,

where wU and wL are (1 − p0)th and p0th percentiles of chi-squared distribution with n − 1
degree of freedom, and σ2

0 is known in-control variance of X.

2.4. SU and SL control charts
Let Sj, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive Sj falls outside the control limit (US

for SU or LS for SL control chart). The Sj, US , and LS are formulated as follows:

Sj =

√∑n
i=1(Xij − X̄j)

n − 1
, US = mU σ0√

n − 1
, LS = mLσ0√

n − 1
,

where mU and mL are (1 − p0)th and p0th percentiles of chi distribution with n − 1 degree
of freedom, and σ0 is known in-control standard deviation of X.
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2.5. Bivariate T 2
U control chart

Let T 2
j , j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive T 2
j lies beyond the UT 2 . The T 2

j and
UT 2 are formulated as follows:

T 2
j = n(Mj − µ0)tΣ−1

0 (Mj − µ0), UT 2 = t2
U ,

where Mj = (Ȳ1j , Ȳ2j)t is the jth sample mean vector, µ0 = (µ10, µ20)t is known in-control
mean vector of Y1 and Y2, Σ0 is variance-covariance matrix of Mj, and t2

U is (1 − p0)th
percentile of chi-squared distribution with two degree of freedom.

2.6. Bivariate |S|U and |S|L control charts
Let |S|j, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a

process is said be out-of-control if k/k or k/k + r consecutive |S|j falls outside the control
limit (U|S| for |S|U or L|S| for |S|L control chart). The Sj, US , and LS are formulated as
follows:

|S|j = S2
1jS2

2j − S2
12j , U|S| = |Σ0| b2

U

4(n − 1)2 , L|S| = |Σ0| b2
L

4(n − 1)2 ,

where S2
1j and S2

2j are jth sample variance of size n, S2
12j is sample covariance between

process characteristics (Y1 and Y2), bU and bL are (1 − p0)th and p0th percentiles of chi-
squared distribution with 2n − 4 degree of freedom, and |Σ0| is the determinants of Σ0.

3. Computation of performance measures and comparative analysis
In this section we are intended to provide Monte Carlo simulation procedure [7, 15] for

computing the performance measures of upper-sided and lower-sided control charts under
runs rules (see Sec. 2), and also conduct comparative analysis. The performance measures
are αact, P1, ARLact, and ARL1, and their further details are given in Sec. 1. A control
chart for different choices of runs rules is said to be best if αact or ARLact is equal to α or
ARLo, respectively. Likewise, a control chart under different choices of runs rules can be
announced best for a certain choice of runs rule if it attains minimum ARL1 or maximum
P1 given that the control chart has same ARL0 or α respectively.

3.1. X̄U and X̄L control charts
To compute the P1 of X̄U control chart, generate 105 random samples of size n from nor-

mal distribution with out-of-control mean µ∗ = µ0 + δ1σ0 (where δ1 ≥ 0 represents amount
of upward shift) and in-control standard deviation σ0 followed by calculating the plotting
statistics (X̄j) and comparing them with UX̄ to count the number of statistics falling above
the UX̄ . Finally, proportion of plotting statistics falling above the UX̄ is reported as P1.
Similarly, one may proceed for X̄L control chart by considering LX̄ with µ∗ = µ0 + δ2σ0
(where δ2 ≤ 0 represents amount of downward shift). Furthermore, for computing the
ARL1, generate a random sample of size n from normal distribution followed by calculat-
ing the statistics to compare with the UX̄ or LX̄ for deciding either process is in-control or
out-of-control. Afterwards, repeat the prescribed procedure until the process is declared
out-of-control and then record the sample number (run length). Likewise, repeat the afore-
mentioned procedure 105 times to attain the vector of run length. Ultimately, average of
the vector of run length is required ARL1. Note that αact and ARLact is the special case
of P1 and ARL1, respectively when δ1 = δ2 = 0. Based on the aforesaid procedures, we have
attained αact, ARLact, P1 and ARL1 of X̄U and X̄Lcontrol charts for some selective choices
of δ1, δ2, n, α = 0.0027, ARL0 = 370, k/k and k/k + r (see Tables 1–3). Thus, the results
are discussed as follows:
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• The αact and ARL0 of mean control charts (X̄U and X̄L) are obtained equal to
α and ARL0 (i.e. αact = α = 0.0027 and ARLact = ARL0 = 370) for classical
and additional runs rules (see Table 1). This means that Eqs.(2.1)–(2.2) plays its
role for resolving the issue of Shewhart-type control charts under runs rules. The
details about the issue of Shewhart-type control charts are given in Sec. 1.

• Behavior of FAR based mean control charts with runs rules are sustained in terms
of P1 (see Tables 2–3). Similarly, we have observed for the case of ARL based mean
control charts in terms of ARL1. These outcomes can be interpreted as detection
ability of X̄U control chart is similar to the X̄L control chart when in-control process
mean is shifted to new level with same magnitude of distance.

• The detection ability of FAR based mean control charts are observed uniformly
higher for all choices of shifts (δ1 > 0 and δ2 < 0) in terms of P1 when additional
runs rules are employed as compared to 1/1 runs rule (see Tables 2–3). In con-
tinuation, detection ability of ARL based mean control charts are found higher for
only small-to-moderate shifts (e.g. 0 < δ1 < 1) in terms of ARL1 when additional
runs rules are implemented relative to classical runs rule. This implies that ARL
based mean control charts are efficient towards detection of small-to-moderate
shifts when additional runs rules are considered, and also efficient for large shifts
when classical runs rule is incorporated.

• There are relationships between detection ability and choices of k/k, k/k + r, n,
δ1 and δ2 (see Tables 2–3). For instance, detection ability of FAR based mean
control charts uniformly increase as value of k/k increases. This remains valid for
all choices of n, δ1 and δ2. Also, detection ability of ARL based mean control charts
increase as value of k/k increases.

• Among variant choices of runs rules, the 3/4 with mean control charts is proved
efficient towards detection of small-to-moderate shifts relative to the other choices.
Also, based on the detection ability in terms of ARL1 and P1, performance order
of runs rules with mean control charts is 3/4, 3/3, 2/4, 2/2, 2/3, and 1/1.

Table 1. αact and ARLact at α = 0.0027, ARL0 = 370, δ1 = 0, δ2 = 0, δ3 = 1,
δ4 = 1, d∗ = 1, d = 0, k/k and k/k + r

1/1 2/2 3/3 2/3 2/4 3/4
αact ARLact αact ARLact αact ARLact αact ARLact αact ARLact αact ARLact

X̄U 0.0027 370.37 0.0027 370.17 0.0027 370.14 0.0027 370.18 0.0027 370.10 0.0027 370.15
X̄L 0.0027 370.37 0.0027 370.17 0.0027 370.13 0.0027 370.43 0.0027 370.53 0.0027 370.10
S2

U 0.0027 370.17 0.0027 370.60 0.0027 370.40 0.0027 370.63 0.0027 370.13 0.0027 370.72
S2

L 0.0027 370.17 0.0027 370.17 0.0027 370.14 0.0027 370.18 0.0027 370.10 0.0027 370.43
SU 0.0027 370.23 0.0027 370.31 0.0027 370.13 0.0027 370.43 0.0027 370.53 0.0027 371.20
SL 0.0027 370.21 0.0027 370.28 0.0027 370.40 0.0027 370.63 0.0027 370.13 369.71 372.42
|S|U 0.0027 370.25 0.0027 370.17 0.0027 370.14 0.0027 370.18 0.0027 370.10 0.0027 371.31
|S|L 0.0027 370.37 0.0027 370.17 0.0027 370.13 0.0027 370.43 0.0027 370.41 0.0027 372.31
T 2

U 0.0027 370.37 0.0027 370.11 0.0027 370.40 0.0027 370.63 0.0027 370.20 0.0028 371.25

3.2. S2
U , S2

L, SU , SL, |S|L and |S|U control charts
The mechanism for computing P1 and ARL1 of S2

L and S2
U control charts is similar to

X̄L and X̄U control charts except in-control mean is stable µ0, whereas in-control variance
σ2

0 is out-of-control, that is, σ2
1 = (δ3σ0)2 and σ2

1 = (δ4σ0)2, where δ3 ≥ 1 and δ4 ≤ 1 are
upward and downward shift. Likewise, for SU and SL control charts, assume that the
in-control mean is stable, whereas standard deviation is out-of-control σ1 = δ3σ0 and σ1 =
δ4σ0. Besides, procedures for computing the power and out-of-control average run length
of |S|L and |S|U control charts is to assume the µ0 is stable, whereas Σ0 is out-of-control
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Table 2. P1 and ARL1 of X̄U control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ1

