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AN Lp HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE
FOR THE DUNKL TRANSFORM

FETHI SOLTANI

Abstract. In this paper, we give a generalization of the Heisenberg-Pauli-
Weyl uncertainty inequality for the Dunkl transform on Rd in Lp-norm.

1. Introduction and preliminaries

In this paper, we consider Rd with the Euclidean inner product 〈., .〉 and norm
|y| :=

√
〈y, y〉. For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd

orthogonal to α:

σαy := y − 2〈α, y〉
|α|2 α.

A finite set < ⊂ Rd\{0} is called a root system, if < ∩ R.α = {−α, α} and
σα< = < for all α ∈ <. We assume that it is normalized by |α|2 = 2 for all
α ∈ <. For a root system <, the reflections σα, α ∈ <, generate a finite group
G ⊂ O(d), the reflection group associated with <. All reflections in G, correspond
to suitable pairs of roots. For a given β ∈ Rd\⋃

α∈<Hα, we fix the positive
subsystem <+ := {α ∈ < : 〈α, β〉 > 0}. Then for each α ∈ < either α ∈ <+ or
−α ∈ <+.

Let k : < → C be a multiplicity function on < (that is, a function which is
constant on the orbits under the action of G). As an abbreviation, we introduce
the index γ = γk :=

∑
α∈<+

k(α).
Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ <. Moreover,

let wk denote the weight function wk(y) :=
∏

α∈<+
|〈α, y〉|2k(α), for all y ∈ Rd,

which is G-invariant and homogeneous of degree 2γ.
The Dunkl operators Dj ; j = 1, ..., d, on Rd associated with the finite reflection

group G and multiplicity function k are given, for a function f of class C1 on Rd,
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by

Djf(y) :=
∂

∂yj
f(y) +

∑

α∈<+

k(α)αj
f(y)− f(σαy)

〈α, y〉 .

For y ∈ Rd, the initial problem Dju(., y)(x) = yju(x, y), j = 1, ..., d, with
u(0, y) = 1 admits a unique analytic solution on Rd, which will be denoted by
Ek(x, y) and called Dunkl kernel [4, 7]. This kernel has a unique analytic extension
to Cd × Cd. In our case, |Ek(−ix, y)| ≤ 1, for all x, y ∈ Rd.

Let ck be the Mehta-type constant given by ck := (
∫
Rd e−|y|

2/2wk(y)dy)−1. We
denote by µk the measure on Rd given by dµk(y) := ckwk(y)dy; and by Lp(µk),
1 ≤ p ≤ ∞, the space of measurable functions f on Rd, such that

‖f‖Lp(µk) :=
(∫

Rd

|f(y)|pdµk(y)
)1/p

< ∞, 1 ≤ p < ∞,

‖f‖L∞(µk) := ess sup
y∈Rd

|f(y)| < ∞.

If f ∈ L1(µk) with f(x) = F (|x|), then

(1.1)
∫

Rd

f(x)dµk(x) =
1

2γ+ d
2−1Γ(γ + d

2 )

∫ ∞

0

F (t)t2γ+d−1dt.

The Dunkl kernel gives rise to an integral transform, which is called Dunkl
transform on Rd, and was introduced by Dunkl in [5], where already many basic
properties were established. Dunkl’s results were completed and extended later by
de Jeu [7]. The Dunkl transform of a function f in L1(µk), is

Fk(f)(x) :=
∫

Rd

Ek(−ix, y)f(y)dµk(y), x ∈ Rd.

Some of the properties of Dunkl transform Fk are collected bellow (see [5, 7]).
(a) L1 − L∞-boundedness. For all f ∈ L1(µk), Fk(f) ∈ L∞(µk) and

(1.2) ‖Fk(f)‖L∞(µk) ≤ ‖f‖L1(µk).

(b) Inversion theorem. Let f ∈ L1(µk), such that Fk(f) ∈ L1(µk). Then

f(x) = Fk

(
Fk(f)

)
(−x), a.e. x ∈ Rd.

(c) Plancherel theorem. The Dunkl transform Fk extends uniquely to an iso-
metric isomorphism of L2(µk) onto itself. In particular,

(1.3) ‖f‖L2(µk) = ‖Fk(f)‖L2(µk).

Using relations (1.2) and (1.3) with Marcinkiewicz’s interpolation theorem [10,
11], we deduce that for every 1 ≤ p ≤ 2, and for every f ∈ Lp(µk), the function
Fk(f) belongs to the space Lq(µk), q = p/(p− 1), and

(1.4) ‖Fk(f)‖Lq(µk) ≤ ‖f‖Lp(µk).

Many uncertainty principles have already been proved for the Dunkl transform,
namely by Rösler [8] and Shimeno [9] who established the Heisenberg-Pauli-Weyl
inequality for the Dunkl transform, by showing that for every f ∈ L2(µk),

(1.5) ‖f‖2L2(µk) ≤
2

2γ + d
‖ |x|f‖L2(µk)‖ |y|Fk(f)‖L2(µk).

Building on the techniques of Ciatti et al. [1] we show a general form of the
Heisenberg-Pauli-Weyl inequality for the Dunkl transform Fk. More precisely, we
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prove that for all f ∈ Lp(µk), 1 < p ≤ 2, q = p/(p − 1) and 0 < a < (2γ + d)/q,
b > 0,

(1.6) ‖Fk(f)‖Lq(µk) ≤ C(a, b)‖ |x|af‖
b

a+b

Lp(µk)‖ |y|bFk(f)‖
a

a+b

Lq(µk),

where C(a, b) is a positive constant. This inequality generalizes the Heisenberg-
Pauli-Weyl inequality given by (1.5); and in the case k = 0 and q = 2, this inequality
is due to Cowling-Price [2] and Hirschman [6].

We shall use the Heisenberg-Pauli-Weyl principle (1.6); and building on the
techniques of Donoho and Stark [3], we show a continuous-time principle for the
Lp theory, when 1 < p ≤ 2.

This paper is organized as follows. In Section 2 we list some basic properties of
the Dunkl transform Fk. In Section 3 we prove a general form of the Heisenberg-
Pauli-Weyl inequality for Fk. The last section is devoted to Donoho-Stark’s uncer-
tainty principle for the Dunkl transform Fk in the Lp theory, when 1 < p ≤ 2.

2. Lp Heisenberg-Pauli-Weyl inequality

In this section, we extend the Heisenberg-Pauli-Weyl uncertainty principle (1.5)
to more general case. We need to use the method of Ciatti et al. [1], which is the
counterpart in the Euclidean case. We begin by the following lemma.

Lemma 2.1. Let 1 < p ≤ 2, q = p/(p − 1) and 0 < a < (2γ + d)/q. Then for all
f ∈ Lp(µk) and t > 0,

(2.1) ‖e−t|y|2Fk(f)‖Lq(µk) ≤
(
1 +

ak

(2q)(γ+ d
2 ) 1

q

)
t−a/2‖ |x|af‖Lp(µk),

where

ak =
[
(2γ + d− qa)2γ+ d

2−1Γ(γ +
d

2
)
]−1/q

.

Proof. Inequality (2.1) holds if ‖ |x|af‖Lp(µk) = ∞. Assume that ‖ |x|af‖Lp(µk) <

∞. For r > 0, let Br = {x : |x| < r} and Bc
r = Rd\Br. Denote by χBr and χBc

r

the characteristic functions. Let f ∈ Lp(µk), 1 < p ≤ 2 and let q = p/(p− 1).
Since |(fχBc

r
)(x)| ≤ r−a|x|a|f(x)|, then by (1.4),

‖e−t|y|2Fk(fχBc
r
)‖Lq(µk) ≤ ‖e−t|y|2‖L∞(µk)‖Fk(fχBc

r
)‖Lq(µk)

≤ ‖fχBc
r
‖Lp(µk) ≤ r−a‖ |x|af‖Lp(µk).

On the other hand, by (1.2) and Hölder’s inequality,

‖e−t|y|2Fk(fχBr )‖Lq(µk) ≤ ‖e−t|y|2‖Lq(µk)‖Fk(fχBr )‖L∞(µk)

≤ ‖e−t|y|2‖Lq(µk)‖fχBr‖L1(µk)

≤ ‖e−t|y|2‖Lq(µk)‖ |x|−aχBr‖Lq(µk)‖ |x|af‖Lp(µk).

By (1.1), we have ‖e−t|y|2‖Lq(µk) = 1

(2q)
(γ+ d

2 ) 1
q
t−(γ+ d

2 ) 1
q and ‖ |x|−aχBr‖Lq

k
= akr−a+(2γ+d)/q.

Hence,

‖e−t|y|2Fk(fχBr )‖Lq
k
≤ ak

(2q)(γ+ d
2 ) 1

q

r−a+(2γ+d)/qt−(γ+ d
2 ) 1

q ‖ |x|af‖Lp(µk),
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and

‖e−t|y|2Fk(f)‖Lq(µk) ≤ ‖e−t|y|2Fk(fχBr
)‖Lq(µk) + ‖e−t|y|2Fk(fχBc

r
)‖Lq(µk)

≤ r−a
(
1 +

ak

(2q)(γ+ d
2 ) 1

q

r(2γ+d)/qt−(γ+ d
2 ) 1

q

)
‖ |x|af‖Lp(µk).

Choosing r = t1/2, we obtain (2.1). ¤

Theorem 2.1. Let 1 < p ≤ 2, q = p/(p− 1), 0 < a < (2γ + d)/q and b > 0, then
for all f ∈ Lp(µk),

(2.2) ‖Fk(f)‖Lq(µk) ≤ C(a, b)‖ |x|af‖
b

a+b

Lp(µk)‖ |y|bFk(f)‖
a

a+b

Lq(µk),

where C(a, b) is a positive constant.

Proof. Let f ∈ Lp(µk), 1 < p ≤ 2, such that ‖ |x|af‖Lp(µk)+‖ |y|bFk(f)‖Lq(µk) <
∞. Assume that 0 < a < (2γ + d)/q and b ≤ 2. By Lemma 2.1, for all t > 0,

‖Fk(f)‖Lq(µk) ≤ ‖e−t|y|2Fk(f)‖Lq(µk) + ‖(1− e−t|y|2)Fk(f)‖Lq(µk)

≤
(
1 +

ak

(2q)(γ+ d
2 ) 1

q

)
t−a/2‖ |x|af‖Lp(µk) + ‖(1− e−t|y|2)Fk(f)‖Lq(µk).

On the other hand,

‖(1− e−t|y|2)Fk(f)‖Lq(µk) = tb/2‖(t|y|2)−b/2(1− e−t|y|2)|y|bFk(f)‖Lq(µk).

Since (1− e−t)t−b/2 is bounded for t ≥ 0 if b ≤ 2. Hence,

‖Fk(f)‖Lq(µk) ≤ C
(
t−a/2‖ |x|af‖Lp(µk) + tb/2‖ |y|bFk(f)‖Lq(µk)

)
.

We choose t =
(

a
b

‖ |x|af‖Lp(µk)

‖ |y|bFk(f)‖Lq(µk)

) 2
a+b

, we obtain the result

(2.3) ‖Fk(f)‖Lq(µk) ≤ C‖ |x|af‖
b

a+b

Lp(µk)‖ |y|bFk(f)‖
a

a+b

Lq(µk), for all b ≤ 2.

If b > 2. For u ≥ 0, u ≤ 1 + ub which for u = |y|
ε gives the inequality |y|

ε ≤
1 +

(
|y|
ε

)b

, for all ε > 0. It follows that

‖ |y|Fk(f)‖Lq(µk) ≤ ε‖Fk(f)‖Lq(µk) + ε1−b‖ |y|bFk(f)‖Lq(µk).

We choose ε = (b− 1)1/b

(
‖ |y|bFk(f)‖Lq(µk)

‖Fk(f)‖Lq(µk)

)1/b

, we get

(2.4) ‖ |y|Fk(f)‖Lq(µk) ≤
b

b− 1
(b− 1)1/b‖Fk(f)‖

b−1
b

Lq(µk)‖ |y|bFk(f)‖1/b
Lq(µk)

Then, by (2.3) and (2.4) we obtain

‖Fk(f)‖Lq(µk) ≤ C‖ |x|af‖
1

a+1

Lp(µk)‖ |y|Fk(f)‖
a

a+1

Lq(µk)

≤ C‖Fk(f)‖
a(b−1)
b(a+1)

Lq(µk)‖|x|af‖
1

a+1

Lp(µk)‖ |y|bFk(f)‖
a

b(a+1)

Lq(µk).

Thus,

‖Fk(f)‖
a+b

b(a+1)

Lq(µk) ≤ C‖ |x|af‖
1

a+1

Lp(µk)‖ |y|bFk(f)‖
a

b(a+1)

Lq(µk),

which gives the result for b > 2. ¤
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Remark 2.1. When q = 2, by (1.3) we obtain

‖f‖L2(µk) ≤ C(a, b)‖ |x|af‖
b

a+b

L2(µk)‖ |y|bFk(f)‖
a

a+b

L2(µk),

which is the general case of the inequality (1.5) proved by Rösler [8] and Shimeno
[9].

Now, we give application of the Lp Heisenberg-Pauli-Weyl inequality to the
Donoho-Stark uncertainty principle.

Let E be measurable subset of Rd. We introduce the partial sum operator SE

by

(2.5) Fk(SEf) = Fk(f)χE

Let b > 0. We say that a function f ∈ Lp(µk), 1 ≤ p ≤ 2, is |y|bFk(f) is
ε-concentrated to E in Lq(µk)-norm, q = p/(p − 1), if there is a function h(y)
vanishing outside E with ‖ |y|bFk(f)− h‖Lq(µk) ≤ ε‖ |y|bFk(f)‖Lq(µk).

From (2.5) it follows that |y|bFk(f) is εE-concentrated to E in Lq(µk)-norm,
q = p/(p− 1), if and only if

(2.6) ‖ |y|bFk(f)− |y|bFk(SEf)‖Lq(µk) ≤ εE‖ |y|bFk(f)‖Lq(µk)

It is useful to have uncertainty principle for the Lp(µk)-norm.

Theorem 2.2. Let E be measurable subset of Rd; and let 1 < p ≤ 2, q = p/(p−1),
f ∈ Lp(µk) and b > 0. If |y|bFk(f) is εE-concentrated to E in Lq(µk)-norm, then
for 0 < a < (2γ + d)/q:

‖Fk(f)‖Lq(µk) ≤
C(a, b)

(1− εE)
a

a+b
‖ |x|af‖

b
a+b

Lp(µk)‖ |y|bFk(f)χE‖
a

a+b

Lq(µk),

where C(a, b) is the constant given by (2.2).

Proof. Let f ∈ Lp(µk), 1 < p ≤ 2. Since |y|bFk(f) is εE-concentrated to E in
Lq(µk)-norm, q = p/(p− 1), then by (2.6),

‖ |y|bFk(f)‖Lq(µk) ≤ εE‖ |y|bFk(f)‖Lq(µk) + ‖ |y|bFk(f)χE‖Lq(µk).

Thus,

‖ |y|bFk(f)‖
a

a+b

Lq(µk) ≤
1

(1− εE)
a

a+b
‖ |y|bFk(f)χE‖

a
a+b

Lq(µk).

Multiply this inequality by C(a, b)‖ |x|af‖
b

a+b

Lp(µk) and applying Theorem 2.1 we de-
duce the desired inequality. ¤
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SIMPLICIAL AND CROSSED HOM-LIE ALGEBRA

AHMET FARUK ASLAN

Abstract. We introduce the simplicial Hom-Lie algebras and determine their
relations among crossed modules of Hom-Lie algebras.

1. Introduction

A Hom algebra structure is a multiplication on a vector space where the
structure is twisted by a homomorphism. The structure of Hom-Lie algebra was
introduced in [2]. Crossed modules were introduced by Whitehead in [7] as a
model for connected homotopy 2-types. After then, crossed modules were used in
many branches of mathematics such as category theory, cohomology of algebraic
structures, differential geometry and in physics. This makes the crossed modules
one of the fundamental algebraic gadget. For some different usage, crossed modules
were defined in different categories such as Lie algebras, commutative algebras
etc.([5],[3]). Also the crossed modules of Hom-Lie algebras were defined in [6]. The
goal of this paper is to define simplicial Hom-Lie algebras and show their relation
between the crossed modules over Hom-Lie algebras and the simplicial Hom-Lie
algebras.

2. Preliminaries

In the rest of this paper k will be a fixed field.

Definition 2.1. ([ 2]) A Hom-Lie algebra is a triple space (L, [−,−], αL) consist-
ing of a k-vector space L, a skew-symmetric bilinear map [−,−] : L× L −→ L

and a k-linear map αL : L −→ L satisfying the following hom-Jacobi identity;

[αL(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0,

for all x, y, z ∈ L.

Definition 2.2. A homomorphism of Hom-Lie algebras

f : (L, [−,−]L, αL) −→ (L, [−,−]M , αM )

2000 Mathematics Subject Classification. 18G50 (18G55), 17A32 (17A42), 17B99.
Key words and phrases. Simplicial object, Crossed module, Hom-Lie algebras.

7



8 AHMET FARUK ASLAN

is a linear map f : L −→ M such that

f([x, y]L) = [f(x), f(y)]M , f ◦ αL = αM ◦ f,

for all x, y ∈ L.

Example 2.1. If we take α = id, then every Lie algebra L forms a Hom-Lie algebra
(L, [−,−], id).

We have the category HomLie whose objects are Hom-Lie algebras and whose
morphisms are Hom-Lie algebra homomorphism.

So the category Lie of Lie algebras is a full subcategory of HomLie which gives
an inclusion functor Lie ↪→ HomLie.

From now on we use L instead of (L, [−,−]L, αL), for shortness.

3. Crossed Modules of Hom-Lie Algebras

In this section we will recall the action in HomLie and the definition of crossed
modules from [6]. Also we will adapt some well known examples and results from
crossed modules of groups to crossed modules of Hom-Lie algebras.

Definition 3.1. Let L be a Hom-Lie algebra. A Hom-representation of L is a k-
vector space M together with a bilinear map ρ : L⊗M −→ M , ρ(l ⊗m) = lm

and a k-linear map αM : M −→ M such that
1. [x,y]αM (m) = αL(x)(ym)− αL(y)(xm),
2. αM (xm) = αL(x)(αM (m)),

for all x, y ∈ L and m ∈ M.

Definition 3.2. Let L,M be Hom-Lie algebras and L has an action on M. Then
we have the Hom-Lie algebra (M oL,α) defined on the vector space M ⊕L where
α : M o L −→ M o L is defined by α(m, l) = (αM (m), αL(l)) and the bracket

is as follows

[(m, l), (m′, l′)] = [[m,m′]M + αL(l)m′ − αL(l′)m, [l, l′]L]

for all (m, l), (m′, l′) ∈ M ⊕ L.

Definition 3.3. A crossed module of Hom-Lie algebras is Hom-Lie homomorphism
∂ : M −→ L where M is a Hom-representation of L such that

∂( xm) = [x, ∂m], ∂(m)m′ = [m,m′],

for all x ∈ L,m, m′ ∈ M.
The crossed module ∂ : M −→ L will be denoted by (M, L, ∂).

Definition 3.4. Let (M, L, ∂), (M ′, L′, ∂′) be crossed modules. A homomorphism
from (M,L, ∂) to (M ′, L′, ∂′) is a pair (µ1, µ0) of Hom-Lie homomorphisms such
that,

µ0∂ = ∂′µ1 and µ1( lm) = µ0(l)(µ1(m)),

for all l ∈ L,m ∈ M.
Consequently, we define the category of crossed modules on Hom-Lie algebras,

whose objects are crossed modules of Hom-Lie algebras and whose morphisms are
homomorphisms of crossed modules. This category will be denoted by XHomLie.
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Example 3.1. Let L be a Hom-Lie algebra and I be an ideal of L. I is a Hom-
representation of L thanks to the map ρ : L⊗ I −→ I defined by

ρ(l, i) = [l, i],

for all l ∈ L, i ∈ I. This gives rise to the crossed module (I, L, inc.).

Proposition 3.1. If (M, L, ∂) is a crossed module then ∂(M) is an ideal of L (This
is not the case for arbitrary homomorphisms, in general).

Proof. Since ∂ : M −→ L is a crossed module, we have [l, ∂m] = ∂( lm) for all
l ∈ L,m ∈ M, as required. ¤
Example 3.2. Let M be a k-vector space which is also a Hom-representation of a
Hom-Lie algebra L. Then 0 : M −→ L is a crossed module. (Here, if M chosen
as an arbitrary Hom-Lie algebra, then the Peiffer condition do not satisfied, in
general.)

4. Simplicial Hom-Lie Algebras

Let 4 be the category of finite ordinals. A simplicial Hom-Lie algebra HL is
a sequence of Hom-Lie algebras

HL = {HL0, HL1, ...,HLn, ...}
together with face and degeneracy maps

dn
i : HLn −→ HLn−1 , 0 ≤ i ≤ n (n 6= 0)

sn
i : HLn −→ HLn+1 , 0 ≤ i ≤ n

which are Hom-Lie homomorphisms satisfying the usual simplicial identities.

4.1. The Moore Complex. The Moore complex NHL of a simplicial Hom-Lie
algebra HL is the complex

NHL : · · · −→ NHLn
∂n−→ NHLn−1

∂n−1−→ · · · ∂2−→ NHL1
∂1−→ NHL0

where NHL0 = HL0, NHLn =
n−1⋂
i=0

Kerdi and ∂n is the restriction of dn to NHLn.

We say that the Moore complex NHL of a simplicial Hom-Lie algebra HL is of
length k if NHLn = 0, for all n ≥ k + 1. Let Simp≤k(HL) be the category whose
objects are simplicial Hom-Lie algebras with Moore complex of length k.

4.2. Truncated Simplicial Hom-Lie Algebras. The following terminology
adapted to simplicial Hom-Lie algebras from [1]. Details of the group case can
be found in [1]. A k-truncated simplicial Hom-Lie algebra is a family of Hom-
Lie algebras {HL0,HL1, ..., HLk} and homomorphism di : HLn −→ HLn−1, si :
HLn −→ HLn+1, for each 0 ≤ i ≤ n which satisfy the simplicial identities. We
denote the category of k-truncated simplicial Hom-Lie algebras by TrkSimp(HL).
There is a truncation functor trk from the category Simp(HL) to the category
TrkSimp(HL) given by restrictions. This truncation functor has a left adjoint stk
and a right adjoint costk called as k-skeleton and k-coskeleton respectively. These
adjoints can be pictured as follows;

TrkSimp(HL)
trk←−
−→
costk

Simp(HL)
trk−→
←−
stk

TrkSimp(HL).
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see [1] for details about the functors costk and stk.

Theorem 4.1. The category XHomLie of crossed modules of Hom-Lie algebras
is naturally equivalent to the category Simp≤1(HL) of simplicial Hom-Lie algebras
with Moore complex of length 1.

Proof. Let HL be a simplicial Hom-Lie algebra with Moore complex of length 1.
NHL1 is a Hom-representation of NHL0, thanks to the degenerate operator s0

0. In
fact, by using the map ρ : NHL0 ⊗NHL1 −→ NHL1 , (x, a) 7−→ xa := [s0(x), a] ,
we have

[x,y]αM (m) = [[s0x, s0y], αM (m)]
= −([αM (m), [[s0x, s0y]]])
= (αMs0x, [s0y,m] + [αMs0y, [m, s0x]])
= [s0αLx, [s0y, m]]− [s0αLy, [s0x,m]]
= αL(x)( ym)− αL(y)( xm),

and
αM ( xm) = αM [s0(x),m]

= [αMs0x, αMm]
= [s0αL(x), αM (m)],

for all x, y ∈ NHL0, a ∈ NHL1.
Define ∂ := d1 |Kerd0 . Then (NHL1, NHL0, ∂) is a crossed module. We have

∂( xa) = ∂[s0(x), a]
= [∂s0(x), ∂(a)]
= [x, ∂(a)],

since d1
1s

0
0 = id. On the other hand, we have

∂(a)b = [s0∂(a), b]
= [s0d1(a), b]
= [a− a + s0d1(a), b]
= [a, b]− [a + s0d1(a), b]
= [a, b]− [d2

2s
1
1a + d2

2s
1
0a, d2

2s
1
1b]

= [a, b]− d2
2[s

1
1a + s1

0a, s1
1b]

= [a, b],

for all a, b ∈ NHL1, since d2
2s

1
1 = id , s1

0d
1
1 = d2

2s
1
0 . Consequently (NHL1, NHL0, ∂)

is a crossed module. So we obtain the functor

X : Simp≤1(HL) −→ XHomLie

Conversely, let (M, L, ∂) be a crossed module. Since M is a Hom-representation of
L, we have the semi-direct product M o L. Define the maps d0 : M o L −→ L ,

d1 : M o L −→ L and s0 : L −→ M o L by (m, l) 7−→ l , (m, l) 7−→ ∂(m) + l

and l 7−→ (0, l) , respectively. It can be easily showed that these maps are Hom-Lie
algebra homomorphisms. So HL1 = M o L and HL0 = L. Then

HL1

d1−→
d1−→
←−
s0

HL0
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is a 1-trunated simplicial Hom-Lie algebra. Thus we have the functor

T : XHomLie −→ Tr1Simp(HL)

By using the functor stk, we have

S := st1T : XHomLie −→ Simp≤1(HL)

which gives the natural equivalance of the categories XHomLie and Simp≤1(HL)
with the functor X. ¤
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1.Introduction.

As we know, in 1959 year in the first by I.M Gelfand [3] was offered to studying
of boundary value problems for the equations parabolic-hyperbolic type.

Since A.V.Bitsadze’s works, in the theory partial differential equations there
was a new direction, in which the problem of the type of Frankl for the first time
is formulated and investigated for the modeling equations of the mixed type. We
note following works that are connected with studying Frankl problem for the mixed
type equations. In the books [1],[2] the Frankl problem was discussed for the special
mixed type equation of second order: uxx + signyuyy = 0. The Frankl problem
for the mixed equation with parabolic degeneracy singy|y|muxx + uyy = 0 with is
a mathematical model of problem of gas dynamic, was discussed in the book of
M.M.Smirnov [8]. Existence of solution of Frankl problem for general Lavrent’ev-
Bitsadze equations was proved in work of Guo-chun Wen and H.Begehr [4].

The basic review of boundary value problems for the mixed type equations with
Frankl condition it is possible will receive in the work J. M. Rassias [9].

2. Initial necessary dates
12
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Definition. Let’s, the function f(x) is any function from a class L(a, b) a <
x < ∞. An operator in the form

Dα
axf(x) =





1
Γ(−α)

x∫

a

f(t)
(x− t)1+c

, α < 0,

dn+1

dxn+1
Dα−(n+1)

ax f(x), α > 0,

Dα
xbf(x) =





1
Γ(−α)

b∫

x

f(t)
(t− x)1+α

, α < 0,

(−1)n+1 dn+1

dxn+1
D

α−(n+1)
xb f(x), α > 0,

(2.1)

where Dα
ax and Dα

xb is called as the integral operator of fractionally integration α,
at α < 0, and the generalized derivatives in understand of Liuvill on the order α,
at α > 0, n = [α]; [α] the whole part of number α.

