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• Muñoz-Pacheco, Jesus Manuel - Faculty of Electronics Sciences at the Autonomous University of Puebla
(BUAP), Mexico

• Noeiaghdam, Samad - Irkutsk National Research Technical University, Russian Federation

• Owolabi, Kolade - Federal University of Technology, Nigeria

• Otero-Espinar, Maria Victoria - University of Santiago de Compostela, Spain

• Panigoro, Hasan S. - Universitas Negeri Gorontalo, Indonesia

• Povstenko, Yuriy - Jan Dlugosz University in Czestochowa, Poland

• Qureshi, Sania - Mehran University of Engineering and Technology, Pakistan

• Sabatier, Jocelyn - Bordeaux University, France

• Safaei, Mohammad Reza - Florida International University, USA

• Salahshour, Soheil - Bahçeşehir University, Türkiye
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• Abdulkadir Ünal - School of Foreign Languages, Foreign Languages, Alanya Alaaddin Keykubat University,
Antalya Türkiye.

• Ahmet Sınak - Necmettin Erbakan University, Department of Mathematics and Computer Sciences, Konya,
Türkiye.
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Abstract

The global population has suffered extensively as an effect of the coronavirus infection, with the loss
of many lives, adverse financial consequences, and increased impoverishment. In this paper, we
propose an example of the non-linear mathematical modeling of the COVID-19 phenomenon. Using
the fixed point theorem, we established the solution’s existence and unicity. We demonstrate how,
under the framework, the basic reproduction number can be redefined. The different equilibria of the
model are identified, and their stability analyses are carefully examined. According to our argument,
it is illustrated that there is a single optimal control that can be used to reduce the expense of the
illness load and applied processes. The determination of optimal strategies is examined with the aid
of Pontryagin’s maximum principle. To support the analytical results, we perform comprehensive
digital simulations using the Runge-Kutta 4th-order. The data simulated suggest that the effects of
the recommended controls significantly impact the incidence of the disease, in contrast to the absence
of control cases. Further, we calculate the incremental cost-effectiveness ratio to assess the cost and
benefits of each potential combination of the two control measures. The findings indicate that public
attention, personal hygiene practices, and isolating oneself will all contribute to slowing the spread of
COVID-19. Furthermore, those who are infected can readily decrease their virus to become virtually
non-detectable with treatment consent.

Keywords: Cost-effectiveness; optimal control; system dynamics

AMS 2020 Classification: 34D20; 92D30; 49J15; 34C60

1 Introduction

The world is facing an unprecedented threat. The pandemic of COVID-19 has spread rapidly
throughout the worldwide community. As a result of this epidemic, suffering has spread, the lives
of billions of people have turned upside down, and the global economy is under threat. Even
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wealthy countries with robust healthcare systems are under pressure as the wave of this pandemic
begins to reach countries already suffering humanitarian crises from conflicts, natural disasters,
and climate change.
The first instance of a virus whose etiology is completely unexplained was identified in the Chi-
nese, on December 31, 2019 [1]. Moreover, this pandemic demands immediate and sustained
international action. While reducing the scale of the terrible human and economic toll across the
globe is our primary concern, we are also very concerned about the underlying problems that this
emergency reveals, particularly for those most at risk of disastrous consequences. This group of
viruses called coronaviruses is responsible for gastrointestinal and respiratory illnesses in many
different world locations. Both the common cold and more severe illnesses can be respiratory
disorders. Since they resemble coronas under the microscope, coronaviruses received their name.
An infused envelope surrounds the genetic material center of the virus. It resembles a crown as
a result of this. In Latin, the corona is a word that signifies "crown". Most people infected with
the virus have minor or moderate lung disease and recover without seeking treatment. Some,
however, get severe illnesses and need to see a doctor. Seniors and patients with prior illnesses
such as cancer, glucose intolerance, permanent lung illness, or heart disease are more prone to
have a severe variation. The most effective strategy to avoid and limit transmission of COVID-19
is to be knowledgeable about the illness and how it is spread. Anyone, at any age, can contract the
illness and become extremely ill or die from it.
The World Health Organization (WHO) has designated the 2019 coronavirus disease (COVID-19)
as a global epidemic. To stop the virus from spreading further, a concerted international effort
is required. "Occurring over a huge geographic area and impacting an extraordinarily high pro-
portion of the population" is how a pandemic is described. The H1N1 flu pandemic in 2009 was
the most recent pandemic to be reported globally. Mathematical models hold significance as they
elucidate the fundamental mathematical structure of a specific phenomenon without delving
into extraneous details. The purpose is to concentrate on certain facets of the issue, abstracting
away other dimensions. Consequently, mathematical models remain pertinent by showcasing the
essential mathematical core within a given context devoid of excess information [2] (see also [3],
[4], [5] and reference therein).
To reduce the COVID-19 disease’s transmission dynamics, the authors of [6] studied and discussed
an optimal control model. The limitations of the illness and the associated expenses are also
minimized by suggesting the most appropriate control measures. They established its existence
and specificity. Further data simulations are performed to observe the importance of control efforts
to stop the propagation of the illness in society according to a study that was done on the spread
of disease between countries based on an estimated COVID-19 mathematical model. The study in
[7] explores a mathematical model that involves the effects of resource constraints on COVID-19
transmission patterns in the population through the use of the Caputo derivative. The basic repro-
duction rate R0 was determined, and the suggested model’s asymptotic stability was investigated.
According to their findings, the number of people with the virus increases, while cure rates by
hospitalization increase. The authors of [8] analyze the dynamics of a fractional-order COVID-19
model and suggest an efficient computational technique based on the domain discretization and
memory concept to numerically solve this fractional-order corona model The coronavirus is an
enclosed virus with a single-stranded, positive-sense RNA that is a component of the Nidovirales
demand and the relative Coronaviridae. It is widely transmitted among mammals and humans
[9]. To understand COVID-19’s effects on the environment, the authors suggest mathematical
modeling and data analysis in [10]. Such a pandemic is mathematically modeled as a deterministic
infectious illness. They use the fixed-point theorem to confirm the originality of the solution, and
it is inferred that the sample displays both endemic and disease-free equilibrium points. Further,
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they propose an optimal control to find the best strategy to eliminate the virus.
With the Atangana-Baleanu derivative, [11] provides a rigorous mathematical analysis of the
intricacies of smoking behavior and its public health implications. The authors in [12] propose
and analyze a compartmental deterministic framework to explain the behavior of the student
population’s illicit drug usage. The bifurcation phenomenon is identified using the Center Mani-
fold Theorem. Efficiency analysis is applied to understand how the dynamics of illicit drug use
by the student group are influenced by the settings of the system. Assessing the epidemiology
of the patients, the clinical course of the condition, and the available treatment options, Tang
et al. created a model [13]. A sensitivity analysis suggests that actions regarding isolation and
quarantine can lower it. Numerous mathematical model types use statistical techniques to research
the COVID-19 virus (see, for example, [14]).
The authors of [15] Create a compartmental model to evaluate the effects of mask use on the
population as a whole among the general, asymptomatic public, some of whom may be asymp-
tomatically infected. They imply that the public’s adoption of face masks has a strong potential for
reducing the spread of the pandemic and its burden. The study in [16] examines the affordability
and effectiveness of three malaria-prevention measures. They found that one of the conclusions
was that treating infected people and spraying insecticides was the most cost-effective way of
eliminating malaria. The authors of [17] treat three disease compartments: infectious, quarantined,
and exposed-asymptomatic, and they indicate that the rate of treatment is a saturated type to
account for the impact of scarce medical facilities. By taking into account the implications on
infection transmission rates caused by the adoption of lockdown policies by numerous countries,
they also developed an optimal control issue. In [18], a decision analytical model of different cases
of ratios of people without symptoms of COVID-19 and dangerous intervals predicts propagation
from untreated persons for more than half of all transmissions. Thus, the virus mitigation mea-
sures that can halt the disease’s circulation must receive resources and health information.
The literature contains several mathematical models that explain how COVID-19 propagates
and recommend measures to optimize virus transmission. The authors in [19] observed that, in
the absence of immunization, using either physical distancing or social separation procedures
is the most economical and successful management approach in Saudi Arabia. In [20], a study
introduces a mathematical framework for monitoring and predicting the spread of COVID-19
in India, using data up to April 30, 2020. The authors calculate the ratio R0 and perform local
and global stability analyses. The template expects a significant spread with a peak after almost
60 days, implying the persistence of the illness even after reaching a certain level. The study in
[21] presents a new mathematical model to analyze the omicron variant of COVID-19, exploring
stability conditions and extensions. Using realistic data from South Africa, numerical simulations
highlight the effectiveness of WHO recommendations in reducing infection. Investigations on the
transmission of COVID-19 and epidemic patterns concentrate on sample selection and adequate
control measures. The essay [22] reviews mathematical models, highlighting the importance of
reasonable parameter control and combined multi-model modeling for future interventions. The
previously mentioned literature serves as an inspiration for our work’s motivation and originality.
In our case, we have adopted this model as the most realistic example as it deals with the pre-
dominant classes in society for this virus by presenting declared and undeclared infections, as
well as contributing to a more thorough comprehension of the course of the disease and enabling
Morocco to modify its disorder treatment tactics.
The structure of this essay is as detailed below: In Section 2, we present some theorems used in
this essay. The mathematical model is developed in Section 3. In Section 4, the well-established
nature of the system is examined. The ratio R0 is given, as are the local and global stability of
the equilibrium points. Section 5 illustrates the importance of every model factor concerning
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R0. In Section 6, an analysis of an optimal control model is provided. Data of simulation and
verification are given in Section 7, while, Section 8 is dedicated to the model’s cost-effectiveness
analysis. Eventually, Section 9 summarizes the current work.

2 Fundamental prerequisites

The upcoming sections of the paper will utilize the following theorems:

The following theorems (see [23, 24]), whose proofs will be given in the later sections, will be used
to discuss the constancy of the template’s steadiness point:

Theorem 3
If R0 < 1, the point of disease-free equilibrium DFE is locally asymptotically stable; nevertheless,
if R0 > 1, it is unstable.

Theorem 4
If R0 < 1, the DFE, E0 of model (2), is globally equilibrium-stable.

Theorem 6
Where R0 > 1, the persistent steadiness point Ẽ is locally asymptotically stable.

Theorem 7
The only persistent steadiness state of (2) is globally asymptotically stable when R0 > 1.

3 Description of the model

To establish a new deterministic model, we begin by analyzing crucial characteristics of the
COVID-19 pandemic, such as the presence of individuals who evaluated positively for the virus
but did not exhibit any indications of illness and the splitting of pathogenic categories into two
crucial categories: Contaminated people and ill individuals who have not yet received an official
diagnosis. The general community N(t) is partitioned into six sub-populations: sensitive SI(t),
unprotected EI(t), contaminated or exhibiting indications I(t), those who are ill but are not yet
officially diagnosed Ind recuperated individuals R(t) and healthy H(t), Π is the recruitment
number, µ is the natural mortality rate, µ1 is the patient mortality due to human coronavirus
infection. ν represents the rate of infection diffusion from EI to SI , and σ is the saturation
constant, β stands for incidence rate, α indicates the percentage of people from the exposed
compartment who join the diseased subpopulation, δ is the rate at which those who are exposed
to an infection contract it, γ is the interaction between Ind and R, while θ is the rate at which
susceptible people become uninfected, η is the rate of recovered individuals from COVID-19, when
the entire population grows to a level equivalent to N = SI + EI + I + Ind + R + H. Without
estimating the number of pathogens present within each individual, models built on this type of
construction merely represent the infected individuals’ community attitude. Our model, based
on an illustration depicting the biological mechanism of coronavirus in humans, is depicted in
Figure 1.
To consistently explore a mathematical framework of a real-world phenomenon, it is vital to
specify these criteria by indicating a set of conditions. We enumerate these conditions in the above
section, as outlined in [25]:
(a) Depending on the prototype, an estimated intake of susceptible individuals costs Π per unit of
time.
(b) It simply considers how the pandemic progresses among individuals.
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(c) The framework provides for the natural death of each sub-population in proportion to its size.
Although most studies indicate that all people are contaminated with the virus, it is not possible to
exclude the minority who are not (the individuals H), which is due to immunity and lifestyle. The
dynamics of infection in the human populace are represented by the following set of six distinct
equations and can be formulated in the following manner:

dSI
dt

= Π − νSI I − (µ + θ)SI ,

dEI
dt

= νSI I − δEI − µEI ,

dI
dt

= αδEI − η I − (µ + µ1)I,

dInd
dt

= (1 − α)δEI − γInd − (µ + µ1)Ind,

dR
dt

= η I + γInd − µR,

dH
dt

= θSI − µH,

(1)

with the initial condition: SI(0 ≥ 0, EI(0) ≥ 0, I(0) ≥ 0, Ind(0) ≥ 0, R(0) ≥ 0, H(0) ≥ 0.

• Characteristics of susceptible individuals:

The population recruits susceptible members SI at a constant rate, Π, and the natural mortality
rate µ reduces their numbers, the population SI will join the subpopulation I passing through EI
at the rate ν, although some of these individuals will have contact with H at a steady rate θ.

• Characteristics of exposed people:

The rate at which the exposed person EI declines is δ for asymptomatic people and µ for natural
death. Individuals EI and sensitive individuals SI shall immediately interact at a steady rate of ν,
EI gets sicker by a fixed percentage α at a rate δ, where part of this population is not declared as
diseased ((1 − α)δ).

• Characteristics of undeclared people:

Without a diagnosis, the classes Ind are transferred to the recovery classes at the rate γ.

• Characteristics of healthy individual:

Sensitive individuals SI interact with individuals in the population that is immune and has never
contracted the disease (H) at a θ rate.

• Characteristics of individuals with disease signs:

The unaffected people give birth to the affected people when the coronavirus clinical symptoms
progress. A constant share α of the exposed people transitions to the affected classes at a rate of δ.
the class I transferred at a rate of η to the recover classes.

• Characteristics of recuperated individuals:

It can be presumed that the population that has recovered has long-lasting protection against
coronavirus. Individual Ind and population I recover from the coronavirus at γ and η rates,
respectively. The rate of recovery deaths is µ.



6 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 1–36

• Characteristics of healthy individuals:

According to a study by Imperial College London, people with a high quantity of T cells (white
blood corpuscle that contributes to the organism’s defense against infection) from the coron-
aviruses responsible for the common cold are less likely to contract SARS-CoV-2, the virus respon-
sible for COVID-19. So we named these individuals ’healthy’ H. Thus, the sensible population SI
moved to the category H at a rate of θ. Table 1 lists the parameters and variables in detail.

Table 1. Model parameters and their meanings

Parameters Description
SI(t) The portion of sensitive individuals who are in direct interaction with an infected individual.
EI(t) The portion of those revealed to I that does not maintain them out.
I(t) The portion of those who are impacted.
Ind(t) The portion of non-reported infected person.
R(t) The portion of rescued people.
H(t) The portion of strictly asymptomatic individuals who have never caught the infection.
Π Recruitment number
µ The rate of natural mortality
µ1 Natural death rate of human coronavirus illness patients
ν Rate of diffusion of infection from EI to SI
σ The constant of saturation
β Incidence rate
α Percentage of people from the exposed compartment who eventually migrate

to the sick subpopulation
δ The rate of illness in exposed individuals
η Rate of COVID-19 patients that have recovered
γ The rate at which Ind interacts with R
θ The rate at which sensitive persons become uninfected

4 Qualitative analysis of the model

This section will investigate a few key aspects of the suggested model, including its boundary, the
presence of a steady state, and the fundamental reproduction number.

The presence and singular nature of the solutions to the framework

With applying the fixed point theorem and the premises that H = (C(J))6, and C(J) remains a
Banach domain for continuous functions along the interval J during the norm

∥gi(t)∥i=1,...,6 =
6∑

i=1

∥gi∥∞,

where, (g1, g2, g3, g4, g5, g6) = (SI , EI , I, Ind, R, H).
It can be demonstrated that the configuration outlined (1) has a valid outcome. Here, ∥.∥∞
represents the maximum norm in C(J).



Ouaziz and Khomssi | 7

For the sake of simplicity, let us examine:

Θ1(t,SI) = Π − νSI I − (µ + θ)SI ,

Θ2(t, EI) = νSI I − δEI − µEI ,

Θ3(t, I) = αδEI − η I − (µ + µ1)I,

Θ4(t, Ind) = (1 − α)δEI − γInd − (µ + µ1)Ind,

Θ5(t, R) = η I + γInd − µR,

Θ6(t, H) = θSI − µH.

To prove this theorem, we suppose that
∥SI∥ ≤ w1, ∥EI∥ ≤ w2, ∥I∥ ≤ w3, ∥Ind∥ ≤ w4, ∥R∥ ≤ w5, ∥H∥ ≤ w6 where wi, i = 1, ..., 6 are
constant positives. Hence, we denote

k1 = νw3 + θ + µ,

k2 = αδ + δ + µ,

k3 = η + µ + µ1,

k4 = γ + µ + µ1,

k5 = k6 = µ.

Theorem 1 If the proposed inequality is true, the Θi=1,...6 are adapted to the Lipschitz state and compaction.

0 ≤ ki=1,...,6 < 1.

Proof Consider the functions SI1 and SI2 , so

∥Θ1(t,SI1)− Θ1(t,SI2)∥ =∥− (νI + µ + θ)(SI1 −SI2)∥ ≤ (νw3 + θ + µ)∥SN1(t)−SN2(t)∥.

Thus

∥Θ1(t,SI1)− Θ1(t,SI2)∥ ≤ k1∥SI1(t)−SI2(t)∥.

The Lipschitz criterion is achieved for Θ1. Similarly, the Lipschitz condition for Θ2, Θ3, Θ4, Θ5,
and Θ6 may be easily proven and is the same as stated previously:

∥Θ2(t, EI1)− Θ2(t, EI2)∥ ≤ k2∥EI1(t)− EI2(t)∥,

∥Θ3(t, I1)− Θ3(t, I2)∥ ≤ k3∥I1(t)− I2(t)∥,

∥Θ4(t, Ud1)− Θ4(t, Ud2)∥ ≤ k4∥Ud1(t)− Ud2(t)∥,

∥Θ5(t, R1)− Θ5(t, R2)∥ ≤ k5∥R1(t)− R2(t)∥,
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∥Θ6(t, H1)− Θ6(t, H2)∥ ≤ k6∥H1(t)− H2(t)∥.

The solution’s positivity

State variables of model (1) and relative factors must be positive for the foreseeable future, as this
model predicts the population of individuals, which will be established by the following theorem:

Theorem 2 For model (1), the feasible area is specified by:

C =
{
(SI , EI , I, Ind, R, H) ∈ R6

+; SI , EI , I, Ind, R, H ≥ 0, N ≤ Π
µ

}
.

Proof Count on the value of factors to be continuous. Predicting the following from system (1) is
straightforward (see [26]):

dSI
dt

≥ −(νI + θ + µ)SI .

After that, applying the constant variation formula:

dSI
dt

≥ SI(0) exp(−(νI + θ + µ)t) ≥ 0.

In the same way, we prove that: dEI
dt ≥ 0, dI

dt ≥ 0, dInd
dt ≥ 0, dR

dt ≥ 0, dH
dt ≥ 0. As a result, when

t ≥ 0, all solutions are positive.
Or,

N = SI + EI + I + Ind + R + H.

Then we have

dN
dt

= Π − µN(t)− µ1(I + Ind).

When the illness is absent

dN
dt

= Π − µN(t),

then ∫
dN
dt

=

∫
(Π − µN(t))dt.

So

N(t) = N(0) exp(−
∫ t

0
µds) +

∫ t

0
Π exp(−

∫ t

s
µdϑ),

if

N(0) ≤ Π
µ

,
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thus,

N(t) ≤ Π
µ

exp(−
∫ t

0
µds) +

∫ t

0
Π exp(−µ(t − s)ds) ≤ Π

µ
exp(−

∫ t

0
µds) +

Π
µ

,

when

t → +∞, N(t) ≤ Π
µ

.

It indicates that the region C is a positively invariant set for system (1).

Local stability of DFE

Because H(t) has not been presented in the first five equations, system (1) can be expressed below

dSI
dt

= Π − νSI I − (µ + θ)SI ,

dEI
dt

= νSI I − δEI − µEI ,

dI
dt

= αδEI − η I − (µ + µ1)I,

dInd
dt

= (1 − α)δEI − γInd − (µ + µ1)Ind,

dR
dt

= η I + γInd − µR.

(2)

The model’s disease-free equilibrium point is reached by setting all of the model (2)’s formulas to
zero and disabling them:

E0 = (S0
I , E0

I , I0, I0
nd, R0),

where EI = I = Ind = R = 0, and S0
I =

Π
θ+µ .

The effective reproduction number R0

The threshold provided by the dimensionless basic reproduction number is vital in determining
whether the disease survives or disappears in the individual. R0 can be defined more broadly
as the number of new infections produced by a typical infective population at an infection spot
zero-point equilibrium analysis of the stability of the equilibrium points depends on the model’s
effective reproduction number. Moreover, the projected number of indirect connections caused by
the implementation of a newly discovered member among a sensitive group is estimated using
R0. Using the notion of a next-generation matrix (see [27]), it is possible to calculate the basic
reproduction number R0. Starting with the categories that were most recently infected, we recast
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the model’s equations: 

dEI
dt

= νSI I − (δ + µ)EI ,

dI
dt

= αδEI − (η + µ)I,

dInd
dt

= (1 − α)δEI − (γ + µ)Ind,

dR
dt

= η I + γInd − µR.

(3)

Deriving the fundamental reproduction number R0 involves utilizing the spectrum’s diameter ρ

in the generation matrix FV−1. In this process, we consider the non-negative matrix F and the
non-singular matrix V, representing the creation of new infections and the transition component
in the system (2), respectively.

F =


νISI

0
0
0

 , and V =


(δ + µ)EI

−αδEI + (η + µ + µ1)I
−(1 − α)δEI + (γ + µ + µ1)Ind

−η I − γInd + µR

 ,

as F = [ ∂F
∂Xj

], and V = [ ∂V
∂Xj

], we have (Xj = (EI , I, Ind, R))

F =
∂F

∂Xj
(E0) =


0 νS0

I 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and

V =
∂V

∂Xj
(E0) =


(δ + µ) 0 0 0
−αδ (η + µ + µ1) 0 0

−(1 − α)δ 0 (γ + µ + µ1) 0
0 −η −γ µ

 .

We have

|V| = µ(γ + η)(η + µ)(δ + µ).

Then

com(V) =


w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34
w41 w42 w43 w44

 ,
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with

w11 = µ(η + µ + µ1)(γ + µ + µ1),

w12 = µ(γ + µ + µ1)αδ,

w13 = µ(1 − α)δ(η + µ + µ1),

w14 = η(γ + η)αδ + γ(1 − α)δ(η + µ),

w22 = µ(δ + µ)(γ + µ + µ1),

w23 = −µ,

w24 = η(γ + µ + µ1)(δ + µ),

w32 = −µ,

w33 = µ(δ + µ)(η + µ + µ1),

w34 = γ(δ + µ)(η + µ + µ1),

w44 = (γ + µ + µ1)(δ + µ)(η + µ + µ1),

w21 = w31 = w41 = w42 = w43 = 0,

then

V−1 =
1
|V|


w11 w21 w31 w41
w12 w22 w32 w42
w13 w23 w33 w43
w14 w24 w34 w44



=
1
|V|


µ(η + µ + µ1)(γ + µ + µ1) 0 0 0

µ(γ + µ + µ1)αδ µ(δ + µ)(γ + µ + µ1) −µ 0
µ(1 − α)δ(η + µ + µ1) −µ w33 0

ς1 ς2 ς3 ς4

 ,

ς1 = η(γ + µ)αδ + γ(1 − α)δ(η + µ + µ1),

ς2 = η(γ + µ + µ1)(δ + µ),

ς3 = γ(δ + µ)(η + µ + µ1),

ς4 = (γ + µ + µ1)(δ + µ)(η + µ + µ1),

thus

FV−1 =
1
|V|


νS0

Iw12 νS0
Iw22 νS0

Iw32 νS0
Iw42

0 0 0 0
0 0 0 0
0 0 0 0

 .

Therefore, the reproduction number (R0) is given below:

R0 = ρ(FV−1) =
νS0

Iw12

|V|
=

νΠαδ

(θ + µ)(η + µ + µ1)(δ + µ)
.

Theorem 3 If R0 < 1, the DFE point is locally asymptotically stable; if R0 > 1, it is unstable.
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Proof To prove this theorem, we start the Jacobian matrix for the given set of equations in the
model (2):

J =


−(νI + θ + µ) 0 −νSI 0 0

νI −(δ + µ) νSI 0 0
0 αδ −(η + µ + µ1) 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0
0 0 η γ −µ

 . (4)

Calculating the Jacobean matrix (4) at the point E0 yields the next results:

J(E0) =


−(θ + µ) 0 − νΠ

θ+µ 0 0
0 −(δ + µ) νΠ

θ+µ 0 0
0 αδ −(η + µ + µ1) 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0
0 0 η γ −µ

 .

The next form of an eigenvalue polynomial has been computed by using the Jacobian matrix:

P(λ) = −(µ + λ)(θ + µ)(γ + µ + µ1 + λ)P̄(λ), (5)

where

P̄(λ) = (δ + µ + λ)(η + µ + µ1 + λ)−
αδνΠ
θ + µ

,

= λ2 + λ(η + µ + µ1 + δ + µ) + (δ + µ)(η + µ + µ1)−
αδνΠ

µ
.

From equation (5), we have

λ1 = −µ < 0,

λ2 = −(γ + µ + µ1) < 0,

λ3 = −(θ + µ) < 0.

From the expression of P̄(λ), we have

∆ = (η + µ + µ1 + δ + µ)2 + 4(
αδνΠ
θ + µ

− (δ + µ)(η + µ + µ1) > 0.

As

αδνΠ
θ + µ

≥ (δ + µ)(η + µ + µ1), then ∆ > 0.

Furthermore

λ3 = −
(η + µ + µ1 + δ + µ) +

√
∆

2
< 0, λ4 =

−(η + µ + µ1 + δ + µ) +
√

∆
2

,
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λ4 < 0 for ∆ < (η + µ + µ1 + δ + µ)2,

means

νΠαδ

R0(θ + µ)
>

αδνΠ
(θ + µ)

−
(δ + µ + η + µ + µ1)

2

4
,

then,

1
R0

> 1 −
(δ + µ + η + µ + µ1)

2(θ + µ)

4νΠαδ
,

this implies, R0 < 1. Therefore, after using the Jacobian stability approach, E0 is locally asymptoti-
cally steadfast. If the initial population size of the affected individuals falls inside the lower set of
the point E0, then the virus can be partially eradicated.

Global stability of DFEs

Theorem 4 If R0 < 1, the DFE, E0 of model (2), is globally equilibrium-stable.

