


TURKISH JOURNAL OF SCIENCE

(An International Peer-Reviewed Journal)
ISSN: 2587-0971

Volume: VII, Issue: I, 2022

Turkish Journal of Science (TJOS) is published electronically yearly. It publishes, in English or
Turkish, full-length original research papers and solicited review articles. TJOS provides a forum
to scientists, researchers, engineers and academicians to share their ideas and new research in the
field of mathematical and related sciences as well as theirs applications. TJOS is a high-quality

double-blind refereed journal. TJOS is also an international research journal that serves as a
forum for individuals in the field to publish their research efforts as well as for interested readers

to acquire latest development information in the field. TJOS facilitate communication and
networking among researchers and scientists in a period where considerable changes are taking

place in scientific innovation. It provides a medium for exchanging scientific research and
technological achievements accomplished by the international community.

Abstracting & Indexing in:
1- CiteFactor

https://www.citefactor.org
2- ResearchBib

http://journalseeker.researchbib.com/view/issn/2587-0971
3- Scientific Indexing Services

https://www.sindexs.org/JournalList.aspx?ID=4519
4- COSMOS

http://www.cosmosimpactfactor.com/page/journals_details/5755.html
5- ASOS

https://asosindex.com.tr/index.jsp?modul=journal-page&journal-id=1655
6- J-Gate

https://jgateplus.com/home/j-gate/

Correspondence Address
Turkish Journal of Science (TJOS)

http://dergipark.gov.tr/tjos



Editors-in-Chief
Dr. Ahmet Ocak AKDEMİR

Associate Editor
Dr. Mustafa Ali DOKUYUCU

Editorial Board
Thabet ABDELJAWAD, Prince Sultan University, Saudi Arabia

Ercan ÇELİK, Atatürk University, Türkiye
Elvan AKIN, Missouri Tech. University, USA

Mohammad W. ALOMARI, University of Jerash, Jordan
Merve AVCI-ARDIÇ, Adıyaman University, Türkiye

Saad Ihsan BUTT, COMSATS University of Islamabad, Lahore
Campus, Pakistan

Sever Silvestru DRAGOMIR, Victoria University, Australia
Alper EKİNCİ, Bandırma Onyedi Eylül University, Türkiye
Zakia HAMMOUCH, Moulay Ismail University, Morocco

Fahd JARAD, Çankaya University, Türkiye
Zlatko PAVIC, University of Osijek, Croatia

Feng QI, Henan Polytechnic University, China
Erhan SET, Ordu University, Türkiye

Günay ÖZTÜRK, İzmir Democracy University, Türkiye
Sanja VAROSANEC, Zagreb University, Croatia

Maria Alessandra RAGUSA, University of Catania, Italy
Rustam ZUHERMAN, University of Indonesia, Indonesia

Süleyman ŞENYURT, Ordu University, Turkey
Tuan NGUYEN ANH, Thu Dau Mot University, Vietnam
Nguyen Huu CAN, Ton Duc Thang University, Vietnam



CONTENTS

A Logarithmic Finite Difference Method for Numerical Solutions of
the Generalized Huxley Equation Gonca ÇELİKTEN 1-6

Independent Transversal Domination Number of Corona
and Join Operation in Path Graphs Betül ATAY ATAKUL 7-13

Invariant and Lacunary Invariant Statistical Convergence of Order η
for Double Set Sequences

Uğur ULUSU and Erdinç
DÜNDAR

14-20

Lightlike Hypersurfaces of Poly-Norden Semi-Riemannian Manifolds Erol KILIÇ, Tuba ACET
and Selcen YÜKSEL

PERKTAŞ

21-30

Some special Smarandache ruled surfaces by Frenet Frame in E3 -I Süleyman ŞENYURT,
Davut CANLI and Elif

ÇAN

31-42

Analysis of the spread of Hookworm infection with Caputo-Fabrizio
fractional derivative

Esin İLHAN 43-52



TURKISH JOURNAL OF SCIENCE
VOLUME 7, ISSUE 1, 1-6
ISSN: 2587–0971

http:/dergipark.gov.tr/tjos

A Logarithmic Finite Difference Method for Numerical Solutions of the
Generalized Huxley Equation

Gonca Çeliktena

aKafkas University, Faculty of Science and Letters, Department of Mathematics, 36100, Kars, Turkey.

Abstract. In this paper, numerical solutions of generalized Huxley equation are obtained by using a new
scheme: Implicit logarithmic finite difference method (I-LFDM). The efficiency of the presented method is
illustrated by a numerical example for different cases of parameters which confirm that obtained results
are in good agreement with the exact solutions and numerical solutions obtained by some other methods
in literature. The method is analyzed by von-Neumann stability analysis method and it is displayed that
the method is unconditionally stable.

1. INTRODUCTION

Nonlinear partial differential equations are often used to model most of the problems in various fields
such as physics, chemistry, biology, mathematics and engineering. One of these nonlinear partial differential
equations is generalized Huxley equation.
The generalized Huxley equation

∂u
∂t
−
∂2u
∂x2 = βu

(
1 − uδ

) (
uδ − γ

)
, a < x < b, t > 0 (1)

with initial condition
u (x, 0) = f (x), a < x < b

and boundary conditions
u(a, t) = 11 (t) , u(b, t) = 12 (t) , t > 0

describes the propagation of a nerve impulse in nerve fibers and the movement of the wall in liquid crystals.
Where f (x), 11(t) and 12(t) are known functions, δ, β ≥ 0and γ ∈ (0.1)are given parameters.
Various numerical methods have been used to solve the equation (1) numerically by many researchers.
Hashim et. al. [9] applied the Adomian decomposition method to solve the equation numerically. Vari-
ational iteration method (VIM) has been used to obtain the numerical solutions of the equation by Batiha
et. al. [2]. Hashemi et. al. [8] used the homotopy perturbation method (HPM) and then Hemida and
Mohamed [10] used the homotopy analysis method (HAM) for obtaining the numerical solutions of the
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equation. Inan [12, 13] used the explicit exponential finite difference method and implicit exponential finite
difference method (I-EFDM) to solve the equation.
In this study, we present the implicit logarithmic finite difference method to obtain the numerical solutions
of the generalized Huxley equation. Logarithmic finite difference methods have been used to solve various
equations in literature. İsmail and Al-Basyoni [14] used the closed logarithmic finite difference method to
solve the Troesch problem numerically. Srivastava et al. [16] used the closed logarithmic finite difference
method to solve two-dimensional Burgers equation systems. The one-dimensional coupled Burgers equa-
tion was solved by Srivastava et al. [15] using the closed logarithmic finite difference method. Aljaboori
[1] used the Crank-Nicolson logarithmic finite difference method to solve the combined Burgers equation
numerically. El-Azab et al. [7] obtained numerical solutions of the Korteweg de Vries Burger (KdVB) equa-
tion using the open logarithmic finite difference method. Celikten et. al. [3] used the explicit logarithmic
finite difference schemes to solve the Burgers equation. Modified Burgers equation as solved by Celikten
[4] using the explicit logarithmic finite difference schemes. Celikten [5] obtained the numerical solutions
of Burgers equation by using implicit and fully implicit logarithmic finite difference methods. Celikten
and Sürek [6] used the explicit logarithmic finite difference method to solve the generalized Burgers-Fisher
equation numerically.

2. MATERIALS AND METHODS

2.1. IMPLICIT LOGARITHMIC FINITE DIFFERENCE METHOD

We demonstrate the finite difference approximation of u(x, t)at the node point (xi, tn) by un
i in which

xi = ih(i = 0, 1, . . . ,N), tn = t0 + nk(n = 0, 1, 2, . . .), h = b−a
N is the node size in x direction and kis the time step.

We reorganize Equation (1) to acquire

∂u
∂t
= βu

(
1 − uδ

) (
uδ − γ

)
+
∂2u
∂x2 . (2)

Multiplying equation (2) by eu, we acquire the following equation:

∂eu

∂t
= eu

(
βu

(
1 − uδ

) (
uδ − γ

)
+
∂2u
∂x2

)
(3)

using the finite difference approximations for derivatives in Equation (3) the following implicit logarithmic
finite difference scheme is acquired
I-EFDM

un+1
i = un

i + ln

1 + k

βun
i

(
1 −

(
un

i

)δ) ((
un

i

)δ
− γ

)
+

un+1
i+1 − 2un+1

i + un+1
i−1

h2


 (4)

where 1 ≤ i ≤ N − 1.
Equation (4) is a system of nonlinear difference equations. We assume this nonlinear system of equations
in the form

G(W) = 0 (5)

where G =
[
11, 12, . . . , 1N−1

]T and W =
[
un+1

1 ,u
n+1
2 , . . . ,u

n+1
N−1

]T
. The nonlinear Equation (5) is linearized using

Newton’s iterative approach, which yields the following iteration:
1) Determine W(0), a first guess.
2) For m = 0, 1, 2, 3 . . .up to convergency do:

Resolve J
(
W(m)

)
δ(m) = −G

(
W(m)

)
;

Adjust W(m+1) = W(m) + δ(m) where J(W(m)) the Jacobian matrix which is appraised analytically. The initial
estimate is based on the solution from the previous time step. The Newton iteration is halted at every time
step when

∥∥∥G(W(m))
∥∥∥ ≤ 10−5.
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2.2. LOCAL TRUNCATION ERROR AND CONSISTENCY

In order to analyze the local truncation errors of the numerical scheme (4), the nonlinear term of the

scheme has been linearized by replacing the quantity
(
un

i

)δ
by local constant Ũ. Hence the numerical scheme

(4), convert into

un+1
i = un

i + ln

1 + k

βun
i

(
1 − Ũ

) (
Ũ − γ

)
+

un+1
i+1 − 2un+1

i + un+1
i−1

h2


 (6)

Since the scheme (6) is logarithmic, the examination will be improved by expanding the logarithmic term of
the scheme into a Taylor’s series. Hilal et al. [11] applied the same procedure to calculate the local truncation
error of exponential finite difference schemes and examine their stability. If the scheme’s logarithmic term
is expanded to a Taylor series and the first term is used, the scheme can be expressed as:

un+1
i = un

i + kβun
i

(
1 − Ũ

) (
Ũ − γ

)
+ k

un+1
i+1 − 2un+1

i + un+1
i−1

h2

 (7)

Expansion of the terms un+1
i , un+1

i+1 and un+1
i−1 about the point (xi, tn)by Taylor’ s series and substitution into

Tn
i = un+1

i − un
i − kβun

i

(
1 − Ũ

) (
Ũ − γ

)
− k

un+1
i+1 − 2un+1

i + un+1
i−1

h2


leads to

Tn
i =

[
∂u
∂t
− βu

(
1 − Ũ

) (
Ũ − γ

)
−
∂2u
∂x2

]n

i
+

k
2

(
∂2u
∂t2

)n

i
−

h2

12

(
∂4u
∂x4

)n

i
+ ...

Therefore the principal part of the local truncation error is as follows:

k
2

(
∂2u
∂t2

)n

i
−

h2

12

(
∂4u
∂x4

)n

i

Hence the local truncation error is Tn
i = O (k) +O

(
h2

)
Since lim

h,k→0

[
O (k) +O

(
h2

)]
= 0 presented scheme is consistent. And the scheme is first order in time and

second order in space.

2.3. STABILITY ANALYSIS

We will utilize the von Neumann stability analysis to analyze the scheme’s stability, where the growth
factor of a characteristic Fourier mode is specified as follows:

un
i = ε

neIϕih, I =
√

−1. (8)

von Neumann stability analysis is used to analyze the stability of finite difference schemes applied to
linear partial differential equations. So we will investigate the stability of linear form of the scheme. By
substituting the (8) equality into the (7) linear form of the scheme, we get the growth factors as follows:

ε =
1 + kβ

(
1 − Ũ

) (
Ũ − γ

)
1 + 2k

h2 sin2 ϕh
2

.

Stability condition in von-Neumann method is |ε| ≤ 1
|ε| ≤ 1since β ≥ 0 and γ ∈ (0.1).Therefore I-LFDM generalized Huxley equation is unconditionally stable.
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3. NUMERICAL RESULTS AND DISCUSSION

Implicit logarithmic finite difference method is used to acquire the numerical solutions of the generalized
Huxley equation. To demonstrate the correctness of results L2 and L∞error norms:

L2 = ∥U − uN∥2 =

√√√
h

N∑
j=0

∣∣∣U j − (uN) j

∣∣∣2,
L∞ = ∥U − uN∥∞ = max

j

∣∣∣U j − (uN) j

∣∣∣
are used, in which U and u indicate the exact and computed numerical solutions, respectively. In all
numerical computations we took as h = 0.01 and k = 0.0001.

3.1. NUMERICAL EXAMPLE OF GENERALIZED HUXLEY EQUATION
Consider the generalized Huxley equation of the form Equation (1) in domain 0 ≤ x ≤ 1, t > 0 with

initial condition

u (x, 0) =
[γ

2
+
γ

2
tanh

(
σγx

)] 1
δ

and boundary conditions

u(0, t) =
[
γ

2
+
γ

2
tanh

{
σγ

{(
1 + δ − γ

)
ρ

2 (1 + δ)

}
t
}] 1

δ

,u(1, t) =
[
γ

2
+
γ

2
tanh

{
σγ

(
1 +

{(
1 + δ − γ

)
ρ

2 (1 + δ)

}
t
)}] 1

δ

.

The exact solution of this problem is [17]:

u(x, t) =
[
γ

2
+
γ

2
tanh

{
σγ

(
x +

{(
1 + δ − γ

)
ρ

2 (1 + δ)

}
t
)}] 1

δ

where ρ =
√

4β (1 + δ) and σ = δρ
/
4 (1 + δ).

The numerical solutions of Generalized Huxley Equation obtained by I-LFDM are compared with the exact
solutions and numerical solutions obtained by some other methods [2,8-10,12] in literature in Table 1-3.
The comparisons for the case δ = 1, β = 1and γ = 0.001 are shown in Table 1 while the comparisons for the
case δ = 2, β = 1and γ = 0.001 are shown in Table 2 and for the case δ = 3, β = 1and γ = 0.001 are shown
in Table 3. As can be seen from the tables, numerical solutions obtained by the presented method are quite
compatible with exact solutions and numerical solutions obtained by some other methods in the literature.
In addition, the numerical solutions obtained by the method presented at time t = 1 are better than the
numerical solutions obtained by some other methods in the literature. L2 and L∞ error norms for the case
δ = 1, γ = 0.01 and different values of β are given in Table 4. L2 and L∞ error norms for the case δ = 1,β = 1
and different values of γ are given in Table 5. Table 6 presents L2 and L∞ error norms for the case β = 1,
γ = 0.001 and different values of δ. As it can be seen from the tables, the L2 and L∞ error norms acquired by
the I-LFDM are quite small in all cases.