Some properties integral differential operators of fractionally order.
10. If f(x) ∈ L(a, b), then for all α > 0 almost for all x ∈ (a, b)

Dα
xbD

−α
xb f(x) = f(x), (2.2)

20. Lets f(x) ∈ L(a, b), then:
1) if β ≥ α > 0, then

Dα
axD−β

ax f(x) = D−(β−α)
ax f(x), Dα

xbD
−β
xb f(x) = D

−(β−α)
xb f(x), x ∈ (a, b);

2) if α > β ≥ 0 and the function f(x) have a derivative of Dα−β
ax f(x), Dα−β

xb f(x)
then

Dα
axD−β

ax f(x) = D(α−β)
ax f(x),

Dα
xbD

−β
xb f(x) = D

(α−β)
xb f(x), x ∈ (a, b);

30. Let 0 < 2β < 1 (b− x)−βf(x) ∈ L(a, b). then almost everywhere on (a, b) it
is fair identities:

Dβ
xb(b− x)2β−1Dβ−1

xb (b− x)−βf(x) = (b− x)β−1D2β−1
xb f(x). (2.3)

40. A principle of an extremum for the fractional derivative operations Dα
ax and

Dα
xb(0 < α < 1). Let positive not decreasing function ω(t) and a function f(t)

continuously in [a, b]. Then, if the function f(t) reaches the positive maximum (a
negative minimum) in the segment [a, b] on the point t = x, a < x < b and in as
much as small vicinity of this point derivative of function ω(t)f(t) satisfy Gelder
condition with an indicator γ > α, then Dα

axωf > 0, (Dα
xbωf < 0).

The similar remark takes place for the operator Dα
xb, if ω(t) positive not increas-

ing function on the [a, b].

3. The statement of problems F.

The given work is devoted research of non-local problem of the Frankl type for
the equation

0 =

{
ym0uxx − xn0uy, x > 0, y > 0,

(−y)nuxx − xnuyy, x > 0, y < 0,
(3.1)

where m0, n0, n = const, m0 > 0, n0 > 0, n > 0.
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Let’s Ω is, domain restricted at x < 0, y > 0, by the segments AB, BB0, A0B0,
A0A on the lines y = 0, x = 1, y = 1, x = 0 and at x > 0, y < 0, restricted by
line x = 0, (−1 ≤ y ≤ 0) and characteristics

BC : x
n+2

2 + (−y)
n+2

2 = 1,

of equation (3.1), where A(0, 0), B(1, 0), A0(0, 1), B0(1, 1).
Let’s to put designations:

J = {(x, y) : 0 < x < 1, y = 0}, Ω1 = Ω ∩ {(x, y) : x > 0, y > 0},
Ω2 = Ω ∩ {(x, y) : x > 0, y < 0}, Ω21 = Ω2 ∩ {(x, y) : x + y > 0},

Ω22 = Ω2 ∩ {(x, y) : x + y < 0},Ω∗ = Ω1 ∪ Ω21 ∪ J, 2β =
n

n + 2
, α0 =

n0 + 1
n0 + 2

,

and
0 < 2β < 1, 1 < 2α0 < 2. (3.2)

we will designate, through

θ (x0) =
(

1 + x0

2

) 2
n+2

− ι̇

(
1− x0

2

) 2
n+2

, (3.3)

affix of the point of crossing characteristic BC0 by the characteristic leaving on the
point (x0, 0) ∈ J, parallel characteristic AC0, where C0

(
21/(n+2), 2−1/(n+2)

)
.

The Problem F. To find a function u(x, y) with following conditions:
1)u(x, y) ∈ C(Ω) ∩ C2,1(Ω1) ∩ C2(Ω21 ∪ Ω22);
2)u(x, y) satisfies equation (3.1) in the domain Ω1 ∪ Ω21 ∪ Ω22;
3)ux(x, y) ∈ C(Ω1 ∪ AA0) ∩ C(Ω22 ∪ AC), ux(+0, y) ∈ C(Ω22 ∪ AC), y−m0uy ∈
C(Ω1 ∪ J), uy ∈ C(Ω2 ∪ J) and on AB satisfied gluing condition:

lim
y→+0

y−m0uy(x, y) = lim
y→−0

uy(x, y), (x, y) ∈ J, (3.4)

4)u(x, y) satisfies boundary conditions :

u(x, y)|AA0 = τ0(y), u(x, y)|BB0 = ϕ0(y), 0 ≤ y ≤ 1, (3.5)

Dβ
x21(1− x2)2β−1u [θ(x)] = a(x)u

(
x

2
n+2 , 0

)
+

+b(x)(1− x2)β−1uy

(
x

2
n+2 , 0

)
+ c(x), x ∈ (0, 1), (3.6)

ux(0, +y) = ux(0,−y), 0 < y < 1, (3.7)
where ϕ0(y),τ0(y), a(x), b(x), c(x) are given continuous functions, at that

τ0(y), ϕ0(y) ∈ C[0, 1] ∩ C1(0, 1), (3.8)

a(x), b(x), c(x) ∈ C [0, 1] ∩ C3(0, 1). (3.9)

3.1. Reduction of main functional relations.
A solution of the Cauchy problem satisfying the following conditions τ−(x) =

u(x,−0), 0 ≤ x ≤ 1, ν−(x) = uy(x,−0), 0 < x < 1, for the equation(3.1) in the
domain of Ω21, looks like[7]:

u(x, y) = γ1

1∫

0

τ−
(

z
1

n+2
1

)
zβ−1(1− z)β−1dz−
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−γ2xy

1∫

0

z
− 1

n+2
1 ν−

(
z

1
n+2
1

)
z−β(1− z)−βdz, (3.10)

where , γ1 = Γ(2β)
Γ2(β) , γ2 = Γ(2−2β)

Γ2(1−β) , z1 = xn+2 + (−y)n+2 + 2x
n+2

2 (−y)
n+2

2 (2z − 1).
By virtue (3.3), from (3.10), we have

u [θ(x)] = γ1

1∫

0

τ−
[(

x2 + (1− x2)z
) 1

2−β
]
(z(1− z))β−1dz + γ2

(
1− x2

4

)1−2β

×

×
1∫

0

(
x2 + (1− x2)z

)β− 1
2 ν−

[
(x2 + (1− x2)z)

1
2−β

]
(z(1− z))−βdz.

From here, owing to replacement x2 + (1− x2)z = s, we will receive

u[θ(x)] = γ1(1− x2)1−2β

1∫

x2

(s− x2)β−1(1− s)β−1τ−
(
s

1
n+2

)
ds+

+γ242β−1

1∫

x2

(s− x2)−β(1− s)−βsβ− 1
2 ν−

(
s

1
n+2

)
ds.

Further,taking properties of integro-differential operators into account (2.1)[8],we
have

u[θ(x)] = γ1Γ(β)(1− x2)1−2βD−β
x21τ

−
(
x

2
n+2

)
(1− x2)β−1+

+γ2Γ(1− β)42β−1Dβ−1
x21 (1− x2)−βx2β−1ν−

(
x

2
n+2

)
. (3.11)

Substituting (3.11),(2.2) to the condition (3.6), and replacing x2 to x, we have
[
a(x)− γ1Γ(β)(1− x)β−1

]
τ−

(
x

1
n+2

)
+ c(x) = γ2Γ(1− β)42β−1×

×Dβ
x1(1− x)2β−1Dβ−1

x1 (1− x)−βxβ− 1
2 ν−

(
x

1
n+2

)
− (1− x)β−1b (x) ν−

(
x

1
n+2

)
.

(3.12)
From (3.12) and (2.3), we have

a1(x)τ̃−(x) = γ2Γ(1− β)42β−1D2β−1
x1 xβ− 1

2 ν̃−(x)−
−b (x) ν̃−(x)− c(x)(1− x)1−β , 0 < x < 1, (3.13)

where, τ̃−(x) = τ−
(
x

1
n+2

)
, ν̃−(x) = ν−

(
x

1
n+2

)
,

a1(x) = a(x)(1− x)1−β − γ1Γ(β), a(x) = a(
√

x), b(x) = b(
√

x), c(x) = c(
√

x).
(3.14)

Let’s consider three cases:
I. Let’s b(x) = 0, a(x) 6= 0. Then from (3.13), receive

γ2Γ(1− β)42β−1D2β−1
x1 xβ− 1

2 ν̃−(x) = a1(x)τ̃−(x) + (1− x)1−βc (x) . (3.15)

Applying the operator D1−2β
x1 [.] to both parts of equality (3.15), we will obtain

the basic functional relation between τ̃−(x) and ν̃−(x) :

γ2Γ(1− β)42β−1ν̃−(x) = x
1
2−βD1−2β

x1 a1(x)τ̃−(x)+
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+x
1
2−βD1−2β

x1 (1− x)1−βc (x) . (3.16)

Further, from the equation uxx−xn0y−m0uy = 0 at the y → +0 we have receive
ordinary differential equation

τ
′′+(x)− xn0ν+(x) = 0, 0 < x < 1, (3.17)

where τ+(x) = u(x,+0) and ν+(x) = lim
y→+0

y−m0uy(x, y).

Solving this equation with conditions τ+(0) = τ0(0) and τ+(1) = ϕ0(0), deduce
functional relation between τ+(x) and ν+(x) :

τ+(x) =

1∫

0

G(x, t)tn0ν+(t)dt + f(x), 0x1,

here

G(x, t) =
{

t(x− t), 0 ≤ t ≤ x,
(t− 1)x, x ≤ t ≤ 1.

(3.18)

f(x) = τ0(0) + x(ϕ0(0)− τ0(0)). (3.19)

Further, by virtue replace x ∼ x
1

n+2 and t ∼ t
1

n+2 receive functional relation
between τ̃+(x) ν̃+(x) :

τ̃+(x) =

1∫

0

G̃(x, t)ν̃+(t)dt + f̃(x), 0x1, (3.20)

where, f̃(x) = f
(
x

1
n+2

)
, τ̃+(x) = τ+

(
x

1
n+2

)
, ν̃+(t) = ν+

(
t

1
n+2

)
,

G(x, t) =
1

n + 2
t

n0+1
n+2 −1G

(
x

1
n+2 , t

1
n+2

)
. (3.21)

3.2. Uniqueness of the solution.

Theorem 1. If satisfying the conditions (3.2),b(x) = 0, a(x) 6= 0 and

a1(x) > 0, x ∈ (0, 1), (3.22)

then a solution u(x, y) of the problem F is unique.
The Proof. According to the extremum principle for the parabolic equations

[5], [10], the solution u(x, y) of the equation(3.1) cannot reach the positive maxi-
mum and negative minimum in the domain of Ω1 and on a piece A0B0. We will
denote, that the solution u(x, y) does not reach the positive maximum and negative
minimum on an interval AB.

Let’s assume the return, i.e. let in some point E(x0, 0) function u(x, y) reaches
the positive maximum (negative minimum). Then from (3.16), at c(x) ≡ 0 we have:

γ2Γ(1− β)42β−1ν̃− (x0) = x
1
2−β
0 D1−2β

x01
a1(x0)τ̃− (x0) . (3.23)

From here, owing to a principle for the differential operators fractional order
[8], on the point of positive maximum (negative minimum) strictly positively (neg-
atively) D1−2β

x01
a1(x0)τ̃− (x0) > 0,

(
D1−2β

x01
a1(x0)τ̃− (x0) < 0

)
. Accordingly, owing

to that x0 > 0, γ2 > 0 from (3.23), receive, ν̃− (x0) > 0, (ν̃− (x0) < 0) . From here,
by virtue (3.4) we have ν̃+ (x0) > 0, (ν̃+ (x0) < 0) . This inequality contradicts an
inequality ν̃+ (x0) 0, (ν̃+ (x0) ≥ 0), which is direct appears from (3.17).
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Thus, the solution u(x, y) of equation (3.1) can’t reach the positive maximum
and negative minimum on an interval AB. Hence, u(x, y) can to reach the positive
maximum (a negative minimum) on the piece of AA0 and BB0.

From here owing to (3.5), considering continuity of the function u(x, y) in Ω1, a
solution of the first boundary value problem for the equation (3.1) in the domain
of Ω1 to identically equally zero at ϕ0(y) ≡ τ0(y) ≡ 0.

As u(x, y) ≡ 0 in domain Ω1 we have τ̃ (x) ≡ 0, and by virtue (3.23), ν̃ (x) ≡ 0.
Hence, owing to unequivocal solvability of Cauchy problem it is had u(x, y) ≡ 0 in
the domain Ω21, from here u(x,−x) ≡ 0.

Further, from solution homogeneous first boundary value problem for the equa-
tion (3.1) in domain of Ω1 taking into account a condition (3.7), we will receive
ux(0, y) = ux(0,−y) = 0, 0 < y < 1. Hence, the solution of the Cauchy-Gaursat
problem for the equation (3.1) with zero given identically equally to zero in the
domain of Ω22, i.e. u(x, y) ≡ 0 in the domain Ω22.

Thus, from the above-stated we will receive, that u(x, y) ≡ 0 in the domain Ω.
Hence, the solution of a problem F in the domain of Ω is unique. The theorem 1
was proved.

3.3. Existence of the solution.

Theorem 2. If satisfying the conditions (3.2), (3.8), (3.9) and b(x) = 0, a(x) 6= 0
then a solution u(x, y) of the problem F is exist in the domain of Ω.

Proof. Considering a continuity of the solution of a problem F, excluding τ̃(x) =
τ̃− (x) = τ̃+ (x) from (3.16) and (3.20), we have

γ242β−1Γ(1− β)ν̃(x) = x
1
2−βD1−2β

x1 a1(x)




1∫

0

G̃(x, t)ν̃(t)dt + f̃(x)


 +

+x
1
2−βD1−2β

x1 c(x)(1− x)1−β .

Further, taking into account properties of integro-differential operators (2.1) [11],
we find

ν̃(x) = k1x
1
2−β d

dx




1∫

x

(t− x)2β−1
a1(t)dt

1∫

0

G̃(t, s)ν̃(s)ds


+

+k1x
1
2−β d

dx




1∫

x

(t− x)2β−1
a1(t)f̃(t)dt +

1∫

x

(t− x)2β−1(1− t)1−βc(t)dt


 ,

(3.24)
where, k1 = 1/γ242β−1Γ(1− β)Γ(2β)

Having executed replacement t = x+(1−x)σ and changing an order of integration
from (3.24), we have

ν̃(x) = k1x
1
2−β d

dx


(1− x2β

1∫

0

σ2β−1a1(x + (1− x)σ)dσ

1∫

0

G̃ (x + (1− x)σ, s))ν̃(s)ds


+

+k1x
1
2−β d

dx


(1− x)2β

1∫

0

σ2β−1a1(x + (1− x)σ)f̃(x + (1− x)σ)dσ


+
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+k1x
1
2−β d

dx


(1− x)1+β

1∫

0

σ2β−1(1− σ)1−βc(x + (1− x)σ)dσ


 .

From here, after some evaluations, we will obtain the integral equation

ν̃(x) =

1∫

0

K̃(x, s)ν̃(s)ds + Φ̃(x), (3.25)

where
K̃(x, s) = K̃1(x, s) + K̃2(x, s), (3.26)

K̃1(x, s) = −2βk1x
1
2−β (1− x)2β−1

1∫

0

σ2β−1a1 (x + (1− x)σ)×

×G̃ (x + (1− x)σ, s) dσ, (3.27)

K̃2(x, s) = k1x
1
2−β (1− x)2β d

dx

1∫

0

σ2β−1a1(x + (1− x)σ)×

×G̃(x + (1− x)σ, s)dσ, (3.28)

Φ̃(x) = −2βk1x
1
2−β

1∫

0

σ2β−1a1(x + (1− x)σ)f̃(x + (1− x)σ)dσ+

+k1x
1
2−β(1− x)2β

1∫

0

σ2β−1 d

dx

[
a1(x + (1− x)σ)f̃(x + (1− x)σ)

]
dσ−

−(1 + β)k1x
1
2−β(1− x)β

1∫

0

σ2β−1(1− σ)1−βc(x + (1− x)σ)dσ+

+k1x
1
2−β(1− x)1+β

1∫

0

σ2β−1(1− σ)1−β d

dx
[c(x + (1− x)σ)] dσ. (3.29)

From here, owing to continuity the functions G(x, t) ∈ C ([0, 1]× [0, 1]) and a(x),
we have ∣∣∣K̃1(x, s)

∣∣∣ c1s
n0+1
n+2 −1 (1− x)2β−1

. (3.30)

Also, considering (3.9),(3.14), (3.18),(3.21) from (3.28) we will receive∣∣∣K̃2(x, s)
∣∣∣ c2s

n0+2
n+2 −1(1− x)2β−1. (3.31)

Thus, by virtue (3.30) and (3.31) from (3.26), we have∣∣∣K̃(x, s)
∣∣∣ c3s

n0+1
n+2 −1(1− x)2β−1. (3.32)

There under (3.2), (3.9), (3.14), (3.19) appear from (3.29) that the function Φ̃(x).
Supposes an estimate ∣∣∣Φ̃(x)

∣∣∣ c4(1− x)2β−1. (3.33)

where, c1, c2, c3, c4 = const.
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Thus, by virtue (3.32), (3.33) integral equation (3.25) constitute Fredholm in-
tegral equation of the second kind[6], with the weak feature which unequivocal
solvability appears from the uniqueness of the solution of investigated problem, i.e.
the equation (3.25) has the unique solution, and ν+(x) ∈ C2(0, 1).

Hence, it is possible to present its solution on the form of[6]:

ν̃−(x) = Φ̃(x) +

1∫

0

R(x, s)Φ̃(s)ds, (3.34)

where R(x, s)- resolvent the kernel of K(x, s).
From here, according to gluing condition (3.4) taking into account (3.34) and

(3.20) we find function τ̃+(x),

τ̃+(x) =

1∫

0

G̃(x, t)


Φ̃(t) +

1∫

0

R(t, z)Φ̃(z)dz


 dt + f̃(x),

Further, designating, Φ(t) = Φ̃(t) +
1∫
0

R(t, z)Φ̃(z)dz, we have

τ̃+(x) =

1∫

0

G̃(x, t)Φ(t)dt + f̃(x), 0x1. (3.35)

Hence, by virtue (3.2), (3.9) owing to (3.35) and (3.21), (3.19) conclude, that
the function τ+(x) in C[0, 1] ∩ C2(0, 1).

II. Let’s b(x) 6= 0, a(x) 6= 0.
From (3.13), we will receive

ν̃−(x) =
γ2Γ(1− β)42β−1

b (x)Γ(1− 2β)

1∫

x

(t− x)−2βtβ−
1
2 ν̃−(t)dt−

−a1(x)
b (x)

τ̃−(x)− c(x)
b (x)

(1− x)1−β . (3.36)

Let’s notice, that the integral equation (2.36) is integrated Equation Volterra of
the second kind

ν̃−(x) = λ

1∫

x

N(x, t)ν̃−(t)dt + F (x), (3.37)

where, λ = γ2Γ(1−β)42β−1

Γ(1−2β) ,

F (x) = −a1(x)
b (x)

τ̃−(x)− c(x)
b(x)

(1− x)1−β , (3.38)

N(x, t) =
1

b(x)
(t− x)−2βtβ−

1
2 . (3.39)

By virtue (3.9), from (3.38) and (3.39) accordingly

|N(x, t)| ≤ M, 0 ≤ x ≤ 1, (3.40)

and
|F (x)| ≤ const (3.41)
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further, owing to the theory of integrated equations Volterra of the second kind [9],
taking into account (3.40) and (3.41), we have |R(x, s; λ)| ≤ const, i. the solution
of equation (3.37) it is possible will present on the form of

ν̃−(x) = −λ

1∫

x

a1(s)
b(x)

R(x, s;λ)τ̃−(s)ds− λ

1∫

x

R(x, s;λ)c(s)
b(s)

ds−

−a1(x)
b(x)

τ−(x)− c(x)
b(x)

(1− x)1−β . (3.42)

3.4. Uniqueness of the solution.

Theorem 3. If satisfying the conditions (3.2),(3.8), (3.9), b(x) 6= 0, a(x) 6= 0
and

a1(x) > 0, b(x) < 0, 0 < x < 1, (3.43)

then the solution u(x, y) of the problem F is unique.
Proof. Let’s notice, that justice of the theorem 3 the follows at once from the

theorem 1, if is proved, than the solution u(x, y) of the equations (3.1) cannot reach
the positive maximum and negative minimum in domain of Ω1 and on a piece A0B0.
And this statement is similarly proved as the theorem 1, i.e. by virtue principle of
an extremum for the parabolic equations [5], the solution u(x, y) the equation (3.1)
cannot reach the positive maximum and a negative minimum in domain Ω1 and
on a piece A0B0. Let’s show, that the solution u(x, y) does not reach the positive
maximum and negative minimum on an interval AB. We will assume the return, i.e.
let in some point (x0, 0) function u(x, y) reaches the positive maximum (negative
minimum). Then from (3.42), at c(x) ≡ 0 we have:

ν̃−(x0) = −λ

1∫

x0

a1(s)
b(x0)

R(x0, s; λ)τ̃−(s)ds− a1(x0)
b(x0)

τ̃−(x0).

From here considering (3.43), owing to, that R(x0, s; λ) > 0 in the point of
positive maximum (negative minimum) τ̃−(x0) ≥ 0 (τ̃−(x0) ≤ 0) we will receive
ν̃−(x0) ≥ 0 (ν̃−(x0) ≤ 0), and this inequality contradicts an inequality ν̃+ (x0) 0,
(ν̃+ (x0) ≥ 0), which directly follows from (3.17). Hence the solution u(x, y) the
equation (3.1) can’t reach the positive maximum and negative minimum in domain
Ω1 and on a piece A0B0. The theorem 3 is proved.

3.5. Existence of the solution.

Theorem 4. If satisfying the conditions (3.2), (3.8), (3.9) and b(x) 6= 0, a(x) 6=
0 then the solution u(x, y) of the problem F is exist.

Proof. Substituting (3.42) in (3.20), we have

τ̃(x) =

1∫

0

K̃(x, s)τ̃(s)ds + f̃(x), 0x1, (3.44)

where,

K̃(x, s) = −a1(s)
b(s)


G̃(x, s) + λ

s∫

0

G̃(x, t)R(t, s; λ)dt


 .
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The equation (3.44) is Fredholm integral equation the second kind[6] and it un-
equivocal resolubility follows from the uniqueness of the solution the problems F.

III. Let’s a(x) ≡ 0, b(x) 6= 0.

3.6. Uniqueness and existence of the solution.

On the case of a(x) ≡ 0, b(x) 6= 0 takes place the following uniqueness theorem:
Theorem 5. If satisfying the conditions (3.2) and

b(x) > 0, 0 < x < 1, (3.45)

then the solution u(x, y) of the problem F is unique.
Proof. From the integral equation (3.36) at a(x) ≡ 0, taking into account (3.14)

we will receive:

ν̃−(x) =
γ2Γ(1− β)42β−1

b(x)Γ(1− 2β)

1∫

x

(t− x)−2βtβ−
1
2 ν̃−(s)ds + F1(x)

where

F1(x) =
γ1Γ(β)
b(x)

τ̃−(x)− c(x)
b̄(x)

(1− x)1−β
,

and |F1(x)| const.
Hence, from (3.42), at a(x) ≡ 0 we obtain main functional relation between

τ̃−(x) and ν̃−(x) :

ν̃−(x) = λγ1Γ(β)

1∫

x

1
b(x)

R(x, s; λ)τ̃−(s)ds− λ

1∫

x

R(x, s; λ)c(s)
b(s)

ds+

+
γ1Γ(β)
b(x)

τ−(x)− c(x)
b(x)

(1− x)1−β . (3.46)

Let’s show, that the solution u(x, y) does not reach the positive maximum and
negative minimum on an interval AB. We will assume the return, i.e. let in some
point (x0, 0) function u(x, y) reach the positive maximum (negative minimum).
Then from (3.46), at c(x) ≡ 0 we have:

ν̃−(x0) = λγ1Γ(β)

1∫

x0

1
b(x0)

R(x0, s; λ)τ̃−(s)ds +
γ1Γ(β)
b(x0)

τ̃−(x0).

From here considering (3.45), owing to, that R(x0, s; λ) > 0 in the point of
positive maximum (negative minimum) τ̃−(x0) ≥ 0 (τ̃−(x0) ≤ 0) we will receive
ν̃−(x0) ≥ 0 (ν̃−(x0) ≤ 0), and this inequality contradicts an inequality ν̃+ (x0) 0,
(ν̃+ (x0) ≥ 0), which directly follows from (3.17). Hence the solution u(x, y) the
equation (3.1) can’t reach the positive maximum and negative minimum in domain
Ω1 and on a piece A0B0. further, let’s notice, that justice of the theorem 4 the
follows at once from the theorem 1 and theorem 3. The theorem 5 is proved.

Theorem 6. If satisfying the conditions (3.2), (3.8), (3.9) and a(x) ≡ 0,
b(x) 6= 0 then the solution u(x, y) of the problem F is exist.
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Proof. Substituting (3.46) in (3.20), we have

τ̃(x) =

1∫

0

K̃1(x, s)τ̃(s)ds + f̃(x), 0x1, (3.47)

where,

K̃1(x, s) =
γ1Γ(β)
b(s)


G̃(x, s) + λ

s∫

0

G̃(x, t)R(t, s; λ)dt


 .

The equation (3.47) is Fredholm integral equation the second kind[6], and it
unequivocal solubility follows from the uniqueness of the solution the problems F.

Thus, the solution of the investigated problem in the domain of Ω1 is restored
as the solution of the first boundary problem which has kind of [11]:

u(x, y) =

1∫

0

G1(x, ξ; y, α0)τ+(ξ)ξn0dξ + y−m0
∂

∂y

y∫

0

G2(x, y − t, α0)τ+
0 (t)tm0dt+

+y−m0
∂

∂y

y∫

0

G3(x, y − t, α0)ϕ0(t)tm0dt,

where

G3(x, y, α0) = (1− α0)2(1−α0)x−
1∫

0

G1(x, ξ; y, α0)
[
(1− α0)2(1−α0)

]
ξn0dξ,

G2(x, y, α0) = 1− (1−α0)2(1−α0)x−
1∫

0

G1(x, ξ; y, α0)
[
1− (1− α0)2(1−α0)ξ

]
ξn0dξ,

G1(x, ξ, y;α0) =
∞∑

k=0

e
−λ2

kym0+1

4(m0+1) (1− α0)
√

xξ×

×J1−α0(λk(1− α0)(
√

x)
1

1−α0 )J1−α0(λk(1− α0)(
√

ξ)
1

1−α0 )
J2

2−α0
(λk)

,

Jν(z) =
∞∑

k=0

(−1)k( z
2 )

ν+2k

Γ(k+1)Γ(k+ν+1) is the function of Bessel on the first kind , λk are

positive solutions of equation J1−α0(λk) = 0, k = 0, 1, 2. G1(x, ξ; y, α0) - the Grin
function of the first boundary value problem.

Satisfying condition ν+
0 (y) = ux(0, y), (0 < y < 1) to solution of the first bound-

ary value problem, we have:

ν+
0 (y) = lim

x→+0

∂

∂x

1∫

0

G1(x, ξ; y, α0)τ+
1 (ξ)ξn0dξ+

+ lim
x→+0

∂

∂x


y−m0

∂

∂y

y∫

0

G2(x, y − t, α0)τ+
0 (t)tm0dt


 +
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+ lim
x→+0

∂

∂x


y−m0

∂

∂y

y∫

0

G3(x, y − t, α0)ϕ0(t)tm0dt


 .