Proof In this case, we shall use the system (1) since we need the vector X to be 2-dimensional at
least. We have written equation system (1) based on [28, 29] in the following structure.

dX
dt

= M(X − XE0,n) +M1,

dY
dt

= M2Y,
(6)

where Y = (EI , I, Ind, R) is the proportion of people who are ill, XE0,n is a vector at the unaffected
stability spot with the equal vector magnitude as X, and X = (SI , H) reflects the number of healthy
people. By the above [28], For the free-of-illness equilibrium point E0 = (Π

µ , 0, 0, 0, 0, Πθ
µ(µ+θ)

) of
system (1) to be globally asymptotically steady, several requirements must be satisfied:

1) The matrix M must have real negative eigenvalues.

2) M2 ought to be a Metzler matrix.

We have XE0,n = (Π
µ , Πθ

µ(µ+θ)
)T.

The combination of Eq. (6) and Eq. (1) makes up the following system of equations:

(
Π − νSI I − (µ + θ)SI

θSI − µH

)
= M

(
SI −

Π
θ+µ

H − Πθ
µ(θ+µ)

)
+M1


EI
I

Ind
R

 ,

and 
νSI I − (δ + µ)EI

αδEI − (η + µ + µ1)I
(1 − α)δEI − (γ + µ + µ1)Ind

η I + γInd − µR

 = M2


EI
I

Ind
R

 .
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The Jacobian matrix of the ensemble of Eq. (1) is the one below:

J(E0) =



−(µ + θ) 0 − νΠ
θ+µ 0 0 0

0 −(δ + µ) νΠ
θ+µ 0 0 0

0 αδ −(η + µ + µ1) 0 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0 0
0 0 η γ −µ 0
θ 0 0 0 0 −µ


.

The matrix M, M1 and M2 are:

M =

(
−(µ + θ) 0

θ −µ

)
, M1 =

(
0 − νΠ

θ+µ 0 0
0 0 0 0

)
,

and

M2 =


−(δ + µ) νΠ

θ+µ 0 0
αδ −(η + µ + µ1) 0 0

(1 − α)δ 0 −(γ + µ + µ1) 0
0 η γ −µ

 .

Thus, all the roots of M have strictly negative real roots, and the matrix M2 is a Metzler matrix.
Therefore the point, E0 is globally stable if R0 < 1.
Instead, we can use the Lyapunov function K to prove the equilibrium global of the point, E0,
where

K = κ1EI + κ2 I. (7)

We chose this function meticulously because of its efficacy in examining the equilibrium of
evolving structures with more intricate behavior. In which there are a pair of positive coefficients,
κ1 and κ2.
If we differentiate Eq. (7) with respect to t, we find

dK
dt

= κ1
dEI
dt

+ κ2
dI
dt

.

By replacing dEI
dt , and dI

dt of template (2), we have:

dK
dt

= (κ1νSI − (η + µ + µ1)κ2)I + (αδκ2 − (δ + µ)κ1)EI .

In this case, we take κ1 = δα
(δ+µ)

κ2, then since SI < S0
I , we have:

dK
dt

= (
αδν

δ + µ
SI − (η + µ + µ1))κ2 I

< (
αδν

δ + µ
S0

I − (η + µ + µ1))κ2 I.
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Taking κ2 = 1, and substituting R0, we get

dK
dt

< (R0 − 1)I.

So then, if and only if I = 0, I < I0, and dK
dt ≤ 0, for R0 < 1, and dK

dt = 0. As a consequence, in
field C, E0 evolves globally asymptotically steady by the LaSalle principle of invariance.

The persistent steadiness Ẽ

There is a unique persistent stable Ẽ form of model (2) Ẽ = (S̃I , ẼI , Ĩ, Ĩnd, R̃), from where Ẽ is the
solution to the persistent steadiness of the ongoing virus in the community. We can achieve this
by zeroing each equation in (2):

dSI
dt

=
dEI
dt

=
dI
dt

=
dInd

dt
=

dR
dt

= 0.

Then, we obtain

S̃I =
Π

θ + µ + ν Ĩ
, ẼI =

νΠ Ĩ
(δ + µ)(ν Ĩ + θ + µ)

,

Ĩ =
αδΠ

(η + µ + µ1)(δ + µ)
−

θ + µ

ν
= (R0 − 1)(θ + µ), (8)

Ĩnd =
(1 − α)δνΠ Ĩ

(γ + µ + µ1)(δ + µ)(ν Ĩ + θ + µ)
, R̃ =

γ(1 − α)δνΠ Ĩ
µ(γ + µ)(δ + µ)(ν Ĩ + θ + µ)

+
η

µ
Ĩnd.

All the expressions are in terms of the Ĩ, due to the non-negative assumption for all model
parameters. Consequently, we arrived at the following result:

Lemma 1 When R0 > 1, system (2) has a unique persistent steadiness (positive) but not otherwise.

Theorem 5 A singular persistent steadiness for the model (2) whenever R0 > 1, as signified by
Ẽ = (S̃I , ẼI , Ĩ, Ĩnd, R̃), where the expressions of S̃I , ẼI , Ĩ, Ĩnd and R̃ are given in (8).

Local stability of Ẽ

Theorem 6 If R0 > 1, the endemic equilibrium point Ẽ is locally asymptotically stable.

Proof To validate the above theorem, let us derive the Jacobian matrix for model (2):

J =


−(νI + θ + µ) 0 −νSI 0 0

νI −(δ + µ) νSI 0 0
0 αδ −(η + µ) 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0
0 0 η γ −µ

 . (9)
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The characteristic polynomial for Eq. (9) at the specified point Ẽ is:

A(λ) = (µ + λ)(γ + µ + µ1 + λ)Q̄(λ), (10)

Q̄(λ) = −λ3 − λ2(ν Ĩ + θ + δ + η + 3µ)

−λ[(ν Ĩ + θ + µ)(δ + µ) + (ν Ĩ + θ + δ + 2µ)(η + µ + µ1)− αδνS̃I ]

+αδνS̃I(ν Ĩ + θ + µ)− [(ν Ĩ + θ + µ)(δ + µ)(η + µ + µ1) + ν2αδS̃I
2
]

= a3λ3 + a2λ2 + a1λ + a0,

where

a1 = −[(ν Ĩ + θ + µ)(δ + µ) + (ν Ĩ + θ + δ + 2µ)(η + µ + µ1)− αδνS̃I ],

a2 = −(ν Ĩ + θ + δ + η + 3µ + µ1),

a0 = αδνS̃I(ν Ĩ + θ + µ)− [(ν Ĩ + θ + µ)(δ + µ)(η + µ + µ1) + ν2αδS̃I
2
].

From Eq. (10), we have

λ1 = −µ < 0,

λ2 = −(γ + µ + µ1) < 0.

From the expression of Q̄, we have

a0 + λa1 + λ2a2 + a3λ3 = 0.

λ3 a3 a1 0
λ2 a2 a0 0
λ b1 0 0

b1 = − 1
a2

∣∣∣∣ a3 a1
a2 a0

∣∣∣∣ = a1a2+a0
a2

= −
αδν(ν Ĩ+θ+µ)−[ν Ĩ+θ+µ)(δ+µ)(η+µ+µ1)+ν2αδS̃I

2
]

(ν Ĩ+θ+δ+η+3µ+µ1)
− ζ,

where

ζ = [ν Ĩ + θ + µ)(δ + µ) + (ν Ĩ + θ + δ + 2µ)(η + µ + µ1)− αδS̃I ].

Applying the Routh-Hurwitz criteria, it is determined that the real root of Eq. (5) is strictly non-
negative iff a2 < 0 and b1 < 0. Clearly, we see that a2 < 0 because it is the sum of positive
parameters and we have b1 < 0 if R0 > νΠ( ν Ĩ

θ+µ + 1) > 1.
Hence, the persistent steadiness Ẽ is locally indicating asymptotic steadiness.

Global stability of the point Ẽ

Theorem 7 The only endemic steady state of (2) exhibits global asymptotic steady when R0 > 1.
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Proof Consider the following Lyapunov function, which is commonly used and discussed in [30]:

ð(℘) = ℘− 1 − ln(℘).

ð(℘) is non-negative in ∈ R5
+ except at ℘ = 1, where it become zero. Then,

T(SI , I) = κ1S̃Ið(
SI

S̃I
) + κ2 Ĩð(

I
Ĩ
). (11)

Let κ1 > 0 and κ2 > 0 be positive constants to be determined subsequently. Clearly, T is C1,
T(Ẽ) = 0, and T is positively nonzero at other locations.
Differentiating the equation with respect to t, we get

dT(SI , I)
dt

= κ1(1 −
S̃I
SI

)
dSI
dt

+ κ2(1 −
Ĩ
I
)

dI
dt

. (12)

By substituting dSI
dt and dI

dt in model (2), we obtain,

dT
dt

=
κ1

SI
(SI − S̃I)(Π − (νI + µ)SI) +

κ2

I
(I − Ĩ)(αδEI − (η + µ + µ1)I)

<κ1
(SI − S̃I)

SI
Π −κ1(νI + µ)(SI − S̃I) +

κ2(I − Ĩ)αδEI)

I
.

For κ1 = SI(I− Ĩ)
(SI−S̃I)

and κ2 = 1, we find,

dT
dt

< (Π −
R0(η + µ + µ1)(δ + µ)(θ + µ)SI

αδΠ
− (θ + µ)SI +

αδEI
I

)(I − Ĩ)

< (Π −
R0(η + µ + µ1)(δ + µ)(θ + µ)SI

αδΠ
+

αδEI
I

)(I − Ĩ).

Thus, dT
dt < 0 only if, R0 > Π2αδ

(η+µ+µ1)(δ+µ)(θ+µ)
, and dT

dt ≤ 0 if I = Ĩ, then the point, Ẽ is globally
asymptotically stable.

5 Exploring the responsiveness of the model variables to R0

The examination of structure sensitivity is applied to calculate the difference in implementation
speed due to changes in strategy variables. Implementation effort is assumed to be a differentiable
function of structure, at most undersized in the proximity of the current strategy point. Moreover,
To suggest the most appropriate methods to decrease human permanence and illness, it is essential
to understand the relative importance of the numerous factors that influence the new coronavirus’s
spread. Further, it permits us to determine how a condition variable varies correspondingly
whenever a system factor adapts. Since the first spread of illness is restricted to the rate R0, we
calculate the sensitivity indicators about these factors of system (2). Thus, we construct the next
sensitivity factor [31, 32]:

F
R0
x =

∂R0

∂x
x
R0

.
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Table 2. Sensitivity indicators

Setting symbol Index of sensitivity
µ -0.8463
δ +0.1176
Π +1
ν +1
η -0.8366
α +1
µ -0.6423
θ -0.8789

F
R0
µ = −

(3µ2 + 2µ(θ + η + δ + µ1) + θη + (θ + η)δ)µ

(θ + µ)(η + µ + µ1)(δ + µ)
,

F
R0
η = −

η

η + µ + µ1
,

F
R0
δ =

µ

(δ + µ)
,

F
R0
θ = −

θ

θ + µ
,

F
R0
µ1 = −

µ1

η + µ + µ1
,

F
R0
ν = 1,

F
R0
Π = 1,

F
R0
α = 1.

We have, FR0
δ ,FR0

Π ,FR0
ν ,FR0

α > 0 while, FR0
µ ,FR0

η ,FR0
µ1 ,FR0

θ < 0. It implies that R0 is reduced in µ

and η but raised in δ, Π, ν and α, while F
R0
γ = 0 since R0 does not rely on γ.

6 Expansion to an optimal control problem

In this section, we provide an effective control technique that will aid governments in developing
nations in regaining control of the circumstances at the lowest possible price. Researchers are
constantly seeking effective ways to prevent the spread of new viruses, including vaccination,
isolation, and quarantine. However, isolation and quarantine procedures can reduce and eradicate
the impact of the virus in the absence of effective vaccination. Thus, from [33] the controlled model
results in: 

dSI
dt

= Π − ν(1 − v1)SI I − (µ + θ)SI ,

dEI
dt

= ν(1 − v1)SI I − δ(1 − v2)EI − µEI ,

dI
dt

= αδ(1 − v2)EI − (η + µ + µ1)I − v2 I,

dInd
dt

= (1 − α)δ(1 − v2)EI − (γ + µ + µ1)Ind − v2Ind,

dR
dt

= η I + γInd + v2(I + Ind)− µR.

(13)
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To sample the methods of control and affect its influence in Morocco, we raise in the model a two
controls variable that represents a comprehensive approach to prevention, including personal
hygiene, social isolation, and creating sensitivity across all midpoints, to keep the virus away
from people vulnerable to infection, and treatment support for infectious diseases (as the best care
for sick people in isolation institutions), denoted by v1 and v2, respectively. The value v1(t) = 0
denotes that no isolation measure is performed, while the value 1 corresponds to full effort on
preventing the infectious disease. The value v2(t) = 0 signifies the absence of treatment support,
and v2(t) = 1 represents the effective application of the treatment to reduce the propagation of
COVID-19.
In the model, we pursue the v1 and v2 values that downplay the functionally objective subject to
the differential Eq. (14). The supplied objective functional is:

J(v1, v2) =

∫T

0
(I(t) + Ind(t) +

ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t))dt. (14)

Consider

Λ = (SI , EI , I, Ind, R), v = (v1, v2), v = (v1, v2),

and

℘(t, Λ, v) = I(t) + Ind(t) +
ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t),

if the relative cost factors ϖ1 > 0 and ϖ2 > 0 are available. They are selected to contrast the
respective strengths of v1(t) and v2(t) at instant t, where T is the final instance. Or, we want to
find the optimal controls v∗1 and v∗2, where,

J(v∗1, v∗2) = min
v1,v2 inU

J(v1, v2). (15)

With, 𭟋 defined as the subset of eligible controls

𭟋 =
{
v1, v2 ∈ 𭟋 0 ≤ v1(t) ≤ 1 and 0 ≤ v1(t) ≤ 1, t ∈ [0, T]

}
. (16)

Existence of the optimal controls

Here, we demonstrate the existence of such ideal control functions that lower prices in a limited
time. For this purpose, we stick to the results presented in [34].

Theorem 8 In set 𭟋, there is an optimal control couple, v∗1 and v∗2 with J(v∗1, v∗2) = min
v1,v2∈𭟋

J(v1, v2)

relating to the control system (13-14).

Proof The following conditions should be fulfilled as stated in (Theorem 4.1 pg. 68 in [35]):

a) In the case of the system (13) with control variables in 𭟋, the set of solutions is non-void.
b) The steadier approach can be defined as a linear function of the control coefficients with factors

set on the term and value of the parameters since the set 𭟋 is closed and convex.
c) The integral of the function ℘ is convex in the domain 𭟋, and the function ℘(t, Λ, v) ≥ ℘(v),
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where ℘ is a continuous function that realizes the following property:

|v|−1℘(v) −→
v→∞ ∞,

where |.| indicates the classical Euclid norm.

Since lim
t→∞ N(t) ≤ Π

µ
, then, all solutions of system (13) are bounded in 𭟋. For each of the bounded

control variables in 𭟋, the system (13)’s solutions are bound. The system’s (13) right-hand side
functions meet the Lipschitz criterion about state variables. As a result, condition (a) is satisfied
according to the Picard-Lindelöf theorem (see [36]). 𭟋 satisfies the requirement of being closed
and convex by definition. With coefficients that rely on state variables, the system (13) is linear in
the control variable v. So, we accomplish condition (b).
According to the biquadratic and quadratic nature of the control variable v,

∫T
0 ℘(t, Λ, v)dt is

convex and ℘(t, Λ, v) = I(t) + Ind(t) +
ϖ1
2 v2

1(t) +
ϖ2
2 v2

2(t) ≥
ϖ1
2 v2

1(t) +
ϖ2
2 v2

2(t). After selecting
℘(u) = w1(v

2
1 + v2

2), where w1 = min(ϖ1, ϖ2) > 0, we get then ℘(t, X, v) ≥ ℘(v). It is evident
that ℘(v) is a continuous function and satisfies the condition |v|−1℘(v) → ∞ when v → ∞, which
gives us condition (c). As a result, utilizing the findings from [34], the existence of the optimal
control is confirmed.

Characterization of the optimal control

We use Pontryagin’s maximum principle and the Hamiltonian at the time t defined to derive the
requirements for optimal control:

H̃ = I(t) + Ind(t) +
ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t) +
5∑

i=1

λi(t) fi(Λ).

Λ = (SI , EI , I, Ind, R) and the function fi is the start of the (13) differences equations for the ith
variable value.

Theorem 9 In light of the state system solutions that reduce the impact of J on 𭟋 and the optimal controls
v∗1, v∗2 and SI , EI , I, Ind and R, respectively, adjacent variables, such as λ1, . . . , λ5, are used.

dλ1

dt
= λ1ν(1 − v1)I + λ1(µ + θ)− λ2ν(1 − v1)I,

dλ2

dt
= λ2δ(1 − v2) + λ2µ − λ3αδ(1 − v2)− λ4(1 − α)δ(1 − v2),

dλ3

dt
= −1 + λ1ν(1 − v1)SI − λ2ν(1 − v1)SI + λ3(η + µ + µ1 + v2)− λ5(η + v2),

dλ4

dt
= −1 + λ4(γ + µ + µ1) + λ4v2 − λ5(γ + v2),

dλ5

dt
= λ5µ,

(17)

such as the requirements of transversality: λi=1,2,5(t f ) = 0 and λi=3,4(t f ) = −1.
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Proof As well as

H̃ = I(t) + Ind(t) +
ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t) +
5∑

i=1

λi(t) fi(Λ),

where f1 = Π − ν(1 − v1)SI I − (µ + θ)SI , f2 = ν(1 − v1)SI I − δ(1 − v2)EI − µEI ,
f3 = αδ(1 − v2)EI − (η + µ + µ1)I − v2 I, f4 = (1 − α)δ(1 − v2)EI − (γ + µ + µ1)Ind − v2Ind
and f5 = η I + γInd + v2(I + Ind)− µR.
The maximum principle of Pontryagin [37] is then applied, and we obtain,

dλ1

dt
= −

∂H̃
∂SI

= λ1ν(1 − v1)I + λ1(µ + θ)− λ2ν(1 − v1)I,

dλ2

dt
= −

∂H̃
∂EI

= λ2δ(1 − v2) + λ2µ − λ3αδ(1 − v2)− λ4(1 − α)δ(1 − v2), (18)

dλ3

dt
= −

∂H̃
∂I

= −1 + λ1ν(1 − v1)SI − λ2ν(1 − v1)SI + λ3(η + µ + µ1 + v2)− λ5(η + v2),

dλ4

dt
= −

∂H̃
∂Ind

= −1 + λ4(γ + µ + µ1) + λ4v2 − λ5(γ + v2),

dλ5

dt
= −

∂H̃
∂R

= λ5µ.

The accompanying optimal controls v∗1 and v∗2 are thus established from ∂H̃
∂v1

= 0, and ∂H̃
∂v2

= 0. In
light of this, we developed the characteristic equation involving the control boundary limits in the
type of proposed control argument as follows:

v∗1 = min
{

1, max(0,
νS∗

I I∗(λ2 − λ1)

ϖ1
)

}
,

v∗2 = min
{

1, max(0,
λ3αδE∗

I + λ3 I∗ + λ4(1 − α)δE∗
I − λ2δE∗

I
ϖ2

)

}
.

(19)

7 Discussions and numerical simulation

Without numerical validation of the statistics, the analytical study cannot be considered complete.
To trace the behavior of the framework (2), we have shown some numerical simulations in this
part for a variety of initial circumstances and parameters found in Table 3 and Table 4. Thus, we
employed the fourth order RK technique in Matlab program to solve this issue. We considered the
variables stated in Table 3 as well as the various beginning condition values provided in Table 4.
Applying the fourth-order Runge-Kutta technique and the system’s present solution round, the
adjoint Eq. (17) is solved backward in time. These factors were used to estimate the reproduction
number, and the results show that R0 = 0.2132654. Figure 2 makes it abundantly evident that
the system’s solution profiles converge to the disease-free state, with E0 = (0.059 × 107, 0, 0, 0, 0).
The endemic equilibrium is asymptotically stable as determined by Theorem 7 when the value
of α is changed to 0.0002, as seen in Figure 3. Or, the system’s solution of (2) converges to
Ẽ = (1.1234 × 107, 0.7000 × 107, 1.3476 × 107, 1.5632 × 107, 2.1000 × 107, 3.1000 × 107). Figure 4
demonstrates how the class H maintains stability and advances to the virus-free equilibrium point
when R0 < 1 for each of the three various starting values of H. Figure 5 clearly shows that our
solution for the classes I and EI converges to E0 for R0 < 1 and is asymptotically stable. Figure 6
illustrates how the two classes I and EI for the three distinct initial circumstances become stable at
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the point, Ẽ , when R0 > 1. Figure 7 shows how the population Ind is asymptotically stable and
converges to E0 when R0 < 1 (case 1), while the same class remains stable and converges to Ẽ in
case R0 > 1 (case 2). Figure 8 shows the same category, but this time for the class R. We can see
that system (2)’s solution is stable and converges to E0 in all three starting values of the recovered
class when R0 < 1, but with the same beginning values of R and α = 0.210, so that R0 > 1 the
solution converges to Ẽ . The theoretical findings of the local and global asymptotic stability of the
endemic and disease-free equilibrium described in the preceding parts are, in sum, supported by
all of the results of this section.
Furthermore, we use a fourth-order Runge-Kutta technique for the numeric estimation of the
extremum provided by Theorem 8. With a forward fourth-order Runge-Kutta scheme and the
transversality requirements λi=1,2,5(t f ) = 0 and λi=3,4(t f ) = −1, while, SI =

SI
N , EI =

EI
N , I = I

N ,

Ind = Ind
N and R = R

N . This iterative approach solves the system in Eq. (13) with an estimate for
the controls across the period interval [0, T]. A convex pair of the preceding controls and the
results from (19), together with the current controls, for upgrading the controls. If the coefficients
of the unresolved from the prior iteration are substantially similar to the ones from the present
execution, the iteration is over. Concerning the digital simulations, we use vmax = 0.5, with the
end time value of T = 1 (months) plus the predetermined variables from Table 3, and with the
following starting conditions:

SI(0) = 0.4, EI(0) = 0.2, I(0) = 0.17, Ind(0) = 0.11 and R(0) = 0.5. (20)

In Figure 9, when we use the technique v2, we notice a reduction in the infected population. Only
the control v1, is employed (Strategy1). The goal of this plan is to safeguard more people from
COVID-19. Figure 10 shows a reduction in the number of people exposed, causing a decline in
the count of individuals affected, which underlines the need to raise public awareness of the
seriousness of the COVID-19 virus through preventive measures such as frequent manual hygiene,
especially after snatching, and the use of safety covers to restrict the spread of the virus. The
results in Figure 11 indicate that Strategy2 reduces the number of people with the virus. The
main objective of this procedure is to prevent the disease from spreading, which confirms that
the essential purpose of therapy is to prevent the spread of the coronavirus. Furthermore, we
observe a substantial reduction in the quantity of those infected with the two types of I and
Ind when we incorporate the optimal control v1 and v2 (Strategy3). Such is because stringent
precautions, like isolation with therapy, occur, as depicted in Figure 12, and the approach also
depends on sensitization efforts. It is clear that the controls implemented in this numerical
simulation function well by reducing the population of diseased people and augmenting the
number of cured people. Thus, we notice that the number of retrieved persons rises when we
employ two distinct approaches. Additionally, we discovered, as shown in Figure 13, that there is
an appealing correlation between R0 and the illness transmission coefficient in all afflicted groups,
and this correlation is called α. This implies that α is the most important factor that needs to be
decreased in order to regulate infections and lessen coronavirus. Our model relies on available
epidemiological data, which may be subject to reporting bias or variations in screening capacity
from one region to another. Moreover, the dynamic nature of the COVID-19 pandemic introduces
uncertainties that may impact the accuracy of our forecasts. We have made assumptions about
the homogeneity of the population and the uniformity of intervention measures, which may
not fully reflect the complexity of real scenarios. In addition, the model considers simplified
transmission dynamics without taking into account potential variations in viral strains or the
influence of emerging variants. While we aim to provide valuable information, we recognize that
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these simplifications and assumptions are necessary trade-offs and may influence the accuracy
of our results. Future iterations of this model should incorporate more nuanced data and refine
assumptions to improve accuracy and applicability.

Table 3. The baseline factor’s value for the system (2)

factor Value Source
ν 0.9031 Presumption
α 0.4110 [25]
Π 20.000 Presumption
δ 1/7day−1 [38]
η 0.1130 Presumption
µ 0.0062day−1 [25]
θ 0.021 Presumption
ϖ1 30 Assumption
ϖ2 80 Assumption

Table 4. The beginning values for the system’(2)s factors

Starting values State 1 State 2 State 3
N 397405 401405 360530
SI(0) 163638 173638 118763
EI(0) 93507 94507 95507
I(0) 70130 71130 72130
Ind(0) 46753 47753 48753
R(0) 23377 24377 25377

Figure 1. Prototype (1)’s diagram, or ν = βSI I
1+σI

8 Cost-effectiveness
A mathematical technique called cost-effectiveness is used to establish if an intervention’s benefits
outweigh its costs. So, cost-effectiveness is a methodology to evaluate which intervention provides
the highest value for the associated price. The value of an intervention in a cost-effectiveness
analysis is measured using quantity-adjusted life years, also known as Qualis. Simply put, this is
a generic measure of the burden of disease that includes not only quantity but also quality of life
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Figure 2. This figure shows that the unaffected steady-state framework (2) is (2.180 × 107, 0, 0, 0, 0).

after the intervention. This technique compares the cost and the effect of two interventions, and
it is summarized using an incremental cost-effectiveness ratio, also known as an ISA. The total
expense incurred during the whole duration is:

ς(v) =

∫T

0
(ς(v1, v2))dt =

∫T

0

ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t))dt. (21)

The incremental cost-effectiveness ratio (ICER) is expressed as follows (see [39]):

ICER =
Difference in costs of interventions v1 and v2

Difference in effect of interventions v1 and v2
.

This ratio shows the incremental costs over incremental quality-adjusted life years between the
two comparators.
To be more precise, considering two concurrent strategies, B1 and B2, where Strategy B2 is
more efficient than Strategy B1 (TA(B1) < TA(B2)), Implement ideas in [40–43]. ICER rates are
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Figure 3. This figure shows that the persistent steadiness of model (2) is
(2.5468 × 107, 0.9096 × 107, 3.65859 × 107, 1.7484 × 107, 1.0857 × 107, 3.6583 × 107).

computed via the following equations:

ICER(B1) =
TC(B1)

TA(B1)
, (22)

ICER(B2) =
TC(B2)− TC(B1)

TA(B2)− TA(B1)
. (23)

In our analysis, the total expenditures (TC) and the total incidents prevented (TA) for the approach
selected i for i = 1, 2, and 3 are defined as follows during a specific duration:

TC(B1) =
T−1∑
t=0

ϖ1v
∗
1(EI +S) + ϖ2v

∗
1(I + Ind), (24)
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Figure 4. The model’s digital solutions for the variables and various starting points of H, where R0 = 0.0143613.
The equilibrium of the point E0 is stable.
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Figure 5. The model (2) numerical solutions for the factors and various starting conditions of EI and I listed
in Table 3 and Table 4, with the rate R0 = 0.1352631.