X̄U

δ1

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 372.02 0.0028 371.70 0.0027 369.47
0.05 0.0038 263.16 0.0042 240.47 0.0045 228.97 0.0043 243.52 0.0047 233.21 0.0048 225.25
0.1 0.0053 188.68 0.0065 159.79 0.0074 146.52 0.0069 155.64 0.0077 151.97 0.0082 136.01
0.15 0.0072 138.89 0.0097 108.75 0.0117 96.92 0.0107 106.06 0.0122 102.20 0.0136 89.33
0.2 0.0098 102.04 0.0142 75.73 0.018 66.16 0.0164 71.05 0.019 69.54 0.0219 59.05
0.25 0.0131 76.34 0.0204 53.9 0.027 46.6 0.0244 50.62 0.0288 48.99 0.034 41.87
0.3 0.0174 57.47 0.0288 39.23 0.0392 33.84 0.0355 36.90 0.0426 34.92 0.0513 29.75
0.35 0.0228 43.86 0.0398 29.19 0.0556 25.28 0.0505 27.64 0.0615 26.00 0.0747 21.88
0.4 0.0295 33.9 0.0539 22.19 0.0767 19.41 0.0702 20.55 0.0863 19.74 0.1056 17.12
1 0.2925 3.42 0.5316 3.22 0.6708 3.88 0.7029 3.11 0.8065 3.14 0.8406 3.611

Table 3. P1 and ARL1 of X̄L control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ2

X̄L

δ2

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 370.15 0.0028 369.27 0.0027 367.20
-0.05 0.0038 263.16 0.0042 240.47 0.0045 228.97 0.0043 239.73 0.0047 232.81 0.0048 219.60
-0.1 0.0053 188.68 0.0065 159.79 0.0074 146.52 0.0069 158.33 0.0077 148.88 0.0082 138.42
-0.15 0.0072 138.89 0.0097 108.75 0.0117 96.92 0.0107 106.96 0.0122 101.41 0.0136 89.84
-0.2 0.0098 102.04 0.0142 75.73 0.018 66.16 0.0164 71.94 0.019 68.35 0.0219 59.87
-0.25 0.0131 76.34 0.0204 53.9 0.027 46.6 0.0244 51.56 0.0288 48.12 0.034 42.35
-0.3 0.0174 57.47 0.0288 39.23 0.0392 33.84 0.0355 37.01 0.0426 34.98 0.0513 30.04
-0.35 0.0228 43.86 0.0398 29.19 0.0556 25.28 0.0505 27.25 0.0615 26.00 0.0747 22.00
-0.4 0.0295 33.9 0.0539 22.19 0.0767 19.41 0.0702 20.38 0.0863 20.11 0.1056 16.98
-1 0.2925 3.42 0.5316 3.22 0.6708 3.88 0.7029 3.1292 0.8065 3.12 0.8406 3.60

(say Σ1), that is,

µ0 =
[

µ10
µ20

]
and Σ1 =

[
δ2

5σ2
10 δ5δ6ρσ10σ20

δ5δ6ρσ10σ20 δ2
6σ2

20

]
,

where δ2
5 ≥ 1 and δ2

6 ≥ 1 are amount of shifts in the in-control variances (σ2
10 and σ2

20),
ρ is the amount of correlation between Y1 and Y2. After that, generate random sample
from bivariate normal distribution with µ0 and Σ1 followed by calculating the |S|U and
comparing with the control limit (U|S| or L|S|) to decide whether the process is in-control
or out-of-control. Rest of the steps for computing P1 and ARL1 of |S|L and |S|U control
charts are identical to X̄L and X̄U control charts. It is worthy to mention that detection
ability of |S|L and |S|U control charts are dependent on the product of shifts d∗2 = δ2

5δ2
6 and

n in respective of the choice of other quantities such as µ0, and Σ1. This property is termed
as invariance property. Therefore, one may consider the product value of shift instead of
assuming each shift separately. For comparative purpose, we have obtained αact, ARLact,
P1 and ARL1 of S2

U , S2
L, SU , SL, |S|L and |S|U control charts at α = 0.0027, ARL0 = 370,

various choices of k/k, k/k + r, δ3, δ4 and d∗ (see Tables 4–9). Note that αact and ARLact

is the special case of P1 and ARL1, respectively when δ3 = δ4 = d∗ = 1. Now discussions
on the behavior of S2

U , S2
L, SU , SL, |S|L and |S|U control charts are given in the following

points:
• The αact and ARL1 of S2

U , S2
L, SU , SL, |S|L and |S|U control charts are obtained

equal to prefix values of α and ARL0 (i.e. αact = α = 0.0027 and ARLact = ARL0
= 370) for classical and additional runs rules (see Table 1).
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• The detection ability of FAR based S2
U and SU control charts uniformly increases

for small n (e.g. n < 5) in terms of P1 as value of k/k increases. In comparison,
detection ability of ARL based S2

U and SU control charts decreases for small n in
terms of ARL1 as value of k/k increases. This may illustrate as the k/k runs rules
are useful for FAR based S2

U and SU control charts at any choice of n relative to
1/1 runs rule, whereas k/k runs rules are not beneficial for ARL based S2

U and SU

control charts when n is small. However, for n ≥ 5, detection ability of ARL based
S2

U and SU control charts with 2/2 and 3/3 runs rules are seen higher at wide range
of shifts relative to 1/1 runs rule (see Tables 4 & 6). Between runs rules, 2/2 results
in higher detection ability of ARL based S2

U and SU control charts as compared to
3/3.

• The diagnosing ability of FAR based |S|U control chart uniformly increases for small
n (e.g. n < 5) in terms of P1 as value of k/k increases. In contrast, detection ability
of ARL based |S|U control chart reduces for small n (e.g. n < 5) in terms of ARL1
as k/k increases. This may illustrate as k/k runs rules are useful for FAR based
|S|U control chart relative to 1/1 runs rule at any choice of n, whereas k/k runs
rules are not useful for ARL based |S|U control chart when n is small. However, for
n ≥ 5, detection ability of ARL based |S|U control chart under k/k runs rules is seen
higher than 1/1 runs rule (see Table 8) at various choices of shifts (1 < d∗ < 1.50).
Among k/k runs rules, 3/3 results in highest detection ability of ARL based |S|U
control chart for 1 < d∗ ≤ 1.20 relative to 2/2. Similarly, 2/2 results into highest
detection ability of ARL based |S|U control chart for 1.20 < d∗ ≤2.5 relative to 3/3.

• The detection ability of FAR based S2
L, SL, and |S|L control charts are uniformly

higher when additional runs rules are applied relative to classical runs rule (see
Tables 5,7 & 9). Similarly, detection ability of ARL based S2

L, SL, and |S|L control
charts are observed maximum for small-to-moderate shifts when additional runs
rules are employed.

• The n, δ3, δ4 and d∗ have an effect on the detection ability of S2
U , S2

L, SU , SL, |S|L
and |S|U control charts. In simple words, detection ability of FAR and ARL based
control charts increases in terms of P1 and ARL1 as size of n, δ3, δ4 and/or d∗

increases (see Tables 4–9).
• At several choices of small-to-moderate shifts (δ3, δ4 and d∗), either 2/4 or 3/4 runs

rule is proved efficient with dispersion control charts relative to k/k runs rules in
general. In terms of ARL1 and P1, performance order of various runs rules with
dispersion control charts is as follows: 2/4, 3/4, 2/3, 2/2, 3/3, 1/1 when S2

U and SU ;
3/4 3/3, 2/2, 2/3 or 2/4, 1/1 when S2

L and SL. Also, for |S|U and |S|L control charts,
pattern of various runs rules are almost similar to S2

U and S2
L control charts.