From here, by virtue condition(3.7), the solution of the problem F on domain
of Ω22, it is restored as the solution of problem Cauchy-Gaursat, satisfying to
conditions ν+(y) = ν−(y) = ux(0, y), −1 < y < 0 u(−y, y) = h(y), where h(y)
is the trace of solution of problem Cauchy in domain of Ω21 on the characteristics
y = −x. Thus, the existence of solution of the problem F is proved.
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CONJUGATE TANGENT VECTORS AND ASYMPTOTIC
DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE

FROM EDGE OF REGRESSION ON A SURFACE IN E3
1

DERYA SAĞLAM1 AND ÖZGÜR BOYACIOĞLU KALKAN2

Abstract. In this paper we give conjugate tangent vectors and asymptotic
directions for surfaces at a constant distance from edge of regression on a
surface in E3

1 .

1. Introduction

Conjugate tangent vectors and asymptotic directions in Euclidean space E3 can
be found in [9]. In 1984, A. Kılıç and H. H. Hacısalihoğlu found the Euler theorem
and Dupin indicatrix for parallel hypersurfaces in En [13]. Also the Euler theo-
rem and Dupin indicatrix are obtained for the parallel hypersurfaces in pseudo-
Euclidean spaces En+1

1 and En+1
ν in the papers ([5], [7], [8]).

In 2005 H. H. Hacısalihoğlu and Ö. Tarakçı introduced surfaces at a constant
distance from edge of regression on a surface. These surfaces are a generalization
of parallel surfaces in E3. Because the authors took any vector instead of normal
vector [17]. Euler theorem and Dupin indicatrix for these surfaces are given in [2].
Conjugate tangent vectors and asymptotic directions are given in [1]. In 2010 we
obtained the surfaces at a constant distance from edge of regression on a surface in
E3

1 [15]. We obtained the Euler theorem and Dupin indicatrix for these surfaces in
E3

1 [16].
In this paper we give conjugate tangent vectors and asymptotic directions for

surfaces at a constant distance from edge of regression on a surface in E3
1 .

2. Preliminaries

Let E3
1 be the Minkowski 3-space is the real vector space R3 endowed with the

standard flat Lorentzian metric given by

〈, 〉 = −(dx1)2 + (dx2)2 + (dx3)2
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where (x1, x2, x3) is a rectangular coordinate system of E3
1 . An arbitrary vector

x ∈ E3
1 is called spacelike if 〈x, x〉 > 0 or x = 0, timelike if 〈x, x〉 < 0 and lightlike

(null) if 〈x, x〉 = 0 and x 6= 0.
The timelike-cone of E3

1 is defined as the set of all timelike vectors of E3
1 , that is

T = {(x, y, z) ∈ E3
1 ; x2 + y2 − z2 < 0}.

The set of lightlike vectors is defined by C and it is the following set:

C = {(x, y, z) ∈ E3
1 ; x2 + y2 − z2 = 0} − {0, 0, 0}.

The cross product x × y of vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1 is

defined as
〈x× y, z〉 = det(x, y, z) for all z = (z1, z2, z3) ∈ E3

1 .

More explicitly, if x, y belong to E3
1 , then

〈x, y〉 = −x1y1 + x2y2 + x3y3

x× y = (−(x2y3 − x3y2), x3y1 − x1y3, x1y2 − x2y1)

〈a× b, x× y〉 = −
∣∣∣∣
〈a, x〉 〈b, x〉
〈a, y〉 〈b, y〉

∣∣∣∣

where a = (a1, a2, a3) and b = (b1, b2, b3) in E3
1 (Lagrange identity in E3

1).
Let e1, e2 ∈ E3

1 be such that < ei, ei >= ±1 and 〈e1, e2〉 = 0 and e3 = e1 × e2.
Then these three vectors form an orthonormal frame. If 〈e1, e1〉 = ε1 and 〈e2, e2〉 =
ε2 where ε1, ε2 = ±1, it follows from the Lagrange identity that 〈e3, e3〉 = −ε1ε2.
Each vector x ∈ E3

1 can be written uniquely in terms of e1, e2, e3 by

x = ε1 〈x, e1〉 e1 + ε2 〈x, e2〉 e2 − ε1ε2 〈x, e3〉 e3.

The angle between two vectors in Minkowski 3-space is defined by ([3], [10], [11],
[12]):

Definition 2.1. i. Hyperbolic angle: Let x and y be timelike vectors in the
same timecone of Minkowski space. Then there is a unique real number θ ≥ 0,
called the hyperbolic angle between x and y, such that

< x, y >= −‖x‖ ‖y‖ cosh θ.

ii. Central angle: Let x and y be spacelike vectors in Minkowski space that span
a timelike vector subspace. Then there is a unique real number θ ≥ 0, called the
central angle between x and y, such that

|< x, y >| = ‖x‖ ‖y‖ cosh θ.

iii. Spacelike angle: Let x and y be spacelike vectors in Minkowski space that
span a spacelike vector subspace. Then there is a unique real number θ between 0
and π called the spacelike angle between x and y, such that

< x, y >= ‖x‖ ‖y‖ cos θ.

iv. Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike
vector in Minkowski space. Then there is a unique real number θ ≥ 0, called the
Lorentzian timelike angle between x and y, such that

|< x, y >| = ‖x‖ ‖y‖ sinh θ.
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Definition 2.2. Let M and Mf be two surfaces in E3
1 and Np be a unit normal

vector of M at the point P ∈ M. Let TpM be tangent space at P ∈ M and
{Xp, Yp} be an orthonormal bases of TpM. Let Zp = d1Xp + d2Yp + d3Np be a unit
vector, where d1, d2, d3 ∈ R are constant numbers and ε1d

2
1 + ε2d

2
2 − ε1ε2d

2
3 = ±1.

If a function f exists and satisfies the condition f : M → Mf , f(P ) = P + rZp,
r constant, Mf is called as the surface at a constant distance from the edge of
regression on M and Mf denoted by the pair (M,Mf ).

If d1 = d2 = 0, then we have Zp = Np and f(P ) = P + rNp. In this case M and
Mf are parallel surfaces [15].

Theorem 2.1. Let the pair (M,Mf ) be given in E3
1 . For any W ∈ χ(M), we

have f∗(W ) = W + rDW Z, where W =
3∑

i=1

wi
∂

∂xi
,W =

3∑
i=1

wi
∂

∂xi
and ∀P ∈ M,

wi(P ) = wi(f(p)), 1 ≤ i ≤ 3 [15].

Let (φ,U) be a parametrization of M , so we can write that

φ : U
(u,v)

⊂ E3
1 → M

P=φ(u,v)
.

In this case {φu|p, φv|p} is a basis of TpM. Let Np is a unit normal vector at
P ∈ M and d1, d2, d3 ∈ R be constant numbers then we can write that Zp =
d1φu|p + d2φv|p + d3Np. Since Mf = {f(P ) | f(P ) = P + rZp}, a parametric
representation of Mf is ψ(u, v) = φ(u, v) + rZ(u, v). Thus we can write

Mf = {ψ(u, v) | ψ(u, v) = φ(u, v) + r(d1φu(u, v) + d2φv(u, v) + d3N(u, v)),
d1, d2, d3, r are constant, ε1d

2
1 + ε2d

2
2 − ε1ε2d

2
3 = ±1

}
.

If we take rd1 = λ1, rd2 = λ2, rd3 = λ3 then we have

Mf = {ψ(u, v)|ψ(u, v) = φ(u, v)+λ1φu(u, v)+λ2φv(u, v)+λ3N(u, v), λ1, λ2, λ3 are constant}.

Let {φu, φv} is basis of χ(Mf ). If we take 〈φu, φu〉 = ε1, 〈φv, φv〉 = ε2 and
〈N, N〉 = −ε1ε2, then

ψu = (1 + λ3k1)φu + ε2λ1k1N,

ψv = (1 + λ3k2)φv + ε1λ2k2N

is a basis of χ(Mf ), where N is the unit normal vector field on M and k1, k2 are
principal curvatures of M [15].

Theorem 2.2. Let the pair (M, Mf ) be given in E3
1 . Let {φu, φv} (orthonormal

and principal vector fields on M) be basis of χ(M) and k1, k2 be principal cur-
vatures of M . The matrix of the shape operator of Mf with respect to the basis
{ψu = (1 + λ3k1)φu + ε2λ1k1N, ψv = (1 + λ3k2)φv + ε1λ2k2N} of χ(Mf ) is

Sf =
[

µ1 µ2

µ3 µ4

]
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where

µ1 =
(1 + λ3k2)

A3

{
ελ1

∂k1

∂u
(λ2

2k
2
2 − ε1(1 + λ3k2)2) + k1A

2

}
,

µ2 =
ελ2

1λ2k1k2(1 + λ3k2)
A3

∂k1

∂u
,

µ3 =
−ελ1λ

2
2k1k2(1 + λ3k1)

A3

∂k2

∂v
,

µ4 =
(1 + λ3k1)

A3

{
−ελ2

∂k2

∂v
(λ2

1k
2
1 − ε2(1 + λ3k1)2) + k2A

2

}

and A =
√

ε (ε1λ2
1k

2
1(1 + λ3k2)2 + ε2λ2

2k
2
2(1 + λ3k1)2 − ε1ε2(1 + λ3k1)2(1 + λ3k2)2)

[15].

Definition 2.3. Let M be an Euclidean surface in E3 and S be shape operator of
M. For any Xp, Yp ∈ TpM, if

(2.1) 〈S(Xp), Yp〉 = 0

then Xp and Yp are called conjugate tangent vectors of M at p [9].

Definition 2.4. Let M be an Euclidean surface in E3 and S be shape
operator of M. For any Xp ∈ TpM, if

(2.2) 〈S(Xp), Xp〉 = 0

then Xp is called an asymptotic direction of M at p [9].

We can get the definitions of conjugate tangent vectors and asymptotic direction
in Minkowski 3-space similar to Definition 2.3 and 2.4 as below:

Definition 2.5. Let M be a surface in E3
1 and S be shape operator of M. For any

Xp, Yp ∈ TpM, if

(2.3) 〈S(Xp), Yp〉 = 0

then Xp and Yp are called conjugate tangent vectors of M at p.

Definition 2.6. M be a surface in E3
1 and S be shape operator of M. For any

Xp ∈ TpM, if

(2.4) 〈S(Xp), Xp〉 = 0

then Xp is called an asymptotic direction of M at p.

3. Conjugate tangent vectors for surfaces at a constant distance
from edge of regression on a surface in E3

1

Theorem 3.1. Let Mf be a surface at a constant distance from edge of regression
on a M in E3

1 . Let k1 and k2 denote principal curvature function of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
For Xp, Yp ∈ TpM, f∗(Xp) and f∗(Yp) are conjugate tangent vectors if and only if

(3.1) ε1µ
∗
1x1y1 + ε1µ

∗
2x1y2 + ε2µ

∗
3x2y1 + ε2µ

∗
4x2y2 = 0
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where

x1 = 〈Xp, φu〉 , x2 = 〈Xp, φv〉 ,(3.2)
y1 = 〈Yp, φu〉 , y2 = 〈Yp, φv〉 ,
µ∗1 = µ1(1 + λ3k1)2 − λ1k1(ε2µ1λ1k1 + ε1µ2λ2k2),
µ∗2 = µ2(1 + λ3k2)2 − λ2k2(ε2µ1λ1k1 + ε1µ2λ2k2),
µ∗3 = µ3(1 + λ3k1)2 − λ1k1(ε2µ3λ1k1 + ε1µ4λ2k2),
µ∗4 = µ4(1 + λ3k2)2 − λ2k2(ε2µ3λ1k1 + ε1µ4λ2k2).

Proof. Let f∗(Xp) ∈ Tf(p)M
f . Then let us calculate f∗(Xp) and Sf (f∗(Xp)). Since

φu and φv are orthonormal we have

Xp = ε1 〈Xp, φu〉φu + ε2 〈Xp, φv〉φv

= ε1x1φu + ε2x2φv.

Further without lost of generality, we suppose that Xp is a unit vector. Then

f∗(Xp) = ε1x1f∗(φu) + ε2x2f∗(φv)(3.3)
= ε1x1ψu + ε2x2ψv.

On the other hand we find that
(3.4)
Sf (f∗(Xp)) = ε1x1S

f (ψu) + ε2x2S
f (ψv)

= ε1x1 (µ1(1 + λ3k1)φu + µ2(1 + λ3k2)φv + (µ1ε2λ1k1 + µ2ε1λ2k2)N)
+ε2x2 (µ3(1 + λ3k1)φu + µ4(1 + λ3k2)φv + (µ3ε2λ1k1 + µ4ε1λ2k2)N)

and for Yp ∈ TpM we have

Yp = ε1 〈Yp, φu〉φu + ε2 〈Yp, φv〉φv(3.5)
= ε1y1φu + ε2y2φv.

Then

f∗(Yp) = ε1y1f∗(φu) + ε2y2f∗(φv)(3.6)
= ε1y1ψu + ε2y2ψv.

Thus using equations (3.4) and (3.6) in equation (2.3) we obtain (3.1). ¤

Theorem 3.2. Let Mf be a surface at a constant distance from edge of regression
on M in E3

1 . Let k1 and k2 denote principal curvature functions of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
Let us denote the angle between Xp ∈ TpM and φu, φv by θ1, θ2 respectively and
the angle between Yp ∈ TpM and φu, φv by θ′1, θ′2 respectively. f∗(Xp) and f∗(Yp)
are conjugate tangent vectors if and only if
(a)Let Np be a timelike vector then

µ∗1 cos θ1 cos θ′1 + µ∗2 cos θ1 cos θ′2 + µ∗3 cos θ2 cos θ′1 + µ∗4 cos θ2 cos θ′2 = 0.

(b) Let φu be a timelike vector.
(b.1) If Xp and Yp are spacelike vectors then

0 = −δ1δ
′
1µ
∗
1 sinh θ1 sinh θ′1 − δ1δ

′
2µ
∗
2 sinh θ1 cosh θ′2

+δ′1δ2µ
∗
3 cosh θ2 sinh θ′1 + δ2δ

′
2µ
∗
4 cosh θ2 cosh θ′2.
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(b.2) If Xp, Yp and φu are timelike vectors in the same timecone then

0 = µ∗1 cosh θ1 cosh θ′1 + δ′2µ
∗
2 cosh θ1 sinh θ′2

−δ2µ
∗
3 sinh θ2 cosh θ′1 + δ2δ

′
2µ
∗
4 sinh θ2 sinh θ′2.

(b.3) If Xp, φu are timelike vectors in the same timecone and Yp is spacelike vector
then

0 = δ′1µ
∗
1 cosh θ1 sinh θ′1 + δ′2µ

∗
2 cosh θ1 cosh θ′2

+δ′1δ2µ
∗
3 sinh θ2 sinh θ′1 + δ2δ

′
2µ
∗
4 sinh θ2 cosh θ′2.

(b.4) If Yp and φu are timelike vectors in the same timecone and Xp is spacelike
vector then

0 = δ1µ
∗
1 sinh θ1 cosh θ′1 − δ1δ

′
2µ
∗
2 sinh θ1 sinh θ′2

−δ2µ
∗
3 cosh θ2 cosh θ′1 + δ2δ

′
2µ
∗
4 cosh θ2 sinh θ′2.

(c) Let φv be a timelike vector.
(c.1) If Xp and Yp are spacelike vectors then

0 = δ1δ
′
1µ
∗
1 cosh θ1 cosh θ′1 + δ1δ

′
2µ
∗
2 cosh θ1 sinh θ′2

−δ′1δ2µ
∗
3 sinh θ2 cosh θ′1 − δ2δ

′
2µ
∗
4 sinh θ2 sinh θ′2.

(c.2) If Xp, Yp and φv are timelike vectors in the same timecone then

0 = δ1δ
′
1µ
∗
1 sinh θ1 sinh θ′1 − δ1µ

∗
2 sinh θ1 cosh θ′2

−δ′1µ
∗
3 cosh θ2 sinh θ′1 − µ∗4 cosh θ2 cosh θ′2.

(c.3) If Xp and φv are timelike vectors in the same timecone and Yp is spacelike
vector then

0 = δ1δ
′
1µ
∗
1 sinh θ1 cosh θ′1 + δ1δ

′
2µ
∗
2 sinh θ1 sinh θ′2

+δ′1µ
∗
3 cosh θ2 cosh θ′1 + δ′2µ

∗
4 cosh θ2 sinh θ′2.

(c.4) If Yp and φv are timelike vectors in the same timecone and Xp is spacelike
vector then

0 = δ1δ
′
1µ
∗
1 cosh θ1 sinh θ′1 − δ1µ

∗
2 cosh θ1 cosh θ′2

−δ2δ
′
1µ
∗
3 sinh θ2 sinh θ′1 + δ2µ

∗
4 sinh θ2 cosh θ′2.

Abovementioned µ∗1, µ
∗
2, µ

∗
3 and µ∗4 are given in (3.2),

δi =
{

1, xi is positive
−1, xi is negative , i = (1, 2)

and

δ′i =
{

1, yi is positive
−1, yi is negative , i = (1, 2).

Proof. (a) Let Np be a timelike vector. In this case θ1, θ2, θ′1, θ′2 are spacelike
angles then

x1 = 〈Xp, φu〉 = cos θ1

x2 = 〈Xp, φv〉 = cos θ2.

and

y1 = 〈Yp, φu〉 = cos θ′1
y2 = 〈Yp, φv〉 = cos θ′2.

Substituting these equations in (3.1) the proof is obvious.
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(b) Let φu be a timelike vector.
(b.1) If Xp and Yp are spacelike vectors and φu is timelike vector then there are
Lorentzian timelike angles θ1, θ′1 and central angles θ2, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = δ2 cosh θ2

y1 = δ′1 sinh θ′1 and y2 = δ′2 cosh θ′2.

(b.2) If Xp, Yp and φu are timelike vectors in the same timecone then there are
hyperbolic angles θ1, θ

′
1 and Lorentzian timelike angles θ2, θ

′
2. Thus

x1 = − cosh θ1 and x2 = δ2 sinh θ2

y1 = − cosh θ′1 and y2 = δ′2 sinh θ′2.

(b.3) If Xp and φu are timelike vectors in the same timecone and Yp is spacelike
vector then there is a hyperbolic angle θ1, a central angle θ′2 and there are Lorentzian
timelike angles θ2, θ′1. Thus

x1 = − cosh θ1 and x2 = δ2 sinh θ2

y1 = δ′1 sinh θ′1 and y2 = δ′2 cosh θ′2.

(b.4) If Yp and φu are timelike vectors in the same timecone and Xp is spacelike
vector then there is a central angle θ2, a hyperbolic angle θ′1 and there are Lorentzian
timelike angles θ1, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = δ2 cosh θ2

y1 = − cosh θ′1 and y2 = δ′2 sinh θ′2.

(c) Let φv be a timelike vector.
(c.1) If Xp and Yp are spacelike vectors and φv is timelike vector then there are
central angles θ1, θ′1 and Lorentzian timelike angles θ2, θ′2.Thus

x1 = δ1 cosh θ1 and x2 = δ2 sinh θ2

y1 = δ′1 cosh θ′1 and y2 = δ′2 sinh θ′2.

(c.2) If Xp, Yp and φv are timelike vectors in the same timecone then there are
Lorentzian timelike angles θ1, θ

′
1 and hyperbolic angles θ2, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = − cosh θ2

y1 = δ′1 sinh θ′1 and y2 = − cosh θ′2.

(c.3) If Xp and φv are timelike vectors in the same timecone and Yp is spacelike
vector then there is a hyperbolic angle θ2, a central angle θ′1 and there are Lorentzian
timelike vectors θ1, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = − cosh θ2

y1 = δ′1 cosh θ′1 and y2 = δ′2 sinh θ′2.

(c.4) If Yp and φv are timelike vectors in the same timecone and Xp is spacelike
vector then then there is a central angle θ1, a hyperbolic angle θ′2 and there are
Lorentzian timelike angles θ′1, θ2. Thus

x1 = δ1 cosh θ1 and x2 = δ2 sinh θ2

y1 = δ′1 sinh θ′1 and y2 = − cosh θ′2.

¤
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As a special case if we take λ1 = λ2 = 0, λ3 = r = constant, then we obtain
that M and Mf are parallel surfaces. Hence we give the following corollaries.

Corollary 3.1. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2 denote

principal curvature functions of M and let {φu, φv} be orthonormal basis such that
φu and φv are principal directions on M. Let us denote the angle between Xp ∈ TpM
and φu, φv by θ1, θ2 respectively and the angle between Yp ∈ TpM and φu, φv by
θ′1, θ′2 respectively. f∗(Xp) and f∗(Yp) are conjugate tangent vectors if and only if

(3.7) ε1k1(1 + rk1)x1y1 + ε2k2(1 + rk2)x2y2 = 0.

Proof. Since

µ∗1 = k1(1 + rk1),
µ∗2 = 0, µ∗3 = 0,

µ∗4 = k2(1 + rk2)

from (3.1) we find (3.7). ¤

Corollary 3.2. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2 denote

principal curvature functions of M and let {φu, φv} be orthonormal basis such that
φu and φv are principal directions on M. Let us denote the angle between Xp ∈ TpM
and φu, φv by θ1, θ2 respectively and the angle between Yp ∈ TpM and φu, φv by
θ′1, θ′2 respectively. f∗(Yp) are conjugate tangent vectors if and only if
(a)Let Np be a timelike vector then

k1(1 + rk1) cos θ1 cos θ′1 + k2(1 + rk2) cos θ2 cos θ′2 = 0.

(b) Let φu be a timelike vector.
(b.1) If Xp and Yp are spacelike vectors then

−δ1δ
′
1k1(1 + rk1) sinh θ1 sinh θ′1 + δ2δ

′
2k2(1 + rk2) cosh θ2 cosh θ′2 = 0.

(b.2) If Xp, Yp and φu are timelike vectors in the same timecone then

−k1(1 + rk1) cosh θ1 cosh θ′1 + k2(1 + rk2) sinh θ2 sinh θ′2 = 0.

(b.3) If Xp and φu are timelike vectors in the same timecone and Yp is spacelike
vector then

δ′1k1(1 + rk1) cosh θ1 sinh θ′1 + δ2δ
′
2k2(1 + rk2) sinh θ2 cosh θ′2 = 0.

(b.4) If Yp and φu are timelike vectors in the same timecone and Xp is spacelike
vector then

δ1k1(1 + rk1) sinh θ1 cosh θ′1 + δ2δ
′
2k2(1 + rk2) cosh θ2 sinh θ′2 = 0.

(c) Let φv be a timelike vector.
(c.1) If Xp and Yp are spacelike vectors then

δ1δ
′
1k1(1 + rk1) cosh θ1 cosh θ′1 − δ2δ

′
2k2(1 + rk2) sinh θ2 sinh θ′2 = 0.

(c.2) If Xp, Yp and φv are timelike vectors in the same timecone then

δ1δ
′
1k1(1 + rk1) sinh θ1 sinh θ′1 − k2(1 + rk2) cosh θ2 cosh θ′2 = 0.

(c.3) If Xp and φv are timelike vectors in the same timecone and Yp is spacelike
vector then

δ1δ
′
1k1(1 + rk1) sinh θ1 cosh θ′1 + δ′2k2(1 + rk2) cosh θ2 sinh θ′2 = 0.
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(c.4) If Yp and φv are timelike vectors in the same timecone and Xp is spacelike
vector then

δ1δ
′
1k1(1 + rk1) cosh θ1 sinh θ′1 + δ2k2(1 + rk2) sinh θ2 cosh θ′2 = 0.

For the above equations

δi =
{

1, xi is positive
−1, xi is negative , i = (1, 2)

and

δ′i =
{

1, yi is positive
−1, yi is negative , i = (1, 2).

4. Asymptotic directions for surfaces at a constant distance from
edge of regression on a surface in E3

1

Theorem 4.1. Let Mf be a surface at a constant distance from edge of regression
on a M in E3

1 . Let k1 and k2 denote principal curvature functions of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
f∗(Xp) ∈ Tf(p)(Mf ) is an asymptotic direction if and only if

(4.1) µ∗1x
2
1 + ε1ε2µ

∗
2x1x2 + µ∗3x

2
2 = 0

where

x1 = 〈Xp, φu〉 , x2 = 〈Xp, φv〉 ,(4.2)

µ∗1 = ε1µ1(1 + λ3k1)2 − λ1k1(ε1ε2µ1λ1k1 + µ2λ2k2),
µ∗2 = ε2µ2(1 + λ3k2)2 − λ2k2(µ1λ1k1 + ε1ε2µ2λ2k2)

+ε1µ3(1 + λ3k1)2 − λ1k1(ε1ε2µ3λ1k1 + µ4λ2k2),
µ∗3 = ε2µ4(1 + λ3k2)2 − λ2k2(µ3λ1k1 + ε1ε2µ4λ2k2).

Proof. Let f∗(Xp) ∈ Tf(p)(Mf ). Then let us calculate f∗(Xp) and Sf (f∗(Xp)).
Since φu and φv are orthonormal we have

Xp = ε1 〈Xp, φu〉φu + ε2 〈Xp, φv〉φv

= ε1x1φu + ε2x2φv

Further without lost of generality, we suppose that Xp is a unit vector. Then

f∗(Xp) = ε1x1f∗(φu) + ε2x2f∗(φv)(4.3)
= ε1x1ψu + ε2x2ψv.

On the other hand we find that
(4.4)
Sf (f∗(Xp)) = ε1x1S

f (ψu) + ε2x2S
f (ψv)

= ε1x1 (µ1(1 + λ3k1)φu + µ2(1 + λ3k2)φv + (µ1ε2λ1k1 + µ2ε1λ2k2)N)
+ε2x2 (µ3(1 + λ3k1)φu + µ4(1 + λ3k2)φv + (µ3ε2λ1k1 + µ4ε1λ2k2)N)

Thus using equations (4.3) and (4.4) in equation (2.4) we obtain (4.1). ¤

Corollary 4.1. Let Mf be a surface at a constant distance from edge of regression
on M in E3

1 . Let k1 and k2 denote principal curvature functions of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
Let us denote the angle between Xp ∈ TpM and φu, φv by θ1, θ2 respectively.
f∗(Xp) ∈ Tf(p)M

f is an asymptotic direction if and only if
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(a)Let Np be a timelike vector then

µ∗1 cos2 θ1 + µ∗2 cos θ1 cos θ2 + µ∗3 cos2 θ2 = 0.

(b) Let Np be a spacelike vector.
(b.1) If Xp and φu are timelike vectors in the same timecone then

µ∗1 cosh2 θ1 + δ2µ
∗
2 cosh θ1 sinh θ2 + µ∗3 sinh2 θ2 = 0.

(b.2) If Xp and φv are timelike vectors in the same timecone then

µ∗1 sinh2 θ1 + δ1µ
∗
2 sinh θ1 cosh θ2 + µ∗3 cosh2 θ2 = 0.

