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PRECISION EVOLUTIONARY OPTIMIZATION 
PART I:  NONLINEAR RANKING APPROACH 

Özer Ciftcioglu1 , S. Serhat Seker2, Jelena Dikun3, Emine Ayaz2 
1 Delft University of Technology, Delft, The Netherlands 

2 Istanbul Technical University, Istanbul, Turkey 
3 Lithuanian Maritime Academy, Klaipeda, Lithuania 

Theoretical foundations of a robust approach for multiobjective optimization by evolutionary algorithms are introduced. The 
optimization method used is the conventional penalty function approach, which is also known as bi-objective method. The novelty of 
the method stems from the dynamic variation of the commensurate penalty parameter for each objective treated as constraint. The 
parameters collectively define the right slope of the tangent as to the optimal front during the search. The slope conforms to the 
theoretical considerations so that the robust and fast convergence of the search is accomplished throughout the search up to micro 
level in the range of 10-10 or beyond with precision as well as with accuracy thanks to a robust probabilistic distance measure 
established in this work. The measure is used for nonlinear ranking among the population members of the evolutionary process, and 
the method is implemented by a computer program called NS-NR developed for this research. The effectiveness of the method is 
exemplified by a demonstrative computer experiment minimizing a highly non-linear, non-polynomial, non-quadratic etc. function. 
The algorithm description in detail and further several applications are presented in the second part of this research. The problems 
used in computer experiments are selected from the existing literature for comparison while the experiments carried out and reported 
here to demonstrate the simplicity vs effectiveness of the algorithm. 

I n d e x  T e r m s — Evolutionary algorithm, multiobjective optimization, constraint optimization, probabilistic modeling.

I .  I N T R O D U C T I O N  

VOLUTIONARY computation is ubiquitous, due to its 
effectiveness in many multi-objective optimization 

problems, spanning all engineering disciplines and the 
cognitive science. Because of its heuristic nature, and therefore 
simplicity, it can easily be implemented. Evolutionary 
computation implies a series of heuristic algorithms which are 
subject to modification during the search to enhance their 
effectiveness in a problem solving situation. A very effective 
heuristic search algorithm known as genetic algorithm (GA) is 
a special form of evolutionary computation having its search 
parameters fixed. In this context there are new evolutionary 
computation methods, which are trying to be competitive with 
the existing ones, such as differential evolution [1, 2]. Due to 
the random search mechanism in heuristic optimization 
algorithms, the exact tracing of convergence of the algorithm 
to a minimum or maximum, is not possible. However, they are 
remarkably fast and robust to find a minimum or maximum 
due to effective search rules embedded in the algorithms. For 
detailed description for such algorithms mention can be made 
of some text books [3-5].  

Again, because of the heuristic nature of such search 
algorithms, there are continuous improvements on the 
heuristics and they are regularly reported in the literature, e.g. 
[6, 7]. Multi-objective optimization problems may involve 

plain multi-objectivity, as well as multi-objectivity with 
constraints. In particular, a single-objective problem with 
several constraints can be cast into a bi-objective optimization 
problem. One effective method to deal with single objective 
and constraints imposed on it is known as penalty function 
method. In this method the penalty function is simply a 
function representing the constraint violation, and this 
function is added to the single objective function that the 
summation is subjected to minimization. Here there is also a 
penalty parameter, which determines the appropriate 
proportion of the violation during the search. The appropriate 
proportion here is dependent on the progress by the search 
algorithm, and the nature of the problem. Therefore, the 
penalty parameter can be considered constant, but in an 
evolutionary sense it can be adapted during the search. 
Although the adaptation of the penalty parameter is an 
appealing concept, an effective method dealing with adaptivity 
is an issue, and it is subject to investigation in general. [8, 9]. 

The subject matter of this work is an optimization dealing 
with a single objective with constraints using the penalty 
function method, proposing a new effective approach for 
convergence. In the approach, the random solutions are 
modelled using probabilistic considerations, to establish a 
nonlinear distance measure. It is used for effective, i.e. robust 
ranking of genetic population members and efficient, i.e. fast 
converging, and stable solutions. The measure is used for 
nonlinear ranking of the population members during the 
evolutionary process, and the method is implemented by a 
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computer program called NS-NR (nondominated sorting-
nonlinear ranking) algorithm developed for this research. 

The research is organized in two parts. In the first part, 
namely in this work at hand, the theory of the approach is 
presented with a demonstrative example afterwards. In the 
second part  [10], based on the theoretical considerations, the 
development of the algorithm is given in detail and some 
demonstrative optimization problems are presented as 
applications. The organization of the paper is as follows. In 
section two, formulation of general multiobjective 
optimization problem as constraint single objective problem 
and probabilistic constraint handling are presented. In section 
three, implementation of the probabilistic constraint handling 
by means of evolutionary algorithm is given. In section four, 
the important implications of the probabilistic modeling are 
highlighted. In section five a demonstrative computer 
experiment is given and it is followed by discussion and 
conclusions. 

I I .  M U L T I O B J E C T I V E  O P T I M I Z A T I O N  
B Y  W E I G H T I N G  M E T H O D  

 PR O BL E M  S T A T E M E N T  A.
Weighting method is a known approach for multi-objective 

optimization problems [11-13]. In this method each objective 
has an associated weighting coefficient, and the weighted sum 
of the objectives is minimized. By doing so, the multiple 
objective functions are rendered to a single objective function. 
We assume that the weighting coefficients wi are real numbers 
such that 0 ≤ wi for all objectives i=1,….,k , so that a weighting 
problem can be stated as 

1
min ( )

k

i i
i

w f subject to S
=

   ∈∑ x x
 

(1) 

Referring to the optimization involved in this work, there is 
one objective with some constraints. Therefore the problem 
can be written of the form  

1 2min ( ) ( [ ( ), ( ),..., ( )]T
mf subject to g g x g x g x  x x) =

 
(2) 

The feasible region is assumed to have the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  (3) 

Considering that, the summation of the constraint violations is 
as another objective subject to minimization, the problem 
formulation becomes a problem of two objective functions 
subject to minimization. The formulation of the problem in 
this case becomes 

1 2min ( ) (w f w G+x x)  (4) 
where  

 
(5) 

From above we write 

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g f G

S x R g g g g

m
=

+ = +

= ∈ ≤

∑x x x x

x) = x x x  

(6) 

where w1=1, w2i=mI . In this problem formulation it is clear 
that the optimization problem turns out to be a constraint 
optimization with single objective f(x), and the constraints 
denoted by gj(x), where the index j is connected to the 
associated constraint. This approach is known as ε-Constraint 
method [13, 14]. One of the objective functions is selected to 
be optimized and all the other objective functions are 
converted into constraints by setting an upper bound to each 
of them. Hence, the problem is converted to be of the form 
minimize   fl(x);  subject to fj(x)≤ εj for all j=1,2,….,k, j≠l; x∈S 
where l∈{1,…,k}. Naturally, inequalities can be converted to 
equalities by taking εj=0 for all j=1,2,….,k, j≠l. 

 PE N A L T Y FU N C T I O N  M E T H O D  B.
Referring to (6) we can write 

1
min ( , ) ( ) ( )

J

j j
i

P R f R g
=

= + ∑x x x
 

(7) 

where function gj(x) is the penalty function, and the 
parameters Rj are the associated penalty parameters, which are 
not known. If we define a representative penalty parameter, 
(R) representing all the penalty parameters, then (7) turns out 
to be 

1
min ( , ) ( ) ( )

J

j
i

P R f R g
=

  = + ∑x x x
 

(8) 

or taking f1(x) =f(x) and the summation of the gj(x) functions as 
f2(x), (8) becomes 

1 2min{ ( ) ( )}optP f R f= +x x  (9) 
In order to solve the optimization problem (9) by means of 

the weighting method, there are some options, as given below. 

• R is constant. In this case the development of the optimal 
front is illustrated in figure 1. The optimal point is denoted 
by Popt subject to obtain by the final development. A 
solution during the optimization process is denoted by T 
which is far from the Popt. It is to note that T is on a Pareto 
front, and the tangent passing from the point T intersects f2 
indicates that indeed, T is far from Popt.. Seeing  

 
 A p p r o ac h  to  th e  f i n a l  o p t i m a l  s o l u t i o n  b y  m e an s  o f  Fig. 1. 

c o n s t an t  p en a l ty  p ar am e t er  R .   

( ( )i iG gm∑
k

i=1
x) = x
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the problem of convergence to Popt, is a real one, an effective 
method other than slope of the tangent R=w1/w2 should be 
developed. This is because otherwise evolutionary 
computation needs to be tailed-up by some gradient-based 
local search algorithm to reach the optimal point. In this case 
the convergence is essentially due to the constraints and not 
due to the single objective, leaving the objective in a marginal 
position with respect to the constraints. Such a case makes the 
penalty parameter R critical and unpredictable. 

+ To determine the penalty parameter with adaptation by 
means of an extrapolation polynomial. In this case a 
polynomial is fitted to the optimal front and its 
extrapolated intersection with the objective function axis is 
used for the slope of the tangent which is the reasonable 
estimation of the penalty parameter R. However, in this 
case, search algorithm tends to move to the straightforward 
solution, which is the gradual diminishing of the slope as 
illustrated in figure 2. As result of this option the penalty 
parameter takes smaller values during the search and may 
eventually vanish. In the extreme, R goes to zero and 
problem turns out to be a single objective optimization 
omitting the constraints.  

 
 Approach to the final optimal solution by means of penalty Fig. 2. 

function approach, where R is the penalty parameter being estimated 
through curve fitting 

 PE N A L T Y PA R A M E T E R  C.
In this subsection, it is aimed to establish the penalty 

parameter by approximating the Pareto front with respect to 
f1(x) and f1(x), and to determine the penalty parameter as a 
slope of a tangent line, the envelope of which is the Pareto 
front. The parametric representation of the tangent is given by 

2 1( ) ( ) 1
opt

f f
t P t

+ =
−

x x

 
(10) 

where t is the parameter. In (10), Popt is the optimum solution 
where  f2(x )= Popt and  f1(x ) =0. From (10), we write 

2 1( ) ( )
( )opt

tf f t
t P

= +
−

x x
x

 
(11) 

The slope in (11) is given by 

( )opt

tr
t P

=
− x  

(12) 

as a new penalty parameter, whose variation is shown in figure 
3a. The envelope, which approximately represents the Pareto 
front, is shown in figure 3b. 

 
 (a) (b) 

 The variation of the new penalty parameter r=(Popt-T)/T where Fig. 3. 
T=Popt-t (a); The envelope of tangent and the new penalty parameter r (b). 

Explicitly, r is the gain in f1(x) per unit decrease in f2(x) at the 
point of tangent F and within infinitesimally small interval of 
f2(x). The Pareto front is to obtain by arranging (11) with 
respect to t and admitting a single solution for it; namely, 

2
1 2 2[ ( ) ( ) ( )] ( ) ( ) 0opt optt f x f x P x t f x P x+ − − + =

 
(13) 

 
 NS-NR approach to the final optimal solution by means of penalty Fig. 4. 

function approach; r is the penalty parameter. 

then, the optimal front is obtained by equating the 
discriminant to zero that gives the envelope of the tangent as 
the optimal front. 

2
1 2 2[ ( ) ( ) ( )] 4 ( ) ( ) 0opt optf x f x P x f x P x− − − =

 
(14) 

The new penalty parameter is zero for t=0 and it 
monotonically increases as t increases. For t=Popt the penalty 
parameter r goes to infinity. This is sketched in figure 4.  

The convergence approach conforming to (12) presents two 
insights: 

+ Approach to optimum is systematic and therefore robust 
without precarious tangent slope computations 

+ No local search for Popt is necessary. 

Implementation of the approach is due to a probabilistic 
modeling of the random solutions in the evolutionary 
computation and ensuing nonlinear ranking, which are 
presented in the following section 

0
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I I I .  N O N L I N E A R  R A N K I N G  B Y  
P R O B A B I L I S T I C  M O D E L I N G  

A general constrained optimization problem can be 
formulated as  

1
min ( ) ( ) ( )

J

j j
i

P f gm
=

  = + ∑x x x
 

(15) 

considering (6). Above f(x) is the single objective function to 
be minimized; g(x) is the violation of the gi-th constraint, 
namely penalty function, µi is the associated parameter of the 
penalty function. At each generation, the evolutionary 
algorithm tries to make vanish gj(x) during the evolutionary 
minimization process. Regarding the population density of 
solutions during the search, the probability density of gj(x) is 
highest about zero violations, and its value gradually 
diminishes proportional with the degree of violation. Based on 
the randomly generated population of the evolutionary 
algorithm, we can model the violations as a random variable, 
where the violations are independent due to random 
population formation by the random composition of 
chromosomes at each generation. The number of violations 
per unit violation gradually decreases with the degree of 
violation conforming to the commensurate number of 
chromosomes created by the elitism and sorting strategy in the 
genetic algorithm. This probabilistic pattern continues in the 
same way without change throughout the generations. The 
probabilistic description of this process can be modeled by the 
exponential probability density (pdf), because of its 
memorylessness property. The property of being the 
exponential pdf remains the same during the search, being 
independent of the progress of search process. The 
exponential pdf is a unique density having this property. 
Therefore we model the constraint function g(x) having an 
exponential pdf, which is given by 

( ) yf y e λ
λ λ −=

 
(16) 

where λ is the decay parameter. Denoting  

( )jy g x=
 

(17) 

the pdf in (16) can be written as 

( ) j j

j

g
g j jf g e λλ −=

 
(18) 

The mean value of the exponential pdf function is equal to λj
-1. 

During the evolutionary search gi(x) is a general form of 
violation which applies to any member s of the population 
although s is not explicitly denoted. However, in explicit form, 
we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=

 
(19) 

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations gj to the 
mean of the exponential pdf, namely  

1/j jgλ
−

=
 

(20) 

One should note that the mean of the exponential probability 
density of gj is equivalent to the mean of a uniform probability 
density applied to the violations gj. Therefore the mean of the 
exponential density function is estimated by taking the mean 
of the violations which are from a uniform probability density 
and they are independent. Variation of the exponential pdf for 
different decay parameters is shown in figure 5a. 

 
 (a) (b) 

 Plot of exponential pdf for different decay constants vs j-th Fig. 5. 
violation gj (a); p(gj) vs gj (b) 

Since a violation gj spans all the violations starting from zero 
up to the point gj, the probability of the violation is expressed 
as cumulative distribution function whose implication is easy 
to comprehend by considering the extremes. The cumulative 
distribution function of (16) is given by 

0

1( ) 1
jj

j j j

gg
g gg

j j
j

p g e dg e
g

−−

= = −∫
 

(21) 

The variation of p(gj) vs gj with respect to the mean of gj is 
shown in figure 5b. For gj=0 violation is zero and for gj=∞, 
violation is 1, i.e., 100%. Explicitly p(gj) is the probability of a 
violation in the range zero and gj. It is monotonically 
increasing function complying with the boundary conditions 
of gj(x) which varies between zero and infinity. It is interesting 
to note that, from the figures, for zero constraint violation the 
exponential probability density is maximum and probability of 
violation is minimum. 

The probability p(gj) is an appropriate measure for the 
magnitude or effectiveness of a violation, and it can be 
considered as a probabilistic distance function or a metric  

measuring the distance from the zero violation fulfilling all the 
conditions to be a distance measure [15, 16]. Therefore in this 
work, in (6), mj is replaced by Crj(gj) in the form  

( ) ( )j j j jC r g gm=  (22) 
So that (21) becomes 

1
( ) ( ) ) ( )

J

j j j
i

P f C r (g g
=

= + ∑x x x
 

(23) 

where C is constant common for all the constraints which is 
called as convergence parameter as it is related to the 
convergence properties of the search; rj is a new penalty 
parameter which is a function of gj, in general, and therefore 
we denote it as 

04



Ö Z E R  C I F T C I O G L U  e t  a l . :  
P R E C I S I O N  E V O L U T I O N A R Y  O P T I M I Z A T I O N  P A R T  I :  N O N L I N E A R  R A N K I N G  A P P R O A C H  

 

( )j jr f g=
 

(24) 

In (23), rj(gj)gj is replaced by p(gj), in the form  

( ) ( )j j j j jr g g p g=
 

(25) 

so that (23) becomes  

1
( ) ( ) ( ))

J

j j
i

P f C p (g
=

= + ∑x x x
 

(26) 

In view of (25), rj is given by  

( ) ( ) /j j j j jr f g p g g= =
 

(27) 

The new formulation (26) yields favourable, far reaching 
implications which are presented below.  From (6), we define  

1 1
( )

J J

j j jg G C p gm = =∑ ∑
 

(28) 

where J is the number of constraints; C is a common constant. 
The probability p(gj) controls the penalty parameter ri, which 
is absorbed in p(gj) in the form of mi. The parameter ri varies 
theoretically between zero and infinity, while p(gj) varies 
between zero and unity. This nonlinear function 
transformation p(gj) plays important role, as it is used for 
ranking the population members during the genetic search. 
We can interpret p(gj) (28) in several ways as follows. 