Table 4. P1 and ARL1 of S2
U control chart at n = 5, α = 0.0027, ARL0 = 370,

k/k, k/k + r and δ3

S2
U

δ3

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

1 0.0027 370.37 0.0027 370.76 0.0027 370.02 0.0026 370.30 0.0028 369.33 0.0027 368.29
1.10 0.0096 104.13 0.0104 101.86 0.0109 103.72 0.0125 96.65 0.0149 88.38 0.0137 92.38
1.21 0.0255 39.261 0.029 39.24 0.0313 41.48 0.0398 34.36 0.0509 32.29 0.0452 34.14
1.32 0.0542 18.44 0.0632 19.36 0.0692 21.39 0.0946 17.09 0.1256 15.56 0.1086 17.26
1.44 0.0977 10.23 0.115 11.44 0.1263 13.21 0.1802 10.00 0.2417 9.42 0.2056 10.54
1.56 0.1552 6.44 0.1824 7.71 0.1998 9.28 0.2901 6.77 0.3853 6.50 0.3265 7.50
1.69 0.2235 4.47 0.2609 5.72 0.2841 7.14 0.4116 5.08 0.5335 4.91 0.4555 5.80
1.82 0.2985 3.35 0.3446 4.56 0.3724 5.87 0.5313 4.12 0.6665 3.988 0.5777 4.89
1.96 0.3757 2.66 0.4284 3.83 0.459 5.06 0.6391 3.48 0.7734 3.44 0.6835 4.31
4 0.9074 1.10 0.9302 2.11 0.9401 3.12 0.9941 2.08 0.9995 2.08 0.9958 3.06
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Table 5. P1 and ARL1 of S2
L control chart at n = 5, α = 0.0027, ARL0 = 370,

k/k and δ4

S2
L

δ4

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0.04 1 7 1 1 1 3 1 2 1 2 1 3
0.36 0.1158 8.63 0.5922 2.94 0.8862 3.21 0.66 3.11 0.7173 3.25 0.9442 3.21
0.42 0.0676 14.79 0.3642 4.31 0.6797 3.80 0.41 4.57 0.4567 4.80 0.7674 3.73
0.49 0.0401 24.96 0.1995 7.06 0.4285 5.17 0.2238 7.43 0.2494 7.79 0.4996 5.08
0.56 0.0242 41.27 0.1015 12.57 0.2269 8.17 0.1115 13.04 0.1239 13.36 0.2646 7.98
0.64 0.015 66.75 0.0496 23.74 0.1053 14.75 0.0531 24.55 0.0586 24.92 0.1202 14.64
0.72 0.0095 105.62 0.0238 46.47 0.0447 29.78 0.0249 47.61 0.0272 46.70 0.0494 29.39
0.81 0.0061 163.65 0.0114 92.65 0.0179 65.52 0.0116 93.81 0.0126 93.50 0.0192 64.05
0.90 0.004 248.51 0.0055 185.72 0.007 152.93 0.0055 186.30 0.0059 187.79 0.0072 152.44
1 0.0027 370.37 0.0027 370.76 0.0027 370.02 0.0026 377.00 0.0028 368.91 0.0027 371.57

Table 6. P1 and ARL1 of SU control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ3

SU

δ3

1/1 2/2 3/3 2/3 2/4 3/4
p1 ARL1 p1 ARL1 p1 ARL1 p1 ARL1 p1 ARL1 p1 ARL1

1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 373.71 0.0028 368.81 0.0027 368.77
1.05 0.0053 189.71 0.0055 186.51 0.0057 187.42 0.006 178.51 0.0068 171.72 0.0064 174.27
1.1 0.0094 106.93 0.0101 104.6 0.0106 106.43 0.0121 97.71 0.0144 90.02 0.0132 93.83
1.15 0.0153 65.22 0.017 64.13 0.0182 66.31 0.0219 58.28 0.027 54.83 0.0245 55.96
1.2 0.0235 42.49 0.0267 42.32 0.0288 44.57 0.0363 37.09 0.0462 34.82 0.0412 36.70
1.25 0.0342 29.25 0.0393 29.68 0.0428 31.87 0.056 25.72 0.0729 24.12 0.064 26.12
1.3 0.0474 21.09 0.055 21.89 0.0602 23.98 0.0814 19.12 0.1075 17.64 0.0933 19.00
1.35 0.0632 15.82 0.0739 16.85 0.0811 18.81 0.1123 14.67 0.1498 13.64 0.1288 15.26
1.4 0.0815 12.27 0.0956 13.43 0.1051 15.28 0.1482 11.62 0.1987 10.93 0.1696 12.32
2 0.3976 2.52 0.4515 3.68 0.4828 4.89 0.6667 3.36 0.7986 3.31 0.7099 4.17

Table 7. P1 and ARL1 of SL control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ4

SL

δ4

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0.2 0.5616 1.78 0.9977 2 1 3 0.9997 2.00 0.9999 2.016 1 3.00
0.6 0.0191 52.43 0.0716 17.09 0.1577 10.76 0.0777 17.48 0.086 17.67 0.1824 10.75
0.65 0.0141 70.76 0.0453 25.78 0.0951 16.01 0.0483 27.41 0.0533 26.43 0.1081 15.43
0.7 0.0107 93.65 0.029 38.76 0.0566 24.46 0.0305 39.11 0.0334 40.06 0.0631 24.44
0.75 0.0082 121.81 0.0188 57.9 0.0335 38.05 0.0195 59.30 0.0212 59.07 0.0366 36.74
0.8 0.0064 156.02 0.0124 85.76 0.0199 59.81 0.0127 87.37 0.0137 86.16 0.0213 58.85
0.85 0.0051 197.07 0.0083 125.74 0.0119 94.52 0.0084 127.79 0.009 127.99 0.0125 93.10
0.9 0.0041 245.86 0.0056 182.36 0.0072 149.48 0.0056 185.15 0.006 184.65 0.0074 148.47
0.95 0.0033 303.3 0.0039 261.5 0.0044 235.78 0.0038 264.10 0.0041 264.93 0.0044 237.43
1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 373.48 0.0028 372.11 0.0027 367.01
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Table 8. P1 and ARL1 of |S|U control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and d∗

|S|U

d∗
1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 370 0.0028 370 0.0027 370
1.05 0.0040 250.79 0.0042 244.81 0.0043 243.16 0.0043 238.69 0.0048 239.53 0.0046 234.54
1.1 0.0057 176.56 0.0061 169.22 0.0064 167.88 0.0067 161.21 0.0076 155.46 0.0073 156.97
1.15 0.0078 128.55 0.0086 121.66 0.0092 120.91 0.01 116.82 0.0116 107.89 0.0111 109.15
1.2 0.0104 96.37 0.0118 90.51 0.0128 90.29 0.0142 84.36 0.017 79.37 0.0161 79.05
1.25 0.0135 74.130 0.0157 69.36 0.0172 69.58 0.0196 62.81 0.0238 58.89 0.0225 60.14
1.3 0.0171 58.31 0.0203 54.55 0.0225 55.1 0.0262 49.84 0.0324 46.04 0.0305 47.18
1.35 0.0214 46.8 0.0256 43.88 0.0287 44.67 0.0341 38.97 0.0429 37.42 0.0401 37.07
1.4 0.0262 38.23 0.0318 36.02 0.0358 36.98 0.0434 32.20 0.0552 30.25 0.0514 30.76
2 0.1234 8.11 0.1572 8.74 0.1805 10.01 0.2447 7.67 0.3238 7.40 0.2889 8.23

Table 9. P1 and ARL1 of |S|L control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and d∗

|S|L

d∗
1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0.2 0.1553 6.44 0.6141 2.87 0.8693 3.26 0.7119 2.93 0.7767 3.07 0.9426 3.22
0.6 0.0109 91.36 0.0265 42.13 0.0471 28.6 0.0287 43.38 0.0319 41.87 0.0542 27.44
0.65 0.0088 113.24 0.019 57.38 0.0318 39.98 0.0202 57.79 0.0224 57.09 0.0358 38.11
0.7 0.0072 138.38 0.0139 77.26 0.0216 55.79 0.0145 79.31 0.016 77.62 0.0239 53.49
0.75 0.006 167 0.0102 102.89 0.0149 77.58 0.0106 104.58 0.0116 102.30 0.0161 76.19
0.8 0.005 199.34 0.0077 135.57 0.0104 107.36 0.0078 139.23 0.0085 132.88 0.011 104.68
0.85 0.0042 235.62 0.0058 176.81 0.0073 147.72 0.0059 174.74 0.0063 172.15 0.0076 146.35
0.9 0.0036 276.07 0.0045 228.36 0.0052 201.98 0.0044 232.46 0.0048 228.26 0.0053 194.40
0.95 0.0031 320.91 0.0035 292.25 0.0037 274.33 0.0034 294.21 0.0037 286.50 0.0038 278.27
1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 374.14 0.0028 369.12 0.0027 370.25

3.3. T 2
U control chart

The procedure for computing the P1 and ARL1 of T 2
U control chart is similar to |S|U

and |S|U control charts except difference is at least one elements of µ0 is shifted (say µ1),
whereas Σ0 is stable, that is,

µ1 =
[
δ7

δ8

]
, δ7 = δ8, and Σ0 =

[
σ2

10 ρσ10σ20

ρσ10σ20 σ2
20

]
where δ7 ∈ ℜ and δ8 ∈ ℜ represent amount of shift in the in-control process means, thats
is, µ10 and µ20 respectively. After that, generate random sample from bivariate normal
distribution with µ0 and Σ1 followed by calculating the T 2

j and comparing with UT 2 to
decide whether the process is in-control or out-of-control. Rest of the steps for computing
P1 and ARL1 of T 2

U control chart are similar to X̄U control chart. It is valuable to mention
that detection ability of T 2

U control chart is dependent on the Mahalanobis distance d, that
is,

d =
√

(µ1 − µ0)tΣ−1
0 (µ0 − µ1),

and n in respective of the choice of other quantities (µ1, and Σ0). This property is termed
as directional invariance [14]. Therefore, we have considered shift in form of d as can be
seen in many existing studies such as Mehmood et al. [7] and Pignatillo and Runger [14].
Also, for α = 0.0027, ARL0 = 370, and some choices of n, d, k/k and k/k + r, we have
provided αact, ARLact, P1 and ARL1 in Table 10. Similarly one may proceed for other
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choices of α, ARL0, n, d, k/k and k/k + r. Furthermore, results are described in following
points:

• The αact and ARL1 of T 2
U control chart are determined equal to α and ARL0 (i.e. αact

= α = 0.0027 and ARLact = ARL0 = 370), respectively for classical and additional
runs rules (see Table 1).