(b.3) If Xp is a spacelike vector and φu is timelike vector then

µ∗1 sinh2 θ1 − δ1δ2µ
∗
2 sinh θ1 cosh θ2 + µ∗3 cosh2 θ2 = 0.

(b.4) If Xp is a spacelike vector and φv is timelike vector then

µ∗1 cosh2 θ1 − δ1δ2µ
∗
2 cosh θ1 sinh θ2 + µ∗3 sinh2 θ2 = 0.

Abovementioned µ∗1, µ
∗
2 and µ∗3 are given in (4.2) and

δi =
{

1, xi is positive
−1, xi is negative , i = (1, 2).

Proof. (a) Let Np be a timelike vector. In this case θ1 and θ2 are spacelike angles
then

x1 = 〈Xp, φu〉 = cos θ1

x2 = 〈Xp, φv〉 = cos θ2.

Substituting these equations in (4.1) the proof is obvious.
(b) Let Np be a spacelike vector.
(b.1) If Xp and φu are timelike vectors in the same timecone then there is a hyper-
bolic angle θ1 and a Lorentzian timelike angle θ2. Since

x1 = − cosh θ1 and x2 = δ2 sinh θ2

the proof is obvious.
(b.2) If Xp and φv are timelike vectors in the same timecone then there is a
Lorentzian timelike angle θ1 and a hyperbolic angle θ2. Thus

x1 = δ1 sinh θ1 and x2 = − cosh θ2.

(b.3) If Xp is a spacelike vector and φu is timelike vector then there is a Lorentzian
timelike angle θ1 and a central angle θ2. Thus

x1 = δ1 sinh θ1 and x2 = δ2 cosh θ2.

(b.4) If Xp is a spacelike vector and φv is timelike vector then there is a central
angle θ1 and a Lorentzian timelike angle θ2. Thus

x1 = δ1 cosh θ1 and x2 = δ2 sinh θ2.

¤

As a special case if M and Mr be parallel surfaces from (4.1) and (4.2) we obtain
that f∗(Xp) ∈ Tf(p)Mr is an asymptotic direction if and only if

ε1k1(1 + rk1)x2
1 + ε2k2(1 + rk2)x2

2 = 0.
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Corollary 4.2. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2 denote

principal curvature function of M and let {φu, φv} be orthonormal basis such that
φu and φv are principal directions on M. Let us denote the angle between Xp ∈ TpM
and φu, φv by θ1, θ2 respectively. f∗(Xp) ∈ Tf(p)Mr is an asymptotic direction if
and only if
(a)Let Np be a timelike vector then

k1(1 + rk1) cos2 θ1 + k2(1 + rk2) cos2 θ2 = 0.

(b) Let Np be a spacelike vector.
(b.1) If Xp and φu are timelike vectors in the same timecone then

−k1(1 + rk1) cosh2 θ1 + k2(1 + rk2) sinh2 θ2 = 0.

(b.2) If Xp and φv are timelike vectors in the same timecone then

k1(1 + rk1) sinh2 θ1 − k2(1 + rk2) cosh2 θ2 = 0.

(b.3) If Xp is a spacelike vector and φu is timelike vector then

−k1(1 + rk1) sinh2 θ1 + k2(1 + rk2) cosh2 θ2 = 0.

(b.4) If Xp is a spacelike vector and φv is timelike vector then

k1(1 + rk1) cosh2 θ1 − k2(1 + rk2) sinh2 θ2 = 0.
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[3] Bilici, M. and Çalışkan, M., On the involutes of the spacelike curve with a timelike binormal
in Minkowski 3-space, International Mathematical Forum, 4, no.31, 1497-1509, (2009).
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[9] Hacısalihoğlu H. H., Diferensiyel Geometri, İnönü Üniversitesi Fen Edeb. Fak. Yayınları, Mat.
No.2 895s., 1983.
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SOME GRÜSS TYPE INEQUALITIES FOR THE
RIEMANN–STIELTJES INTEGRAL WITH LIPSCHITZIAN

INTEGRATORS

M.W. ALOMARI1 AND S.S. DRAGOMIR2,3

Abstract. In this paper several new inequalities of Grüss’ type for the Riemann–
Stieltjes integral with Lipschitzian integrators are proved.

1. Introduction

The Čebyšev functional

T (f, g) =
1

b− a

∫ b

a

f (t) g (t) dt− 1
b− a

∫ b

a

f (t) dt · 1
b− a

∫ b

a

g (t) dt,(1.1)

has interesting applications in the approximation of weighted integrals as one can
has from the literature below.

Bounding Čebyšev functional has a long history, starting with Grüss inequality
[14] in 1935, where Grüss had proved that for two integrable mappings f, g such
that φ ≤ f(x) ≤ Φ and γ ≤ f(x) ≤ Γ, the inequality

|T (f, g)| ≤ 1
4

(Φ− φ) (Γ− γ)(1.2)

holds, and the constant 1
4 is the best possible.

After that many authors have studied the functional (1.1) and several bounds
under various assumptions for the functions involved have been obtained. For new
results and generalizations the reader may refer to [2]–[15].

A generalization of (1.1) for Riemann–Stieltjes integral was considered by Dragomir
in [10]. Namely, the author has introduced the following Čebyšev functional for the
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functions.
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Riemann–Stieltjes integral :

(1.3) T (f, g; u) :=
1

u (b)− u (a)

∫ b

a

f (t) g (t) du (t)

− 1
u (b)− u (a)

∫ b

a

f (t) du (t) · 1
u (b)− u (a)

∫ b

a

g (t) du (t)

under the assumptions that, f, g are continuous on [a, b] and u is of bounded vari-
ation on [a, b] with u(b) 6= u(a).

By simple computations with Riemann–Stieltjes integral, Dragomir [10] has in-
troduced the identity,

(1.4) T (f, g; u) :=
1

u (b)− u (a)

∫ b

a

[
f (t)− f (a) + f (b)

2

]

×
[
g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

]
du (t) ,

to obtain several sharp bounds of the Čebyšev functional for the Riemann–Stieltjes
integral (1.3).

In this work, several sharp inequalities of Grüss’ type for the Riemann–Stieltjes
integral with Lipschitzian integrators are proved.

2. The Results

We recall that a function f : [a, b] → C is p–Hf–Holder continuous on [a, b], if

|f (t)− f (s)| ≤ Hf |t− s|p

for all t, s ∈ [a, b], where p ∈ (0, 1] and Hf > 0 are given. If p = 1 we call f
Hf–Lipschitzian.

We are ready to state our first result as follows:

Theorem 2.1. Let f : [a, b] → R be a p–Hf–Hölder continuous on [a, b], where
p ∈ (0, 1] and Hf > 0; are given. Let g, u : [a, b] → R be such that g is Lebesgue
integrable on [a, b] and there exists the real numbers m,M such that m ≤ g(x) ≤ M
for all x ∈ [a, b], and u is Lu–Lipschitzian on [a, b] then

|T (f, g;u)| ≤ LuHf

(p + 1)
· (M −m)
|u (b)− u (a)| · (b− a)p+1

.(2.1)
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Proof. Taking the modulus in (1.4) and utilizing the triangle inequality, we get

|T (f, g; u)| =
∣∣∣∣∣

1
u (b)− u (a)

∫ b

a

[
f (t)− f (a) + f (b)

2

]

×
[
g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

]
du (t)

∣∣∣∣∣

≤ Lu

|u (b)− u (a)| ·
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣

×
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt

≤ Lu

|u (b)− u (a)| · sup
t∈[a,b]

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣

×
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ dt

≤ Lu

|u (b)− u (a)| ·
Lu (M −m)
|u (b)− u (a)| (b− a) · Hf

2

∫ b

a

[(t− a)p + (b− t)p] dt

=
L2

uHf

p + 1
· (M −m)
(u (b)− u (a))2

(b− a)p+2
,

since m ≤ g(x) ≤ M , for all x ∈ [a, b], then
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ b

a
[g (t)− g (s)] du (s)

u (b)− u (a)

∣∣∣∣∣

≤ Lu

|u (b)− u (a)|
∫ b

a

|g (t)− g (s)| ds

≤ Lu (M −m)
|u (b)− u (a)| (b− a) ,(2.2)

which completes the proof. ¤

Corollary 2.1. Let g, u be as in Theorem 2.1. If f : [a, b] → R is Lf–Lipschitzian
on [a, b], then

|T (f, g;u)| ≤ L2
uLf (M −m)

2 (u (b)− u (a))2
(b− a)3(2.3)

Remark 2.1. Under the assumptions of Theorem 2.1, we have

|T (f, g)| ≤ Hf

(p + 1)
(M −m) · (b− a)p

.(2.4)

In particular, if f is Lf–Lipschitzian, then

|T (f, g)| ≤ 1
2
Lf (b− a) (M −m) .(2.5)
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Theorem 2.2. Let g, u be as in Theorem 2.1. Let f : [a, b] → R be a function of
bounded variation on [a, b], then we have

|T (f, g; u)| ≤ 1
2

Lu (M −m)
(u (b)− u (a))2

(b− a) ·
b∨
a

(f) .(2.6)

Proof. Since u is Lu–Lipschitzian on [a, b], as in Theorem 2.1, we have

|T (f, g; u)| ≤ Lu

|u (b)− u (a)| · sup
t∈[a,b]

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣

×
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ dt

Since m ≤ g ≤ M , by (2.2) we have

(2.7)
1

|u (b)− u (a)|
∫ b

a

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ du (t)

≤ Lu (M −m)
(u (b)− u (a))2

(b− a) .

Now as f is of bounded variation on [a, b], we have

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ = sup
t∈[a,b]

∣∣∣∣
f (t)− f (a) + f (t)− f (b)

2

∣∣∣∣

≤ 1
2

sup
t∈[a,b]

[|f (t)− f (a)|+ |f (t)− f (b)|] ≤ 1
2

b∨
a

(f) ,(2.8)

for all t ∈ [a, b]. Finally, combining the inequalities (2.7)–(2.8), we obtain the
required result (2.6). ¤

Theorem 2.3. Let g, u : [a, b] → R be such that g is of bounded variation on [a, b],
and u be Lu–Lipschitzian on [a, b], then we have

(2.9) |T (f, g;u)|

≤





Hf L2
u(b−a)p+2

(p+1)(u(b)−u(a))2
·∨b

a (g) , if f is Hf − p−Hölder

L2
u(b−a)2

2(u(b)−u(a))2

∨b
a (g) ·∨b

a (f) , if f is of bounded variation

where, Lu,Hf > 0 and p ∈ (0, 1] are given.
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Proof. Using (1.4) we may write

(2.10) |T (f, g;u)|

≤ Lu

|u (b)− u (a)|
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt

=
Lu

(u (b)− u (a))2

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣
∣∣∣∣∣
∫ b

a

[g (t)− g (s)] du (s)

∣∣∣∣∣ dt

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt,

but since g is of bounded variation then we have,
∫ b

a

|g (t)− g (s)| ds ≤ sup
s∈[a,b]

|g (t)− g (s)| ·
∫ b

a

ds ≤ (b− a)
b∨
a

(g) .(2.11)

Therefore, if f is of p–Hölder type, then we have

|T (f, g; u)|

≤ 1
2
· L2

u (b− a)
(u (b)− u (a))2

·
b∨
a

(g) ·
∫ b

a

[|f (t)− f (a)|+ |f (t)− f (b)|] dt

≤ Hf

2
· L2

u (b− a)
(u (b)− u (a))2

·
b∨
a

(g) ·
∫ b

a

[|t− a|p + |t− b|p] dt

=
Hf

(p + 1)
· L2

u (b− a)p+2

(u (b)− u (a))2
·

b∨
a

(g) ,

which prove the first part of inequality (2.9).
To prove the second part of (2.9), assume that f is of bounded variation, then

by (2.10) we have

|T (f, g; u)|

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt

≤ L2
u (b− a)2

2 (u (b)− u (a))2

b∨
a

(g) ·
b∨
a

(f) ,

and thus the theorem is proved. ¤

Remark 2.2. Under the assumptions of Theorem 2.3, we have

(2.12) |T (f, g)|

≤





Hf

p+1 (b− a)p ·∨b
a (g) , if f is Hf − p−Hölder

1
2

∨b
a (g) ·∨b

a (f) , if f is of bounded variation

where, Hf , > 0 and p ∈ (0, 1] are given.

An improvement for the first inequality in (2.9) may be stated as follows:
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Corollary 2.2. Let g, u be as in Theorem 2.3 and f : [a, b] → R be of p-Hf–Holder
type on [a, b], then

|T (f, g; u)| ≤ L2
uHf (b− a)p+2

2p (u (b)− u (a))2

b∨
a

(g) .(2.13)

Proof. By Theorem 2.3 we have

|T (f, g; u)|

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt

≤ L2
u (b− a)

(u (b)− u (a))2

b∨
a

(g)
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ dt

≤ L2
u (b− a)2

(u (b)− u (a))2

b∨
a

(g) · sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣

≤ L2
u (b− a)2

(u (b)− u (a))2

b∨
a

(g) ·Hf

(
b− a

2

)p

,

and since f is of p–Hf–Holder type on [a, b], we have
∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ =
∣∣∣∣
f (t)− f (a) + f (t)− f (b)

2

∣∣∣∣

≤ 1
2
|f (t)− f (a)|+ 1

2
|f (t)− f (b)|

≤ Hf

2
[(t− a)p + (b− t)p] ,

it follows that

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ≤ Hf

(
b− a

2

)p

.(2.14)

which completes the proof. ¤

Remark 2.3. Under the assumptions of Corollary 2.2, we have

|T (f, g)| ≤ 1
2p

Hf (b− a)p
b∨
a

(g) ,(2.15)

which improves the first inequality in (2.12), where Hf > 0 and p ∈ (0, 1] are given.

Theorem 2.4. Let g, u : [a, b] → R be such that g is of q-Hg–Hölder type on [a, b],
and and u be Lu–Lipschitzian on [a, b], then we have

(2.16) |T (f, g;u)|

≤ L2
uHg ·





(b−a)q+2

(q+1)(q+2)(u(b)−u(a))2
·∨b

a (f) , if f is of bounded variation

Hf (b−a)p+q+2

2p(q+1)(q+2)(u(b)−u(a))2
, if f is Hf − p−Hölder

where, Lu,Hg,Hf > 0 and p, q ∈ (0, 1] are given.
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Proof. Assume that g is of q-Hg–Hölder type on [a, b] and f is of bounded variation
on [a, b]. Using (1.4), then we may write

|T (f, g; u)| ≤ Lu

|u (b)− u (a)|
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣

×
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt

=
Lu

(u (b)− u (a))2

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣
∣∣∣∣∣
∫ b

a

[g (t)− g (s)] du (s)

∣∣∣∣∣ dt

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt

≤ L2
u

(u (b)− u (a))2
· sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

[∫ b

a

|g (t)− g (s)| ds

]
dt

(2.17)

≤ L2
uHg

2 (u (b)− u (a))2
·

b∨
a

(f) ·
∫ b

a

[∫ b

a

|t− s|q ds

]
dt.

=
L2

uHg

2 (u (b)− u (a))2
·

b∨
a

(f) ·
∫ b

a

[∫ t

a

(s− a)q
ds +

∫ b

t

(b− s)q
ds

]
dt

=
L2

uHg

2 (u (b)− u (a))2
·

b∨
a

(f) ·
∫ b

a

[
(t− a)q+1 + (b− t)q+1

q + 1

]
dt

=
L2

uHg

(u (b)− u (a))2
·

b∨
a

(f) · (b− a)q+2

(q + 1) (q + 2)
,

which proves the first inequality in (2.16).
To prove the second inequality in (2.16), assume that f is of p–Hf–Hölder type

on [a, b], then by (2.17) we have

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ≤ Hf

(
b− a

2

)p

(2.18)

which together with (2.17) proves the second part of (2.16), and thus the proof is
established. ¤

Corollary 2.3. Let g, u : [a, b] → R be respectively; Lg, Lu–Lipschitzian on [a, b],
then we have

(2.19) |T (f, g;u)|

≤ L2
uLg ·





(b−a)3

6(u(b)−u(a))2
·∨b

a (f) , if f is of bounded variation

Hf (b−a)p+3

2p+1·3(u(b)−u(a))2
, if f is Hf − p−Holder

where, Hg,Hf > 0 and p, q ∈ (0, 1] are given.
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Remark 2.4. Under the assumptions of Theorem 2.4, we have

(2.20) |T (f, g)|

≤ Hg ·





(b−a)q

(q+1)(q+2) ·
∨b

a (f) , if f is of bounded variation

Hf (b−a)p+q

2p(q+1)(q+2) , if f is Hf − p−Holder

where, Hf > 0 and p, q ∈ (0, 1] are given. In particular, if g is Lg–Lipschitzian,
then

(2.21) |T (f, g)|

≤ Lg ·




1
6 (b− a) ·∨b

a (f) , if f is of bounded variation

1
12Lf (b− a)2 , if f is Lf − Lipschitzian
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INTEGRAL TRANSFORM METHOD FOR SOLVING
DIFFERENT F.S.I.ES AND P.F.D.ES

A. AGHILI* AND M.R. MASOMI

Abstract. In this work, the authors used Laplace transform to obtain formal
solution to some systems of singular integral equations of fractional type. In
the last section, the authors considered certain non homogeneous fractional
system of heat equations with different orders which is a generalization to the
problem of heat transferring from metallic bar through the surrounding media.
Illustrative examples are also provided.

1. Introduction and Definitions

Fractional differential equations have been the focus of many studies due to their
frequent appearance in various fields such as chemistry and engineering, physics.
The main reason for success of applications fractional calculus is that these new
fractional order models are more accurate than integer order models, i.e. there are
more degrees of freedom in the fractional order models. The Laplace transform
technique is one of most useful tools of applied mathematics. Typical applications
include heat transfer, diffusion, waves, vibrations and fluid motion problems. How-
ever, contrary to expectations, it is surprising to find that the popularity of Laplace
transforms, in comparison to numerical or other methods, is gradually diminishing
and Laplace transform is less fashionable today than they were a few decades ago.
Nevertheless, the applications of Laplace transforms continue to be an important
part of the mathematical education received by students in various fields of natu-
ral sciences and engineering. The fractional diffusion equation, the fractional wave
equation, the fractional advection-dispersion equation, the fractional kinetic equa-
tion and other fractional PDEs have been studied and explicit solutions have been
achieved by Mainardi, Pagnini and Saxena [18], Langlands [13], Mainardi, Pagnini
and Gorenflo [17], Mainardi and Pagnini [15,16], Yu and Zhang [25], Liu, Anh,
Turner and Zhang [14], Saichev and Zaslavsky [21], Saxena, Mathai and Haubold
[22], Wyss [24] and several other research works can be found in other literatures.
In these works, the techniques of using integral transforms were used to obtain the
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formal solutions of fractional PDEs. Integral transforms are extensively used in
solving boundary value problems and integral equations. The problem related to
partial differential equations can be solved by using a special integral transform
thus many authors solved the boundary value problems by using single Laplace
transform. Laplace transform is very useful in applied mathematics, for instance
for solving some differential equations and partial differential equations, and in
automatic control, where it defines a transfer function.

The Caputo fractional derivatives of order α > 0 (n − 1 < α ≤ n, n ∈ N) is
defined by

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

f (n)(x)
(t− x)α−n+1

dx.

The Laplace transform of a function f(t) denoted by F (s), is defined by the
integral equation

L{f(t)} =
∫ ∞

0

e−stf(t)dt := F (s).

Definition 1.1. The inverse Laplace transform is given by the contour integral

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds,

where F (s) is analytic in the region Re(s) > c.

Theorem 1.1. For n− 1 < α ≤ n, we can get

L{C
0 Dα

t f(t)} = sαF (s)−
n−1∑

k=0

sα−k−1f (k)(0).

Two-parameter Mittag-Leffler function and Wright function is given by

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
,

W (α, β; z) =
∞∑

n=0

zn

n!Γ(αn + β)
.

when α, β, z ∈ C.

Theorem 1.2. Schouten-Van der Pol Theorem: Consider a function f(t)
which has the Laplace transform F (s) which is analytic in the half-plane Re(s) >
s0. We can use this knowledge to find g(t) whose Laplace transform G(s) equals
F (φ(s)), where φ(s) is also analytic for Re(s) > s0. This means that if

G(s) = F (φ(s)) =
∫ ∞

0

f(τ) exp(−φ(s)τ)dτ,

and

g(t) =
1

2πi

∫ c+i∞

c−i∞
F (φ(s)) exp(ts)ds,

then
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g(t) =
∫ ∞

0

f(τ)
(

1
2πi

∫ c+i∞

c−i∞
exp(−φ(s)τ) exp(ts)ds

)
dτ.

Proof. See [10]

2. Fractional Order Singular Integral Equations

The mathematical formulation of physical phenomena often involves Cauchy
type, or more severe, singular integral equations. There are many applications in
many important fields, like fracture mechanics, elastic contact problems, the theory
of porous filtering contain integral and integro- differential equation with singular
kernel. In following section, Laplace transform has been used to solve certain types
of singular integral equations of fractional order. We solve a fractional order singular
integral equation system. Special examples are mentioned.

Lemma 2.1. The fractional Fredholm singular integro-differential equation of the
form

(2.1) C
0 Dα

x ϕ(x) = f(x) + λ

∫ ∞

0

(
x

t
)

ν
2 Jν(2

√
xt)ϕ(t)dt,

where ϕ(0) = 0, 0 ≤ α ≤ 1 and ν > −1 has the formal solution as

(2.2) ϕ(x) =
1

2πi

∫ c+i∞

c−i∞

s−αF (s) + λ
sν+1 F ( 1

s )
1− λ2

esxds.

Proof. Let L(ϕ(x)) = Φ(s) and L(f(x)) = F (s), then by using the Laplace
transform of (2-1) we have the following relation

(2.3) sαΦ(s) = F (s) + λ
1

sν+1
Φ(

1
s
).

In relation (2-3) we replace s by 1
s , to obtain

(2.4) s−αΦ(
1
s
) = F (

1
s
) + λsν+1 Φ(s).

Combination of (2-3) and (2-4), Φ(s) can be obtained as

(2.5) Φ(s) =
s−αF (s) + λ

sν+1 F (1
s )

1− λ2
.

By using the complex inversion formula, relation (2-5) leads to the following,

ϕ(x) =
1

2πi

∫ c+i∞

c−i∞

s−αF (s) + λ
sν+1 F ( 1

s )
1− λ2

esxds.

Example 2.1. Solve the following fractional singular integral equation

C
0 D

2
3
x ϕ(x) =

1√
πx

+ λ

∫ ∞

0

(
x

t
)

1
4 J 1

2
(2
√

xt)ϕ(t)dt,

Solution. By using the formula (2-2), we get
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ϕ(x) =
1

2πi

∫ c+i∞

c−i∞

s−
2
3 F (s) + λ

s
3
2
F ( 1

s )

1− λ2
esxds =

1
2πi

∫ c+i∞

c−i∞

1

s
7
6

+ λ
s

1− λ2
esxds

=
1

1− λ2
(

x
1
6

Γ( 7
6 )

+ λ).

Lemma 2.2. The system of fractional Fredholm singular integro-differential equa-
tion of the form

C
0 Dα

x ϕ1(x) = f(x) + λ

∫ ∞

0

(
x

t
)

ν
2 Jν(2

√
xt)ϕ2(t)dt,

C
0 Dα

x ϕ2(x) = g(x) + λ

∫ ∞

0

(
x

t
)

µ
2 Jµ(2

√
xt)ϕ2(t)dt,

where ϕ1(0) = ϕ2(0) = 0 and 0 < α, β ≤ 1 has the formal solutions

(2.6)

ϕ1(x) =
1

2πi

∫ c+i∞

c−i∞

(
s−α

(
F (s) +

λ2

1− λ2

G(s)
sν−µ

)
+

λ

1− λ2

1
sν+1

G(
1
s
)
)

exsds,

(2.7) ϕ2(x) =
1

2πi

∫ c+i∞

c−i∞

s−αG(s) + λ
sµ+1 G( 1

s )
1− λ2

exsds.

Proof. Applying the Laplace transform term wise to both equations and using
the initial conditions yields

(2.8) sαΦ1(s) = F (s) +
λ

sν+1
Φ2(

1
s
),

(2.9) sαΦ2(s) = G(s) +
λ

sµ+1
Φ2(

1
s
).

Following the same procedure as in lemma 2.1, we get Φ2(s) as

Φ2(s) =
s−αG(s) + λ

sµ+1 G( 1
s )

1− λ2
,

then, changing s to 1
s leads to

Φ2(
1
s
) =

sαG( 1
s ) + λsµ+1G(s)

1− λ2
.

By replacing Φ2(1
s ) in (2-8), we will have

Φ1(s) = s−α

(
F (s) +

λ2

1− λ2

G(s)
sν−µ

)
+

λ

1− λ2

1
sν+1

G(
1
s
).

At this point, using the complex inversion formula, the final solutions are as
follows

ϕ1(x) =
1

2πi

∫ c+i∞

c−i∞

(
s−α

(
F (s) +

λ2

1− λ2

G(s)
sν−µ

)
+

λ

1− λ2

1
sν+1

G(
1
s
)
)

ex sds,
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ϕ2(x) =
1

2πi

∫ c+i∞

c−i∞

s−αG(s) + λ
sµ+1 G( 1

s )
1− λ2

exsds.

Example 2.2. Let us solve the system

C
0 D

1
2
x ϕ1(x) =

e−
1
4x

2
√

πx3
+ λ

∫ ∞

0

(
x

t
)

3
4 J 3

2
(2
√

xt)ϕ2(t)dt,

C
0 D

1
2
x ϕ2(x) = 1 + λ

∫ ∞

0

(
x

t
)

1
4 J 1

2
(2
√

xt)ϕ2(t)dt,

where ϕ1(0) = ϕ2(0) = 0 and 0 < α, β ≤ 1. Direct use of relations (2-6) and
(2-7), leads to

ϕ1(x) = L−1

{
e−
√

s

√
s

+
λ2

1− λ2

1
s

5
2

+
λ

1− λ2

1
s

3
2

}

=
e−

1
4x√
πx

+
4λ2x

3
2

3
√

π(1− λ2)
+

2λx
1
2√

π(1− λ2)
,

ϕ2(x) = L−1

{
s−

3
2 + λs−

1
2

1− λ2

}
=

2√
π
x

1
2 + λ√

πx

1− λ2
.

2.1. Evaluation of the Integrals. In applied mathematics, the Kelvin func-
tions Berν( x ) and Beiν( x ) are the real and imaginary parts, respectively, of
Jν(xe3πi/4),where x is real, and Jν(z) is the ν-th order Bessel function of the first
kind. Similarly, the functions Kerν(x ) and Keiν( x ) are the real and imaginary
parts, respectively, of Kν(xeπi/4), where Kν(z)is the ν-th order modified Bessel
function of the second kind. These functions are named after William Thomson,
1st Baron Kelvin. The Kelvin functions were investigated because they are involved
in solutions of various engineering problems occurring in the theory of electrical cur-
rents, elasticity and in fluid mechanics. One of the main applications of Laplace
transform is evaluating the integrals as discussed in the following.