TA(B1) =
T∑

t=0

I + Ind − (I∗ + I∗
nd). (25)

where I∗ and I∗
nd represent the optimal solution linked to the optimal controls v∗1 and v∗2, while

ϖ1 and ϖ2 represent the person-unit costs of the two potential interventions. We ordered our
control measures in Table 2 according to the higher number of cases avoided under the template’s
computations.
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Figure 6. The system (2) numerical solutions for the parameters and various starting conditions of EI and I listed
in Table 3 and Table 4, here R0 = 2.272166591341701, the point Ẽ remains steady as well.
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Figure 7. Digital solutions of the system (2) for factors and diverse starting state of Ind, here R0 = 0.1352631 in
Case 1 and R0 = 2.272166591341701 in Case 2.

Strategy1 (Processing v1): Encourage the population to adopt a comprehensive approach to
prevention, which includes self-care, social separation, and the sensitization of all levels, to keep
the virus away from people vulnerable to infection.
Strategy2 (Processing v2): Control of infectious disorders therapy support (as the finest care for ill
patients in isolation facilities).
Strategy3 (Processing v1 and v2): Integrating Strategy1 and Strategy2 and employing controls
v1 and v2. Based on the simulation results, we have ranked our control techniques in Table 3
according to the number of diseases avoided and given in Eq. (20). Table 2 compares Strategy B1
and Strategy B2 in terms of increased efficiency. In terms of improved efficiency, Strategy1 and
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Figure 8. For parameters and various beginning conditions of R, numerical solutions of the model (2) are
presented in Table 3 and Table 4, where R0 = 3.193363191340714 in Case 2, and R0 = 0.2132654 in Case 1
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Strategy2 are contrasted. The ICER values are calculated as follows:

ICER(1) =
TC(1)
TA(1)

=
1.73 × 102

3 × 102 = 0.57,

ICER(2) =
TC(2)− TC(1)
TA(2)− TA(1)

=
1.9 × 102 − 1.73 × 102

3.03 × 102 − 3 × 102 = 39.
(26)

ICER(2) is superior to ICER(1). This indicates that plan (1) is more dominant than plan (2).
Consequently, Strategy2 is not featured in the list of options.
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Figure 10. The progression of the number of individuals with control v1

Next, we examined how cost-effective Strategy1 and Strategy3 were:

ICER(3) =
TC(3)
TA(3)

=
1.52 × 102

2.5 × 102 = 0.608,

ICER(1) =
TC(1)− TC(3)
TA(1)− TA(3)

=
1.73 × 102 − 1.52 × 102

3 × 102 − 2.5 × 102 = 0.42.
(27)

According to the analysis, Strategy1 is more affordable than Strategy3. Consequently, method 1 is
the most advantageous of all the strategies evaluated, as it is simultaneously approachable and
healthy.

Table 5. Total expenses and total illnesses prevented across all techniques

Strategy TA TC
1 3 × 102 1.73 × 102

2 3.03 × 102 1.9 × 102

3 2.5 × 102 1.52 × 102
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Figure 11. The progression of the number of individuals with control v2

9 Conclusion

Multiple models have been proposed for the analysis of the COVID-19 pandemic. In this sample,
we have highlighted the distinctive properties of COVID-19 and suggested an approach that
explains how the virus transformed in Morocco while providing a reasonable representation of the
actual pandemic in that country. The model’s objective is to investigate the process of COVID-19
transmission while accounting for both reported and undeclared infections. These two categories
were necessary, as many people have not reported their infection with the COVID-19 virus or even
failed to take the necessary precautions to limit the spread of the virus and protect others, we also
included a class of individuals who never got infected by COVID-19 (compartment H).
We suggest a compartmental epidemic model for newly emerging coronavirus infections, which
considers COVID-19 infection to be a contagious disease. The dynamics of the interaction among
the groups can be expressed mathematically by a framework of ODEs. We prove the solution’s
existence and uniqueness and compute the rate R0, which assisted in illustrating the equilibrium’s
stability. One can distinguish between what is globally stable and what is asymptotically stable.
Similarly, the study uses the idea of normalized forward sensitivity to highlight the significance
of every factor for the spread of COVID-19. We investigate the optimal control problem numeri-
cally in further detail, and our results show that the control strategies implemented reduce the
prevalence of the virus in society during the period of the interaction. Moreover, we examined
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Figure 12. The admissible control set in Eq. (16), the starting factors in Eq. (20), and the optimal state values for
the control problem in Eqs. (13)−(15), in contrast to control-free trajectories

the cost-effectiveness of control measures to determine the best way to manage COVID-19 while
consuming as few resources as possible. We demonstrate, via the ICER cost-effectiveness approach,
that while approach 3 (which promotes applying the two control v1 and v2) is the most effective,
it does not minimize disease. In terms of cost, approach 2 (apply the control v2) is the most
expensive. Nevertheless, this tactic shows remarkable results in controlling disease transmission
and reducing infection rates. Despite the high cost of this method, the Moroccan government is
committed to adopting it. Likewise, it is essential to keep spreading the word about the value
of immunization and prevention while stepping up efforts to target those who follow the guide-
lines and motivate them to share their understanding of and adherence to them. Ultimately, the
4th-order Runge-Kutta forward-backwards method in Matlab is used for numerical simulations
to validate the analytical results. As a further work, we plan to use fractional calculus in our
subsequent work and add more aspects to our analysis in future research, as it can provide a more
precise description of natural occurrences than can be achieved using conventional differential.
It can entail cooperation with experts in epidemiology, sociology, economics, and other relevant
fields to create more comprehensive models.
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Figure 13. The outcome shows the normalized forward sensitivity indices for the fundamental ratio R0 with
respect to each of the typical variables of the model
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Abstract
This paper presents the computational solutions of a time-dependent nonlinear system of partial
differential equations (PDEs) known as the Lotka-Volterra competition system with diffusion. We
propose a combined semi-discretized spectral matrix collocation algorithm to solve this system of PDEs.
The first part of the algorithm deals with the time-marching procedure, which is performed using
the well-known Taylor series formula. The resulting linear systems of ordinary differential equations
(ODEs) are then solved using the spectral matrix collocation technique based on the novel Touchard
family of polynomials. We discuss and establish the error analysis and convergence of the proposed
method. Additionally, we examine the stability analysis and the equilibrium points of the model to
determine the stability condition for the system. We perform numerical simulations using diverse
model parameters and with different Dirichlet and Neumann boundary conditions to demonstrate the
utility and applicability of our combined Taylor-Touchard spectral collocation algorithm.

Keywords: Collocation points; convergent analysis; stability; Touchard polynomials; Taylor series

AMS 2020 Classification: 65L60; 41A10; 34A12; 35N70; 65L20

1 Introduction

During the past few years, the Lotka-Volterra population model has garnered significant attention
from scientists due to its efficacy in describing the interaction between two species in a closed
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ecosystem. Originating in 1925 from the work of renowned scientist Alfred Lotka and indepen-
dently developed by Vito Volterra in 1926, this model has become a cornerstone in ecological,
biological, epidemiological, and economic studies [1–4]. One notable application of this model in
economics is in modeling the interaction between firms within a market [5], while in epidemiology,
it finds use in understanding the spread of infectious diseases [6]. The fundamental assumptions
of the model posit that the population sizes of the predator and prey species are determined solely
by their interactions with each other and their environment.
Specifically, the model assumes (1) exponential growth of the prey population in the absence of
predators, (2) exponential decline of the predator population in the absence of prey, (3) propor-
tional growth of the predator population relative to the prey population, and (4) proportional
decline of the prey population relative to the predator population. The simplest form of the
Lotka-Volterra population model can be expressed as a system of two coupled first-order ordinary
differential equations, one for the prey population and one for the predator population. This
formulation serves as a foundational framework for further analysis and applications

dv
dt

= a v − b vw,

dw
dt

= −c w + d vw,
(1)

where v and w represent the population sizes of the prey and predator, respectively, and a, b, c,
and d are parameters governing the growth rates and interactions between the two populations.
The Lotka-Volterra model exhibits several intriguing and significant features. Among these is the
presence of periodic solutions, which depict the cyclic behavior of predator and prey populations
within a closed ecosystem. These cycles, often referred to as predator-prey cycles or limit cycles,
are a characteristic aspect of the model.
Moreover, the model has been extended in various ways to encompass more complex ecological
interactions. One notable extension is the diffusive Lotka-Volterra competition model, which
describes the interactions among two or more competing species within a spatially heterogeneous
environment. Unlike the classical Lotka-Volterra competition model, which assumes that the
population sizes of competing species are solely determined by their interactions and environment,
the diffusive Lotka-Volterra competition system accounts for the effects of spatial heterogeneity
on species competition. Given these important variations of the Lotka-Volterra model, numerous
efforts have been made to find accurate solutions to such models. For instance, Ni et al. [7]
investigated the model’s global stability and pattern formation, considering dynamical resources.
Lin et al. [8] discussed traveling wave solutions for the delayed Lotka-Volterra model using
Schauder’s fixed point theorem. Wijeratne et al. [9] conducted a detailed bifurcation analysis
for the diffusive model, with potential applications in market share at duopoly, including a case
study in Sri Lanka. Cherniha et al. [10] provided a review of up-to-date solutions for the diffusive
model, presenting a wide range of exact solutions for its applications.
Numerous other works on the simulation and discussion of dynamics in the diffusive model
can be found in [11–14] and references therein. In this research paper, our primary focus is on
the approximate solutions of a system of partial differential equations (PDEs) comprising two
nonlinear equations with quadratic terms (see [15]):
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∂v
∂τ − D1

∂2v
∂x2 = v(A1 − B1 v − C1 w),

∂w
∂τ − D2

∂2w
∂x2 = w(A2 − B2 w − C2 v),

(x, τ) ∈ ΩL × ΩT, (2)

where ΩL := [0, L] and ΩT := [0, T] with the initial conditions

v(x, τ = 0) = f (x), w(x, τ = 0) = g(x), x ∈ ΩL. (3)

Here, by v = v(x, τ) and w = w(x, τ) we denote the population densities of two given competing
species at time τ and f , g are two (smooth) given functions. Also, D1 and D2 are diffusion
coefficients and are assumed to be positive constants. The non-negative constants A1, A2 show the
growth rate of the respective species, B1, B2 ≥ 0 represent the related dead rates, and C1, C2 ≥ 0 are
the interaction rates between two competing species. The boundary conditions are supplemented
either in the form of Dirichlet{

v(x = 0, τ) = v0(τ), v(x = L, τ) = vL(τ),
w(x = 0, τ) = w0(τ), w(x = L, τ) = wL(τ),

τ ∈ ΩT, (4)

or as the Neumann boundary conditions are given by


∂v
∂x

(x = 0, τ) = v0(τ),
∂v
∂x

(x = L, τ) = vL(τ),

∂w
∂x

(x = 0, τ) = w0(τ),
∂w
∂x

(x = L, τ) = wL(τ),

τ ∈ ΩT, (5)

where the functions v0(τ), w0(τ), vL(τ), and wL(τ) are some familiar functions. A few analytical
and computational strategies have been developed to deal with the model problem (2) with initial
condition (3) accompanied with boundary condition (4) or (5). Let us mention the G ′/G-expansion
approach [16], the finite difference scheme [17], and the compact implicit-explicit RK type tech-
niques [18]. To acquire the approximate solution of model (2) along with its conditions, we shall
adopt a spectral matrix collocation algorithm based on a novel Touchard family of polynomials ac-
companied by the Taylor expansion technique [19–22]. The applications of the spectral collocation
approach with exponential-order accuracy have been examined for various model problems in
physical sciences. For example, we may draw your attention to the recently published works [23–
30]. The Touchard polynomials, also known as Touchard-Riordan polynomials or exponential
polynomials, constitute a family of functions prominent in combinatorics and partition theory [31].
Named after the French mathematician Jacques Touchard, who introduced them in 1934, these
polynomials are defined through exponential generating functions and exhibit close ties to Bell
polynomials and Stirling numbers of the second kind [32].
Offering several intriguing properties, they find applications across various mathematical domains,
including combinatorics, number theory, and algebraic geometry. Their utility extends to the realm
of modeling, where they have been increasingly employed in recent years. Touchard polynomials
have found utility in analyzing stochastic models such as branching processes, random walks, and
queueing systems. In these contexts, they have been instrumental in deriving exact and asymptotic
expressions for key parameters, including the probability of extinction, expected particle counts,
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and waiting time distributions. Despite their versatility, their application in solving mathematical
models has been relatively limited. For instance, Sabermahani [33] adapted Touchard polynomials
to solve fractional-order Fokker-Planck equations, representing one of the few reported instances
of their use in mathematical modeling. Motivated by this gap in the literature, the current study
explores the application of Touchard polynomials in simulating the model described in (2). As far
as the authors are aware, this represents the first instance of Touchard polynomials being utilized
to solve diffusive Lotka-Volterra competition systems.
The manuscript is structured as follows: Section 2 introduces the time-advancement approach
used for discretizing the time variable in the main model. In Section 3, we conduct a stability
analysis of the model, identifying equilibrium points and discussing the conditions for stable
solutions. Section 4 provides a comprehensive review of Touchard polynomials, highlighting
their relevant properties for subsequent sections. The hybrid Taylor-Touchard algorithm is then
elaborated upon in Section 5, followed by a validation of the theoretical framework through
several examples in Section 6. Finally, Section 7 presents the conclusions drawn from the study.

2 Time-advancement approach

Here and in this part, we first apply the Taylor formula to discretize the given system of PDEs (2)
in time direction. For this purpose, we consider a uniform partitioning of [0, T] into K subdivisions
with nodes

τ0 = 0 < τ1 = ∆τ < . . . < τK = K∆τ = T.

Here ∆τ = τk+1 − τk indicates the time step of the mesh for k ∈ K := {0, 1, . . . , K− 1}. By vk, wk, we
denote the approximations to the true exact solutions v(x, τ), w(x, τ) at time level τk, respectively.
Namely, we set

vk ≡ vk(x) := v(x, τk), wk ≡ wk(x) := w(x, τk), x ∈ ΩL.

The given equations at time step τk are{
vk

τ = D1 vk
xx + A1 vk − B1 (vk)2 − C1 vk wk,

wk
τ = D2 wk

xx + A2 wk − B2 (wk)2 − C2 vk wk.
(6)

Using the Taylor series formula, we find that{
vk

τ = (vk+1 − vk)/∆τ + ∆τ vk
ττ/2 +O(∆τ2),

wk
τ = (wk+1 − wk)/∆τ + ∆τ wk

ττ/2 +O(∆τ2),
(7)

if we differentiate system (6) with regard to τ, we shall have
∆τ vk

ττ = D1(vk+1
xx − vk

xx) + A1(vk+1 − vk)− 2B1 vk(vk+1 − vk)− C1 (vk+1 − vk)wk

−C1 vk(wk+1 − wk),

∆τ wk
ττ = D2(wk+1

xx − wk
xx) + A2(wk+1 − wk)− 2B2 wk(wk+1 − wk)− C2 vk (wk+1 − wk)

−C2(vk+1 − vk)wk,

(8)
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in which we have replaced all terms in the forms vk
τ, wk

τ by their difference first-order quotients
(vk+1 − vk)/∆τ, (wk+1 − wk)/∆τ respectively on the right-hand side.

Now, it is sufficient to insert the two above relations (8) into (7). Then, the left-hand sides of
relations (7) will be equated to those related relations given in (6). After some manipulations and
collecting the same terms together, we reach the discretized linearized set of equations for (2). In
the matrix form, we get

MMMk
1(x)

d2

dx2UUUk+1(x) + MMMk
2(x)UUUk+1(x) = HHHk(x), k ∈ K, (9)

where

UUUk+1(x) :=
[

vk+1

wk+1

]
, MMMk

1(x) :=
[
−D1 ∆τ 0

0 −D2 ∆τ

]
, HHHk(x) :=

[
D1 ∆τ vk

xx + (2 + A1 ∆τ)vk

D2 ∆τ wk
xx + (2 + A2 ∆τ)wk

]
,

and

MMMk
2(x) :=

2 + ∆τ
(
−A1 + 2B1 vk + C1 wk

)
C1 ∆τ vk

C2 ∆τ wk 2 + ∆τ
(
−A2 + 2B2 wk + C2 vk

) .

To compute the approximate solution of Eq. (9), one first requires the expression UUU0(x), which
is obtained from the initial conditions v0(x) = f (x) and w0(x) = g(x). Besides the functions
v0(x) = f (x) and w0(x) = g(x), the second-order derivative of them also appears in the vector
function HHH0(x). The boundary conditions (4) or (5) will be converted accordingly. Under the
prescription of Dirichlet boundary conditions we have the following at x = 0, L

UUUk+1(0) = BBBk+1
0 :=

[
vk+1

0
wk+1

0

]
=

[
v0(τk+1)

w0(τk+1)

]
, UUUk+1(L) = BBBk+1

L :=

[
vk+1

L
wk+1

L

]
=

[
vL(τk+1)

wL(τk+1)

]
. (10)

In an analog manner, we can handle the Neumann boundary conditions (5) as

d
dx

UUUk+1(0) = BBBk+1
0 ,

d
dx

UUUk+1(L) = BBBk+1
L , (11)

where two vectors BBBk+1
0 and BBBk+1

L are defined in system (10).

3 Qualitative analysis of the model

This section is devoted to the qualitative study of the Lotka-Voltral PDE model (2). First, we derive
the equilibria of system (2). Then, we discuss the stability of each point.

The equilibrium points of the system

Let us consider both non-diffusive model
dv
dt

= v(A1 − B1 v − C1 w),

dw
dt

= w(A2 − B2 w − C2 v),

(12)
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and diffusive model
∂v
∂τ

− D1
∂2v
∂x2 = v(A1 − B1 v − C1 w),

∂w
∂τ

− D2
∂2w
∂x2 = w(A2 − B2 w − C2 v),

(x, τ) ∈ ΩL × ΩT. (13)

The equilibrium points of these systems are obtained by equating the right-hand side of system
(13) to zero as follows [34, 35]: 

v(A1 − B1 v − C1 w) = 0,

w(A2 − B2 w − C2 v) = 0.

(14)

Hence, by solving the system (14), the equilibrium points of this system are as follows:

(v1, w1) = (0, 0),

(v2, w2) = (0,
A2

B2
),

(v3, w3) = (
A1

B1
, 0),

(v4, w4) = (
A1B2 − A2C1

B1B2 − C1C2
,

A2B1 − A1C2

B1B2 − C1C2
).

(15)

The stability of the equilibrium points

The non-diffusive model can be described by the following system:


dv
dt

= v(A1 − B1 v − C1 w) = φ(v, w),

dw
dt

= w(A2 − B2 w − C2 v) = ψ(v, w).

(16)

The Jacobian matrix corresponding to system (16) is as follows:

J =

∂φ

∂v
∂φ

∂w
∂ψ

∂v
∂ψ

∂w

 .

The characteristic equation can be represented by

λ2 −

(
∂φ

∂v
+

∂ψ

∂w

)
λ +

(
∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v

)
= 0. (17)

Suppose that we are at the steady state v = vss, w = wss. Therefore, we can conclude that the
equilibrium point (vss, wss) is locally asymptotically stable according to Routh–Hurwitz criteria if
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the next conditions are fulfilled at the equilibrium point


∂φ

∂v
+

∂ψ

∂w
< 0,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
> 0.

(18)

From system (16), we have 

∂φ

∂v
= A1 − 2B1 v − C1 w,

∂φ

∂w
= −C1 v,

∂ψ

∂v
= −C2 v,

∂ψ

∂w
= A2 − 2B2 w − C2 v.

(19)

Since we have four equilibrium points, there are four cases:
Case 1: For (vss, wss) = (v1, w1) = (0, 0), the partial derivatives in (19) can be written as follows:

∂φ

∂v
= A1,

∂φ

∂w
= 0,

∂ψ

∂v
= 0,

∂ψ

∂w
= A2.

(20)

Therefore, we can write 
∂φ

∂v
+

∂ψ

∂w
= A1 + A2 ≥ 0,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= A1 A2 ≥ 0.

(21)

Hence the equilibrium point (v1, w1) = (0, 0) is unstable.
Case 2: For (vss, wss) = (v2, w2) = (0, A2

B2
), the partial derivatives in (19) can be written as follows:



∂φ

∂v
= A1 − C1

A2

B2
,

∂φ

∂w
= 0,

∂ψ

∂v
= 0,

∂ψ

∂w
= −A2.

(22)
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Consequently, we can write 
∂φ

∂v
+

∂ψ

∂w
= A1 − C1

A2

B2
− A2,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= (C1

A2

B2
− A1)A2.

(23)

Hence the equilibrium point (v2, w2) = (0, A2
B2
) will be asymptotically stable if A1 −C1

A2
B2

− A2 < 0

and (C1
A2
B2

− A1)A2 > 0.

Case 3: For (vss, wss) = (v3, w3) = (A1
B1

, 0), the partial derivatives in (19) can be written as follows:



∂φ

∂v
= −A1,

∂φ

∂w
= −C1

A1

B1
,

∂ψ

∂v
= −C2

A1

B1
,

∂ψ

∂w
= A2 − C2

A1

B1
.

(24)

Thus, we can write 
∂φ

∂v
+

∂ψ

∂w
= A2 − A1 − C2

A1

B1
,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= (C2

A1

B1
− A2)A1 − C1C2(

A1

B1
)2.

(25)

Hence, the equilibrium point (v3, w3) = (A1
B1

, 0) will be asymptotically stable if A2 − A1 − C2
A1
B1

<

0 and (C2
A1
B1

− A2)A1 − C1C2(
A1
B1
)2 > 0.

Case 4: For (vss, wss) = (v4, w4) = (A1B2−A2C1
B1B2−C1C2

, A2B1−A1C2
B1B2−C1C2

), the partial derivatives in (19) can be
written as follows: 

∂φ

∂v
= A1 − 2B1(

A1B2 − A2C1

B1B2 − C1C2
)− C1(

A2B1 − A1C2

B1B2 − C1C2
),

∂φ

∂w
= −C1(

A1B2 − A2C1

B1B2 − C1C2
),

∂ψ

∂v
= −C2(

A1B2 − A2C1

B1B2 − C1C2
),

∂ψ

∂w
= A2 − 2B2(

A2B1 − A1C2

B1B2 − C1C2
)− C2(

A1B2 − A2C1

B1B2 − C1C2)
.

(26)
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Hence the equilibrium point (v4, w4) = (A1B2−A2C1
B1B2−C1C2

, A2B1−A1C2
B1B2−C1C2

) is asymptotically stable if

∂φ

∂v
+

∂ψ

∂w
= A1 − 2B1(

A1B2 − A2C1

B1B2 − C1C2
)− C1(

A2B1 − A1C2

B1B2 − C1C2
)

+A2 − 2B2(
A2B1 − A1C2

B1B2 − C1C2
)− C2(

A1B2 − A2C1

B1B2 − C1C2)
< 0,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= (A1 − 2B1(

A1B2 − A2C1

B1B2 − C1C2
)− C1(

A2B1 − A1C2

B1B2 − C1C2
)) (27)

×(A2 − 2B2(
A2B1 − A1C2

B1B2 − C1C2
)− C2(

A1B2 − A2C1

B1B2 − C1C2)
))

−C1C2(
A1B2 − A2C1

B1B2 − C1C2
)2 > 0.

The diffusive model can be written as follows:
∂v
∂τ

= D1
∂2v
∂x2 + φ(u, v),

∂w
∂τ

= D2
∂2w
∂x2 + ψ(u, v).

(28)

Now, we linearize the diffusive model by taking ṽ = v − vss and w̃ = w − wss. Hence, system (28)
is transformed to 

∂ṽ
∂τ

= D1
∂2ṽ
∂x2 +

∂φ

∂v
ṽ +

∂φ

∂w
w̃,

∂w̃
∂τ

= D2
∂2w̃
∂x2 +

∂ψ

∂v
ṽ +

∂ψ

∂w
w̃.

(29)

By taking ṽ(x, t) = v∗eσt sin αx and w̃(x, t) = w∗eσt sin αx, then (29) is transformed to


σv∗ = −α2D1v∗ +

∂φ

∂v
v∗ +

∂φ

∂w
w∗,

σw∗ = −α2D2w∗ +
∂ψ

∂v
v∗ +

∂ψ

∂w
w∗,

(30)

or 
σv∗ = (

∂φ

∂v
− α2D1)v∗ +

∂φ

∂w
w∗,

σw∗ =
∂ψ

∂v
v∗ + (

∂ψ

∂w
− α2D2)w∗,

(31)

which can be written as a linear system as follows:

AX = σX, (32)
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A =

∂φ

∂v
− α2D1

∂φ

∂w
∂ψ

∂v
∂ψ

∂w
− α2D2

 , X =

[
v∗

w∗

]
. (33)

Hence, the characteristic equation |A − σI| = 0, can be represented by

σ2 −

(
(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2)

)
σ +

(
∂φ

∂v
− α2D1

)(
∂ψ

∂w
− α2D2

)
−

∂φ

∂w
∂ψ

∂v
= 0. (34)

As a result, the asymptotic stability according to Routh–Hurwitz criterion [34, 35] is verified if(
(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2)

)
< 0, (

∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
> 0. (35)

As we discussed above we have four equilibrium points, then there are four cases:
Case 1: The equilibrium point (v1, w1) = (0, 0) is asymptotically stable if


(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2) = A1 + A2 − α2(D1 + D2) < 0,

(
∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
= (A1 − α2D1)(A2 − α2D2) > 0.

(36)

Case 2: The equilibrium point (v2, w2) = (0, A2
B2
) is asymptotically stable if


(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2) = A1 − A2 − C1

A2

B2
− α2(D1 + D2) < 0,

(
∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
= (A1 − C1

A2

B2
− α2D1)(−A2 − α2D2) > 0.

(37)

Case 3: The equilibrium point (v3, w3) = (A1
B1

, 0) is asymptotically stable if


(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2) = −A1 + A2 − C2

A1

B1
− α2(D1 + D2) < 0,

(
∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
= (−A1 − α2D1)(A2 − C2

A1

B1
− α2D2) > 0.