• The detection ability of FAR based T 2
U control chart is uniformly outstanding at

various choices of d when additional runs rules are plugged relative to classical runs
rule in general. In comparison, ARL based T 2

U control chart is noted superior for
small-to-moderate d when additional runs rules are integrated relative to classical
rule (see Table 10).

• The n and d are associated with the detection ability of T 2
U control chart. It

is summarized as detection ability of T 2
U control chart in terms of P1 and ARL1

increases as size of n and/or d increases (see Table 10).
• The 2/4 runs rule is performed superb with T 2

U control chart for detection of small-
to-moderate d relative to the other runs rules schemes. Also, performance order
of various runs rules is as follows: 2/4 is ranked at 1st position followed by 3/4 at
2nd, 2/3 at 3rd, 3/3 at 4th, 2/2 at 5th, and 1/1 at last.

Table 10. P1 and ARL1 of T 2
U control chart at n = 5, α = 0.0027, ARL0 = 370,

k/k, k/k + r and d.

T 2
U

d
1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 374.76 0.0028 367.76 0.0027 367.97
0.4 0.0094 106.89 0.011 97.04 0.0119 96.42 0.0173 72.709 0.0208 67.74 0.0198 69.14
0.5 0.0149 67.11 0.019 57.89 0.0215 57.15 0.0332 41.84 0.0411 37.78 0.0403 38.57
0.6 0.0236 42.34 0.0327 35.04 0.0387 34.54 0.0614 24.60 0.0778 22.67 0.0781 22.74
0.8 0.056 17.85 0.0884 14.35 0.1113 14.52 0.1756 9.74 0.2265 9.26 0.2324 9.31
0.9 0.0829 12.06 0.1362 9.86 0.1739 10.25 0.2682 6.85 0.3434 6.72 0.352 6.76
1 0.1191 8.4 0.1999 7.12 0.2558 7.67 0.3817 5.9 0.4802 4.10 0.4893 5.56
1.1 0.1657 6.03 0.2792 5.4 0.3542 6.05 0.5076 4.99 0.6214 3.15 0.628 4.41
1.2 0.2233 4.48 0.3714 4.29 0.4627 5.01 0.6335 3.78 0.7494 2.1 0.7515 3.72
1.4 0.3681 2.72 0.5728 3.05 0.6767 3.86 0.8383 2.8 0.9206 2 0.9161 2.15

4. Real life example
In this section, we conduct a comparative analysis between FAR and ARL based control

charts with runs rules by using the practical data sets. The purpose of comparative analysis
with aid of practical data sets is to know whether the behavior of FAR and ARL based
control charts remains similar as described in Section 3 using the statistical performance
indicators. To achieve the purpose, we consider a data set from Alwan [1] which refers back
to [17] containing the data on 204 consecutive measurement on the electrical resistance
of insulation in megohms. The data set is normally distributed with mean=4498.076
and the standard deviation=328. Afterwards, we have developed a code in R language to
implement the FAR and ARL based X̄U control charts for k/k = 1/1, 2/2, 3/3, α = 0.0027,
and ARL0 = 370 (see Figures 1–2).

The FAR based X̄U control chart shows 3, 5 and 6 out-of-control signals for the 1/1,
2/2 and 3/3 runs rules, respectively (see Figure 1). It is worthy to mention that numbers
of out-of-control signals given by ARL based X̄U control chart with varying choices of runs
rules are equal to the case of FAR based X̄U control chart (see Figure 2). This indicates
that behavior of FAR and ARL based X̄U control charts are identical. Also, additional runs
rules contributes towards detection of small and moderate variations. This comparative
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discussion is in accordance with the statistical results provided in Section 3.1. On the
similar lines, one may attempt for the other choices of control charts.
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Figure 1. FAR based X̄U control chart for varying choices of runs rules (k =
1, 2, 3) and α = 0.0027
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Figure 2. ARL based X̄U control chart for varying choices of runs rules (k =
1, 2, 3) and ARL0 = 370

5. Summary, conclusions and future recommendations
In this article, we have described comparative behavior of false alarm rate (FAR) and

average run length (ARL) based control charts with runs rules. In the list of univariate
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and multivariate control charts, we have included upper-sided and lower-sided mean, vari-
ance, standard deviation, generalized variance, and Hotelling’s. For comparative analysis
and discussions, we have included actual false alarm rate, power, in-control actual average
run length, and out-of-control average run length as performance measures. Further-
more, performance measures are computed by using Monte Carlo simulation procedures
as computation methodology. Besides, diverse results are presented by taking into ac-
count numbers of factors. The detection ability of FAR based lower-sided and upper-sided
control charts are remained uniformly higher when additional runs rule are incorporated
relative to classical runs rule. Also, detection ability of ARL based lower-sided control
charts are recorded outstanding for small-to-moderate shifts when additional runs rules
are employed relative to classical runs rules. In brief, performance order of decision rules
with FAR based lower-sided and upper-sided control charts are persistent, whereas per-
formance order of decision rules with ARL based control charts are dependent on the
circumstances, that is, sample size, size of shift, class of control chart (location and dis-
persion), and side of control limit (upper-sided and lower-sided). Lastly, we have provided
a real life example using the data on electrical resistance of insulation. In the real life
example, we have recorded that behavior of FAR and ARL based control charts using the
real data sets are similar to the behavior using the statistical measures.

The scope of current study covers the processes in which characteristics follows normal
distribution and parameters are known. It is often that process distribution is non-normal
or unknown, and parameters are unknown. Therefore, it would be excellent to conduct an
efficient study in future for non-normal distribution and parameters are unknown. Like-
wise, one may contribute a study by involving robust techniques (e.g. robust estimators
and non-parametric) with control charts. An interesting study can be added on the topic
of comparative analysis between cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) control charts with runs rules.
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Abstract
Two main issues regarding a regression analysis are estimation and variable selection in
presence of outliers. Popular robust regression estimation methods are combined with
variable selection methods to simultaneously achieve robust estimation and variable se-
lection. However, recent works showed that the robust estimation methods used in those
estimation and variable selection procedures are only resistant to the casewise (rowwise)
outliers in the data. Therefore, since these robust variable selection methods may not
be able to cope with cellwise outliers in the data, some extra care should be taken when
cellwise outliers are present along with the casewise outliers. In this study, we proposed a
robust estimation and variable selection method to deal with both cellwise and casewise
outliers in the data. The proposed method has three steps. In the first step, cellwise
outliers were identified, deleted and marked with NA sign in each explanatory variable. In
the second step, the cells with NA signs were imputed using a robust imputation method.
In the last step, robust regression estimation methods were combined with the variable
selection method LASSO (Least Angle Solution and Selection Operator) to estimate the
regression parameters and to select remarkable explanatory variables. The simulation re-
sults and real data example revealed that the proposed estimation and variable selection
procedure perform well in the presence of cellwise and casewise outliers.
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1. Introduction
One of the challenging problems in a regression analysis is to obtain estimators for the

regression parameters that are robust against outliers in data sets. Until recently, outliers
are defined as the observations that are not follow the model of the majority of the data.
In a regression analysis, there are two types of outliers. One type is the outliers that may
occur in the response variable and the other type of outliers occur in exploratory variables,
which are usually called leverage points. Compared to the outliers in response variable,
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outliers in exploratory variables have a much greater influence on classical estimation
procedures. If Xn×p is the data matrix formed by using the observations on the explanatory
variables (rows as cases and columns as variables) the outliers in explanatory variables are
used to be considered as the entire cases that correspond to the entire rows of Xn×p. These
outliers are called as casewise or rowwise outliers. Most of the robust regression methods,
which are proposed against Huber-Tukey contaminated model, proceed by downweighting
the entire rows that are considered as outliers (in response and/or casewise). Note that,
in practice, the Huber-Tukey contaminated model corresponds to the casewise outliers
[2]. However, in recent years, it has been realized that the observations considered as
casewise outliers may not be completely contaminated. These observations may only
have few contaminated cells and the rest of the cells may contain important information.
These type of outliers are called as cellwise outliers [20]. That is, the cellwise outlier
is a cell-deviated observation, so only outlier in one observation and one variable at the
same time. The cellwise outliers may be the result of an independent contaminated model
(ICM) [2]. In the presence of cellwise outliers, using ordinary robust regression estimation
methods (for example using high breakdown point regression estimation methods) may
be caused some loss of information since those methods try to downweight the entire row
without considering non-contaminated cells in the outlying observations. Therefore, in
recent papers new robust regression estimation methods have been proposed to take some
extra care if cellwise and casewise outliers are present [1,6,17]. Debruyne et al. [7] argued
that these outliers identification tools can be a thrilling topics. In order to compare outlier
detection methods in the presence of cellwise and casewise outliers, Unwin [25] plotted the
O3 graph, new visualization technique which is coded in a new R package called "cellWise"
[19].