Lemma 2.3. The following integral relationship holds true

∫ ∞

1

bei(
√

2λ)dλ√
λ2 − 1

=
π

2
J0(1)I0(1).

Proof. Let us define the following function

I(x) =
∫ ∞

1

bei(
√

2xλ)dλ√
λ2 − 1

.

Laplace transform of I(x) leads to

L{I(x)} =
∫ ∞

0

e−sx

(∫ ∞

1

bei(
√

2xλ)dλ√
λ2 − 1

)
dx.

By changing the order of integration, which is permissible, we obtain
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L{I(x)} =
∫ ∞

1

1√
λ2 − 1

(∫ ∞

0

e−sxbei(
√

2xλ)dx

)
dλ,

or

L{I(x)} =
∫ ∞

1

1√
λ2 − 1

(
1
s

sin
λ

2s
)dλ.

At this point, let us introduce the new variable λ = cosh ξ, we get the following

L{I(x)} =
1
s

∫ ∞

0

sin((2s)−1 cosh ξ)dξ,

using the following well-known integral representation for J0(ϕ)

J0(ϕ) =
2
π

∫ ∞

0

sin(ϕ cosh ϑ)dϑ.

One gets finally

L{I(x)} =
π

2s
J0(

1
2s

),

now, taking inverse Laplace transform of the above relationship leads to

I(x) = L−1{ π

2s
J0(

1
2s

)} =
π

2
J0(
√

x)I0(
√

x).

Letting x = 1 we get

∫ ∞

1

bei(
√

2λ)dλ√
λ2 − 1

=
π

2
J0(1)I0(1).

Lemma 2.4. The following integral relations hold true
∫ 1

0

xµ−1ber(2
√

ln x)dx =
1
µ

cos
1
µ

,

∫ 1

0

ber(2
√

ln x)√
x

dx = 2 cos 2.

Proof. Let us define the following function

I(ξ) =
∫ 1

0

xµ−1ber(2
√

(lnx)ξ)dx.

Laplace transform of I(ξ) leads to

L{I(ξ)} =
∫ ∞

0

e−sξ

(∫ 1

0

xµ−1ber(2
√

(lnx)ξ)dx

)
dξ.

By changing the order of integration, which is permissible, we will have

L{I(ξ)} =
∫ 1

0

xµ−1

∫ ∞

0

e−sξber(2
√

(lnx)ξ)dξdx.

But the value of inner integral is as following
∫ ∞

0

e−sξber(2
√

(lnx)ξ)dξ =
1
s

cos
(lnx)

s
.
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To prove the second relationship, by setting this value in the integral, one gets

L{I(ξ)} =
∫ 1

0

xµ−1 1
s

cos
(lnx)

s
dx =

1
s

∫ 1

0

xµ−1 cos
(lnx)

s
dx.

At this point, we introduce the new variable ln x = −w. One gets after easy
calculation

L{I(ξ)} =
1
s

∫ ∞

0

e−µw cos(
w

s
)dw =

1
µ
{ s

s2 + (µ−1)2
}.

Taking inverse Laplace transform to obtain

I(ξ) =
∫ 1

0

xµ−1ber(2
√

(lnx)ξ)dx =
1
µ

cos
ξ

µ
,

from the above relationship, we get

I(1) = I0(µ) =
∫ 1

0

xµ−1ber(2
√

ln x)dx =
1
µ

cos
1
µ

.

In the above integral, by setting 0.5 for the parameter,we obtain the second
assertion

I0(0.5) =
∫ 1

0

ber(2
√

ln x)dx√
x

= 2 cos 2.

3. Bobylev-Cercignani Theorem and Their Applications

Bobylev and Cercignani developed a theorem [8] concerning the inversion of
multivalued transforms that are analytic everywhere in the s− plane except along
the negative real axis. The theorem is as follows:

Theorem 3.1. Bobylev-Cercignani Theorem: Let f(t) denote a real-valued
function, where its Laplace transform F (s) exists. Let F (s) satisfy the following
hypothesis:

1) F (s) is a multi-valued function which has no singularities in the cut s− plane.
The branch cut lies along the negative real axis (−∞, 0].

2) F ∗(s) = F (s∗), where the star denotes the complex conjugate.
3) F±(η) = lim

φ→π−
F (ηe±φi ) and F+(η) = (F−(η))∗.

4) F (s ) = o(1) as |s| → ∞ and F (s) = o( 1
|s| ) as |s| → 0, uniformly in any

sector | arg(s)| < π − η, 0 < η < π.
5) There exists ε > 0, such that for every π − ε < φ ≤ π, F (re±φi)

1+r ∈ L1(R+)
and |F (re±φi)| < a(r), where a(r) does not depend on φ and a(r)e−δr ∈ L1(R+)
for any δ > 0.Then

f(t) =
1
π

∫ ∞

0

Im( F−(η))e−tηdη.

In following lemma, we apply this theorem.
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Lemma 3.1. The following relationship holds true

L−1

{
1

s + 1
exp

(
−x

√
µ + sα

λ + sα

)}
=

1
π

∫ ∞

0

Im(F−(η))e−tηdη.

where 0 < α < 1, λ, µ > 0 and

Im(F−(η)) =
e
−x

√
ρ1
ρ2

cos(
θ1−θ2

2 )

η − 1
sin

(
x

√
ρ1

ρ2
sin(

θ1 − θ2

2
)
)

.

Proof. F (s) satisfies all of the conditions listed in the theorem 3.1. Then

F−(η) = lim
φ→π

F (ηe−φi) =
1

ηe−πi + 1
exp

(
−x

√
ηαe−παi + µ

ηαe−παi + λ

)

=
1

1− η
exp

(
−x

√
ρ1

ρ2
e

i(θ1−θ2)
2

)

=
1

1− η
exp

(
−x

√
ρ1

ρ2
(cos(

θ1 − θ2

2
) + i sin(

θ1 − θ2

2
))

)
,

where

ρ1 =
√

η2α + 2µηα cosπα + µ2, ρ2 =
√

η2α + 2ληα cos πα + λ2,

θ1 = − tan−1

(
ηα sin απ

ηα cosαπ + µ

)
, θ2 = − tan−1

(
ηα sin απ

ηα cosαπ + λ

)
(0 < θ < π).

Image part of F−(η) is founded as

Im(F−(η)) =
e
−x

√
ρ1
ρ2

cos(
θ1−θ2

2 )

η − 1
sin

(
x

√
ρ1

ρ2
sin(

θ1 − θ2

2
)
)

.

Finally, the inverse Laplace transform is as

f(t) =
1
π

∫ ∞

0

Im(F−(η))e−tηdη.

Problem 1. Let us consider the following four terms partial fractional differential
equation

∂

∂x
{∂αu(x, t)

∂tα
}+ a

∂βu(x, t)
∂tβ

= λu(x, t)− b
∂u(x, t)

∂x
,

where 0 < α < 1, 0 < β ≤ 1, 0 < x < ∞, t, a, b > 0 with the boundary conditions

u(0, t) =
tγ−1

Γ(γ)
(γ > 0), lim

x→∞
|u(x, t)| < ∞,

and the initial conditions u(x, 0) = ux(x, 0) = 0.
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Solution. Applying the Laplace transform of the equation and using the bound-
ary and initial conditions leads to differential equation with respect to x as

Ux(x, t) +
asβ − λ

sα + b
U(x, t) = 0,

when L{u(x, t)} = U(x, s). Solution of the above equation yields

U(x, s) =
1
sγ

exp
(
−x

asβ − λ

sα + b

)
.

U(x, s) satisfies all of the conditions explained in the theorem 3.1. Hence

U−(x, η) = lim
φ→π

U(x, ηe−φi) =
1

ηγe−πγi
exp

(
−x

aηβe−πβi − λ

ηαe−παi + b

)

=
eπγi

ηγ
exp

(
−x

(aηβe−πβi − λ)(ηαeπαi + b)
ρ

)
,

where ρ = η2α + 2bηα cos πα + b2. Therefore

Im(U−(x, η)) =

1
ηγ

exp
{
−x

abηβ cosβπ + aηα+β cos(α− β)π − ληα cos απ − λb

ρ

}

× sin
{

πγ − x
aηα+β sin(α− β)π − abηβ sin βπ − ληα sinαπ

ρ

}
.

Finally, u(x, t) is found to be

u(x, t) =
1
π

∫ ∞

0

Im(U−(x, η))e−tηdη.

4. Partial Fractional Differential Equation (PFDE) with Moving
Boundary

In PFDE problems, Laplace transforms are particularly useful when the bound-
ary conditions are time dependent. We consider now the case when one of the
boundaries is moving. This type of problem arises in combustion problems where
the boundary moves due to the burning of the fuel [10]. Such fractional partial
differential equations have not been studied in the literature.

Problem 2. Let us solve the following three terms time-fractional heat equation
with moving boundaries

(4.1)
∂αu(x, t)

∂tα
= a2 ∂2u(x, t)

∂x2
+ λ

∂u(x, t)
∂x

(0 < α ≤ 1),

where λ ∈ R, βt < x < ∞, t > 0 and subject to the boundary conditions

u(x, t)
∣∣∣∣ x = βt

=
1√
πt

exp(− 1
4t

), lim
x→∞

|u(x, t)| < ∞,

and the initial condition u(x, 0) = 0 (0 < x < ∞).



54 A. AGHILI* AND M.R. MASOMI

Solution: We introduce the change of variable η = x− βt. The above equation
can be reformulated as

(4.2)
∂αw(η, t)

∂tα
− β

∂

∂η

(
0I

1−α
t w(η, t)

)
= a2 ∂2w(η, t)

∂η2
+ λ

∂w(η, t)
∂η

,

where 0 < η < ∞, t > 0 subject to the boundary conditions

w(0, t) =
1√
πt

exp(− 1
4t

), lim
η→∞

|w(η, t)| < ∞,

and the initial condition w(η, 0) = 0 (0 < η < ∞). By applying the Laplace
transform of the equation (4-2), we obtain

(4.3)
∂2W (η, s)

∂η2
+

1
a2

(
β

s1−α
+ λ)

∂W (η, s)
∂η

− sα

a2
W (η, s) = 0,

with conditions

W (0, s) =
e−
√

s

√
s

, lim
η→∞

|W (η, t)| < ∞.

Differential equation (4-3) has the solution as

W (η, s) =
e−
√

s

√
s

exp

(
− λη

2a2
− βη

2a2s1−α
− η

2

√
1
a4

(
β

s1−α
+ λ)2 +

4sα

a2

)
.

Case 1: If α = 1, then

W (η, s) = e−(λ+β) η

2a2
e−
√

s

√
s

exp

(
−η

a

√
1

4 a2
(β + λ)2 + s

)
.

Using the fact that

L−1

{
exp

(
−η

a

√
1

4a2
(β + λ)2 + s

)}
= e−

1
4a2 (β+λ)2t η

2a
√

πt3
e−

η2

4 a2t ,

and using the Laplace transform inversion and then applying the convolution
theorem in this transform, we get w(η, t) as

w(η, t) = L−1{W (η, s)}

=
η

2aπ
e−(λ+β) η

2a2

∫ t

0

e−
1

4(t−τ)

√
τ3(t− τ)

e−
1

4a2 β+λ)2τe−
η2

4 a2τ dτ.

Therefore we obtain u(x, t) as following

u(x, t) =
x− βt

2aπ
e−(λ+β) x−βt

2a2

∫ t

0

e−
1

4(t−τ)

√
τ3(t− τ)

e−
1

4a2 (β+λ)2τe−
(x−βt)2

4a2τ dτ.

Case 2: If α 6= 1, then
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W (η, s) = e−
λη

2a2
1√
s

exp

(
−√s− βη

2a2s1−α
− η

2

√
β2

a4s2−2α
+

2βλ

a4s1−α
+

4sα

a2
+ λ2

)
,

and we can use the theorem 3.1, hence

W−(η, ξ) = lim
φ→π

W (η, ξe−φi) =
e−

λη

2a2 e
√

ξe−
πi
2

√
ξe−

πi
2

×

exp

(
− βη

2a2ξ1−αe(α−1)πi
− η

2

√
β2

a4ξ2−2αe(2α−2)πi
+

2βλ

a4ξ1−αe(α−1)πi
+

4ξαe−απi

a2
+ λ2

)

=
e−

λη

2a2 ei( π
2−

√
ξ)

√
ξ

exp

(
βηe−απi

2a2ξ1−α
− η

2

√
β2e−2απi

a4ξ2−2α
+ (

4ξα

a2
− 2βλ

a4ξ1−α
)e−απi + λ2

)

=
e−

λη

2a2 ei( π
2−

√
ξ)

√
ξ

×

e
βη(cos απ−i sin απ)

2a2ξ1−α − η
2

√[
β2 cos 2απ

a4ξ2−2α +( 4ξα

a2 − 2βλ

a4ξ1−α ) cos απ+λ2
]
−i

[
β2 sin 2απ

a4ξ2−2α +( 4ξα

a2 − 2βλ

a4ξ1−α ) sin απ
]

=
e−

λη

2a2 ei( π
2−

√
ξ)

√
ξ

e
βη(cos απ−i sin απ)

2a2ξ1−α − η
2
√

ρe
θi
2

,

where

ρ =

√{
β2 cos 2απ

a4ξ2−2α
+ (

4ξα

a2
− 2βλ

a4ξ1−α
) cos απ + λ2

}2

+
{

β2 sin 2απ

a4ξ2−2α
+ (

4ξα

a2
− 2βλ

a4ξ1−α
) sin απ

}2

θ = − tan−1




β2 sin 2απ
a4ξ2−2α + ( 4 ξα

a2 − 2βλ
a4ξ1−α ) sin απ

β2 cos 2απ
a4ξ2−2α + ( 4ξα

a2 − 2βλ
a4ξ1−α ) cos απ + λ2


 (0 < θ < π).

Then imaginary part of W−(η, ξ) is

Im(W−(η, ξ)) =
e−

λη

2a2

√
ξ

e
βη cos απ

2a2ξ1−α− η
2
√

ρ cos θ
2 cos(

√
ξ +

βη

2a2ξ1−α
sin απ +

η

2
√

ρ sin
θ

2
).

The formal solution will be as follows,

u(x, t) =
1
π

∫ ∞

0

Im(W−(x− βξ, ξ))e−tξdξ.
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5. A Non-Homogenous System of Fractional Heat equations with
different orders

In this section, we consider certain non-homogeneous fractional system of heat
equations (different orders) which is a generalization to the problem of heat trans-
ferring from metallic bar through the surrounding media studied by V.A. Ditkin,
P.A. Prudnikov [9]. The basic goal of this work has been to implement the Laplace
transform method for studying the above mentioned problem. The goal has been
achieved by formally deriving exact analytical solution.

Problem 3. We consider the following system of fractional PDE with different
orders in Caputo sense

(5.1) cDα
t u + γu = 1 +

∂2u

∂x2
+ λa

∂v

∂r

∣∣∣∣ r = a
,

(5.2) cDδ
t v − βv =

∂2v

∂r2
+

1
r

∂v

∂r
,

where 0 < α, δ < 1, t > 0, −l ≤ x ≤ l, r ≥ a and β, γ ∈ R with the boundary
conditions

u(x, 0) = v(x, r, 0) = 0, u(−l, t) = u(l, t) = 0,

and

v(x, a, t) = u(x, t), lim
r→∞

v(x, r, t) = 0.

Solution: By taking the Laplace transform of relation (5-2), we get

r2Vrr + rVr + (i
√

sδ − β)2r2V = 0.

Let us assume that L{v(x, r, t)} = V (x, r, s), then one has

V (x, r, s) = c1J0(i
√

sδ − βr) + c2Y0(i
√

sδ − βr),
where J0 and Y0 are Bessel functions of the first and second kind of order zero,

respectively. Using this fact that lim
r→∞

v(x, r, t) = 0, we get

V (x, r, s) = c1J0(i
√

sδ − βr).
But v(x, a, t) = u(x, t), therefore

V (x, r, s) =
J0(i

√
sδ − βr)

J0(i
√

sδ − βa)
U(x, s),

where L{u(x, t)} = U(x, s). On the other hand, we have

∂V

∂r

∣∣∣∣ r = a
= U(x, s)

(
−i

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)
.

Applying the Laplace transform term wise to relation (5-1), we obtain

sαU = Uxx − iλa
√

sδ − β
J1(i

√
sδ − βa)

J0(i
√

sδ − βa)
U +

1
s
− γU,
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or

(5.3) Uxx − h(s)U = −1
s
,

where

h(s) = sα + γ + iλa
√

sδ − β
J1(i

√
sδ − βa)

J0(i
√

sδ − βa)
.

Differential equation (5-3) has the following solution

U(x, s) = c1 cosh(
√

h(s)x) + c2 sinh(
√

h(s)x) +
1

sh(s)
.

Using the boundary conditions u(−l, t) = u(l, t) = 0 leads to

U(x, s) =
1

sh(s)

(
1− cosh(

√
h(s)x)

cosh(
√

h(s)l)

)
.

Let us assume that

F (x, h(s)) = 1− cosh(
√

h(s)x)
cosh(

√
h(s)l)

,

then we get

U(x, s) =
F (x, h(s))

sh(s)
.

Now, if

Lt{φ(x, t)} =
F (x, s)

s
, Lt{ψ(ξ, t)} =

e−ξh(s)

s
,

then

u(x, t) = L−1
t {U(x, s)} = L−1{F (x, h(s))

sh(s)
} =

∫ ∞

0

ψ(ξ, t)φ(x, ξ)dξ.

Finally, we will have

φ(x, t) = L−1
t {F (x, s)

s
} = L−1

t

{
1
s
(1− cosh(

√
sx)

cosh(
√

sl)
)
}

= 1− L−1
t

{
cosh(

√
sx)

s cosh(
√

sl)

}
= 1− L−1

t

{
e
√

s(x−l) 1 + e−2
√

sx

s(1 + e−2
√

sl)

}

= 1−
∞∑

n=0

L−1
t

{
exp(−((2n + 1)l − x)

√
s)

s
− exp(−((2n + 1)l + x)

√
s)

s

}

= 1−
∞∑

n=0

(
erfc(

(2n + 1)l − x

2
√

t
)− erfc(

(2n + 1)l + x

2
√

t
)
)

.

Also,
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Figure 1

h(s) = sα + γ + iλa
√

sδ − β
J1(i

√
sδ − βa)

J0(i
√

sδ − βa)
,

hence

ψ(ξ, t) = L−1
t {e−ξh(s)

s
}

= L−1
t

{
e−ξγ e−ξsα

s
exp

(
−iξλa

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)}

= e−ξγL−1
t

{√
sδ − β

s

e−ξsα

√
sδ − β

exp

(
−iξλa

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)}
.

Case 1: Assume that δ = 1, therefore

f1(ξ, t) = L−1
t

{
1√

s− β
exp

(
−iξλa

√
s− β

J1(i
√

s− βa)
J0(i

√
s− βa)

)}

= eβtL−1
t

{
1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)}
.

The inverse Laplace transform is given by

L−1
t

{
1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)}
=

1
2πi

∫ c+i∞

c−i∞

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds.

The integrand has a branch point at the origin and it is thus necessary to choose
a contour which does not contain the origin. We deform the Bromwich contour so
that the circular arc BDE is terminated just short of the horizontal axis and the
arc LNA starts just below the horizontal axis. In between the contour follows an
inclined path EH followed by a circular arcHJK enclosing the origin and a return
section KL meeting the arc LNA (see figure). As there are no singularities inside
this contour C, we have

∫

C

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds = 0.
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Now on BDE and LNA, we get
∣∣∣∣

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)∣∣∣∣ ≤
1√
s
,

so that the integrals over these arcs tend to zero as R → ∞. Over the circular
arc HJK as its radius ε → 0, we have s = εeiθ , φ ≤ θ ≤ −φ. Thus

lim
R →∞
ε → 0

∫

HJK

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds = 0.

Along EH, s = ueiφ,
√

s =
√

ue
iφ
2 , hence

lim
R →∞
ε → 0, φ → π

∫

EH

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

∫ ∞

0

1
i
√

u
exp

(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

Similarly, along KL, s = ue−iφ,
√

s =
√

ue−
iφ
2 , then

lim
R →∞
ε → 0, φ → π

∫

KL

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

∫ ∞

0

1
i
√

u
exp

(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

Consequently, we have

1
2πi

∫

C

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

1
2πi

∫

AB

ds +
1

2πi

∫

BDE

ds

+
1

2πi

∫

EH

ds +
1

2πi

∫

HJK

ds +
1

2πi

∫

KL

ds +
1

2πi

∫

LNA

ds = 0.

The final result is as

1
2πi

∫ c+i∞

c−i∞

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

1
π

∫ ∞

0

1√
u

exp
(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

Thus we obtain

f1(ξ, t) = L−1
t

{
1√

s− β
exp

(
−iξλa

√
s− β

J1(i
√

s− βa)
J0(i

√
s− βa)

)}

=
1
π

eβt

∫ ∞

0

1√
u

exp
(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

In case of 0 < δ < 1, we get
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f2(ξ, t) = L−1
t

{
1√

sδ − β
exp

(
−iξλa

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)}

=
1
t

∫ ∞

0

f1(ξ, τ)W (−δ, 0;−τt−δ)dτ.

Also, for 0 < δ < 1,

f3(t) = L−1
t

{√
sδ − βe−ξsα

s

}
= L−1

t

{
s

δ
2−1(1− βs−δ)

1
2 e−ξsα

}

=
∞∑

n=0

(−β)n

(
1
2
n

)
L−1

t {s−δn+ δ
2−1e−ξsα}

=
∞∑

n=0

(−β)n

(
1
2
n

)
L−1

t

{
s−δn+ δ

2−1
∞∑

k=0

(−ξ)ksαk

k!

}

=
∞∑

n=0

(−β)n

(
1
2
n

) { ∞∑

k=0

(−ξ)k

k!
tδn−αk− δ

2

Γ(δn− αk − δ
2 + 1)

}
.

Consequently

ψ(ξ, t) = L−1
t {1

s
exp(−ξh(s))} = e−ξγ

∫ t

0

f2(ξ, η)f3(t− η)dη : 0 < α, δ < 1

Finally, we obtain u(x, t) as follows

u(x, t) =
∫ ∞

0

ψ(ξ, t)φ(x, ξ)dξ

=
∫ ∞

0

e−ξγ

(∫ t

0

f2(ξ, η)f3(t− η)dη

)

×
(

1−
∞∑

n=0

(
erfc(

(2n + 1)l − x

2
√

ξ
)− erfc(

(2n + 1)l + x

2
√

ξ
)
))

dξ.

Now, we should determine the inverse Laplace transform of the following term

V (x, r, s) = U(x, s)
J0(i

√
sδ − βr)

J0(i
√

sδ − βa)
.

If δ = 1, we obtain

g1(r, t) = L−1
t

{
J0(i

√
s− βr)

J0(i
√

s− βa)

}
=

2
a2

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

exp(−(
λ2

k

a2
− β)t),

where λ1, λ2, λ3, . . . are roots of J0(i
√

s− βa). For 0 < δ < 1, we conclude that
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g2(r, t) = L−1
t

{
J0(i

√
sδ − βr)

J0(i
√

sδ − βa)

}

=
2

a2t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

∫ ∞

0

exp(−(
λ2

k

a2
− β)τ)W (−δ, 0;−τt−δ)dτ

=
2

a2t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

L
{
W (−δ, 0;−τt−δ); τ → s

}
∣∣∣∣∣ s = λ2

k

a2 − β

=
2
t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

( ∞∑
n=0

(−a2)nt−δn

Γ(−δn)(λ2
k − a2β)n+1

)

=
2
t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)(λ2

k − a2β)
E−δ,0(− a2t−δ

λ2
k − a2β

).

Therefore,

v(x, r, t) = L−1
t {V (x, r, s)} = L−1

t

(
U(x, s)

J0(i
√

sδ − βr)

J0(i
√

sδ − βa)

)

=
∫ t

0

u(x, η)g2(r, t− η)dη : 0 < α, δ < 1.
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7. Conclusion

The paper is devoted to study and applications of Laplace transform. The main
purpose of this work is to develop a method for finding formal solution of certain
systems of Fredholm fractional singular integral equations of second kind, analytic
solution of the time fractional heat equation and system of partial fractional differ-
ential equations with different orders, which is a generalization to certain types of
problems in the literature. Numerous non trivial examples and exercises provided
throughout the paper. We hope that it will also benefit many researchers in the
disciplines of applied mathematics, mathematical physics and engineering.
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ON SPECTRAL PROPERTIES FOR A REGULAR
STURM-LIOUVILLE PROBLEM

ERDOĞAN ŞEN, AZAD BAYRAMOV, SERKAN ARACI, AND MEHMET ACIKGOZ

Abstract. In this work we study a discontinuous boundary-value problem
with retarded argument which contains a spectral parameter in the trans-
mission conditions. We firstly prove the existence theorem and then obtain
asymptotic representation of eigenvalues and eigenfunctions.

1. Introduction

The theory of differential equations with retarded arguments is one of the actual
branch of the theory of ordinary differential equations. Particularly, there has been
increasing interest in spectral analysis of boundary value problems. There is quite
substantial literature concerning such problems. Here we mention the results of
[1–19].

In this paper we study the eigenvalues and eigenfunctions of a discontinuous
boundary value problem with retarded argument and spectral parameters in the
transmission conditions. Namely we consider the boundary value problem for the
differential equation

(1.1) y′′(x) + q(x)y(x−∆(x)) + λy(x) = 0

on [0, h1) ∪ (h1, h2) ∪ (h2, π] , with boundary conditions

(1.2) y(0) cos α + y′(0) sin α = 0,

(1.3) y(π) cos β + y′(π) sin β = 0,

and transmission conditions

(1.4) y(h1 − 0)− 3
√

λδy(h1 + 0) = 0,

(1.5) y′(h1 − 0)− 3
√

λδy′(h1 + 0) = 0,

(1.6) y(h2 − 0)− γy(h2 + 0) = 0,

2000 Mathematics Subject Classification. 34L20, 35R10.
Key words and phrases. Differential equation with retarded argument; transmission conditions;

asymptotics of eigenvalues and eigenfunctions.
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(1.7) y′(h2 − 0)− γy′(h2 + 0) = 0,

where the real-valued function q(x) is continuous in [0, h1) ∪ (h1, h2) ∪ (h2, π] and
has finite limits q(h1 ± 0) = limx→h1±0 q(x), q(h2 ± 0) = limx→h2±0 q(x) the real
valued function ∆(x) ≥ 0 continuous in [0, h1) ∪ (h1, h2) ∪ (h2, π] and has finite
limits ∆(h1 ± 0) = limx→h1±0 ∆(x), ∆(h2 ± 0) = limx→h2±0 ∆(x), x−∆(x) ≥ 0, if
x ∈ [0, h1) ; x−∆(x) ≥ h1, if x ∈ (h1, h2) , x−∆(x) ≥ h2, if x ∈ (h2, π] ; λ is a real
spectral parameter; δ, γ are arbitrary real numbers and sinα sin β 6= 0.

Let w1(x, λ) be a solution of Equation (1.1) on [0, h1] , satisfying the initial
conditions

(1.8) w1 (0, λ) = sin α,w′1 (0, λ) = − cosα.

The conditions (1.8) define a unique solution of Equation (1.1) on [0, h1] ([2], p.
12).