+ On one hand it is a penalty function obtained by a 
nonlinear interpolation applied to gj. In this process, the 
probabilistic considerations apparently are exercised as a 
nonlinear transformation to the penalty function g(xj) to 
obtain another penalty function p(gj) in order to bring g(xj) 
from an infinite range to a finite range namely, between 
zero and unity. 

+ As another interpretation, the penalty function p(gj) is the 
probability of a random variable Gj, namely cumulative 
probability of an exponentially distributed random 
variable.  

+ Yet another interpretation is to consider p(gj) as another 
stochastic variable Yj obtained from a function of 
stochastic variable Xj. 

The last interpretation is highlighted in this work so that 
several essential implications can be derived. For this aim let 
us define 

( ) ( )j jp g H g=
 

(29) 

where gj is a random variable. The probability density of this 
random variable is exponential density function given by (16). 
According to (29), the new random variable p(gj) is given by  

0

( ) ( )
j

j

g
g

j j jp g H g e dgλλ −= = ∫
 

(30) 

which gives 

( ) ( ) 1 jg
j jp g H g e λ−= = −

 
(31) 

where H(gj) is the function of random variable gj. The 
probability density fp(p) of the new random variable p is given 
by 

1 ( )

( )
( ) ( )

| |

j

j

g j
p

j
g H p

j

f g
f p dH g

dg −=

=

 

(32) 

that gives 

( ) 1pf p =
 

(33) 

which is a uniform pdf. This surprising result has far reaching 
implication as this will be seen shortly afterwards, as this is 
presented in the following section. 

I V .  I M P O R T A N T  I M P L I C A T I O N S  O F  
T H E  P R O B A B I L I S T I C  M O D E L L I N G  

 AD A P T I V E  ZO O M I N G  FO R  RA N K I N G  W I T H  A.
PR E C I S I O N 

Adaptive zooming for ranking with precision is 
accomplished by accurate ranking the favourable solutions in 
the range zero and unity as probabilistic distances, even 
though the actual constraint values may be close to the optimal 
point as much as the computer precision can allow, say at the 
range of 10-10. To illustrate this, a sketch of the Pareto front at 
the early stage of the genetic search is shown in figure 6a. A 
sketch of the Pareto front at the last stage of the genetic search 
is given in figure 6b. 

   
 (a) (b) 

 Sketch of formation of the Pareto front at the early stage (a); at the Fig. 6. 
at the last stage of the GA search (b). 

The probabilistic distance to the minimum is illustrated as a 
typical example in figure 7a by the indicated area where the 
computation of the gray area is very precarious at the 
tournament selection process due to the issue of both exact 
parameterization of the exponential pdf in the existing range 
and the finite machine precision as well as the finite genotype  

 
          (a) (b)  

   Mathematical lense; pdf of the violations in the objective functions Fig. 7. 
space (a); in the probabilistic space (b). 
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coding. This situation is circumvented in figure 7b by taking 
simply p(gj) as the probability distance to the minimum. The 
indicated areas in figure 7a and 7b are the same and they are 
equal to p(gj). The grey area in figure 7a, is represented in 
figure 7b by the probabilistic distance function p(gj) which 
varies between zero and unity. This means if the penalty 
function to be minimized can be close to the optimal point in a 
micro scale, say in the range of 10-10, the minimization process 
i.e., tournament selection and ranking of the random solutions 
takes place in a macro scale in the probabilistic space as shown 
in figure 7b. This situation is equivalent to apply a 
commensurate magnifying glass to the space formed by actual 
objective function and the constraints functions to carry out 
the convergence process without being affected by any scale of 
convergence happening in this space. The Pareto front at this 
micro scale is shown in figure 6b. 

 EF FE C T I V E  TO U R N A M E N T   SE L E C T I O N   B.
Following the non-dominated sorting procedure as 

described in [17], an adaptive threshold of productive 
chromosomes is devised both in the non-dominated sorting 
(NS) stage as well as non-linear ranking (NR) stage of the NS-
NR algorithm. The details of the algorithm are given elsewhere 
[18]. The adaptive threshold of productive chromosomes is 
based on the sum of the mean of the constraint violations gT 
given by 

1 1

j

j

J J
b

T b
j j j

n
g n g

λ
−

= =

= =∑ ∑
 

(34) 

where nbj= ln2/λj  which is a constant. Referring to figure 8, the 
tournament selection, i.e., productive chromosomes selection 
is accomplished as follows. 

a) If the violations of a pair of population members are 
larger than the threshold, then the solution which has smaller 
violation wins the competition 

b) If the violations of a pair of population members are 
smaller than the threshold, then the solution with rank 
properties in terms of Pareto rank and crowding during the 
NS stage, or in terms of P(gj, x) rank during NR stage, wins the 
tournament. 

c) If the violations of a pair of population members are at 
either side of the threshold, then the elite population member 
that is the chromosome with violation lower than the 
threshold is selected irrespective to its rank in the NS or NR 
procedures. 

In figure 8 the horizontal axis refers to NS (nondominated 
sorting) procedures and vertical axis refers to NR (nonlinear 
ranking) procedures; nbj=ln2/λj is the median of the 
exponential pdf as shown in figure 8b. For nbj=ln2/λj, its 
counterpart in terms of the probabilistic distance is npj=0.5 
which is, in contrast to nbj, a constant. Thus, the constant 
probabilistic distance measure provides an adaptive threshold 
for productive chromosomes throughout the generations, at 
any scale permitted by the machine or genotype precision. By 

means of this particular tournament selection procedure, the 
dominance of the average violation by the stiff constraints, 
that is, by the members with high violations, is prevented; 
namely, during two consecutive generations the progressive 
diminishing of the average is aimed against the contingent 
average increase that may occur especially during the 
advanced stages of the convergence. In the tournament 
selection, the domains considered separately are illustrated in 
figure 8b. The smaller total mean of the constraint violations 
implies improved convergence to the optimum. 

Referring to figure 8b, the probability Pj of the event 
relevant to the case (c) above is given by 

2( ) ( 1 ) ( 2 ) j bj j bjn n
j j j jP P g P X P X e eλ λ− −= = = −

 
(35) 

 
  (a) (b) 

   Illustration of the threshold assessment for the tournament Fig. 8. 
selection in both NS and NR procedures. 

The variation of Pj with respect to nbj is illustrated in figure 9, 
in terms of its counterpart pj which has a maximum at npj=0.5 
for nbj=ln2/λj. It is to note that, the plot remains the same 
throughout the generations, although the same plot in the 
actual violations domain, that is, in the gj domain corresponds 
to a family of plots with respect to the parameter λj. 
Implementation of (35) in the NS-NR algorithm is as follows. 
Should the case (c) arise, the chromosome at the productive 
domain wins in the tournament selection. The details of this 
implementation is described in the second part of this sequel 
[10]. 

 
 Plot of the probability that two solutions occur on different sides of Fig. 9. 

the thtreshold nbj vs npj 

 FA S T  A N D  R O B U S T  C O N V E R G E N C E C.
With the probabilistic distance providing nonlinear ranking 

we obtain robust progress for convergence at each generation. 
To see this, from (27) 

( ) 1 e j jg
j

j
j j

p g
r

g g
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= =

 
(36) 

In the limiting case, i.e., convergence to the minimum, rj 
becomes  

0 0
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lim lim j j
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The variation of the penalty parameter rj with gj , based on (36) 
is shown in figure 10.  In the figure the values of λj=10000 and 
Popt = 1.0. In the same figure, also plot of r=(Popt-T)/T from 
figure 3a, is also plotted for comparison. The two plots are 
remarkably almost the same, although their origins of 
definitions are totally different. 

 
 Illustration of the new penalty parameter r as to probabilistic Fig. 10. 

modeling: r=(1-exp(-λg))/g and as to bi-objective formulation: r=t/(Popt-t) 

V .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using a 
standard optimization problem from the literature. The 
following problem is due to Koziel and Michalewicz [19]. The 
problem consists of a single objective with two constraints, 
subject to minimization, as given by (38)-(40).  
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0 10 1,..., 20)iwhere x i  ≤ ≤   ( =  (40) 
The best known optimum is  
f(x*)=-0.80361910412559 [20], and f(x*)=-0.803553 [19] while 
Koziel and Michalewicz using  Evolutionary Algorithms with 
the method of homomorphous mappings report their best 
result as 0.79953 [19]. The variables for the best known 
solution are given by [20] 
x1

*=3.16246061572185; x2
*=3.12833142812967; 

x3
*=3.09479212988791; x4

*=3.06145059523469; 
x5

*=3.02792915885555; x6
*=2.99382606701730; 

x7
*=2.95866871765285; x8

*=2.92184227312450; 
x9

*=0.49482511456933; x10
*=0.48835711005490; 

x11
*=0.48231642711865; x12

*=0.47664475092742; 
x13

*=0.47129550835493; x14
*=0.46623099264167; 

x15
*=0.46142004984199; x16

*=0.45683664767217; 
x17

*=0.45245876903267; x18
*=0.44826762241853; 

x19
*=0.44424700958760; x20

*=0.44038285956317. 
The algorithm is executed with the following settings: 
population size=200; amount of generations=150; C=100; the 
ratio of NS-NR procedures=15/1; crossover probability=0.95; 
Simulated Binary Crossover parameter nc=1.0; mutation 
probability=0.05; polynomial mutation parameter nm=30. The 
results are shown in figure 11-14 using a logarithmic scale for 

the horizontal axis, which shows the total violation G. From 
the figures it is observed how the initial population gradually 
approaches towards the optimal solution. It is emphasized that 
an iteration of the algorithm consists of 15 Pareto-ranking 
based generations, followed by one probabilistic selection 
based generation. 
After 10 iterations the best feasible solution is found to be 
f(x)= -0.793613533117088 
The population is seen in figure 11. The independent variables 
of this solution take: 
x1=3.24832595081784; x2=2.94319650443766; 
x3=2.94428354644506; x4=3.02142730074793; 
x5=2.86945102101479; x6=2.96442488220189; 
x7=0.526507749698735; x8=0.429780319936723; 
x9=0.544135374090413; x10=0.540324629305664; 
x11=3.12247385164555; x12=3.04629476487622; 
x13=0.475892826530603; x14=0.400468968498461; 
x15=0.525406871697624; x16=0.363091228109451; 
x17=0.456317769218481; x18=0.413066649730819; 
x19=0.466386058423425; x20=0.536280452626657. 
The peculiarity of the problem is essentially due to being 
highly non-linear, non-polynomial, and non-quadratic, -cubic, 
-quartic etc. the case being rather unconventional as to the 
examples subjected to evolutionary optimization and reported 
in the literature. 

 
 Population after 10 iterations; horizontal axis shows the total Fig. 11. 

violation G on a log scale. 

After 20 iterations the best feasible solution is found to be 
f(x)= -0.80305132174103 
The population is seen in figure 12. The independent variables 
of this solution take: 
x1=3.15502583606141; x2=3.11112176183396; 
x3=3.02496543675572; x4=2.98747208109771; 
x5=2.9515112756444; x6=2.89510918982729;  
x7=0.46796083643403; x8=0.473668811347126; 
x9=0.467568074848906; x10=0.452585498100958; 
x11=3.10462563793842; x12=3.04573276503504; 
x13=0.471862973631331; x14=0.463578991183557; 
x15=0.465680838811579; x16=0.447391069763821; 
x17=0.469506617661979; x18=0.42753345080416; 
x19=0.469472715928338; x20=0.519950183966872.  
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 Population after 20 iterations; horizontal axis shows the total Fig. 12. 

violation G on a log scale. 

After 30 iterations the best feasible solution is found to be 
f(x)= - 0.803340250367163 
The population is seen in figure 13. The independent variables 
of this solution take: 
x1=3.1696117425466; x2=3.09408201986905; 
x3=3.0172487986671; x4=2.99495708426546; 
x5=2.95102962307473; x6=2.89618000831499; 
x7=0.497409212169248; x8=0.482812017517757; 
x9=0.465996025171434; x10=0.452970326855209; 
x11=3.12293340944006; x12=3.04402593262227; 
x13=0.484686923390343; x14=0.462400174550483; 
x15=0.455413721826665; x16=0.447678701325465; 
x17=0.457424900628494; x18=0.436132029824826; 
x19=0.443064763267789; x20=0.509337332371848.  

After 60 iterations the best feasible solution is found to be 
f(x)= -0.803340250367163 

The population is seen in figure 14. The independent 
variables of this solution take the same value as after 30 
generations. 

V I .  C O N C L U S I O N S  

A new approach for constrained optimization is presented,   
where the multiobjectivity of the problem is due to the 
Constraints.  Conventionally, in a multi-objective constrained 
problem, with evolutionary search, the convergence is 
dominated by the constraints, if the number of constraints is  

 
 Population after 30 iterations; horizontal axis shows the total Fig. 13. 

violation G on a log scale. 

 
 Population after 60 iterations; horizontal axis shows the total Fig. 14. 

violation G on a log scale. 

high. This means, in the solution the optimization of the 
objective function is marginalized by the constraints. 
However, with the new method this undesirable situation is 
eliminated, and a clear improvement is achieved in a balanced 
manner. That is, during the search, both the objective and the 
constraints are equally stressed. The front is formed with 
advanced search operations, enabling a probabilistic nonlinear 
ranking, which is used for both NS and NR based tournament 
selection followed by elitism. For these operations an 
evolutionary probabilistic model of the random solutions is 
established. The model is used for an effective ranking 
procedure throughout the generations, yielding both robust 
and rapid convergence. The NR process of solutions is done 
always in a probabilistic scale, due to the adaptive feature of 
the probabilistic model, the outcomes of which are between 
zero and unity. This way the same precision is preserved, being 
independent of the level of convergence to the optimum. This 
means the method forms a dynamic “lens,” the magnifying 
power of which is commensurate with the scale of 
convergence. This way convergence is accomplished 
accurately and systematically with precision, at any range 
allowed by machine or genotype coding precision. Relative to 
the conventional approach, the method shows outstandingly 
better performance as to precision, approaching to the 
solution without recourse to auxiliary supports like local 
search, memetic algorithm etc. The theory presented in this 
work is exemplified by a peculiar, highly-nonlinear, non-
polynomial, non-quadratic etc. optimization problem for 
demonstration of the effectiveness of the methodology. This is 
a standard problem chosen from the literature for comparison 
of the results. We note that the results using the non-linear 
ranking developed in this work are very close to the best 
known optimum satisfactorily after few generations. Other 
examples are reported in the second part of this work, which is 
devoted to implementation and applications [10]. In both 
parts of the sequel, the reported results include not only the 
final outcomes but also the progress of the convergence 
throughout the optimization process, clearly showing the exact 
matching of the result with the theoretical considerations 
presented with a transparent convergence. 
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 PRECISION EVOLUTIONARY OPTIMIZATION 
PART II:  IMPLEMENTATION AND APPLICATIONS 

Michael S. Bittermann1, Tahir Cetin Akinci2, Ramazan Caglar2  
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2 Istanbul Technical University, Istanbul, Turkey 

Implementation and applications of a new approach to multiobjective optimization by evolutionary algorithms are 
presented. After non-dominated sorting for Pareto formation, a novel non-linear ranking is proposed during the fitness 
evaluation and tournament selection, as well as elitism. The non-linear ranking is based on a probabilistic model, which models 
the density of the genetic population throughout the generations by means of an exponential distribution. From this model, a 
robust probabilistic distance measure is established. The distance comprises a penalty parameter in an embedded form, which 
plays an important role for the convergence of the optimization process as it varies in an adaptive form during the generations in 
progress. Because of the embedded form, the penalty parameter is inherently tuned for every constraint, making the convergence, 
robust, fast, accurate, and stable. By the nonlinear ranking procedure, also the stiffness among the constraints is handled 
effectively. Convergence process is backed-up with an additional probabilistic threshold applied to the population, classifying 
them as productive and unproductive infeasible solutions. The details of the underlying theoretical work are presented in the first 
part of this sequel. The present work at hand describes the algorithmic implementation in detail, and the outstanding 
performance of the optimization process is exemplified by computer experiments. The problems used in the experiments are 
selected from the existing literature for the purpose of eventual benchmark comparisons.  

I n d e x  T e r m s  — Evolutionary algorithm, multiobjective optimization, constraint optimization, probabilistic modeling. 

I .  I N T R O D U C T I O N  

HERE IS CONTINUOUS growing interest in multi-objective 
evolutionary algorithms since their initial introduction 

some three decades ago. The algorithms are of interest in 
many diverse areas that may span diverse engineering science 
areas including the cognitive science. They are particularly 
suitable for the optimization tasks because they evolve 
simultaneously a population of potential solutions to the 
problem at hand, which allows one to search a set of favorable 
solutions in the form of an optimal front in a single run of the 
algorithm. Multi-objective optimization problems can be 
formulated in various ways depending on the problem at 
hand. One prominent example along that line is the constraint 
optimization [1], which is the subject matter of this work. In 
general multi-objectivity in optimization is a broad field in 
which much remains to be done in order to increase its 
effectivity in the diverse areas, where engineering applications 
take an important place [2]. The tutorials on evolutionary 
algorithm are widely available in the literature [3-5]. The 
updated research surveys on it are also available, e.g. [6, 7]. 