4. CONCLUSION

In this study, implicit logarithmic finite difference method is used to obtain the numerical solutions
of the generalized Huxley equation. The comparison of the numerical solutions obtained by presented
method with the exact solutions and the numerical solutions obtained by previous studies in the literature
is given by tables. It is clear from the tables that the numerical solutions obtained by I-LFDM are in good
agreement with the exact solutions and better than numerical solutions obtained by some other methods in
literature. The presented method is an efficient technique for finding numerical solutions for various kinds
of nonlinear problems.
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Table 1: Exact and numerical solutions for the case δ = 1, β = 1and γ = 0.001.
x t Exact I-LFDM VIM [2],

HPM [8],
ADM [9]

HAM [10] I-EFDM [12]

0.1 0.05 5.000302E-4 5.000199E-4 5.000052E-4 5.000100E-4 5.000125 E-4
0.1 5.000427E-4 5.000276E-4 4.999927E-4 5.000030E-4 5.000102 E-4
1 5.002676E-4 5.002451E-4 4.997678E-4 4.998680E-4 5.000064 E-4

0.5 0.05 5.001009E-4 5.000778E-4 5.000759E-4 5.000810E-4 5.000768 E-4
0.1 5.001134E-4 5.000750E-4 5.000634E-4 5.000730E-4 5.000692 E-4
1 5.003383E-4 5.002758E-4 4.998385E-4 4.999380E-4 5.000572 E-4

0.9 0.05 5.001716E-4 5.001613E-4 5.001466E-4 5.001520E-4 5.001540 E-4
0.1 5.001841E-4 5.001691E-4 5.001341E-4 5.001440E-4 5.001516 E-4
1 5.004090E-4 5.003865E-4 4.999092E-4 5.000090E-4 5.001479 E-4

Table 2: Exact and numerical solutions for the case δ = 2, β = 1and γ = 0.001.
x t Exact I-LFDM VIM [2] HPM [8],

ADM [9]
HAM [10] I-EFDM [12]

0.1 0.05 2.236188E-2 2.236142E-2 2.236077E-2 2.236077E-2 2.236100E-2 2.236110E-2
0.1 2.236244E-2 2.236177E-2 2.236021E-2 2.236021E-2 2.236070E-2 2.236099E-2
1 2.237250E-2 2.237149E-2 2.235015E-2 2.235015E-2 2.223546E-2 2.236082E-2

0.5 0.05 2.236447E-2 2.236343E-2 2.236335E-2 2.236335E-2 2.236360E-2 2.236339E-2
0.1 2.236503E-2 2.236331E-2 2.236279E-2 2.236279E-2 2.236320E-2 2.236305E-2
1 2.237508E-2 2.237229E-2 2.235273E-2 2.235273E-2 2.235720E-2 2.236251E-2

0.9 0.05 2.236705E-2 2.236659E-2 2.236593E-2 2.236593E-2 2.236620E-2 2.236114E-2
0.1 2.236761E-2 2.236693E-2 2.236537E-2 2.236537E-2 2.236580E-2 2.236615E-2
1 2.237766E-2 2.237665E-2 2.235532E-2 2.235531E-2 2.235980E-2 2.236599E-2

Table 3: Exact and numerical solutions for the case δ = 3, β = 1and γ = 0.001.
x t Exact I-LFDM VIM [2] HPM [8],

ADM [9]
HAM [10] I-EFDM [12]

0.1 0.05 7.937402E-2 7.937239E-2 7.937005E-2 7.937005E-2 7.937080E-2 7.937122E-2
0.1 7.937601E-2 7.937361E-2 7.936807E-2 7.936807E-2 7.936970E-2 7.937084E-2
1 7.941169E-2 7.940812E-2 7.933236E-2 7.933234E-2 7.934820E-2 7.937025E-2

0.5 0.05 7.938196E-2 7.937829E-2 7.937799E-2 7.937799E-2 7.937880E-2 7.937814E-2
0.1 7.938394E-2 7.937784E-2 7.937601E-2 7.937601E-2 7.937760E-2 7.937692E-2
1 7.941962E-2 7.940971E-2 7.934031E-2 7.934029E-2 7.935620E-2 7.937501E-2

0.9 0.05 7.938989E-2 7.938826E-2 7.938592E-2 7.938592E-2 7.938670E-2 7.938709E-2
0.1 7.939187E-2 7.938948E-2 7.938394E-2 7.938394E-2 7.938550E-2 7.938671E-2
1 7.942755E-2 7.942398E-2 7.934825E-2 7.934823E-2 7.936410E-2 7.938612E-2

Table 4: L2 and L∞ error norms for the case δ = 1 and γ = 0.01.
t L2 L∞

β = 1 β = 10 β = 100 β = 1 β = 10 β = 100
0.01 4.390519E-7 4.390371E-6 4.388844E-5 4.974336E-7 4.974196E-6 4.972792E-5
0.1 2.851070E-6 2.850957E-5 2.847622E-4 3.825356E-6 3.825217E-5 3.821034E-4
1 4.541154E-6 4.531847E-5 3.835394E-4 6.218224E-6 6.205651E-5 5.263925E-4
10 4.529978E-6 3.594694E-5 1.047479E-7 6.202945E-6 4.923570E-5 1.442949E-7
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Table 5: L2 and L∞ error norms for the case δ = 1 and β = 1.
t L2 L∞

γ = 0.01 γ = 0.001 γ = 0.0001 γ = 0.01 γ = 0.001 γ = 0.0001
0.01 4.390519E-7 4.410392E-9 4.412417E-11 4.974336E-7 4.996848E-9 7.049136E-12
0.1 2.851070E-6 2.863973E-8 2.865266E-10 3.825356E-6 3.842667E-8 5.420848E-11
1 4.541154E-6 4.561835E-8 4.563772E-10 6.218224E-6 6.246538E-8 8.811778E-11
10 4.529978E-6 4.561961E-8 4.563810E-10 6.202945E-6 6.246721E-8 8.811849E-11

Table 6: L2 and L∞ error norms for the case β = 1 and γ = 0.001.
t L2 L∞

δ = 1 δ = 2 δ = 4 δ = 1 δ = 2 δ = 4
0.01 4.410392E-9 1.972431E-7 1.318968E-6 4.996848E-9 2.234709E-7 1.494356E-6
0.1 2.863973E-8 1.280826E-6 8.564763E-6 3.842667E-8 1.718520E-6 1.149162E-5
1 4.561835E-8 2.039346E-6 1.362625E-5 6.246538E-8 2.792493E-6 1.865864E-5
10 4.561961E-8 2.030148E-6 1.344094E-5 6.246721E-8 2.779902E-6 1.840493E-5
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04100, Ağri, Turkey.

Abstract. A dominating set of a graph G which intersects every independent set of a maximum cardinality
in G is called an independent transversal dominating set. The minimum cardinality of an independent
transversal dominating set is called the independent transversal domination number of G and is denoted
by γit(G). In this paper we investigate the independent transversal domination number of the path graph
Pn with the star graph S1,m, the wheel graph W1,m and the complete graph Kn under neihgbourhood corona,
edge corona and join operation providing β(Pn) > β(G).

1. Introduction

In this paper, we consider simple finite undirected graphs without loops and multiple edges. Let
G = (V(G),E(G)) be a graph. For a vertex x of G, N(x) denotes the set of all neighbours of x in G. The distance
d(u, v) between two vertices u and v in G is the length of a shortest path between them. The diameter of
G, denoted by diam(G) is the largest distance between two vertices in V(G). The number of the neighbor
vertices of the vertex v is called degree of v and denoted by de1G(v). The minimum and maximum degrees
of a vertex of G are denoted by δ(G) and ∆(G). A vertex v is said to be pendant vertex if de1G(v) = 1. A
vertex u is called support if u is adjacent to a pendant vertex [7]. The eccentricity e(u) of a vertex u in G is
the distance from u to a vertex farthest from u. The minimum eccentricity of the vertices of the graph G is
the radius of G denoted by rad(G), while the diameter of G is the greatest eccentricity[4].
Let G be a graph and S ⊆ V(G). We denote by < S > the subgraph of G induced by S. A set S is said
to be an independent set of G, if no pair of vertices of S are adjacent in G. The independence number of G,
denoted by β(G), is the cardinality of a maximum independent set of G. We denote by Ω(G) the set of all
maximum independent sets of G. A vertex and an edge are said to cover each other if they are incident. A
set of vertices which cover all the edges of a graph G is called a vertex cover for G, while a set of edges which
covers all the vertices is an edge cover. The smallest number of vertices in any vertex cover for G is called its
vertex covering number and is denoted by α(G) [7]. For any graph G of order n, α(G) + β(G) = n.
A dominating set S in a graph G is a set of vertices of G such that every vertex in V(G) − S is adjacent to
at least one vertex in S. The domination number of G, denoted by γ(G), is the minimum cardinality of a
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dominating set of G [8, 9]. It is clear that for a graph G, γ(G) ≤ β(G), and If G has no isolated vertices,
γ(G) ≤ α(G).
Given a graph G and a collection of subsets of its vertices, a subset of V(G) is called a transversal of G if it in-
tersects each subset of the collection. If we think of the graph as modeling a communication network, many
graph theoretical parameters have been used to describe the stability of communication networks includ-
ing connectivity, toughness, integrity, binding nımber, domination, exponential domination, independent
transversal domination etc. The independent transversal domination number is one of the measures of the
graph vulnerability. A transversal of a collection of sets is a set of distinct representatives of the elements
in the collection. It is possible to find transversals regarding several types of vertex sets in graphs such
that the domination number, the chromatic number and the independence number of a graph. In [2], the
concept ”partition domination number” was defined as the largest integer k such that given any partition of
the vertex set of the graph having at most k elements in every set of the partition, there is transversal of the
partition being a dominating set. Some complexity results regarding the associated desicion problems and
some bounds or exact values for some specific families of graphs were presented in [2]. A recent work in
new style of transversal-type concepts has been presented in [6]: the independent transversal domination
number[1].
A dominating set of G which intersects every independent set of maximum cardinality in G is called an
independent transversal dominating set. The minimum cardinality of an independent transversal dominating
set is called the independent transversal domination number of G and is denoted by γit(G). An independent
transversal dominating set of cardinality γit(G) is called a γit(G) − set. Thus, if D is an ITD-set of G, then D
is a dominating set of G and β(G) > β(G −D). The notion of independent transversal domination was first
introduced by Hamid [3, 6].
In this paper, firstly known results are given. Then, we investigate the independent transversal domination
number for the neighbourhood corona, the edge corona of the path graph with the star graph S1,m, the wheel
graph W1,m, the complete graph Km and join operation of the path graph with some graphs G providing
β(Pn) > β(G). Lastly, the conclusion section is presented.

2. Known Results

Theorem 2.1. [6] If G is a complete multipartite graph having r maximum independent sets, then

γit(G) =
{

2 , r = 1
r , otherwise

Theorem 2.2. [6] For complete graph with order n and complete bipartite graph with order m + n, γit(Kn) = n and
γit(Km,n) = 2, respectively.

Theorem 2.3. [6] For any path Pn of order n, we have

γit(Pn) =


2 ,n = 2, 3
3 ,n = 6
⌈

n
3 ⌉ , otherwise

Theorem 2.4. [6] For any cycle Cn of order n, we have

γit(Cn) =
{

3 ,n = 3, 5
⌈

n
3 ⌉ , otherwise

Theorem 2.5. [6] If Wn is a wheel on n vertices, then

γit(Wn) =


2, i f n = 5
3, i f n ≥ 7 and is odd or n = 6
4, otherwise
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Theorem 2.6. [6] If G is a disconnected graph with compenents G1,G2, ...,Gr, then γit(G) = min1≤i≤r{γit(Gi) +∑r
j=1, j,i γ(G j)}.

Theorem 2.7. [6] If G has an isolated vertex, then γit(G) = γ(G).

Theorem 2.8. [6] For any graph G, we have 1 ≤ γit(G) ≤ n. Further γit(G) = n if and only if G = Kn.

Theorem 2.9. [6] Let G be a graph on n vertices. Then γit(G) = n − 1 if and only if G = P3.

Theorem 2.10. [6] Let G be a non-complete connected graph with β(G) ≥ n
2 . Then γit(G) ≤ n

2 .

Theorem 2.11. [6] If G is bipartite, then γit(G) ≤ n
2 .

Theorem 2.12. [6] Let a and b be two positive integers with b ≥ 2a − 1. Then there exists a graph G on b vertices
such that γit(G) = a.

Theorem 2.13. [6] If G is a non-complete connected graph on n vertices, then γit(G) ≤ ⌈ n
2 ⌉.

Theorem 2.14. [6] For any graph G, we have γ(G) ≤ γit(G) ≤ γ(G) + δ(G).

Corollary 2.15. [6] If T is a tree, then γit(T) is either γ(T) or γ(T) + 1.

Theorem 2.16. [6] If G is a graph with diam(G) = 2, then γit(G) ≤ δ(G) + 1.

Theorem 2.17. [3] If G is a connected graph and u is a vertex of minimum degree in G, then

γit(G) ≤
{
δ(G) + 1 i f eccG(u) ≤ 2
n(G)

2 + 1, i f eccG(u) ≥ 3

and these bounds are tight.

Theorem 2.18. [3] If G is a graph with β(G) ≥ n(G)
2 , then γit(G) ≤ γ(G) + 1, and this bound is tight.

3. Independent Transversal Domination Number for the Neighbourhood Corona of the Path Graph

Definition 3.1. [6] A dominating set S ⊆ V of a graph G is said to be an independent transversal dominating set if S
intersects every maximum independent set of G. The minimum cardinality of an independent transversal dominating
set of G is called the independent transversal domination number of G and is denoted by γit(G). An independent
transversal dominating set S of G with |S| = γit(G) is called a γit − set.

The following figure shows the independent transversal domination number of a graph G.
where, β(G) = 4, γ(G) = 4. The maximum independent set of the graph consists of four pendant vertices

or two two support vertices on cycle having de1(v) = 2. The dominating set of the graph consists of four
pendant vertices or four support vertices on cycle having de1(v) = 2. Let S be an independent transversal
dominating set. If we pick the support vertices on cycle for S, then all vertices of the graph G are dominated.
But the independence number of the graph doesn’t decrease. V − S contains at least one β − set. So, we
must also add any pendant vertex to S. Hence, β(G) > β(G − S) and γit(G) = 5.

Definition 3.2. [5]
The graph G1 ∗G which is obtained by neighbourhood corona operation of a connected graph G1 and graph G is formed
as follows: Every vertex ui of graph G1 correspond to a graph G and every vertex vi j of G is adjacent to every neighbour
vertex of the corresponding vertex ui of G1, where i = 1, |G1| and j = 1, |G|.

The neighbourhood corona of the graph P6 ∗ P2 can be depicted as in the following figure:



B. Atay Atakul / TJOS 7 (1), 7–13 10

Figure 1: The graph G

Figure 2: The graph P6 ∗ P2

Theorem 3.3. Let Pn and Pm be any path graphs with order n and m, respectively. Then,

γit(Pn ∗ Pm) =


n
2 + 1, i f n ≡ 0(mod 4) and m is odd,
n
2 + 2, i f n ≡ 0(mod 4) and m is even
⌊

n
2 ⌋ + 2, i f n ≡ 1, 2, 3(mod 4) and m is odd,
⌊

n
2 ⌋ + 3, i f n ≡ 1, 2, 3(mod 4) and m is even.

Proof. We denote the vertices of Pn with ui, i = 1,n and the corresponding vertices of Pm with v j, j = 1,m.
Let D be a γ − set of the graph Pn ∗ Pm. So, for k ∈ {0, 1, ..., ⌊ n

4 ⌋ − 1},
D = {u4k+2,u4k+3} and |D| = n

2 , i f n ≡ 0(mod 4);
D = {u4k+2,u4k+3,un−1} and |D| = ⌊ n

2 ⌋ + 1, i f n ≡ 1(mod 4);
D = {u4k+2,u4k+3,un−1,un} and |D| = ⌊ n

2 ⌋ + 1, i f n ≡ 2, 3(mod 4).
The vertices of the maximum independent set of Pn ∗Pm consist of the maximum independent sets of every
Pm. Then, β(Pn ∗ Pm) = n⌈m

2 ⌉. Independence number of < V(Pn ∗ Pm) −D > is the same as the independence
number of V(Pn ∗Pm). Let S be the independent transversal dominating set of the graph Pn ∗Pm. S = D∪{v11}

if m is odd and S = D∪ {v11, v12} if m is even. So, we have β(V(Pn ∗ Pm)− S) < β(Pn ∗ Pm) and this means that
< V(Pn ∗ Pm) − S > doesn’t contain any β − set of Pn ∗ Pm. So,

γit(Pn ∗ Pm) =


n
2 + 1, i f n ≡ 0(mod 4) and m is odd,
n
2 + 2, i f n ≡ 0(mod 4) and m is even
⌊

n
2 ⌋ + 2, i f n ≡ 1, 2, 3(mod 4) and m is odd,
⌊

n
2 ⌋ + 3, i f n ≡ 1, 2, 3(mod 4) and m is even.

The proof is completed.

Theorem 3.4. Let Pn be any path graph with order n and S1,m be a star graph with order m + 1. Then,
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γit(Pn ∗ S1,m) =
{

n
2 + 1, i f n ≡ 0(mod 4)
⌊

n
2 ⌋ + 2, i f n ≡ 1, 2, 3(mod 4)

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.5. Let Pn be any path graph with order n and W1,m be a wheel graph with order m + 1 for m > 3 and
m , 9. Then,

γit(Pn ∗W1,m) =


n
2 + 2, i f n ≡ 0(mod 4) and m is even,
n
2 + 3, i f n ≡ 0(mod 4) and m is odd,
⌊

n
2 ⌋ + 3, i f n ≡ 1, 2, 3(mod 4) and m is even,
⌊

n
2 ⌋ + 4, i f n ≡ 1, 2, 3(mod 4) and m is odd.

Proof. The proof is similar to the proof of Theorem 3.1.