After defining the above solution we shall define the solution w2 (x, λ) of Equation
(1.1) on [h1, h2] by means of the solution w1 (x, λ) using the initial conditions

(1.9) w2 (h1, λ) = λ−1/3δ−1w1 (h1, λ) , w′2(h1, λ) = λ−1/3δ−1w′1(h1, λ).

The conditions (1.9) are defined as a unique solution of Equation (1.1) on [h1, h2] .
After defining the above solution we shall define the solution w3 (x, λ) of Equation

(1.1) on [h2, π] by means of the solution w2 (x, λ) using the initial conditions

(1.10) w3 (h2, λ) = γ−1w2 (h2, λ) , w′3(h2, λ) = γ−1w′2(h2, λ).

The conditions (1.10) are defined as a unique solution of Equation (1.1) on
[h2, π] .

Consequently, the function w (x, λ) is defined on [0, h1)∪ (h1, h2)∪ (h2, π] by the
equality

w(x, λ) =





w1(x, λ), x ∈ [0, h1) ,
w2(x, λ), x ∈ (h1, h2) ,
w3(x, λ), x ∈ (h2, π]

is a solution of the Equation (1.1) on [0, h1) ∪ (h1, h2) ∪ (h2, π] ;which satisfies one
of the.boundary conditions and transmission conditions (1.4)-(1.5).

Lemma 1.1. Let w (x, λ) be a solution of Equation (1.1) and λ > 0. Then the
following integral equations hold:

w1(x, λ) = sin α cos sx− cos α

s
sin sx

− 1
s

x∫

0

q (τ) sin s (x− τ) w1 (τ −∆ (τ) , λ) dτ
(
s =

√
λ, λ > 0

)
,(1.11)

w2(x, λ) =
1

s2/3δ
w1 (h1, λ) cos s (x− h1) +

w′1 (h1, λ)
s5/3δ

sin s (x− h1)

− 1
s

x∫

h1

q (τ) sin s (x− τ) w2 (τ −∆ (τ) , λ) dτ
(
s =

√
λ, λ > 0

)
,(1.12)
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w3(x, λ) =
1
γ

w2 (h2, λ) cos s (x− h2) +
w′2 (h2, λ)

sγ
sin s (x− h2)

− 1
s

x∫

h2

q (τ) sin s (x− τ) w3 (τ −∆ (τ) , λ) dτ
(
s =

√
λ, λ > 0

)
.(1.13)

Proof. To prove this, it is enough to substitute−s2w1(τ, λ)−w′′1 (τ, λ),−s2w2(τ, λ)−
w′′2 (τ, λ) and −s2w3(τ, λ)−w′′3 (τ, λ) instead of −q(τ)w1(τ −∆(τ), λ), −q(τ)w2(τ −
∆(τ), λ) and −q(τ)w3(τ − ∆(τ), λ) in the integrals in (1.11), (1.12) and (1.13)
respectively and integrate by parts twice. ¤
Theorem 1.1. The problem (1.1)− (1.7) can have only simple eigenvalues.

Proof. Let λ̃ be an eigenvalue of the problem (1.1)− (1.7) and

ỹ(x, λ̃) =





ỹ1(x, λ̃), x ∈ [0, h1) ,

ỹ2(x, λ̃), x ∈ (h1, h2) ,

ỹ3(x, λ̃), x ∈ (h2, π]

be a corresponding eigenfunction. Then from (1.2) and (1.8) it follows that the
determinant

W
[
ỹ1(0, λ̃), w1(0, λ̃)

]
=

∣∣∣∣∣
ỹ1(0, λ̃) sin α

ỹ′1(0, λ̃) − cos α

∣∣∣∣∣ = 0,

and by Theorem 2.2 in [2] the functions ỹ1(x, λ̃) and w1(x, λ̃) are linearly dependent
on [0, h1]. We can also prove that the functions ỹ2(x, λ̃), w2(x, λ̃) are linearly
dependent on [h1, h2] and ỹ3(x, λ̃), w3(x, λ̃) are linearly dependent on [h2, π] . Hence

(1.14) ỹi(x, λ̃) = Kiwi(x, λ̃)
(
i = 1, 3

)

for some K1 6= 0, K2 6= 0 and K3 6= 0. We must show that K1 = K2 = K3.
Suppose that K1 6= K2. From the equalities (1.4) and (1.14), we have

ỹ(h1 − 0, λ̃)− 3
√

λ̃δỹ(h1 + 0, λ̃) = ỹ1(h1, λ̃)− 3
√

λ̃δỹ2(h1, λ̃)

= K1w1(h1, λ̃)− 3
√

λ̃δK2w2(h1, λ̃)

=
3
√

λ̃δK1w2(h1, λ̃)− 3
√

λ̃δK2w2(h1, λ̃)

=
3
√

λ̃δ (K1 −K2)w2(h1, λ̃) = 0.

Since δ (K1 −K2) 6= 0 it follows that

(1.15) w2

(
h1, λ̃

)
= 0.

By the same procedure from equality (1.5), we can derive that

(1.16) w′2
(
h1, λ̃

)
= 0.

From the fact that w2(x, λ̃) is a solution of the differential Equation (1.1) on [h1, h2]
and satisfies the initial conditions (1.15) and (1.16) it follows that w2(x, λ̃) = 0
identically on [h1, h2] (cf. [2, p. 12, Theorem 1.2.1]).

By using this, we may also find

w1

(
h1, λ̃

)
= w′1

(
h1, λ̃

)
= 0
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From the latter discussions of w2(x, λ̃) it follows that w1(x, λ̃) = 0 identically on
[0, h1] . But this contradicts (1.8), thus completing the proof. Analogically we can
show that K2 = K3. ¤

2. An existence theorem

The function w(x, λ) defined in section 1 is a nontrivial solution of Equation
(1.1) satisfying conditions (1.2) and (1.4)-(1.7). Putting w(x, λ) into (1.3), we get
the characteristic equation

(2.1) F (λ) ≡ w(π, λ) cos β + w′(π, λ) sin β = 0.

By Theorem 1.1, the set of eigenvalues of boundary-value problem (1.1)-(1.7)

coincides with the set of real roots of Eq. (2.1). Let q1 =
h1∫
0

|q(τ)|dτ, q2 =
h2∫
h1

|q(τ)| dτ

and q3 =
π∫

h2

|q(τ)| dτ.

Lemma 2.1. (1) Let λ ≥ 4q2
1. Then for the solution w1 (x, λ) of Equation (1.11),

the following inequality holds:

(2.2) |w1 (x, λ)| ≤ 1
|q1|

√
4q2

1 sin2 α + cos2 α, x ∈ [0, h1] .

(2) Let λ ≥ max
{
4q2

1 , 4q2
2

}
. Then for the solution w2 (x, λ) of Equation (1.12), the

following inequality holds:

(2.3) |w2 (x, λ)| ≤ 2.5198421
3
√

q5
1δ

√
4q2

1 sin2 α + cos2 α, x ∈ [h1, h2] .

(3) Let λ ≥ max
{
4q2

1 , 4q2
2 , 4q2

3

}
. Then for the solution w2 (x, λ) of Equation (1.13),

the following inequality holds:

(2.4) |w3 (x, λ)| ≤ 10.0793684
3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α, x ∈ [h2, π] .

Proof. Let B1λ = max[0,h1] |w1 (x, λ)|. Then from (1.11), it follows that, for every
λ > 0, the following inequality holds:

B1λ ≤
√

sin2 α +
cos2 α

s2
+

1
s
B1λq1.

If s ≥ 2q1 we get (2.2). Differentiating (1.11) with respect to x, we have
(2.5)

w′1(x, λ) = −s sin α sin sx− cosα cos sx−
x∫

0

q(τ) cos s (x− τ)w1(τ −∆ (τ) , λ)dτ.

From (2.5) and (2.2), it follows that, for s ≥ 2q1, the following inequality holds:.

(2.6)
|w′1(x, λ)|

s5/3
≤ 1

3
√

4q5
1

√
4q2

1 sin2 α + cos2 α.
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Let B2λ = max[h1,h2] |w2 (x, λ)|. Then from (1.12), (2.2) and (2.6) it follows that,
for s ≥ 2q1 and s ≥ 2q2, the following inequalities hold:

B2λ ≤ 2
3
√

4q5
1δ

√
4q2

1 sin2 α + cos2 α +
1

2q2
B2λq2,

B2λ ≤ 2 3
√

2
3
√

q5
1δ

√
4q2

1 sin2 α + cos2 α.

Hence if λ ≥ max
{
4q2

1 , 4q2
2

}
we get (2.3).

Differentiating (1.12) with respect to x, we have

w′2(x, λ) = −
3
√

s

δ
w1 (h1, λ) sin s (x− h1) +

w′1 (h1, λ)
3
√

s2δ
cos s (x− h1)

−
x∫

h1

q(τ) cos s (x− τ)w2(τ −∆(τ) , λ)dτ.(2.7)

From (2.7) and (2.3), it follows that, for s ≥ 2q1, the following inequality holds:.

(2.8)
|w′2(x, λ)|

s
≤

3
√

16
δ 3
√

q5
1

√
4q2

1 sin2 α + cos2 α.

Let B3λ = max[h2,π] |w3 (x, λ)|. Then from (1.13), (2.2), (2.3) and (2.8) it follows
that, for s ≥ 2q1, s ≥ 2q2 and s ≥ 2q3, the following inequalities hold:

B3λ ≤
3
√

24

3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α +
3
√

24

3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α +
1

2q3
B3λq3,

B3λ ≤
3
√

210

3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α.

Hence if λ ≥ max
{
4q2

1 , 4q2
2 , 4q2

3

}
we get (2.4). ¤

Theorem 2.1. The problem (1.1)-(1.7) has an infinite set of positive eigenvalues.

Proof. Differentiating (1.9) with respect tox, we get

w′3(x, λ) = − s

γ
w2 (h2, λ) sin s (x− h2) +

w′2 (h2, λ)
γ

cos s (x− h2)

−
x∫

h2

q(τ) cos s (x− τ)w3(τ −∆(τ) , λ)dτ.(2.9)

From (1.11), (1.12), (1.13), (2.1), (2.5), (2.7) and (2.9), we get

 1

γ





1
s2/3δ


sin α cos sh1 − cos α

s
sin sh1 − 1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)

− 1
s5/3δ


s sin α sin sh1 + cos α cos sh1 +

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ






68 ERDOĞAN ŞEN, AZAD BAYRAMOV, SERKAN ARACI, AND MEHMET ACIKGOZ

× sin s (h2 − h1)− 1
s

h2∫

h1

q(τ) sin s(h2 − τ)w2(τ −∆(τ), λ)dτ



 cos s (π − h2)+

1
sγ



−

s1/3

δ


sin α cos sh1−cosα

s
sin sh1−1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× sin s (h2 − h1)

− 1
s2/3δ


s sin α sin sh1+ cos α cos sh1+

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)−
h2∫

h1

q(τ) cos s(h2 − τ)w2(τ −∆(τ), λ)dτ



 sin s (π − h2)

−1
s

π∫

h2

q(τ) sin s (π − τ) w3(τ −∆(τ), λ)dτ


 cosβ+


− s

γ





1
s2/3δ


sin α cos sh1 − cosα

s
sin sh1 − 1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)

− 1
s5/3δ


s sin α sin sh1 + cos α cos sh1 +

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ




× sin s (h2 − h1)− 1
s

h2∫

h1

q(τ) sin s(h2 − τ)w2(τ −∆(τ), λ)dτ



 sin s (π − h2) +

1
γ



−

s1/3

δ


sin α cos sh1−cosα

s
sin sh1−1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× sin s (h2 − h1)

− 1
s2/3δ


s sin α sin sh1+ cos α cos sh1+

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)−
h2∫

h1

q(τ) cos s(h2 − τ)w2(τ −∆(τ), λ)dτ



 cos s (π − h2)

(2.10) −
π∫

h2

q(τ) cos s (π − τ)w3(τ −∆(τ), λ)dτ


 sin β = 0.

Let λ be sufficiently large. Then, by (2.2)-(2.4), Equation (2.10) may be rewritten
in the form

(2.11) 3
√

s sin sπ + O(1) = 0.
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Obviously, for large s Equation (2.11) has an infinite set of roots. Thus the theorem
is proved. ¤

3. Asymptotic Formulas for Eigenvalues and Eigenfunctions

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions.
In the following we shall assume thatsis sufficiently large. From (1.11) and (2.2),
we get

(3.1) w1(x, λ) = O(1) on [0, h1].

From (1.12) and (2.3), we get

(3.2) w2(x, λ) = O(1) on [h1, h2].

From (1.13) and (2.4), we get

(3.3) w3(x, λ) = O(1) on [h2, π].

The existence and continuity of the derivatives w′1s(x, λ) for 0 ≤ x ≤ h1, |λ| < ∞,
w′2s(x, λ) for h1 ≤ x ≤ h2, |λ| < ∞ and w′3s(x, λ) for h2 ≤ x ≤ π, |λ| < ∞ follows
from Theorem 1.4.1 in [2].

w′1s(x,λ) = O(1), x ∈ [0, h1],(3.4)

w′2s(x,λ) = O(1), x ∈ [h1, h2],(3.5)

w′3s(x,λ) = O(1), x ∈ [h2, π](3.6)

hold.

Proof. By differentiating (1.13) with respect to s, we get, by (3.3)
(3.7)

w′3s(x, λ) = −1
s

x

0
q(τ) cos s(x− τ)w′3s (τ −∆(τ) , λ) + θ(x, λ), (|θ(x, λ)| ≤ θ0).

Let Dλ = max[h2,π] |w′3s(x, λ)| . Then the existance of Dλ follows from continuity
of derivation for x ∈ [h2, π]. From (3.7)

Dλ ≤ 1
s
q3Dλ + θ0.

Now let s ≥ 2q3. Then Dλ ≤ 2θ0 and the validity of the asymptotic formula (3.6)
follows. Formulas (3.4) and (3.5) may be proved analogically. ¤
Theorem 3.1. Let n be a natural number. For each sufficiently large n there is
exactly one eigenvalue of the problem (1.1)-(1.7) near n2.

Proof. We consider the expression which is denoted by O(1) in Equation (2.11):

δγ

sin α sin β

{
− sin(α− β)

s2/3δγ
cos sπ +

cosα cosβ

s5/3δγ
sin sπ

− 1
δγ

h1

0

[
cosβ

s5/3
sin s(π − τ) +

sin β

s2/3
cos s (π − τ)

]
q (τ)w1 (τ −∆(τ) , λ) dτ

+
1
γ

h2

h1

[
cos β

s5/3
sin s(π − τ) +

sinβ

s2/3
cos s (π − τ)

]
q (τ) w2 (τ −∆(τ) , λ) dτ

+π
h2

[
cos β

s
sin s(π − τ) + sin β cos s (π − τ)

]
q (τ)w3 (τ −∆(τ) , λ) dτ

}
.
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If formulas (3.1)-(3.6) are taken into consideration, it can be shown by differen-
tiation with respect to s that for large s this expression has bounded derivative. It
is obvious that for large s the roots of Equation (2.11) are situated close to entire
numbers. We shall show that, for large n, only one root (2.11) lies near to each
n. We consider the function φ(s) = 3

√
s sin sπ + O(1). Its derivative, which has the

form φ′(s) = 1

3
3√

s2
sin sπ + 3

√
sπ cos π + O(1), does not vanish for s close to n for

sufficiently large n. Thus our assertion follows by Rolle’s Theorem. ¤

Let n be sufficiently large. In what follows we shall denote byλn = s2
n the

eigenvalue of the problem (1.1)-(1.7) situated near n2. We set sn = n + δn. From
(2.11) it follows that δn = O

(
1

n1/3

)
.

Consequently

(3.8) sn = n + O

(
1

n1/3

)
.

Formula (3.8) make it possible to obtain asymptotic expressions for eigenfunction
of the problem (1.1)-(1.7). From (1.11), (2.5) and (3.1), we get

(3.9) w1(x, λ) = sin α cos sx + O

(
1
s

)
,

(3.10) w′1(x, λ) = −s sin α sin sx + O (1) .

From (1.12), 2.6), (3.2), (3.9) and (3.10), we get

w2(x, λ) =
sin α

s2/3δ
cos sx + O

(
1
s

)
,(3.11)

w′2(x, λ) = −s1/3 sinα

δ
sin sx + O (1) .(3.12)

From (1.13), (2.7), (3.3), (3.11) and (3.12), we get

w3(x, λ) =
sin α

s2/3δγ
cossh2 cos s (x− h2)− sin α

s2/3δγ
sinsh2 sin s (x− h2) + O

(
1
s

)
,

w3(x, λ) =
sin α

s2/3δγ
cossx + O

(
1
s

)
.

(3.13)

By substituting (3.8) into (3.9), (3.11) and (3.12), we find that

u1n = w1 (x, λn) = sin α cos nx + O

(
1

n1/3

)
,

u2n = w2 (x, λn) =
sin α

δn2/3
cosnx + O

(
1
n

)
,

u3n = w3 (x, λn) =
sin α

δγn2/3
cosnx + O

(
1
n

)
.

Hence the eigenfunctions un(x) have the following asymptotic representation:

un(x) =





sinα cos nx + O
(

1
n1/3

)
, x ∈ [0, h1) ,

sin α
δn2/3 cosnx + O

(
1
n

)
, x ∈ (h1, h2) ,

sin α
δγn2/3 cosnx + O

(
1
n

)
, x ∈ (h2, π] .
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Under some additional conditions the more exact asymptotic formulas which
depend upon the retardation may be obtained. Let us assume that the following
conditions are fulfilled:

a) The derivatives q′(x) and ∆′′(x) exist and are bounded in [0, h1) ∪ (h1, h2) ∪
(h2, π] and have finite limits q′(hi±0) = lim

x→hi±0
q′(x) and ∆′′(hi±0) = lim

x→hi±0
∆′′(x)

(i = 1, 2), respectively.
b) ∆′(x) ≤ 1 in [0, h1)∪(h1, h2)∪(h2, π], ∆(0) = 0 and lim

x→hi+0
∆(x) = 0 (i = 1, 2).

By using b), we have

x−∆(x) ≥ 0,x ∈ [0, h1) ,(3.14)

x−∆(x) ≥ h1,x ∈ (h1, h2) ,(3.15)

x−∆(x) ≥ h1,x ∈ (h2, π] .(3.16)

From Equations (3.9), (3.11) and (3.13)-(3.16) we have

(3.17) w1 (τ −∆(τ) , λ) = sin α cos s (τ −∆(τ)) + O

(
1
s

)
,

(3.18) w2 (τ −∆(τ) , λ) =
sin α

s2/3δ
cos s (τ −∆(τ)) + O

(
1
s

)
,

(3.19) w3 (τ −∆ (τ) , λ) =
sin α

s2/3δγ
coss (τ −∆ (τ)) + O

(
1
s

)
.

Putting these expressions into Equation (2.10), we have

− s1/3

δγ
sin α sinβ sin sπ +

sin (α− β)
s2/3δγ

cos sπ − sin α sin β

s2/3δγ

×
{

cos sππ
0

q (τ)
2

[cos s∆(τ) + cos s (2τ −∆(τ))] dτ

+sin sππ
0

q (τ)
2

[sin s∆(τ) + sin s (2τ −∆(τ))] dτ

}
+ O

(
1

s5/3

)
= 0.(3.20)

Let

(3.21)





A (x, s, ∆(τ)) = 1
2

x∫
0

q(τ) sin (s∆(τ)) dτ,

B(x, s, ∆(τ)) = 1
2

x∫
0

q(τ) cos (s∆(τ)) dτ.

It is obvious that these functions are bounded for 0 ≤ x ≤ π, 0 < s < +∞.
Under the conditions a) and b) the following formulas

(3.22)

x∫

0

q(τ) cos s(2τ−∆(τ))dτ = O

(
1
s

)
,

x∫

0

q(τ) sin s(2τ−∆(τ))dτ = O

(
1
s

)

can be proved by the same technique in Lemma 3.3 in [2]. From Equations (3.20),
(3.21) and(3.22),we have

sin sπ [s sin α sin β + A (π, s, ∆(τ)) sin α sinβ]−

cos sπ [sinα cosβ − cosα sin β −B (π, s,∆ (τ)) sin α sin β] + O

(
1
s

)
= 0.
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Hence

tan sπ =
1
s

[cotβ − cot α−B (π, s,∆(τ))] + O

(
1
s2

)
.

Again if we take sn = n + δn, then

tan (n + δn) π = tan δnπ =
1
n

[cot β − cot α−B (π, n, ∆ (τ))] + O

(
1
n2

)
.

Hence for large n,

δn =
1

nπ
[cotβ − cot α−B (π, n, ∆(τ))] + O

(
1
n2

)

and finally

(3.23) sn = n +
1

nπ
[cot β − cot α−B (π, n, ∆ (τ))] + O

(
1
n2

)
.

Thus, we have proven the following theorem.

Theorem 3.2. If conditions a) and b) are satisfied then, the positive eigenvalues
λn = s2

n of the problem (1.1)-(1.7) have the asymptotic representation of (3.23)
forn →∞.

We now may obtain a more exact asymptotic formula for the eigenfunctions.
From Equations (1.11), (3.17), (3.21) and (3.22)

w1(x, λ) = sin α cos sx [1 + A (x, 〉 s,〉∆(τ)

s

(3.24) − sin sx

s
[cos α + sin αB (x, 〉 s, 〉∆(τ) + O

(
1
s2

)
.

Replacing s by sn and using Equation (3.23), we have

u1n(x) = w1(x, λn) = sin α

{
cosnx

[
1 +

A (x, n, ∆(τ))
n

]

(3.25)

− sin nx

nπ
[(cot β − cot α−B (π, n, ∆(τ))) x + (cot α + B (x, n, ∆(τ))) π]

}
+O

(
1
n2

)
.

From (2.5), (3.18), (3.21), (3.22) and (3.24), we have

w2 (x, λ) =
sin α

s2/3δ
cos sx

[
1 +

A (x, s, ∆(τ))
s

]

− sin sx

s5/3δ
(cosα + sin αB (x, s, ∆(τ))) + O

(
1
s2

)
,(3.26)

Now, replacing s by sn and using Equation (3.23), we have

u2n(x) =
sin α

n2/3δ

{
cosnx

[
1 +

A (x, n, ∆(τ))
n

]
− sinnx

n5/3π

× [(cotβ − cot α−B (π, n, ∆(τ))) x + (cot α + B (x, n, ∆(τ))) π]}+ O

(
1
n2

)
.
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From (2.9), (3.19), (3.21), (3.22) and (3.26), we have

w3 (x, λ) =
sin α

s2/3δγ
cos sx

[
1 +

A (x, s, ∆(τ))
s

]

− sin sx

s5/3δγ
(cos α + sin αB (x, s, ∆(τ))) + O

(
1
s2

)
,

Now, replacing s by sn and using Equation (3.23)

u3n(x) =
sin α

n2/3δγ

{
cos nx

[
1 +

A (x, n, ∆(τ))
n

]
− sin nx

n5/3π

× [(cotβ − cot α−B (π, n, ∆(τ))) x + (cot α + B (x, n, ∆(τ))) π]}+ O

(
1
n2

)
.

Thus, we have proven the following theorem.

Theorem 3.3. If conditions a) and b) are satisfied then, the eigenfunctions un(x)
of the problem (1.1)-(1.7) have the following asymptotic representation for n →∞:

un(x) =





u1n(x), x ∈ [0, h1) ,
u2n(x), x ∈ (h1, h2) ,
u3n(x), x ∈ (h2, π] ,

where u1n(x), u2n(x) and u3n(x) are defined as in (3.12) and (3.14) respectively.
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SOME INEQUALITIES OF OSTROWSKI TYPE IN THREE
INDEPENDENT VARIABLES

ZHENG LIU

Abstract. Some new inequalities of Ostrowski type involving functions of
three independent variables are established.

1. INTRODUCTION

In 2001, Cheng in [3] proved the following integral inequality:

Theorem 1.1. Let f : [a, b] → R be an absolutely continuous function such that
there exist constants γ, Γ ∈ R with γ ≤ f ′(t) ≤ Γ, t ∈ [a, b]. Then for all x ∈ [a, b],
we have

(1.1)
| 12f(x)− 1

b−a

∫ b

a
f(t) dt− (x−b)f(b)−(x−a)f(a)

2(b−a) |
≤ 1

8(b−a) ((x− a)2 + (x− b)2)(Γ− γ).

The constant 1
8 is sharp (see [4]).

Remark 1.1. If we take x = a or x = b in (1), then we get a sharp trapezoid
inequality

|f(a) + f(b)
2

− 1
b− a

∫ b

a

f(t) dt| ≤ 1
8
(b− a)(Γ− γ).

In 2010, Sarikaya in [5] established the following inequality of Ostrowski type
involving functions of two independent variables.

Theorem 1.2. Let f : [a, b]× [c, d] → R be an absolutely continuous function such
that the partial derivative of order 2 exists and suppose that there exist constants
γ, Γ ∈ R with γ ≤ ∂2f(t,s)

∂t∂s ≤ Γ for all (t, s) ∈ [a, b]× [c, d]. Then we have

2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Ostrowski type inequality, absolutely continuous, triple integral.
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(1.2)

| 14f(x, y) + 1
4H(x, y)− 1

2(b−a)

∫ b

a
f(t, y) dt− 1

2(d−c)

∫ d

c
f(x, s) ds

− 1
2(b−a)(d−c)

∫ b

a
[(y − c)f(t, c) + (d− y)f(t, d)] dt

− 1
2(b−a)(d−c)

∫ d

c
[(x− a)f(a, s) + (b− x)f(b, s)] ds

+ 1
(b−a)(d−c)

∫ b

a

∫ d

c
f(t, s) ds dt|

≤ [(x−a)2+(b−x)2][(y−c)2+(d−y)2]
32(b−a)(d−c) (Γ− γ)

for all (x, y) ∈ [a, b]× [c, d], where

H(x, y) = (x−a)[(y−c)f(a,c)+(d−y)f(a,d)]+(b−x)[(y−c)f(b,c)+(d−y)f(b,d)]
(b−a)(d−c)

+ (x−a)f(a,y)+(b−x)f(b,y)
b−a + (y−c)f(x,c)+(d−y)f(x,d)

d−c .

Here we have given a revised version for (2) since the expression in [5] and [6]
contained a misprint.

Remark 1.2. If we take any one of the four cases x = a, y = c; x = a, y = d;
x = b, y = c and x = b, y = d in (2), then we get a trapezoid type inequality for
double integrals.

(1.3)
| f(a,c)+f(b,d)+f(b,c)+f(a,d)

4 − 1
2(b−a)

∫ b

a
[f(t, c) + f(t, d)] dt

− 1
2(d−c)

∫ d

c
[f(a, s) + f(b, s)] ds + 1

2(b−a)(d−c)

∫ b

a

∫ d

c
f(t, s) ds dt|

≤ (b−a)(d−c)
32 (Γ− γ).

It is interesting to compare this inequality (3) with the result in [2].