Since a multi-objective optimization can be formulated as a 
single objective problem with constraints, where the 
constraints are combined to be an additional objective subject 
to minimization, it is interesting to tackle the constraint 

optimization with single objective function as a general case. 
The method known as penalty function method is a 
commonly used method for constraint optimization. 
Following the penalty function method a solution is penalized, 
i.e. its fitness deteriorates when it violates constraints. This 
penalization is accomplished by adding a value to the objective 
function value in proportion to the amount of constraint 
violation, the proportionality factor being the penalty 
parameter. An evolutionary constrained optimization 
approach without penalty parameter was proposed by Deb in 
2000 [8]. Due to the determination of the penality parameter 
during the search,  Coello [9] proposed a self-adaptive penalty 
approach. Although introduction of penalty function for 
evolutionary multiobjective optimization problems is a general 
approach, the essential issue is the selection of the suitable 
penalty parameter which is dependent on each constraint of 
the penalty function. Therefore selection of a common penalty 
parameter becomes an oversimplification of the problem. As 
result of this, the approaches mentioned before leave a lot to 
be desired due to inadequate converge to the optimum while 
this is demanded. This is circumvented to some extent by 
using a classical optimization approach in combination with 
the evolutionary computation in order to converge the 
optimum matching the demands [1].  

This paper addresses the multi-objective optimization as a 
bi-objective optimization where penalty function plays an 
important role. In this paper a new approach is proposed 
eliminating the need of classical constraint optimization next 
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to the evolutionary computation, yet providing outstanding 
convergence properties. In this approach a probabilistic model 
of the random solutions is used to derive a nonlinear distance 
measure that it is used for effective, i.e. robust ranking of 
genetic population members, and efficient, i.e. fast converging, 
solutions. The research is organized in two parts. The first part  
is presented in a theoretical framework with a demonstrative 
example afterwards [10]. In the second part, namely this part, 
based on the theoretical considerations, the development of 
the algorithm is given in detail and some demonstrative 
optimization problems are presented as applications. The 
organization of the paper is as follows. In section two, the 
formulation of general multi-objective optimization problem 
as constrained single objective problem is described. In section 
three probabilistic constraint handling is presented. In Section 
four, implementation of the probabilistic approach for non-
linear ranking in an evolutionary algorithm is described. This 
is followed by a demonstrative computer experiment in 
section five, and conclusions. 

I I .  M E T H O D  F O R  M U L T I O B J E C T I V E  
O P T I M I Z A T I O N  

 WE I G H T I N G  M E T H O D  A. 
The base of the problem formulation in this are the 

considerations known as weighting method [11-13]. In this 
method each objective is associated with a weighting 
coefficient and the weighting sum of the objectives is 
minimized. Thus, the multiple objective functions are 
converted into a single objective function. We assume that the 
weighting coefficients wi are real numbers such that 0 ≤ wi for 
all objectives i=1,….,k so that a weighting problem can be 
stated as 

1
min ( )

k

i i
i

w f subject to S
=

   ∈∑ x x
 

(1) 

 WE I G H T I N G  M E T H O D  FO R M U L A T E D  A S  B. 
CO N S T R A I N E D  OP T I M I ZA T I O N  

In the constraint handling in this work a single objective is 
involved which is subject to minimization. Therefore the 
problem can be stated as  

1 2min ( ) ( [ ( ), ( ),..., ( )] 0T
mf subject to g g x g x g x  ≤x x) =  (2) 

We assume that the feasible region is of the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  

(3) 

Considering that, the summation of the constraint violations is 
as another objective subject to minimization, the problem 
statement becomes a problem of two objective functions 
subject to minimization. The formulation of the problem in 
this case becomes  

1 2min ( ) (w f w G+x x)  (4) 

where  

 
(5) 

Thus, the problem definition becomes explicitly,  

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g f G

S x R g g g g

m
=

+ = +

= ∈ ≤

∑x x x x

x) = x x x  

(6) 

With this formulation, the weighting method becomes 
appropriate to employ where w1=1, w2i=mi. We can formulate 
the multiobjective optimization as two objectives optimization 
which can be treated further a single objective with 
constraints, without deviating from generality. Such an 
approach is known as ε-Constraint method [13, 14]. 

 IS S U E S  O F  T H E  PE N A L T Y  F U N C T I O N  AP P R O A C H  C. 
The problem statement given in (6) is written as 

1
( , ) ( ) ( )

J

j j
i

P R f R g
=

= + ∑x x x
 

(7) 

The function gj(x) is penalty function and the parameters Rj 
are the associated penalty parameters. Since each penalty 
parameter Rj indexed by the index parameter j is subject to  
identification, and this is a formidable task. To alleviate the 
issue, a common penalty parameter may be defined, so that (7) 
becomes 

1
( , ) ( ) ( )

J

j
i

P R f R g
=

= + ∑x x x
 

(8) 

The selection of the penalty parameter R can be done in two 
ways: 

1) Selecting a constant R. This case is illustrated in figure 1. 

 
 Approach to the final optimal solution by means of penalty Fig. 1. 

function approach; R is the penalty parameter 

From the figure it is clear that, we can hope to converge 
to the tangent at the point T which is far from the 
optimum Popt. Therefore a constant R is not a satisfactory 
strategy. 

2) To determine a variable R, an extrapolation polynomial 
can be used, extrapolating the Pareto front. At the 
intersection of the polynomial and the f2(x) the slope of 
the tangent gives some estimate of R [1].  However, in 
this case R goes gradually zero tending to ignore the 
constraints. This is depicted in figure 2. Gradient based 
constrained local search has to be invoked to obtain the 
optimal point [1]. Evolutionary algorithm is used to 

( ( )i iG gm∑
k

i=1
x) = x
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estimate a favorable starting point for the local search 
which makes the search very precarious. 

It is to note that, with above consequences the need for the 
evolutionary algorithm becomes subject to discussion, as there 
is no point to expect that the population converges to the 
optimum. In essence the main machinery for optimization 
becomes the local search, where evolutionary optimization 
becomes merely a tool providing a favorable starting point for 
a non-evolutionary optimization. 

 
 Approach to the final optimal solution by means of penalty Fig. 2. 

function approach; R is the penalty parameter 

I I I .  P R O B A B I L I S T I C  A P P R O A C H  

 PR O BA BI L I S T I C  M O D E L I N G A. 
As a new approach, we assume the problem formulation as a 

constraint optimization with single objective, so that in a 
general constrained optimization problem of the form  

1
( ) ( ) ( )

J

j j
i

P f gm
=

= + ∑x x x
 

(9) 

where f(x) is the single objective function to be minimized; 
gj(x) is the violation of the j-th constraint, namely penalty 
function, µi is the associated parameter of the penalty function. 
At each generation during the evolutionary minimization 
process gj(x) is continually tried to be made to vanish. 
Considering the population density of solutions, this implies 
the probability density of gj(x) is highest about zero violations, 
and its value gradually diminishes proportional with the 
degree of violation. Based on the randomly generated 
population of the evolutionary algorithm, we can model the 
violations as a random variable, where the violations are 
independent due to random population formation by the 
random composition of chromosomes at each generation. The 
number of violations per unit violation gradually decreases 
with the degree of violation conforming to the commensurate 
number of chromosomes created by the elitism and sorting 
strategy in the genetic algorithm (GA). This probabilistic 
pattern continues in the same way without change throughout 
the generations. The probabilistic description of this process 
can be modeled by the exponential probability density (pdf), 
because of its memorylessness property. That is, the form of 
the density remains the same being independent of the range it 
models, and the exponential pdf is a unique density having 

this property. With this information peculiar to the subject 
matter of this research, we can confidently apply the 
exponential probability density function (pdf), which is given 
by 

( ) yf y e λ
λ λ −=  

(10) 

where λ is the decay parameter. Denoting 
( )jy g x=  

(11) 

the pdf in (10) becomes 
( ) j j

j

g
g j jf g e λλ −=

 
(12) 

The mean value of the exponential pdf function is equal to λj
-1.  

During the evolutionary search gi(x) is a general form of 
violation which applies to any member s of the population 
although s is not explicitly denoted. However, in explicit form, 
we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=

 
(13) 

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations gj to the 
mean of the exponential pdf, namely  

1/j jgλ
−

=  
(14) 

One should note that the mean of the exponential 
probability density of gj is equivalent to the mean of a uniform 
probability density applied to the violations gj. Therefore the 
mean of the exponential density function is estimated by 
taking the mean of the violations which are from a uniform 
probability density and they are independent. Since a violation 
gj spans all the violations starting from zero up to the point gj, 
the probability of the violation is expressed as cumulative 
distribution function whose implication is easy to comprehend 
by considering the extremes. The cumulative distribution 
function of (12) is given by 

0

1( ) 1
jj

j j j

gg
g gg

j j
j

p g e dg e
g

−−

= = −∫
 

(15) 

The probability p(gj) is an appropriate measure for the 
magnitude or effectiveness of a violation and it can be 
considered as a probabilistic distance function or a metric  

measuring the distance from the zero violation fulfilling all the 
conditions to be a distance measure. Therefore in this work, in 
(9), mj is replaced by Crj(gj) in the form 

( ) ( )j j j jC r g gm=  (16) 

So that (9) becomes  

1
( ) ( ) ) ( )

J

j j j
i

P f C r (g g
=

= + ∑x x x
 

(17) 

where C is constant common for all the constraints, which is 
called as convergence parameter as it is related to the 
convergence properties of the search [10]; rj is a new penalty 
parameter which is a function of gj. In (17), rj(gj)gj is replaced 
by p(gj), in the form 
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( ) ( )j j j j jr g g p g=  
(18) 

so that (17) becomes  

1
( ) ( ) ( ))

J

j j
i

P f C p (g
=

= + ∑x x x
 

(19) 

In view of (18), rj is given by  
( ) ( ) /j j j j jr f g p g g= =  

(20) 

The plot of rj vs gj is shown in figure 3, and its variation 
during the evolutionary search as to the Pareto optimal front is 
shown in figure 4.  

 
 Illustration of the new penalty parameter r as to probabilistic Fig. 3. 

modeling: r=(1-exp(-λg))/g 

 
 Approach to the final optimal solution by means of penalty Fig. 4. 

function approach; r is the penalty parameter. 

I V .  I M P L E M E N T A T I O N  O F  T H E  
E V O L U T I O N A R Y  A L G O R I T H M  

In the probabilistic formulation of a constraint optimization 
problem, the function subject to minimization is given by 

( )
1

( ) ( ) ( )
J

j j
j

P g f C p g
=

= + ∑, x x x
 

(21) 

where J is the number of constraints; C is a common constant. 
The probability p(gj) controls the penalty parameter, mi(gj) 
which is absorbed in p(gj) in the form of rj. The penalty 
parameter mi(gj) varies theoretically between zero and infinity, 
while p(gj) varies between zero and unity. 

 ST A G E  O N E:  NO N-D O M I N A T E D  SO R T I N G  (NS)  A. 
As a first step in the algorithm, the multi-objective 

optimization problem is converted into a two-objective 
problem. The second objective subject to minimization is the 
summation of the violations. During the NS part of the 
algorithm we are considering G as second objective, i.e. the 
sum of the violations gj and not the sum of the probabilities 
p(gj). The reason for that is that, as a first step the algorithm 
should establish a Pareto front in the bi-objective space, and 
the bounded range of p-space as unity, i.e. 0≤p(gj)≤1 implies a 
tendency for aggregation in the space formed by f(x) and p(gj). 

For the Pareto-front formation in the first step, the selection 
among the solutions is based on binary tournament selection 
using non-dominated sorting (NS) and crowding [15]. It is 
noted that this procedure is applied for infeasible solutions 
exclusively, i.e. solutions where G<0. Solutions are sorted with 
respect to the Pareto subfront they belong to, and assigned a 
Pareto rank index accordingly. This is seen from figure 5a. The 
crowding computation is illustrated in figure 5b for two 
solutions B and C, where solution C is preferred in a 
tournament due to larger crowding distance for C. The length 
of the cuboid around a solution is compared among the 
solutions on the same subfront, 

 
 (a) (b) 

 Non-dominated sorting based selection among the infeasible Fig. 5. 
solutions (a); Crowding distance computation (b) 

and a solution with greater distance will be preferred over a 
solution with smaller distance. This is in order to avoid 
aggregation of solutions in the objective space, i.e. to reach a 
front with uniform density of solutions. Solutions at the 
extremity of a Pareto rank will be assigned infinite crowding 
distance, so that they will always prevail over other solutions 
on the same rank. This is to ensure that the sizes of the sub 
fronts remain large during the ranking-based front formation. 
Solutions in a tournament will be evaluated depending on the 
condition given by 

1
( )

J

j pj
j

p g n J
=

<  ∑
 

(22) 

where J is equal to the number of constraints, and npj denotes a 
probability threshold, above which a solution is deemed 
unproductive among the infeasible solutions, and below which  

 
 Sketch for the selection procedure during non-dominanted sorting Fig. 6. 

(NS) based tournament 

a solution is deemed productive. It has a counterpart in the 
violation domain denoted by nbj. This is seen in figure 6.For 
the condition in (22) three possible outcomes can occur: 

1. In case both solutions fulfill condition (22), i.e. both 
solutions are in the productive domain, the solutions are 
compared with respect to their rank. The solution with 
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lower rank wins the tournament. In case they are on the 
same rank, the solution with greater crowding distance 
wins the tournament. The crowding distance is computed 
as seen in figure 5b [15]. 

2. In case both solution do not fulfill condition (22), i.e. 
both belong to the unproductive domain, then the 
solution, whose sum of p(gj) is smallest, wins the 
tournament without considering rank or crowding 
distance. This is to favor the solution among the two 
unproductive one, which is nearer to the productive 
domain.  

3. In case one solution fulfills (22), while the other one does 
not, then she solution in the productive domain wins the 
tournament over the other one, without considering rank 
or crowding information. This case is shown in figure 6, 
where the violation in the productive domain is denoted 
by X2j and its counterpart is X1j. 

Optimal selection of the threshold, npj or nbj is explained in 
another publication, where the optimum value is identified to 
be 0.5 [ref. paper 1 JCS]. The functionality of (22) is especially 
due to case 3, as it increases the pressure, i.e. increased number 
of productive chromosomes, towards the feasible region. It is 
noted that the location of the boundary parameter np implies a 
fixed location in the p(gj)-dimension, whereas in gj-dimension 
the location of the boundary generally changes from 
generation to generation due to changing mean values.  

 
 Sketch for the tournament selection during NS Fig. 7. 

The possible comparison criteria and outcomes from binary 
tournaments mentioned above are exemplified in figure 7. 
During the search process feasible solutions may arise. In the 
binary tournament selection, when a feasible solution is 
selected together with an infeasible one, e.g. A and F, or two 
feasible ones are selected, e.g. A and D the comparison 
between the solutions is based on the values of f(x) exclusively, 
i.e. without considering the violation information or rank. 
This means the winner of the tournament is the solution 
among the two that has lower value of f(x), i.e. F wins over 
solution A, and in the same way D wins over A. Excluding the 
violation information is done, since for the feasible region the 
summation of the constraint violations is not defined. Namely 

the original optimization problem is to find a solution that 
minimizes f(x), while the constraints are not violated, i.e. there 
is no need for reaching solutions within the feasible region 
away from the feasibility boundary. When two solutions from 
the productive domain are in a tournament, e.g. F and G, then 
F wins over G due to the lower rank of F. When a solution 
from the productive domain is in a binary tournament with a 
solution from the non-productive domain, e.g. solutions H 
and I in the figure, then H wins over I. And finally, when 
among two solutions from the non-productive domain, e.g. I 
and K, then I wins over K, as the former is nearer to the 
boundary separating the productive and non-productive 
domains. It is noted that by means of the distinction between 
productive and non-productive solutions, the probabilistic 
considerations are introduced to the conventional non-
dominated sorting algorithm.  

After the tournament selection the genetic operators are 
applied and a new population is created. In the present 
implementation simulated binary crossover [16] and 
polynomial mutation [17] are used for this procedure. When 
the new generation is formed an elitism concept is applied [15] 
in a modified form in this work, seen from figure 8. The new 
generation is combined with the previous one, and thereafter 
the infeasible solutions are sorted based on their rank and the 
feasible solutions based on their f(x) values. The feasible 

 
 NS based elitism Fig. 8. 

solutions with the lowest f(x) values are used to fill up 
remaining places in the elitist population. The feasible 
solution with the lowermost value of f(x) is put to the 
uppermost place in the population after elitism. This solution 
is marked in yellow in figure 8. 

 ST A G E  T W O:  NO N-L I N E A R  RA N K I N G  (NR)  B. 
The NS algorithm described above is repeated for a number 

of generations, for example four generations, so that the 
Pareto front sufficiently develops. Thereafter a non-linear 
ranking procedure based on the probabilistic considerations 
described above is employed as follows. During the 
tournament selection process, for two infeasible solution 
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from the productive domain the value P(gj, x) in (2) is used to 
determine the winner of the tournament. In this procedure, 
clearly, a solution with lower P value is preferred over the 
solution with a larger P value. If a solution in the tournament 
belongs to the non-productive domain, then the same 
consequences apply as in the NS tournament. Namely, 
productive solutions win over non-productive solutions, and 
among non-productive solutions, the solution which is 
nearest to the productive domain wins. 
Possible outcomes during the non-linear ranking procedure 
are exemplified in figure 9.  