Theorem 3.6. Let Pn be any path graph with order n and Km be any complete graph with order m. Then,

γit(Pn ∗ Km) =


n
2 +m, i f n ≡ 0(mod 4),
n
2 + 1 +m, i f n ≡ 2(mod 4),
⌈

n
2 ⌉, i f n ≡ 1, 3(mod 4),

Proof. Let D be a γ−set of the graph Pn∗Km. |D| = n
2 if n ≡ 0(mod 4), |D| = ⌊ n

2 ⌋+1 otherwise. < V(Pn∗Km)−D >
contains a maximum independent set so, γit(Pn ∗ Km) > γ(Pn ∗ Km). We denote the vertices of Pn with ui,
i = 1,n and the corresponding vertices of Km with vi j, j = 1,m. We have three cases:
Case 1. n ≡ 0(mod 4)
In this case D = {u4k+2,u4k+3}, k = 0, ⌊ n

4 ⌋ − 1 is a dominating set and the maximum independent sets are
β1 = {u1, v1 j,u3, v3 j,u5, v5 j, ...,un−1, vn−1 j}, β2 = {u2, v2 j,u4, v4 j,u6, v6 j, ...,un, vnj} and β3 = {v1 j, v2 j, v3 j, ..., vnj},
where each j is related to exactly one member of {1, 2, ...,m}. So, β(Pn ∗ Km) = n. Let S be an independent
transversal dominating set of Pn ∗ Km. We must add n

2 vertices from the graph Pn and m vertices from any
graph Km to S so that < V(Pn ∗ Km) − S > doesn’t contain any β − set. So, we have γit(Pn ∗ Km) = n

2 +m.
Case 2. n ≡ 2(mod 4)
In this case D = {u4k+2,u4k+3,un−1,un }, k = 0, ⌊ n

4 ⌋ − 1 is a dominating set and the maximum independent sets
are β1 = {u1, v1 j,u3, v3 j,u5, v5 j, ...,un−1, vn−1 j}, β2 = {u2, v2 j,u4, v4 j,u6, v6 j, ...,un, vnj} and β3 = {v1 j, v2 j, v3 j, ..., vnj},
where each j is related to exactly one member of {1, 2, ...,m}. So β(Pn ∗ Km) = n. For the independent
transversal dominating set selected as S = D ∪ Km, < V(Pn ∗ Km) − S > doesn’t contain any β − set and all
vertices of the graph Pn ∗ Km are dominated. So, we have γit(Pn ∗ Km) = n

2 + 1 +m.
Case 3. n ≡ 1, 3(mod 4)
In this case the maximum independent set of Pn ∗ Km is {u1, v1 j,u3, v3 j, ...,un, vnj}, where each j is related
to exactly one member of {1, 2, ...,m}. The vertex set that occurs one vertex from every graph Km isn’t
a maximum independent set. For k = 0, ⌊ n

4 ⌋ − 1, D = {u4k+2,u4k+3, ...,un−1} if n ≡ 1(mod 4) and D =
{u4k+2,u4k+3, ...,un−1, vnj} if n ≡ 3(mod 4) is a dominating set. So, < V(Pn ∗ Km) − D > doesn’t contain any
β − set and γit(Pn ∗ Km) = γ(Pn ∗ Km) = ⌈ n

2 ⌉.
The proof is completed.

4. Independent Transversal Domination Number for the Edge Corona of the Path Graph

Definition 4.1. [10]
The graph G1 ⋄ G which is obtained by edge corona operation of a connected graph G1 and graph G is formed as
follows: Every edge ei of graph G1 correspond to a graph G and every vertex vi j of G is adjacent to two end vertices of
the corresponding edge ei of G1, i = 1, |E(G1)| and j = 1, |V(G)|.

The edge corona of the graph P6 ⋄ P2 can be depicted as in the following figure:
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Figure 3: The graph P6 ⋄ P2

Theorem 4.2. Let Pn and Pm be any path graphs with order n and m, respectively. Then,

γit(Pn ⋄ Pm) =
{
⌊

n
2 ⌋ + 1, i f m ≡ 1(mod 2)
⌊

n
2 ⌋ + 2, i f m ≡ 0(mod 2)

Proof. The domination set of (Pn⋄Pm) is D = {u2k}, k = 1, 2, ..., ⌊ n
2 ⌋. Also, the maximum independence number

β((Pn⋄Pm) = (n−1)β(Pm). Let S be the independent transversal dominating set of Pn⋄Pm. < V(Pn⋄Pm)−D >
contains β − set. So, γit((Pn ⋄ Pm) > γ((Pn ⋄ Pm). If we also add the vertex v11 in case m ≡ 1(mod 2) and the
vertices v11, v12 in case m ≡ 0(mod 2) to the S with V(D), then < V(Pn ⋄Pm)− S > doesn’t contain any β− set.
Hence, we have

γit(Pn ⋄ Pm) =
{
⌊

n
2 ⌋ + 1, i f m ≡ 1(mod 2)
⌊

n
2 ⌋ + 2, i f m ≡ 0(mod 2)

The proof is completed.

Theorem 4.3. Let Pn be any path graph with order n and S1,m be a star graph with order m + 1. Then,

γit(Pn ⋄ S1,m) = ⌊ n
2 ⌋ + 1.

Proof. The proof is similar to the proof of Theorem 4.1.

Theorem 4.4. Let Pn be any path graph with order n and W1,m be a wheel graph with order m + 1. Then,

γit(Pn ⋄W1,m) =
{
⌊

n
2 ⌋ + 2, i f m is even,
⌊

n
2 ⌋ + 3, i f m is odd,

Proof. The proof is similar to the proof of Theorem 4.1.

Theorem 4.5. Let Pn be any path graph with order n and Km be any complete graph with order m. Then,

γit(Pn ⋄ Km) = ⌊ n
2 ⌋ +m.

Proof. The proof is similar to the proof of Theorem 4.1.

5. Independent Transversal Domination Number for the Join Operation of the Path Graph

Definition 5.1. [7] Graphs G1 and G2 have disjoint vertex sets V1 and V2 and edge sets E1 and E2 respectively.
Their union G = G1 ∪G2 has, as expected, V = V1 ∪V2 and E = E1 ∪E2. Their join is denoted G1 +G2 and consists
of G1 ∪ G2 and all edges joining V1 with V2.
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The join operation of the graph P2 + P3 can be depicted as in the following figure:

Figure 4: The graph P2 + P3

Theorem 5.2. Let G be any graph with order m and Pn be any path graph with order n. If β(Pn) > β(G) then,

γit(G + Pn) =
{

2, i f n ≡ 1(mod 2),
3, i f n ≡ 0(mod 2).

Proof. We label the vertices as ui ∈ G and v j ∈ Pn of the graph G + Pn, for i = 1,m and for j = 1,n. We
can dominate all vertices of Pn with any vertex ui and all vertices of G with any vertex v j since d(ui, v j) = 1
∀ui, v j. So, γ(G + Pn) = 2. Let S be any independent transversal domination set. If n ≡ 1(mod 2) then,
β(Pn) = β(Pn−1). In this case S = {ui, v1} doesn’t contain any β− set. If n ≡ 0(mod 2) then, β(Pn) = β(Pn−1)+ 1.
In this case S = {ui, v1, v2} doesn’t contain any β − set, where each i is related to exactly one member of
{1, 2, ...,m} So, we have

γit(G + Pn) =
{

2, i f n ≡ 1(mod 2),
3, i f n ≡ 0(mod 2).

The proof is completed.
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Abstract. In this study, for double set sequences, we introduced the notions of invariant and lacunary
invariant statistical convergence of order η (0 < η ≤ 1) in the Wijsman sense. Also, we investigated the
inclusion relations between them.

1. Introduction

Long after the notion of convergence for double sequences was introduced by Pringsheim [12], this
notion was respectively extended to the notions of statistical convergence, lacunary statistical convergence
and double σ-convergent lacunary statistical sequence by Mursaleen and Edely [5], Patterson and Savaş
[11] and Savaş and Patterson [13]. Recently, for double sequences, on two new convergence concepts called
double almost statistical and double almost lacunary statistical convergence of order α were studied by
Savaş [14, 15].

Over the years, on the various convergence notions for set sequences have been studied by many
authors. One of them, discussed in this study, is the notion of convergence in the Wijsman sense [1, 2, 6].
Using the notions of statistical convergence, double lacunary sequence and invariant mean, this notion was
extended to new convergence notions for double set sequences by some authors [7–9]. In [8], Nuray and
Ulusu studied on the notions of invariant and lacunary invariant statistical convergence in the Wijsman
sense for double set sequences.

In this paper, using order η, we studied on new convergence notions in the Wijsman sense for double
set sequences.

More information on the notions of convergence for real or set sequences can be found in [3, 4, 6, 10, 16–
20].

2. Definitions and Notations

Firstly, let us remind the basic notions that need for a better understanding of our study (see, [7–9, 11]).
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For a metric space (Y, d), µ(y,C) denote the distance from y to C where

µ(y,C) := µy(C) = inf
c∈C

d(y, c)

for any y ∈ Y and any non-empty set C ⊆ Y.
For a non-empty set Y, let a function 1 : N → PY (the power set of Y) is defined by 1(m) = Cm ∈ PY

for each m ∈ N. Then, the sequence {Cm} = {C1,C2, . . .}, which is the codomain elements of 1, is called set
sequences.

Throughout this study, (Y, d) will be considered as a metric space and C,Cmn will be considered as any
non empty closed subsets of Y.

A double set sequence {Cmn} is called convergent to the set C in the Wijsman sense if each y ∈ Y,

lim
m,n→∞

µy(Cmn) = µy(C).

A double set sequence {Cmn} is called statistically convergent to the set C in the Wijsman sense if every
ξ > 0 and each y ∈ Y,

lim
p,q→∞

1
pq

∣∣∣∣∣{(m,n) : m ≤ p,n ≤ q,
∣∣∣µy(Cmn) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣ = 0.

A double sequence θ2 = {( ju, kv)} is called a double lacunary sequence if there exist increasing sequences
( ju) and (kv) of the integers such that

j0 = 0, hu = ju − ju−1 →∞ and k0 = 0, h̄v = kv − kv−1 →∞ as u, v→∞.

In general, the following notations is used for any double lacunary sequence:

ℓuv = jukv, huv = huh̄v, Iuv =
{
(m,n) : ju−1 < m ≤ ju and kv−1 < n ≤ kv

}
,

qu =
ju

ju−1
and qv =

kv

kv−1
.

Throughout this study, θ2 = {( ju, kv)}will be considered as a double lacunary sequence.
A double set sequence {Cmn} is called lacunary statistically convergent to the set C in the Wijsman sense

if every ξ > 0 and each y ∈ Y,

lim
u,v→∞

1
huv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cmn) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣ = 0.

Let σ be a mapping such that σ :N+ →N+ (the set of positive integers). A continuous linear functional
ψ on ℓ∞ is called an invariant mean (or a σ-mean) if it satisfies the following conditions:

1. ψ(xs) ≥ 0, when the sequence (xs) has xs ≥ 0 for all s,
2. ψ(e) = 1, where e = (1, 1, 1, . . .) and
3. ψ(xσ(s)) = ψ(xs) for all (xs) ∈ ℓ∞.

The mappings σ are assumed to be one to one and such that σm(s) , s for all m, s ∈ N+, where σm(s)
denotes the m th iterate of the mapping σ at s. Thus ψ extends the limit functional on c, in the sense that
ψ(xs) = lim xs for all (xs) ∈ c.
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A double set sequence {Cmn} is called invariant statistically convergent to the set C in the Wijsman sense
if every ξ > 0 and each y ∈ Y,

lim
p,q→∞

1
pq

∣∣∣∣∣{(m,n) : m ≤ p,n ≤ q,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣ = 0

uniformly in s, t.
The set of all invariant statistically convergent double set sequences in the Wijsman sense is denoted by{

W2Sσ
}
.

A double set sequence {Cmn} is called lacunary invariant statistically convergent to the set C in the
Wijsman sense if every ξ > 0 and each y ∈ Y,

lim
u,v→∞

1
huv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣ = 0

uniformly in s, t.

3. Main Results

In this section, for double set sequences, we introduced the notions of invariant and lacunary invariant
statistical convergence of order η (0 < η ≤ 1) in the Wijsman sense. Also, we investigated the inclusion
relations between them.

Definition 3.1. The double set sequence {Cmn} is invariant statistically convergent of order η to the set C in the
Wijsman sense if every ξ > 0 and each y ∈ Y,

lim
p,q→∞

1
(pq)η

∣∣∣∣∣{(m,n) : m ≤ p,n ≤ q,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣ = 0

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W2Sησ
−→ C format.

Example 3.2. Let Y = R2 and a double set sequence {Cmn} be defined as following:

Cmn :=


{
(a, b) ∈ R2 : a2 + (b + 1)2 = 1

mn

}
; if m and n are square integers

{(−1, 0)} ; otherwise.

In this case, the double set sequence {Cmn} is invariant statistically convergent of order η (0 < η ≤ 1) to the set
C = {(−1, 0)} in the Wijsman sense.

Remark 3.3. For η = 1, the notion of invariant statistical convergence of order η in the Wijsman sense coincides
with the notion of invariant statistical convergence in the Wijsman sense for double set sequences in [8].

Definition 3.4. The double set sequence {Cmn} is lacunary invariant statistically convergent of order η to the set C
in the Wijsman sense if every ξ > 0 and each y ∈ Y,

lim
u,v→∞

1
hηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣ = 0

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W2Sησθ
−→ C format.

The set of all lacunary invariant statistically convergent double set sequences of order η in the Wijsman
sense is denoted by

{
W2Sησθ

}
.
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Example 3.5. Let Y = R2 and a double set sequence {Cmn} be defined as following:

Cmn :=


{
(a, b) ∈ R2 : (a +m)2 + (b − n)2 = 1

}
; if (m,n) ∈ Iuv, m and n are square integers

{(1, 1)} ; otherwise.

In this case, the double set sequence {Cmn} is lacunary invariant statistically convergent of order η (0 < η ≤ 1) to the
set C = {(1, 1)} in the Wijsman sense.

Remark 3.6. For η = 1, the notion of lacunary invariant statistical convergence of order η in the Wijsman sense
coincides with the notion of lacunary invariant statistical convergence in the Wijsman sense for double set sequences
in [8].

Theorem 3.7. If
lim inf

u
qηu > 1 and lim inf

v
qηv > 1

where 0 < η ≤ 1, then

Cmn
W2Sησ
−→ C⇒ Cmn

W2Sησθ
−→ C.

Proof. Let 0 < η ≤ 1 and suppose that lim infu qηu > 1 and lim infv qηv > 1. Then, there exist α, β > 0 such that
qηu ≥ 1 + α and qηv ≥ 1 + β for all u, v, which implies that

huv

ℓuv
≥

αβ

(1 + α)(1 + β)
⇒

hηuv

ℓηuv
≥

αηβη

(1 + α)η(1 + β)η
.

For every ξ > 0 and each y ∈ Y, we have

1
ℓηuv

∣∣∣∣∣{(m,n) : m ≤ ju,n ≤ kv,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
≥

1
ℓηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
=

hηuv

ℓηuv

1
hηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
≥

αηβη

(1 + α)η(1 + β)η
1

hηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
for all s, t. If Cmn

W2Sησ
−→ C, then for each y ∈ Y the term on the left side of the above inequality convergent to 0

and this implies that
1

hηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣→ 0

uniformly in s, t. Thus, we get Cmn
W2Sησθ
−→ C.

Theorem 3.8. If
lim sup

u
qu < ∞ and lim sup

v
qv < ∞,

then

Cmn
W2Sησθ
−→ C⇒ Cmn

W2Sησ
−→ C

where 0 < η ≤ 1.
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Proof. Let lim supu qu < ∞ and lim supv qv < ∞. Then, there exist M,N > 0 such that qu < M and qv < N for

all u, v. Also, we suppose that Cmn
W2Sησθ
−→ C (where 0 < η ≤ 1) and ξ > 0, and let

κuv :=
∣∣∣∣∣{(m,n) ∈ Iuv :

∣∣∣µy(Cσm(s)σn(t)) − µy(C)
∣∣∣ ≥ ξ}∣∣∣∣∣.