Another challenging problem in a regression analysis is to select a group of remarkable
explanatory variables. To this extend, many variable selection methods have been pro-
posed [11,24,31]. However, the popular ones are the methods that combine estimation and
selection procedures together. These combined methods are also very effective for the high
dimensional data sets. In particular, these methods are used for the regression problems
involving data sets that have number of dimensions greater than the number of observes.
The LASSO proposed by [24] is the first method in this direction. After the definition of
LASSO, many other methods such as SCAD and bridge have been proposed to carry on
simultaneous estimation and variable selection in a regression problem. Since LASSO and
the other variable selection methods are based on the classical methods the researchers
have been developed robust versions of these methods by using robust regression methods
instead of the classical ones [3,4,8,15,28]. Since, the popular robust methods are designed
to deal with the casewise outliers the combined robust estimation and variable selection
methods, such as robust LASSO and robust SCAD, can only deal with the casewise out-
liers. However, recent works [1, 9] show that the popular robust estimation methods may
not be very successful when cellwise outliers are present. Especially, if we have high di-
mensional data and if the number of observations is rather small relative to the dimension
of the data downweighting entire rows as casewise outliers may cause loss of information.
Instead of doing so, monitoring those outliers and taking care only the outlying cells may
reduce loss of information and improve estimation procedure.

Therefore, in recent papers, researchers have started concerning cellwise outliers and
have proposed robust methods to deal with the cellwise outliers along with the casewise
outliers. Some of these works are as follows. Raymaekers and Rousseeuw [18] proposed new
identification technique which is based on LASSO regression with a stepwise application of
constructed cutoff values for cellwise outliers. Leung et al. [12] proposed robust regression
estimation methods under cellwise and casewise outliers contamination. However, there
are few proposals for the robust estimation and variable selection in the presence of cellwise
and casewise outliers [14]. In this paper, we will consider the robust estimation and the
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variable selection in linear regression models when cellwise and casewise outliers are present
in the data. Our proposal will have three steps. In the first step, we will try to identify
the cellwise outliers in each explanatory variable. This will be done by independently
monitoring each explanatory variable using outlier detection methods. After identifying
cellwise outliers in each explanatory variable these outliers will be removed from the data
and those cells will be marked by NA sign as it is done in [1, 13]. Then, in the second
step, these cells will be regarded as missing observations and will be imputed by using the
robust imputation method proposed by [5]. These two steps will make our explanatory
data matrix as cellwise outliers free, but we may still have casewise outliers in the data.
Finally, in the third step, we will combine robust regression estimation methods with
LASSO, the variable selection method, to estimate the regression parameters and to select
the remarkable explanatory variables without suffering from the casewise outliers. Our
simulation results and real data example showed that the proposed estimation and selection
method work well when casewise and cellwise outliers are possible in the data sets.

The rest of the paper is organized as follows. In Section 2 we will provide the details
of the proposed method. In Section 3 the simulation and the real data examples will be
given. The paper will be finalized with a conclusion section.

2. Three step robust regression estimation and variable selection in the
presence of cellwise outliers

Consider the linear regression model

yi = α + xT
i β + εi, i = 1, 2, 3, ..., n (2.1)

where yi ∈ R is the response variable; xi = (xi1, xi2, ..., xip)T is the p−dimensional vector
of the explanatory variables; β = (β1, β2, ..., βp)T is the vector of regression parameters in
Rp; and εi’s are the iid random errors with zero mean, σ2 variance and the distribution
function F . Note that, distribution function F is symmetric distributions. Without loss
of generality, we assume that α = 0 and consider the model

yi = xT
i β + εi, i = 1, 2, 3, ..., n (2.2)

The regression equation given in Equation (2.2) can also be written in matrix notation as

Y = Xβ + ε (2.3)

where Xn×p is the design matrix, Y is the response vector, and ε is the vector of εi.
Throughout this study, β0 = (β01, β02, ..., β0p)T denotes the true parameter vector and
Ω ⊂ Rp will denote the parameter space.

In this paper, our main aim is to estimate the regression parameters and select the
important regressors under cellwise and casewise contaminations. As we have already
mentioned, the casewise outliers can be identified using robust methods [16, 21] and are
easily dealt with using robust variable selection methods if the variable selection is a
concern. All of these can be done using combined robust estimation and variable selection
methods. However, extra care should be taken to detect the cellwise outliers since they
are not identified by examining the whole data matrix X. Each explanatory variable, that
is; each column of X should be monitored to detect the cellwise outliers. Thus, before
preforming estimation and variable selection each variable should be scanned in terms of
cellwise outliers. As it is proposed by [1] and [13] after detecting the cellwise outlier, those
cells should be imputed using robust imputation methods. Then, robust methods related
to the problem of interests can be used to handle the casewise outliers. In the following
subsections, starting from the identification of the cellwise outliers, we will describe the
three steps of the proposed robust estimation and variable selection method when cellwise
and casewise outliers are present.
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2.1. Identifying cellwise outlier
Cellwise outlier (introduced in [2]) is not a big problem when the proportion of outliers

compared to the sample size is not high. However, Alqallaf et al. [2] observed that even if
there is a very small percent of outliers in every variables, but if the dimension of the data is
large, popular robust estimators with high breakdown point will easily reach their possible
breakdown point. In recent years, researchers have become aware of cellwise outliers and
they have proposed several methods to deal with this problem. Most of the proposed
methods first identifies the cellwise outliers and regard them as missing observations by
changing them with NA sign [1, 9, 13]. That is, the outlier problem is transferred to a
missing data problem. In order to obtain cellwise outliers, there is a new methodology
which combines LASSO regression with a stepwise application of constructed cutoff values
[18]. In this paper, following the same strategy, we will try to identify the cellwise outliers
by using the outlier detection method described in [20]. First, we have to obtain robust
estimates for the location and scale of each column. In this paper, we will use the sample
median for location and MAD for scale. These estimates will be used as initial robust
estimates to obtained the one-step M estimates for location and scale computed as

µ̂M =
∑

wixi∑
wi

σ̂2
M = 1

n

∑
wi (xi − µ̂M )2

(2.4)

where weights w (t) = ρ′(t)
t are computed using Tukey biweight ρ function. Note that, wi

is weights for ith observation and W is a diagonal weight matrix. After robust location
and scale estimates are computed, each column will be standardized using these robust
estimates. Let zi denote these standardized columns. Then, the observations xi will be
considered as outliers if

|zi| ≥
√

χ2
1,q (2.5)

where q is q − th quantile of the chi-squared distribution. After screening all the columns
and identifying all the cellwise outliers those cells will be replaced by NA signs, and hence
the cellwise outlier problem will be transfered into the missing observation problem. This
will be the first step of our proposed robust variable selection method. In next subsection
we will describe the robust imputation algorithm to impute the observations that are
flagged as NA.

2.2. Bypassing cellwise outlier: Robust imputation
After identifying cellwise outliers and replace them with NA, we have created a missing

value problem. Thus, these missing values have to be imputed using some imputation
methods. There are several procedures to deal with missing observations in the data.
These procedures are classified according to the missingness patterns in the data. Cell-
wise outliers are considered as randomly occurred outliers. Therefore, deleting the cellwise
outliers in the data causes the missingness case called as missing completely at random
(MCAR). This type of missing data can be easily imputed using mean or median impu-
tation method. In this paper we will use the robust imputation (ROBimpute) method
proposed by [5]. Actually, the robust imputation method is a robust alternative to the
sequential imputation (SEQimpute) method proposed by [26] and it can be summarized
as follows. Let Xc be the completely observed part and Xm be the missing part of our
explanatory data matrix X which contains missing observations. x∗ be a row in Xm de-
fined as x∗ =

[
(x∗

m)T (x∗
o)T

]T
, where x∗

m and x∗
o are the missing and observed part of that
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row, respectively. As described in [26], let the matrix C defined as in Equation (2.6) be
the inverse of the covariance matrix of Xc and let X∗ be

[
XT

c , x∗
]T

. Further, let x̄c be
the rowwise sample mean of the complete data. Now minimizing the equation given in
Equation (2.7), which can be also written as in Equation (2.8), will be an estimate for x∗.
After finding x∗

m in X∗, it will be used instead of x∗ in X∗ to form new completed data.
Then we have to take care the next missing observations. This procedure should be con-
tinued after all the missingness are imputed. The detailed information about SEQimpute
can be found in [26].