 
 Sketch of the tournament selection during NR  Fig. 9. 

For instance, in the figure solution B represents the best 
solution among the feasible ones. When this solution is in a 
tournament with in infeasible solution from the productive 
domain, e.g. solution E, the winner of the tournament is 
obtained using P(gj, x). That is solution B is considered as if it 
were an infeasible one for this comparison, so the chance B 
remains in the population is increased. For solutions from the 
productive domain, as P(gj, x) is a summation of function value 
f(x) and summed up values of p(gj), population members that 
have a low function value and at the same time small sum of 
p(gj) are favored in the selection process. A solution having a 
low summation of p(gj) means that this solution has the 
unusual property that it violates several constraints with an 
extraordinarily low amount, when considered in perspective 
with the average violations of the respective constraints. In 
contrast to the Pareto-ranking based algorithm exercised 
before, the probabilistic selection mechanism will not permit 
solutions with low function value to remain in the population, 
provided the coefficient C is selected large enough. The 
important implication of the NR tournament selection is 
assigning a commensurate right penalty parameter for every 
constraint, and even for each population member, where 
thepenalty parameter is embedded in the non-linear distance 
function [10]. By means of this, the robustness and precision 
of the algorithm is guaranteed, together with the high stability 
of the search process. After the non-linear ranking based 
tournament selection, P(gj, x) is used during an elitism 
procedure, as seen in figure 10. From the figure it is noted that 
in the sorting step for the elitism the infeasible solutions are 

sorted based on their P(gj, x) values. Generally the mean values 
for the different constraints of two consecutive generations 
being merged for elitism differ, and it is generally expected 
that the mean values improve from generation to generation. 
In order to ensure accurate convergence, in this 
implementation for the sorting procedure during the NR 
elitism P(gj,x) is obtained using the mean value of the 
respective generation when the chromosome was created. This 
way the convergence is slowed down in order to ensure that 
the solutions from the past generation will also have 
significant influence in the ensuing generation. This is in order 
to maintain diversity during the search and carefully target the 
minimum being approached with the population. 

 
 NR based Elitism Fig. 10. 

V .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using two 
optimization problems from the literature.  

 PR O BL E M  I  A. 
The following problem is due to Hock and Schittowski [18]. It 
is given by (23)-(25). 

2 2 4 2
1 2 3 4

6 2 4
5 6 7 6 7 6 7

( ) ( 10) 5( 12) 3( 11)

10 7 4 10 8

f x x x x
x x x x x x x

= − + − + + − +

+ + − − −

x

 
(23) 

where the ranges for the independent variables are given by 

10 10, 1,...,7ix i− < <  =  (24) 

Subject to: 
2 4 2

1 1 2 3 4 5
2

2 1 2 3 4 5
2 2

23 1 6 7
2 2 2

4 1 2 1 2 3 6 7

( ) 127 2 3 4 5 0

( ) 282 7 3 10 0

( ) 196 23 6 8 0

( ) 4 3 2 5 11 0

g x x x x x
g x x x x x
g x x x x
g x x x x x x x

= − + + + + + ≤ 

= − + + + + − ≤ 

= − + + + − ≤ 

= + − + + − ≤ 

x
x
x
x  

(25) 

It consists of a single objective with four constraints, subject to 
minimization. The best known optimum is located at  

f(x*)= 680.630057374402 
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The corresponding best known variable values are  
x1

*=2.33049935147405174; x2
*=1.95137236847114592;  

x3
*=-0.477541399510615805; x4

*=4.36572624923625874;  
x5

*=-0.624486959100388983; x6=5; x7
*=1.03813099410962173; 

x8
*=1.5942266780671519. 

The algorithm is executed with the following settings: 
population size=200; amount of generations=70; C=100000; 
the ratio of NS-NR procedures=4/1; crossover probability=0.9; 
mutation probability=0.05. The results are shown in figure 11-
13 using a logarithmic scale for the horizontal axis, which 
shows the sum of the violations gj denoted by G. From the 
figures it is observed how the initial population gradually 
approaches towards the optimal solution. It is emphasized that 
an iteration of the algorithm consists of four Pareto-ranking 
based generations, followed by one probabilistic selection 
based generation. From figures 11-13 it is observed that the 
search process continues to yield solutions near to the optimal 
point. From the results it is noted how the initially scattered 
population gradually approaches as a connected front towards 
the optimal solution. The search maintains the pressure 
towards the feasible region throughout the search process and 
arrives at the feasible region with a large amount of potential 
solutions near to the optimum. This manifests the robustness 
of the approach. 

After 10 iterations the best feasible solution is found to be 
f(x)= 681.776930738684. 

This solution is near to the optimum, namely at a distance 1.68 
promille from the best known optimum.  

The population is seen in figure 11.  

 
 Population after the 10-th iteration Fig. 11. 

 

The independent variables of this solution take: 

 x1=2.32189959894901; x2=1.95533366880135; 
x3=0.0913466483171242; x4=4.31676277251481;  
x5=-0.462500971507716; x6=1.04611582287531; 
x7=1.59865097668138. 

After 30 iterations the best feasible solution is found to be 

f(x)= 680.67949252499. 

The population is seen in figure 12. The independent variables 
of this solution take: 

x1=2.32743347740407; x2=1.9576387118545;  
x3=-0.503457841417583; x4=4.34872456501762;  
x5=-0.612760668700169; x6=1.0244876812099; 
x7=1.58909845884555. 

 
 Population after the 30-th iteration Fig. 12. 

After 70 iterations the best feasible solution is found to be 

f(x*)= 680.632527938176. 

The population is seen in figure 13. The independent variables 
of this solution take:  

x1=2.33064474976019; x2=1.95388009157449;  
x3=-0.469607706232811; x4=4.35926347613402;  
x5=-0.62611714120937; x6=1.03074889097774; 
x7=1.58906253465783. 

 
 Population after the 70-th iteration Fig. 13. 

 PR O BL E M   I I  B. 
The following problem is due to Floundas and Pardalos [19]. It 
consists of a single objective with two constraints, subject to 
minimization. The best known optimum is located at  

f(x*)= -6961.81387558015 

The corresponding best known variable values are  
x1

*=14.09500000000000064;  x2
*=-0.138032130213039. 

600

620

640

660

680

700

720

740

1E-06 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000

G

f

675

677

679

681

683

685

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100

G

f

680.2

680.3

680.4

680.5

680.6

680.7

680.8

680.9

681

0.00001 0.0001 0.001 0.01 0.1 1

G

f

16



T H E  J O U R N A L  O F  C O G N I T I V E  S Y S T E M S   
V O L U M E  0 1    N U M B E R  0 1  

 

The problem is given by (26)-(28).  

3 3
1 2( ) ( 10) ( 20)f x x= − + −x  (26) 

where the ranges for the independent variables are given by 

1 213 100; 0 100x x< <   < <  (27) 

subject to: 
2 2

1 1 2
2 2

2 1 2

( ) ( 5) ( 5) 100 0

( ) ( 6) ( 5) 82.81 0

g x x
g x x

= − − − − + ≤

= − + − − ≤

x
x  

(28) 

The algorithm is executed with the following settings: 
population size = 200; amount of generations=100; C=100000; 
the ratio of NS-NR procedures=10/1; crossover 
probability=0.9; crossover parameter nc=1.0; mutation 
probability=0.05; mutation parameter nm=30. The results are 
shown in figures 14-16 using a logarithmic scale for the 
horizontal axis, which shows G being the total sum of the 
violations gj.  

After 30 iterations the best feasible solution is found to be 

f(x)= -6944.7266618604. 

The population is seen in figure 14. The independent variables 
of this solution take: x1=14.1026225766318; 
x2=0.858143925111059. 

After 50 iterations the best feasible solution is found to be 

f(x)= -6952.4044222655. 

The population is seen in figure 15. The independent variables 
of this solution take: x1= 14.0992588088961; x2= 
0.851316093914925. 

 
 Population after the 30-th iteration Fig. 14. 

After 100 iterations the best feasible solution is found to be 

f(x)= -6961.75770743364. 

The population is seen in figure 16. The independent variables 
of this solution take: x1=14.095023241862; x2=0. 
0.843010744010595. 

 
 Population after the 50-th iteration Fig. 15. 

 
 Population after the 100-th iteration Fig. 16. 

V I .  C O N C L U S I O N S  

A new approach for multiobjective evolutionary optimization 
problem is presented. Conventionally the problem is handled 
in the form of single objective and the sum of constraints. 
However noting that in the optimal front formation the 
essential optimization progress is focused on the constraints 
where sum of a number of objectives are involved, the single 
objective is minimally attended yielding poor progress 
attached to it. As result conventionally in this problem 
formulation evolutionary computation has to be supported by 
auxiliary local search algorithms. By means of the new 
methodology a marked improvement is achieved for bi-
objective formulation, i.e. for a single objective with 
constraints. Next optimal front formation during the search, 
also evolutionary minimization of the single objective is 
carried out in alternating sequence. By doing so, a balanced 
optimal search is established between the objectives forming 
the constraints and the single objective. The result is a 
markedly effective front for advanced search operations 
paving the way for a probabilistic nonlinear ranking used for 
both nonlinear tournament selection and nonlinear elitism. 
For these operations evolutionary probabilistic model for the 
random solutions is established for both robust and rapid 
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convergence by means of effective ranking procedure 
throughout the generations, so that the results are not 
precarious. Based on this dynamic model, ranking the 
solutions is done always in a probabilistic scale, namely 
between zero and one preserving the same accuracy being 
independent of the level of convergence to the optimum; 
namely the method forms a dynamic “lens” whose magnifying 
power is commensurate with the scale of convergence. This 
allows accurate monitoring of convergence ensuring rapid 
convergence with precision. By the nonlinear ranking 
procedure, also the stiffness among the constraints is handled 
effectively by a commensurate model parameter, each of which 
is tuned for each individual constraint. The method showed 
outstanding performance as to robustness, precision, accuracy, 
and stability. Referring to the reported researches in the 
literature, a marked feature of the present algorithm is, that it 
approaches to the optimum in the same range of reported 
accuracy of the results without recourse to any auxiliary 
support like local search, memetic algorithm etc. that they 
make the search process dominated by the classical 
optimization methods rather than evolutionary. The 
performance of the algorithm is exemplified by means of two 
standard problems chosen from the literature for the 
comparison of the results. Another example is reported in 
another paper devoted to the theory underlying this work [ref. 
paper 01]. The reported results include not only the final 
outcomes, but also the progress of the convergence throughout 
the optimization process. This not only marks the effectiveness 
of the method proposed here, but also exhibits a transparency 
of the evolution throughout the generations.  
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PROBABILISTIC SORTING FOR EFFECTIVE ELITISM IN 
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 

S. Serhat Seker1, Michael S. Bittermann2, Ramazan Caglar1, Rituparna Datta3 
1 Istanbul Technical University, Istanbul, Turkey 

2 Maltepe University, Istanbul, Turkey   
3 Graduate School of Knowledge Service Engineering, Korea Advanced Institute of Science and  

Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 305-701, South Korea 

One of the essential points in the evolutionary algorithms is the rank determination for the genetic population members. In this 
respect a new approach is presented, which is a probabilistic sorting for effective elitism and ensuing improved and robust 
convergence. This is achieved by an adaptive probabilistic model representing the commensurate probability density of the 
random solutions throughout the generations that it yields a probabilistic distance measure which is nonlinear with respect to the 
range of solutions as to their location in the objectives space. The implementation of the theoretical results leads an effective 
evolutionary optimization algorithm accomplished in two stages. In the first stage linear non-dominated sorting, tournament 
selection and elitism is carried out in objective space. In the second stage the same is executed in a transformed objective space, 
where probabilistic distance measure for ranking prevails. The effectiveness of the method is exemplified by a demonstrative 
computer experiment. The problem treated is selected from the existing literature for comparison, while the experiment carried 
out and reported here demonstrates the marked performance of the approach. The experiment complies with the theoretical 
foundations, so that the robust and fast convergence with precision as well as with accuracy is accomplished throughout the search 
up to 10-10 range or beyond, limited exclusively by machine precision.  

I n d e x  T e r m s — Evolutionary algorithm, multiobjective optimization, constraint optimization, probabilistic modeling.

I .  I N T R O D U C T I O N  

OMPUTATIONAL cognition makes use of the evolutionary 
optimization algorithms due to the decision-making 

process in the cognition. This is especially important in the 
action and communication stage of cognition. This work 
describes a research, which provides an effective method to 
enhance the effectiveness of evolutionary optimization 
algorithms, and consequently improve the cognition process. 
Evolutionary algorithms are powerful heuristic computations 
for multiobjective optimization problems. Their various forms 
of utilization are ubiquitous and they are reported regularly in 
the literature, e.g. [1, 2]. Some text book are available e.g. [3-5] 
that one can approach to master the topic. During the last 
decades evolutionary algorithms received growing interest, 
since they proved to be important tools for optimization. 
Added to that, they also proved to be effective in constraint 
optimization problem solving as the modern technological 
application areas imposes limitations on the solutions. The 
conventional constrained optimization methods generally use 
methods based on various penalty functions. Penalty function 
methods are generic but care has to be exercised to use the 
penalty parameter in a measured way to keep the balance 
between the constraints and the objective to avoid false optima 
and infeasible solutions. A strategy that does not use penalty 
parameter in evolutionary constrained optimization was 

proposed by Deb in 2000 [6, 7]. Although the penalty 
parameter can be kept constant during the search process, a 
better approach is to use a variable penalty parameter, which is 
adapted to the progress of the convergence, providing an 
effective approach to the optimum in the decision variable 
space. In this respect Coello proposed a self-adaptive penalty 
approach [8]. By doing so, also the evolutionary concept is 
clearly demonstrated. Conventionally in the penalty function 
approach, the constrained optimization problem is a search of 
the best compromises of the objective value and constraint 
satisfaction. Due to this construction, net result is the 
unsatisfactory convergence properties which are deemed to be 
repaired by some additional methods borrowed from classical 
optimization methods which are collectively addressed as 
‘local search’ methods. One of the essential components in 
evolutionary algorithms is the rank determination for the 
individuals. In this work, this issue is addressed by means of 
probabilistic distance measure which is used for probabilistic 
sorting and effective elitism by a nonlinear ranking. The 
method provides a kind of ‘mathematical lens,’ so that at any 
stage of convergence the level of rank resolution remains the 
same that it leads systematic, smooth convergence to the 
optimum without recourse to additional methods which are 
collectively regarded as ‘local search’ methods. 

The present work addresses the conversion of a single 
objective constrained optimization problem into a 
multiobjective, unconstrained optimization together with a 
penalty function. In this form, it is a bi-objective optimization 
problem. Each of the constraints has its own penalty 
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parameter. For each constraint a probabilistic model of the 
random solutions is used to derive a nonlinear distance 
measure. This measure is used for the genetic algorithm, to 
rank the population members for efficient, i.e. fast 
convergence.  In this form it is a constraint optimization 
problem. This is the new approach proposed in this paper, for 
robust and stable solutions. The method is implemented by a 
computer program developed for this research working based 
on non-dominated sorting (NS) and non-linear ranking (NR). 

The organization of the paper is as follows. In section two, 
formulation of general multiobjective optimization problem as 
constrained single objective problem and probabilistic 
constraint handling is presented. In section three, probabilistic 
modeling for nonlinear ranking is given. In section four the 
probabilistic nonlinear ranking for elitism is revealed. The 
important implications of the probabilistic modeling are 
highlighted in section five. In section six a demonstrative 
computer experiment is given and the section is followed by 
discussion and conclusions. 

I I .  O P T I M I Z A T I O N  M E T H O D   
F O R  M U L T I - O B J E C T I V I T Y  

Weighting method is a powerful instrument for the multi-
objective optimization. Its formulation in this work is adapted 
according to the works reported in the literature [9-11]. The 
weighting method deals with the weighted summation of the 
objective functions. Each function is associated with a 
weighting coefficient and weighting sum of the objectives is 
minimized. Thus, the multiple objective functions are 
expressed via a single objective function. The weighting 
coefficients wi are real numbers such that 0 ≤ wi for all 
objectives i=1,….,k so that a weighting problem can be stated 
as 

1
min ( )

k

i i
i

w f subject to S
=

   ∈∑ x x  (1) 

In the constraint handling a single objective is used and is 
subject to minimization. It can be stated that  

1 2min ( ) ( [ ( ), ( ),..., ( )]T
mf subject to g g x g x g x  ≤x x) =

 
(2) 

We assume that the form of the feasible region is given by  

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  (3) 

We consider that the summation of the constraint violations is 
another objective subject to minimization. The formulation of 
the problem in this case becomes 

1 2min ( ) (w f w G+x x)  (4) 

where  

 (5) 

Therefore, the problem definition becomes as below.  