Then, there exist u0, v0 ∈N such that for every ξ > 0, each y ∈ Y and all u ≥ u0, v ≥ v0

κuv

hηuv
< ξ

for all s, t. Now, let
γ := max {κuv : 1 ≤ u ≤ u0, 1 ≤ v ≤ v0},

and let p and q be any integers satisfying ju−1 < p ≤ ju and kv−1 < q ≤ kv. Then, for each y ∈ Y we have

1
(pq)η

∣∣∣∣∣{(m,n) : m ≤ p,n ≤ q,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
≤

1
ℓη(u−1)(v−1)

∣∣∣∣∣{(m,n) : m ≤ ju,n ≤ kv,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
=

1
ℓη(u−1)(v−1)

{
κ11 + κ12 + κ21 + κ22 + · · · + κu0v0 + · · · + κuv

}

≤
u0v0

ℓη(u−1)(v−1)

(
max

1≤m≤u0

1≤n≤v0

{κmn}

)

+
1

ℓη(u−1)(v−1)

{
hηu0(v0+1)

κu0(v0+1)

hηu0(v0+1)

+ hη(u0+1)v0

κ(u0+1)v0

hη(u0+1)v0

+hη(u0+1)(v0+1)

κ(u0+1)(v0+1)

hη(u0+1)(v0+1)

+ · · · + hηuv
κuv

hηuv

}

≤
u0v0γ

ℓη(u−1)(v−1)

+
1

ℓη(u−1)(v−1)

(
sup
u>u0
v>v0

κuv

hηuv

)( u,v∑
m,n≥u0,v0

hηmn

)

≤
u0v0γ

ℓη(u−1)(v−1)

+
1

ℓ(u−1)(v−1)

(
sup
u>u0
v>v0

κuv

hηuv

)( u,v∑
m,n≥u0,v0

hmn

)

≤
u0v0γ

ℓη(u−1)(v−1)

+ ξ
( ju − ju0 )(kv − kv0 )

ℓ(u−1)(v−1)

≤
u0v0γ

ℓη(u−1)(v−1)

+ ξ qu qv

≤
u0v0γ

ℓη(u−1)(v−1)

+ ξM N
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for all s, t. Since ju−1, kv−1 →∞ as p, q→∞, it follows that for each y ∈ Y

1
(pq)η

∣∣∣∣∣{(m,n) : m ≤ p,n ≤ q,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣→ 0

uniformly in s, t. Thus, we get Cmn
W2Sησ
−→ C.

Theorem 3.9. If

1 < lim infu qηu ≤ lim supu qu < ∞ and 1 < lim infv qηv ≤ lim supv qv < ∞

where 0 < η ≤ 1, then

Cmn
W2Sησθ
−→ C⇔ Cmn

W2Sησ
−→ C.

Proof. This can be obtained from Theorem 3.7 and Theorem 3.8, immediately.

Theorem 3.10. If

lim inf
u,v→∞

hηuv

ℓuv
> 0

where 0 < η ≤ 1, then {
W2Sσ

}
⊆

{
W2Sησθ

}
.

Proof. For every ξ > 0 and each y ∈ Y, it is obvious that{
(m,n) : m ≤ ju,n ≤ kv,

∣∣∣µy(Cσm(s)σn(t)) − µy(C)
∣∣∣ ≥ ξ} ⊃ {

(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}.
Thus, we have

1
ℓuv

∣∣∣∣∣{(m,n) : m ≤ ju,n ≤ kv,
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
≥

1
ℓuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
=

hηuv

ℓuv

1
hηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣
for all s, t. If Cmn

W2Sσ
−→ C, then for each y ∈ Y the term on the left side of the above inequality convergent to 0

and this implies that
1

hηuv

∣∣∣∣∣{(m,n) ∈ Iuv :
∣∣∣µy(Cσm(s)σn(t)) − µy(C)

∣∣∣ ≥ ξ}∣∣∣∣∣→ 0

uniformly in s, t. Thus, we get Cmn
W2Sησθ
−→ C. Consequently,

{W2Sσ} ⊆ {W2Sησθ}.



U. Ulusu, E. Dündar / TJOS 7 (1), 14-20 20

References

[1] Baronti, M. and Papini, P. Convergence of sequences of sets. In: Methods of Functional Analysis in Approximation Theory
(pp.133–155). Birkhäuser, Basel, (1986).
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[11] Patterson, R.F. and Savaş, E. Lacunary statistical convergence of double sequences. Math. Commun., 10(1) (2005), 55–61.
[12] Pringsheim, A. Zur theorie der zweifach unendlichen Zahlenfolgen. Math. Ann., 53(3) (1900), 289–321.
[13] Savaş, E. and Patterson, R.F. Double σ-convergence lacunary statistical sequences. J. Comput. Anal. Appl., 11(4) (2009), 610–615.
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Abstract. In this article, we initiate the study of lightlike hypersurfaces in a poly-Norden semi-Riemannian
manifold. We introduce invariant and screen semi-invariant lightlike hypersurfaces of a poly-Norden semi-
Riemannian manifold. Also, we give some examples of such hypersurfaces.

1. Introduction

In differential geometry, submanifolds equipped with different geometric structure have been studied
widely. A submanifold of a semi-Riemann manifold is known a lightlike submanifold if the induced metric
is degenerate. The general theory of lightlike submanifold has been examined in [1] (see also [4]). On this
subject, some applications of the theory mathematical physics is inspired, especially electromagnetisms [1],
black hole theory [4] and general relativity [5]. Many studies on lightlike submanifolds have been reported
by many geometers (see [2], [3], [6], [7], [8]).

The golden proportion and the golden rectangle have been found in the harmonious proportion of
temples, fractals, paintings etc. Golden structure was revealed by the golden proportion which was
charecterized by J. Kepler. The number φ, which is the real positive root of

x2
− x − 1 = 0,

(hence φ = 1+
√

5
2 ) is the golden proportion. In [9], inspired by golden ratio, golden Riemannian manifolds

were introduced. Then many geometers have studied golden (semi) Riemannian manifolds on different
manifolds ([10], [11], [12], [13]).

As a generalization of the golden mean, metallic mean family was studied by V. W. de Spinadel [14].
The positive solution of the equation

x2
− px − q = 0,

is called member of the metallic means family, where p and q are fixed two positive integers. These number
denoted by;

σp,q =
p +

√
p2 + 4q
2

,
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are also known (p, q)−metallic numbers. Recently many paper about metallic mean have been published
([15], [16], [17], [18] ).

On the other hand in [19], the authors has defined Bronze mean which is different from Bronze mean
given in [20]. Also note that there is no inclusion relation between the Bronze mean defined in [19] and
metallic mean.

In [21], B. Şahin introduce as a new type of manifold which is called almost poly-Norden manifolds and
study the geometry of such manifolds. Recently S. Yüksel Perktaş defined and studied submanifolds of
almost poly-Norden Riemannian manifolds in [22].

In this article, by inspring from [21] and [15], we study lightlike hypersurfaces of almost poly-Norden
manifolds.

2. Preliminaries

The bronze mean [19] which is the positive solution of the equation x2
−mx + 1 = 0, is defined by

Bm =
m +

√

m2 − 4
2

. (1)

The Bronze Fibonacci numbers ( fm,n) (resp., the Bronze Lucas numbers (lm,n)) are the family of sequences
defined by recurrence

fm,n+2 = m fm,n+1 − fm,n, (resp., lm,n+2 = mlm,n+1 − lm,n),

where fm,0 = 0 and fm,1 = 1 (resp., lm,0 = 2 and lm,1 = m). The Bronze Fibonacci numbers and Bronze Lucas
numbers are related by

Bn
m =

lm,n + fm,n
√

m2 − 4
2

.

Also note that the recurrence relation Bn+2
m = mBn+1

m −Bn
m is satisfied and the covergents of Ba

m are fm,a(n+1)

fm,an
[19].

By being inspired of the Bronze mean (1) defined by S. Kalia [19], a new structure on a differentiable
manifold which is called a poly-Norden structure was introduced by B. Şahin [21].

Definition 2.1. [21] On a manifold M̆, a poly-Norden structure is defined by a (1, 1)-tensor field Φ which satisfies

Φ2 = mΦ − I, (2)

where I is the identity operator on M̆. So, (M̆,Φ) is called an almost poly-Norden manifold.

Example 2.2. [21] Let Φ be a map defined by

Φ : R4
→ R4

(u1,u2,u3,u4) → (Bmu1,Bmu2, B̄mu3, B̄mu4),

where Bm =
m+
√

m2−4
2 , B̄ = m − Bm and (u1,u2,u3,u4) is the standard coordinate system on R4. One can easily see

that Φ satisfies (2). Thus (R4,Φ) is a poly-Norden manifold.

A semi-Riemannian metric 1̆ is called Φ-compatible, if it satisfies

1̆(ΦX,ΦY) = m1̆(ΦX,Y) − 1̆(X,Y), (3)

which yields
1̆(ΦX,Y) = 1̆(X,ΦY). (4)

Definition 2.3. [21] Let (M̆, 1̆) be a semi-Riemannian manifold endowed with a poly-Norden structure Φ. If the
semi-Riemannian metric 1̆ is Φ-compatible, then the manifold is named an almost poly-Norden semi-Riemannain
manifold and (1̆,Φ) is called an almost poly-Norden semi-Riemannian structure on M̆.
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From now on, we shall consider that m , 0.
We note that the eigenvalues of Φ are m+

√

m2−4
2 and m−

√

m2−4
2 . The inverse of Φ is not an almost poly-

Norden structure. Additionally, each complex structure on a semi-Riemannian manifold allows defining
two poly-Norden structures in the forms [21]

Φ1 =
m
2

I +

 √4 −m2

2

 J, Φ1 =
m
2

I −

 √4 −m2

2

 J, − 2 < m < 2.

Conversely, each poly-Norden structure Φ on the manifold gives rise to following two almost complex
structures on this manifold,

J1 =
−m
√

4 −m2
I +

2
√

4 −m2
Φ, J2 =

m
√

4 −m2
I −

2
√

4 −m2
Φ, − 2 < m < 2.

Definition 2.4. [21] Let (M̆, 1̆,Φ) be an almost poly-Norden semi-Riemannian manifold. If the almost poly-Norden
structure is parallel with respect to the Levi-Civita connection ∇̆ then (M̆, 1̆,Φ) is called a poly-Norden semi-
Riemannian manifold.

Let M̆ be a semi-Riemannian manifold equipped with a semi-Riemannian metric 1̆ of index q, 0 < q <
2n+ 1, and M is a hypersurface of M̆ with the induced metric 1 = 1̆ |M. If the induced metric 1 is degenerate
and the orthogonal complement TM⊥ of tangent space TM, given as

TM⊥ =p∈M {Vp ∈ TpM̆ : 1p(Up,Vp) = 0,∀U ∈ Γ(TpM)}

is a distribution of rank 1 on M, then M is called a lightlike hypersurface of M̆ [1]. In this case, TM⊥
⊂ TM

and then it coincides with the radical distribution Rad TM = TM ∩ TM⊥.
The complementary bundle of TM⊥ in TM, namely screen distribution, is a non-degenerate distribution

of constant rank 2n − 1 over M and denoted by S(TM).

Theorem 2.5. [1] Let (M, 1,S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold M̆. Then there exists
a unique rank 1 vector subbundle ltr(TM) of TM̆, with base space M, such that for any non-zero section E of Rad TM
on a coordinate neighbourhood ℑ ⊂M, there exists a unique section N of ltr(TM) on ℑ satisfying:

1̆(N,N) = 0, 1̆(N,W) = 0, 1̆(N,E) = 1, for W ∈ Γ(S(TM) |ℑ .

ltr(TM) is called the lightlike transversal vector bundle of M with respect to S(TM).

Therefore we get
TM = S(TM)⊥Rad TM, (5)

TM̆ = TM ⊕ ltr(TM)
= S(TM)⊥{Rad TM ⊕ ltr(TM)}. (6)

Let ω : Γ(TM)→ Γ(S(TM)) be the projection morphism of TM. So we have

∇̆XY = ∇XY + B(X,Y)N, (7)

∇̆XN = −ANX + τ(X)N, (8)

∇XωY = ∇∗XωY + C(X, ωY)E, (9)

∇XE = −A∗EX − τ(X)E, (10)

where ∇ (resp., ∇∗) is a linear connection on M (resp., S(TM)) and B, AN and τ are called the local second
fundamental form, the local shape operator, the transversal differential 1−form, respectively.

The induced linear connection ∇ is not a metric connection in general and we have

(∇X1)(Y,Z) = B(X,Z)θ(Y) + B(X,Y)θ(Z), (11)

where θ is a differential 1-form such that
θ(X) = 1̆(N,X). (12)
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3. LIGHTLIKE HYPERSURFACES OF ALMOST POLY-NORDEN SEMI-RIEMANNIAN MANIFOLDS

Let M be a lightlike hypersurface of an almost poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ). Then,
for every X ∈ Γ(TM) and N ∈ Γ(ltr(TM)), we write

ΦX = ϕX + u(X)N, (13)

ΦN = ζ + v(E)N, (14)

where ϕX, ζ ∈ Γ(TM) and u, v are 1-forms given by

u(X) = 1(X,ΦE), v(X) = 1(X,ΦN). (15)

Lemma 3.1. Let M be a lightlike hypersurface of an almost poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ). Then
we have

ϕ2X = mϕX − X − u(X)ζ, (16)

u(ϕX) = −mu(X) − u(X)v(E), (17)

ϕζ = mζ − v(E)ζ, (18)

v(E)2 = mv(E) − 1 − u(ζ), (19)

1(ϕX,Y) = 1(X, ϕY) − u(X)θ(Y) + u(Y)θ(X), (20)

1(ϕX, ϕY) = m1(X, ϕY) − 1(X,Y) +mu(Y)θ(X) (21)
−u(Y)1(ϕX,N) − u(X)1(ϕY,N).

In case of M̆ is being a poly-Norden semi-Riemannian manifold, we give the following:

Lemma 3.2. Let M be a lightlike hypersurface of a poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ). Then we have

(∇Xϕ)Y = u(Y) (ANX) + B(X,Y)ζ, (22)

(∇Xu)Y = v(E) (B(X,Y)) − B(X, ϕY) − u(Y)τ(X), (23)

∇Xζ = −ϕANX + τ(X)ζ + v(E) (ANX) , (24)

X(v(E)) = −B(X, ζ) − u(ANX). (25)

4. INVARIANT LIGHTLIKE HYPERSURFACES OF A POLY-NORDEN SEMI-RIEMANNIAN MANI-
FOLD

Definition 4.1. Let M be a lightlike hypersurface of an almost poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ).
Then M is called an invariant lightlike hypersurface of M̆ if

Φ(Rad TM) = Rad TM,
Φ(ltr(TM)) = ltr(TM). (26)

Example 4.2. Let M̆ = R7
3 be a semi-Euclidean space with coordinate system (x1, x2, ..., x7) and signature (−,+,−,+,−,+,+).

Taking
Φ(x1, x2, ..., x7) = (Bmx1,Bmx2,Bmx3,Bmx4,Bmx5,Bmx6,Bmx7),

then Φ is an almost poly-Norden structure on M̆.
Now, we consider a hypersurface M of M̆ with

x5 = x7.
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Then TM of M is spanned by

Π1 =
∂
∂x1
, Π2 =

∂
∂x2
,

Π3 =
∂
∂x3
, Π4 =

∂
∂x4
, Π5 =

∂
∂x6
,

Π6 =
∂
∂x5
+
∂
∂x7
.

In this case, Rad TM and ltr(TM) are given by

Rad TM = Sp{E =
∂
∂x5
+
∂
∂x7
},

and
ltr(TM) = Sp{N = −

1
2

(
∂
∂x5
−
∂
∂x7

)},

respectively. Thus, we find
ΦE = BmE and ΦN = BmN,

which implies that M is an invariant lightlike hypersurface of M̆.

Theorem 4.3. Let M be a lightlike hypersurface of an almost poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ).
Then ϕ is an almost poly-Norden structure on M.

Proof. It is well known that, M is an invariant lightlike hypersurface if and only if

ΦX = ϕX,

that is
u(X) = 0.

Then, from (16) and (20), we get
ϕ2X = mϕX − X,

and
1(ϕX,Y) = 1(X, ϕY).

So, we get our assertion.

Theorem 4.4. Let M be an invariant lightlike hypersurface of a poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ).
Then we have

B(X,ΦY) = B(ΦX,Y) = ΦB(X,Y),
B(ΦX,ΦY) = mB(X,ΦY) + B(X,Y).

Proof. It is obvious from (7).

5. SCREEN SEMI-INVARIANT LIGHTLIKE HYPERSURFACES OF A POLY-NORDEN SEMI-RIEMANNIAN
MANIFOLD

Definition 5.1. Let M be a lightlike hypersurface of an almost poly-Norden semi-Riemannian manifold (M̆, 1̆,Φ). If

Φ(Rad TM) ⊂ S(TM),
Φ(ltr(TM)) ⊂ S(TM), (27)

then M is called a screen semi-invariant lightlike hypersurface of M̆.
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Example 5.2. Let M̆ = R5
2 be semi-Euclidean space with coordinate system (x1, x2, x3, x4, x5) and signature (−,+,−,+,+).