C =
[

Cm,m Cm,o

CT
m,o Cm,m

]
(2.6)

D (x∗) = (x∗ − x̄c)T (cov (Xc))−1 (x∗ − x̄c) (2.7)
x∗

m = (x̄c)m − (Cm,m)−1Cm,o (x∗
o − (x̄c)o) (2.8)

However, since this SEQimpute algorithm is based on sample mean and sample covari-
ance, it is not robust against the outliers in the whole dataset. Therefore, even a single
outlier can badly ruin the algorithm and the imputed value for the missing observations
will be far from the expected value. For this reason, robust alternative to the SEQimpute
has been proposed in [5]. They use robust covariance estimator and the robust location
estimator instead of sample mean and the sample covariance matrix. In particular, they
use minimum covariance determinant (MCD) estimator as the covariance estimator and
the sample median for the mean estimator. The rest of the imputation will be same as
in the classical one described above. This imputation is called ROBimpute and the detail
of the algorithm is found in [5]. In this paper we will use the ROBimpute to impute the
missing cells that are created deleting the cellwise outliers.

2.3. Variable selection with robust LASSO
In this section, we will describe the third step of our proposal. Namely, we will explore

the variable selection for the regression model using refined data. Variable selection meth-
ods are one of the most important part of modeling aspect. In particular, in regression
methods, we are interested in the most important variables and the subsets of full model.
Robust variable selection, such as LASSO, is the robust versions of the classical ones in
the presence of outliers. In this paper, we used LASSO to carry on our variable selection.
LASSO is a well known method which minimizes OLS loss function (y − Xβ)T (y − Xβ)
under the restriction

p∑
j=1

|βj | ≤ t. Hence, this minimization problem with respect to β can

be carried on using lagrange multiplier method. That is we have to minimize the following
objective function,

QN = (y − Xβ)T (y − Xβ) + λ
∑p

j=1
|βj | (2.9)

where λ is regularization parameter.
Using LASSO, parameter estimation and variable selection can be simultaneously ob-

tained. Since the classical LASSO is based on OLS criterion, the resulting estimators will
be sensitive to the outliers, the robust version of LASSO have been proposed in literature
[3, 27]. In robust versions, OLS loss functions have been replaced with robust version of
loss functions such as Huber or Tukey ρ functions.

Several algorithms have been proposed to obtain LASSO estimators. One of these
algorithms to solve the robust LASSO problem is proposed by [28] and it is called using
semi-smooth Newton coordinate descent (SNCD) algorithm. In this paper, we will use
this algorithm to obtain robust LASSO estimates when we have outlier in y direction or
we have heavy-tailed error distribution. The algorithm is provided in the same paper and
it is available as R packages named "hqreg".
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By using robust LASSO, we will get estimators that are resistant to the outliers in y
direction. However, if we have casewise outliers in x direction, the robust LASSO obtained
using Huber or Tukey ρ functions will be badly affected from the casewise outliers in x
direction. Therefore, we have to modified the robust LASSO method to deal with the
casewise outliers.

Concerning the casewise outliers, we will use the MM regression estimation method
proposed by [29]. The MM estimation method will be used as follows. We will first obtain
the MM estimators for the regression parameters. Then, using these MM estimators,
we will compute the weights wi for i = 1, 2, ..., n for each observations using the weight
function obtained from the Tukey ρ function (see e.g. [16], page 30). Then, we will form
W = diag(w1, ..., wn) matrix and transform our X and Y using W matrix as X∗ = W 1/2X

and Y ∗ = W 1/2Y , respectively. Now we can apply classical LASSO to transform data to
do variable selection.

Finally, these three steps can be combined to obtain robust parameter estimation and
variable selection in the presence of cellwise and casewise outlier. The following algorithm
will be used to carry on all of these procedures. In our simulation and real-data exam-
ple, this algorithm will be implemented to demonstrate the performance of the proposed
method. If it is followed from the algorithm, it will see that robust methods with robust
imputation are preferred when there are both cellwise and casewise outliers. If there are
only casewise outliers robust LASSO methods are preferred. If there are no outliers in
dataset, classical LASSO method is preferred.

Algorithm 1: Variable Selection in the presence of cellwise and casewise outliers
Starting of Algorithm.
Data Obtain data (Generating data in simulation or use data from real world example)
If you suspect any Cellwise outliers, then Run
STEP 1: Identification of Cellwise Outliers

Loop 1. i = 1, 2, · · · , p (For each regressors)
Identify cellwise outliers using the procedure described in Section 2.1 and change

them with NA
End Loop 1
STEP 2: Robust Imputation of NA

Loop 2. m = 1, 2, · · · , M (For each NA)
Impute the NA’s by using robust imputation methods described in Section 2.2

End Loop 2
ElseIf Any Casewise Outlier

STEP 3: Robust Estimation and Variable Selection
Apply Robust LASSO described in Section 2.3
ElseIf No Outlier

Apply LASSO
End If
End of Algorithm.

3. Numerical studies
In the application part, we considered simulation study in R to compare the perfor-

mance of variable selection methods in the presence of cellwise outliers. We considered
the regression model given in Section 2. The explanatory variables were independently
generated from the normal distribution N (m, 1) with m coming from discrete uniform
distribution randomly between zero and five. In the simulation study, the dimension of
the parameter vector was taken as 7,15 and 30 and the sample sizes were taken as 50, 100
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and 250. For the regression model, we took the regression parameters as [1, 0, 1, 0, 1, 1, 0]′
for dimension 7. For the dimensions 15, we formed β as follows: first five entries were
taken as one and the others are zero. Similarly, for the dimension 30, the first 10 entries of
β were one and the rest of the entries are as zero. In the regression model, we used three
different error distributions. We first took the standard normal distribution (N (0, 1)) to
explore the case without outliers in y-direction. The other two error distributions were
0.9N (0, 1) + 0.1N (3, 1) and t3. With these distributions we guaranteed the outliers in
y-direction. For the outliers in x direction, we generated randomly observations from
N (50, 1) and combined these observations with the major part of the data.

In this simulation study, cellwise outliers were generated as follows. We first generated
explanatory variables and form our X matrix. Using missingmat() function in ForIMP R
package (see [10]), we created missing observations which were completely at random and
replaced the missing observations with NA signs. Now, we would apply three different
imputation procedures to the X matrix. First, we used ROBimpute method to robustly
impute this missing observations. Second, we used SEQimpute method to impute the
missing observation in classical way (for the functions for imputation given in [5, 26] are
used). Finally, to have data with cellwise outliers, we imputed the NAs with the values
calculated by max(xi)+2σxi . In this ad-hoc method, we easily obtained cellwise outliers in
simulated data. To sum up, we had three different X matrices. One had cellwise outliers,
the other ones had missingness wich were imputed by robust and the classical imputation
methods. The proportion of cellwise outliers were 1%, 5% and 10%. Note that, when
cellwise outliers were constructed, the proportion was calculated using n × p, not just n.
After we designed our data, we applied three different combination of LASSO methods
using the glmnet [22] and hqregraw functions [28] in R. Note that, for the casewise outlier
in x-direction we used glmnet function for the modified dataset described in previous
section.

In the simulation results the methods were compared in three different ways. We ran-
domly divided data in two subsections. We used one part for estimation and variable
selection (training ; 80% of dataset) and the other part is testing (20 % of dataset). Af-
ter we did estimation and variable selection, we counted the number of true zero- beta
selection and we also calculated proportion of true model selection. Then, using the test-

ing part of data, we computed the prediction error 1
T

T∑
i=1

n∑
j=1

(yj − ŷj)2/n where n is the

number of observation and T is the number of iteration in testing data. We also provided
some boxplot illustrations for estimated betas.

The simulation results were summarized in Tables 1-5. Tables 1-3 contained predic-
tion errors. In Table 1, we displayed the results for the case normally distributed errors
with cellwise and casewise outliers for the sample size n = 50. If we only had cellwise
outlier, we observed the smallest prediction error for the case robust imputed data us-
ing classical LASSO (ROB-LASSO) and sequentially imputed data using classical LASSO
(SEQ-LASSO). Therefore, we could say that robust imputation gave a better estima-
tion for cellwise outliers. We also observed that when the number of cellwise outliers
increased, the prediction errors for LASSO and robust imputed LASSO also increased.
Overall, ROB-LASSO and SEQ-LASSO had superiority over the other methods for this
case. When casewise outliers were introduced to the data, we observed that robust im-
puted robust LASSO (ROB-RLASSO) seems better performance for most of the cases
compared to the other methods.