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g f G

S x R g g g g

m
=

+ = +

= ∈ ≤

∑x x x x

x) = x x x

 (6) 

where w1=1, w2i=mi. With this, the problem is equivalent to a 
single objective problem, where the objective is denoted by f(x) 
and the constraints denoted by gj(x). The method known as e-
Constraint method is such an approach [11, 12]. In this 
method one of the objective functions is selected to be 
optimized, while all the other objective functions are 
converted into constraints. This is done by setting an upper 
bound to each of them. The problem to be solved is now of the 
form 

1min ( ); subject to ( )    

  for all j=1,2,.,k, j l; x S
j jf f e≤

≠ ∈

x x  (7) 

With the above considerations we minimize   fl(x);  subject to 
fj(x)≤ ej for all j=1,2,….,k, j≠l; x∈S 
where l∈{1,…,k}. Naturally, inequalities can be converted to 
equalities by taking ej=0 for all j=1,2,….,k, j≠l. 
In the present case, the minimization of the function in (6) 
takes the form 

1
min ( , ) ( ) ( )

J

j j
i

P f R g
=

= + ∑x R x x  (8) 

where J is the number of constraints; function gj(x) is 
considered to be a penalty function and the parameters Rj are 
the associated penalty parameters. The determination of the 
penalty parameters is an issue and although this issue 
addressed in the literature [6], the issue still persists and is 
subject to improvements. In this work this issue is addressed 
by a probabilistic approach which underlies also the 
probabilistic sorting for effective elitism, subject matter of this 
work.  

I I I .  N O N L I N E A R  R A N K I N G  W I T H  
P R O B A B I L I S T I C  C O N S I D E R A T I O N S  

In general a constrained optimization (8) is written in the 
form 

1
min ( ) ( ) ( )

J

j j
i

P f gm
=

  = + ∑x x x  (9) 

where f(x) denotes the single objective function to be 
minimized; g(x) is the violation of the gi-th constraint, namely 
penalty function, µi is the associated parameter of the penalty 
function given by 

( ) ( )j j j jg C r gm =  (10) 

In (10), rj is a new penalty parameter; C is a constant common 
for all constraints. As gj(x) is at each generation continually 
tried to be vanishing during the evolutionary minimization 
process, with respect to the population density of solutions, 
the probability density of gj(x) is highest about zero violations, 
and its value gradually diminishes proportional with the 
degree of violation. In the randomly generated population of 
the evolutionary algorithm, we can model the violations as a 
random variable, where the violations are independent due to 

( ( )i iG gm∑
k

i=1
x) = x
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random population formation by the random composition of 
chromosomes at each generation. The number of violations 
per unit violation gradually decreases with the degree of 
violation conforming to the commensurate number of 
chromosomes created by the elitism and sorting strategy in the 
genetic algorithm. This probabilistic pattern continues in the 
same way without change throughout the generations. The 
probabilistic description of this process can be modeled by the 
exponential probability density (pdf), because of its 
memorylessness property, i.e. the form of the density remains 
the same being independent of the range it models, while the 
exponential pdf is a unique density having this property. With 
this information peculiar to the subject matter of this research, 
we can confidently apply the exponential pdf, which is given 
by 

( ) yf y e λ
λ λ −=  (11) 

where λ is the decay parameter. If we define 
( )jy g x=  (12) 

then the pdf in (11) becomes 
( ) j j

j

g
g j jf g e λλ −=  (13) 

The mean value of the exponential pdf function is equal to 
λj

-1. During the evolutionary search gi(x) is a general form of 
violation, which applies to any member s of the population, 
and therefore, in explicit form, we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=  (14) 

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations gj to the 
mean of the exponential pdf, namely  

1/j jgλ
−

=  (15) 

It is to note that the mean of the exponential probability 
density of gj is equivalent to the mean of a uniform probability 
density applied to the violations gj. Therefore the mean of the 
exponential density function is estimated by taking the mean 
of the violations which are from a uniform probability density 
and they are independent. Variation of the exponential pdf for 
different decay parameters is shown in figure 5a. The 
cumulative distribution function of (14) is given by 

  
 (a) (b) 

 P l o t  o f  ex p o n en t i a l  p d f  f o r  d i f f e r en t  d ec ay  Fig. 1. 
c o n s t an ts  v s  j - th  v i o l a t i o n  g j  ( a ) ;  p ( g j )  v s  g j  ( b )  

0

1( ) 1
jj

j j j

gg
g gg

j j
j

p g e dg e
g

−−

= = −∫  (16) 

If we take p(gj) as a new random variable, the probability 
density fp(p) of the new random variable p is given by[13] 

1 ( )

( )
( ) ( )

| |

j

j

g j
p

j
g H p

j

f g
f p dH g

dg −=

=
 

(17) 

that gives 
( ) 1pf p =  (18) 

which is a uniform probability density shown in figure 2b 
together with the exponential distribution in figure 2a. In this 
figure the marked areas are equal having important 
implication in nonlinear ranking and elitism. The probability 
p(gj) measures the magnitude or effectiveness of a violation, so 
that it can be considered as a probabilistic distance function or 
a metric  measuring the distance from the zero violation 

fulfilling all the conditions to be a distance measure [14, 15]. 
Substitution of (10) into (9) yields 

1
( ) ( ) ) ( )

J

j j j
i

P f C r (g g
=

= + ∑x x x  (19) 

 
                         (a)  (b) 

   P d f  o f  th e  c o n s t r a i n t  v i o l a t i o n s  i n  th e  o b j e c t i v e  Fig. 2. 
f u n c t i o n s  s p a c e  ( a ) ;  i n  th e  p r o b ab i l i s t i c  d i s tan c e  s p ac e  

( b ) .  

where the constant C is called as convergence parameter as it 
is related to the convergence properties of the search. The new 
penalty parameter rj which is a function of gj, in general. In 
(19), rj(gj)gj is replaced by p(gj), in the form  

( ) ( )j j j j jr g g p g=  (20) 

so that (19) becomes  

1
( ) ( ) ( ))

J

j j
i

P f C p (g
=

= + ∑x x x  (21) 

In view of (20), rj is given by  
( ) ( ) /j j j j jr f g p g g= =  (22) 

The new formulation (21) yields favourable far reaching 
implications which are presented in the next section.  

I V .  P R O B A B I L I S T I C  S O R T I N G  F O R  
E F F E C T I V E  E L I T I S M  

A.  ST A G E  O N E:  NO N-D O M I N A T E D  SO R T I N G  A N D  
EL I T I S M  

The implementation of the theoretical results yielding an 
evolutionary optimization algorithm is accomplished in two 
stages. In the first stage non-dominated sorting (NS), 
tournament selection and elitism is carried out in  a way 
essentially based on that as described in [7]. This is 

21



T H E  J O U R N A L  O F  C O G N I T I V E  S Y S T E M S   
V O L U M E  0 1    N U M B E R  0 1  

 

schematically illustrated in figure 3, where subtle details are 
also indicated for clarity. 

 
 N S  b as ed  s o r t i n g  an d  e l i t i s m  Fig. 3. 

B .  ST A G E  T W O:  NO N-L I N E A R  RA N K I N G  A N D  
EL I T I S M  

The NS algorithm described above is repeated for some 
number of generations so that the Pareto front sufficiently 
develops. Thereafter a non-linear ranking (NR) procedure 
based on the probabilistic considerations described above is 
employed as follows. During the tournament selection process, 
for two infeasible solutions from the productive domain, the 
value P(gj, x) in (2) is used to determine the winner of the 
tournament. In this procedure, clearly, a solution with lower 
P(gj, x)  value is preferred over the solution with a larger P(gj, 
x) value. If a solution in the tournament belongs to the non-
productive domain, then the same consequences apply as in 
the NS tournament. Namely, productive solutions win over 
non-productive solutions, and among non-productive 
solutions, the solution which is nearest to the productive 
domain wins. The possible outcomes during the non-linear 
ranking procedure are exemplified in figure 4. For instance, in 
this figure solution B represents the best solution among the 
feasible ones. When this solution is in a tournament with in 
infeasible solution from the productive domain, e.g. solution 
E, the winner of the tournament is obtained using P(gj, x). That 
is solution B is considered as if it were an infeasible one for 

 
 S k e tc h  f o r  th e  to u r n am en t  s e l ec t i o n  d u r i n g  N R  Fig. 4. 

this comparison, so the chance B remains in the population is 
increased. For solutions from the productive domain, as P(gj, 

x) is a summation of function value f(x) and summed up 
values of p(gj), population members that have a low function 
value and at the same time small sum of p(gj) are favored in the 
selection process. A solution having a low summation of p(gj) 
means that this solution has the unusual property that it 
violates several constraints with an extraordinarily low 
amount, when considered in perspective with the average 
violations of the respective constraints. In contrast to the 
Pareto-ranking based algorithm exercised before, the 
probabilistic selection mechanism will not permit solutions 
with low function value to remain in the population, provided 
the coefficient C is selected large enough.  

The important implication of the NR tournament selection 
is assigning a commensurate right penalty parameter for every 
constraint, and even for each population member, where the 
penalty parameter is embedded in the non-linear distance 
function [16]. By means of this, the robustness and precision 
of the algorithm is guaranteed, together with the high stability 
of the search process. After the non-linear ranking based 
tournament selection, P(gj, x) is used during an elitism 
procedure, as seen in figure 10. From the figure it is noted that 
in the sorting step for the elitism the infeasible solutions are 
sorted based on their P(gj, x) values. Generally the mean values 
for the different constraints of two consecutive generations 
being merged for elitism differ, and it is generally expected 
that the mean values improve from generation to generation. 
In order to ensure accurate convergence, in this 
implementation for the sorting procedure during the NR 
elitism P(gj,x) is obtained using the mean value of the 
respective generation when the chromosome was created. This 
way the convergence is slowed down in order to ensure that 
the solutions from the past generation will also have 
significant influence in the ensuing generation. This is in order 
to maintain diversity during the search and carefully target the 
minimum being approached with the population. The 
nonlinear ranking based sorting and elitism is illustrated in 
figure 5. 

 
 N R  b as e d  s o r t i n g  an d  e l i t i s m  Fig. 5. 
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V .  I M P L I C A T I O N S  O F  T H E  
P R O B A B I L I S T I C  M O D E L I N G  

A.  AD A P T I V E  ZO O M I N G  FO R  RA N K I N G  A N D  
EF FE C T I V E  EL I T I S M   

Adaptive zooming for ranking with precision is 
accomplished as follows. The favourable solutions are by 
accurately ranked in the range zero and unity as probabilistic 
distances, even though the actual constraint values may be 
close to the optimal point as much as the machine or genotype 
coding precision can allow, say at the range of 10-10. A sketch 
of the Pareto front at the early stage of the genetic search is 
given in figure 6a. Illustration of the Pareto front at the last 
stage of the genetic search is given in figure 6b. 

   
 (a) (b) 

 S k e tc h  o f  f o r m a t i o n  o f  th e  P ar e to  f r o n t  a t  th e  Fig. 6. 
ear l y  s t a g e  ( a ) ;  a t  th e  a t  th e  l a s t  s t ag e  o f  th e  G A  s e ar c h  

( b ) .  

The probabilistic distance to the minimum is illustrated as a 
typical example in figure 2a by the indicated area. The 
computation of the colored area in the figure is very 
precarious at the tournament selection process, due to the 
issue of both exact parameterization of the exponential pdf in 
the existing range and the finite machine precision as well as 
the finite genotype coding. This situation is circumvented in 
figure 2b by taking simply p(gj) as the probability distance to 
the minimum. The indicated areas are the same and they are 
equal to p(gj). The indicated area in figure 2b defines the 
probabilistic distance function p(gj) which varies between zero 
and unity. This means if the penalty function to be minimized 
can be close to the optimal point in a micro scale, say in the 
range of 10-10, the minimization process i.e., tournament 
selection and ranking of the random solutions takes place in 
the transformed probabilistic space in a macro scale between 
zero and unity, always. This situation is equivalent to apply a 
commensurate mathematical ‘lens’ to the space formed by 
actual objective function and the constraint functions to carry 
out the convergence process without being effected by any 
scale of convergence happening in this space. 

B.  EF FE C T I V E  TO U R N A M E N T  S E L E C T I O N   

Two important aspects in this work, beyond the 
straightforward tournament selection process, are the 
followings.  

1. In the tournament of the non-linear ranking, the present 
and the preceding populations is accomplished using 

their respective decay constants (λ). In this case the 
situation is depicted in figure 7, where the same rank is 
assigned to different violations depicted gλ2j as present 
violation and gλ21j as the preceding violation. By doing so, 
diversity in the genetic population is maintained 
although it slows down the convergence to some extent. 
However, the gain is reducing the risk of premature 
convergence. 

 
 I l l u s t r a t i o n  o f  th e  g n e r a t i o n  d ep en d en t  r an k i n g  Fig. 7. 

p r o c ed u r e  d u r i n g  n o n - l i n ear  e l i t i s m  

2.  Solutions in NS as well as NR tournaments will be 
evaluated depending on the condition given by 

1
( )

J

j pj
j

p g n J
=

<  ∑  (23)  

where J is equal to the number of constraints, and npj 
denotes a probability threshold, above which a solution is 
deemed unproductive among the infeasible solutions, and 
below which a solution is deemed productive. It has a 
counterpart in the objective space denoted by nbj. This is 
seen in figure 8, where horizontal axis refers to NS 
(nondominated sorting) procedures and vertical axis 
refers to NR (nonlinear ranking) procedures.  

In case one solution fulfills (23), while the other one does 
not, then the solution in the productive domain wins the 
tournament over the other one, without considering rank or 

 
         (a) (b) 

   I l l u s t r a t i o n  o f  th e  th r es h o l d  as s es s m en t  f o r  Fig. 8. 
th e  t o u r n am en t  s e l ec t i o n  i n  b o th  N S  an d  N R  

p r o c ed u r es .  

crowding information. This case is shown in the same 
figure, where the violation in the productive domain is 
denoted by X2j and its counterpart is X1j. The counterpart of 
(23) in the objective space is given by 

1 1

j

j

J J
b

T b
j j j

n
g n g

λ
−

= =

= =∑ ∑  (24) 

However, since λj is evolving from generation to generation, 
gT is not constant. In contrast with this, in the probabilistic 
non-linear ranking domain, the location of maximum 
probability of the event that two solutions appear on either 
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side of the threshold nbj is always at np=0.5, irrespective of λj. 
The case for the probabilistic raking domain is illustrated in 
figure 9, where the variation of p(gj) with respect to nbj is 
illustrated. 

 
 P l o t  o f  th e  p r o b ab i l i ty  th a t  t w o  s o l u t i o n s  o c c u r  Fig. 9. 

o n  d i f f e r en t  s i d es  o f  th e  th t r es h o l d  n p j .  

The case for the objective space is illustrated in figure 10, 
where the maximum occurs for nbj=ln2/λj , which is the 
median of the exponential probability density shown in figure 
8b. In figure 10 the single plot seen in figure 9 corresponds to a 
family of plots with respect to the parameter λj. 

 
 P l o t  o f  th e  p r o b ab i l i ty  th a t  t w o  s o l u t i o n s  o c c u r  Fig. 10. 

o n  d i f f e r en t  s i d es  o f  th e  th r e s h o l d  n b j .  

Explicitly, for nbj=ln2/λj, its counterpart in terms of the 
probabilistic ranking domain is npj=0.5. Thus, the constant 
probabilistic distance measure provides an adaptive threshold 
for productive chromosomes throughout the generations, in 
any scale permitted by the machine or genotype precision. By 
means of this particular tournament selection procedure, the 
detrimental effect on the average violation by the stiff 
constraints, that is, by the members with high violations, is 
prevented; namely, during two consecutive generations the 
progressive diminishing of the average is augmented against 
the contingent average increase that may occur especially 
during the advanced stages of the convergence. The smaller 
total mean of the constraint violations implies improved 
convergence to the optimum. 

Referring to figure 8b, the probability Pj of the event 
relevant to the case described above is given by 

2( ) ( 1 ) ( 2 ) j bj j bjn n
j j j jP P g P X P X e eλ λ− −= = = −  (25) 

C.  FA S T  A N D  R O B U S T  C O N V E R G E N C E 

Thanks to the probabilistic distance providing nonlinear 
ranking, robust progress for convergence at each generation is 
obtained. To see this, from (22) 

( ) 1 e j jg
j

j
j j

p g
r

g g

λ−−
= =  (26) 

In the limiting case, i.e., convergence to the minimum, rj 
becomes  

0 0

( )
lim lim j j

j j

gj
g j g j j

j

p g
r e

g
λλ λ−

→ →= = =
 

(27) 

The variation of the penalty parameter rj with gj , based on 
(36) is shown in figure 11. 

 
 I l l u s t r a t i o n  o f  th e  n e w  p en a l t y  p ar am et er  r  a s  Fig. 11. 

to  p r o b ab i l i s t i c  m o d e l i n g :  r = ( 1 - ex p ( - λ g ) ) / g ,  w h er e  
λ = 1 0 0 0 0  

V I .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using a 
standard optimization problem from the literature. The 
following problem is due to Floundas and Pardalos [17]. The 
problem consists of a single objective with 9 constraints, 
subject to minimization, as given by (38)-(40).  