Taking
Φ(x1, x2, x3, x4, x5) = ((m − Bm)x1, (m − Bm)x2,Bmx3,Bmx4,Bmx5),

then we can say that Φ is a poly-Norden structure on M̆.
Consider a hypersurface M of M̆ with

x5 = Bmx1 + Bmx2 + x3.

Then TM of M is spanned by

Ω1 =
∂

∂x1 + Bm
∂

∂x5 , Ω2 =
∂

∂x2 + Bm
∂

∂x5

Ω3 =
∂

∂x3 +
∂

∂x5 , Ω4 =
∂

∂x4

So, Rad TM and ltr(TM) are given by

Rad TM = Sp{E = BmΩ1 − BmΩ2 +Ω3},

ltr(TM) = Sp
{

N =
1
2

(
−Bm

∂

∂x1 + Bm
∂

∂x2 −
∂

∂x3 +
∂

∂x5

)}
.

Also S(TM) is spanned by {Π1,Π2,Π3}, where

Π1 = −
∂

∂x1 +
∂

∂x2 + Bm
∂

∂x3 + Bm
∂

∂x5 ,

Π2 =
1
2

{
−
∂
∂x1 +

∂
∂x2

−Bm
∂
∂x3 + Bm

∂
∂x5

}
,

Π3 =
∂
∂x4
.

Thus we arrive at
Π1 = ΦE and Π2 = ΦN,

which imply that M is a screen semi-invariant lightlike hypersurface of M̆.

We know that S(TM) is non-degenerate, so we can define a distribution ϑ such that

S(TM) = {Φ(Rad TM) ⊕Φ(ltr(TM))}⊥ϑ, (28)

from which
TM = {Φ(Rad TM) ⊕Φ(ltr(TM))}⊥ϑ⊥Rad TM, (29)

TM̆ = {Φ(Rad TM) ⊕Φ(ltr(TM))}⊥ϑ⊥{Rad TM ⊕ ltr(TM)}. (30)

Taking D̂ = Rad TM⊥Φ(Rad TM)⊥ϑ and D̊ = Φ(ltr(TM)) on M. So, we get

TM = D̂ ⊕ D̊. (31)

Let ξ = ΦN andΨ = ΦE be local lightlike vector fields. For X ∈ Γ(TM),we can write

X = RX +QX, (32)

where R and Q are projections of TM into D̂ and D̊, respectively.
Also, for X,Y ∈ Γ(TM), ξ ∈ D̊ andΨ ∈ D̂,

ϕ2X = mϕX − X − u(X)ξ, (33)
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u(ϕX) = mu(X), u(ξ) = −1, (34)

1(X, ϕY) = 1(ϕX,Y) + u(X)θ(Y) − u(Y)θ(X), (35)

1(ϕX, ϕY) = m1(X, ϕY) − 1(X,Y) −mu(Y)θ(X)
−u(Y)1(ϕX,N) − u(X)1(ϕY,N), (36)

(∇Xϕ)Y = 1(A∗EX,Y)ξ + u(Y)ANX, (37)

∇Xξ = −ϕANX + τ(X)ξ, (38)

∇XΨ = −ϕA∗EX − τ(X)Ψ (39)

B(X, ξ) = −C(X,Ψ). (40)

Theorem 5.3. Assume that M is a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian
manifold M̆. Then the lightlike vector fieldΨ is parallel on M if and only if

i) M is totally geodesic on M̆,
ii) τ = 0.

Proof. Assume thatΨ is a parallel vector fields. From (13) and (39), for any X ∈ Γ(TM),we have

0 = −ϕA∗EX − τ(X)Ψ
= −ΦA∗EX + u(A∗EX)N − τ(X)Ψ. (41)

Applying Φ to (41) and in view of (13) with (2), we get

−mϕ(A∗EX) −mu(A∗EX)N + A∗EX −mτ(X)Ψ+ τ(X)E + u(A∗EX)ξ = 0. (42)

Taking tangential and transversal part of equation (42), we arrive at

A∗EX = −τ(X)E − u(A∗EX)ξ, mu(A∗EX) = 0.

So, we get the proof of our assertion.

Theorem 5.4. Assume that M is a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian
manifold M̆. Then the lightlike vector field ξ is parallel on M if and only if M and S(TM) is totally geodesic on M̆.

Proof. Since ξ is parallel vector fields on M, in view of (13) and (38), for any X ∈ Γ(TM),we have

0 = −ϕANX + τ(X)ξ
= −ΦANX + u(ANX)N + τ(X)ξ. (43)

Applying Φ to (43) and by use of (13) with (2), we get

−mϕ(ANX) −mu(ANX)N + ANX +mτ(X)ξ − τ(X)N + u(ANX)ξ = 0. (44)

Taking tangential and transversal part of equation (44), we find

ANX = −u(ANX)ξ, mu(ANX) = τ(X).

This completes the proof.

Definition 5.5. Let M be a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian manifold
(M̆, 1̆,Φ). If the second fundamental form

B(X,Z) = 0,

for any X ∈ Γ(D̂) and Z ∈ Γ(D̊), then M is called a mixed geodesic lightlike hypersurface.
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Theorem 5.6. Let M be a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian manifold
(M̆, 1̆,Φ). Then M is a mixed geodesic lightlike hypersurface if and only if

i) There is no component of AN, D̂−valuable.
ii) There is no component of A∗E, D̊−valuable.

Proof. Assume that M is mixed geodesic, i.e.

B(X, ξ) = 0. (45)

In view of (4) and (8) in (45), we have

0 = B(X, ξ) = B(X,ΦN)
= 1̆(∇̆XΦN,E)
= 1̆((∇̆XΦ)N + Φ∇̆XN,E)
= 1̆(∇̆XN,ΦE)
= −1̆(ANX,ΦE).

Therefore we arrive at (i).
On the other hand, since

−1̆(ANX,ΦE) = 1̆(A∗EX,ΦN),

we obtain (ii).

Now, we consider the distribution ϑ. From (29) and taking

β = {Φ(Rad(TM)) ⊕Φ(ltr(TM))}⊥Rad(TM),

for any X ∈ Γ(TM), Y ∈ Γ(ϑ) and Z ∈ Γ(β), we can write

∇XY =
ϑ
∇XY +

ϑ
h(X,Y), (46)

∇XZ = −
ϑ
AZX + ∇⊥XZ, (47)

where
ϑ
h : Γ(TM)×Γ(ϑ)→ Γ(β) is an ℑ(M) bilinear,

ϑ
A is an ℑ(M) linear operator on Γ(ϑ),

ϑ
∇ and ∇⊥ is a linear

connection on ϑ and β, respectively.
Let ℑ ⊂M be a coordinate neighborhood. If we consider the decomposition (29), we take

ρ1(U,Y) = −1(
ϑ
h(U,Y),ΦN),

ρ2(U,Y) = −1(
ϑ
h(U,Y),ΦE),

ρ3(U,Y) = 1(
ϑ
h(U,Y),N),

(48)

for any U,Y ∈ Γ(ϑ |ℑ).
Therefore, from (3), we get

∇̆UY =
ϑ

∇̆UY − ρ1(U,Y)ΦE − ρ2(U,Y)ΦN + ρ3(U,Y)E. (49)

If we compute ρ1, ρ2 and ρ3 in terms of B and C we arrive at

1(∇̆UY,ΦN) = ρ1(U,Y) = −C(U,ΦY),
1(∇̆UY,ΦE) = ρ2(U,Y) = −B(U,ΦY),
1(∇̆UY,N) = ρ3(U,Y) = −C(U,Y).

(50)

Thus, we can rewrite equation (49) with

∇UY =
ϑ
∇UY − C(U,ΦY)ΦE − B(U,ΦY)ΦN − C(U,Y)E. (51)
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Theorem 5.7. Let M be a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian manifold
(M̆, 1̆,Φ). Then the distribution ϑ is integrable if and only if

C(U,ΦY) = C(ΦU,Y), B(U,ΦY) = B(ΦU,Y), C(U,Y) = C(Y,U), (52)

for every U,Y ∈ Γ(ϑ).

Proof. We know that ∇̆ is a linear connection. Therefore, in view of (51), we have

[U,Y] =
ϑ
∇UY −

ϑ
∇YU

+(C(U,ΦY) − C(ΦU,Y))ΦE
+(B(U,ΦY) − B(ΦU,Y))ΦN
+(C(U,Y) − C(Y,U))E.

If ϑ is integrable then the components of [U,Y] with respect to ΦE,ΦN and E vanish. Thus, we get (52).
Contrary to, if (52) is satisfied we arrive at

[U,Y] ∈ Γ(ϑ).

This completes the proof.

Theorem 5.8. Let M be a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian manifold
(M̆, 1̆,Φ). Then the distribution D̂ is integrable if and only if

B(ΦU,ΦY) = mB(ΦU,Y) − B(U,Y), (53)

for every U,Y ∈ Γ(D̂).

Proof. If we take Y ∈ Γ(D̂), we get ΦY ∈ Γ(D̂). Then D̂ is integrable if and only if

1̆([ΦU,Y],ΦE) = 1̆(∇̆ΦUY,ΦE) − 1̆(∇̆YΦU,ΦE)
= 1̆(Φ∇̆ΦUY,E) − 1̆(Φ∇̆YU,ΦE)
= 1̆(∇̆ΦUΦY,E) −m1̆(∇̆YU,ΦE) + 1̆(∇̆YU,E)
= B(ΦU,ΦY) −mB(ΦU,Y) + B(U,Y),

which yields (53).

Theorem 5.9. Let M be a screen semi-invariant lightlike hypersurface of a poly-Norden semi-Riemannian manifold
(M̆, 1̆,Φ). Then the distribution D̂ is parallel if and only if D̂ is totally geodesic on M.

Proof. From the definition of the distribution D̊ we know that D̊ is parallel if and only if

1(∇UY,Ψ) = 0.

From this equation, we get

0 = 1(∇̆UY,Ψ)
= 1̆(∇̆UY,Ψ)
= 1̆(∇̆UY,ΦE)
= 1̆(Φ∇UY,E)
= 1̆(−((∇̆UΦ)Y + ∇̆UΦY,E)
= 1̆(∇̆UΦY,E) = B(U, J̃Y),

which gives the proof of our assertion.
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[18] Erdoğan FE,Yüksel Perktaş S, Acet BE. Blaga AM. Screen transversal lightlike submanifolds of metallic semi-Riemannian mani-

folds. J Geom Phys. 142, 2019, 111 -– 120.
[19] Kalia S. The generalizations of the golden ratio, their powers, continued fractions and convergents,

http://math.mit.edu/research/highschool/primes/papers.php
[20] Hretcanu CE, Crasmareanu MC. Metallic structure on Riemannian manifolds. Rev Un Mat Argentina. 54(2), 2013, 15 -– 27.
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Abstract. The paper introduces some new special ruled surfaces with the base TNB- Smarandache curve
where the unit vector of the generator is taken as one of other Frenet vectors and their linear combinations.
The geometric properties with reference to fundamental forms such as minimality and developability
of each generated surface are examined by Gauss and mean curvatures. An example is also given by
considering the famous Viviani’s curve.

1. Introduction

The theory of surfaces is an important branch of differential geometry. A typical surface is defined as an
image of a function with two real valued variables (domain) by a mapping to 2- or 3-dimensional space. As
a special type of surfaces, the ruled surfaces are defined to be one parameter family of lines. The simplest
formulation makes these surfaces popular to refer for purposes on geometric modeling. Therefore, they
are subjected in many areas such as engineering, architectural designs, computer graphics, automobile
industry, etc [1, 2]. Since they are mostly referred in geometric designs sometimes to deal with real world
problems and more frequently to model the real objects, introducing new ruled surfaces generated by
different methods will lead new potentials to the related fields. Providing their characteristics may also
enable easy adaptations for interested researchers. The basic theory related to ruled surfaces can be found
in many differential geometry textbooks such as [3–7]. Recently, Ouarab, (2021a) put forth a method to
generate new ruled surfaces in by taking the advantage of the idea of Smarandache geometry. By assigning
the base curve as one of the Smarandache curves and taking the generator as the another vector element of
Frenet frame, she introduced these ruled surfaces as Smarandache ruled surfaces according to Frenet frame
in [8]. The same method of generating such ruled surfaces is applied to the Darboux frame by Ouarab,
(2021b) in [9] and according to the alternative frame by Ouarab, (2021c) in [10]. Motivated by this, in
this study, we address new ruled surfaces by considering some linear combinations of Frenet vectors as a
Smarandache curve. Then, we study some characteristics of these ruled surfaces and present an example
regarding to Viviani’s curve to illustrate each surface.
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2. Preliminaries

We comprise the basic concepts which will be used throughout the paper in this section. Let α : I → E3

be a regular unit speed curve. The very well-known Frenet apparatus is given by following identities:

T = α′, N =
α′′

∥α′′∥
, B = T ∧N, κ = ∥α′′∥ , τ = ⟨N′,B⟩ ,

T′ = κN, N′ = −κT + τB, B′ = −τN, [12]

On the other hand, a Smarandache curve of is a regular curve generated by the position vector of the
following form

γ =
f T + 1N + hB√

f 2 + 12 + h2
(1)

where f , 1 and h are real functions. For ∀s ∈ I the vector γ corresponds to a differentiable curve. If each
f , 1 and h is considered to be a constant function then the curves drawn by the γ vector are known as
Smarandache curves [11]. There are many studies in the literature with the context of Smarandache curves
by applying different frames and considering different spaces. For more detail see [11–13].
A ruled surface, on the other hand is a one parameter family of lines and it has the following parameteri-
zation

X (s, v) = α(s) + vr (s) . (2)

The normal vector field of the ruled surface , is given as

NX =
Xs ∧ Xv

∥Xs ∧ Xv∥
, (3)

while the Gauss and mean curvatures are defined by

K =
e1 − f 2

EG − F2 , H =
E1 − 2 f F + eG

2 (EG − F2)
, (4)

respectively [1–5]. The coefficients appeared at (4) are known to be the coefficients of first and second
fundamental forms and calculated by followings:

E = ⟨Xs,Xs⟩ , F = ⟨Xs,Xv⟩ , G = ⟨Xv,Xv⟩ , (5)
e = ⟨Xss,NX⟩ , f = ⟨Xsv,NX⟩ , 1 = ⟨Xvv,NX⟩ . (6)

3. Some special Smarandache Ruled Surfaces according to Frenet Frame in E3

Let us recall the relation (1) . If f = 1 = h = 1, then the corresponding curve whose position vector is

γ⃗ =
T⃗ + N⃗ + B⃗
√

3
is called as the TNB− Smarandache curve. Next, let us consider the ruled surfaces whose

base is TNB− Smarandache curve and the genarator is the one of following unit vectors

T⃗, N⃗, B⃗, r⃗1 =
T⃗ + N⃗
√

2
, r⃗2 =

T⃗ + B⃗
√

2
, r⃗3 =

N⃗ + B⃗
√

2
, r⃗4 =

T⃗ + N⃗ + B⃗
√

3
.

We examine the properties of these seven ruled surfaces by means of Gaussian and mean curvatures.

Definition 3.1. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector T⃗ moves along on the TNB− Smarandache curve of α. The
parametric form of this is given as

F (s, v) =
1
√

3

((
1 +
√

3v
)

T +N + B
)
.
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The first and second partial derivatives of the surface F (s, v) are given in respective order as follows:

Fs =
1
√

3

(
−κT +

(
κ − τ +

√

3vκ
)

N + τB
)
, Fv = T, Fsv = κN, Fvv = 0,

Fss =
1
√

3

((
−κ′ − κ2 + τκ −

√

3vκ2
)

T −
(
κ2 + τ2

− κ′ + τ′ −
√

3vκ′
)

N +
(
τ′ + τκ − τ2 +

√

3vτκ
)

B
)
.

To formulate the normal vector field of F (s, v) denoted by NF , we first compute

Fs ∧ Fv =
1
√

3

(
τN −

(
κ − τ +

√

3vκ
)

B
)
.

When the norm is taken, we have

∥Fs ∧ Fv∥ =
1
√

3

√
τ2 +

(
κ − τ +

√

3vκ
)2
=

1
√

3

√
κ2 + 2τ2 − 2κτ + 2

√

3v (κ2 − κτ) + 3v2κ2.