In the literature, we find that Pachpatte was the first author who has established
an inequality of Ostrowski type in three independent variables as follows:

Theorem 1.3. Let f : [a, k] × [b, l] × [c,m] → R be an absolutely continuous
function such that the partial derivative of order 3 exists and continuous for all
(t, s, u) ∈ [a, k]× [b, l]× [c,m]. Then we have

(1.4)

| (k−a)(l−b)(m−c)
8 [f(a, b, c) + f(a, b, m) + f(a, l, c) + f(a, l, m)

+f(k, b, c) + f(k, b, m) + f(k, l, c) + f(k, l,m)]
− (l−b)(m−c)

4

∫ k

a
[f(t, b, c) + f(t, l, c) + f(t, b, m) + f(t, l, m)] dt

− (k−a)(m−c)
4

∫ l

b
[f(a, s, c) + f(k, s, c) + f(a, s, m) + f(k, s,m)] ds

− (k−a)(l−b)
4

∫ m

c
[f(a, b, u) + f(a, l, u) + f(k, b, u) + f(k, l, u)] du

+ (m−c)
2

∫ k

a

∫ l

b
[f(t, s,m) + f(t, s, c)] ds dt

+ (k−a)
2

∫ l

b

∫ m

c
[f(k, s, u) + f(a, s, u)] du ds

+ (l−b)
2

∫ k

a

∫ m

c
[f(t, l, u) + f(t, b, u)] du dt

− ∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt|

≤ (k−a)(l−b)(m−c)
8

∫ k

a

∫ l

b

∫ m

c
|∂3f(t,s,u)

∂t∂s∂u | du ds dt.

Here we also have given a revised version for (4) since the expression in [1]
contained misprints.

In this paper, we will extend the above result to establish some new Ostrowski
type inequalities involving functions of three independent variables.
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2. MAIN RESULTS

Theorem 2.1. Let f : [a, k] × [b, l] × [c,m] → R be an absolutely continuous
function such that the partial derivative of order 3 exists and suppose that there
exist constants γ, Γ ∈ R with γ ≤ ∂3f(t,s,u)

∂t∂s∂u ≤ Γ for all (t, s, u) ∈ [a, k]×[b, l]×[c,m].
Then we have

(2.1)
| 18f(x, y, z) + 1

8H(x, y, z)− 1
4

∫ k

a
G1(t, y, z) dt− 1

4

∫ l

b
G2(x, s, z) ds− 1

4

∫ m

c
G3(x, y, u) du

+ 1
2(k−a)(l−b)(m−c){

∫ k

a

∫ l

b
[(z − c)f(t, s, c) + (m− z)f(t, s, m) + (m− c)f(t, s, z)] ds dt

+
∫ l

b

∫ m

c
[(x− a)f(a, s, u) + (k − x)f(k, s, u) + (k − a)f(x, s, u)] du ds

+
∫ k

a

∫ m

c
[(y − b)f(t, b, u) + (l − y)f(t, l, u) + (l − b)f(t, y, u)] du dt}

− 1
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt|

≤ [(x−a)2+(k−x)2][(y−b)2+(l−y)2][(z−c)2+(m−z)2]
128(k−a)(l−b)(m−c) (Γ− γ)

for all (x, y, z) ∈ [a, k]× [b, l]× [c,m], where

H(x, y, z) = (z−c)f(x,y,c)+(m−z)f(x,y,m)
m−c + (x−a)f(a,y,z)+(k−x)f(k,y,z)

k−a

+ (y−b)f(x,b,z)+(l−y)f(x,l,z)
l−b

+ (x−a)(y−b)f(a,b,z)+(k−x)(y−b)f(k,b,z)+(x−a)(l−y)f(a,l,z)+(k−x)(l−y)f(k,l,z)
(k−a)(l−b)

+ (y−b)(z−c)f(x,b,c)+(l−y)(z−c)f(x,l,c)+(y−b)(m−z)f(x,b,m)+(l−y)(m−z)f(x,l,m)
(l−b)(m−c)

+ (x−a)(z−c)f(a,y,c)+(k−x)(z−c)f(k,y,c)+(x−a)(m−z)f(a,y,m)+(k−x)(m−z)f(k,y,m)
(k−a)(m−c)

+ 1
(k−a)(l−b)(m−c){(y − b)(z − c)[(x− a)f(a, b, c) + (k − x)f(k, b, c)]

+(l − y)(z − c)[(x− a)f(a, l, c) + (k − x)f(k, l, c)]
+(y − b)(m− z)[(x− a)f(a, b, m) + (k − x)f(k, b, m)]
+(l − y)(m− z)[(x− a)f(a, l, m) + (k − x)f(k, l,m)]},

G1(t, y, z) = f(t,y,z)
k−a + (y−b)f(t,b,z)+(l−y)f(t,l,z)

(k−a)(l−b) + (z−c)f(t,y,c)+(m−z)f(t,y,m)
(k−a)(m−c)

+ (z−c)[(y−b)f(t,b,c)+(l−y)f(t,l,c)]+(m−z)[(y−b)f(t,b,m)+(l−y)f(t,l,m)]
(k−a)(l−b)(m−c) ,

G2(x, s, z) = f(x,s,z)
l−b + (x−a)f(a,s,z)+(k−x)f(k,s,z)

(k−a)(l−b) + (z−c)f(x,s,c)+(m−z)f(x,s,m)
(l−b)(m−c)

+ (z−c)[(x−a)f(a,s,c)+(k−x)f(k,s,c)]+(m−z)[(x−a)f(a,s,m)+(k−x)f(k,s,m)]
(k−a)(l−b)(m−c) ,

G3(x, y, u) = f(x,y,u)
m−c + (y−b)f(x,b,u)+(l−y)f(x,l,u)

(l−b)(m−c) + (x−a)f(a,y,u)+(k−x)f(k,y,u)
(k−a)(m−c)

+ (x−a)[(y−b)f(a,b,u)+(l−y)f(a,l,u)]+(k−x)[(y−b)f(k,b,u)+(l−y)f(k,l,u)]
(k−a)(l−b)(m−c) .

Proof. Put

p(x, t) :=
{

t− a+x
2 , t ∈ [a, x],

t− k+x
2 , t ∈ (x, k],

q(y, s) :=
{

s− b+y
2 , s ∈ [b, y],

s− l+y
2 , s ∈ (y, l],

and
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r(z, u) :=
{

u− c+z
2 , u ∈ [c, z],

u− m+z
2 , u ∈ (z,m].

We have

(2.2)

∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)∂3f(t,s,u)

∂t∂s∂u du ds dt

=
∫ x

a

∫ y

b

∫ z

c
(t− a+x

2 )(s− b+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ x

a

∫ y

b

∫ m

z
(t− a+x

2 )(s− b+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ x

a

∫ l

y

∫ z

c
(t− a+x

2 )(s− l+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ x

a

∫ l

y

∫ m

z
(t− a+x

2 )(s− l+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ k

x

∫ y

b

∫ z

c
(t− k+x

2 )(s− b+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ k

x

∫ y

b

∫ m

z
(t− k+x

2 )(s− b+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ k

x

∫ l

y

∫ z

c
(t− k+x

2 )(s− l+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

+
∫ k

x

∫ l

y

∫ m

z
(t− k+x

2 )(s− l+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt.

Integrating by parts three times, we can state:

(2.3)

∫ x

a

∫ y

b

∫ z

c
(t− a+x

2 )(s− b+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (x−a)(y−b)(z−c)
8 [f(x, y, z) + f(x, y, c) + f(x, b, z) + f(x, b, c)

+f(a, y, z) + f(a, y, c) + f(a, b, z) + f(a, b, c)]
− (y−b)(z−c)

4

∫ x

a
[f(t, y, z) + f(t, y, c) + f(t, b, z) + f(t, b, c)] dt

− (x−a)(z−c)
4

∫ y

b
[f(x, s, z) + f(x, s, c) + f(a, s, z) + f(a, s, c)] ds

− (x−a)(y−b)
4

∫ z

c
[f(x, y, u) + f(x, b, u) + f(a, y, u) + f(a, b, u)] du

+x−a
2

∫ y

b

∫ z

c
[f(x, s, u) + f(a, s, u)] du ds

+y−b
2

∫ x

a

∫ z

c
[f(t, y, u) + f(t, b, u)] du dt

+ z−c
2

∫ x

a

∫ y

b
[f(t, s, z) + f(t, s, c)] ds dt

− ∫ x

a

∫ y

b

∫ z

c
f(t, s, u) du ds dt.

(2.4)

∫ x

a

∫ y

b

∫ m

z
(t− a+x

2 )(s− b+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (x−a)(y−b)(m−z)
8 [f(x, y, m) + f(x, y, z) + f(x, b,m) + f(x, b, z)

+f(a, y, m) + f(a, y, z) + f(a, b, m) + f(a, b, z)]
− (y−b)(m−z)

4

∫ x

a
[f(t, y, m) + f(t, y, z) + f(t, b,m) + f(t, b, z)] dt

− (x−a)(m−z)
4

∫ y

b
[f(x, s, m) + f(x, s, z) + f(a, s, m) + f(a, s, z)] ds

− (x−a)(y−b)
4

∫ m

z
[f(x, y, u) + f(x, b, u) + f(a, y, u) + f(a, b, u)] du

+x−a
2

∫ y

b

∫ m

z
[f(x, s, u) + f(a, s, u)] du ds

+y−b
2

∫ x

a

∫ m

z
[f(t, y, u) + f(t, b, u)] du dt

+m−z
2

∫ x

a

∫ y

b
[f(t, s,m) + f(t, s, z)] ds dt

− ∫ x

a

∫ y

b

∫ m

z
f(t, s, u) du ds dt.
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(2.5)

∫ x

a

∫ l

y

∫ z

c
(t− a+x

2 )(s− l+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (x−a)(l−y)(z−c)
8 [f(x, l, z) + f(x, l, c) + f(x, y, z) + f(x, y, c)

+f(a, l, z) + f(a, l, c) + f(a, y, z) + f(a, y, c)]
− (l−y)(z−c)

4

∫ x

a
[f(t, l, z) + f(t, l, c) + f(t, y, z) + f(t, y, c)] dt

− (x−a)(z−c)
4

∫ l

y
[f(x, s, z) + f(x, s, c) + f(a, s, z) + f(a, s, c)] ds

− (x−a)(l−y)
4

∫ z

c
[f(x, l, u) + f(x, y, u) + f(a, l, u) + f(a, y, u)] du

+x−a
2

∫ l

y

∫ z

c
[f(x, s, u) + f(a, s, u)] du ds

+ l−y
2

∫ x

a

∫ z

c
[f(t, l, u) + f(t, y, u)] du dt

+ z−c
2

∫ x

a

∫ l

y
[f(t, s, z) + f(t, s, c)] ds dt

− ∫ x

a

∫ l

y

∫ z

c
f(t, s, u) du ds dt.

(2.6)

∫ x

a

∫ l

y

∫ m

z
(t− a+x

2 )(s− l+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (x−a)(l−y)(m−z)
8 [f(x, l, m) + f(x, l, z) + f(x, y, m) + f(x, y, z)

+f(a, l,m) + f(a, l, z) + f(a, y, m) + f(a, y, z)]
− (l−y)(m−z)

4

∫ x

a
[f(t, l, m) + f(t, l, z) + f(t, y, m) + f(t, y, z)] dt

− (x−a)(m−z)
4

∫ l

y
[f(x, s,m) + f(x, s, z) + f(a, s,m) + f(a, s, z)] ds

− (x−a)(l−y)
4

∫ m

z
[f(x, l, u) + f(x, y, u) + f(a, l, u) + f(a, y, u)] du

+x−a
2

∫ l

y

∫ m

z
[f(x, s, u) + f(a, s, u)] du ds

+ l−y
2

∫ x

a

∫ m

z
[f(t, l, u) + f(t, y, u)] du dt

+m−z
2

∫ x

a

∫ l

y
[f(t, s, m) + f(t, s, z)] ds dt

− ∫ x

a

∫ l

y

∫ m

z
f(t, s, u) du ds dt.

(2.7)

∫ k

x

∫ y

b

∫ z

c
(t− k+x

2 )(s− b+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (k−x)(y−b)(z−c)
8 [f(k, y, z) + f(k, y, c) + f(k, b, z) + f(k, b, c)

+f(x, y, z) + f(x, y, c) + f(x, b, z) + f(x, b, c)]
− (y−b)(z−c)

4

∫ k

x
[f(t, y, z) + f(t, y, c) + f(t, b, z) + f(t, b, c)] dt

− (k−x)(z−c)
4

∫ y

b
[f(k, s, z) + f(k, s, c) + f(x, s, z) + f(x, s, c)] ds

− (k−x)(y−b)
4

∫ z

c
[f(k, y, u) + f(k, b, u) + f(x, y, u) + f(x, b, u)] du

+k−x
2

∫ y

b

∫ z

c
[f(k, s, u) + f(x, s, u)] du ds

+y−b
2

∫ k

x

∫ z

c
[f(t, y, u) + f(t, b, u)] du dt

+ z−c
2

∫ k

x

∫ y

b
[f(t, s, z) + f(t, s, c)] ds dt

− ∫ k

x

∫ y

b

∫ z

c
f(t, s, u) du ds dt.
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(2.8)

∫ k

x

∫ y

b

∫ m

z
(t− k+x

2 )(s− b+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (k−x)(y−b)(m−z)
8 [f(k, y,m) + f(k, y, z) + f(k, b, m) + f(k, b, z)

+f(x, y,m) + f(x, y, z) + f(x, b, m) + f(x, b, z)]
− (y−b)(m−z)

4

∫ k

x
[f(t, y,m) + f(t, y, z) + f(t, b,m) + f(t, b, z)] dt

− (k−x)(m−z)
4

∫ y

b
[f(k, s,m) + f(k, s, z) + f(x, s, m) + f(x, s, z)] ds

− (k−x)(y−b)
4

∫ m

z
[f(k, y, u) + f(k, b, u) + f(x, y, u) + f(x, b, u)] du

+k−x
2

∫ y

b

∫ m

z
[f(k, s, u) + f(x, s, u)] du ds

+y−b
2

∫ k

x

∫ m

z
[f(t, y, u) + f(t, b, u)] du dt

+m−z
2

∫ k

x

∫ y

b
[f(t, s,m) + f(t, s, z)] ds dt

− ∫ k

x

∫ y

b

∫ m

z
f(t, s, u) du ds dt.

(2.9)

∫ k

x

∫ l

y

∫ z

c
(t− k+x

2 )(s− l+y
2 )(u− c+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (k−x)(l−y)(z−c)
8 [f(k, l, z) + f(k, l, c) + f(k, y, z) + f(k, y, c)

+f(x, l, z) + f(x, l, c) + f(x, y, z) + f(x, y, c)]
− (l−y)(z−c)

4

∫ k

x
[f(t, l, z) + f(t, l, c) + f(t, y, z) + f(t, y, c)] dt

− (k−x)(z−c)
4

∫ y

b
[f(k, s, z) + f(k, s, c) + f(x, s, z) + f(x, s, c)] ds

− (k−x)(l−y)
4

∫ z

c
[f(k, l, u) + f(k, y, u) + f(x, l, u) + f(x, y, u)] du

+k−x
2

∫ l

y

∫ z

c
[f(k, s, u) + f(x, s, u)] du ds

+ l−y
2

∫ k

x

∫ z

c
[f(t, l, u) + f(t, y, u)] du dt

+ z−c
2

∫ k

x

∫ l

y
[f(t, s, z) + f(t, s, c)] ds dt

− ∫ k

x

∫ l

y

∫ z

c
f(t, s, u) du ds dt.

(2.10)

∫ k

x

∫ l

y

∫ m

z
(t− k+x

2 )(s− l+y
2 )(u− m+z

2 )∂3f(t,s,u)
∂t∂s∂u du ds dt

= (k−x)(l−y)(m−z)
8 [f(k, l, m) + f(k, l, z) + f(k, y,m) + f(k, y, z)

+f(x, l, m) + f(x, l, z) + f(x, y, m) + f(x, y, z)]
− (l−y)(m−z)

4

∫ k

x
[f(t, l, m) + f(t, l, z) + f(t, y, m) + f(t, y, z)] dt

− (k−x)(m−z)
4

∫ l

y
[f(k, s, m) + f(k, s, z) + f(x, s,m) + f(x, s, z)] ds

− (k−x)(l−y)
4

∫ m

z
[f(k, l, u) + f(k, y, u) + f(x, l, u) + f(x, y, u)] du

+k−x
2

∫ l

y

∫ m

z
[f(k, s, u) + f(x, s, u)] du ds

+ l−y
2

∫ k

x

∫ m

z
[f(t, l, u) + f(t, y, u)] du dt

+m−z
2

∫ k

x

∫ l

y
[f(t, s, m) + f(t, s, z)] ds dt

− ∫ k

x

∫ l

y

∫ m

z
f(t, s, u) du ds dt.

From (6)-(14), we can easily deduce that
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∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)∂3f(t,s,u)

∂t∂s∂u du ds dt
= 1

8{(k − a)(l − b)(m− c)f(x, y, z) + (k − a)(l − b)[(z − c)f(x, y, c) + (m− z)f(x, y,m)]
+(l − b)(m− c)[(x− a)f(a, y, z) + (k − x)f(k, y, z)]
+(k − a)(m− c)[(y − b)f(x, b, z) + (l − y)f(x, l, z)]
+(m− c)[(x− a)(y − b)f(a, b, z) + (k − x)(y − b)f(k, b, z)
+(x− a)(l − y)f(a, l, z) + (k − x)(l − y)f(k, l, z)]
+(k − a)[(y − b)(z − c)f(x, b, c) + (l − y)(z − c)f(x, l, c)
+(y − b)(m− z)f(x, b,m) + (l − y)(m− z)f(x, l,m)]
+(l − b)[(x− a)(z − c)f(a, y, c) + (k − x)(z − c)f(k, y, c)
+(x− a)(m− z)f(a, y,m) + (k − x)(m− z)f(k, y,m)]
+(y − b)(z − c)[(x− a)f(a, b, c) + (k − x)f(k, b, c)]
+(l − y)(z − c)[(x− a)f(a, l, c) + (k − x)f(k, l, c)]
+(y − b)(m− z)[(x− a)f(a, b, m) + (k − x)f(k, b, m)]
+(l − y)(m− z)[(x− a)f(a, l, m) + (k − x)f(k, l, m)]}
− 1

4

∫ k

a
{(l − b)(m− c)f(t, y, z) + (m− c)[(y − b)f(t, b, z) + (l − y)f(t, l, z)]

+(l − b)[(z − c)f(t, y, c) + (m− z)f(t, y,m)] + (z − c)[(y − b)f(t, y, c) + (l − y)f(t, l, c)]
+(m− z)[(y − b)f(t, b, m) + (l − y)f(t, l, m)]} dt

− 1
4

∫ l

b
{(k − a)(m− c)f(x, s, z) + (m− c)[(x− a)f(a, s, z) + (k − x)f(k, s, z)]

+(k − a)[(z − c)f(x, s, c) + (m− z)f(x, s, m)] + (z − c)[(x− a)f(a, s, c) + (k − x)f(k, s, c)]
+(m− z)[(x− a)f(a, s, m) + (k − x)f(k, s, m)]} ds
− 1

4

∫ m

c
{(k − a)(l − b)f(x, y, u) + (k − a)[(y − b)f(x, b, u) + (l − y)f(x, l, u)]

+(l − b)[(x− a)f(a, y, u) + (k − x)f(k, y, u)] + (y − b)[(x− a)f(a, b, u) + (k − x)f(k, b, u)]
+(l − y)[(x− a)f(a, l, u) + (k − x)f(k, l, u)]} du

+ 1
2

∫ k

a

∫ l

b
[(z − c)f(t, s, c) + (m− z)f(t, s, m) + (m− c)f(t, s, z)] ds dt

+ 1
2

∫ l

b

∫ m

c
[(x− a)f(a, s, u) + (k − x)f(k, s, u) + (k − a)f(x, s, u)] du ds

+ 1
2

∫ k

a

∫ m

c
[(y − b)f(t, b, u) + (l − y)f(t, l, u) + (l − b)f(t, y, u)] du dt}

− ∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt,

and it follows that

(2.11)
1

(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)∂3f(t,s,u)

∂t∂s∂u du ds dt

= 1
8f(x, y, z) + 1

8H(x, y, z)− 1
4

∫ k

a
G1(t, y, z) dt− 1

4

∫ l

b
G2(x, s, z) ds− 1

4

∫ m

c
G3(x, y, u) du

+ 1
2(k−a)(l−b)(m−c){

∫ k

a

∫ l

b
[(z − c)f(t, s, c) + (m− z)f(t, s, m) + (m− c)f(t, s, z)] ds dt

+
∫ l

b

∫ m

c
[(x− a)f(a, s, u) + (k − x)f(k, s, u) + (k − a)f(x, s, u)] du ds

+
∫ k

a

∫ m

c
[(y − b)f(t, b, u) + (l − y)f(t, l, u) + (l − b)f(t, y, u)] du dt}

− 1
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt.

We also have

(2.12)
∫ k

a

∫ l

b

∫ m

c

p(x, t)q(y, s)r(z, u) du ds dt = 0.

Let M = Γ+γ
2 . From (16), it follows that
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(2.13)
∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)[∂3f(t,s,u)

∂t∂s∂u −M ] du ds dt

=
∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)∂3f(t,s,u)

∂t∂s∂u du ds dt.

On the other hand, we have

(2.14)
| ∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)[∂3f(t,s,u)

∂t∂s∂u −M ] du ds dt|
≤ max(t,s,u)∈[a,k]×∈[b,l]×[c,m] |∂

3f(t,s,u)
∂t∂s∂u −M | ∫ k

a

∫ l

b

∫ m

c
|p(x, t)q(y, s)r(z, u)| du ds dt.

Moreover,

(2.15) max
(t,s,u)∈[a,k]×∈[b,l]×[c,m]

|∂
3f(t, s, u)
∂t∂s∂u

−M | ≤ Γ− γ

2

and

(2.16)∫ k

a

∫ l

b

∫ m

c

|p(x, t)q(y, s)r(z, u)| du ds dt =
[(x− a)2 + (k − x)2][(y − b)2 + (l − y)2][(z − c)2 + (m− z)2]

64
.

From (18)-(20), we get

(2.17)
| ∫ k

a

∫ l

b

∫ m

c
p(x, t)q(y, s)r(z, u)[∂3f(t,s,u)

∂t∂s∂u −M ] du ds dt|
≤ [(x−a)2+(k−x)2][(y−b)2+(l−y)2][(z−c)2+(m−z)2]

128 (Γ− γ).

Finally, from (15), (17) and (21), we see that the inequality (5) holds.
The proof of Theorem 4 is complete.

Remark 2.1. If we take any one of the eight cases x = a, y = b, z = c; x =
a, y = b, z = m; x = a, y = l, z = c; x = a, y = l, z = m; x = k, y = b, z = c;
x = k, y = b, z = m; x = k, y = l, z = c and x = k, y = l, z = m in (5), then we get
the following inequality for triple integrals.

| f(a,b,c)+f(a,b,m)+f(a,l,c)+f(a,l,m)+f(k,b,c)+f(k,b,m)+f(k,l,c)+f(k,l,m)
8

− 1
4(k−a)

∫ k

a
[f(t, b, c) + f(t, l, c) + f(t, b,m) + f(t, l, m)] dt

− 1
4(l−b)

∫ l

b
[f(a, s, c) + f(k, s, c) + f(a, s,m) + f(k, s, m)] ds

− 1
4(m−c)

∫ m

c
[f(a, b, u) + f(a, l, u) + f(k, b, u) + f(k, l, u)] du

+ 1
2(k−a)(l−b)

∫ k

a

∫ l

b
[f(t, s,m) + f(t, s, c)] ds dt

+ 1
2(l−b)(m−c)

∫ l

b

∫ m

c
[f(k, s, u) + f(a, s, u)] du ds

+ 1
2(k−a)(m−c)

∫ k

a

∫ m

c
[f(t, l, u) + f(t, b, u)] du dt

− 1
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt|

≤ (k−a)(l−b)(m−c)
128 (Γ− γ).

Theorem 2.2. Let f : [a, k] × [b, l] × [c,m] → R be an absolutely continuous
function such that the partial derivative of order 3 exists and continuous for all
(t, s, u) ∈ [a, k]× [b, l]× [c,m]. Then we have
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(2.18)
| 18f(x, y, z) + 1

8H(x, y, z)− 1
4

∫ k

a
G1(t, y, z) dt− 1

4

∫ l

b
G2(x, s, z) ds− 1

4

∫ m

c
G3(x, y, u) du

+ 1
2(k−a)(l−b)(m−c){

∫ k

a

∫ l

b
[(z − c)f(t, s, c) + (m− z)f(t, s, m) + (m− c)f(t, s, z)] ds dt

+
∫ l

b

∫ m

c
[(x− a)f(a, s, u) + (k − x)f(k, s, u) + (k − a)f(x, s, u)] du ds

+
∫ k

a

∫ m

c
[(y − b)f(t, b, u) + (l − y)f(t, l, u) + (l − b)f(t, y, u)] du dt}

− 1
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt|

≤ [ k−a
2 +|x− a+k

2 |][ l−b
2 +|y− b+l

2 |][ m−c
2 +|x− c+m

2 |]
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
|∂3f(t,s,u)

∂t∂s∂u | du ds dt

for all (x, y, z) ∈ [a, b] × [b, l] × [c, m], where H(x, y, z), G1(t, y, z), G2(x, s, z) and
G3(x, y, u) are as defined in Theorem 4.

Proof. From (15) we get

| 18f(x, y, z) + 1
8H(x, y, z)− 1

4

∫ k

a
G1(t, y, z) dt− 1

4

∫ l

b
G2(x, s, z) ds− 1

4

∫ m

c
G3(x, y, u) du

+ 1
2(k−a)(l−b)(m−c){

∫ k

a

∫ l

b
[(z − c)f(t, s, c) + (m− z)f(t, s, m) + (m− c)f(t, s, z)] ds dt

+
∫ l

b

∫ m

c
[(x− a)f(a, s, u) + (k − x)f(k, s, u) + (k − a)f(x, s, u)] du ds

+
∫ k

a

∫ m

c
[(y − b)f(t, b, u) + (l − y)f(t, l, u) + (l − b)f(t, y, u)] du dt}

− 1
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt|

≤ max(t,s,u)∈[a,k]×∈[b,l]×[c,m] |p(x,t)q(y,s)r(z,u)|
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
|∂3f(t,s,u)

∂t∂s∂u | du ds dt

and observe that

(2.19)

max
(t,s,u)∈[a,k]×∈[b,l]×[c,m]

|p(x, t)q(y, s)r(z, u)| = [
k − a

2
+|x−a + k

2
|][ l − b

2
+|y−b + l

2
|][m− c

2
+|x−c + m

2
|],

we can easily obtain the inequality (22).

Remark 2.2. If we take any one of the eight cases x = a, y = b, z = c; x =
a, y = b, z = m; x = a, y = l, z = c; x = a, y = l, z = m; x = k, y = b, z = c;
x = k, y = b, z = m; x = k, y = l, z = c and x = k, y = l, z = m in (22), then we
get the following inequality for triple integrals.