4 4 13
2

1 1 5
( ) 5 5i i i

i i i
Minimize f x x x

= = =

= − −∑ ∑ ∑x  (28) 
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(29) 

where the ranges for the independent variables are given by 

0 1 1,...,9); 0 100 10,11,12); 0 1 1i i ix i x i x i≤ ≤   ( =  ≤ ≤   ( =  ≤ ≤   ( =
 

(30) 

The best known optimum is  
f(x*)=-15.0,  

and the corresponding best variable values are 
x*=(1,1,1,1,1,1,1,1,1,3,3,3,1). 

The algorithm is executed with the following settings: 
population size=200; amount of generations=100; C=1000; 
ratio of NS/NR procedures=4/1; crossover probability=0.9; 
mutation probability=0.05. The results are shown in figure 12-
15 using a logarithmic scale for the horizontal axis, which 
shows the total violation G. From the figures it is observed 
how the initial population gradually approaches towards the 
optimal solution. It is emphasized that an iteration of the 
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algorithm consists of 4 Pareto-ranking based generations, 
followed by one probabilistic selection based generation. 

After 10 iterations the best feasible solution is found to be  
f(x)=-13.98583864.  
The population is shown in figure 12. 

 
 P o p u l a t i o n  a f t e r  th e  1 0 t h  i t e r a t i o n ;  h o r i z o n t a l  Fig. 12. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 20 iterations the best feasible solution is found to be  
f(x)=-14.9076345785146.  
The population is shown in figure 12. The figures 12-17 

demonstrate the robust convergence properties of the 
algorithm. Namely, the population members form a compact 
aggregation about the close vicinity of the optimum. This 
aggregation makes the mean of the violations gj small, so that 
the decay constant λj of the exponential pdf becomes large, 
and consequently the slope of the penalty parameter r is large. 
Due to this, the convergence to the optimum is fast, accurate, 
and with precision. Due to the memoryless ness property of 
the exponential pdf, the populations form about the same 
patterns in any scale of the convergence process. This is clearly 
seen in the figures by the logarithmic scale of representations 
of the violations. 

 
 P o p u l a t i o n  a f t e r  th e  2 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 13. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 30 iterations the best feasible solution is found to be  
f(x)=-14.9760230713287.  
The population is shown in figure 14. 

 
 P o p u l a t i o n  a f t e r  th e  3 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 14. 

ax i s   i s  th e  t o t a l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 50 iterations the best feasible solution is found to be  
f(x)=-14.9985221605613.  
The population is shown in figure 14. The independent 

variable values of this solution are x1=0.999997312719596; 
x2=0.999997982197311; 
x3=0.999999888524811; x4=0.999999871166525; 
x5=0.999994649877324; x6=0.999987862005421; 
x7=0.999984815877352; x8=0.999999999750139; 
x9=0.999926599531956; x10=2.99995794671011; 
x11=2.99961604207534; x12=2.99907993443006;  
x13=0.999999037205755.  

 
 P o p u l a t i o n  a f t e r  th e  5 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 15. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 80 iterations the best feasible solution is found to be  
f(x)=-14.999997075874.  
The whole population is shown in figure 12. The 

independent variable values of this solution are 
x1=0.999999970028148; x2=1; x3=0.999999993220535; 
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x4=0.999999971015986; x5=0.999999868494369; 
x6=0.999999960482284; x7=0.999999981750632; 
x8=0.999999947363726; x9=0.999999932369763; 
x10=2.99999980083455; x11=2.99999890685553; 
x12=2.99999900736034; x13=0.999999999039419. 

 
 P o p u l a t i o n  a f t e r  th e  8 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 16. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

After 100 iterations the best feasible solution is found to be  
f(x)=-14.9999999458368.  
The whole population is shown in figure 15. The 

independent variable values of this solution are 
x1=0.999999999790223; x2=0.999999999809861; 
x3=0.99999999933798; x4=0.99999999995506; 
x5=0.999999994377998; x6=0.999999995023679; 
x7=0.999999999831045; x8=1; x9=0.999999996761354; 
x10=2.99999999225267; x11=2.99999998081316; 
x12=2.99999999477602; x13=0.999999997535212.  

 
 P o p u l a t i o n  a f t e r  th e  1 0 0 th  i t e r a t i o n ;  h o r i z o n t a l  Fig. 17. 

ax i s  i s  th e  to ta l  v i o l a t i o n  G  o n  a  l o g  s c a l e ;  v er t i c a l  ax i s  
i s  f ( x )  

V I I .  C O N C L U S I O N S  

Probabilistic sorting for effective elitism in multi-objective 
evolutionary algorithms is presented. In the evolutionary 
optimization ranking of the genetic population members plays 
very important role on the performance of the algorithm. This 
work addresses this issue by a new non-linear ranking 
procedure, which eventually leads to an effective elitism and 
marked performance of the algorithm. Conventionally, in 
constrained or multi-objective optimization problems 
evolutionary computation turns out to be supported by 
auxiliary optimization means, in order to approach the 
optimum sufficiently close. In this respect, by means of the 
new methodology a marked improvement is achieved. The 
source of the improvement lies in the non-linearity of the 
ranking, achieved by the transformation of the objective space 
to a newly defined probabilistic distance domain. The 
transformation is adaptively carried out throughout the 
generations, so that the commensurate ranking with respect to 
the generation is maintained. Additionally, explicit definition 
of productive and non-productive chromosomes has been 
made, and accordingly maximum gain from the unproductive 
chromosomes is exported to the productive portion of the 
population at each generation. By means of the particular 
tournament selection procedure, the detrimental effect on the 
average violation by the stiff constraints, that is, by highly non-
productive population members is prevented; namely, during 
two consecutive generations the progressive diminishing of 
the average is augmented against the contingent average 
increase that may be effective especially during the advanced 
stages of the convergence. Non-linear ranking plays two major 
roles at the same time. One is the accomplishment of an 
adaptive penalty parameter matching the optimality 
conditions during the search. The other is maintaining 
maximum gain constantly from unproductive to productive 
solutions. This allows accurate and systematic convergence 
with precision, which is also rapid. The probabilistic sorting is 
implemented in both, nonlinear tournament selection and 
elitism. The method showed outstanding performance as to 
speed of convergence, precision and approaches to the 
solution without auxiliary support like local search, memetic 
algorithm etc. This is exemplified by means of a standard 
problem chosen from the literature for the comparison of the 
results and demonstration of the effectiveness of the 
methodology. The reported results include not only the final 
outcomes but also the progress of the convergence throughout 
the optimization process, clearly showing the exact matching 
of the results with the theoretical underlying material. It is also 
noteworthy to mention that, due to the systematic 
convergence procedure established by the novel method, the 
search process is demonstrated to be transparent. 
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PROBABILISTIC CONSIDERATIONS UNDERLYING A  
NOVEL EVOLUTIONARY COMPUTATION 
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Penalty function approach used for optimization has a growing interest in the literature due to its effectiveness not only for 
multiobjective optimization but also for constraint optimization. Although there are several excellent papers on the penalty function 
approaches, up till now there is no clear method for the systematic selection of penalty parameters per constraint since the topic is 
quite elusive. The issues being well realized, there are several researches addressing these issues to some extent. However, still the 
robustness of these methods remains the main issue due to some newly added additional parameters subject to determination. This 
work endeavors to address this issue and first it makes a systematic analysis. Following the analysis it establishes a probabilistic 
approach as the issue is entirely in the domain of probability. According to the best knowledge of the authors the approach is unique 
as to probabilistic treatment of the issue. The approach models the probability density of the random population throughout the 
generations and based on this, penalty parameters are determined following the probabilistic derivations. The theoretical 
considerations are substantiated by computer experiments and a demonstrative example is presented showing the salient effectiveness 
of the approach.. 

I n d e x  T e r m s — Evolutionary algorithm, multiobjective optimization, constraint optimization, probabilistic modeling.

I .  I N T R O D U C T I O N  

VOLUTIONARY multiobjective optimization is a popular 
approach in science and engineering. It is particularly 

important in cognitive science, because of the decision-making 
process and ensuing optimization process for action and 
communication. In this work, constraint optimization is the 
subject matter, which is to consider as multiobjective 
optimization due to the method of Penalty function approach. 
Its use for constraint optimization has a growing interest in 
the literature, due to its effectiveness not only for 
multiobjective optimization but also for constraint 
optimization. Although there are several excellent papers on 
the penalty function approaches, up till now there is no a clear 
method for the systematic selection of penalty parameters per 
constraint, since the topic is quite elusive. The issues of 
common penalty parameter pertinent to all constraints are 
well understood. Still the robustness of these methods remains 
the main issue due to variation of the parameters during the 
optimization process. The penalty function methods are 
widely used methods for evolutionary constraint optimization, 
which differ from each other due to some different strategies. 
In this respect some examples are static penalty, dynamic 
penalty, annealing penalty, adaptive penalty, co-evolutionary 
penalty, death penalty and their associated penalty parameters 
[1-10]. Strategies that did not require a penalty parameter were 

proposed in the literature, e.g. [11, 12], while the latter work 
was later superseded by the penalty function approach [13]. 
This variety of penalty-function oriented researches is the 
manifestation of the persisting issue of determining the 
penalty parameters with respect to each constraint. 

In this work a new approach is proposed. Probabilistic 
considerations underlying the approach are described in 
detail. The approach is based on the evolutionary probabilistic 
modeling of the random solutions and the introduction of a 
probabilistic distance metric. The model is used for effective 
ranking of genetic population members and thereby yields 
efficient converging solutions. 

The organization of the paper is as follows. In section two, 
formulation of the general multiobjective optimization 
problem and non-linear ranking are presented. In section 
three, important implications of the evolutionary probabilistic 
approach are described. In section four a demonstrative 
computer experiment is given. The section is followed by 
conclusions. 

I I .  P R O B L E M  F O R M U L A T I O N  A N D   
N O N - L I N E A R  R A N K I N G  

 WE I G H T I N G  M E T H O D  A.
A well-defined method for dealing with the multi-objective 

optimization is known as weighting method [14-16]. In this 
method each objective is associated with a weighting 
coefficient and minimizes the weighting sum of the objectives. 
In this way, the multiple objective functions are transformed 
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into a single objective function. We assume that the weighting 
coefficients wi are real numbers such that 0 ≤ wi for all 
objectives i=1,….,k so that a weighting problem can be stated 
as 

1
min ( );

k

i i
i

w f S
=

∈∑ x x
 

(1) 

In the constraint handling in this work a single objective is 
involved which is subject to minimization. Therefore the 
problem can be stated as  

1 2

min ( )
( [ ( ), ( ),..., ( )] 0T

m

f
subject to g g x g x g x ≤

x
x) =  

(2) 

We assume that the feasible region is of the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  

(3) 

If we assume that, the summation of the constraint violations 
is as another objective subject to minimization the problem 
formulation becomes a problem of two objective functions 
subject to minimization. The formulation of the problem in 
this case becomes  

1 2min ( ) (w f w G+x x)  
(4) 

where  

 
(5) 

Hence, the problem definition becomes 

1

1 2

min ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g

S x R g g g g

m
=

+

= ∈ ≤

∑x x

x) = x x x  

(6) 

With this formulation, the weighting method becomes 
appropriate to employ where w1=1, w2i=mi. In (6) the problem 
formulation becomes two objective functions subject to 
minimization or alternatively a single objective function with 
an objective vector subject to minimization. This formulation 
of the problem is equivalent to a single objective problem with 
constraints where the constraints are given by the vector g(x) 
which is considered to be a penalty function and the 
parameters mi are the associated penalty parameters. We 
formulate the multiobjective optimization as two-objective 
optimization, which can be further treated as single objective 
optimization with constraints, without deviating from 
generality. This approach is known to be as ε-Constraint 
method [16, 17]. Among the objective functions one function 
is selected to be optimized, and, by setting an upper bound to 
each of them, all the other objective functions are converted 
into constraints. The problem now has the form 

     minimize  fl(x) 

     subject to fj(x)≤ εj for all j=1,2,….,k, j≠l; x∈S; l∈{1,…,k} 

The inequalities can be transformed to equalities by 
considering εj=0 for all j=1,2,….,k, j≠l. Based on the above 
considerations, we assume the problem formulation as a 
constraint optimization with single objective, so that in a 
general constrained optimization problem the problem 
formulation is written as 

1
( ) ( ) ( )

J

j j
i

P f gm
=

= + ∑x x x  (7) 

In (7), we make the following observation. Since in the 
weighting method the weights are positive, in (7) the penalty 
parameter mj is positive. This implies that in a general case we 
can surmise that the optimization problem is in the form as 
depicted in figure 1. 

 
A p p r o ac h  to  th e  f i n a l  o p t i m a l  s o l u t i o n  b y  m e an s  Fig. 1. 

o f  c o n s t an t  p en a l ty  p ar am e t e r  R .   

Referring to (6) in figure 1 f2(x)=f(x) and f1(x)=g(x) denoting 
violations; also in place of multiple mi each of which belong to 
one constraint, we can consider both a common and constant 
penalty parameter R which is the slope of the tangent of the 
Pareto optimal front during the progressive search of the 
front. In figure 1, the slope of the tangent being negative, the 
violations are represented as negative quantities so that mj and 
gj(x) become positive quantities. If we consider that the 
optimal front is a series of solutions determined by the tangent 
points of the tangent line and the optimal front, we conclude 
that the optimal front is simply the envelope of the tangents. 
This envelope is established as follows. 

We assume that a theoretical optimal front compromises the 
solutions between the objectives f(x) and g(x) where objective 
g(x) admits to be minimally zero. In this case each solution on 
the optimal front can individually be represented by a line that 
is tangent to the optimal front at that particular solution. The 
parametric representation of the tangent is given by 

( ) ( ) 1
opt

f g
t P t

+ =
−

x x

 
(8) 

where t is the parameter. In (8), Popt is the optimum solution 
located at the point f(x )= Popt and  g(x ) =0. From (8), we write 

( ) ( )
( )opt

tf g t
t P

= +
−

x x
x  

(9) 

where the slope of the tangent is given by 

( )opt

tr
t P

=
− x  

(10) 

as a new penalty parameter r. The envelope of the tangent is 
shown in figure 2. The Pareto front is obtained by arranging 
(10) with respect to t and admitting a single solution for it; 
namely, 

( ( )i iG gm∑
k

i=1
x) = x
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2 [ ( ) ( ) ( )] ( ) ( ) 0opt optt g x f x P x t f x P x+ − − + =  
(11) 

2
1 2 2[ ( ) ( ) ( )] 4 ( ) ( ) 0opt optf f P f P− − − =x x x x x  

(12) 

then the optimal front is obtained by equating the 
discriminant to zero that gives the envelope of the tangent as 
the optimal front. The new penalty parameter r is zero for t=0 
and it monotonically increases as t increases. For t=Popt the 
penalty parameter r goes to infinity. 

 
T h e  en v e l o p e  o f  t an g en t  an d  th e  n e w  p en a l ty  Fig. 2. 
p ar am e te r  r .  r = ( P o p t - T) / T  w h er e  T= P o p t - t    

If we consider the optimal front for each constraint separately, 
(10) can be written as  

( )j
opt

tr
t P

=
− x  

(13) 

so that (7) becomes 

1
( ) ( ) ( )

J

j j
i

P f r g
=

= + ∑x x x
 

(14) 

 

 PR O BA BI L I S T I C  DI S T A N C E  ME T R I C B.
In (14) gj(x) at each generation continually is tried for its 

vanishing during the evolutionary optimization process. This 
is accomplished by the evolutionary algorithm, giving higher 
probability of reproduction to population members with small 
gj values. Therefore, with respect to the population density of 
solutions, the probability density of gj(x) is highest about zero 
violations, and the density gradually diminishes proportional 
with the degree of violation. Based on the randomly generated 
population of the evolutionary algorithm, we can model the 
violations as a random variable, where the violations are 
independent due to random population formation by the 
random composition of chromosomes at each generation. The 
number of violations per unit violation gradually decreases 
with the degree of violation conforming to the commensurate 
number of chromosomes created by the elitism and sorting 
strategy in the genetic algorithm (GA). This probabilistic 
pattern continues in the same way without change throughout 
the generations. The probabilistic description of this process 
can be modeled by the exponential probability density (pdf), 
because of its memorylessness property, i.e. the form of the 
density remains the same being independent of the range it 
models and exponential pdf is a unique density having this 
property. With this information peculiar to the subject matter 

of this research, we can confidently apply the exponential 
probability density function (pdf), which is given by 

( ) yf y e λ
λ λ −=  

(15) 

where λ is the decay parameter. If we define 

( )jy g x=  
(16) 

the pdf in (15) becomes 

( ) j j

j

g
g j jf g e λλ −=

 
(17) 

The mean value of the exponential pdf function is equal to λj
-1. 

During the evolutionary search gj(x) is a general form of 
violation which applies to any member s of the population 
although s is not explicitly denoted. However, in explicit form, 
we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=

 
(18) 

The variation of the exponential pdf for different decay 
parameters is shown in figure 3a. 