(38)

Case 4: The equilibrium point (v4, w4) = (A1B2−A2C1
B1B2−C1C2

, A2B1−A1C2
B1B2−C1C2

) is asymptotically stable if


(

∂φ

∂v
− α2D1

)
+

(
∂ψ

∂w
− α2D2

)
< 0,(

∂φ

∂v
− α2D1

)(
∂ψ

∂w
− α2D2

)
−

∂φ

∂w
∂ψ

∂v
> 0,

(39)
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where 

∂φ

∂v
= A1 − 2B1

(
A1B2 − A2C1

B1B2 − C1C2

)
− C1

(
A2B1 − A1C2

B1B2 − C1C2

)
,

∂φ

∂w
= −C1

(
A1B2 − A2C1

B1B2 − C1C2

)
,

∂ψ

∂v
= −C2

(
A1B2 − A2C1

B1B2 − C1C2

)
,

∂ψ

∂w
= A2 − 2B2

(
A2B1 − A1C2

B1B2 − C1C2

)
− C2

(
A1B2 − A2C1

B1B2 − C1C2

)
.

(40)

4 A review of Touchard polynomials: a convergence analysis

The goal is here to first review the main aspects of the Touchrad polynomials (TPs). Also, we
mention some main properties of this set of functions. Next, the convergence analysis of TPs is
studied.

An overview of Touchard polynomials

Jacques Touchard was the first who study the Touchard polynomials (TPs) associated with various
enumeration problems in number theory related to the permutations [36]. These polynomials are
also known as the generalization of Bell polynomials or exponential polynomilas [37]. For more
applications and detailed descriptions, we refer to [31, 38, 39].

The TPs are defined through the following Rodriguez-like formula:

Tq(x) = exp(−x)
(

x
d

dx

)q {
exp(x)

}
, q ∈ N.

We next denote the Stirling number (of the second type) by S2(q, i). It is defined as [40, Chap. 5]

S2(q, i) :=
1
i!

i∑
j=1

(−1)i−j
(

i
j

)
jq, 1 ≤ i ≤ q,

and if 1 ≤ q < i we have S2(q, i) = 0. We also set S2(0, 0) = 1 and S2(0, i) = 0 for i ≥ 1. In fact,
the Stirling number indicates the number of partitions of a set of size q into i disjoint nonempty
subsets. From these numbers, we have the next definition of TPs:

Definition 1 The Touchard polynomials on [0, 1] are given by

Tq(x) :=
q∑

i=0

S2(q, i) xi, q ∈ N, (41)

and T0(x) := 1.
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It is not difficult to obtain the list of T1(x), . . . , Tq(x) for q = 5 given as follow

T1(x) = x,

T2(x) = x2 + x,

T3(x) = x3 + 3x2 + x,

T4(x) = x4 + 6x3 + 7x2 + x,

T5(x) = x5 + 10x4 + 25x3 + 15x2 + x.

One can evidently see that Tq(0) = 0 for all q ∈ N. We also have Tq(1) = Bq, where Bq represents
the Bell numbers for q ∈ N0 := N∪ {0}. By using B0 = B1 = 1, the values of the first Bell numbers
are given as 1, 1, 2, 5, 15, 52, 203, 877, and 4140.
The next result is about the zeros of TPs. These roots with some modifications can be used as the
set of collocation nodes in our proposed spectral collocation algorithm, below. A proof of which
was proved in [41]:

Theorem 1 The zeros of Tq(x) are real, distinct, and non-positive for all q ∈ N.

The following results are useful in the subsequent error analysis of TPs. Let Q ∈ N be given. To
continue, let us denote the vector of (Q + 1) TPs by

TTTQ(x) :=
[
T0(x) T1(x) . . . TQ(x)

]
. (42)

From this representation, we have:

Lemma 1 The following representation for TTTQ(x) holds

TTTQ(x) = ΣΣΣQ(x)PPPQ, (43)

where the structured upper-triangular matrix PPPQ is constant. It is of size (Q + 1)× (Q + 1) and defined
as

PPPQ =



1 S2(1, 0) S2(2, 0) . . . S2(Q − 1, 0) S2(Q, 0)

0 1 S2(2, 1) . . . S2(Q − 1, 1) S2(Q, 1)

0 0 1 . . . S2(Q − 1, 2) S2(Q, 2)

...
... . . . . . . . . . ...

0 0 0 . . . 1 S2(Q, Q − 1)

0 0 0 . . . 0 1



,

and the vector ΣΣΣQ(x) is

ΣΣΣQ(x) =
[
1 x x2 . . . xQ

]
.
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Proof By considering (6) and by induction on Q ∈ N we can easily deduce the proof.

The non-singularity of the matrix PPPQ is obvious as one can see that det(PPPQ) = 1.

Error analysis and convergence result of TPs

The goal is to consider the sequence of TPs on [0, 1]. We will investigate a convergence result
associated with the TPs in a detailed manner. In this respect, one is required to consider a suitable
space related to [0, 1]. We set the weight function as w(x) := 1 and define

L2
w[0, 1] := {p : [0, 1] → R : p is measurable and ∥p∥w < ∞} ,

with the associated norm as ∥p∥w :=
√∫1

0 |p(x)|2w(x)dx.
Let’s assume that a function p(x) ∈ L2

w[0, 1] is given. By writing the function p(x) in a series form
in terms of TPs we have

p(x) =
∞∑

q=0

ϕq Tq(x), x ∈ [0, 1]. (44)

The final aim would be to find the coefficients ϕq, q ≥ 0 as unknowns. The next finite-dimensional
subspace ZQ ⊆ L2

w[0, 1] will be considered in practical computing as

ZQ := Span⟨T0(x), T1(x), . . . , TQ(x)⟩.

It is evident that ZQ is a closed and finite-dimensional (of dimension Q + 1) and therefore a
complete subspace of L2

w[0, 1]. This implies that one finds the finest (best) approximation element
p⋆(x) ∈ ZQ such that

∥p(x)− p⋆(x)∥w ≤ ∥p(x)− r(x)∥w, ∀r ∈ ZQ.

As previously mentioned, we use only the first (Q + 1) TPs to approximate p(x). It follows that

p(x) ≈ pQ(x) :=
Q∑

q=0

ϕq Tq(x), x ∈ [0, 1]. (45)

The approximate solution pQ(x) can be stated concisely as follows

pQ(x) = TTTQ(x)ΦΦΦQ, (46)

where TTTQ(x) is defined in (7) and the unknowns ϕq for q = 0, 1, . . . , Q will be put in a vector form
as

ΦΦΦQ :=
[
ϕ0 ϕ1 . . . ϕQ

]t .

To establish our main result related to the convergence of TPs, we state the following Corollary,
which is taken from [42] (without proof):

Corollary 1 Assume that p(x) has a continuous second derivative on [−1, 1]. Let PN(x) denote the
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interpolation polynomials (of degree at most N), based on the N + 1 points xi = cos
(

2i+1
N+1

π
2

)
, i =

0, 1, . . . , N. Then PN(x) converges to p(x) on [−1, 1] as N → ∞. Indeed, we have

|p(x)− PN(x)| = O(
1√
N
). (47)

Note that we can extend the above result on a general arbitrary domain [a, b] by using the change
of variable 2x̄ = a + b + (b − a)x. This transformation also converts the the Chebyshev nodes xi
on [−1, 1] into the associated points x̄i on [a, b]. Here, we have a = 0 and b = 1. However, the
given upper bound in (47) still is valid.
By increasing the number of bases Q, we will show in the next result that the difference between
p(x) and the series form pQ(x) (45) approaching zero. To do so, let us define the error EQ(x) :=
p(x)− pQ(x).

Theorem 2 Suppose that pQ(x) = TTTQ(x)ΦΦΦQ indicated the best (closest) approximation to p(x) out of
space ZQ and let p(x) ∈ L2

w[0, 1] ∩ C2[0, 1]. Then, EQ(x) converges to zero as Q → ∞. Indeed, we have

∥EQ(x)∥2 = O(Q− 1
2 ). (48)

Proof We first utilize the fact that pQ(x) shows the finest approximation to p(x) out of ZQ. Based
on the above discussion, one finds that

∥p(x)− pQ(x)∥w ≤ ∥p(x)− r(x)∥w, ∀r ∈ ZQ. (49)

The last inequality (49) is still true for a specific selection for r(x) to be PQ(x) as in Corollary 1
with N = Q. Therefore, we conclude

∥p(x)− pQ(x)∥2
w ≤ ∥p(x)− PQ(x)∥2

w =

∫ 1

0

∣∣p(x)− PQ(x)
∣∣2 w(x)dx.

Now, by virtue of (47) there is a constant C such that

∥p(x)− pQ(x)∥2
w ≤

[ C√
Q

]2 ∫ 1

0
w(x)dx.

We then evaluate the definite integral, which is equal to one. Taking the square root yields the
desired conclusion.

Remark 1 We remark that we can use the larger interval [0, L], (L > 1) instead of unit interval [0, 1].
This can be done just by changing of variable x → x/L. In other words, the above results can be easily
extended to [0, L]. In the computational experiments, we may use a larger interval [0, L] rather than [0, 1].

5 The hybrid Taylor-Touchard algorithm

The solution of the Lotka-Volterra competition system (2) can now be obtained through solving the
family of discretized equations (9) together with Dirichlet boundary condition (10) or Neumann
boundary conditions (11). Now, suppose that we have the approximate solution of (9) at time level
k − 1 for k ≥ 1. Evidently, at the first time level, namely τ = 0, we have UUU0(x) at hand. We assume
that at time step k, we can state the numerical solutions of the system (9) as a finite summation of
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(Q + 1) Touchard basis functions. It follows thatvk(x) ≈ vk,Q(x) =
∑Q

q=0 ϕ
(k)
q,1 Tq(x),

wk(x) ≈ wk,Q(x) =
∑Q

q=0 ϕ
(k)
q,2 Tq(x).

(50)

We now seek the coefficients ϕ
(k)
q,r for r = 1, 2 and q = 0, 1, . . . , Q. We may state these unknowns in

vectorized forms by

ΦΦΦ(k)
Q,r :=

[
ϕ
(k)
0,r ϕ

(k)
1,r . . . ϕ

(k)
Q,r

]t
, r = 1, 2.

In accordance to the definition TTTQ(x) in (42), one able to represent the foregoing equations (50) as

{
vk,Q(x) = TTTQ(x)ΦΦΦ(k)

Q,1,

wk,Q(x) = TTTQ(x)ΦΦΦ(k)
Q,2.

(51)

With the help of relation (43) in Lemma 1, we further rewrite these equations as{
vk,Q(x) = ΣΣΣQ(x)PPPQ ΦΦΦ(k)

Q,1,

wk,Q(x) = ΣΣΣQ(x)PPPQ ΦΦΦ(k)
Q,2.

(52)

We now put both approximate solutions into one vector. We set UUU(k)
Q (x) as an approximation to

UUUk(x) yielding

UUUk(x) ≈ UUU(k)
Q (x) :=

[
vk,Q(x)
wk,Q(x)

]
. (53)

By using the foregoing relations (52), the next matrix representations for UUU(k)
Q (x) is provided. The

proof of which is an easy job.

Lemma 2 The approximated solution UUU(k)
Q (x) in (53) has the following matrix representation

UUU(k)
Q (x) = Σ̂ΣΣQ(x) P̂PPQ Φ̂ΦΦ

(k)
Q , (54)

where

Σ̂ΣΣQ(x) =
[

ΣΣΣQ(x) 000
000 ΣΣΣQ(x)

]
, P̂PPQ =

[
PPPQ 000
000 PPPQ

]
, Φ̂ΦΦ

(k)
Q =

[
ΦΦΦ(k)

Q,1

ΦΦΦ(k)
Q,2

]
.

By looking at (51), we find that one needs to approximate d2

dx2 UUUk(x). Thus, we consider the vector
form

d2

dx2UUUk(x) ≈ d2

dx2UUU(k)
Q (x) :=

[
v ′′

k,Q(x)
w ′′

k,Q(x)

]
. (55)



52 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 37–65

To calculate the second-order derivatives of UUU(k)
Q (x), we return to the relations (53). We have to

compute only derivatives of the vector ΣΣΣQ(x). A simple calculation yields

d
dx

ΣΣΣQ(x) = ΣΣΣQ(x)EEEQ, EEEQ =


0 1 0 . . . 0
0 0 2 . . . 0
...

... 0
...

...

0 0 0 . . . Q
0 0 0 . . . 0


(Q+1)×(Q+1)

. (56)

If we repeat the differentiation, we arrive at

d2

dx2 ΣΣΣQ(x) = ΣΣΣQ(x)EEE2
Q. (57)

By combining the last relations (57) and (53) we finally get{
v ′′

k,Q(x) = ΣΣΣQ(x)EEE2
Q PPPQ ΦΦΦ(k)

Q,1,

w ′′
k,Q(x) = ΣΣΣQ(x)EEE2

Q PPPQ ΦΦΦ(k)
Q,2.

(58)

Lemma 3 The approximated solution d2

dx2 UUU(k)
Q (x) in (55) has the following matrix representation

d2

dx2UUU(k)
Q (x) = Σ̂ΣΣQ(x) ÊEEQ P̂PPQ Φ̂ΦΦ

(k)
Q , (59)

where Φ̂ΦΦ
(k)
Q , Σ̂ΣΣQ(x) and P̂PPQ are defined in (54) and

ÊEEQ =

[
EEE2

Q 000
000 EEE2

Q

]
.

A sequence of collocation points will be used now. This set of points can be selected as the zeros
of Touchard polynomials as mentioned in Section 4. However, we use the equally distributed
points on [0, L]. Since we have to determine Q + 1 coefficients in the series expansion forms (50),
we consider xs = sL/Q for s = 0, 1, . . . , Q as the collocation points. We now collocate the matrix
Eqs. (51) at the aforementioned points to reach at

MMMk−1
1 (xs)

d2

dx2UUUk
Q(xs) + MMMk−1

2 (xs)UUUk
Q(xs) = HHHk−1(xs), s = 0, 1, . . . , Q, (60)

for k = 1, 2, . . . , K. We next introduce two matrices and vectors related to the coefficients of the
model as

NNNk−1,j =


MMMk−1

j (x0) 000 . . . 000
000 MMMk−1

j (x1) . . . 000
...

... . . . ...
000 000 . . . MMMk−1

j (xQ)

 , j = 1, 2, FFFk−1 =


HHHk−1(x0)

HHHk−1(x1)
...

HHHk−1(xQ)

 .
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The following notations will be also set

VVVk :=


UUUk

Q(x0)

UUUk
Q(x1)

...
UUUk

Q(xQ)

 , VVV ′′
k :=


d2

dx2 UUUk
Q(x0)

d2

dx2 UUUk
Q(x1)
...

d2

dx2 UUUk
Q(xQ)

 .

A reformulation of the set of matrix Eqs. (60) can be done by using the former matrix and vector
notations. So, we have

NNNk−1,1 VVV ′′
k + NNNk−1,2 VVVk = FFFk−1, k = 1, 2, . . . , K. (61)

To proceed, we collocate two relations (54) and (59) at the collocation nodes. Therefore, we get

Lemma 4 The matrix forms of VVVk and VVV ′′
k are obtained as

VVVk =
˜̂ΣΣΣQ P̂PPQ Φ̂ΦΦ

(k)
Q , VVV ′′

k = ˜̂ΣΣΣQ ÊEEQ P̂PPQ Φ̂ΦΦ
(k)
Q . (62)

Here, two matrices P̂PPQ, Φ̂ΦΦ
(k)
Q are defined in (54) and the block-diagonal matrix ÊEEQ is introduced in (59).

Also, we have used

˜̂ΣΣΣQ = [Σ̂ΣΣQ(x0) Σ̂ΣΣQ(x1) . . . Σ̂ΣΣQ(xQ)]
t,

where the matrix Σ̂ΣΣQ is previously defined in (54).

By placing two relations in (62) into (61) one gets the next (linear) fundamental matrix equation
(FME) {

NNNk−1,1
˜̂ΣΣΣQ ÊEEQ + NNNk−1,2

˜̂ΣΣΣQ

}
P̂PPQ Φ̂ΦΦ

(k)
Q = FFFk−1, k = 1, 2, . . . , K.

If we rephrase the last equations, we have for k = 1, 2, . . . , K

WWWk Φ̂ΦΦ
(k)
Q = FFFk−1, or [WWWk;FFFk−1], WWWk :=

(
NNNk−1,1

˜̂ΣΣΣQ ÊEEQ + NNNk−1,2
˜̂ΣΣΣQ

)
P̂PPQ. (63)

Still, we are required to implement the boundary conditions (10) or (11) and incorporate them into
the matrix Eq. (63). For the first Dirichlet boundary condition in (10), we consider (54) followed
by approaching x to zero. Similarly, for the second one, we tend x to L. In both cases, we have

WWW0
k Φ̂ΦΦ

(k)
Q = BBBk

0, WWW0
k := Σ̂ΣΣQ(0) P̂PPQ,

WWWL
k Φ̂ΦΦ

(k)
Q = BBBk

L, WWWL
k := Σ̂ΣΣQ(L) P̂PPQ.

If the Neumann boundary conditions (5) are given, we first combine two relations (54) and (56) to
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obtain {
v ′

k,Q(x) = ΣΣΣQ(x)EEEQ PPPQ ΦΦΦ(k)
Q,1,

w ′
k,Q(x) = ΣΣΣQ(x)EEEQ PPPQ ΦΦΦ(k)

Q,2.

Now, we let x approaches to 0, L to reach at

WWW0
k Φ̂ΦΦ

(k)
Q = BBBk

0, WWW0
k := Σ̂ΣΣQ(0)EEEQ P̂PPQ,

WWWL
k Φ̂ΦΦ

(k)
Q = BBBk

L, WWWL
k := Σ̂ΣΣQ(L)EEEQ P̂PPQ.

In either case of boundary conditions, we use [WWW0
k , BBBk

0] or [WWWL
k , BBBk

L] to substitute the first four rows
of the FME [WWWk;FFFk−1]. We denote the resultant modified system given by

[W̃WWk; F̃FFk−1], k = 1, 2, . . . , K. (64)

Once we solve (64), the unknown Touchard coefficients ϕ
(k)
q,r for q = 0, 1, . . . , Q and r = 1, 2 are

obtained at each time level k for k = 1, 2, . . . , K.
The strategy of the residual error function (REF) will now be utilized to measure the accuracy of
the presented Taylor-Touchard collocation procedure. Toward this end, we insert the acquired
approximate solutions into (2). Thus, the REFs are defined by the following relations[

Res(k)v,Q(x)

Res(k)w,Q(x)

]
=

∣∣∣MMMk−1
1 (x)

d2

dx2UUUk
Q(x) + MMMk−1

2 (x)UUUk
Q(x)− HHHk−1(x)

∣∣∣ ∼= 0, (65)

for k = 1, 2, . . . , K. We note that the foregoing REF formula is useful especially when the exact
solutions of system (2) are out of reach for various values of model parameters.

6 Graphical and numerical results

In this part, diverse simulation experiments are conducted to illustrate the utility of the Taylor-
Touchard matrix collocation strategy once applied to the Lotka-Volterra competition model (2).
Two test case studies with diverse model parameters are solved numerically to testify to the
accuracy and performance of the combined approximation technique. All simulation results are
performed by utilizing Matlab version R2021a on a digital computer.

Example 1 We consider the Lotka-Volterra competition system (2) with the next initial conditions [17]

f (x) = g(x) = 0.1 exp(−8x2).

The Dirichlet boundary conditions are taken as

v0(τ) = w0(τ) = f (0), vL(τ) = wL(τ) = f (L).

In the following diverse coefficient parameters Ai, Bi, Ci, and Di, for i = 1, 2 will be considered.

We first set Q = 5. We also use L, T = 1 and ∆τ = 0.01. All parameters are set as unity except
that D1 = 0.5. The approximate solutions using the presented Taylor-Touchard method at the first
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time level τ = ∆τ are given by

v1,5(x) = 0.45827 x5 − 1.64989 x4 + 2.10134 x3 − 0.991429 x2 − 0.0182481 x + 0.1,

w1,5(x) = 0.377296 x5 − 1.39838 x4 + 1.83421 x3 − 0.889391 x2 − 0.0237062 x + 0.1.

The obtained approximations at the last time level τ = T are as follows

v100,5(x) = 0.00744598 x5 − 0.012201 x4 + 0.0307353 x3 − 0.0894343 x2 − 0.0365125 x + 0.1,

w100,5(x) = 0.00808672 x5 − 0.0193222 x4 + 0.0294968 x3 − 0.049399 x2 − 0.0688288 x + 0.1.

Figure 1 shows the whole approximate solutions using the above-mentioned parameters on space-
time domain [0, 1]× [0, 1]. While the left picture presents the population density v, the right plot
graphically shows the population density w. The snapshots of the associated REFs defined via (65)
are also depicted in Figure 2 at different time levels τ = τk for k = 1, 2, . . . , 100. It is seen that the
same results for both approximate solutions v, w are obtained on the unit square [0, 1]× [0, 1]. To
see the discrepancy, we need to go beyond this domain.
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Figure 1. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 0.01, for
(x, τ) ∈ [0, 1]× [0, 1].

Let us consider L = 10 and T = 100 in the computations. In Figure 3, we show the approximate
solutions for the population densities v and w using the same parameters as above except that we
take a relatively large time step ∆τ = 1. In fact, the obtained solutions at τ = 50 are given as

v50,5(x) = 0.000472878 x5 − 0.0149354 x4 + 0.168979 x3 − 0.836871 x2 + 1.66751 x + 0.1,

w50,5(x) = 0.0000459759 x5 − 0.00140024 x4 + 0.0151665 x3 − 0.0746089 x2 + 0.159923 x + 0.1.

The profile of population densities at x = 5 is visualized in Figure 4. One can easily see from Fig-
ure 3 and Figure 4 that the population density v(x, τ) will ultimately survive with low diffusion
rates D1 = 0.5 while the second one, w(x, τ), with higher diffusion value D2 = 1 will die out on
τ ∈ [0, 100].
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Figure 2. Visualization of REfs Res(k)v,5(x) (left) and Res(k)w,5(x) (right) via Taylor-Touchard matrix algorithm
in Example 1 with Q = 5, A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 0.01, for (x, τ) ∈
[0, 1]× [0, 1] .
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Figure 3. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 1, for
(x, τ) ∈ [0, 10]× [0, 100] .

We next examine the impact of utilizing the growth factors A1 and A2 on the interaction between
two species. In this respect, we set [17]

A1 = 0.8, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1, D2 = 1.

From these parameters, the following approximations for the competition system are obtained.
The two first ones are related to τ = ∆τ as follows

v1,5(x) = −2.9310−6 x5 + 0.000120498 x4 − 0.00195727 x3 + 0.0157298 x2 − 0.0627584 x + 0.1,

w1,5(x) = −2.7123−6 x5 + 0.000112368 x4 − 0.00184439 x3 + 0.0150341 x2 − 0.0611469 x + 0.1.
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Figure 4. Graphing of population densities via Taylor-Touchard matrix algorithm in Example 1 with Q = 5,
A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 1, at x = 5 .

The obtained approximations at the final time τ = T are given by

v100,5(x) = −3.31577−7 x5 + 0.0000265815 x4 − 0.000681488 x3 + 0.00781148 x2

− 0.0432318 x + 0.1,

w100,5(x) = 0.000392573 x5 − 0.0123676 x4 + 0.140267 x3 − 0.713172 x2 + 1.5369 x + 0.1.

The graphical representations of two population species are visualized on Figure 5 on the whole
domain (x, τ) ∈ [0, 10]× [0, 100]. The profile of population densities at x = 5 and for τ ∈ [0, 100]
are depicted on Figure 6.
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Figure 5. Graphing of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1 = 0.8, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1, D2 = 1, ∆τ = 1, for
(x, τ) ∈ [0, 10]× [0, 100] .

By looking at the plotted Figure 5 and Figure 6 we infer that under the assumption on the growth
rates A1 < A2 the population v(x, τ) will wipe out at the end. However, the population w(x, t)
will remain alive for a long time life. The conclusion is that if the invasive population is weak,
then the population will become extinct finally.
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Figure 6. Graphing of population densities via Taylor-Touchard matrix algorithm in Example 1 with Q = 5,
A1 = 0.8, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1, D2 = 1, ∆τ = 1, at x = 5 .

In the last experimental simulations for Example 1, let us investigate the competitive coexistence
of two population species in the system. For this purpose, we set [17]

A1 = 0.9, A2 = 1, B1, B2 = 1, C1 = 0.8, C2 = 1, D1 = 0.3, D2 = 1.

We run our Taylor-Touchard collocation matrix algorithm with a time step ∆τ = 1 as before. Using
Q = 5 we get the next approximations evaluated at time τ = ∆τ as

v1,5(x) = −3.9490−6 x5 + 0.000157353 x4 − 0.00245291 x3 + 0.0186658 x2 − 0.0692296 x + 0.1,

w1,5(x) = −2.7123−6 x5 + 0.000112368 x4 − 0.00184439 x3 + 0.0150341 x2 − 0.0611469 x + 0.1.

The obtained approximations at the given final time τ = T are given by

v100,5(x) = 0.000499975 x5 − 0.0157776 x4 + 0.177961 x3 − 0.872004 x2 + 1.69182 x + 0.1,

w100,5(x) = 0.0000344845 x5 − 0.00103192 x4 + 0.0109967 x3 − 0.0555938 x2 + 0.133343 x + 0.1.

Besides the preceding polynomial solutions, we visualize the approximate solutions vk,5(x, τ)

and wk,5(x, τ) for all k = 1, 2, . . . , 100 in Figure 7 on the whole space-time domain (x, τ) ∈
[0, 10]× [0, 100]. The competition results of two populations for (x, τ) ∈ {5}× [0, 100] are shown
in Figure 8.
From graphics presented in the former Figure 7 and Figure 8 one observes that both populations
arrived at a coexistence state. In other words, the two competing species are equal in status, with
neither complete victory nor loss in competition.

Example 2 The second test example related to the Lotka-Volterra competition system (2) is devoted to the
Neumann boundary conditions. That is, we take the following initial conditions

f (x) = g(x) = 0.1 sin2(2.4 π x) + 0.28 sin2(−0.05 π x),

which is borrowed from [18]. The Neumann boundary conditions are set as follows:

v0(τ) = w0(τ) = f ′(0), vL(τ) = wL(τ) = f ′(L).
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Figure 7. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1 = 0.9, A2 = 1, B1, B2 = 1, C1 = 0.8, C2 = 1, D1 = 0.3, D2 = 1, ∆τ = 1,
for (x, τ) ∈ [0, 10]× [0, 100]
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Figure 8. Visualization of population densities via Taylor-Touchard matrix algorithm in Example 1 with Q = 5,
A1 = 0.9, A2 = 1, B1, B2 = 1, C1 = 0.8, C2 = 1, D1 = 0.3, D2 = 1, ∆τ = 1, at x = 5

Below, we only use the coefficient parameters Ai, Bi, Ci, and Di, for i = 1, 2 in the form

A1 = 0.4, A2 = 0.5, D1 = D2 = 0.001, B1 = 0.4, B2 = 0.5, C1 = 0.5, C2 = 0.8.