Hence, we obtain

NF =
τN −

(
κ − τ +

√
3vκ
)

B√
κ2 + 2τ2 − 2κτ + 2

√
3v (κ2 − κτ) + 3v2κ2

.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

EF =
1
3

(
κ2 + τ2 +

(
κ − τ +

√

3vκ
)2)
, FF =

κ
√

3
, GF = 1,

eF =
−τ
(
κ2 + τ2

− κ′ + τ′ −
√

3vκ′
)
−

(
κ − τ +

√
3vκ
) (
τ′ + τκ − τ2 +

√
3vτκ

)
√

3
√
κ2 + 2τ2 − 2κτ + 2

√
3v (κ2 − κτ) + 3v2κ2

,

fF =
κτ

√
3
√
κ2 + 2τ2 − 2κτ + 2

√
3v (κ2 − κτ) + 3v2κ2

, 1F = 0.

Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KF = −
κ2τ2(

κ2 + 2τ2 − 2κτ + 2
√

3v (κ2 − κτ) + 3v2κ2
)2 ,

HF = −

√
3τ
(
κ2 + τ2

− κ′ + τ′ −
√

3vκ′
)
+
√

3
(
κ − τ +

√
3vκ
) (
τ′ + τκ − τ2 +

√
3vτκ

)
+ 2κ2τ

2
(
κ2 + 2τ2 − 2κτ + 2

√
3v (κ2 − κτ) + 3v2κ2

) 3
2

.

Corollary 3.2. If α is a planar curve then the ruled surface F (s, v) is both developable and minimal.

Definition 3.3. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector N⃗ moves along on the TNB− Smarandache curve of α.
The parametric form of this is given as

U (s, v) =
1
√

3

(
T +
(
1 +
√

3v
)

N + B
)
.
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The first and second partial derivatives of the surfaceU (s, v) are given in respective order as follows:

Us =
1
√

3

(
−κ
(
1 +
√

3v
)

T + (κ − τ) N + τ
(
1 +
√

3v
))
, Uv = N, Usv = −κT + τB, Uvv = 0,

Uss =
1
√

3

(
−

(
κ′
(
1 +
√

3v
)
+ κ (κ − τ)

)
T +
(
κ′ − τ′ −

(
1 +
√

3v
) (
κ2 + τ2

))
N +
(
τ (κ − τ) + τ′

(
1 +
√

3v
))

B
)
.

To formulate the normal vector field ofU(s, v) denoted by NU , we first compute

Us ∧Uv =
1
√

3

(
τ
(
1 +
√

3v
)

T − κ
(
1 +
√

3v
)

B
)
.

When the norm is taken, we have

∥Us ∧Uv∥ =
1
√

3

(
1 +
√

3v
) √
κ2 + τ2.

Hence, we obtain

NU =
τT − κB
√

κ2 + τ2
.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

EU =
1
3

((
κ2 + τ2

) (
1 +
√

3v
)2
+ (κ − τ)2

)
, FU =

(κ − τ)
√

3
, GU = 1,

eU = −
(τκ′ + κτ′)

(
1 +
√

3v
)
+ 2τκ (κ − τ)

√
3
√

κ2 + τ2
, fU = −

2κτ
√

κ2 + τ2
, 1U = 0.

Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KU = −
12κ2τ2(

1 +
√

3v
)2

(κ2 + τ2)2
,

HU = −
3 (τκ′ + κτ′)

(
1 +
√

3v
)
+ 18κτ (κ − τ)

2
√

3
(
1 +
√

3v
)

(κ2 + τ2)
3
2

.

Corollary 3.4.

• If α is a planar curve, then the ruled surface F (s, v) is both developable and minimal.

• If α is a circular helix with equal curvatures, then the ruled surface F (s, v) is minimal.

Definition 3.5. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector B⃗ moves along on the TNB− Smarandache curve of α. The
parametric form of this is given as

Z (s, v) =
1
√

3

(
T +N +

(
1 +
√

3v
)

B
)
.

The first and second partial derivatives of the surfaceZ (s, v) are given in respective order as follows:

Zs =
1
√

3

(
−κT +

(
κ − τ −

√

3vτ
)

N + τB
)
,Zv = B, Zsv = −τN, Zvv = 0,

Zss =
1
√

3

(
−

(
κ′T + κ2

− τκ −
√

3vκτ
)

T +
(
κ′ − τ′ −

√

3vτ′ − κ2
− τ2
)

N +
(
τ′ + τκ − τ2

−

√

3vτ2
)

B
)
.
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To formulate the normal vector field ofZ(s, v) denoted by NZ, we first compute

Zs ∧Zv =
1
√

3

((
κ − τ −

√

3vτ
)

T − κN
)
.

When the norm is taken, we have

∥Zs ∧Zv∥ =
1
√

3

√(
κ − τ −

√

3vτ
)2
+ κ2 =

1
√

3

√
2κ2 + τ2 − 2κτ − 2

√

3v (κτ − τ2) + 3v2τ2.

Hence, we obtain

NZ =

(
κ − τ −

√
3vτ
)

T − κN√
2κ2 + τ2 − 2κτ − 2

√
3v (κτ − τ2) + 3v2τ2

.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

EZ =
1
3

((
κ2 + τ2

) (
κ − τ −

√

3vτ
)2)
, FZ =

τ
√

3
, GZ = 1,

eZ =
−

(
κ′T + κ2

− τκ −
√

3vκτ
) (
κ − τ −

√
3vτ
)
− κ
(
κ′ − τ′ −

√
3vτ′ − κ2

− τ2
)

√
3
√

2κ2 + τ2 − 2κτ − 2
√

3v (κτ − τ2) + 3v2τ2

,

fZ =
κτ√

2κ2 + τ2 − 2κτ − 2
√

3v (κτ − τ2) + 3v2τ2

, 1Z = 0.

Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KZ =
−3κ2τ2(

2κ2 + τ2 − 2κτ − 2
√

3v (κτ − τ2) + 3v2τ2
)2 ,

HZ =
−
√

3
(
κ′T + κ2

− τκ −
√

3vκτ
) (
κ − τ −

√
3vτ
)
−
√

3
(
κκ′ − κτ′ −

√
3vκτ′ − κ3 + κτ2

)
2
(
κ2 + τ2 − 2κτ − 2

√
3v (κτ − τ2) + 3v2τ2.

) 3
2

.

Corollary 3.6. If α is a planar curve, then the ruled surface F (s, v) is developable.

Definition 3.7. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector r⃗1 moves along on the TNB− Smarandache curve of α.
The parametric form of this is given as

S (s, v) =
1
√

3
(T +N + B) +

v
√

2
(T +N) .

The first and second partial derivatives of the surface S (s, v) are given in respective order as follows:

Ss =
1
√

6

(
−κ
(√

2 + v
√

3
)

T +
(
κ
(√

2 + v
√

3
)
−

√

2τ
)

N + τ
(√

2 + v
√

3
)

B
)
,

Sv =
1
√

2
(T +N) , Ssv =

1
√

2
(−κT + κN + τB) , Svv = 0,

Sss =
1
√

6


(
−
√

2
(
κ′ + κ2

− κτ
)
− v
√

3
(
κ′ + κ2

))
T

+
(√

2
(
κ′ − τ′ − κ2

− τ2
)
+ v
√

3
(
κ′ − κ2

− τ2
))

N
+
(√

2
(
τ′ − τ2 + κτ

)
+ v
√

3 (τ′ + κτ)
)

B


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To formulate the normal vector field of S(s, v) denoted by NS, we first compute

Ss ∧ Sv =
1

2
√

6

(
−τ
(
2 +
√

6v
)

T + τ
(
2 +
√

6v
)

N +
(
2τ − 2κ

(
2 +
√

6v
))

B
)
.

When the norm is taken, we have

∥Ss ∧ Sv∥ =
1
√

6

√
(4κ2 + 3τ2 − 4κτ) + 2

√

6v (2κ2 + τ2 − κτ) + 3v2 (2κ2 + τ2).

Hence, we obtain

NS =
−τ
(
2 +
√

6v
)

T + τ
(
2 +
√

6v
)

N +
(
2τ − 2κ

(
2 +
√

6v
))

B

2
√

(4κ2 + 3τ2 − 4κτ) + 2
√

6v (2κ2 + τ2 − κτ) + 3v2 (2κ2 + τ2)
.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

ES =
1
6

(
4
(
κ2
− κτ + τ2

)
+ 2
√

6v
(
2κ2
− κτ + τ2

)
+ 3v2

(
2κ2 + τ2

))
,

FS = −
τ
√

6
, GS = 1,

eS =

4κ′τ − 4κτ′ − 4τ3 +
√

6ττ′ +
√

6κτ2 + 6κτ2
− 6κ2τ

+
√

6v
(
4κ′τ − 2ττ′ − 4κτ′ − 3κ2τ + 2κτ2

− 2κ2τ − 2τ3
)
+ 3v2

(
2τκ′ − 2κτ′ − 2κ2τ − τ3

)
2
√

3
(
4κ2 + 3τ2 − 4κτ + 2

√
6v (2κ2 + τ2 − κτ) + 3v2 (2κ2 + τ2)

) 1
2

,

fS =
τ2
− 2κτ −

√
6κτv

√
2
√

(4κ2 + 3τ2 − 4κτ) + 2
√

6v (2κ2 + τ2 − κτ) + 3v2 (2κ2 + τ2)
, 1S = 0.

Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KS =
−3
(
τ2
− 2κτ −

√
6κτv

)2(
4κ2 + 3τ2 − 4κτ + 2

√
6v (2κ2 + τ2 − κτ) + 3v2 (2κ2 + τ2)

)2 ,

HS =

4κ′τ − 4κτ′ − 6τ3 +
√

6ττ′ +
(√

6 + 10
)
κτ2
− 6κ2τ

+
√

6v
(
4κ′τ − 2ττ′ − 4κτ′ − 3κ2τ + 2κτ2

− 2κ2τ − 2τ3
)
+ 3v2

(
2τκ′ − 2κτ′ − 2κ2τ − τ3

)
(
2/
√

3
)(

4κ2 + 3τ2 − 4κτ + 2
√

6v (2κ2 + τ2 − κτ) + 3v2 (2κ2 + τ2)
) 3

2

.

Corollary 3.8. If α is a planar curve then the ruled surface S(s, v) is developable.

Definition 3.9. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector r⃗2 moves along on the TNB− Smarandache curve of α.
The parametric form of this is given as

Q (s, v) =
1
√

3
(T +N + B) +

v
√

2
(T + B) .
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The first and second partial derivatives of the surface Q(s, v) are given in respective order as follows:

Qs =
1
√

6

(
−

√

2κT + (κ − τ)
(√

2 + v
√

3
)

N +
√

2τB
)
,

Qv =
1
√

2
(T + B) , Qvv = 0, Qsv =

1
√

2
(κ − τ) N,

Qss =
1
√

6


(√

2
(
−κ′ − κ2 + τκ

)
+
√

3v
(
−κ2 + τκ

))
T

+
(
−
√

2
(
κ2 + τ2 + τ′ − κ′

)
−
√

3v (τ′ − κ′)
)

N
+
(√

2
(
τ′ + κτ − τ2

)
+
√

3v
(
τκ − τ2

))
B


To formulate the normal vector field of Q(s, v) denoted by NQ, we first compute

Qs ∧ Qv =
1

2
√

6

{
(κ − τ)

(
2 +
√

6v
)

T + 2 (κ + τ) N − (κ − τ)
(
2 +
√

6v
)

B
}
.

When the norm is taken, we have

∥Qs ∧ Qv∥ =
1
√

6

√
3κ2 + 3τ2 − 2κτ + v2

√

6(κ − τ)2 + 3v2(κ − τ)2.

Hence, we obtain

NQ =
(κ − τ)

(
2 +
√

6v
)

T + 2 (κ + τ) N − (κ − τ)
(
2 +
√

6v
)

B

2
√

3κ2 + 3τ2 − 2κτ + v2
√

6(κ − τ)2 + 3v2(κ − τ)2
.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

EQ =
1
6

(
4κ2 + 4τ2

− 4τκ + 2
√

6v(κ − τ)2 + 3v2(κ − τ)2
)
,

FQ =
τ − κ
√

6
, GQ = 1,

eQ =
4
√

3
(
τκ′ − κτ′ − κ3

− τ3
)
+ 4
√

3v
(
−κτ′ + τκ′ − κ3

− τ3 + κτ2 + κτ2
)
− 3
√

3v2
(
κ2
− τ2
)

(κ − τ)

6
√

3κ2 + 3τ2 − 2κτ + v2
√

6(κ − τ)2 + 3v2(κ − τ)2
,

fQ =

√
2
(
κ2
− τ2
)

2
√

3κ2 + 3τ2 − 2κτ + v2
√

6(κ − τ)2 + 3v2(κ − τ)2
, 1Q = 0.

Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KQ =
−3
(
κ2
− τ2
)2(

3κ2 + 3τ2 − 2κτ + v2
√

6(κ − τ)2 + 3v2(κ − τ)2
)2 , ,

HQ =

4
√

3
(
τκ′ − κτ′ − κ3

− τ3
)
+
(
κ2
− τ2
)

(κ − τ)

+4
√

3v
(
−κτ′ + τκ′ − κ3

− τ3 + κτ2 + κτ2
)
− 3
√

3v2
(
κ2
− τ2
)

(κ − τ)

2
(
3κ2 + 3τ2 − 2κτ + v2

√
6(κ − τ)2 + 3v2(κ − τ)2

) 3
2

.
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Corollary 3.10. If α is a circular helix with equal curvatures then the ruled surface Q(s, v) is developable.

Definition 3.11. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector r⃗3 moves along on the TNB− Smarandache curve of α.
The parametric form of this is given as

M (s, v) =
1
√

3
(T +N + B) +

v
√

2
(N + B) .

The first and second partial derivatives of the surfaceM(s, v) are given in respective order as follows:

Ms =
1
√

6

(
−

(√
2κ + v

√

3κ
)

T +
(√

2 (κ − τ) − v
√

3τ
)

N +
(√

2τ + v
√

3τ
)

B
)

Mv =
1
√

2
(N + B) , Mvv = 0, Msv =

1
√

2
(−κT − τN + τB) ,

Mss =
1
√

6


−

(√
2
(
κ′ + κ2

− κτ
)
+
√

3v (κ′ − κτ)
)

T
+
(√

2
(
κ′ − τ′ − κ2

− τ2
)
+
√

3v
(
τ′ − κ2

− τ2
))

N
+
(√

2
(
τ′ + κτ − τ2

)
+
√

3v
(
τ′ − τ2

))
B


To formulate the normal vector field ofM(s, v) denoted by NM, we first compute

Ms ∧Mv =
1

2
√

6

{(
2κ − 2τ

(
2 +
√

6v
))

T + κ
(
2 +
√

6v
)

N − κ
(
2 +
√

6v
)

B
}
.

When the norm is taken, we have

∥Ms ∧Mv∥ =
1

2
√

6

√
3κ2 + 4τ2 − 4κτ + 2

√

6v (κ2 + 2τ2 − κτ) + 3v2 (κ2 + 2τ2).

Hence, we obtain

NM =

(
2κ − 4τ − 2

√
6τv
)

T + κ
(
2 +
√

6v
)

N − κ
(
2 +
√

6v
)

B√
3κ2 + 4τ2 − 4κτ + 2

√
6v (κ2 + 2τ2 − κτ) + 3v2 (κ2 + 2τ2)

.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

EM =
1
6

(
4κ2 + 4τ2

− 4κτ + 2
√

6v
(
κ2 + 2τ2

− κτ
)
+ 3v2

(
κ2 + 2τ2

))
,

FM =
κ
√

6
, GM = 1,

eM =
−4
√

2
(
κ′τ − κτ′ − κτ2 + τκ2 + κ3

)
+ 2
√

3v
(
4κ′τ − 4κτ2 + 3τκ2

− κκ′
)
+ v26

√
2
(
κ′τ − κτ2

)
√

3κ2 + 4τ2 − 4κτ + 2
√

6v (κ2 + 2τ2 − κτ) + 3v2 (κ2 + 2τ2)
,

fM =
−
√

2κ2√
3κ2 + 4τ2 − 4κτ + 2

√
6v (κ2 + 2τ2 − κτ) + 3v2 (κ2 + 2τ2)

, 1M = 0.
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Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KM = −
12κ4(

3κ2 + 4τ2 − 4κτ + 2
√

6v (κ2 + 2τ2 − κτ) + 3v2 (κ2 + 2τ2)
)2 ,

HM =

−12
√

2
(
κ′τ − κτ′ − κτ2 + τκ2 + κ3

)
+ 2
√

3κ3

+6
√

3v
(
4κ′τ − 4κτ2 + 3τκ2

− κκ′
)
+ v218

√
2
(
κ′τ − κτ2

)
(
3κ2 + 4τ2 − 4κτ + 2

√
6v (κ2 + 2τ2 − κτ) + 3v2 (κ2 + 2τ2)

) 3
2

Corollary 3.12. The ruled surfaceM(s, v) cannot be a developable surface.