 
 (a) (b) 

  P l o t  o f  ex p o n en t i a l  p d f  f o r  d i f f e r en t  d e c ay  Fig. 3. 
c o n s t an ts  v s  j - th  v i o l a t i o n  g j  ( a ) ;  P l o t  o f  p ( g j )  v s  g j  f o r  

v ar i o u s  m e an  v a l u es  o f  p ( g j )  ( b )  

The mean value of the violations gj is the characteristic of the 
constraint j and it defines the shape of the exponential 
distribution of the violations representing the decay constant  

1/j jgλ
−

=  
(19) 

The typical shape of the optimal front in figure 4, and the 
variation of the exponential distribution is shown together in 
figure 4, where 4a indicates the optimal front and 3b indicates 
the exponential probability density. 

   
 (a) (b) 

Fo r m i n g  th e  o p t i m al  f r o n t  a s  an  en v e l o p e  o f  a  Fig. 4. 
s l o p e  b y  m e an s  o f  th e  p r o b i l i s t i c  m o d e l l i n g  o f  r n ad o m  

s o l u t i o n s  a s  ex p o n en t i a l  d i s t r i b u t i o n .  

In figure 4b, a small change in violation gj causes small change 
in probability density and the probability of violations in this 
interval is given by 

( )
jf g j jy f g g∆ = ∆  (20) 
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From figure 4a we note that a small change in the violation gj 
causes a small change in the objective function along the 
optimal front, and it is given by 

( )p j j jy r g g∆ = ∆  (21) 

During the search evolution, at each generation the decay 
constant is newly estimated by the mean of the violations as 
given by(19), so that λj is assumed to be constant from one 
generation to another. Hence, (17) becomes 

/1( ) j j

j

g g
g j

j

f g e
g

−
−

−=

 

(22) 

In the same way, at each generation rj is newly estimated, so 
that rj is assumed to be constant from one generation to 
another. Taking infinitesimally small violation intervals, and 
equating (20) and (21), that is, equating to the objective 
function change to the probability in the interval dgj we write  

/1( ) j jg g
j j jj

j

r g dg e dg
g

−=
 

(23) 

It is to note that by means of this equation above we are 
relating the objective function space to a probability domain in 
the form of a transformation. The important implications of 
this transformation are presented in section 3. 

Defining  

0

1( ) 1j j j j j
g g g

j j
j

p g e dg e
g

λ λ− −= = −∫
 

(24) 

Integration of (24) from zero to gj  gives  

/

0 0

1( )
j j

j j

g g
g g

j j jj
j

r g dg e dg
g

−=∫ ∫  (25) 

That is, 
/( ) 1 ( )j jg g

j j jjr g g e p g−= − =   , (26) 

or briefly  

( )j j jr g p g= . (27) 

The variation of p(gj) with gj is shown in figure 4b. 

In (7), mj is replaced by Crjgj, namely  

j j jCr gm =  (28) 

where C is a constant, and the substitution of (28) into (7) with 
the consideration of (27) yields 

1
( ) ( ) ( )

J

j
i

P f C p g
=

= + ∑x x  (29) 

where J denotes the number of constraints; C is a common 
constant for all constraints. The probability p(gj) controls the 
penalty parameter mi(gj) in (7), which is absorbed in p(gj). The 
importance of this transformation, namely from migj to p(gj) is 
mainly due to its use for ranking in the probabilistic domain 
during the genetic optimization process. 

In view of (27), rj is given by 

( ) ( ) /j j j j jr f g p g g= =  
(30) 

The variation of the slope rj versus gj is plotted in figure 5, 
where the variation of the slope given by (13) is also plotted. 

 
I l l u s t r a t i o n  o f  th e  n e w  p en a l t y  p ar am et er  r  a s  t o  Fig. 5. 

p r o b a b i l i s t i c  m o d e l i n g :  r = ( 1 - ex p ( - λ g ) ) / g  an d  as  t o  b i -
o b j ec t i v e  f o r m u l a t i o n :  r = t / ( P o p t - t )  

The two slopes, namely one obtained as the tangent, the 
envelope of which forms the Pareto front, and the other one 
obtained from a probabilistic model, introduced in this 
research, coincide satisfactorily, as seen in the figure. 

The probability p(gj) is a probabilistic distance function or a 
metric measuring the distance from the zero violation, as it 
fulfils all the conditions to be a distance measure [18, 19]. The 
probability density of this distance metric given by (26) is 
computed by  

1 ( )

( )
( ) ( )

| |

j

j

g j
p

j
g p p

j

f g
f p dp g

dg −=

=
 

(31) 

which gives 

( ) 1pf p =  
(32) 

as uniform pdf. The defined distance metric in the probability 
domain p(gj) is used for ranking the chromosomes for effective 
tournament selection and elitism, in place of remaining in the 
objective function space. The important implications of this 
transformation from objective function space to the 
probability domain are given in the next section.  

I I I .  I M P L I C A T I O N S  O F  T H E  P R O B A B I L I S T I C  
D I S T A N C E  M E T R I C  

 ST I F FN E S S  H A N D L I N G  A.
The stiffness is defined as the large numerical difference 

among several constraints subject to minimization. If there is 
stiffness among the constraints, the summation in (6) is 
dominated by the constraints, the pdfs of which have small 
decay constants. However, by using the probabilistic distance 
measure varying between zero and unity, this drawback is 
eliminated. The treatment is illustrated in figure 6, where the 
probabilistic distances for the constraints random variables gλ1j 
and gλ2j are the same, and the distance is between zero and 
unity. By giving the same priority or rank in the tournament 
selection process for the constraints gλ1j and gλ2j we consider 
purely their associated probabilities based on the probabilistic 
model without imposing any bias about the nature of the 
constraints. 
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I l l u s t r a t i o n  o f  th e  s t i f f n es s  h an d l i n g  Fig. 6. 

 IM P A R T I A L  E L I T I S M  S E L E C T I O N  B.
During elitism we consider the population from the 

preceding generation. Therefore, below first we compute the 
probability of having smaller constraint violation. If we 
consider two exponential probability density functions with 
the random variables X1 and X2 and the associated decay 
parameters λ1 and λ2 respectively, the probability P(X2<X1) is 
computed as follows. The probability of g2≤X1, namely 
P(g2≤X1) is given by 

1 1 1 2

2

2 1 1 1( ) e g g

g

P g X dg eλ λλ
∞

− −≤ = =∫
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so that 

1 2 2 2 1 2 2

2 1 2 1 2 2
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which gives 
2

2 1
1 2

( )P X X λ
λ λ

< =
+  

(35) 

Let us carry out the same calculations with respect to the 
random variable P, the pdf of which is given by (32). 
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2 1 1 2( ) 1
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P g X dg g≤ = = −∫
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g dg

< = ≤ ≤

= − =∫
 

(37) 

This result shows that, irrespective to the decay constants λ1 
and λ2 of two exponential pdfs, the probability P(X2≤X1) is 
always 0.5, which means ranking the random solutions during 
the genetic search, probabilistic distance function p(gj) is fully 
impartial with respect to the decay constants. This means, 
although the decay constants vary and they are updated each 
iteration, this is not reflected to the elitism.  With other words, 
the procedure is not biased by apparently less favorable 
population of the latest generation due to higher probabilistic 
distances caused by higher decay constant. Instead, the 
preceding generation and the following generation are treated 
in perspective without bias, eliminating the decay constant 
factor in the computation. The exponential pdf fgj(gj) in (17) 
and uniform pdf in (32) are sketched in figures 7a and 7b, 
where the random variables X1, X2 and two corresponding 
violations gj1, gj2 are also shown. It should be pointed out that 

the uniformity of the uniform pdf is not affected even if the 
modelling error in the surmised exponential pdf model exists. 

 
 (a)  (b) 

P r o b ab i l i ty  d en s i ty  f g j ( g j )  v s  g j   ( a )  P r o b ab i l i ty  Fig. 7. 
d en s i ty  f p ( p )  v s  p  ( b )  

Two important aspects in this work, beyond the basic 
elitism procedure, are the followings. 

 During the elitism, the combination of the present and the 1.
preceding populations is accomplished using their 
respective decay constants (λ). In this case the situation is 
depicted in figure 6, where the same rank is assigned to 
different violations depicted gλ2j as present violation and 
gλ21j as the preceding violation. By doing so, diversity in the 
genetic population is maintained although it slows down 
the convergence to some extent. However, the gain is 
reducing the risk of premature convergence. 

 Solutions during tournament selection will be evaluated 2.
depending on the condition given by 

1
( )

J

j pj
j

p g n J
=

<  ∑
 

(38) 

where J is equal to the number of constraints, and npj 
denotes a probability threshold, above which a solution is 
deemed unproductive among the infeasible solutions, and 
below which a solution is deemed productive. It has a 
counterpart in the objective space denoted by nbj.  

 
 (a)   (b) 

  I l l u s t r a t i o n  o f  th e  th r es h o l d  as s es s m en t  f o r  th e  Fig. 8. 
to u r n am en t  s e l e c t i o n  i n  b o th  N S  an d  N R  p r o c e d u r es .  

In case one solution fulfills (38), while the other one does not, 
then the solution in the productive domain wins the 
tournament over the other one, without considering rank or 
crowding information. This case is shown in the same figure, 
where the violation in the productive domain is denoted by X2j 
and its counterpart is X1j. The counterpart of (38) in the 
objective space, and is given by 

1 1

j

j

J J
b

bT
j j j

n
g n g

λ
−

= =

= =∑ ∑  (39) 

Referring to figure 8b, the probability Pj of the event relevant 
to the case described above is given by X2<nb<X1, and 

2( ) ( 1 ) ( 2 ) j bj j bjn n
j j j jP P g P X P X e eλ λ− −= = = −  

(40) 
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However, since λj is evolving from generation to generation, gT 
is not constant. In contrast with this, in the probabilistic non-
linear ranking domain, the location of maximum probability 
of the event that two solutions appear on either side of the 
threshold nbj is always at np=0.5, irrespective of λj. The case for 
the probabilistic raking domain is illustrated in figure 9, where 
the variation of p(gj) with respect to nbj is illustrated also for 
the productive and unproductive domains. 

 
P l o t  o f  th e  p r o b ab i l i t i e s  f o r  d i f f e r en t  c o n d i t i o n s  Fig. 9. 

th a t  c an  ar i s e  d u r i n g  b i n ar y  to u r n am en t  s e l e c t i o n   

The case for the objective space is illustrated in figure 10, 
where the maximum occurs for nbj=ln2/λj, which is the median 
of the exponential probability density shown in figure 8b. The 
single plot for each of the three possible conditions, during a 
binary tournament seen in figure 9, depending on the 
occurrence of solutions in productive or non-productive 
domains, correspond to a family of plots with respect to the 
parameter λj.in figures 10-11. 

 
 P l o t  o f  th e  p r o b ab i l i ty  th a t  t w o  s o l u t i o n s  o c c u r  Fig. 10. 
o n  d i f f e r en t  s i d es  o f  th e  th r e s h o l d  n b j  f o r  

λ = 1 , 1 / 2 , 1 / 3 , 1 / 4 .  T h e  r es p e c t i v e  m ax i m u m  o c c u r s  a t  
n b = 0 . 6 9 3 /λ  

Explicitly, for nbj=ln2/λj, its counterpart in terms of the 
probabilistic ranking domain is npj=0.5. Thus, the constant 
probabilistic distance measure provides an adaptive threshold 
for productive chromosomes throughout the generations, in 
any scale permitted by the machine or genotype precision. By 
means of this particular tournament selection procedure, the 
detrimental effect on the average violation by the stiff 
constraints, that is, by the members with high violations, is 
prevented; namely, during two consecutive generations the 
progressive diminishing of the average is augmented against 
for the contingent average increase that may occur especially 
during the advanced stages of the convergence. The smaller 
total mean of the constraint violations implies improved 
convergence to the optimum.  

For the other cases, namely 

X2<X1,   X1,X2  <  nb 

2
2 1( ) 0.5(1 ) (1 )j b j b j bn n n

bP X X n e e eλ λ λ− − −< < = − − −  
(41) 

and for  X2<X1 ,    nb<X1,X2    
2

2 1( ) 0.5 bn
bP n X X e λ−< < =  

(42) 

The variations of the different probabilities in (41)-(42) are 
plotted together in figure 11. It is to note that for any value of 
nb, the summation of the probabilities is equal to 0.5, which 
conforms to (28) for λ1=λ2. 

Figure 11 is the counterpart of figure 9 in the objective 
function space. 

 
 (a) (b) 

 P l o t  o f  th e  p r o b ab i l i t i e s  f o r  d i f f e r en t  c o n d i t i o n s  Fig. 11. 
th a t  c an  ar i s e  d u r i n g  b i n ar y  to u r n am en t  s e l e c t i o n   f o r  

λ = 5  ( a ) ;  λ = 0 . 2  ( b )    

It is seen from figure 11 that the shape of the probability 
functions depends on λj, whereas in the probabilistic domain 
in figure 9, the shape remains constant, i.e. independent of λj.  

 ZO O M I N G  FO R  R O B U S T  R A N K I N G C.
Zooming for robust ranking is accomplished by accurate 

ranking the favourable solutions between zero and unity as 
probabilistic distances, even though the actual constraint 
values may be close to the utopic optimal point as much as 
allowed by the computer precision that may be at the range of 
10-10 or below. Illustration of the Pareto front at the early stage 
of the genetic search is given in figure 12a. Illustration of the 
Pareto front at the last stage of the genetic search is given in 
figure 12b. 

  
 (a) (b) 

 I l l u s  t r a t i o n  o f  th e  f o r m a t i o n  o f  th e  P ar e to  f r o n t  Fig. 12. 
a t  th e  e ar l y  s ta g e  ( a )  an d  l a s t  s t ag e  o f  th e  g en et i c  

s ear c h  ( b )  

Considering figure 12b, the probabilistic distance to the 
minimum is illustrated as a typical example in figure 13a by 
the shaded area where computation of the shaded area is very 
precarious at the tournament selection process. This is due to 
the issue of both exact parameterization of the exponential pdf 
in the existing range and the finite machine precision. This 
issue is prevented in figure 13b by taking simply p(gj) as the 
probability distance to the minimum. The marked areas in 
figure 13a and 13b are the same, and they are equal to p(gj). 
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The marked area in figure 13a, is represented in figure 13b 
by the probabilistic distance function p(gj) which varies 
between zero and unity. This means if the penalty function to 
be minimized can be close to the optimal point in a micro 
scale, say in the range of 10-10, the minimization process i.e., 
tournament selection and ranking of the random solutions 
takes place in a macro scale in the probabilistic space as shown 
in figure 13b. This treatment is equivalent to applying a 
matching ‘magnifying glass’ to the space formed by actual 
objective function and the constraint functions, in order to 
carry out the convergence process without being affected by 
any scale of convergence present in this very space. The Pareto 
front at this micro scale is illustrated in figure 12. 

 
 (a) (b) 

 A n  ex am p l e  i l l u s t r a t i o n  o f  th e  p r o b ab i l i ty  Fig. 13. 
d en s i ty  o f  th e   c o n s t r a i n t  v i o l a t i o n s  i n  th e  o b j ec t i v e  

f u n c t i o n s  s p a c e  ( a )  an d  th e  p r o b ab i l i s t i c  d i s tan c e  s p ac e  
( b ) .  

 FA S T  A N D  R O B U S T  C O N V E R G E N C E D.
With the probabilistic distance for nonlinear ranking we 

obtain an optimal step for convergence at each generation. To 
see this, from (27) 

1 exp
1 exp( )
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j j jj
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j j j
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 − −
  − −   = = ≈  

(43) 

In the limiting case, i.e., convergence to the minimum, rj 
becomes 

0 0

( )
lim lim j j

j j

gj
g j g j j

j

p g
r e

g
λλ λ−

→ →= = = → ∞  (44) 

As it is seen, the genetic search algorithm is extraordinarily 
stable, that is, the convergence is due, and due to monotonic 
increase of the slope rj, the convergence is fast. 

I V .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using a 
standard optimization problem from the literature. To 
demonstrate the robust, fast and accurate computations the 
course of the convergence are given in detail. 

The following problem is due to Himmelblau [20]. given by 

2
3 1 5 1( ) 5.3578547 0.8356891 37.293239 40792.141f x x x x= + + −x  (45) 

where the ranges for the independent variables are given by 

1 278 102; 33 45; 27 45 ( 3,4,5)ix x x i< <  < <   < <   =  (46) 

subject to: 
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(47) 

The problem consists of a single objective with 6 constraints, 
subject to minimization. The best known optimum is located 
at 

 f(x*)=-30665.53867178332  

and the corresponding best variable values are   

x1
*=78; x2

*=33; x3
*=29.9952560256815985; x4

*=45; 
x5

*=36.7758129057882073.  

The algorithm is executed with the following settings: 
population size=200; amount of generations=60; C=100000; 
crossover probability=0.9; mutation probability=0.05. The 
results are shown in figure 14-16 using a logarithmic scale for 
the horizontal axis, which shows the total violation G. It is 
noted that a single iteration of the algorithm consists of five 
generations.  