Using the aforementioned parameters and by running the Taylor-Touchard algorithm with Q = 5
and ∆τ = 1, we get the next approximate solutions computed at τ = ∆τ and for 0 ≤ x ≤ 1 as

v1,5(x) = 0.232195 x5 − 0.774398 x4 + 0.966988 x3 − 0.48004 x2 − 3.4−107 x + 0.145598,

w1,5(x) = 0.232362 x5 − 0.775521 x4 + 0.96977 x3 − 0.482383 x2 − 6.1−107 x + 0.153403.

Similarly, at time level τ = T = 100, we get

v100,5(x) = −0.0137547 x5 + 0.0372937 x4 − 0.0340702 x3 + 0.0130377 x2

− 1.7−108 x + 0.0183703,

w100,5(x) = −0.0139798 x5 + 0.0381177 x4 − 0.0346481 x3 + 0.0128192 x2 + 1.21895.
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In Figure 9, we present the above approximate solutions for k = 1, 100 together with other values
2 ≤ k ≤ 99. While the left picture shows the population density v, the right plot depicts the
approximate solution w on the whole domain (x, τ) ∈ [0, 1]× [0, 100]. At x = 0.5, we further
plot the snapshots of approximation v(x, τ), w(x, τ) over the long time domain τ ∈ [0, 100] as
shown in Figure 10. If we look at Figure 9 and Figure 10, we can observe that the population v
will eventually disappear and the population w will survive.
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Figure 9. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 2 with Q = 5, A1 = 0.4, A2 = 0.5, B1 = 0.5, B2 = 0.4, C1 = 0.5, C2 = 0.8, D1 = D2 = 0.001,
∆τ = 1, for (x, τ) ∈ [0, 1]× [0, 100].
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Figure 10. Graphing of population densities via Taylor-Touchard matrix algorithm in Example 2 with Q = 5,
A1 = 0.4, A2 = 0.5, B1 = 0.5, B2 = 0.4, C1 = 0.5, C2 = 0.8, D1 = D2 = 0.001, ∆τ = 1, at x = 5.

In terms of achieved REFs, we fix ∆τ = 0.01 and consider two different values of Q = 4, 8 in the
computations. The other parameters are given as above for the second test example. These REFs
associated with the approximate solutions v(x, τ) and w(x, τ) are displayed in Figure 11. The time
domain is [0, 1] and the results are plotted at x = 5. The magnitude of REFs is decreased if one
increases the number of basis functions Q.
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Figure 11. Visualization of REFs with Q = 4 (left) and Q = 8 (right) via Taylor-Touchard matrix algorithm
in Example 2 with A1 = 0.4, A2 = 0.5, B1 = 0.5, B2 = 0.4, C1 = 0.5, C2 = 0.8, D1 = D2 = 0.001, ∆τ = 0.01, at

x = 5

7 Conclusion

This study introduces a novel combined semi-discretized spectral matrix collocation algorithm for
solving the Lotka-Volterra competition system with diffusion. The proposed algorithm utilizes the
well-known Taylor series formula for the time-marching procedure and the Touchard family of
polynomials for solving the resulting linear systems of ODEs using spectral matrix collocation. The
convergence and error analysis of the proposed algorithm are discussed in detail. Additionally, a
comprehensive qualitative analysis of the system is provided through stability analysis. Based
on the performed stability analysis, equilibrium points for the system are obtained along with
the conditions for a stable solution. Numerical simulations with diverse model parameters and
boundary conditions are conducted to illustrate the applicability and effectiveness of the developed
algorithm. The presented outcomes demonstrate that the proposed algorithm is accurate, efficient,
and capable of providing stable solutions for the Lotka-Volterra competition system with diffusion.
The residual error function technique is employed to further validate the accuracy and advantages
of the proposed algorithm. Through the complete analysis, the accuracy of the proposed method
increases with the number of used basis functions, validating the applicability of the method for
solving similar complex problems.
This study makes significant contributions to the field of simulations of nonlinear PDEs and
underscores the potential of the combined semi-discretized spectral matrix collocation algorithm
for solving similar problems in diverse fields of science and engineering. The proposed algorithm
serves as a powerful tool for modeling and simulating complex systems in areas such as ecology,
biology, economics, and physics. Future research endeavors could extend the proposed algorithm
to take into account other factors such as the extension of the current model to three or more
species or incorporating the climate effect and investigate the effects of various parameters on the
method’s performance.
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Abstract

In this paper, we introduce a mathematical model given by

cDα
t u = ∇ · D∇u + ρ f (u) in Ω, (1)

where f (u) = 1
1−u/K , u/K ̸= 1, K > 0, to enhance established mathematical methodologies for better

understanding glioblastoma dynamics at the macroscopic scale. The tumor growth model exhibits an
innovative structure even within the conventional framework, including a proliferation term, f (u),
presented in a different form compared to existing macroscopic glioblastoma models. Moreover, it
represents a further refined model by incorporating a calibration criterion based on the integration of a
fractional derivative, α, which differs from the existing models for glioblastoma. Throughout this study,
we initially discuss the modeling dynamics of the tumor growth model. Given the frequent recurrence
observed in glioblastoma cases, we then track tumor mass formation and provide predictions for tumor
visibility timing on medical imaging to elucidate the recurrence periods. Furthermore, we investigate
the correlation between tumor growth speed and survival duration to uncover the relationship between
these two variables through an experimental approach. To conduct these patient-specific analyses, we
employ glioblastoma patient data and present the results via numerical simulations. In conclusion,
the findings on tumor visibility timing align with empirical observations, and the investigations into
patient survival further corroborate the well-established inter-patient variability for glioblastoma cases.

Keywords: Glioblastoma; tumor visibility; recurrence; survival; fractional mathematical model

AMS 2020 Classification: 35K57; 35K67; 65M06; 92B05; 92C37

1 Introduction

Glioblastoma, an aggressive brain tumor known for its high lethality, exhibits an elusive structure
owing to its intricate cellular nature. Due to this challenging cellular architecture and histological
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diversity, glioblastomas have long been recognized as exemplars of tumor heterogeneity, earning
the appellation "multiforme" [1]. In accordance with the 2021 classification of Central Nervous
System (CNS) tumors by the World Health Organization (WHO), glioblastomas are officially
categorized as Isocitrate dehydrogenase (IDH) wild type, signifying the most aggressive variant
among diffuse gliomas [2].
The current therapeutic approaches for glioblastoma include a multimodal strategy involving sur-
gical intervention, radiation therapy, and chemotherapy [3]. The standard treatment protocols for
newly diagnosed glioblastoma patients typically begin with a maximally safe resection, followed
by a combined treatment phase comprising both radiotherapy and chemotherapy. In the aftermath,
a monotherapy phase comprising adjuvant chemotherapy ensues. Unfortunately, despite this
intensive treatment schedule and advancements in medical imaging for early glioblastoma detec-
tion, instances of recurrence near the resection margin persist [4–6]. Even though chemotherapy
appears to be the most efficient way to reach all tumor cells, leading to apparent regression on
magnetic resonance imaging (MRI), the extent of tumor spread is almost unaffected due to the
continued motility of tumor cells [7]. As a result, extensively invaded tumor cells remain below
the detection capabilities of MRI, and recurrences manifest upon treatment cessation. Considering
this reality, we delve into an exploration of recurrence periods in a cohort of ten patients as part of
this study. By doing this, we aim to predict the timing of tumor visibility on MRI. We consider that
there are at least three benefits to this analysis: 1) There may be an opportunity for early detection
of tumor recurrence; 2) Understanding recurrence trends may contribute to a more personalized
approach to patient care; 3) The focus on predicting tumor visibility on MRI scans may help
optimize imaging resources. In conducting this analysis, we take into account the dynamics of the
angiogenesis process. Angiogenesis involves the formation of new capillary blood vessels from
existing microvessels as well as the differential recruitment of relevant supporting cells to different
parts of the vascular system [8]. New blood vessels formed through angiogenesis provide the
means for further cell proliferation by ensuring a constant supply of nutrients and oxygen. On the
other hand, one of the pathological features that distinguish glioblastoma from low-grade glial
tumors is microvascular proliferation [9]. However, T1-weighted MRI with gadolinium contrast
(T1Gd) images the abnormally leaky vasculature within the tumor and outlines the bulk of the
lesion [10]. Taking into account all these factors and acknowledging a direct correlation between
the count of proliferating tumor cells and blood vessels, we produce results regarding the visibility
of the tumor by taking the count of glioblastoma cells into consideration. Therefore, we assign all
parameter values for the model while considering T1Gd.
The objectives behind mathematically modeling brain tumor growth are multifaceted. These
encompass mechanisms for deciphering the regulation of disease progression, adapting models to
individual patients, and correlating them with clinically relevant data to gauge tumor occurrences
such as recurrence trends, aggressiveness, and treatment response. Unlike microscopic models,
which are not suitable for medical images, macroscopic models prove more efficient in capturing
the average behavior of tumor cells and modeling the evolution of local tumor cell densities
than individual cells [11]. In mathematical models at the macroscopic scale, tumors undergo
classification based on their motility, denoting invasiveness, and the rate of cellular division,
denoting proliferation, and are typically elucidated through the lens of reaction-diffusion formal-
ism [7, 11–24]. However, it is noteworthy that existing models utilize classical reaction-diffusion
approaches, particularly in the context of glioblastoma growth. To the best of our knowledge,
fractional reaction-diffusion modeling for glioblastoma growth has not been reported in the
literature, despite the increasing prevalence of fractional models for disease modeling [25–29].
In this work, we propose a fractional tumor growth model at a macroscopic scale, rooted in
a mathematical problem known as the quenching problem [30], which incorporates a type of
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reaction-diffusion equation. In the context of the quenching problem, studies have delved into
the global existence of its solutions, and analyses pertaining to quenching and non-quenching
scenarios [31–35]. The relationship between quenching and blow-up problems has been another
focal point to investigate [36, 37]. This investigation has been extended to parabolic systems, with
a specific focus on quenching behavior in the presence of singular multi-nonlinearities [38–42].
More recently, attention has turned towards fractional versions of the problem [43, 44]. This shift is
driven by the burgeoning interest in fractional calculus that has evolved over the last few decades.
In addition, fractional differential equations have gained significant attention due to their potential
applications across diverse areas in science and engineering along with their notable theoretical
importance [9, 45–49]. Various definitions of fractional derivatives have been proposed in the
literature. Among these, one of the most widely recognized is the Caputo fractional derivative
[45, 47, 50, 51], notable for its memory effect. Additionally, it is known that the Caputo fractional
derivative becomes equivalent to the conventional derivative as the fractional derivative order
approaches a conventional derivative order. Considering all of these, we employ the Caputo
derivative within the glioblastoma growth model to discern the memory effect and observe its
differences from the classical derivative. We consider that such a selection serves as an appropriate
operator for conducting analyses in this work that incorporate temporal assessments. Therefore,
we anticipate that a more effective fitting of the growth model to patient data can be achieved
by employing the Caputo derivative as a calibration criterion. To build up the growth model,
we enhance the conventional framework of the quenching problem to more effectively capture
glioblastoma dynamics through tailored modifications. Since temporal considerations are in
question here, we first introduce the Caputo fractional derivative to the time-dependent term in
the mathematical equation. As a second modification, we incorporate a term that represents the
maximum cell carrying capacity of the tissue, K, into the proliferation term, f (u). We consider
that this approach offers a more efficient modeling framework, facilitating an investigation into
the potential trajectory of tumor cell density over a meaningful time frame.

The subsequent sections of this paper are organized as follows: Section 2 provides a brief explo-
ration of the theoretical groundwork for the tumor growth model, including properties of the
Caputo fractional derivative. Section 3 presents the tumor growth model, its initialization and im-
plementation along with the numerical scheme. Section 4 presents key findings, encompassing an
exploration of the fundamental dynamics and operational principles of the model, investigations
into the timing of tumor visibility in a patient cohort, and an analysis of the relationship between
tumor growth speeds and patient survival.

2 Theoretical background

In this section, we provide an overview of the growth model’s background and highlight some
properties related to the Caputo fractional derivative.

In 1975, Kawarada proposed a one-dimensional initial-boundary-value problem, which is known
as the quenching problem, denoted as

ut(x, t) = uxx(x, t) +
1

1 − u
in (0, L)× (0, T),

u(0, t) = u(L, t) = 0 in (0, T),

u(x, 0) = 0 on [0, L],

(2)

where L is a positive real number indicating the length of spatial domain [30]. Mathematically, a
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solution of problem (2) is said to quench if there exists a finite time T such that

lim
t→T−

sup {| ut(x, t) |: x ∈ [0, L]} → ∞. (3)

The value of T represents the quenching time. A necessary condition for appearance of quenching
is

lim
t→T−

max{| u(x, t) |: x ∈ [0, L]} → 1−. (4)

One of the important results for problem (2) is provided by the following lemma.

Lemma 1 [32] If T < +∞, then there exists x∗ ∈ [0, L] such that

lim
(x,t)→(x∗,T)

u(x, t) = 1. (5)

We now provide the relevant definitions for the Caputo fractional derivative. Let Γ(·) be Euler’s
gamma function.

Definition 1 [45, page 92] Let 0 < α < 1 and u(x) ∈ AC[a, b]. Then the left-sided and right-sided
Caputo fractional derivatives of u exist almost everywhere and are respectively defined as

(c
aD

α
x) (u(x)) =

(
a I1−α

x

) du(x)
dx

, x > a,

(c
xD

α
b) (u(x)) = −

(
x I1−α

b

) du(x)
dx

, x < b.

The set AC[a, b] denotes the collection of all functions that are absolutely continuous in domain
[a, b].
In a similar manner, one can articulate a partial fractional derivative for a function with multiple
variables as follows.

Definition 2 [45, page 358] The Caputo fractional derivative of a function u(x, t), with 0 < α < 1
denoting the order of the derivative, is defined as

(cDα
t ) (u(x, t)) =

1
Γ(1 − α)

∫ t

0
(t − s)−α ∂u(x, s)

∂s
ds,

where 0 < x < L and t > 0.

Remark 1 [47, page 79] If u(x, t) is continuously differentiable on t, then (cDα
t ) (u(x, t)) → ∂u(x, t)

∂t
as

α → 1.

3 Method

In the subsequent part of this section, we present our tumor growth model, its initialization and
implementation along with the specified numerical scheme.
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Tumor growth model

In this work, we model the spatio-temporal evolution of glioblastoma growth using a time-
fractional partial differential equation with Ω = (0, L)× (0, T) given by

cDα
t u︸ ︷︷ ︸

the distribution
of glioblastoma cell density

= ∇ · D∇u︸ ︷︷ ︸
net invasion

of glioblastoma cells

+ ρ f (u)︸ ︷︷ ︸
net proliferation

of glioblastoma cells

in Ω︸︷︷︸
brain

anatomy

, (6)

where α, 0 < α ≤ 1, is the Caputo fractional derivative order, u = u(t, x, y) (cells/mm3) is the
glioblastoma cell density, D (mm2/year) is the net invasion rate, ρ (1/year) is the net proliferation
rate, and the proliferation term satisfy

f (u) =
1

1 − u/K
, u/K ̸= 1, K > 0, (7)

where K (cells/mm3) is the maximum cell carrying capacity of tissue for tumor cells. The equation
(6) can be solved under various dimensional assumptions. Here, we employ a two-dimensional
spatial derivative in the equation.

Hypothesis

To provide a theoretical foundation for our findings, we propose the following hypothesis, consid-
ering statements (3)-(4) and Lemma 1 given in Section 2.

Hypothesis. If the glioblastoma cell density, u, approaches the maximum cell carrying capacity of
the tissue, K

u → K, K < +∞, t → T, (8)

then the distribution of glioblastoma cell density, cDα
t u, increases

cDα
t u → ∞, t → T. (9)

Then, there exist a critical point (T, x∗, y∗), such that the glioblastoma cell density, u, reaches the
maximum cell carrying capacity of tissue, K

lim
(t, x, y)→(T, x∗, y∗)

u = K, T < +∞. (10)

This allows the model to approximate the critical point at which the glioblastoma cell density
reaches the maximum cell carrying capacity of the tissue, K, allowing the examination of the time
interval leading to this important event. At this juncture, we make two assumptions: i) When the
glioblastoma cell density reaches the maximum cell carrying capacity of tissue, K, a critical and
lethal cell population becomes detectable on MRI; ii) When the glioblastoma cell density reaches
the maximum cell carrying capacity of tissue, K, it results in necrosis, detectable through MRI. In
both cases, the glioblastoma cell density should become visible at a certain time t ∈ (0, T) before
reaching the maximum cell carrying capacity of the tissue, K. Hence, this implies that equation (6)
can serve as a prognostic tool for predicting the timing of tumor visibility.

Note that, given that the model is defined in a closed domain, the statement (9) refers to a growth
in the distribution of glioblastoma cell density, cDα

t u, rather than a true approximation to infinity.
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Once the glioblastoma cell density, u, reaches the maximum cell carrying capacity of the tissue, K,
in a finite time period T < +∞, the distribution of glioblastoma cell density, cDα

t u, proceeds over
the same time period.

Model initialization and implementation

The complete specification of equation (6) necessitates the inclusion of both initial and boundary
conditions. The tumor theoretically begins with a single cancerous cell, but the timing and
specifics of its initial growth and spread are unknown. We assume that at the time of diagnosis,
any previous, presumably uniform distribution of cells has already been disrupted. Thus, in order
to characterize the current behavior of tumor cells, we employ the Gaussian distribution as given
by

u(0, x, y) = u0 exp

(
−
|x − x0|

2 + |y − y0|
2

2σ2

)
> 0, (11)

where u0 is the initial cell density, σ is the standard deviation, and x0, y0 is the peak of the Gaussian
distribution. Utilizing such an initial condition, we anticipate that tumor cells exhibit denser
clustering around the center of the tumor, gradually decreasing in density as one moves away
from the center. We impose a no-flux boundary condition

∇u · n⃗ = 0, in ∂Ω, (12)

where n⃗ is the outward unit normal to ∂Ω. The skull and ventricles are not invaded by the tumor
cells and serve as domain boundaries as indicated by equation (12).

We implement a finite difference scheme to solve the time-fractional equation (6), along with the
initial condition (11) and the boundary condition (12), by following [43]. In particular, we employ
a numerical scheme that incorporates the Caputo fractional derivative for the time-dependent
term along with the two-dimensional space-dependent derivative, as given by

1
Γ(1 − α)

k−1∑
m=0

u(tm+1, xi, yj)− u(tm, xi, yj)

τ

∫ tm+1

tm

(tk − s)−α ds

= D
{u(tk−1, xi−1, yj)− 2u(tk−1, xi, yj) + u(tk−1, xi+1, yj)

∆x2

}
+ D

{u(tk−1, xi, yj−1)− 2u(tk−1, xi, yj) + u(tk−1, xi, yj+1)

∆y2

}
+ ρ f (u(tk−1, xi, yj)),

(13)

where the time step size is τ. Accordingly, the temporal nodes are given by tk = kτ, k = 0, 1, . . . , Nt.
Similarly, the spatial nodes are defined as xi = i∆x, i = 0, 1, . . . , Nx with ∆x = Lx/Nx and
yj = j∆y, j = 0, 1, . . . , Ny with ∆y = Ly/Ny, representing the spatial step sizes.

Note that the Caputo fractional derivative, which is given in Definition 2, is applicable only
within the order interval of 0 < α < 1. Thus, incorporating the fractional derivative order of
1 directly into the numerical scheme (13) is not feasible. However, Remark 1 indicates that the
Caputo fractional derivative converges toward the classical derivative as the values of α approach
1. This implies that the fractional numerical scheme (13) turns into a classical scheme. Hence,
we additionally implement and execute the well-known classical finite difference scheme to
conduct comparative assessments in the subsequent parts. We explore the distinctions between
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the fractional and classical derivatives by utilizing α values that are smaller and closer to 1.

4 Results

In this section, we first discuss the dynamics of the growth model under different fractional
derivative orders of α. We observe that the growth model is characterized by predominant
proliferation behavior. Recognizing the potential utility of this outcome as a tool for monitoring
tumor mass formation, we proceed to estimate the timing of tumor visibility on MRI for a specified
patient cohort. Finally, we analyze the correlation between variations in tumor growth speed and
patient survival through an experimental study. For all computational approaches and simulations
here, we use Python programming language.

Dominance assessment of proliferation rate

Throughout our investigations, we integrate the parameter values from the existing studies
considering T1Gd MRI into our growth model. In this section, we explain the dynamics modeled
by equation (6), along with the initial condition (11) and the boundary condition (12), before
discussing results on tumor visibility timing. To conduct these analyses, we leverage the numerical
data pertaining to invasion, D, and proliferation, ρ, rates for a cohort of glioblastoma patients
provided in [52]. These values, estimated from lesion volumes obtained from MRI scans, including
post-contrast T1Gd [7, 20, 52], are derived from a single MRI time point before treatment. In this
work, we set a range for the data presented in [52] and perform investigations on this specific
patient cohort. We confine our investigation to a numerical interval for invasion rates, ranging
from 1.1542 to 7.2827, as specified in Table 1.

Table 1. D: net rate of invasion; ρ: net rate of proliferation; Surv. Days: Overall survival days; Censorship
(1=censored): The term ’censored’ signifies incomplete information, as the event (e.g., death or failure) did not
occur within the study period or the patient was lost to follow-up.; The units are D ∼ mm2/year; ρ ∼ 1/year

Patient Gender D ρ Surv. Days Censorship
1 F 3.65 22.975 1292 0
2 F 1.1542 11.515 375 0
3 F 4.5951 22.975 65 0
4 F 7.2827 18.25 124 0
5 F 5.7849 14.496 115 0
6 M 2.303 36.414 126 0
7 M 4.5951 11.515 2139 1
8 M 7.2827 29.924 224 0
9 M 3.65 14.496 260 0

10 M 5.7849 9.1467 1143 0
Mean - 4.60826 19.17067 586.3 -

The data presented in this table is sourced from Reference [52]

Considering the Caputo fractional derivative definition given by Definition 2, it is clear that
directly assigning the derivative order of 1 to the model is not applicable. Taking into account
Remark 1, it is seen that in the scenario where α = 1, the numerical scheme (13) transitions into
the classical numerical scheme. Therefore, we set one of the α values to 0.9 to facilitate observation
of the approximation to the classical numerical scheme characterized by α = 1. Accordingly, we
execute the model individually for each patient, utilizing fractional derivative orders of α = 0.5,
α = 0.9, and α = 1 for the analyses. We place the peak of the Gaussian distribution given by (11)
at the center of the domain.
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

(e) Patient 5 (f) Patient 6
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(g) Patient 7 (h) Patient 8

(i) Patient 9 (j) Patient 10

Figure 1. The maximum glioblastoma cell density observed each day over a twenty-day period under the three
different derivative orders for each patient listed in Table 1 and the corresponding tumor visibility timing. Each
small data point on the curves, depicted as asterisks, corresponds to consecutive days. Arrow symbols, along
with corresponding numerical annotations, signify the days on which the tumor cell count achieved the threshold
of 50 cells/mm2 within the respective day. The term α represents the Caputo fractional derivative order

We keep both the initial cell density, u0 = 0.0147, and the standard deviation, σ = 2.86 mm, in
the Gaussian distribution constant, in accordance with [13, 14, 18, 19]. We hold the maximum
cell carrying capacity of the tissue constant at K = 108 cells/mm3 for all simulations, consistent
with [20]. We consider invasion and proliferation coefficients, denoted as D and ρ, respectively, as
patient-specific values, as in Table 1. To execute the model, we employ the numerical scheme with
a time step of τ = 0.01, and a spatial discretization involving a domain length of 50 mm with 25
grid points. With the adjustments above, we generate daily glioblastoma cell densities for each
patient over a twenty-day period, as demonstrated in Figure 1.

As a result, in Figure 1, the consideration of both proliferation rates and glioblastoma cell density
values on the y-axes revealed a conspicuous trend, showcasing the dominance of proliferation
rates in the model across all examined cases. Stated differently, the model notably initiated the
generation of glioblastoma cell densities, with a specific focus on proliferation rates. This indicates
that the tumor growth model may be an effective tool for tracking the temporal evolution of tumor
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mass formation. Upon comparison of data from cases where each pair has the same proliferation
rates, such as in the cases of Patients 1 and 3, Patients 2 and 7, or Patients 5 and 9, it was observed
that a higher value of the invasion parameter slowed down the effect of the proliferation parameter.
Accordingly, a slowdown in the growth rate of glioblastoma cell density was observed.

On the other hand, the numerical range identified in Table 1 for invasion parameter values,
which comes from the data source, resulted in consistently smaller invasion rates than their
proliferation counterparts in each case. Therefore, we now conduct an additional analysis to
assess the dominance of the proliferation rate in the reverse case. To do this, we select arbitrary
invasion and proliferation rates, namely, D = 7.01 and ρ = 4.99, while maintaining consistency
with all other parameters and methodologies employed in the preceding analyses. Accordingly,
we present a magnified visualization illustrating the early stages of glioblastoma cell density for
the three distinct derivative orders of α, as shown in Figure 2.

Figure 2. Magnified view of the initiation of glioblastoma cell density under the three different derivative orders
of α with the arbitrary parameter values of D and ρ

For the arbitrary parameter values, it was clearly observed that glioblastoma initiation commences
with a numerical value closely aligned with the proliferation rate, ρ = 4.99, for all three derivative
orders of α, as shown in Figure 2. In conclusion, the proliferation rate being smaller than the inva-
sion rate does not constitute a transformative factor influencing the dominance of the proliferative
behavior in the model. Therefore, this analysis further underscores the tumor growth model’s
efficacy in capturing the process of glioblastoma mass formation.

Investigation of tumor visibility timing

The complexity of glioblastoma and its propensity for recurrence underscore the need for a
nuanced understanding of its recurrence patterns for improved patient-specific management.
In this section, we address this void and perform a patient-specific short-term follow-up to
investigate the timing of glioblastoma cell visibility on MRI for the recurrence period. The
analyses conducted in the preceding section emphasize the efficacy of the tumor growth model in
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tracking the glioblastoma formation process, thereby affirming its ability to predict tumor visibility
timing. In light of this finding, we proceed with our further discussions over the patient cohort
presented in Table 1, which comprises ten patients newly diagnosed with glioblastoma.
Due to the invasive nature of glioblastoma, only a portion of the tumor can be detected with
available medical imaging techniques. Examinations of computed tomography (CT) images and
microscopic studies on postmortem brain slices indicate a detection threshold of 40, 000 cells/cm2

for advanced CT scans [23]. This threshold corresponds to approximately 400 cells in the approxi-
mately 1 mm2 area covered by a 10x objective, or approximately 25 cells in the same area covered by
a 40x objective for a histopathologist [21]. In this study, we adopt a threshold value of 50 cells/mm2

as a threshold. For a histopathologist, this threshold may correspond to approximately 5 cells in
an area covered by a 10× objective, following [21]. Here, we conduct examinations assuming
that all patients receive standard treatment. With the same numerical scheme adjustments as in
the previous section, we consider a twenty-day recurrence period following standard treatment.
As mentioned in Subsection 4 and illustrated in Figure 1, under the three specified α values,
the maximum glioblastoma densities were generated, which were attained daily throughout
the considered recurrence time frame. Then, we determine the days on which the 50 cells/mm2

threshold was reached for each patient under the three derivative orders of α.