Definition 3.13. Let α : I ⊂ R → R be a regular unit speed curve and denote {T, N, B} as its Frenet frame. We
define and consider the ruled surface where the unit vector r⃗4 moves along on the TNB− Smarandache curve of α.
The parametric form of this is given as

Γ (s, v) =
1
√

3
(T +N + B) +

v
√

3
(T +N + B) .

The first and second partial derivatives of the surface Γ(s, v) are given in respective order as follows:

Γs =
1
√

3
(1 + v) (−κT + (κ − τ) N + τB) ,

Γv =
1
√

3
(T +N + B) ,

Γss =
1
√

3
(1 + v)

{(
−κ′ − κ2 + κτ

)
T +
(
κ′ − τ′ − κ2

− τ2
)

N +
(
τ′ + κτ − τ2

)
B
}
,

Γsv =
1
√

3
(−κT + (κ − τ) N + τB) , Γvv = 0.

To formulate the normal vector field of Γ(s, v) denoted by NΓ, we first compute

Γs ∧ Γv =
1
3

(1 + v) ((κ − 2τ) T + (κ + τ) N + (τ − 2κ) B) .

When the norm is taken, we have

∥Γs ∧ Γv∥ =

√
6

3
(1 + v)

√

κ2 − κτ + τ2.

Hence, we obtain

NΓ =
(κ − 2τ) T + (κ + τ) N + (τ − 2κ) B

√
6
√

κ2 − κτ + τ2
.

Moreover, from the relations (5) and (6) the coefficients of first and second fundamental forms are calculated
as

EΓ =
2
3

(1 + v)2
(
κ2
− κτ + τ2

)
, FΓ = 0, GΓ = 1,

eΓ =
(1 + v)

{
−2
(
κ3 + τ3

)
− 2κ2τ + 3 (κ′τ − κτ′)

}
3
√

2
√

κ2 − κτ + τ2
, fΓ = 0, 1Γ = 0.

Finally, by referring the relation (4) the Gaussian and mean curvatures are obtained as

KΓ = 0, HΓ =
−2
(
κ3 + τ3

)
− 2κ2τ + 3 (κ′τ − κτ′)

2
√

2 (1 + v) (κ2 − κτ + τ2)
3
2

.
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Remark 3.14. Note that since the directrix of this ruled surface can be collapsed to a point, it clearly corresponds to
a cone and can be parameterized as in the following form:

Γ (s, v) =
1
√

3
(1 + v) (T +N + B) .

As known from the literature that for any conical surface, the coefficients FΓ and fΓ of first and second fundamental
forms in respective order vanish, which corresponds to the relation KΓ = 0. Therefore, the predefined ruled surface
forms always a developable cone. However, we find it worth to do the calculations for validation purposes and
providing the relation for mean curvature.

Example 3.15. Let us consider the well known Viviani’s curve parameterized as

γ(t) =
(
a(1 + cost), asint, 2asin

1
2

t
)
, t ∈ [−2π, 2π], [Gray, 1997 p.201].

For a = 0.5 and by changing the parameter as t = 2s, we easily represent the given Viviani’s curve as in the following
way

α(s) =
(
cos2(s), sin(s) cos(s), sin(s)

)
, s ∈ [−π, π].

Then, the Frenet apparatus of α = α(s) are given as

T(s) =
2√

2 cos (2s) + 6

(
− sin (2s) , cos (2s) , cos (s)

)
,

N(s) =
−1√

2 cos (2s) + 6
√

6 cos (2s) + 26

 cos (4s) + 12 cos (2s) + 3,
sin (4s) + 12 sin (2s) ,
4 sin (s)

 ,
B(s) =

1√
6 cos (2s) + 26

(
sin (3s) + 3 sin (s) ,− cos (3s) − 3 cos (s) , 4

)
.

For s ∈ [−π, π] and v ∈ [−1, 1], the ruled surfaces F (s, v), U(s, v), Z(s, v), S(s, v), Q(s, v), M(s, v) and Γ(s, v)
are sketched in the following figures from (a) to (g).

(a) generated by the unit vector T⃗ (b) generated by the unit vector N⃗
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(c) generated by the unit vector B⃗ (d) generated by the unit vector r⃗1

(e) generated by the unit vector r⃗2 (f) generated by the unit vector r⃗3

(g) generated by the unit vector r⃗4

Figure 1: The ruled surfaces F (s, v), U(s, v), Z(s, v), S(s, v), Q(s, v), M(s, v) and Γ(s, v) with the base TNB-
Smarandache curve
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Analysis of the spread of Hookworm infection with Caputo-Fabrizio
fractional derivative
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Abstract. This research study provides a mathematical analysis for the spread of Hookworm infection
model. Firstly, the proposed disease model is extended by means of the Caputo-Fabrizio fractional deriva-
tive. Then, existence and uniqueness of the solution is presented for the fractional-type Hookworm infection
model with the help of the fixed-point theorem. Theoretical results of the model under consideration show
the advantages of the fractional differential operators.

1. Introduction

In comparison to traditional mathematical models, fractional-order models are more advantageous since
they generally produce better outcomes than classical order models [1]. Many researchers have concentrated
on studying non-linear dynamical systems based on different types of fractional differential operators,
inspired by the growth of fractional calculus, by creating a number of analytical or numerical techniques in
order to obtain solutions [2, 3]. In order to analyze and investigate these systems, Riemann-Liouville (RL),
Caputo, Caputo-Fabrizio (CF), Atangana-Baleanu (AB), as well as other non-local fractional derivatives,
are employed to reach more detailed results. Recently, a new-type fractional derivative including a non-
singular kernel has been presented as can be seen in [4]. The kernel of this non-local non-singular fractional
operator has the form of the exponential function. Some type of fractional operators, on the other hand,
have a power-law kernel and are limited in their ability to describe physical situations. Therefore, Caputo
and Fabrizio proposed an additional fractional differential operator with an exponential decay kernel to
overcome this challenge in [1]. The CF fractional derivative operator, which has a non-singular kernel, is a
new approach to the fractional calculus that has captivated the interest of many researchers. Additionally,
the CF operator is one of the best suited for simulating real-world problems that follow the exponential
decay law. Developing a mathematical model employing the CF fractional-order derivative became a
well-known subject of study over time [10–12].

Inspired by the above information, the Hookworm infection model [5] is investigated in this study
utilizing CF fractional-type derivative and integral operator. First, the model is updated to use CF fractional
operator. The existence and uniqueness of solutions are then determined under initial conditions utilizing
the fixed point theorem.
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2. Preliminaries

In the current portion, some fundamental definitions of fractional derivative and integral are presented.
For more information on fractional calculus, we refer the readers to [6–9].

Definition 2.1. Let n ∈N and n − 1 < ν < n, then Caputo fractional derivative is defined by [7]:

C
a Dν

t f (t)) =
1

Γ(n − ν)

∫ t

a

f (n)(r)
(t − r)ν+1−n dr. (1)

Definition 2.2. For f ∈ H1(a, b), b > a, ν ∈ (0, 1), the CF fractional derivative is presented as [4]:

CF
a D

ν
t ( f (t)) =

νM(ν)
1 − ν

∫ t

a

d f (x)
dx

exp
[
− ν

t − x
1 − ν

]
dx. (2)

Here M(ν) is a normalization constants given by M(0) = M(1) = 1. Also, the definition of CF operator can be
given as below:

CF
a D

ν
t ( f (t)) =

νM(ν)
1 − ν

∫ t

a

(
f (t) − f (x)

)
exp
[
− ν

t − x
1 − ν

]
dx.

Remark 2.3. If η = 1−ν
ν ∈ (0,∞), ν = 1

1+η =∈ [0, 1], then the above equation supposes the following expression

D
η
t ( f (t)) =

N(η)
η

∫ t

a

d f (x)
dx

exp
[
−

t − x
η

]
dx, N(0) = N(∞) = 1. (3)

Furthermore,

lim
ν→0

1
ν

exp
[
−

t − x
ν

]
= δ(x − t).

It should be noted that according to the definition, the fractional integral of Caputo type function with
order ν is an average between function f and its integral of order one. Hence, this means that

M(ν) =
2

2 − ν
, 0 ≤ ν ≤ 1. (4)

Owing to the above expression, Nieto and Losada presented the new Caputo type derivative of order ν
can be rewritten as follows:

Definition 2.4. The fractional derivative of order ν is [6],

CFDν⋆( f (t)) =
1

1 − ν

∫ t

0
f ′(x)exp

[
− ν

t − x
1 − ν

]
dx. (5)

At this instant subsequent to the preface of the novel derivative, the connected anti-derivative turns out
to be imperative; the connected integral of the derivative was proposed by Nieto and Losada [6],

Definition 2.5. Let 0 < ν < 1., then the fractional integral with order ν of a function f is given by

CFIν f (t) =
2(1 − ν)

(2 − ν)M(ν)
u(t) +

2ν
(2 − ν)M(ν)

∫ t

0
u(s)ds, t ≥ 0. (6)
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3. Fractional Model

In this section, we expand the spread of Hookworm infection model [5] to the fractional CF derivative.
Classic integer order model is reformulated in the nonlinear system of differential in equations (7):

S(t)
dt = Λ − µS(t)L2(t) − ρS(t) + βR(t)

E(t)
dt = µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t)

I1(t)
dt = (1 − α)γE(t) − (η + µ + ψ1)I1(t)

I2(t)
dt = αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t)

R(t)
dt = ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t)

F(t)
dt = ϕI1(t) + ϕI2(t) − (w + χ)F(t)

L1(t)
dt = χF(t) − (δ + ζ)L1(t)

L2(t)
dt = ζL1(t) − kL2(t).

(7)

In the above system (3.1), S(t),E(t), I1(t), I2(t),R(t),F(t),L1(t) and L2(t) represent the the dynamics of
hookworm and human populations, susceptible humans,exposed humans, infective humans with mod-
erate infection, infective humans with heavy infection, recovered humans and, worm eggs, non infective
rhabditiform larvae, infective filariaform larvae respectively. All the parameters are positive constants and
Λ is the recruited at the rate of the population, µ is the individuals from the recovery class at the rate, η
is the moderate infectious individual progresses at the rate of the population, ψ1 is the rate of recovery
from moderate infection , ψ2 is the rate of heavy infection, the natural death rate of human and the dis-
ease induced related mortality rate are denoted byρ andµwhile w, δ and k are respective death rates for eggs.

The spread of Hookworm infection model is integrated via Caputo–Fabrizio fractional derivative with
the model and can be written as follows:



CF
0 D

ν
t S(t) = Λ − µS(t)L2(t) − ρS(t) + βR(t),

CF
0 D

ν
t E(t) = µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t),

CF
0 D

ν
t I1(t) = (1 − α)γE(t) − (η + µ + ψ1)I1(t),

CF
0 D

ν
t I2(t) = αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t),

CF
0 D

ν
t R(t) = ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t),

CF
0 D

ν
t F(t) = ϕI1(t) + ϕI2(t) − (w + χ)F(t),

CF
0 D

ν
t L1(t) = χF(t) − (δ + ζ)L1(t),

CF
0 D

ν
t L2(t) = ζL1(t) − kL2(t).

(8)

where ν ∈ (0, 1) is the order of the fractional derivative operator. Then the initial values are as follows:
S(0)(t) = S(0), E(0)(t) = E(0), I1(0) (t) = I1(0),
I2(0) (t) = I2(0), R(0)(t) = R(0),F(0)(t) = F(0),
L1(0) (t) = L1(0), L2(0) (t) = L2(0).

4. Existence and Uniqueness of Hookworm infection Model

Utilizing fixed point theorem, we show the existence of the model under investigation in this section.
We utilize the CF integral operator on (9) in order to get
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

S(t) − S(0) =CF
0 Iνt {Λ − µS(t)L2(t) − ρS(t) + βR(t)},

E(t) − E(0) =CF
0 Iνt {µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t)},

I1(t) − I1(0) =CF
0 Iνt {(1 − α)γE(t) − (η + µ + ψ1)I1(t)},

I2(t) − I2(0) =CF
0 Iνt {αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t)},

R(t) − R(0) =CF
0 Iνt {ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t)}

F(t) − F(0) =CF
0 Iνt {ϕI1(t) + ϕI2(t) − (w + χ)F(t)},

L1(t) − L1(0) =CF
0 Iνt {χF(t) − (δ + ζ)L1(t)},

L2(t) − L2(0) =CF
0 Iνt {ζL1(t) − kL2(t)}.

(9)

By using the approach in [6], we have

S(t) − S(0) = 2(1−ν)
(2−ν)M(ν) {Λ − µS(t)L2(t) − ρS(t) + βR(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {Λ − µS(r)L2(r) − ρS(r) + βR(r)}dr,
E(t) − E(0) = 2(1−ν)

(2−ν)M(ν) {µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {µS(r)L2(r) − ρE(r) − αγE(r) − (1 − α)γE(r)}dr,
I1(t) − I1(0) = 2(1−ν)

(2−ν)M(ν) {(1 − α)γE(t) − (η + µ + ψ1)I1(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {(1 − α)γE(r) − (η + µ + ψ1)I1(r)}dr,
I2(t) − I2(0) = 2(1−ν)

(2−ν)M(ν) {αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {αγE(r) + ηI1(r) − (µ + ρ + ψ2)I2(r)}dr,
R(t) − R(0) = 2(1+ν)

(2−ν)M(ν) {ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {ψ1I1(r) + ψ2I2(r) − (ρ + β)R(r)}dr,
F(t) − F(0) = 2(1−ν)

(2−ν)M(ν) {ϕI1(t) + ϕI2(t) − (w + χ)F(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {ϕI1(r) + ϕI2(r) − (w + χ)F(r)}dr,
L1(t) − L1(0) = 2(1−ν)

(2−ν)M(ν) {χF(t) − (δ + ζ)L1(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {χF(r) − (δ + ζ)L1(r)}dr,
L2(t) − L2(0) = 2(1−ν)

(2−ν)M(ν) {ζL1(t) − kL2(t)}

+ 2ν
(2−ν)M(ν)

∫ t

0 {ζL1(r) − kL2(r)}dr.

(10)

For simplicity, we replace as follows:

G1(t,S) = Λ − µS(t)L2(t) − ρS(t) + βR(t),
G2(t,E) = µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t),
G3(t, I1) = (1 − α)γE(t) − (η + µ + ψ1)I1(t),
G4(t, I2) = αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t),
G5(t,R)T = ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t),
G6(t,F) = ϕI1(t) + ϕI2(t) − (w + χ)F(t),
G7(t,L1)T = χF(t) − (δ + ζ)L1(t),
G8(t,L2) = ζL1(t) − kL2(t).

For proving our results, we assume the following assumption (H). For the following continuous func-
tions S(t),E(t), I1(t), I2(t),R(t),F(t),L1(t),L2(t) ∈ L[0, 1], such that ∥S(t)∥ ≤ c1, ∥E(t)∥ ≤ c2, ∥I1(t)∥ ≤ c3, ∥I2(t)∥ ≤
c4, ∥R(t)∥ ≤ c5, ∥F(t)∥ ≤ c6, ∥L1(t)∥ ≤ c7, ∥L2(t)∥ ≤ c8.

Theorem 4.1. The kernels G1,G2,G3,G4,G5,G6,G7 and G8 satisfy the Lipschitz condition if the assumption H is
true and they are contractions provied that Φi < 1 for ∀ ∈ i = 1, . . . , 8.
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Proof. We start with G1. Suppose that S and S1 are two functions, then we obtain,

∥G1(t,S) − G1(t,S1)∥ = (Λ − µS(t)L2(t) − ρS(t) + βR(t)) − (Λ − µS1(t)L2(t) − ρS1(t) + βR(t))∥.
≤ {µL2(t) + ρ}∥(S(t) − S1(t))∥
≤ {µc8 + ρ}∥(S(t) − S1(t))∥
≤ Φ1∥(S(t) − S1(t))∥.