After 5 iterations the population is seen in figure 12, where the 
best feasible solution is  

f(x)=-30569.5213239566.  

 
 P o p u l a t i o n  a f t e r  th e  5 - th  i t e r a t i o n  Fig. 14. 

The independent variables of this solution take: 

x1=78.0265736760284; x2=33.658770910086; 
x3=30.470062623374; x4=44.7895003744468; 
x5=35.8616204529277. 

After 10 iterations the population is seen in figure 14, where 
the best feasible solution is found to be 
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f(x)=-30653.7876324169.  

The independent variables of this solution take: 

x1=78.0261567922629; x2=33.0152143977847; 
x3=30.0228958188968; x4=44.8232338738051; 
x5=36.7924311001587. 

 
 P o p u l a t i o n  a f t e r  th e  1 0 - th  i t e r a t i o n  Fig. 15. 

After 30 iterations the population is seen in figure 15, where 
the best feasible solution is found to be 

f(x)= -30665.4759429232.  

The independent variables of this solution take: 

x1=78.0000867626641; x2=33.000032984143; 
x3=29.9955726882451; x4=45; x5=36.7751232308258. 

 
 P o p u l a t i o n  a f t e r  th e  3 0 - th  i t e r a t i o n  Fig. 16. 

It is noted that the process will continue to improve the 
solution more and more as the search continues, i.e. the 
population converges at the optimal solution, demonstrating 
the robustness of the approach. Namely after 60 iterations the 
population is seen in figure 16, where the best feasible solution 
is found to be 

f(x)= -30665.5386683921.  

The independent variables of this solution take 

x1=78.0000000039558; x2=33.0000000083502; 
x3=29.9952560418378; x4=45; x5=36.7758128740195. 

V .  C O N C L U S I O N S  

Probabilistic considerations underlying a novel evolutionary 
computation are presented. In this work, multi-objective 
optimization is considered in the form of constraint 
optimization, the case conventionally being described in the 
literature, selecting appropriate penalty function parameters. 
However, since these parameters vary during the search 
process the determination of these parameters is very elusive 
and remained an issue to treat for researches. In contrast to 
this, in this work, a probabilistic model is introduced, by 
means of which the penalty parameters are embedded in the 
model, and they are inherently tuned, as the model is 
adaptively modified throughout the generations. The 
probabilistic model also has several favorable implications, 
which are treated in this research. These are stiffness handling, 
impartial elitism, zooming for robust ranking, as well as fast 
and robust convergence. The theory presented in this work is 
exemplified by an optimization problem for demonstration of 
the general effectiveness resulting from this analytical 
treatment of the constraint optimization methodology. 
However the method is not restricted to constraint 
optimization, but suitable for multi-objective optimization in 
general. The reported results include not only the final 
outcomes but also the progress of the convergence throughout 
the optimization process conforming exactly to the theoretical 
considerations presented. 
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NOTE ON THE INFORMATION-THEORETIC ASPECT 
OF FUZZY NEURAL TREE 
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A note on the information theoretic aspect of the fuzzy neural tree (FNT) is presented.  The detailed description of the FNT is given 
in an earlier work, where its information-theoretic aspect is heuristically mentioned but not elaborated because of some space 
limitation. The present note is to highlight this aspect of the tree as this is important in working of the tree with its knowledge-driven 
structure. 

I n d e x  T e r m s — Fuzzy logic, neural tree, knowledge modeling, evolutionary computation, likelihood, probability possibility 

I .  I N T R O D U C T I O N  

uzzy neural tree (FNT) structure is given in an earlier 
published work  where its information-theoretic aspect is 

briefly mentioned [1]. The present note is to highlight this 
aspect of the tree as this is important in working of the tree 
with its knowledge-driven structure. The information-
theoretic aspect of the FNT concerns the application of fuzzy 
concept to some concepts of Information Theory and using 
the result as knowledge in the tree structure. In this way, the 
FNT is driven by both assessments of soft issues as fuzzy 
memberships, and fuzzy membership of measurement data. 
The rest of the FNT structure is formed by the fuzzy 
information as knowledge source for the tree. The brief 
description of the FNT is intentionally presented here for the 
sake of the completeness of the note. 

Neural tree concept and neuro-fuzzy computation is well 
established in the literature. In particular, neural tree concept 
is a kind of “free format” neural computation where layer–by-
layer structure of neural network is relaxed as this will be 
shown shortly afterwards. In the realm of neuro-fuzzy 
paradigm, a neural network can be considered as fuzzy system 
in the sense of the non-linearity introduced at the neurons can 
be seen as fuzzy membership functions. Although such a view 
is appealing from the fuzzy system viewpoint, fuzzy 
interpretation of a neural network becomes formidably 
involved as the network is not a simple one. Therefore, a 
neural network is established generally by learning the input 
data without any recourse to fuzzy considerations. Then such 
structure is considered as non-parametric model. On the other 
hand a neural network can be established by some fuzzy 
considerations as a knowledge model and the same structure 
can be seen as a parametric model, depending on the input 
data in both cases. Even in this parametric model case some 

ranked structure of the neural network can be relaxed and the 
knowledge considered in this context can be the information 
provided by the inputs of the network. As it can duly be 
anticipated, in this fuzzy model the input data is represented 
in terms of information and this information is fuzzified being 
subject to fuzzy information processing. 

The organization of the paper is as follows. Section II 
describes the structural and computational aspects of fuzzy 
neural tree, as well as its information-theoretic aspect. This is 
followed by conclusions. 

I I .  F U Z Z Y  N E U R A L  T R E E  

A.  ST R U C T U R A L  A N D  CO M P U T A T I O N A L  AS P E C T S 
A neural tree can be considered as a feed-forward neural 

network that is organized not layer by layer but node by node. 
The nodes comprise nonlinear functions for processing the 
incoming information. In fuzzy neural networks, this 
nonlinear function is treated as a fuzzy logic element like 
membership function or possibility distribution. Therefore, 
fuzzy logic is integrated into a neural tree with the fuzzy 
information processing executed in the nodes of the tree. A 
generic description of a neural tree subject to analysis in this 
research is as follows. Neural tree networks are in the 
paradigm of neural networks with obvious similarities in their 
structures. A neural tree consists of terminal nodes that also 
referred to as leaf nodes, non-terminal nodes that are also 
referred to as internal or inner nodes, and weights associated 
with the connection links between the pairs of nodes. The 
non-terminal nodes are considered to be neural units, as the 
neuron type is an element introducing a non-linearity 
simulating a neuronal activity. In the present case, this element 
is a Gaussian function, which has several desirable features for 
the goals of the present study; namely, it is a radial basis 
function ensuring a solution, as well as the smoothness. At the 
same time it plays the role of possibility distribution in the tree 
structure, which is considered to be a fuzzy logic system as its 
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outcome is based on fuzzy logic operations thereby providing 
associated reasoning. In a conventional neural network 
structure there is a hierarchical layer structure, where each 
node at the lower level is connected to all nodes of the upper 
layer nodes. However, this stipulation is very restrictive when 
a general system should be represented. Therefore, a more 
relaxed network model is necessary, and this is accomplished 
by a neural-tree, the properties of which are as defined above. 
An instance of a neural tree is shown in figure 1. Each terminal 
node, is labeled with an element from the terminal set T=[x1, 
x2, … , xn]   where xi is the i-th component of the external input 
x which is a vector. Each link (i,j) represents a directed 
connection from node i to node j. A value wij is associated with 
each link. In a neural tree, the root node is an output unit and 
the terminal nodes are input units. 

 
Fig. 1. Structure of a neural tree  

A non-terminal node should have minimally multiple inputs 
to be meaningful, although a single input is also valid for 
operation. A node may have a single or multiple outputs;. 

An internal node having a single input is considered to be a 
trivial case. This is because in this case output of the node is 
approximately equal to the input that it is to be considered 
equal. The node outputs are computed in the same way as 
computed in a feed-forward neural network. In this way, 
neural trees can represent a broad class of feed-forward 
networks that have irregular connectivity and non-strictly 
layered structures. In conventional neural tree structures 
generally connectivity between the branches is avoided. They 
are used for pattern recognition, progressive decision making, 
or complex system modeling. In contrast with such works, in 
the present research connectivity between the branches is 
possible, and the fuzzy neural tree structure is in a fuzzy logic 
framework for knowledge modeling, where fuzzy 
probability/possibility as element of soft computing is central. 
Added to this, the fuzzy neural tree functionality is based on 
likelihood representing fuzzy probability/possibility. This is 
another important difference between the existing neural trees 
in literature and the one in this work. Although in literature a 
family of likelihood functions is used to define a possibility as 
the upper envelope of this family [2, 3], to the authors’ best 
knowledge there is no likelihood function approach in the 
context of neural tree. In the fuzzy neural tree, the output of i-
th terminal node is denoted yi and it is introduced to a non-
terminal node. The detailed view of node connection from 
terminal node i to internal node j is shown in figure 2a and 
from an internal node i to another internal node j is shown in 

figure 2b. 

 
 (a) (b)  (c) 

Fig. 2.  The detailed structure of different type of node connections 

The connection weight between the nodes is shown as wij. In 
the neural network terminology, a node is a neuron and wij is 
the synaptic strength between the neurons. This means, it 
represents the strength of connection between the nodes 
involved. In the fuzzy neural tree it is between zero and unity. 
Figure 3 shows some sample membership functions for the 
terminal nodes. 

 
Fig. 3.  Some sample membership functions at the terminal nodes 

 To start with we refer to figure 2a. We assume the input to 
an input node, namely a terminal node, is a Gaussian random 
variable, which is instructive to start with. In the fuzzy neural 
tree introduced in this work, all the processors operating in the 
internal nodes are Gaussian. Since the inputs to neural tree are 
also Gaussian random variables, due to functions of random 
variable theorem [4] all the processes in the tree are to be 
considered Gaussian. In a neural tree for each terminal input 
we define a linear or Gaussian fuzzy membership function as 
seen in figure 3, whose associated membership provides a 
probabilistic/possibilistic value for that input. Referring to 
figure 2, let us consider two consecutive nodes as shown in 
figure 2c. In the neural tree, any fuzzy 
probabilistic/possibilistic input delivers an output at any non-
terminal node. Due to Gaussian considerations given above, 
we can consider this probabilistic/possibilistic input value of a 
node as a random variable x which can be modelled as a 
Gaussian probability density around a mean 𝑥𝑚 . The 

leaf node

internal node

root node

level 1node(n)

level 2

...

... ......

...
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probability density is given by 
2

2
1 ( )

21( )
2

mx x

xf x e σ

πσ

− −
=

 
   (1)

where xm is the mean; σ is the width of the Gaussian.  
D e f i n i t i o n : Assuming a statistical model parameterized 

by a fixed and unknown θ the likelihood 𝐿(θ) is the 
probability of the observed data 𝑥 considered as a function of 
θ.  

The likelihood function of the mean value xm is given by [5] 

2
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2( )

x
L e

θ
σθ

− −
=  

  (2)

where θ  is the unknown mean value xm. Likelihood function is 
considered to be as a fuzzy membership function or fuzzy 
probability, converting the probabilistic uncertainty to fuzzy 
logic terms. θ is a general independent variable of the 
likelihood function, and the likelihood is between 0 and 1. L(θ) 
plays the role of fuzzy membership function and the likelihood 
at the node output is given by 

( )j j jy L θ=     (3)

Referring to figure 2c, we consider the input xj of node j as a 
random variable given by  

j i ijx y w=     (4)

where wij is the synaptic connection weight between the node i 
and node 𝑗 seen in figure 2. In the same way as described 
above, the pdf of xj is given by  
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   (5)

and the likelihood function of the mean value θ=xmj with 
respect to the input xj is given by 

2 2
2 2

1 1( ) ( )
2 2( )

j j ij i j
j j
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j jL e e
θ θ

σ σθ
− − − −

= =
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where θ is the likelihood parameter. Using (3) in (6), we 
obtain 

2 2
2 2

1 1( ) ( ( ) )
2 2( )

j j ij i i jx w L

j jL e e
θ θ θ

σ σθ
− − − −

= =
 

 (7)
 

We consider the neural tree node status where the likelihood is 
maximum for the input is maximum, namely Lj(θj)=1 for 
Li(θi)=1 . In (7) using Li(θi)=1 we obtain  

j ijwθ =  
  (8)

for the maximum likelihood Lj(θj)=1. Hence, from (7) and (8), 
we obtain that likelihood Lj(θj) is maximum for Li(θi)=1 as was 
designed. Li(θi) is the likelihood of the preceding node. 

2 2
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1 ( ( ) 1)
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− −
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  (9)

 

Referring to (3), from (9) we can also write 
2 2 2 2

2 2
1 1( 1) (1 )
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j j j j
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j jL e e
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σ σθ
− − − −
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  (10)

Referring to (9) the likelihood Lj(θj) is the probability of 
observed data as a function of θ via Li(θi) which is the 
likelihood of the preceding node output. In other words, each 
likelihood output of a node is dependent on the probability of 
the outcome of the preceding node output, which is the 
observed data in this likelihood context. 

B .  IN FO R M A T I O N- TH E O R E T I C  AS P E C T  
For 𝐿𝑖(θ𝑖) = 1 the likelihood 𝐿𝑗(θ𝑗) is maximum being 

independent of θ𝑗 . However for 𝐿𝑖(θ𝑖) ≠ 1, the likelihood 
𝐿𝑗(θ𝑗) is dependent on θ𝑗 . In (9), we note the variation of 
𝐿𝑗(θ𝑗) with respect to θ𝑗   while 𝐿𝑖(θ𝑖) is a parameter. For 
𝐿𝑖(θ𝑖) close to unity or θ𝑗  is close to zero likelihood, then 
𝐿𝑗(θ𝑗) is close to maximum. From the information theory 
viewpoint, likelihood is probability 𝑝 and the information is 
given by 

 log log ( )I p L θ= − = −    (11)

The information content of likelihood is given by (11) since 
L(θ) is considered to be a fuzzy probability [6] in the form of a 
membership function. The fuzzification of this information is 
accomplished by means of the information fuzzy membership 
function 

1 exp( )MF I= − −    (12)

as this is shown in figure 4 with respect to information. 

     
Fig. 4.   Fuzzy membership function of information 

The same information fuzzy membership function with 
respect to likelihood is shown in figure 5.  

 
Fig. 5. Membership function of fuzzified information 

The fuzzy membership function of information in figure 4 can 
take slightly different forms, taking the decay constant 

39



T H E  J O U R N A L  O F  C O G N I T I V E  S Y S T E M S   
V O L U M E  0 1    N U M B E R  0 1  

different than unity. In that case the membership function in 
figure 5 would read 𝑀𝑀 = 1 − 𝑃𝜏 where 𝜏 denotes the decay 
constant. 

The membership function value of the fuzzified information 
is used as the connection weight in the fuzzy neural tree,  

1 1 ( )ij ij i iw p L θ= − = −    (13)

as was explained above by (1) through (8). The fuzzified 
information is to consider as fuzzy information between zero 
and unity. In the FNT, the connection weights throughout the 
model are determined by the inputs of the FNT without 
recourse to any expert knowledge, in this knowledge model. It 
is interesting to note that if the inputs of the model are 
measurement data, then the measurements are fuzzified by 
means of appropriate membership function to a fuzzy 
probability as shown in figure 6.  

 
Fig. 6.  Membership function as fuzzy probability 

If the inputs of the model are soft inputs, then these inputs are 
considered to be directly fuzzified inputs between zero and 
unity and the fuzzfied information introduced above prevails 
throughout the model. 

The heuristic explanation of (13) is as follows.θ𝑗  refers to the 
connection of the node 𝑖 to the node 𝑗. From the information 
theoretic viewpoint 𝑦𝑖  is a probability and it contains no 
information when it is unity. In this case we do not have to 
convey any information from node 𝑖 to node 𝑗, and therefore 
θ𝑗 = 0. From other side if 𝑦𝑖  is zero, it contains information 
that it goes to infinity. Therefore, we connect the node 𝑖 to 
node 𝑗 with total connectivity, that means θ𝑗 = 1 in the case of 
single input. For a multiple input case, which is the non-trivial 
or actual situation, θ𝑗  is selected in a normalized form for 
defuzzification in the rule-chaining process through from 
node to node process in the tree. 
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In (15) 𝑛 is the index number of the number of inputs to the 
node j.  

I I I .  C O N C L U S I O N  

A note on a fuzzy neural tree is presented from the 
information-theoretic properties viewpoint involved in the 
tree. Information-theoretic viewpoint is essential for an 
automatic knowledge model formation directly from the 

inputs of the model. Heuristically we can consider that the 
information supplied to the model is from the inputs, and this 
information is used to form the model without any training 
process. This is an important property of the present neural 
tree structure since in the general neural tree concept in 
literature, the tree structure is determined in one way or other 
by learning and hence the model is non-parametric.  

Fuzzy neural tree subject to study in this work, is an essential 
component of computational cognition, and its effectiveness is 
demonstrated in several applications reported in the literature 
[7, 8].  
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