Figure 3. The maximum glioblastoma cell density observed each day over a twenty-day period under the three
different derivative orders of α for the mean value and the corresponding tumor visibility timing

In conclusion, the classical derivative, defined by the order of α = 1, depicted a growth pattern that
rapidly reached the tumor visibility threshold of 50 cells/mm2 in the initial time steps, exhibiting
a rapid departure from this threshold. A similar trend was observed when choosing α = 0.9 as
a value close to the classical order. In contrast, when the fractional derivative order was set to
α = 0.5, the model showed a higher sensitivity to the tumor visibility threshold. That is, significant
variations in the time for the tumor to reach the visibility threshold were observed for α = 0.5
across the examined time span. Moreover, upon comparing Patient 2 and Patient 7, both exhibiting
identical proliferation rates, it became evident that a higher invasion rate led to a delay in tumor
visibility timing for α = 0.5, unlike other derivative orders. In contrast to the remaining cases,
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Patient 10, characterized by a comparatively lower proliferation rate and a higher invasion rate, it
was observed that the tumor visibility threshold for α = 0.5 was not reached in the relevant time
period. However, given its proximity to the tumor visibility threshold on the twentieth day, it can
be anticipated that the visibility threshold will likely be reached in the ensuing days. Consequently,
analyses revealed that fractional derivatives model a more controlled growth behavior in contrast
to the classical derivative.
It is notable that the tumor typically reached the 50 cells/mm2 threshold within the same day for
the derivative orders of α = 0.9 and α = 1, except for Patient 10. It is essential to elucidate that
this does not necessarily denote the same cell count. Rather, this means that the glioblastoma
densities exceeded the threshold on the specified day and manifested varied values beyond this
threshold for both derivative orders.
As a final step, we investigate the timing of tumor visibility for the mean value of both invasion
and proliferation rates presented in Table 1. As observed in Figure 3, the glioblastoma cell density
surpassed the tumor visibility threshold within six days for the mean under all three distinct
derivative orders of α. Given that the empirical evidence indicates the presence of glioma cells
throughout the CNS within seven days following the implantation of tumors into a rat brain [21],
our findings appear to be coherent with this observed phenomenon.

Investigation of tumor growth speed and survival correlation

As an additional experimental study, we examine the connection between patient survival and
tumor growth speed for patients with glioblastoma in this part. To accomplish this, we employ
a metric that considers the successive interday tumor growth speed. Here we consider a period
from the initial diagnosis of glioblastoma to the day of death for the simulations. We use the
numerical data extracted from [52], and presented in Table 2. To execute the model, we adopt
identical parameter values as detailed in Subsection 4, with the exception of the time step, which
is set to τ = 0.1 with a fractional order of α = 0.5.

Table 2. D : net rate of invasion; ρ: net rate of proliferation; Surv. Days: Overall survival days (from diagnosis to
death); The units are D ∼ mm2/year; ρ ∼ 1/year

Patient Gender D ρ Surv. Days
1 F 1.1542 11.515 375
2 F 1.8293 289.24 446
3 M 2.303 36.414 126
4 M 0.91684 5.7712 862

The data presented in this table is sourced from Reference [52]

We first explore the temporal trends of glioblastoma densities considering the survival duration
of patients, as illustrated in Figure 4. When glioblastoma cell densities were examined, tumor
growth trends within this group revealed the predominance of the proliferation term, as in the
patient group discussed in Subsection 4. To further analyze the current growth trend for each
patient, we apply a metric given by

∆GCVk = uk+1
max − uk

max, (14)

where k ∈ [1, S − 1]. Here, S is the total number of survival days in the period after diagnosis,
expressed as survival days in Table 2, umax is the maximum cell density, and k is the time index.
To reveal potential patterns among the patients, we apply metric (14) to the daily maximum
glioblastoma cell densities obtained above, as visualized in Figure 5. In conclusion, the glioblas-
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 4. The maximum glioblastoma cell densities over the survival duration of patients listed in Table 2

toma cell densities exhibited a deceleration in growth speed when compared to the preceding
days, as a specific pattern across four patients. This deceleration may be attributed to necrosis
formation, indicating cell death within the tumor tissue, particularly given the dominance of the
proliferation phenomenon in the model. To perform a patient-specific analysis of this change,
we impose two arbitrary thresholds indexed to each patient’s own tumor cell densities. These
express two criteria of the form T1 = 0.20max(∆GCVk) and T2 = 0.06max(∆GCVk). We then
determine the first days when the glioblastoma cell variation, ∆GCVk, fell below these thresholds
for each patient. When reviewing the outcomes, it was observed that in the case of Patient 1, death
ensued relatively quickly after the ∆GCVk value fell below the second threshold, T2, while in the
cases of Patients 2 and 4, death occurred much later. In contrast, in the instance of Patient 3, death
was noted after the ∆GCVk value fell below the first threshold, T1, before attaining the second
threshold, T2. Consequently, no remarkable patterns were observed linking the thresholds to the
glioblastoma cell variation during the survival days. We also examine the final delta values of
the patients, as shown in Figure 6. The values displayed on the y-axis in Figure 6 correspond
to the final delta values for the two days preceding the occurrence of death. In conclusion, the
examined patient cohort did not exhibit any significant patterns in this temporal window. How-
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ever, these conclusions further corroborated the long-recognized yet unexplained heterogeneity in
inter-patient variability among glioblastoma cases, as mentioned in [53, 54].

(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 5. Correlation of glioblastoma cell variation with patient survival under the fractional order of α =
0.5. Each pink marker on the curves signifies the values commencing from the initial delta, ∆GCV1, which
corresponds to the first two days after diagnosis, extending to the final delta value, ∆GCVS−1, representing the
consecutive two days before mortality. The pink dotted line denotes the first threshold, T1, representing the
point at which the ∆GCVk value reaches %20 of the maximum value of ∆GCVk. Similarly, the sea green dotted
line delineates the second threshold, T2, symbolizing the point at which the ∆GCVk value reaches %6 of the
maximum value of ∆GCVk. The days marked in black adjacent to the dotted lines signify the initiation of these
events

5 Discussion

In this work, we use an explicit fractional finite difference scheme for the simulations. In addition
to the established stability issues associated with explicit schemes, it is noteworthy that the
inclusion of fractional derivatives in the employed numerical scheme introduced an additional
layer of complexity to this challenging scenario. In cases not included in this study but defined
with relatively larger invasion rates, difficulties were encountered in managing these high values.
The applied fractional numerical scheme faced challenges in handling a wider range of invasion
parameter values, particularly for values below the fractional order α = 0.5, which serves as
the lower limit in the investigative scope of this study. To address these challenges, a finer-scale
temporal discretization strategy was employed. However, this adjustment resulted in a significant
escalation of computational time with simulations extending up to thirty-six hours. These findings
recommended the adoption of implicit methods in future studies as a prudent and feasible strategy
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Figure 6. The values of the final delta, ∆GCVS−1, for the patients listed in Table 2

to mitigate computational time and efficiently handle extensive numerical data. By this means, it
appears possible to leverage the subtle effects of smaller fractional orders across a broad range of
parameter values.
Upon theoretical evaluation of the decrease in the speed of increase in maximum cell densities for
each day over the survival period discussed in Subsection 4, it can be inferred that the observed
deceleration reflects convergence behavior to a singular point in the proliferation term, f (u).
However, this deceleration may be attributed to necrosis formation, which signifies cell death in
the tumor tissue, particularly when considering the dominance of the proliferation phenomenon
in the model. Examining the growth model’s ability to effectively capture necrosis occurrences
would have been facilitated with more detailed information about the studied patient cohort.
Regrettably, this study was unable to access such detailed data. Future research endeavors are
anticipated to provide opportunities for more comprehensive analysis in this regard. In the context
of the final experiments, the ∆GCVk value for all four patients fell below the initial threshold, T1,
on nearly the same days, as illustrated in Figure 5. This is attributable to the proximate invasion
rates observed across the cases. Working with patient data characterized by higher invasion rates
may lead to variability in this regard.
Overall, the findings presented in this study should be contextualized within the scope of experi-
mental investigations conducted through a mathematical equation. To transparently evaluate the
advantages of the proposed growth model, conducting rigorous assessments involving clinical
validations, such as in vivo or in vitro, would be highly enlightening. To the best of our knowledge,
our growth model, even in its classical form has not been explored in the context of cancer research.
This suggests the model’s potential as a focal point for future cancer investigations within the
realm of mathematical modeling.

6 Conclusion

In this work, we introduced a mathematical model to investigate glioblastoma growth at a macro-
scopic scale, presenting a structure that incorporates a calibration criterion based on fractional
derivatives. The findings highlighted the importance of incorporating fractional derivatives in
refining mathematical models to better capture real-life observations. The analyses strongly re-
vealed the dominance of the proliferation phenomenon in the proposed growth model, suggesting
its robustness as a tool for tracking glioblastoma mass formation and predicting the timing of
tumor visibility on MRI during recurrence follow-up. Estimates of tumor visibility timing, con-
ducted with consideration for three distinct derivative orders, pointed towards a more controlled
approach with small fractional derivative orders. The obtained findings regarding tumor visibility
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timing exhibited consonance with the empirical observations, reinforcing the validity of our
methodology. The analyses of the relationship between patient survival and tumor growth speed,
utilizing the growth model developed in this research, further substantiated the well-established,
yet inexplicable, variations in inter-patient variability for glioblastoma cases.
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Abstract
The numerical simulation of free convection flow within a square-shaped enclosure for various
orientations of elliptic blockage (EB) is performed in the present study. The bottom wall of the cavity
remains uniformly heated, where the left and right (side) walls as well as the boundary wall of the
elliptic blockage are insulated and the top wall remains at a cool temperature. As Pr remains constant,
the effects of different values of Ra have a great influence on overall fluid flow and temperature
gradient for three different locations: bottom elliptic blockage (BEB), center elliptic blockage (CEB) and
top elliptic blockage (TEB), as a mass flow circulation has been identified, and a state of equilibrium
has been established within the fluid flow simulations along with the isotherm contours. The outcomes
of the numerical analysis are presented with the streamlines, isotherms, and variations of the average
Nusselt number.

Keywords: Free convection; square cavity; elliptic blockage; streamlines; isotherms; heat transfer rates

AMS 2020 Classification: 76A05; 76D05; 76D07; 76N10

1 Introduction

Over the last decade, free convection in a square cavity has grown in popularity as a research topic.
The widespread use of such flows in industrial and natural contexts contributes to their popularity.
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The cavity flow with a block inside is considered a benchmark problem in computational fluid
dynamics (CFD) and experimental fluid dynamics research. It helps in understanding complex
flow behaviors, such as vortex shedding, recirculation zones, and boundary layer development.
Also, it helps us understand the flow patterns around obstacles in aerodynamic flow. Aerodynamic
performance can be improved and design optimization can be aided by understanding the flow
behavior around buildings, aircraft wings, and other structures through the cavity flow with a
block inside.

Studies on heat transport can also benefit from this issue. By analyzing the flow and tempera-
ture fields within the cavity, researchers can understand heat transfer mechanisms, which are
useful in the design of cooling systems, electronic devices, and thermal management solutions.
Cavity flows with barriers are useful for research in industries involving fluid mixing, such as
chemical engineering and pharmaceuticals. Product quality is enhanced and mixing procedures
are optimized by having a better understanding of how fluids interact and mix inside the cavity.
Additionally, it can shed light on these kinds of limited flow phenomena. Cavity flow with an
internal block is a useful instrument for studying fluid dynamics that may be applied in many
different industrial and engineering fields. When designing chemical reactors, food processing
machinery, and filtration systems, among other industrial processes, cavity flows with blocks
inside can be analyzed to help maximize efficiency. The study of cavity flow may also be beneficial
for cardiovascular disorders and the improvement of medical devices such as stents and prosthetic
heart valves. It is used in the environmental field to estimate erosion patterns and sediment
transformation, among other things. That´s why, recent attention has been drawn to the phe-
nomenon of natural convection in fluid flow within a square cavity containing elliptical blockages
oriented in various ways. This intriguing phenomenon has also emerged as a pivotal subject in
diverse thermal engineering applications, such as reactor insulation, fire prevention, safeguarding
electronic equipment, controlling the dispersion of chemical pollutants in water-saturated oil, and
optimizing the solidification process in casting. In industrial practice, square cavities, along with
other geometric shapes like triangles and cylinders, are commonly employed.

Saury et al. [1] studied free convection in the cavity, where the suppositions allow for the calcula-
tion of Rayleigh number values leading to 1.2 × 1011 at (T = 200C). Sajjadi et al. [2] examined
turbulent flow in a square cavity, where the streamlines, the isotherm counters, and the local
and the average Nusselt number all show the impact of an increase in the Rayleigh number.
Shati et al. [3] studied radiation and turbulent fluid flow in square & rectangular cavity, which
provides an equation for the mean Nusselt number with no radiation as a function of Prandtl
Grashof and numbers. Estebe et al.[4] provided the validation of turbulent fluid flow in a square
cavity and a 3D simulation’s findings were presented together with an estimation of the cooling
system’s performance. Choi et al. [5] performed the simulation of turbulent free convection in
rectangular cavities and the relative effectiveness of turbulence models is investigated, and both
their advantages and disadvantages are discussed. Jani et al. [6] analyzed the impact of MHD in
a square cavity and found that the strength of the magnetic field and the Rayleigh number play
a great role in the overall simulation. The natural convection of differentially heated enclosures
was studied by Butler et al. [7]. The contact between the cylinder and cavity results in an increase
in cylinder heat transfer. Xin et al. [8] studied turbulent natural convection in partially heated
cavities and showed that the thin stratification is caused by surface radiation. Carvalho et al.
[9] studied turbulent free convection in a porous square cavity and discovered that the Nusselt
number decreases when the material porosity is raised. Kefayati et al. [10] performed Lattice
Boltzmann’s exploration of free convection, where the findings showed that at large Rayleigh



88 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 86–109

numbers, the magnetic field enhances the action of nanoparticles.

Bahoosh et al. [11] numerically examined the fluid flow in a square cavity, where the rotational di-
rection was either inside or outside, and the tilting angles were either 3 or 5 degrees. Jani et al. [12]
surveyed free convection in the square cavity and demonstrated that for large Rayleigh numbers,
positioning a hot fin in the center of the lower wall has a more notable impact on the flow region
and heat transfer within the cavity. Asad et al. [13] examined the effects of twice stratification and
various fluid characteristics on the chemically acting upper-convected Maxwell fluid. Islam et al.
[14] studied the influence of MHD on the unsteady flow for Fe3O4 − H2O and TiO2 − H2O based
nanofluids within a square cavity. After comparing, they found a notable difference between
their heat transport rates. Asad et al. [15] numerically examined the effect of magneto-combined
convection heat transmission of fin length in the lid-driven curvy enclosure. Sajjadi et al. [16]
performed a simulation of turbulent free convection utilizing the Lattice Boltzmann method,
where heat transfer decreased as the Rayleigh number changed. Miroshnichenko et al. [17] looked
into a comparative study of standard κ − ϵ and κ − ω turbulence models and found that the usual
model performed better. Tabet et al. [18] investigated convection in a partially heated square
cavity, where the outlines of temperature and the evolution of the Nusselt number were provided
for several Rayleigh numbers. Zhao et al. [19] scrutinized the field flow of convection and the
findings demonstrated the ability of the current method to exactly model the convection difficul-
ties associated with unstable natural processes and are all in strong agreement with individuals
found in the literature. Aithal et al. [20] examined turbulent flow in a square cavity and achieved
that the Rayleigh number increased and the average and peak Nusselt numbers almost doubled.
Massinissa et al. [21] studied the characteristics of different Prandtl numbers, where the increase
of Prandtl and Rayleigh numbers had turned the flow field slightly more prominent.

Benchabi et al. [22] analyzed 2D simulation of natural convection in a square cavity and obtained
the influence of Rayleigh number caused by a change in size or a difference in temperature on
the thermal and dynamic behavior as well as the intensity of the flow caused by the buoyant
force. Solomon et al. [23] studied the effect of the aspect ratio of a square cavity on fluid flow and
discovered that the Nusselt number and heat transfer coefficient were notably impacted by the
enclosure’s AR. Yang et al. [24] provided Rans modelling for temperature modification in couple
heat transfer and showed that it can accurately predict the distribution of temperature change
within the fluid and solid regions. Razera et al. [25] examined the conserving of semi-elliptical
blocks constructed into a rectangular enclosure. The results revealed considerable improvements
in the heat transmission and fluid flow performances of roughly 76% and 125%, respectively.
Selimefendigil et al. [26] investigated heat transmission and fluid flow in the presence of an
elliptically-shaped porous item and found that the mean heat transport rate declines with the
optimal value of Nu. Khatamifar et al. [27] studied momentary couple free convection heat
transport. They found the thermal conductivity ratio effect around the range of 0.1 − 10, but as
the partition changes, the effect turns out to be insignificant as the thermal conductivity ratio is
very significant. Devi et al. [28] examined the effects of exterior MHD on non-Newtonian fluid in
a square cavity. Results exposed that the buoyant force rises as the temperature gradient increases.
Wen et al. [29] investigated to better understand how major temperature fluctuations affect the
unstable fluid flow and found that the hot wall region exhibits a boundary layer instability with
high-frequency undulations in addition to the top corner impact instability. Goswami et al. [30]
calculated free convection in a square cavity and found that the mean Nusselt number grows at
Ra = 104. Hattab et al. [31] studied turbulent natural convection in a square cavity and found
that the heat transport was increased with the increase of the volume percentage. Turkyilmazoglu
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[32] studied nonuniform heating in free convection and found the best heat deletion rate close
to the top wall of a cavity. Bilal et al [33] studied the power law fluid in a square cavity and
found that heat conduction rises as the Rayleigh number increases, driven by the generation
of temperature variations within the fluid domain. Sondur et al. [34] performed a benchmark
simulation on fluid flow inside a square cavity and they showed that the most accurate results
were found for the steady flow solver Open FOAM which took a comparatively short time. Asad
et al. [35, 36] explored the natural convection and heat transmit performance on a curvy enclosure.
They detected that the mean Nusselt number expands with expanding undulations number. The
study conducted by Hossain et al. [37] examined the impact of a cylinder arranged the phe-
nomenon of free convection contained by a square enclosure. The rectangular bar source of heat
in a blocked area for free convection flow over a triangular enclosure was examined by Asad et al.
[38]. Furthermore, more information is provided in [39–42] on free convection, the finite element
(FE) method, and the properties of heat transport with different geometries.

As per the extensive research works conducted by various scientists, it seems that there is a notable
absence of exploration regarding the analysis of free convection flow within a square enclosure
concerning the various orientations of elliptic blockage. The lack of research in this area concerns
important data related to the characteristics of heat transport, which is crucial for understanding
its significance in various industries. The flow patterns within the field have been illuminated by
the streamlines, while the thermal distribution has been outlined by the isotherms and the average
Nusselt number. For the numerical study, the fluid flow within the cavity is characterized by the
Prandtl number, Pr = 0.71, and Rayleigh number, Ra = 103 − 107.

2 Problem specification

The physical model under consideration along with important geometrical details is displayed in
Figure 1. The bottom part of the system is subjected to the uniformly heated temperature (Th), the
left and the right walls are thermally insulated (Ti) and the top wall remains at cold temperature
(Tc). An elliptic blockage (EB) is placed in different orientations of that cavity whose bottom wall
is kept as thermally insulated (Ti). The fluid’s Prandtl number (Pr = 0.7), Newtonian properties
and laminar fluid movement were all thought to be present. It has been assumed that the fluid’s
properties are constant.

Figure 1. Schematic diagram of physical system
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3 Governing equations

The governing equations for the two-dimensional steady flow following the invocation of the
equations that govern the steady two-dimensional flow, considering the Boussinesq approximation
and neglecting radiation and viscous dissipation, can be formulated in the following manner
[6, 33, 39–42]:
Continuity equation:

∂u
∂x

+
∂v
∂y

= 0. (1)

Momentum equations:

u
∂u
∂x

+ v
∂u
∂y

= −
1
ρ

∂p
∂x

+ ν(
∂2u
∂x2 +

∂2u
∂y2 ), (2)

u
∂v
∂x

+ v
∂v
∂y

= −
1
ρ

∂p
∂y

+ ν(
∂2v
∂x2 +

∂2v
∂y2 ) + ρgβ(T − Tc). (3)

Energy equation:

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

(
∂2T
∂x2 +

∂2T
∂y2

)
. (4)

Boundary conditions for governing equations

The followings are the boundary conditions for the current problem:

At the left and right vertical wall:

u(0, y) = 0, v(0, y) = 0,
∂T
∂n

= 0.

At the bottom wall:

u(x, 0) = 0, v(x, 0) = 0, T = Th.

At the top wall:

u(x, y) = 0, v(x, y) = 0, T = Tc.

At the insider elliptic blockage:

u(x, y) = 0, v(x, y) = 0,
∂T
∂n

= 0.
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Non-dimensional variables

Non-dimensional variables (5) are used for making the governing Eqs. (1)-(4) into dimensionless
form are stated as follows:

X =
x
H

, Y =
y
H

, U =
uH
α

, P =
pH2

ρα2 , θ =
T − Tc

Th − Tc
, Pr =

ν

α
, Ra =

gβ(Th − Tc)H3

αν
. (5)

Non-dimensional governing equations

By using the aforementioned variables, the dimensionless form of the Eqs. (1)-(4) are as follows:
Continuity equation:

∂U
∂X

+
∂V
∂Y

= 0. (6)

Momentum equations:

U
∂U
∂X

+ V
∂U
∂Y

= −
∂P
∂X

+ Pr
(

∂2U
∂X2 +

∂2U
∂Y2

)
, (7)

U
∂V
∂X

+ V
∂V
∂Y

= −
∂P
∂Y

+ Pr
(

∂2V
∂X2 +

∂2V
∂Y2

)
+ RaPrθ. (8)

Energy equation:

U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
. (9)

The heat transfer coefficient which is the local Nusselt number and mean Nusselt number is
defined by

Nulocal = −
∂θ

∂n
and Nuav =

∫ 1

0
Nulocaldx, (10)

respectively, where the normal orientation of a plane is indicated by n.

Boundary conditions for non-dimensional governing equations

The dimensionless boundary conditions which are considered can be expressed as:
At the left and right vertical wall:

U = 0, V = 0,
∂θ

∂n
= 0.

At the bottom wall:

U = 0, V = 0, θ = 1 (Uniformly heated).

At the top wall:

U = 0, V = 0, θ = 0.
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At the insider elliptic blockage:

U = 0, V = 0,
∂θ

∂n
= 0.

4 Method of solution

For solving governing Eqs. (7)-(9), the Galerkin finite element method [43, 44] has been utilized.
Eq. (6) is employed as a constraint owing to the conservation of mass. This constraint may be
utilized to earn pressure distribution [43, 44]. Regarding the resolution of Eqs. (7)-(9), Eq. (6) is
being influenced by the introduction of a penalty parameter, denoted as γ, while the pressure P is
being replaced with the subsequent expression [43], which is as follows:

P = −γ

(
∂U
∂X

+
∂V
∂Y

)
. (11)

Value of γ = 107 perfectly fulfills Eq. (7). Eq. (11) is employed to simplify the expressions in Eqs.
(8)-(9), as follows:

U
∂U
∂X

+ V
∂U
∂Y

= γ
∂

∂X

(
∂U
∂X

+
∂V
∂Y

)
+ Pr

(
∂2U
∂X2 +

∂2U
∂Y2

)
, (12)

U
∂V
∂X

+ V
∂V
∂Y

= γ
∂

∂Y

(
∂U
∂X

+
∂V
∂Y

)
+ Pr

(
∂2V
∂X2 +

∂2V
∂Y2

)
+ RaPrθ. (13)

Value of U, V and θ are expanded as:

U ≈
N∑

k=1

UkΦk(X, Y), V ≈
N∑

k=1

VkΦk(X, Y), θ ≈
N∑

k=1

θkΦk(X, Y). (14)

By using the fact that X ≥ 0 and Y ≤ 0, the following equations are formed in the domain Ω,

R(1)
1 =

N∑
k=1

Uk

∫
Ω

[( N∑
k=1

UkΦk

)
∂Φk
∂X

+

( N∑
k=1

UkΦk

)
∂Φk
∂Y

]
ΦidXdY

+γ

[ N∑
k=1

Uk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY +
N∑

k=1

Vk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY

]

+Pr
N∑

k=1

Uk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY,

(15)
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R(2)
1 =

N∑
k=1

Vk

∫
Ω

[( N∑
k=1

UkΦk

)
∂Φk
∂X

+

( N∑
k=1

VkΦk

)
∂Φk
∂Y

]
ΦidXdY

+γ

[ N∑
k=1

Uk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY +
N∑

k=1

Vk

∫
Ω

∂Φi
∂X

∂Φk
∂X

dXdY

]

+Pr
N∑

k=1

Vk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY

+RaPr
∫

ω

( N∑
k=1

θkΦk

)
ΦidXdY,

(16)

and

R(3)
1 =

N∑
k=1

Uk

∫
Ω

[( N∑
k=1

UkΦk

)
∂Φk
∂X

+

( N∑
k=1

VkΦk

)
∂Φk
∂Y

]
ΦidXdY

+
N∑

k=1

θk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY.

(17)

The expressions given by Eqs. (15)-(17) can be depicted using matrix notation as follows:

(K1 + γK2)a = F, (18)

where K1, K2 matrices are derived from the Jacobian of the residuals, ′a ′ signifies the unidentified
vector, as γ ∼ 107, Eq. (6) is better content, which tends to the following:

K1a =
F
γ

. (19)

The Newton-Raphson method has been employed to address the non-linear Eqs. (15)-(17), yielding
the subsequent linear system as follows:

J(an)[an − an+1] = R(an). (20)

At the end of the iterative process,
[∑(

Rj
i

)2
]0.5

≤ 10−6 is utilized. Each of the nine-node

bi-quadratic elements that we applied is approximated from (X −Y) → (ζ − η), which are:

X =
9∑

i=1

XiΦi(ζ − η) and Y =
9∑

i=1

YiΦi(ζ − η), (21)

on the (ζ − η) domain, where Φi(ζ, η) are the local bi-quadratic basis functions. The following
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assumptions can be used to analyze the domain of the integrals in Eqs. (15)-(17):

[
∂Φi
∂X
∂Φi
∂Y

]
=

1
|J|

 ∂Y
∂η

− ∂Y
∂ζ

− ∂X
∂η

∂X
∂ζ

 [ ∂Φi
∂ζ

∂Φi
∂η

]
and dXdY = |J|dζdη, (22)

where J =
∣∣∣ ∂(X,Y)

∂(ζ,η)

∣∣∣ . According to Eq. (10), the local Nusselt number takes a normal derivative that
can be found over a bi-quadratic basis set in the (ζ − η) domain by using Eqs. (21) and (22).