Next, we prove for G2. Suppose that E and E1 are two functions, then we calculate in below,

∥G2(t,E) − G2(t,E1)∥ = (µS(t)L2(t) − ρE(t) − αγE(t) − (1 − α)γE(t))
− (µS(t)L2(t) − ρE1(t) − αγE1(t) − (1 − α)γE1(t))∥.
≤ {ρ + αγ + (1 − α)γ}∥(E(t) − E1(t))∥
≤ {ρ + 1}∥(E(t) − E1(t))∥
≤ Φ2∥(E(t) − E1(t))∥.

Then we show for G3. Suppose that I1 and I11 are two functions, then one can reach

∥G3(t, I1) − G3(t, I11 )∥ = ((1 − α)γE(t) − (η + µ + ψ1)I1(t))
− ((1 − α)γE(t) − (η + µ + ψ1)I11 (t)))∥.
≤ {(η + µ + ψ1)}∥I1(t) − I11 (t))∥
≤ Φ3∥I1(t) − I11 (t))∥.

Similarly, we prove for G4. Suppose that I2 and I21 are two functions, then

∥G4(t, I2) − G4(t, I21 )∥ = (αγE(t) + ηI1(t) − (µ + ρ + ψ2)I2(t))
− (αγE(t) + ηI1(t) − (µ + ρ + ψ2)I21 (t))∥.
≤ {(µ + ρ + ψ2)}∥I2(t) − I21 (t))∥
≤ Φ4∥I2(t) − I21 (t))∥.

For G5, we suppose that R and R1 are two functions, then we have

∥G5(t,R) − G5(t,R1)∥ = (ψ1I1(t) + ψ2I2(t) − (ρ + β)R(t))
− (ψ1I1(t) + ψ2I2(t) − (ρ + β)R1(t))∥.
≤ {(ρ + β)}∥(R(t) − R1(t))∥
≤ Φ5∥(R(t) − R1(t))∥.

Now suppose that F and F1 are two functions, then for G6 one can readily get

∥G6(t,F) − G6(t,F1)∥ = (ϕI1(t) + ϕI2(t) − (w + χ)F(t))
− (ϕI1(t) + ϕI2(t) − (w + χ)F1(t))∥.
≤ {(w + χ)}∥(F(t) − F1(t))∥
≤ Φ6∥(F(t) − F1(t))∥.

For G7, supposing that L1 and L11 are two functions, we can obtain
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∥G7(t,L1) − G3(t,L11 )∥ = (χF(t) − (δ + ζ)L1(t))
− (χF(t) − (δ + ζ)L1(t))∥.
≤ {(δ + ζ)}∥L1(t) − L11 (t))∥
≤ Φ7∥L1(t) − L11 (t))∥,

and for G8, suppose that L2 and L21 are two functions, then we reach

∥G8(t,L2) − G3(t,L21 )∥ = (ζL1(t) − kL2(t))
− (ζL1(t) − kL2(t))∥.
≤ {(k)}∥L2(t) − L21 (t))∥
≤ Φ8∥L2(t) − L21 (t))∥.

All kernels which Gi, i = 1, . . . , 8 satisfy the conditions, so that they are contractions with Φi, i = 1, . . . , 8.
Therefore, this completes the proof.

Using notations for kernels, with all the initial values zero equation (9) becomes

S(t) = 2(1−ν)
(2−ν)M(ν) G1(t,S) + 2ν

(2−ν)M(ν)

∫ t

0 (G1(r,S))dr,

E(t) = 2(1−ν)
(2−ν)M(ν) G2(t,E) + 2ν

(2−ν)M(ν)

∫ t

0 (G2(r,E))dr,

I1(t) = 2(1−ν)
(2−ν)M(ν) G3(t, I1) + 2ν

(2−ν)M(ν)

∫ t

0 (G3(r, I1))dr,

I2(t) = 2(1−ν)
(2−ν)M(ν) G4(t, I2) + 2ν

(2−ν)M(ν)

∫ t

0 (G4(r, I2))dr,

R(t) = 2(1+ν)
(2−ν)M(ν) G5(t,R) + 2ν

(2−ν)M(ν)

∫ t

0 (G5(r,R))dr,

F(t) = 2(1−ν)
(2−ν)M(ν) G6(t,F) + 2ν

(2−ν)M(ν)

∫ t

0 (G6(r,F))dr,

L1(t) = 2(1−ν)
(2−ν)M(ν) G7(t,L1) + 2ν

(2−ν)M(ν)

∫ t

0 (G7(r,L1))dr,

L2(t) = 2(1−ν)
(2−ν)M(ν) G8(t,L2) + 2ν

(2−ν)M(ν)

∫ t

0 (G8(r,L2))dr,

The following recursive formula is presented:

Sn(t) = 2(1−ν)
(2−ν)M(ν) G1(t,Sn−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G1(r,Sn−1))dr,

En(t) = 2(1−ν)
(2−ν)M(ν) G2(t,En−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G2(r,En−1))dr,

I1(n)(t) =
2(1+ν)

(2−ν)M(ν) G3(t, I1(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G3(r, I1(n−1)))dr,

I2(n)(t) =
2(1+ν)

(2−ν)M(ν) G4(t, I2(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G4(r, I2(n−1)))dr,

Rn(t) = 2(1−ν)
(2−ν)M(ν) G5(t,Rn−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G5(r,Rn−1))dr,

Fn(t) = 2(1−ν)
(2−ν)M(ν) G6(t,Fn−1) + 2ν

(2−ν)M(ν)

∫ t

0 (G6(r,Fn−1))dr,

L1(n)(t) =
2(1+ν)

(2−ν)M(ν) G7(t,L1(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G7(r,L1(n−1)))dr,

L2(n)(t) =
2(1−ν)

(2−ν)M(ν) G8(t,L2(n−1)) + 2ν
(2−ν)M(ν)

∫ t

0 (G8(r,L2(n−1)))dr.

(11)

and 

S(0)(t) = S(0),
E(0)(t) = E(0),
I1(0)(t) = I1(0),
I2(0)(t) = I2(0),
R(0)(t) = R(0),
F(0)(t) = F(0),
L1(0)(t) = L1(0),
L2(0)(t) = L2(0).
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where S(0)(t),E(0)(t),M(0)(t), I1(0)(t), I2(0)(t),R(0)(t),F(0)(t),L1(0)(t) and L2(0)(t) are the initial conditions. The dif-
ference of the succeeding terms is obtained as

Ψ1n(t) = Sn(t) − Sn−1(t)
=

2(1−ν)
(2−ν)M(ν) (G1(t,Sn−1) − G1(t,Sn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn−1) − G1(r,Sn−2)dr,
Ψ2n(t) = En(t) − En−1(t)

=
2(1−ν)

(2−ν)M(ν) (G2(t,En−1) − G2(t,En−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G2(r,En−1) − G2(r,En−2)dr,
Ψ3n(t) = I1(n)(t) − I1(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G3(t, I1(n−1)) − G3(t, I1(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G3(r, I1(n−1)) − G3(r, I1(n−2))dr,
Ψ4n(t) = I2(n)(t) − I2(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G4(t, I2(n−1)) − G4(t, I2(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G4(r, I2(n−1)) − G4(r, I2(n−2))dr,
Ψ5n(t) = Rn(t) − Rn−1(t)

=
2(1−ν)

(2−ν)M(ν) (G5(t,Rn−1) − G5(t,Rn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G5(r,Rn−1) − G5(r,Rn−2)dr,
Ψ6n(t) = Fn(t) − Fn−1(t)

=
2(1−ν)

(2−ν)M(ν) (G6(t,Fn−1) − G6(t,Fn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G6(r,Fn−1) − G6(r,Fn−2)dr,
Ψ7n(t) = L1(n)(t) − L1(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G7(t,L1(n−1)) − G7(t,L1(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G7(r,L1(n−1)) − G7(r,L1(n−2))dr,
Ψ8n(t) = L2(n)(t) − L2(n−1)(t)

=
2(1−ν)

(2−ν)M(ν) (G8(t,L2(n−1)) − G8(t,L2(n−2))

+ 2ν
(2−ν)M(ν)

∫ t

0 (G8(r,L2(n−1)) − G8(r,L2(n−2))dr.

Notive that 

Sn(t) =
∑n

i=1Ψ1i(t),
En(t) =

∑n
i=1Ψ2i(t),

I1(n)(t) =
∑n

i=1Ψ3i(t),
I2(n)(t) =

∑n
i=1Ψ4i(t),

Rn(t) =
∑n

i=1Ψ5i(t),
Fn(t) =

∑n
i=1Ψ6i(t),

L1(n)(t) =
∑n

i=1Ψ7i(t),
L2(n)(t) =

∑n
i=1Ψ8i(t).

Now we continue the same process and we have the following form,
∥Ψ1n(t)∥ = ∥Sn(t) − Sn−1(t)∥

= ∥
2(1−ν)

(2−ν)M(ν) (G1(t,Sn−1) − G1(t,Sn−2)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn−1) − G1(r,Sn−2)dr∥.
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Using the triangular inequality, equation (11) is simplified to∥Sn(t) − Sn−1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)∥(G1(t,Sn−1) − G1(t,Sn−2)∥

+ 2ν
(2−ν)M(ν)∥

∫ t

0 (G1(r,Sn−1) − G1(r,Sn−2)dr∥.

Because of the fact that the kernel satisfyies the Lipschitz condition, then we can get∥Sn(t) − Sn−1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ1∥Sn−1 − Sn−2∥

+ 2ν
(2−ν)M(ν)Φ1∥

∫ t

0 ∥Sn−1 − Sn−2∥dr.
(12)

Then we have

∥Ψ1n(t)∥ ≤
2(1 − ν)

(2 − ν)M(ν)
Φ1∥Ψ1(n−1)(t)∥ +

2ν
(2 − ν)M(ν)

Φ1

∫ t

0
∥Ψ1(n−1)(r)∥dr.

Accordingly, we attain the results as below:

∥Ψ2n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ2∥Ψ2(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ2

∫ t

0 ∥Ψ2(n−1)(r)∥dr,

∥Ψ3n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ3∥Ψ3(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ3

∫ t

0 ∥Ψ3(n−1)(r)∥dr,

∥Ψ4n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ4∥Ψ4(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ4

∫ t

0 ∥Ψ4(n−1)(r)∥dr,

∥Ψ5n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ5∥Ψ5(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ5

∫ t

0 ∥Ψ5(n−1)(r)∥dr,

∥Ψ6n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ6∥Ψ6(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ6

∫ t

0 ∥Ψ6(n−1)(r)∥dr,

∥Ψ7n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ7∥Ψ7(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ7

∫ t

0 ∥Ψ7(n−1)(r)∥dr,

∥Ψ8n(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ8∥Ψ8(n−1)(t)∥ + 2ν

(2−ν)M(ν)Φ8

∫ t

0 ∥Ψ8(n−1)(r)∥dr.

We shall then state the following theorem.

Theorem 4.2. The Hookworm infection model (9) has unique solution if the conditions below hold.

2(1 − ν)
(2 − ν)M(ν)

Φ1 −
2ν

(2 − ν)M(ν)
Φ1t < 1.

Proof. Since all the functions S(t),E(t), I1(t), I2(t),R(t),F(t),L1(t) and L2(t) are bounded, we can say that the
kernels satisfy the Lipschitz condition, so by using the recursive method, we get the succeeding relation as

∥Ψ1n(t)∥ ≤ ∥Sn(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ1

)
+
(

2ν
(2−ν)M(ν)Φ1t

)]n
,

∥Ψ2n(t)∥ ≤ ∥En(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ2

)
+
(

2ν
(2−ν)M(ν)Φ2t

)]n
,

∥Ψ3n(t)∥ ≤ ∥I1(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ3

)
+
(

2ν
(2−ν)M(ν)Φ3t

)]n
,

∥Ψ4n(t)∥ ≤ ∥I2(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ4

)
+
(

2ν
(2−ν)M(ν)Φ4t

)]n
,

∥Ψ5n(t)∥ ≤ ∥Rn(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ5

)
+
(

2ν
(2−ν)M(ν)Φ5t

)]n
,

∥Ψ6n(t)∥ ≤ ∥Fn(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ6

)
+
(

2ν
(2−ν)M(ν)Φ6t

)]n
,

∥Ψ7n(t)∥ ≤ ∥L1(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ7

)
+
(

2ν
(2−ν)M(ν)Φ7t

)]n
,

∥Ψ8n(t)∥ ≤ ∥L2(n)(0)∥
[(

2(1−ν)
(2−ν)M(ν)Φ8

)
+
(

2ν
(2−ν)M(ν)Φ8t

)]n
.

(13)

Thus, the existence and continuity of the solutions is proved. Moreover, in order to ensure that the
above function is a solution of equation (9), we continue as below:
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

S(t) − S(0) = Sn(t) − An(t),
E(t) − E(0) = En(t) − Bn(t),
I1(t) − I1(0) = I1n(t) − Cn(t),
I2(t) − I2(0) = T2n(t) −Dn(t).
R(t) − R(0) = Rn(t) − Gn(t),
F(t) − F(0) = Fn(t) −Hn(t),
L1(t) − L1(0) = L1n(t) −Mn(t),
L2(t) − L2(0) = L2n(t) −Nn(t).

(14)

Therefore, we have 

∥An(t)∥ = ∥ 2(1−ν)
(2−ν)M(ν) (G1(t,Sn) − G1(t,Sn−1)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn) − G1(r,Sn−1))dr∥
≤

2(1−ν)
(2−ν)M(ν)∥(G1(t,Sn) − G1(t,Sn−1))∥

+ 2ν
(2−ν)M(ν)

∫ t

0 ∥(G1(r,Sn) − G1(r,Sn−1))∥dr
≤

2(1−ν)
(2−ν)M(ν)Φ1∥K − Kn−1∥ +

2ν
(2−ν)M(ν)Φ1∥S − Sn−1∥t.

Using the process in a recursive manner gives

∥An(t)∥ ≤
( 2(1 − ν)

(2 − ν)M(ν)
+

2ν
(2 − ν)M(ν)

t
)n−1

Φn+1
1 a. (15)

By applying the limit on equation (4.8) as n tends to infinity, we get

∥An(t)∥ → 0.

Similarly,
∥Bn(t)∥ → 0, ∥Cn(t)∥ → 0, ∥Dn(t)∥ → 0,

∥Gn(t)∥ → 0, ∥Hn(t)∥ → 0, ∥Mn(t)∥ → 0, ∥Nn(t)∥ → 0

For the uniqueness system (9) solution, we take on contrary that there exists another solution of (9)
given by S1(t),E1(t), I11(t), I12(t),R1(t),F1(t),L11(t) and L12(t). ThenS(t) − S1(t) =

2(1−ν)
(2−ν)M(ν) (G1(t,Sn) − G1(t,Sn−1)

+ 2ν
(2−ν)M(ν)

∫ t

0 (G1(r,Sn) − G1(r,Sn−1))dr.
(16)

Taking norm on equation (16), we get∥S(t) − S1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)∥(G1(t,Sn) − G1(t,Sn−1)∥

+ 2ν
(2−ν)M(ν)

∫ t

0 ∥(G1(r,Sn) − G1(r,Sn−1))∥dr.

If we apply the Lipschitz condition of kernel, we have∥S(t) − S1(t)∥ ≤ 2(1−ν)
(2−ν)M(ν)Φ1∥S(t) − S1(t)∥

+ 2ν
(2−ν)M(ν)

∫ t

0 Φ1t∥S(t) − S1(t)∥dr.

It gives

∥S(t) − S1(t)∥
(
1 −

2(1 − ν)
(2 − ν)M(ν)

Φ1 −
2ν

(2 − ν)M(ν)
Φ1t
)
≤ 0. (17)
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Theorem 4.3. The model (9) solution will be unique if(
1 −

2(1 − ν)
(2 − ν)M(ν)

Φ1 −
2ν

(2 − ν)M(ν)
Φ1t
)
> 0. (18)

Proof. If condition (18) holds, then (17) implies that

∥S(t) − S1(t)∥ = 0.

Hence, we can attain

S(t) = S1(t).

On employing the same procedure, we get 

E(t) = E1(t),
I1(t) = I11(t),
I2(t) = I21(t).
R(t) = R1(t),
F(t) = F1(t),
L1(t) = L11(t),
L2(t) = L21(t).

5. Conclusion

The Hookworm infection model is analyzed employing the fractional derivative and integral operator
presented by Caputo and Fabrizio. First, the model revised to the fractional derivative of Caputo–Fabrizio.
Then, using the fixed point theorem, existence and uniqueness solutions were performed under initial
conditions.
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