In Table 2, we gave the simulation results for the contaminated error distribution and we
observed similar behavior for ROB-RLASSO. That is, the results for the ROB-RLASSO
was superior to the other methods. In Table 3, simulation results for t3 distributed error
case were summarized. Concerning this case, without casewise outlier ROB-RLASSO gave
smaller prediction errors for almost all the cases. However, when the casewise outliers were
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introduced in the data, the performance of the ROB-RLASSO was getting worse compare
to the robust LASSO (RLASSO).

Table 1. Prediction error for n = 50 and ε ∼ N (0, 1)

pr-casew p pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0 7 0.01 5.902 5.154 1.793 1.898 1.799 1.900
0 7 0.05 18.289 19.410 2.160 2.273 2.153 2.249
0 7 0.10 21.716 25.832 2.427 2.521 2.409 2.519
0 15 0.01 3.808 3.345 1.013 1.085 1.017 1.079
0 15 0.05 11.166 10.145 1.438 1.510 1.449 1.491
0 15 0.10 12.549 12.068 5.937 6.017 3.951 3.712
0 30 0.01 4.146 3.808 1.002 1.087 1.004 1.098
0 30 0.05 14.497 11.570 1.062 1.152 1.046 1.162
0 30 0.10 14.333 11.610 1.289 1.434 1.311 1.440
0.05 7 0.01 813.074 541.661 2.987 3.059 2.717 2.817
0.05 7 0.05 5346.473 3577.792 8.556 8.174 8.979 9.233
0.05 7 0.10 3616.270 9062.238 27.115 17.156 14.483 15.828
0.05 15 0.01 469.709 356.820 2.054 3.333 2.275 6.391
0.05 15 0.05 4307.260 2233.865 17.964 23.400 6.736 11.948
0.05 15 0.10 4108.178 4861.238 218.290 217.778 431.289 297.443
0.05 30 0.01 493.541 982.032 2.069 9.900 1.271 10.643
0.05 30 0.05 5886.633 4772.21 7.783 19.457 6.780 23.559
0.05 30 0.10 10434.33 8941.705 98.562 123.690 128.721 221.843

p: Number of parameters; pr-cellw: Cellwise outlier proportion; pr-casew: x direction outlier proportion; LASSO:
Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Robust
imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Table 2. MSE of beta for n = 50 and ε ∼ N (0, 1) + N (3, 1)

pr-casew p pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0 7 0.01 7.022 5.963 3.050 3.115 3.072 3.113
0 7 0.05 20.945 20.988 3.579 3.586 3.582 3.595
0 7 0.10 25.313 30.345 4.063 4.052 4.056 4.059
0 15 0.01 4.397 4.244 1.716 1.766 1.700 1.777
0 15 0.05 12.502 10.808 2.088 2.139 2.073 2.105
0 15 0.10 12.339 11.738 7.121 6.931 4.446 4.483
0 30 0.01 4.733 4.435 1.517 1.596 1.517 1.597
0 30 0.05 15.298 12.179 1.632 1.671 1.706 1.666
0 30 0.10 14.507 12.227 1.850 1.972 1.876 1.956
0.05 7 0.01 38.653 661.211 3.318 3.841 3.513 5.331
0.05 7 0.05 6562.070 3857.103 3.816 5.648 3.672 5.011
0.05 7 0.10 3933.421 7910.298 77.336 37.420 18.466 28.275
0.05 15 0.01 450.921 367.050 1.660 2.110 1.662 3.253
0.05 15 0.05 3807.158 2180.618 23.511 23.329 3.181 8.353
0.05 15 0.10 3984.041 5059.752 260.543 257.044 83.259 384.752
0.05 30 0.01 606.122 841.965 9.369 41.843 11.931 64.211
0.05 30 0.05 7971.026 4716.980 32.025 50.330 46.235 103.099
0.05 30 0.10 9336.502 8642.231 87.116 141.860 141.060 235.443

p: Number of parameters; pr-cellw: Cellwise outlier proportion; pr-casew: x direction outlier proportion; LASSO:
Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Robust
imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.
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Table 3. MSE of beta for n = 50 and ε ∼ t3

pr-casew p pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0 7 0.01 9.058 8.095 4.960 4.736 4.954 4.746
0 7 0.05 19.349 19.948 4.663 4.515 4.667 4.494
0 7 0.10 24.775 30.729 5.549 5.301 5.537 5.279
0 15 0.01 5.228 4.868 2.843 2.701 2.818 2.709
0 15 0.05 11.125 9.156 2.599 2.512 2.589 2.542
0 15 0.10 13.388 12.450 7.489 7.695 5.626 5.877
0 30 0.01 5.056 4.747 2.061 1.999 2.064 1.987
0 30 0.05 18.032 12.510 2.175 2.086 2.152 2.099
0 30 0.10 15.820 12.237 2.181 2.206 2.247 2.203
0.05 7 0.01 898.064 523.740 6.539 7.146 6.532 8.383
0.05 7 0.05 7288.761 4026.641 7.124 8.047 6.625 7.848
0.05 7 0.10 4171.419 8775.199 18.291 29.342 10.470 17.674
0.05 15 0.01 428.620 342.041 4.010 4.376 3.979 4.375
0.05 15 0.05 4510.567 2382.344 16.507 18.087 6.570 10.137
0.05 15 0.10 3913.375 5047.254 254.423 267.726 116.708 145.420
0.05 30 0.01 634.455 866.216 2.777 32.245 2.731 40.746
0.05 30 0.05 6331.625 4951.489 39.471 105.542 47.720 114.237
0.05 30 0.10 8828.778 8993.255 97.325 179.917 136.942 251.600

p: Number of parameters; pr-cellw: Cellwise outlier proportion; pr-casew: x direction outlier proportion; LASSO:
Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Robust
imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Table 4. Percents of true model selection - I

cellwise pr True Choice Pr. LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
ε ∼ N (0, 1) 0.01 β2 = 0 57.2 70 69.6 79.6 63.2 65.2

β4 = 0 53.6 70 70 80.8 54.8 54.8
β7 = 0 58.4 69.6 70.8 84 60.4 61.2
True Model 16.4 36.4 38.4 51.2 24.8 27.2

ε ∼ N (0, 1) 0.05 β2 = 0 29.6 66.4 63.6 82.4 56.8 57.6
β4 = 0 31.6 62.8 65.2 80.8 55.6 54.8
β7 = 0 30 61.6 62.4 74.4 53.2 52.4
True Model 2.4 31.2 31.2 32.4 20.4 19.6

ε ∼ N (0, 1) 0.01 β2 = 0 51.6 65.6 65.2 81.6 58.8 60.4
+N (3, 1) β4 = 0 50.4 62.4 63.2 79.2 56.4 56.8

β7 = 0 50.8 62 61.6 76.8 53.2 56
True Model 13.2 26.8 27.6 49.2 20.8 22

ε ∼ N (0, 1) 0.05 β2 = 0 30.8 64 65.6 74.4 56.8 56.8
+N (3, 1) β4 = 0 30 65.2 63.2 78.8 53.2 53.6

β7 = 0 28.4 62 63.6 76.8 52.4 51.2
True Model 1.6 31.2 32 27.2 18.4 17.6

ε ∼ t3 0.01 β2 = 0 56.8 62 64 77.6 60 62
β4 = 0 57.6 57.6 62 76 59.2 58.4
β7 = 0 50.8 59.2 60.8 74.8 53.2 52
True Model 18 26.4 28 46.4 22.8 24

ε ∼ t3 0.05 β2 = 0 30.8 58 57.6 70 55.6 54.4
β4 = 0 31.2 60.8 63.2 77.2 57.2 58
β7 = 0 30.8 61.6 62.8 77.2 53.2 54.8
True Model 2 24.8 27.2 26.8 19.6 21.6

ε ∼ N (0, 1) 0.01 β2 = 0 65.2 82.8 82.4 90.0 80.0 81.2
+5% casewise β4 = 0 62.4 81.6 82.0 90.4 77.6 75.6

β7 = 0 66.4 83.2 84.0 88.4 83.2 82.0
True Model 2.7 21.4 21.8 28.0 20.6 20.5

ε ∼ N (0, 1) 0.05 β2 = 0 87.2 79.6 80 98.8 79.6 79.6
+ 5% casewise β4 = 0 86.8 77.6 78.8 96.4 79.6 80.8

β7 = 0 89.2 77.6 78.8 96.8 74.8 77.6
True Model 0 48 48 71.6 46.8 50.8

LASSO: Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Ro-
bust imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.
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In Tables 4-5, we displayed the correctly selected number of zero betas and the correctly
selected true models for p = 7 and n = 50 (Table 4) and n = 250 (Table 5). We observed
that robust imputed robust LASSO performed the best correctly choosing zero betas and
the correctly choosing true model. Robust LASSO seemed the second best among the
others for identifying zero betas and the correct model. We observed that the other
methods were broke-down for correctly choosing zero betas and correct model in the
presence of cellwise and casewise outliers.