Evaluation of stream function

The 2D stream function is formed from the velocity elements U and V, as follows:

U =
∂ψ

∂Y
, V = −

∂ψ

∂X
, (23)

which can be utilized in the single equation as,

∂2ψ

∂X2 +
∂2ψ

∂Y2 =
∂U
∂Y

−
∂V
∂X

. (24)

The Galerkin finite element method is utilized to derive the subsequent linear resultant equa-
tions for Eq. (14). This is achieved by replacing the stream function with {Φk}

N
k=1 as ψ =∑N

k=1 ψkΦk(X, Y) from Eq. (24):

R(s)
i =

N∑
k=1

ψk

∫
Ω

[
∂Φi
∂X

∂Φk
∂X

+
∂Φi
∂Y

∂Φk
∂Y

]
dXdY

+
N∑

k=1

Uk

∫
Ω

Φi
∂Φk
∂Y

dXdY −

N∑
1

Vk

∫
Ω

Φi
∂Φk
∂X

dXdY. (25)

Through the utilization of ψ = 0, the no-slip boundary condition is imposed due to the absence of
cantankerous flows.

5 Model algorithm

The initial goal of the iterative Newton-Raphson algorithm is to analyze the discrete dimensions
of continuity, momentum, and energy equations in order to assess the significance of speed and
temperature. It is necessary to take into account the initial values of the variables. After that
matrix factorization was found clearly discussed by Rahman et al. [45] before convergence criteria.
When the convergence criteria are satisfied, the numerical solutions for the variables are then
obtained. A straightforward algorithm is depicted in the flow chart (see Figure 2) below.
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Figure 2. Flow algorithm diagram of the computational process
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6 Test for grid sensitivity

Significant progress has been made in the exploration of grid-independent solutions for the field
variables, yielding promising initial outcomes. A comprehensive analysis has been carried out
to assess the precision of grid performance and ascertain the most suitable grid quantity. To
attain grid-independent results for a square cavity with EB, a thorough investigation involving
grid refinement was conducted for Pr = 0.71 and Ra = 105. In Figure 3, the convergence of the
Nusselt number (Nu) at the heated surface is depicted as grid refinement is implemented. Grid
independence has been achieved with the utilization of 31256 nodes. However, as the number of
mesh elements increases beyond this point, the impact on Nu becomes negligible, rendering the
changes insignificant. Therefore, any insignificance observed prior to the 31256 nodes should not
be regarded as an indication of grid independence. For the grid independence tests, six distinct
non-uniform grids were employed, each of them characterized by varying numbers of nodes and
elements. The configurations used are as follows: 16012 nodes, 3698 elements; 18564 nodes, 3785
elements; 21343 nodes, 4134 elements; 23412 nodes, 4421 elements; 31256 nodes, 5893 elements;
and 37895 nodes, 6598 elements. These details are presented in Table 1.

Table 1. Grid independence test at Pr = 0.71 and Ra = 105

Nodes 16012 18564 21343 23412 31256 37895
Elements 3698 3785 4134 4421 5893 6598
Nuav 0.140123 0.140933 0.141894 0.144403 0.145403 0.145403
Time(s) 15.321 19.204 22.532 26.577 36.625 38.442

Based on the provided values, it is recommended to consistently utilize 31256 nodes and 5893
elements throughout the simulation to effectively locate the required accuracy and computing
time. Figure 4-Figure 5 display the mesh design and finite element discretization of a domain
respectively for this research work.

Figure 3. Convergence of Nusselt number with grid refinement for Pr = 0.71, and Ra = 105

7 Numerical validation

For the validation of the accuracy of the numerical technique, the problem that is considered
for the present work was solved with Pr = 0.71, Ha = 50 and Ra = 104 for stream function
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Figure 4. The mesh design Figure 5. Finite elements discretization of a domain

(streamlines) and isotherms within a square cavity. The result was checked by comparing it with
the paper of Jani et al. [6], and found a good agreement which is shown in Figure 6.

(a) Isotherms for present research work (b) Isotherms for Jani et al. [6]

(c) Streamlines for present research work (d) Streamlines for Jani et al. [6]

Figure 6. Stream function and isotherms of present work compared with Jani et al. [6] for Pr = 0.71, Ha = 50
and Ra = 104
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8 Results and discussion

A numerical study on free convection flow within a square enclosure for various orientations
of elliptic blockage (EB) has been carried out. The electrically conductive fluid with Pr = .71 is
being examined within a square cavity in the presence of EB, where other parameters are taken as
Ra = 103 − 107. The numerical outcomes have been depicted through visual representations of
streamlines and isotherms within the square cavity along with EB, as well as through data on heat
transfer rates via average Nusselt numbers.

Streamlines and isotherms: effect of Ra for different locations of EB

Streamlines and isotherms for governing parameters Pr and Ra, along with EB have been shown
in Figure 7-Figure 9. The bottom wall of the cavity was uniformly heated and the bottom wall of
the EB was thermally insulated. Several eddy circulation cells were circulated from the heating
bottom wall due to the heated fluid flow, spinning along the insulated side walls for all governing
parameters Pr and Ra. In order to discover the changes in streamlines and isotherms, a numerical
simulation was completed at the bottom wall of the cavity with the elliptic blockage (BEB), at the
center of the cavity with the elliptic blockage (CEB), and at the top wall of the cavity with the
elliptic blockage (TEB) with Pr = 0.71 and Ra = 103 − 107. At the BEB phase, the EB is placed near
the bottom wall of the cavity for Ra = 103 − 107 (see Figure 7a). It is seen from the streamlines
that two large eddy circulation cells have been formed at the top of the EB and two vortices have
been found at the bottom wall where the left one is significantly smaller than the right one and the
right one has a few small vortices inside it. As Ra is considered Ra = 104, any notable changes
have not been found in the streamlines (see Figure 7b). But when Ra = 105 is applied, the top two
cells become much dense than before and the right bottom big vortex decreases in size as well as
the number of embedded vortices decreases to one same vortex (see Figure 7c). At Ra = 106, in
Figure 7d, the top two cells become much thicker than before where the left cell becomes dense
than the right one and also the bottom two vortices are now almost in the same shape and several
small vortices have been formed inside them but the right vortex seems thicker than the left one.
At 107 (Figure 7e), the top two rotating cells seem to decreasing in thickness and the left bottom
vortex is now in small size without any embedded vortices and the right bottom vortex also
decreases in thickness with one small vortex embedded inside it.

From the isotherms, for Ra = 103 (Figure 7a), linear lines are found at the top cold wall which
begins to turn into non-linear lines near the EB. Dense temperature lines are found at the left and
right walls near the EB. The lowest temperature of the cavity θ = 0.03 has been found at the top
cold wall and the highest temperature of the cavity θ = 0.98 has been found at the bottom heated
wall. The lowest temperature on EB θ = 0.28 has been found at the top cold wall and the highest
temperature on EB θ = 0.93 has been found at the bottom heated wall. No significant changes
are found for Ra = 104 (Figure 7b) in the isotherms. But at Ra = 105 (Figure 7c), the shape of the
isotherms is notably changed where non-linear lines at the top cold wall grow in numbers and the
curved lines at the insulated sidewalls are seen to be changed than before where the temperature
lines are becoming dense at the sidewalls. The only changes in temperature are seen for the lowest
temperature at the top wall of EB at θ = 0.23. At Ra = 106 (Figure 7d), the isotherms are turned
to a chaotic shape, where many non-linear lines are formed around the EB. The highest and the
lowest temperatures are found to remain unchanged but the lowest temperature at EB changes
to θ = 0.13. When Ra = 107 (Figure 7e), the highest chaotic stage of the isotherms is discovered
where many non-linear curved lines are forming around the EB and the lowest temperature
at the EB changes to θ = 0.18. The temperature lines are at the highest dense position at the
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insulated side walls. The EB is placed at the center of the cavity, at the CEB phase, for Pr = 0.71
and Ra = 103 − 107 (see Figure 8a). It is viewed that four symmetric eddy circulation cells are
formed around the EB in the streamlines, where the top two cells are much more dense than the
bottom two cells. As Ra changes to Ra = 104 − 105 (Figure 8b – Figure 8c), no significant changes
have been found in the fluid flow. Slight changes are found when Ra = 106 (see Figure 8d) is
applied. The top two cells become much more packed than before, where the right cell is thicker
than the left one. At Ra = 107, the highest thickness of the eddy circulation cells has been seen
in the fluid flow, where the top left cell is the thickest of all. Also, the space between the top
cells and the bottom cells grew larger than in the previous simulations. As for the isotherms,
at Ra = 103 (Figure 8a), linear smooth curves are only seen at the top and the bottom wall and
the rest are non-linear lines where most of them are generated from the surface of the EB. The
temperature curves are thickest at the insulted left and right side walls. The lowest temperature of
the cavity is θ = 0.03 and the highest temperature of the cavity is θ = 0.98 which has been found
for convectional fluid flow. In Figure 8b, the lowest temperature of the surface of EB is θ = 0.23
and the highest temperature of the surface of EB is θ = 0.78. At Ra = 104 (Figure 8b), no notable
changes are found at the temperature curve. But at Ra = 105 (Figure 8c), curves are taking chaotic
forms, which seem to be drawing to the surface of EB. The changes in temperature are seen only
on the surface of the EB, the lowest temperature θ = 0.13 and the highest temperature θ = 0.83.
When Ra = 106 (Figure 8d), it is now in a complete chaotic form, where the highest dense curves
are seen at the two side walls, the curves at the top and the bottom wall are also found in dense
position. At the surface of EB, the lowest and the highest temperature are respectively θ = 0.18
and θ = 0.88. At Ra = 107 (Figure 8e), isotherms are taking a complete new shape, where the
curves at the two side walls along with the top and bottom walls are at the peak of density. The
only change is found at the lowest temperature of the surface of the EB, θ = 0.13. At the TEB
phase, where the EB is placed at the top of the cavity, for Pr = 0.71 and Ra = 103 (Figure 9a), two
large rotating eddies are found at the bottom of the EB in the streamlines, where the right one is
much thicker than the left one. Two distinct vortices have also been formed at the EB while the
right one is much bigger than the left one. When Ra increases to Ra = 104 (Figure 9b), the density
of the two large eddies is increased than before and it is continually increasing at Ra = 105 − 106

(Figure 9c – Figure 9d). A thick borderline has formed around the two vortices at the top wall,
the right vortex is now smaller than the left one. At Ra = 107 (Figure 9e), the density of the left
eddy circulation cell is decreased than the left one, and the shape of the two vortices at the top
wall is slightly changed. In the case of the isotherms study, at Ra = 103 (Figure 9a), only a linear
temperature curve is seen at the bottom wall and the rest of them are non-linear curves, attracting
to the surface of the EB. The density of the temperature curves is the highest at the insulated left
and right sidewalls. The lowest temperature of the cavity is found at θ = 0.03 and the highest
temperature of the cavity is found at θ = 0.98. Also, the lowest temperature of the surface of the
EB is recorded at θ = 0.08 and the highest temperature of the surface of the EB is recorded at
0.68. No significant changes are found in the isotherms for Ra = 104 (Figure 9b). But at Ra = 105

(Figure 9c), the temperature curves turn to chaotic shapes, and the highest curvature is found
at the bottom of the EB. Only changes in the temperature value are found on the surface of the
EB where the temperature is highest at θ = 0.78. At Ra = 106 (see Figure 9d), isotherms are
changed completely and the density of the curves at the sidewalls is increased a lot. As before,
only changes of temperature value are found for the surface of the EB, lowest at θ = 0.03 and
highest at θ = 0.88. And when Ra increases to Ra = 107 (Figure 9e), temperature curves are at
the peak of the chaotic stage, where the density of curves at the side walls is higher than before.
Similarly, only changes are found for the surface of the EB for the lowest temperature at θ = 0.08
and the highest temperature at θ = 0.83 due to the effect of convection fluid flow.



100 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 86–109

(e) Ra = 107

(d) Ra = 106

(c) Ra = 105

(b) Ra = 104

(a) Ra = 103

Streamlines Isotherms

Figure 7. Streamlines and Isotherms for Pr = 0.71 and Ra = 103 − 107 for BEB
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(e) Ra = 107

(d) Ra = 106

(c) Ra = 105

(b) Ra = 104

(a) Ra = 103

Streamlines Isotherms

Figure 8. Streamlines and Isotherms for Pr = 0.71 and Ra = 103 − 107 for CEB
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(e) Ra = 107

(d) Ra = 106

(c) Ra = 105

(b) Ra = 104

(a) Ra = 103

Streamlines Isotherms

Figure 9. Streamlines and Isotherms for Pr = 0.71 and Ra = 103 − 107 for TEB
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Heat transfer rates: Nuav vs Ra for bottom wall of the cavity and insulated EB

The overall changes of average Nusselt number with increasing Rayleigh number for Pr = 0.71
and Ra = 103 − 107, are displayed in Figure 10-Figure 11 for the heated bottom wall of the cavity
and bottom wall of insulated EB for different orientation BEB, CEB, and TEB.

Figure 10. Average Nusselt number for (a) bottom wall of the cavity

From Figure 10, for (a), the heated bottom of the cavity, there is a logarithmic relationship being
seen between Nuav and Ra. A slow increase of Nuav is found up to Ra = 105 for all three different
orientations and when Ra ≥ 106, the graph begins to rise for BEB, CEB, and TEB. This happens
due to the transition from the conduction phase to the convection phase. The lowest value of Nuav
is recorded for Ra = 103 at CEB and the highest value of Nuav is recorded for Ra = 107 at TEB.
As for (b), the bottom wall of insulated EB, from Figure 11, the gradual increase of Nuav occurs as
Ra increases.

Figure 11. Average Nusselt number for (b) bottom wall of EB

For BEB and CEB orientations, the drastic change in the graph is started from Ra ≥ 105 due to
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convectional flow, whereas for TEB orientation, it is at Ra ≥ 104. After reaching Ra = 106, the
graph turns to a constant curve up to Ra ≥ 107 for all three locations. The lowest heat transfer
rate is found at Ra = 103 for CEB and the highest value at Ra = 107 for CEB.

9 Conclusion

An inclusive research work of free convection flow within a square enclosure for various locations
of elliptic blockage for Pr = 0.71 and Ra = 103 − 107 has been analyzed numerically in the present
study. The Galerkin weighted residual technique has been utilized to address the governing
parameters Pr and Ra within finite element formulations aimed at solving the governing equations.
The results are shown using stream functions, isotherms, heat transfer rates, and average Nusselt
numbers, both for the bottom wall of the cavity and the bottom wall of the insulated EB. The key
assumptions are concisely outlined as follows:

• Heat transfer mechanisms, flow characteristics, and the distribution of isotherms within the
cavity depend exclusively on four key factors: EB, the temperature of the heated bottom wall,
and two dimensionless numbers – the Prandtl number (Pr) and the Rayleigh number (Ra).

• The streamlines show that the area around the EB contains multiple vortex cells and swirling
eddy currents for all three different orientations.

• At the heated bottom wall of the cavity, Nuav is seen to have a logarithmic relation with Ra at
Pr = 0.71 and Ra = 103 − 107, due to the transition from the conduction stage to the convection
stage. The lowest value of Nuav is recorded for Ra = 103 at CEB and the highest value of Nuav
is recorded for Ra = 107 at TEB.

• At the bottom wall of insulated EB, Nuav is seen to be increasing with the value of Ra, and
a quick change of the graph is found for the flow of strong convection at Ra = 105 for BEB
and CEB and at Ra = 104 for TEB. At Ra = 106, a constant increasing graph is found for all
three locations which implies invariant heat transfer. The lowest heat transfer rate is found at
Ra = 103 for CEB and the highest value at Ra = 107 for CEB.

Declarations

List of symbols

Cp Specific heat at constant pressure (J/kg K)
g Gravitational acceleration (m/s2)
h Convective heat transfer coefficient (W/m2 K)
k Thermal conductivity of fluid (W/m K)
K Thermal conductivity ratio fluid
N Non-dimensional distance
Nuav Average Nusselt number
P Non-dimensional pressure
p Pressure
Pr Prandtl number
Ra Rayleigh number
T Non-dimensional temperature
Tc Cold temperature
Th Hot temperature
Ti Thermal insulated Temperature
U Dimensionless horizontal velocity
u Velocity in x-direction (m/s)
V Dimensionless vertical velocity
v Velocity in y-direction (m/s)
x, y Cartesiancoordinates
X, Y Dimensionless cartesian coordinates
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Greek symbols

β Coefficient of thermal expansion (1/K)
ρ Density of the fluid (kg/m3)
α Thermal diffusivity (m2/s)
∆θ Temperature difference
θ Fluid temperature
µ Dynamic viscosity of the fluid (Pa s)
ν Kinematic viscosity of the fluid (m2/s)
σ Fluid electrical conductivity(Ω-1 m-1)

List of abbreviations

BEB Bottom elliptic blockage
CEB Center elliptic blockage
EB Elliptic blockage
TEB Top elliptic blockage
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Abstract
In this paper, we introduce a pioneering numerical technique that combines generalized Laguerre
polynomials with an operational matrix of fractional integration to address fractional models in
electrical circuits. Specifically focusing on Resistor–Inductor (RL), Resistor–Capacitor (RC), Resonant
(Inductor–Capacitor) (LC), and Resistor–Inductor–Capacitor (RLC) circuits within the framework
of the Caputo derivative, our approach aims to enhance the accuracy of numerical solutions. We
meticulously construct an operational matrix of fractional integration tailored to the generalized
Laguerre basis vector, facilitating a transformation of the original fractional differential equations into
a system of linear algebraic equations. By solving this system, we obtain a highly accurate approximate
solution for the electrical circuit model under consideration. To validate the precision of our proposed
method, we conduct a thorough comparative analysis, benchmarking our results against alternative
numerical techniques reported in the literature and exact solutions where available. The numerical
examples presented in our study substantiate the superior accuracy and reliability of our generalized
Laguerre-enhanced operational matrix collocation method in effectively solving fractional electrical
circuit models.

Keywords: Numerical analysis; electrical circuits; generalized Laguerre polynomials; fractional
integrals; fractional derivatives

AMS 2020 Classification: 41A58; 26A33; 34A08

1 Introduction

In recent years, an escalating interest has emerged among researchers in harnessing the power of
fractional calculus and Fractional Differential Equations (FDEs). Fractional calculus, a field rooted
in the generalization of integration and differentiation to arbitrary orders, finds its origins in the
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İbrahim Avcı | 111

musings of G.W. Leibniz (1695) and L. Euler (1730). Despite its longstanding history, fractional
calculus and the corresponding FDEs have only recently surged in attention and popularity,
driven by their unparalleled ability to model complex phenomena. Various definitions of frac-
tional derivatives, including Riemann–Liouville, Caputo, Grünwald–Letnikov, Weyl, Marchaud,
Prabhakar, and others, populate the literature, underscoring the versatility of this mathematical
tool. The Riemann-Liouville definition is among the earliest formulations in the field of fractional
calculus. It emerged as a significant contribution to the theory’s development, offering founda-
tional insights into fractional derivatives and integrals. Caputo’s definition, introduced later, has
become widely used in engineering applications. Its effectiveness lies in its ability to accurately
model systems commonly encountered in engineering problems. Particularly in scenarios where
boundary conditions predominantly involve integer-order derivatives, Caputo’s operator excels
in providing precise representations of physical systems, especially those exhibiting intricate
behaviors, thereby contributing to its popularity. Grünwald–Letnikov, Weyl, Marchaud, and
Prabhakar provide alternative approaches, each tailored to specific analytical or computational
demands. The flexibility offered by these definitions allows researchers to tailor their approach to
the particular characteristics of the problem at hand, making fractional calculus a powerful tool in
mathematical modeling. The history of this topic can be found in [1–5].
The interdisciplinary applications of fractional calculus span an impressive array of fields, expand-
ing beyond bioengineering, biology, chaotic systems, control theory, economics, electrochemistry,
finance, quantum mechanics, optics, oncology, physics, rheology, social sciences, viscoelastic-
ity, and so on [6–16]. This expansive scope underscores the versatility and profound impact of
fractional calculus in addressing intricate challenges across diverse scientific and engineering
domains. As we delve into this multifaceted landscape, it becomes evident that the marriage of
mathematical rigor with innovative numerical techniques is paving the way for groundbreaking
advancements and novel solutions in scientific inquiry.
Fractional calculus emerges as a superior modeling framework, often outperforming traditional
calculus, particularly in capturing memory effects crucial for describing long-term interactions
[17, 18]. This distinctive feature enhances the accuracy of representing diverse dynamical and
engineering models, becoming indispensable in scientific investigations. Confronted with the
inherent difficulty of obtaining exact analytic solutions for nonlinear FDEs, researchers have
developed an arsenal of numerical and approximate methods. In addition to spectral collocation
[19], variational iteration [20], differential quadrature [21], adomian decomposition [22], fractional
reduced differential transform [23], and wavelet methods [24–26], innovative techniques such
as finite element method [27], and radial basis function methods [28] have been meticulously
crafted to surmount these challenges. On the other hand, many numerical techniques for solv-
ing fractional models face limitations, including accuracy issues with complex dynamics and
non-standard boundaries, computational inefficiency for large-scale simulations, and restricted
applicability to specific equations or systems. Moreover, the lack of a clear geometric interpreta-
tion in fractional calculus complicates algorithm development, hindering intuitive understanding
and implementation. Additionally, convergence and stability challenges arise, particularly with
nonlinear or stiff equations. Addressing these limitations requires the development of novel
techniques to improve accuracy, efficiency, and applicability across a wide range of fractional
systems and boundary conditions. Electrical circuit models serve as fundamental tools in under-
standing and analyzing the behavior of electrical systems [29]. Among the widely studied circuit
configurations are the RC (resistor-capacitor), RL (resistor-inductor), LC (inductor-capacitor), and
RLC (resistor-inductor-capacitor) circuits. In the RC circuit, the combination of a resistor and a
capacitor introduces time-dependent characteristics, influencing the circuit’s response to input
signals. The RL circuit, incorporating a resistor and an inductor, exhibits distinctive behaviors
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due to the inductor’s role in storing energy. LC circuits, consisting of an inductor and a capacitor,
demonstrate oscillatory behavior and resonance. RLC circuits, combining all three elements,
showcase a rich spectrum of responses, including damped and undamped oscillations, resonance,
and transient behaviors. Understanding the dynamics of these circuit models is crucial for various
applications in electronics, communication systems, and signal processing, making them focal
points in both theoretical analysis and practical design considerations. In recent years, there
has been a growing interest in extending the analysis of electrical circuit models to the realm of
fractional derivatives. This approach introduces a new dimension to the understanding of RC,
RL, LC, and RLC circuit dynamics, incorporating fractional calculus principles. By considering
fractional derivatives, which generalize conventional derivatives to arbitrary orders, researchers
aim to capture more accurately the intricate behavior and memory effects exhibited by electrical
circuits [30, 31]. In this study, we employ a sophisticated numerical approach that combines the
strengths of both operational matrix and collocation methods for solving fractional-order electrical
circuit models, including RL, RC, LC, and RLC configurations. Specifically, we leverage the
operational matrix of fractional integration, which streamlines the complex calculations associated
with fractional derivatives. This operational matrix is strategically applied to the generalized
Laguerre basis vector, forming the backbone of our methodology. Subsequently, we introduce
collocation by judiciously selecting equally spaced nodes, effectively transforming the fractional
differential equations into a well-structured system of linear equations. This dual methodology
harnesses the computational efficiency of operational matrices while benefiting from the simplicity
and accuracy conferred by collocation techniques. The resulting system of linear equations is then
systematically solved, providing a precise numerical solution to the intricate dynamics inherent in
these electrical circuit models. This innovative combination of operational matrix and collocation
methods demonstrates a powerful and versatile approach to addressing fractional order systems,
showcasing its efficacy in obtaining accurate numerical solutions for a broad spectrum of electrical
circuit configurations.
This paper is structured as follows: In Section 2, we lay the foundation with a discussion on
fractional calculus, introducing the definitions of generalized Laguerre polynomials and their
application in function approximation. Section 3 is dedicated to the construction of the generalized
Laguerre operational matrix of fractional integration. Moving on to Section 4, we delve into the
specific problem statements addressed in this paper and elaborate on the methodology employed,
focusing on the Generalized Laguerre Operational Matrix Method (GLOMM). Section 5 is dedi-
cated to Error Estimation based on Residual Analysis, providing a comprehensive investigation
into the accuracy and reliability of our proposed approach. Section 6 presents four illustrative
examples, showcasing the applicability, accuracy, and performance of our proposed technique.
The paper concludes in Section 7 with a summary of findings and directions for future research.

2 Preliminaries

Definition 1 [3] The definition of the Riemann-Liouville fractional integral of order µ for Re(µ) > 0 is as
follows:

RL
a Iµ

x f (x) =
1

Γ(µ)

∫ x

a
(x − t)µ−1 f (t)dt. (1)

From the above definition, it is clear that,

RL
0 Iµ

x(xp) =
Γ(1 + p)

Γ(1 + p + µ)
xp+m.
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Definition 2 [4] The definition of the Caputo fractional derivative for Re(µ) ≥ 0 is as follows:

C
aDµ

x f (x) =
dn

dxn
RL

a In−µ
x f (x), n := ⌊Re(µ)⌋+ 1.

The Newton–Leibniz identity establishes a fundamental relationship between the Riemann–Liouville
fractional integral and the Caputo fractional derivative, expressed as follows:

RL
0 Iµ

x(
C
0Dµ

x f (x)) = f (x)−
⌈µ⌉−1∑

k=0

f (k)(0)
xk

k!
.

Definition 3 Consider the interval Λ = (0,∞), and let ω(α)(x) = xαe−x represent a weight function in
Λ in the conventional sense. Define

L2
ω(α) = {v|v is measurable on Λ and ||v||ω(α) < ∞},

with the inner product and norm

(u, v)ω(α) =

∫
Λ

u(x)v(x)ω(α)(x)dx,

||v||ω(α) = (v, v)
1
2
ω(α) .

Definition 4 (Generalized Laguerre Polynomial) [32] Let Ln,α(x) be the generalized Laguerre polynomials
to degree n. According to [33], for α > −1, we have

Ln+1,α(x) =
1

n + 1
[(2n + α − 1 − x)Ln,α(x)− (n + α)Ln−1,α(x)], n = 1, 2, ...,

where the first few terms of the generalized Laguerre polynomials are given by

L0,α(x) = 1,

L1,α(x) = 1 + α − x,

L2,α(x) = 1
2! [2 + 3α + α2 − 2αx − 4x + x2],

L3,α(x) = 1
3! [6 + 11α + 6α2 + α3 − 13αx + 3αx2 − 3α2x − 18x + 9x2 − x3].

The analytical expression for generalized Laguerre polynomials over the interval Λ = (0,∞) is given by:

Ln,α(x) =
n∑

k=0

(−1)k Γ(n + α + 1)
Γ(k + α + 1)(n − k)!k!

xk, n = 0, 1, .... (2)

Note that, setting α = 0 in Eq. (2), we arrive to the classical Laguerre Polynomials Ln(x).
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Approximation of function

A function f (x) ∈ L2
ω(α)(Λ) can be represented using generalized Laguerre polynomials as:

f (x) =
∞∑

j=0

ψjLj,α(x),

ψj =
1
hr

∫∞
0

f (x)Lj,αwαdx, j = 0, 1, 2, .... (3)

Considering the first (N + 1) terms of generalized Laguerre polynomials, we get

f ≃ fn =
m∑

j=0

ψjLj,α(x) = ΨTLm,α(x), (4)

where the unknown coefficient vector ΨT and the generalized Laguerre polynomial vector Lm,α(x)
are defined as

ΨT =
[
ψ0, ψ1, . . . , ψN

]T f or N ∈ N, (5)

and

Lm,α(x) =
[
L0,α(x), L1,α(x), . . . , Lm,α(x)

]T f or m ∈ N. (6)

3 Formulation of the generalized Laguerre operational matrix for fractional integration

In this section, we construct the operational matrix of fractional integration for the generalized
Laguerre polynomials. Employing the Riemann-Liouville fractional integration (1) to the order
µ on the analytical representation of generalized Laguerre polynomials Li,α(x) provided in (2),
yields:

IµLi,α(x) =
i∑

k=0

(−1)k Γ(i + α + 1)
(i − k)!k!Γ(k + α + 1)

Iµxk

=
i∑

k=0

(−1)k Γ(i + α + 1)
(i − k)!Γ(k + α + 1)Γ(k + µ + 1)

xk+µ. (7)

By approximating xk+µ using N + 1 terms of the generalized Laguerre series, we obtain:

xk+µ =
N∑

j=0

ψjLj,α, (8)

where ψj is defined in Eq. (3) with f (x) = xk+µ, that is,

ψj =

j∑
r=0

(−1)r j!Γ(k + µ + α + r + 1)
(j − r)!r!Γ(r + α + 1)

, j = 1, 2, ..., N. (9)
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Utilizing Eqs. (7) and (8), we obtain:

IµLi,α(x) =
N∑

j=0

Dµ(i, j)Lj,α(x), i = 0, 1, ..., N, (10)

where

Dµ(i, j) :=
i∑

k=0

j∑
r=0

(−1)k+r j!Γ(i + α + 1)Γ(k + µ + α + r + 1)
(i − k)!(j − r)!r!Γ(k + µ + 1)Γ(k + α + 1)Γ(α + r + 1)

. (11)

Accordingly, Eq. (10) can be written in a vector form as follows:

IµLi,α(x) = [Dµ(i, 0), Dµ(i, 1), ..., Dµ(i, N)]LN,α, i = 0, 1, ..., N, (12)

where LN,α is the generalized Laguerre vector defined in Eq. (2).
Consider G(µ), an operational matrix of fractional integration of order µ, with dimensions (N +

1)× (N + 1), defined as:

G(µ) =


Dµ(0, 0) Dµ(0, 1) Dµ(0, 2) · · · Dµ(0, N)

Dµ(1, 0) Dµ(1, 1) Dµ(1, 2) · · · Dµ(1, N)
...

... . . . ...
Dµ(N, 0) Dµ(N, 1) Dµ(N, 2) · · · Dµ(N, N)

 .

Then, we can rewrite system (12) as

IµLN,α(x) = G(µ)LN,α(x). (13)

4 Problem statement and method of solution

In this section, we delineate the specific problems at the core of our investigation and introduce
the Generalized Laguerre Operational Matrix Method (GLOMM) as the key solution approach.
Our focus lies on deriving numerical solutions for fractional-order electrical circuit models encom-
passing RL, RC, LC, and RLC configurations. By applying the GLOMM to these circuit models,
we aim to provide a comprehensive and efficient numerical methodology for analyzing their
fractional dynamics, contributing to the advancement of computational techniques in the field of
electrical circuit modeling.

RL circuit

In this section, we focus on the numerical solutions of fractional order RL circuit. An RL circuit
is an electrical circuit that consists of a resistor (R) and an inductor (L). The resistor represents
the element that resists the flow of electrical current, generating heat in the process, while the
inductor is a coil of wire that stores energy in its magnetic field when current flows through it.
The fractional-order generalized RL circuit is given as

Dµu(x) +
R
L

u(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, u(0) = u0. (14)
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When µ = 1, the fractional-order RL circuit equation (14) reduces to the classical case. Applying
the Riemann-Liouville fractional integral of order µ to both sides of Eq. (14), we obtain:

u(x)−
⌈µ⌉−1∑

k=0

u(k)(0)
xk

k!
+

R
L

Iµu(x) = Iµ(E(x)). (15)

Substituting initial condition into Eq. (15) and approximating the function u(x) by the generalized
Laguerre polynomials (4), we get

ΨTLm,α(x)− u0 +
R
L

ΨT(IµLm,α(x)) = Iµ(E(x)).

Further, using the operational matrix of fractional integration defined in Eq. (13), we obtain

ΨTLm,α(x) +
R
L

ΨT(G(µ)Lm,α(x)) = F(x), (16)

where F(x) = Iµ(E(x)) + u0.

RC circuit

In this section, our attention shifts to the numerical analysis of the fractional order RC circuit. A
RC circuit is an electrical circuit configuration comprising a resistor (R) and a capacitor (C). The
resistor impedes the flow of electrical current, generating heat in the process, while the capacitor
stores electrical energy in its electric field when voltage is applied across it. The fractional-order
generalized RC circuit is defined as

Dµv(x) +
1

RC
v(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, v(0) = v0. (17)

When µ = 1, the fractional-order RC circuit equation (17) reduces to the classical case. By applying
the same procedure proposed in Subsection 4 on Eq. (17), we get,

ΨTLm,α(x) +
1

RC
ΨT(G(µ)Lm,α(x)) = F(x), (18)

where F(x) = Iµ(E(x)) + v0.

LC circuit

In this section, our focus turns to the numerical exploration of the fractional order LC circuit. The
LC circuit is an electrical circuit composition consisting of an inductor (L) and a capacitor (C). The
inductor stores energy in its magnetic field as current flows through it, while the capacitor stores
electrical energy in its electric field when voltage is applied. The fractional-order generalized LC
circuit is described as

LDµq(x) +
1
C

q(x) = E(x), 1 < µ ≤ 2, q(0) = q0, q ′(0) = q1. (19)

This fractional-order LC circuit equation (19) reduces to the classical one when µ = 2. Applying
the Riemann-Liouville fractional integral of order µ to both sides of Eq. (19) and dividing by L, we
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get

q(x)−
⌈µ⌉−1∑

k=0

q(k)(0)
xk

k!
+

1
LC

Iµq(x) =
1
L

Iµ(E(x)). (20)

Substituting initial condition into Eq. (20) and approximating the function q(x) by the generalized
Laguerre polynomials (4), we get

ΨTLm,α(x)− q0 − xq1 +
1

LC
ΨT IµLm,α(x) =

1
L

Iµ(E(x)). (21)

Next, using the operational matrix of fractional integration defined in Eq. (13), we obtain

ΨTLm,α(x) +
1

LC
ΨT(G(µ)Lm,α(x)) = F(x), (22)

where F(x) = 1
L Iµ(E(x)) + q0 + xq1.

RLC circuit

In this section, our focus transitions to the numerical analysis of the fractional order RLC circuit.
The RLC circuit is a complex electrical configuration integrating a resistor (R), an inductor (L),
and a capacitor (C). The resistor hinders the flow of electrical current, the inductor stores energy
in its magnetic field, and the capacitor stores electrical energy in its electric field when voltage is
applied. The fractional-order generalized RLC circuit is characterized by

Dβw(x) +
R
L

Dµw(x) +
1

LC
w(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, 1 < β ≤ 2, (23)

with

w(i)(0) = wi, i = 0, 1, ..., ⌈β⌉− 1.

This fractional-order RLC circuit equation (23) reduces to the classical one when β = 2 and µ = 1.
Applying the R–L fractional integration to the order β on both sides of Eq. (23), we get

w(x)−
⌈β⌉−1∑

k=0

w(k)(0)
xk

k!
+

R
L

Iβ−µ

(
w(x)−

r∑
k=0

w(k)(0)
xk

k!

)
+

1
LC

Iβw(x) = Iβ(E(x)), (24)

where r − 1 < µ < r.

Substituting initial condition into Eq. (24) and approximating the function w(x) by the generalized
Laguerre polynomials (4), we get

w(x)− w0 − xw1 +
R
L

ΨT Iβ−µLm,α(x)−
R
L

Iβ−µ

( r∑
k=0

w(k)(0)
xk

k!

)
+

1
LC

ΨT IβLm,α(x) = Iβ(E(x)).

(25)
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Next, using the operational matrix of fractional integration defined in Eq. (13), we obtain

w(x) +
R
L

ΨT(G(β−µ)Lm,α(x)) +
1

LC
ΨT(G(β)Lm,α(x)) = F(x), (26)

where F(x) = Iβ(E(x)) + w0 + xw1 +
R
L Iβ−µ

(∑r
k=0 w(k)(0) xk

k!

)
.

Finally, by using the collacation points xi =
i
N where i = 0, 1, · · · , N in Eqs. (16), (18), (22) and

(26), we get a system of N + 1 algebraic equations for each circuit model [34]. Solving these
systems of algebraic equations for the unknown vector ΨT and using Eq. (4), we get an accurate
approximation solution to the given models.

5 Error analysis

In this section, we introduce an error estimation method based on the residual error function for
our proposed GLOMM. The residual error, a quantification of the difference between computed
and true solutions in numerical methods, serves as a pivotal tool in assessing accuracy and
convergence. By monitoring the residual during the solution process, it offers insights into method
convergence, facilitates error control, and aids in adaptive strategies.

Consider the general fractional-order electrical circuit equation:

Dβy(x) + ADµy(x) + By(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, 1 < β ≤ 2, (27)

with

y(i)(0) = yi, i = 0, 1, ..., ⌈β⌉− 1,

where Dβ and Dµ represent the fractional derivative of order β and µ, respectively. A and B are
coefficients related to the circuit components (e.g. resistance, inductance, capacitance). Let yN(x)
be the numerical solution of given initial value problem (27). Substituting yN(x) into Eq. (27), we
get

DβyN(x) + ADµyN(x) + ByN(x)− E(x) = RN(x), (28)

where RN(x) is the residual function. By using Eqs. (27) and (28), we get

Dβ(y(x)− yN(x)) + ADµ(y(x)− yN(x)) + B(y(x)− yN(x)) = RN(x). (29)

Now, let us define the error function as ϵN(x) = (y(x)− yN(x)). Subsequently, employing this
error function in Eq. (29), we derive

DβϵN(x) + ADµϵN(x) + BϵN(x) = RN(x), (30)

with initial conditions ϵN(0) = 0 and ϵ′N(0) = 0. Solving Eq. (30) using the approach outlined in
Section 4 yields the approximate error estimation ϵN(x) for the proposed method. Consequently,
the approximation of maximum absolute error can be estimated by

EN = max |ϵN |, 0 ≤ x ≤ T.
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6 Numerical simulations and comparative discussions

In this section, we illustrate the dynamics of fractional electrical circuit models, specifically
RL, RC, LC, and RLC, through four distinct examples. These demonstrations showcase the efficacy
of the Generalized Laguerre Operational Matrix Method (GLOMM) under various fractional
derivative orders. To validate the accuracy and versatility of our proposed method, we conduct
comprehensive comparisons with existing techniques reported in the literature. This comparative
analysis serves as a robust means of affirming the reliability and applicability of the GLOMM in
accurately capturing the behavior of fractional electrical circuit models across different fractional
derivative orders. All computations are performed using Matlab R2021a.

Example 1 (RL Circuit) In this illustrative instance, we contemplate the fractional-order RL circuit
model defined by Eq. (14) in the presence of a constant voltage source, where E(x) = 0. Specifically, when
considering µ = 1, the precise solution to Eq. (14) can be expressed as

u(x) =
[

u0 −
E(x)L

R

]
e
−R

L x +
E(x)L

R
.
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Figure 1. (a) Comparative illustration of approximate solutions for the fractional-order RL circuit in contrast to
the exact solution. (b) Absolute error obtained from GLOMM. (c) Comparative illustration of exact, GLOMM,
SFGBWM, and FWM solutions for the RL circuit model at µ = 1.00. (d) Residual error estimation for RL circuit
model
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In Figure 1a, we present a visual comparison between the exact solution and the approximation obtained
through the Generalized Laguerre Operational Matrix Method (GLOMM), as introduced in Subsection
4, for the fractional-order RL circuit. The analysis involves specific parameter values R = 10, L = 1,
an initial condition of u0 = 10, and a derivative order of µ = 1. Additionally, Figure 1b illustrates the
associated absolute error resulting from the application of GLOMM to the RL circuit under the same
settings. In Figure 1c, a graphical comparison unfolds between the exact solution, our proposed method,
and established methods from the literature, namely Shifted fractional order Gegenbauer wavelets method
(SFGBWM) [25] and Fibonacci wavelet (FWM) [26]. The visual representation distinctly highlights the
remarkable alignment between our method and the exact solution, showcasing its superior performance
compared to existing approaches. Figure 1d illustrates the estimation results of the residual error function
for the RL circuit model. These estimation results demonstrate a concordance between the absolute error
and the estimated error, both of which are around 10−5, showcasing the accuracy of the proposed method.
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Figure 2. (a) Dynamic response of GLOMM solution for the RL circuit at varying values of the fractional
parameter µ. (b) Absolute errors for the RL circuit at different N values
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In Figure 2a, we depict the graphical behavior of the RL circuit across various fractional derivative
orders, specifically for µ = 0.99, 0.90, 0.80, 0.70. This illustration unveils the dynamic response
of the RL circuit model to alterations in fractional derivative orders. Notably, as the fractional
derivative order diminishes, the function reaches its maximum value at an earlier stage. This trend
indicates that a lower fractional derivative order induces an expedited response in the RL circuit,
leading to a more rapid attainment of its peak value. In Figure 2b, we showcase the absolute errors
derived from the application of GLOMM with varying numbers of basis vectors for generalized
Laguerre polynomials, specifically for N = 4, 6, 8, 10. This graphical representation highlights an
improved performance of GLOMM with increasing values of N, indicating enhanced accuracy
and convergence as the number of basis vectors for Laguerre polynomials expands.

Example 2 (RC Circuit) In this illustration, we examine the fractional-order RC circuit model as defined
by Eq. (17), assuming a constant voltage source with E(x) = 0. When µ = 1, the precise solution to
Eq. (17) is obtained as

v(x) = v0e
−x
RC .
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Figure 3. (a) Comparative illustration of approximate solutions for the fractional-order RC circuit in contrast to
the exact solution. (b) Absolute error obtained from GLOMM. (c) Comparative illustration of exact, GLOMM,
SFGBWM, and FWM solutions for the RC circuit model at µ = 1.00. (d) Residual error estimation for RC circuit
model
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In Figure 3a, we present a visual juxtaposition of the exact solution and the approximation achieved through
the GLOMM, as introduced in Subsection 4, for the fractional-order RC circuit. The analysis encompasses
specific parameter values R = 10, C = 1, an initial condition of v0 = 20, and a derivative order of
µ = 1. Furthermore, Figure 3b illustrates the corresponding absolute error resulting from the application
of GLOMM to the RC circuit under the same settings. In Figure 3c, a graphical comparison unfolds
between the exact solution, our proposed method, and established methods from the literature, namely the
SFGBWM [25] and FWM [26]. The visual representation distinctly highlights the notable alignment
between our method and the exact solution, underscoring its superior performance relative to existing
approaches. Figure 3d illustrates the estimation results of the residual error function for the RC circuit
model. These estimation results demonstrate an agreement between the absolute error and the estimated
error.
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Figure 4. (a) Dynamic response of GLOMM solution for the RC circuit at varying values of the fractional
parameter µ. (b) Absolute errors for the RC circuit at different N values

In Figure 4a, we depict the graphical behavior of the fractional-order RC circuit across various fractional
derivative orders, specifically for µ = 0.99, 0.90, 0.80, 0.70. In Figure 4b, we present the absolute errors
resulting from the application of GLOMM with different numbers of basis vectors for generalized Laguerre
polynomials, specifically considering N = 4, 5, 6, 8. This graphical representation underscores the improved
performance of GLOMM as the value of m increases, suggesting enhanced accuracy and convergence with
the expansion of the number of basis vectors for generalized Laguerre polynomials. In the subsequent
analysis, we alter the configuration for the fractional-order RC circuit by setting R = 1 and applying
GLOMM under a fractional order of µ = 0.5.

Table 1 provides a comparative analysis of solutions obtained using the GLOMM, ABM, and Ch3WM
for the fractional-order RC circuit model. The analysis is conducted under a fractional derivative order of
µ = 0.5. The resulting outcomes are visually compared with established techniques, such as the Chebyshev
Wavelets of the third kind Method (Ch3WM) [24], in Figure 5. Given that the exact solution of the RC
circuit is defined for integer derivative orders, rendering it unsuitable as a reference under fractional order
µ = 0.5, we employ the Adams-Bashforth method (ABM) [35] as a reference technique. The comparison
between our method, Ch3WM, and ABM reveals a notable alignment. The obtained results strongly indicate
that GLOMM exhibits superior agreement compared to other techniques.
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Table 1. Comparison of GLOMM, Ch3WM, and ABM solutions for fractional order RC circuit model with
µ = 0.5

ABM GLOMM Ch3WM
0 0.01 0.010006099 0.009311492
0.1 0.007280578 0.007195621 0.007227947
0.2 0.006459239 0.006429888 0.006437929
0.3 0.005940309 0.005921566 0.005920666
0.4 0.005555113 0.005525782 0.005536186
0.5 0.005249442 0.005209207 0.005231222
0.6 0.004996976 0.004985988 0.004980178
0.7 0.004782689 0.004785824 0.004766949
0.8 0.004597144 0.004561122 0.00458242
0.9 0.004434009 0.004411648 0.004420164
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Figure 5. Comparative illustration of GLOMM, Ch3WM, and ABM solutions for the RC circuit model at µ = 0.5

Example 3 (LC Circuit) In this instance, we examine the fractional-order LC circuit model described by
Eq. (19). Assuming a constant voltage source with E(x) = 0, the precise solution to Eq. (19) is derived for
µ = 2 as follows:

q(x) = q0cos

(√
1

LC
x

)
+ CE(x)− CE(x)cos

(√
1

LC
x

)
.

In Figure 6a, we showcase a visual comparison between the exact solution and the approximation obtained
through GLOMM, as introduced in Subsection 4, for the fractional-order LC circuit. The analysis considers
specific parameter values L = 10, C = 1, an initial condition of q0 = 0.01, and a derivative order of
µ = 2. Additionally, Figure 6b illustrates the corresponding absolute error resulting from the application
of GLOMM to the LC circuit under the same settings. In Figure 6c, a graphical comparison unfolds
between the exact solution, our proposed method, and established methods from the literature, namely
SFGBWM [25] and FWM [26]. The visual representation distinctly highlights the remarkable alignment
between our method and the exact solution, emphasizing its superior performance compared to existing
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approaches. Moreover, in Figure 6d, we depict the comparison between GLOMM and the exact solution
of the fractional-order LC circuit model over an extended time interval, t ∈ [0, 10]. This illustration
underscores the high accuracy demonstrated by GLOMM, particularly for longer time intervals. Figure 6e
illustrates the estimation results of the residual error function for the LC circuit model. These estimation
results demonstrate an agreement between the absolute error and the estimated error, both of which are
around 10−15.
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Figure 6. (a) Comparative illustration of approximate solutions for the fractional-order LC circuit in contrast to
the exact solution. (b) Absolute error obtained from GLOMM. (c) Comparative illustration of exact, GLOMM,
SFGBWM, and FWM solutions for the LC circuit model at µ = 2.00. (d) Comparison of fractional-order LC
circuit solutions with the exact solution for t ∈ [0, 10]. (e) Residual error estimation for LC circuit model
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In Figure 7a, we illustrate the graphical behavior of the fractional-order LC circuit across varying fractional
derivative orders, specifically for µ = 1.99, 1.90, 1.80, 1.70. Concurrently, in Figure 7b, we present the
absolute errors resulting from the application of GLOMM with varying numbers of basis vectors for
generalized Laguerre polynomials, specifically considering N = 5, 6, 7, 8. This graphical representation
underscores the improved performance of GLOMM as the value of m increases, indicating enhanced
accuracy and convergence with the expansion of the number of basis vectors for Laguerre polynomials.
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Figure 7. (a) Dynamic response of GLOMM solution for the LC circuit at varying values of the fractional
parameter µ. (b) Absolute errors for the LC circuit at different N values

In Figure 8, we modify the configuration for the fractional-order LC circuit by setting µ = 1.5 and applying
GLOMM. The resulting outcomes are visually contrasted with well-established techniques, such as the
Bernoulli Wavelet Method (BWM) [24]. Considering that the exact solution of the LC circuit is defined
for integer derivative orders, making it unsuitable as a reference under fractional order µ = 1.5, we again
resort to the ABM [35] as a reference technique. The comparison involving our method, BWM, and ABM
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reveals a noteworthy alignment. The obtained results strongly indicate that GLOMM exhibits superior
agreement compared to other techniques.
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Figure 8. Comparative illustration of GLOMM, BWM, and ABM solutions for the LC circuit model at µ = 1.5

Table 2 provides a comparative analysis of solutions obtained using the GLOMM, ABM, and BWM for the
fractional-order LC circuit model. The analysis is conducted under a fractional derivative order of µ = 1.7.

Table 2. Comparison of GLOMM, BWM, and ABM solutions for fractional order LC circuit model with µ = 1.7

ABM GLOMM BWM
0 0.01 0.01 0.010001716
0.1 0.009871448 0.009871159 0.009870358
0.2 0.009585093 0.009584501 0.009583816
0.3 0.009181335 0.009180212 0.009179646
0.4 0.008681298 0.008679638 0.008679286
0.5 0.008101184 0.008098930 0.008099095
0.6 0.007454966 0.007452128 0.007452203
0.7 0.006755332 0.006751900 0.006752166
0.8 0.006014079 0.006010103 0.006010442
0.9 0.005242306 0.005237790 0.00523831

Example 4 (RLC Circuit) In this instance, we delve into the RLC circuit model described by Eq. (23).
Assuming a constant voltage source with E(x) = 0, the exact solution to Eq. (23) is derived for β = 2 and
µ = 1 as follows:

w(x) = w0e
−Rx

2L cos

(√
1

LC
−

R2

4L2 x

)
.
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In Figure 9a, we present a visual comparison between the exact solution and the approximation obtained
through GLOMM, as introduced in Subsection 4, for the fractional-order RLC circuit. The analysis
considers specific parameter values R = 10, L = 10, C = 10, an initial condition of w0 = 0.01, and
derivative orders β = 2 and µ = 1. Additionally, in Figure 9b, we illustrate the graphical behavior of the
fractional-order RLC circuit across varying fractional derivative orders, specifically for β = 2.00, µ = 1.00,
β = 1.90, µ = 0.95, β = 1.80, µ = 0.90, β = 1.70, µ = 0.85, β = 1.60, µ = 0.80, and β = 1.50, µ =

0.75.
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Figure 9. (a) Comparative illustration of approximate solutions for the fractional-order RLC circuit in contrast
to the exact solution. (b) Dynamic response of GLOMM solution for the RLC circuit at varying values of the
fractional parameters β and µ

Table 3 showcases the CPU time (in seconds) required for solving RC, RL, LC, and RLC circuits utilizing
the Generalized Laguerre Operational Matrix Method. These results underscore the ability of GLOMM to
deliver fast and efficient numerical solutions, making it a promising technique for applications that demand
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both accuracy and computational speed.

Table 3. CPU time (in seconds)

RC RL LC RLC
CPU time(s) 0.3081 0.3025 0.2812 0.3438

In Table 4, we provide a comprehensive comparison of the maximum absolute errors achieved by our proposed
GLOMM in contrast to FWM, SFGWM, and BWM for the RC, RL, and LC electrical circuit models. This
comparison emphasizes the superior accuracy and precision of GLOMM in delivering numerical solutions
for fractional-order electrical circuits.

Table 4. Comparison of Maximum Absolute Errors for RC, RL, and LC circuits

GLOMM FWM SFGWM BWM
RC 7.1054 × 10−15 9.7149 × 10−5 9.6041 × 10−5 6.11 × 10−2

RL 2.1278 × 10−5 5.5706 × 10−4 6.7269 × 10−3 -
LC 3.2682 × 10−15 1.6238 × 10−6 2.8394 × 10−6 1.16 × 10−5

7 Conclusion and further research

In conclusion, this research introduces a novel and efficient numerical approach, the Generalized
Laguerre Operational Matrix Method (GLOMM), for solving fractional electrical circuit models
represented by RL, RC, LC, and RLC configurations within the framework of the Caputo deriva-
tive. By leveraging the distinctive properties of generalized Laguerre polynomials and developing
an operational matrix of fractional integration, our method offers a powerful tool for accurately
capturing the intricate dynamics of these circuits. Through a series of numerical examples con-
ducted using Matlab R2021a, we demonstrated the robustness and versatility of our proposed
approach across varying fractional derivative orders. Notably, we observed maximum absolute er-
rors of approximately 10−15 for the RC circuit, 10−5 for the RL circuit, and 10−15 for the LC circuit,
highlighting the superior accuracy of our method compared to existing approaches. Furthermore,
the high level of agreement in the approximate solution for the RLC circuit, as evidenced in the
illustrations, further validates the efficacy of our approach. Additionally, CPU time serves as a cru-
cial metric for assessing computational efficiency, directly reflecting the computational resources
required to execute our algorithm. The maximum CPU time of 0.3438 obtained using GLOMM
underscores the computational efficiency of our proposed technique. The results underscore
the potential of our method as a valuable tool in the analysis and design of fractional electrical
circuits, showcasing its ability to provide precise solutions and enhance our understanding of the
underlying dynamic behaviors.
Future research directions stemming from this study could explore the extension of the GLOMM
to address nonlinear fractional electrical circuit models, assessing its performance under varying
degrees of nonlinearity. Additionally, incorporating alternative orthogonal basis functions or
operational matrices alongside generalized Laguerre polynomials may be investigated to enhance
the method’s versatility. Parametric studies and sensitivity analyses can be conducted to evaluate
the robustness of the GLOMM in response to variations in circuit parameters and fractional orders.
In addition, integration with machine learning techniques could be explored to optimize the
selection of collocation nodes and further refine the approximation process, ultimately improving
the accuracy and efficiency of the GLOMM.
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