Table 5. Percents of true model selection - II

True Choice Pr. LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
ε ∼ N (0, 1) 0.01 β2 = 0 26 93.2 92.8 96.4 91.6 92

β4 = 0 32 90.8 90.8 95.6 90 89.6
β7 = 0 26.4 92 93.2 97.2 89.2 90
True Model 4.8 78 79.2 89.2 73.2 74.4

ε ∼ N (0, 1) 0.05 β2 = 0 2.4 87.6 88 90.8 86 87.2
β4 = 0 7.2 88.8 89.2 92.8 88.8 89.2
β7 = 0 4.4 90.4 90 92.8 90 89.6
True Model 0 71.6 71.6 77.2 68.4 69.2

ε ∼ N (0, 1) 0.01 β2 = 0 26.8 82 81.6 92.4 82 82.4
+N (3, 1) β4 = 0 28.4 79.2 76 89.6 83.2 82.8

β7 = 0 26.4 80.8 78.8 92 84.8 84.8
True Model 2 55.2 52.4 76 58.8 58

ε ∼ N (0, 1) 0.05 β2 = 0 5.6 79.2 78.4 84.4 85.6 86.4
+N (3, 1) β4 = 0 8 74.8 76 80.8 77.2 77.2

β7 = 0 5.2 80.8 80 85.6 84.4 84.4
True Model 0 50 48.4 58.4 55.6 56.4

ε ∼ t3 0.01 β2 = 0 30.8 81.2 81.6 93.2 87.2 87.6
β4 = 0 32.8 79.6 79.2 89.6 84.8 84.4
β7 = 0 29.6 79.2 79.6 89.2 85.6 86.4
True Model 3.2 54.8 56.4 76 63.2 64

ε ∼ t3 0.05 β2 = 0 6 74.8 72.4 79.6 86 84.8
β4 = 0 4.4 78.4 76.4 82.8 84 84.4
β7 = 0 6.4 74.8 74.4 80.8 83.2 83.2
True Model 0 48.4 45.2 53.2 59.6 59.2

ε ∼ N (0, 1) 0.01 β2 = 0 64 91.6 91.6 97.6 91.6 91.6
+5% casewise β4 = 0 65.2 93.6 93.6 98.8 92.8 92.8

β7 = 0 66.4 95.6 95.6 98.4 92.8 92.8
True Model 0.8 81.2 81.2 94.8 78.0 78.0

ε ∼ N (0, 1) 0.05 β2 = 0 1.6 94.8 94.8 100.0 93.6 92.4
+5% casewise β4 = 0 2.0 94.0 94.0 100.0 94.0 93.6

β7 = 0 2.8 93.2 93.2 100.0 91.2 91.6
True Model 0.0 82.8 82.8 98.8 79.2 78.8

LASSO: Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Ro-
bust imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Concerning the results given in Table 5, we observed exactly the similar performance
of the methods. Robust imputed Robust LASSO had the excellent behavior for correctly
choosing zero betas and for identifying the correct models. Comparing to the results given
in Table 4, we noticed that the performances were getting better. For example, when the
sample size was small for normally distributed error with 5% cellwise and 5% casewise
outliers (see the 8th case in Table 4 and Table 5), the ratio choosing the corrected model
is 71.6% . However, that ratio was 98.8% in Table 5. Therefore, increasing sample size
affected for choosing correct model and correct zero betas.

Further to illustrate performance of the methods for higher dimensional cases, we gave
boxplots of the some of the estimated zero betas (Mainly, we took last three zeros for
simplicity). These boxplots were given in Figures 1-3. In these figures, dimension of the
regression parameter is 15. We considered different outliers configurations in these figures.
In Figures 1 and 2, heavy-tailed error distribution with cellwise outliers. On the other
hand, in Figure 3, we had cellwise outlier and casewise outlier with normally distributed
errors. We observed that robust imputed robust LASSO superior to the other methods
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in terms of correctly choosing zero betas almost all the cases. Compare to the others,
variability seemed smaller.

Figure 1. Results for p = 15, n = 50, cellwise − pr = 0.05, and ε ∼ N (0, 1) + N (3, 1)

Figure 2. Results for p = 15, n = 50, cellwise − pr = 0.01 and ε ∼ t3

4. Real data example
To compare the methods in real data example, the most known model selection data, the

prostate cancer data in [23] was examined. There are 97 observations collected from men
who were about to receive a radical prostatectomy. The response variable was log(prostate
specific antigen) (lpsa). The explanatory variables were log (cancer volume) x1 : lcavol),
log(prostate weight) (x2 : lweight), age(x3 ), log(benign prostatic hyperplasia amount)
(x4 : lbph), seminal vesicle invasion (x5: svi), log(capsular penetration) (x6: lcp), Gleason
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Figure 3. Results for p = 15, n = 100, cellwise−pr = 0.05, casewise−pr = 0.05
and ε ∼ N(0, 1)

score (x7: gleason) and percentage Gleason scores 4 or 5 (x8 : pgg45). In literature,
this dataset has been extensively used to access the performance of the model selection
methods [24, 30]. In those papers, the variables x1, x4, x5 were found the most important
variables. In the applications of [24,30], explanatory variable x3 was also found significant.
In our paper, we compared the methods in terms of correctly selected non-significant betas
(zero betas) and true model selection. We also checked the prediction errors for testing
dataset which was randomly chosen 20% of the real dataset in each iteration. The results
were given in Table 6 and Figure 4. All of these results confirmed that robust imputed
robust LASSO was the best according to the criteria we were using. We also noticed that
sequential imputed Robust LASSO had the similar behavior to the robust imputed robust
LASSO.

5. Conclusion
After introducing cellwise outlier or independent contamination model, some problems

occured in estimation even robust ones. Especially in high dimension, breakdown points of
estimation will be exceeded even though there is very small proportion cellwise outliers. In
this paper, we considered cellwise and the casewise outlier problem in a regression analysis
when parameter estimation and variable selection is a concern. We used robust imputation
method to deal with the cellwise outlier and we combined the robust regression estimation
method with LASSO to deal with the variable selection in the presence of cellwise and
casewise outliers. We did this procedure in three steps. In the first step, we had identified
the cellwise outliers and in the second step, we had dealt with the cellwise outliers and use
robust imputation to get rid of the cellwise outliers. Finally, in the last step, we combined
robust estimation with LASSO to dealt with casewise outliers if they are in present. We
provided an extensive simulation study to illustrate the performance of proposed method
and observed that the proposed method has comparable results among the methods that
have similar proposal. We had also explored the real data example using prostate cancer
data which have been extensively used in literature to show the performance of the model
selection methods. The result of the real data example have also confirm the simulation
results in terms of the proposed method.
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Table 6. Real data examples: prostate cancer data results

MSE of Beta for Prostate Cancer Data
pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0.01 4.477 5.199 1.308 1.200 1.303 1.199
0.05 14.845 14.047 1.272 1.192 1.272 1.195
0.10 13.520 12.898 0.970 0.906 0.952 0.896

Zero Beta Selection for Prostate Cancer Data
pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO

100.00 100.00 100.00 100.00 100.00 100.00
33.60 87.60 85.60 90.00 38.80 38.00

0.01 63.60 94.40 93.20 99.60 80.40 81.20
98.00 96.80 97.60 100.00 100.00 100.00

100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
66.80 95.20 95.20 100.00 86.00 85.60

0.05 98.40 96.00 95.60 100.00 76.80 78.80
73.60 90.80 90.80 100.00 96.00 95.60

100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
84.40 72.00 70.80 87.20 49.20 55.60

0.10 99.60 36.00 21.60 99.20 26.00 19.60
5.60 11.60 4.40 98.00 31.20 17.60

100.00 100.00 100.00 100.00 100.00 100.00
True Model Selection for Prostate Cancer Data

pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0.01 8.80 81.20 79.20 88.80 31.20 31.20
0.05 0.80 88.40 88.00 98.40 65.20 66.4
0.10 0.00 6.40 1.60 78.40 6.40 5.60

LASSO: Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Ro-
bust imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Figure 4. Results for prostate cancer data
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