(2.20)

| f(a,b,c)+f(a,b,m)+f(a,l,c)+f(a,l,m)+f(k,b,c)+f(k,b,m)+f(k,l,c)+f(k,l,m)
8

− 1
4(k−a)

∫ k

a
[f(t, b, c) + f(t, l, c) + f(t, b, m) + f(t, l,m)] dt

− 1
4(l−b)

∫ l

b
[f(a, s, c) + f(k, s, c) + f(a, s, m) + f(k, s, m)] ds

− 1
4(m−c)

∫ m

c
[f(a, b, u) + f(a, l, u) + f(k, b, u) + f(k, l, u)] du

+ 1
2(k−a)(l−b)

∫ k

a

∫ l

b
[f(t, s, m) + f(t, s, c)] ds dt

+ 1
2(l−b)(m−c)

∫ l

b

∫ m

c
[f(k, s, u) + f(a, s, u)] du ds

+ 1
2(k−a)(m−c)

∫ k

a

∫ m

c
[f(t, l, u) + f(t, b, u)] du dt

− 1
(k−a)(l−b)(m−c)

∫ k

a

∫ l

b

∫ m

c
f(t, s, u) du ds dt|

≤ 1
8

∫ k

a

∫ l

b

∫ m

c
|∂3f(t,s,u)

∂t∂s∂u | du ds dt.

It is clear that inequality (24) is just the same as inequality (4), and thus we may
regard that Theorem 5 is a generalization of Theorem 3.
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ON SOME SINGULAR VALUE INEQUALITIES FOR MATRICES

ILYAS ALI, HU YANG, ABDUL SHAKOOR

Abstract. Some singular value inequalities for matrices are given. Among
other inequalities it is proved that if f and g be nonnegative functions on
[0,∞) which are continuous and satisfying the relation f(t)g(t) = t, for all
t ∈ [0,∞), then

sj(A
∗
1XB1 + A∗2XB2)

≤ sj((A
∗
1f2(| X∗ |)A1 + A∗2f2(| X∗ |)A2)⊕ (B∗1g2(| X |)B1 + B∗2g2(| X |)B2)),

for j = 1, 2, ..., n, where A1, A2, B1, B2, X are square matrices. Our results in
this article generalize some existing singular value inequalities of matrices.

1. Introduction

Let Mm,n be the space of m × n complex matrices and Mn = Mn,n. Let ‖ · ‖
stand for any unitarily invariant norm on Mn, i.e., a norm with the property that
‖UAV ‖ = ‖A‖ for all A ∈ Mn and for all unitary matrices U, V ∈ Mn. Any
matrix A ∈ Mn is called positive semidefinite, denoted as A ≥ 0 if for all x ∈ Cn,
x∗Ax ≥ 0 and it is called positive definite if for all nonzero x ∈ Cn, x∗Ax > 0 and it
is denoted as A > 0. The singular values of matrix A are the eigenvalues of positive
semidefinite matrix | A |= (AA∗)

1
2 , enumerated as s1(A) ≥ s2(A) ≥ ... ≥ sn(A)

and repeated according to multiplicity. The direct sum A⊕B represent the block

diagonal matrix
(

A 0
0 B

)
.

The well-known classical arithmetic-geometric mean inequality for a, b ≥ 0 de-
fined as

a
1
2 b

1
2 ≤ a + b

2
.(1.1)

Arithmetic-geometric mean inequality is important in matrix theory, functional
analysis, electrical networks, etc. For A,B, X ∈ Mn, such that A,B ≥ 0, R. Bhatia
and F. Kittaneh formulated some matrix versions of this inequality in [3,4] one of

2000 Mathematics Subject Classification. 47A30; 47B15; 15A60.
Key words and phrases. Singular values; Unitarily invariant norms; Positive semidefinite ma-

trices; Positive definite matrices.
This work was supported by the National Natural Science Foundation of China (No. 11171361).
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which is the following

‖A 1
2 XB

1
2 ‖ ≤ 1

2
‖AX + XB‖.(1.2)

From (1.2), for X = I we have the following inequality for positive semidefinite
matrices.

‖A 1
2 B

1
2 ‖ ≤ 1

2
‖A + B‖,(1.3)

R. Bhatia and F. Kittaneh also have proved in [5] that if A, B ∈ Mn such that
A,B ≥ 0, then

‖A 3
2 B

1
2 + A

1
2 B

3
2 ‖ ≤ 1

2
‖(A + B)2‖.(1.4)

From (1.3), (1.4) and also by triangle inequality, we obtain the following inequality

‖A 3
2 B

1
2 + A

1
2 B

3
2 + A

1
2 B

1
2 ‖ ≤ 1

2
‖(A + B)2‖+

1
2
‖A + B‖.(1.5)

In [2] L. Zou and Y. Jiang proved that for positive semidefinite matrices A,B ∈
Mn and 1 ≤ j ≤ n, the following inequality also holds

2sj(A
3
2 B

1
2 + A

1
2 B

3
2 + A

1
2 B

1
2 ) ≤ sj((A + B)2 + (A + B)),(1.6)

and consequently,

‖A 3
2 B

1
2 + A

1
2 B

3
2 + A

1
2 B

1
2 ‖ ≤ 1

2
‖(A + B)2 + (A + B)‖.(1.7)

The inequality (1.7) is an improvement of the inequality (1.5).
One another interesting inequality for sum and direct sum of matrices proved by

R. Bhatia and F. Kittaneh [6] is

sj(A∗B + B∗A) ≤ sj((A∗A + B∗B)⊕ (A∗A + B∗B)),(1.8)

where A,B ∈ Mn and 1 ≤ j ≤ n.
In Section 2, we give generalized form of the inequality (1.6) and also, we obtain

the X-version of the inequality (1.8).

2. Singular values inequalities for matrices

In this section, we generalize the inequalities (1.6) and also, we obtain X-version
of the inequality (1.8). Our results based on Several lemmas. First two lemmas
have been given by F. Kittaneh in [1] and Lemma 2.3 can be found in [8, Theorem
1].

Lemma 2.1. Let T ∈ Mn, then the block matrix
( | T | T ∗

T | T ∗ |
)
≥ 0.

Lemma 2.2. Let A,B, C ∈ Mn, such that A and B are positive semidefinite,
BC = CA and let f and g be nonnegative functions on [0,∞) which are continuous
and satisfying the relation f(t)g(t) = t, for all t ∈ [0,∞). If the block matrix(

A C∗

C B

)
≥ 0, then so

(
f2(A) C∗

C g2(B)

)
≥ 0.

Lemma 2.3. Let A,B, C ∈ Mn such that
(

A B
B∗ C

)
≥ 0, then

2sj(B) ≤ sj

(
A B
B∗ C

)
, j = 1, 2, ..., n.(2.1)
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The following Lemma was proved in [7].

Lemma 2.4. Let A,B, C ∈ Mn, such that
(

A B
B∗ C

)
≥ 0, then

sj(B) ≤ sj(A⊕ C), j = 1, 2, ..., n.(2.2)

To give the general form of (1.6), first we prove the following result.

Theorem 2.5. Let A,B ∈ Mn be any two matrices and r be a positive inte-
ger, then

2sj(A(| A |2 + | B |2)r−1B∗ + AB∗) ≤ sj((| A |2 + | B |2)r + (| A |2 + | B |2)),
for j = 1, 2, ..., n.

Proof. Let X =
(

A 0
B 0

)
. Then,

X∗X =
(

A∗A + B∗B 0
0 0

)
, XX∗ =

(
AA∗ AB∗

BA∗ BB∗

)
.

So, we have

(X∗X)r =
(

(A∗A + B∗B)r 0
0 0

)
,

and

(XX∗)r = X(X∗X)(r−1)X∗

=
(

A(A∗A + B∗B)(r−1)A∗ A(A∗A + B∗B)(r−1)B∗

B(A∗A + B∗B)(r−1)A∗ B(A∗A + B∗B)(r−1)B∗

)
.

Therefore, we obtain

(X∗X)r + X∗X =
(

(A∗A + B∗B)r + A∗A + B∗B 0
0 0

)
,

and

(XX∗)r + XX∗

=
(

A(A∗A + B∗B)(r−1)A∗ + AA∗ A(A∗A + B∗B)(r−1)B∗ + AB∗

B(A∗A + B∗B)(r−1)A∗ + BA∗ B(A∗A + B∗B)(r−1)B∗ + BB∗

)
.

So, by Lemma 2.3, from the positive semidefinite block matrix (XX∗)r +XX∗, we
have

2sj(A(A∗A + B∗B)(r−1)B∗ + AB∗) ≤ sj((XX∗)r + XX∗)
= sj((X∗X)r + X∗X)
= sj((A∗A + B∗B)r + (A∗A + B∗B)),

for j = 1, 2, ..., n.
The proof is completed. ¤

When A,B ∈ Mn be positive semidefinite in Theorem 2.5 and A is replaced by
A

1
2 and B is replaced by B

1
2 , then we obtain the following promised generalization

of the inequality (1.6).
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Corollary 2.6. Let A,B ∈ Mn be positive semidefinite and r be a positive integer.
Then,

2sj(A
1
2 (A + B)(r−1)B

1
2 + A

1
2 B

1
2 ) ≤ sj((A + B)r + (A + B)),

for j = 1, 2, ..., n.
Remark 2.7. When we take r = 2 in Corollary 2.6 , then we obtain the inequality
(1.6).

To give the X-version of the inequality (1.8), first we obtain the following result.

Theorem 2.8. Let A1, A2, B1, B2, X ∈ Mn. If f and g be nonnegative func-
tions on [0,∞) which are continuous and satisfying the relation f(t)g(t) = t, for all
t ∈ [0,∞), then

sj(A∗1XB1 + A∗2XB2)

≤ sj((A∗1f
2(| X∗ |)A1 + A∗2f

2(| X∗ |)A2)⊕ (B∗
1g2(| X |)B1 + B∗

2g2(| X |)B2)),

for j = 1, 2, ..., n.

Proof. Let T1 =
(

A1 0
0 B1

)
, T2 =

(
A2 0
0 B2

)
.

Since the block matrix
( | X∗ | X

X∗ | X |
)

is positive semidefinite (by Lemma 2.1)

and the block matrix Y =
(

f2(| X∗ |) X
X∗ g2(| X |)

)
is positive semidefinite (by

Lemma 2.2), so, T ∗1 Y T1 =
(

A∗1f
2(| X∗ |)A1 A∗1XB1

B∗
1X∗A1 B∗

1g2(| X |)B1

)
≥ 0 and also,

T ∗2 Y T2 =
(

A∗2f
2(| X∗ |)A2 A∗2XB2

B∗
2X∗A2 B∗

2g2(| X |)B2

)
≥ 0. That is, we have

T ∗1 Y T1 + T ∗2 Y T2

=
(

A∗1f
2(| X∗ |)A1 + A∗2f

2(| X∗ |)A2 A∗1XB1 + A∗2XB2

B∗
1X∗A1 + B∗

2X∗A2 B∗
1g2(| X |)B1 + B∗

2g2(| X |)B2

)
≥ 0

So, our desired result now follows by invoking inequality (2.2).
The proof is completed. ¤

Following is our desired X-version of the inequality (1.8).

Corollary 2.9. Let A,B, X ∈ Mn, then

sj(A∗XB + B∗XA)
≤ sj((A∗ | X∗ | A + B∗ | X∗ | B)⊕ (A∗ | X | A + B∗ | X | B)),

for j = 1, 2, ..., n.
Proof. By taking f(t) = g(t) = t

1
2 , A1 = B2 = A and A2 = B1 = B in Theorem

2.8, we get the desired result.
The proof is completed. ¤

One another important case follows from Corollary 2.9 for normal matrices.
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Corollary 2.10. Let A,B, X ∈ Mn such that X is normal matrix,then

sj(A∗XB + B∗XA)
≤ sj((A∗ | X | A + B∗ | X | B)⊕ (A∗ | X | A + B∗ | X | B)),

for j = 1, 2, ..., n.
In particular, when X is positive semidefinite matrix , then

sj(A∗XB + B∗XA)
≤ sj((A∗XA + B∗XB)⊕ (A∗XA + B∗XB)),

for j = 1, 2, ..., n.

References

[1] Kittaneh, F., Notes on some inequalities for Hilbert space operators, Res. Inst. Math. Sci. 24
(1988), 283-293.

[2] Zou, L. and Jiang, Y., Inequalities for unitarily invariant norms, J. Math. Inequal. 6 (2012),
279-287.

[3] Bhatia, R. and Kittaneh, F., On the singular values of a product of operators, SIAM J.
Matrix Anal. Appl. 11 (1990), 272-277.

[4] Bhatia, R., Davis, C., More matrix forms of arithmetic-geometric mean inequality. SIAM J.
Matrix Anal. Appl. 14 (1993), 132-136.

[5] Bhatia, R., Kittaneh, F., Notes on matrix arithmetic-geometric mean inequalities, Linear
Algebra Appl. 308(2000) 203-211.

[6] Bhatia, R. and Kittaneh, F., The matrix arithmetic-geometric mean inequality revisited,
Linear Algebra Appl. 428 (2008), 2177-2191.

[7] Audeh, W. and Kittaneh, F., Singular values inequalities for compact operators, Linear
Algebra Appl. 437 (2012), 2516-2522.

[8] Tao, Y., More results on singular value inequalities of matrices, Linear Algebra Appl. 416
(2006), 724-729.

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, P.
R. China

E-mail address: ilyasali10@yahoo.com



Konuralp Journal of Mathematics
Volume 2 No. 1 pp. 90–101 (2014) c©KJM

SIMPSON’S TYPE INEQUALITIES FOR m− AND
(α,m)−GEOMETRICALLY CONVEX FUNCTIONS

HAVVA KAVURMACI-ÖNALAN♣, AHMET OCAK AKDEMIR, ERHAN SET, AND M. ZEKI
SARIKAYA

Abstract. In this paper, we establish Simpson’s type inequalities for m− and
(α, m)−geometrically convex functions using the lemmas.

1. Introduction

The following inequality is well-known in the literature as Simpson’s inequality:
Let f : [a, b] → R be a four times continuously differentiable mapping on [a, b]

and
∥∥f (4)

∥∥
∞ = sup

x∈[a,b]

∣∣f (4) (x)
∣∣ < ∞. Then the folllowing inequality holds:

∣∣∣∣∣
1
3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤
1

2880

∥∥∥f (4)
∥∥∥
∞

(b− a)4 .

For the recent results based on the above definition see the papers [1], [4] , [7], [14],
[18] and [20].

In [6], G.Toader defined the concept of m-convexity as the following;

Definition 1.1. The function f : [0, b] → R is said to be m−convex, where m ∈
[0, 1], if for every x, y ∈ [0, b] and t ∈ [0, 1] we have:

f(tx + m(1− t)y) ≤ tf(x) + m(1− t)f(y).

Denote by Km(b) the set of the m−convex functions on [0, b] for which f(0) ≤ 0.
In [19], Miheşan gave definition of (α, m)−convexity as following;

Definition 1.2. The function f : [0, b] → R, b > 0 is said to be (α, m)−convex,
where (α, m) ∈ [0, 1]2, if we have

f(tx + m(1− t)y) ≤ tαf(x) + m(1− tα)f(y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

2000 Mathematics Subject Classification. Primary 26D15, Secondary 26A51.
Key words and phrases. m− geometrically convex function, (α, m)−geometrically convex

function, Simpson’s type inequality.
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Denote by Kα
m(b) the class of all (α, m)−convex functions on [0, b] for which

f(0) ≤ 0. If we choose (α, m) = (1,m), it can be easily seen that (α, m)−convexity
reduces to m−convexity and for (α,m) = (1, 1), we have ordinary convex functions
on [0, b]. For the recent results based on the m− and (α, m)− convexity see the
papers [2], [3], [5], [8]-[13] and [15]-[17].

In [2], Xi et al. introduced m− and (α, m)−geometrically convex functions and
give a lemma as following, respectively;

Definition 1.3. Let f (x) be a positive function on [0, b] and m ∈ (0, 1] . If

f
(
xtym(1−t)

)
≤ [f (x)]t [f (y)]m(1−t)

holds for all x, y ∈ [0, b] and t ∈ [0, 1], then we say that the function f (x) is
m−geometrically convex on [0, b] .

It is clear that when m = 1, m−geometrically convex functions become geomet-
rically convex functions.

Definition 1.4. Let f (x) be a positive function on [0, b] and (α, m) ∈ (0, 1]×(0, 1] .
If

f
(
xtym(1−t)

)
≤ [f (x)]t

α

[f (y)]m(1−tα)

holds for all x, y ∈ [0, b] and t ∈ [0, 1], then we say that the function f (x) is
(α, m)−geometrically convex on [0, b] .

Lemma 1.1. For x, y ∈ [0,∞) and m, t ∈ (0, 1], if x < y and y ≥ 1, then

xtym(1−t) ≤ tx + (1− t) y.

In this paper, we recite two lemmas in the literature, then we obtaine Simp-
son’s type inequalities using the lemmas for m− and (α, m)−geometrically convex
functions.

2. Results

Lemma 2.1. [[1], pp.3] Let f : I ⊂ R → R be an absolutely continuous mapping
on I◦ where a, b ∈ I with a < b. Then the following equality holds:

1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

= (b− a)
∫ 1

0

p (t) f ′ (tb + (1− t) a) dt,

where

p (t) =





t− 1
6 , t ∈ [

0, 1
2

)
,

t− 5
6 , t ∈ (

1
2 , 1

]
.

Theorem 2.1. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| is decreasing and
(α, m)−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for (α,m) ∈ (0, 1]2,
then the following inequality holds;∣∣∣∣∣

1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a) |f ′ (b)|m M1 (α, m)
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where
(2.1)

M1 (α, m) =
∫ 1

2

0

∣∣∣∣t−
1
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)α

dt +
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)α

dt.

Proof. From Lemma 2, Lemma 1 and since f is decreasing, then
∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)
∫ 1

0

|p (t)| |f ′ (tb + (1− t) a)| dt

≤ (b− a)
∫ 1

0

|p (t)| ∣∣f ′ (a1−tbmt
)∣∣ dt.

Using the (α, m)−geometrically convexity of |f ′ (x)| , we have,
∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)
∫ 1

0

|p (t)| |f ′ (a)|(1−t)α

|f ′ (b)|m(1−(1−t)α)
dt

= (b− a) |f ′ (b)|m
{∫ 1

2

0

∣∣∣∣t−
1
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)α

dt +
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)α

dt

}
.

So, the proof is completed. ¤

Corollary 2.1. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| is decreasing and
m−geometrically convex on [min {1, a} , b] for b ≥ 1, and for m ∈ (0, 1], then the
following inequality holds;
∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a) |f ′ (b)|m M1 (1,m)

where M1 (1,m) is the term in (2.1).

Theorem 2.2. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| p
p−1 is decreasing and

(α, m)−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for (α,m) ∈ (0, 1]2,
p > 1 with 1

p + 1
q = 1, then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a) |f ′ (b)|m
(

1 + 2p+1

6p+1 (p + 1)

) 1
p

M2 (α, m, p)
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where
(2.2)

M2 (α, m, p) =

(∫ 1
2

0

( |f ′ (a)|
|f ′ (b)|m

)(1−t)α p
p−1

dt

) p−1
p

+

(∫ 1

1
2

( |f ′ (a)|
|f ′ (b)|m

)(1−t)α p
p−1

dt

) p−1
p

.

Proof. By using Lemma 2 and Hölder integral inequality, we have

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)
∫ 1

0

|p (t)| |f ′ (tb + (1− t) a)| dt

= (b− a)
∫ 1

2

0

∣∣∣∣t−
1
6

∣∣∣∣ |f ′ (tb + (1− t) a)| dt + (b− a)
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣ |f ′ (tb + (1− t) a)| dt

≤ (b− a)

(∫ 1
2

0

∣∣∣∣t−
1
6

∣∣∣∣
p

dt

) 1
p

(∫ 1
2

0

|f ′ (tb + (1− t) a)|
p

p−1 dt

) p−1
p

+ (b− a)

(∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣
p

dt

) 1
p

(∫ 1

1
2

|f ′ (tb + (1− t) a)|
p

p−1 dt

) p−1
p

.

Since |f ′ (x)| is decreasing by using Lemma 1 and (α,m)−geometrically convex, we
have

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)
(

1 + 2p+1

6p+1 (p + 1)

) 1
p





(∫ 1
2

0

∣∣f ′ (a1−tbmt
)∣∣ p

p−1 dt

) p−1
p

+

(∫ 1

1
2

∣∣f ′ (a1−tbmt
)∣∣ p

p−1 dt

) p−1
p





≤ (b− a)
(

1 + 2p+1

6p+1 (p + 1)

) 1
p

|f ′ (b)|m

×




(∫ 1
2

0

( |f ′ (a)|
|f ′ (b)|m

)(1−t)α p
p−1

dt

) p−1
p

+

(∫ 1

1
2

( |f ′ (a)|
|f ′ (b)|m

)(1−t)α p
p−1

dt

) p−1
p



 .

So, the desired result is obtained. ¤

Corollary 2.2. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| p
p−1 is decreasing and

m−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for m ∈ (0, 1], p > 1 with
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1
p + 1

q = 1, then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a) |f ′ (b)|m
(

1 + 2p+1

6p+1 (p + 1)

) 1
p

M2 (1,m, p)

where M2 (1,m, p) is the term in (2.2).

Theorem 2.3. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)|q is decreasing and
(α, m)−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for (α,m) ∈ (0, 1]2,
q ≥ 1, then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a) |f ′ (b)|m
(

5
36

)1− 1
q

[M3 (α, m, q)]
1
q

where
(2.3)

M3 (α, m, q) =
∫ 1

2

0

∣∣∣∣t−
1
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)αq

dt+
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)αq

dt.

Proof. From Lemma 2 and using the well-known power mean integral inequality,
we have

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)
∫ 1

0

|p (t)| |f ′ (tb + (1− t) a)| dt

≤ (b− a)
(∫ 1

0

|p (t)| dt

)1− 1
q

(∫ 1

0

|p (t)| |f ′ (tb + (1− t) a)|q dt

) 1
q

≤ (b− a)
(∫ 1

0

|p (t)| dt

)1− 1
q

{∫ 1
2

0

∣∣∣∣t−
1
6

∣∣∣∣ |f ′ (tb + (1− t) a)|q dt

+
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣ |f ′ (tb + (1− t) a)|q dt

} 1
q

.
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Since |f ′ (x)|q is decreasing and (α, m)−geometrically convex on [min {1, a} , b] , we
have ∣∣∣∣∣

1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)
(

5
36

)1− 1
q

{∫ 1
2

0

∣∣∣∣t−
1
6

∣∣∣∣
∣∣f ′ (a1−tbmt

)∣∣q dt

+
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣
∣∣f ′ (a1−tbmt

)∣∣q dt

} 1
q

≤ (b− a)
(

5
36

)1− 1
q

{∫ 1
2

0

∣∣∣∣t−
1
6

∣∣∣∣ |f ′ (a)|(1−t)αq |f ′ (b)|m(1−(1−t)α)q
dt

+
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣ |f ′ (a)|(1−t)αq |f ′ (b)|m(1−(1−t)α)q
dt

} 1
q

= (b− a) |f ′ (b)|m
(

5
36

)1− 1
q

{∫ 1
2

0

∣∣∣∣t−
1
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)αq

dt

+
∫ 1

1
2

∣∣∣∣t−
5
6

∣∣∣∣
( |f ′ (a)|
|f ′ (b)|m

)(1−t)αq

dt

}
.

So, the proof is completed. ¤

Corollary 2.3. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)|q is decreasing and
m−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for m ∈ (0, 1], q ≥ 1,
then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a) |f ′ (b)|m
(

5
36

)1− 1
q

[M3 (1,m, q)]
1
q

where M3 (1,m, q) is the term in (2.3).

Now, we obtain Simpson’s type inequalities for twice differentiable functions
using the following lemma.

Lemma 2.2. [[14], pp.2]Let f : I ⊂ R → R be twice differentiable mapping on I◦

such that f ′′ ∈ L1 [a, b] , where a, b ∈ I with a < b, then the following equality holds:

1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

= (b− a)2
∫ 1

0

k (t) f ′′ (tb + (1− t) a) dt
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where

k (t) =





t
2

(
1
3 − t

)
, t ∈ [

0, 1
2

)
,

(1− t)
(

t
2 − 1

3

)
, t ∈ (

1
2 , 1

]
.

Theorem 2.4. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′ (x)| is decreasing and
(α, m)−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for (α,m) ∈ (0, 1]2,
then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2 |f ′′ (b)|m [M4 (α, m)]

where

M4 (α, m) =
∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)(1−t)α

dt(2.4)

+
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)(1−t)α

dt.

Proof. From Lemma 3, Lemma 1 and since |f ′′ (x)| is decreasing, then
∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2
∫ 1

0

|k (t)| |f ′′ (tb + (1− t) a)| dt

≤ (b− a)2
∫ 1

0

|k (t)|
∣∣f ′′ (a1−tbmt

)∣∣ dt.

Using the (α, m)−geometrically convexity of |f ′′ (x)| , we have
∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2
∫ 1

0

|k (t)| |f ′′ (a)|(1−t)α

|f ′′ (b)|m(1−(1−t)α)
dt

= (b− a)2 |f ′′ (b)|m
{∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)(1−t)α

dt

+
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)(1−t)α

dt

}
.

So, the proof is completed. ¤

Corollary 2.4. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′ (x)| is decreasing and
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m−geometrically convex on [min {1, a} , b] for b ≥ 1, and for m ∈ (0, 1], then the
following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)2 |f ′′ (b)|m M4 (1,m)

where M4 (1,m) is the term in (2.4).

Theorem 2.5. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′ (x)|q is decreasing and
(α, m)−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for (α,m) ∈ (0, 1]2,
q ≥ 1, then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2
(

1
162

)1− 1
q (

M6 (α, m, q)
1
q + M7 (α, m, q)

1
q

)

where

M6 (α, m, q) = |f ′′ (b)|mq
∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)q(1−t)α

dt

and

M7 (α, m, q) = |f ′′ (b)|mq
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)q(1−t)α

dt.
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Proof. Suppose that q ≥ 1. From Lemma 3 and using the well-known power mean
integral inequality, we have

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2
∫ 1

0

|k (t)| |f ′′ (tb + (1− t) a)| dt

= (b− a)2
{∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ |f ′′ (tb + (1− t) a)| dt

+
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ |f ′′ (tb + (1− t) a)| dt

}

≤ (b− a)2





(∫ 1
2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ dt

)1− 1
q

×
(∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ |f ′′ (tb + (1− t) a)|q dt

) 1
q

+

(∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ dt

)1− 1
q

×
(∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ |f ′′ (tb + (1− t) a)|q dt

) 1
q



 .

Since |f ′′ (x)|q is decreasing using Lemma 1 and (α,m)−geometrically convex on
[min {1, a} , b] , we have

∫ 1
2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ |f ′′ (tb + (1− t) a)|q dt(2.5)

≤
∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣
∣∣f ′′ (a1−tbmt

)∣∣q dt

≤
∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ |f ′′ (a)|q(1−t)α

|f ′′ (b)|mq(1−(1−t)α)
dt

= |f ′′ (b)|mq
∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)q(1−t)α

dt

= M6 (α, m, q)
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and
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ |f ′′ (tb + (1− t) a)|q dt(2.6)

≤
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣
∣∣f ′′ (a1−tbmt

)∣∣q dt

≤
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ |f ′′ (a)|q(1−t)α

|f ′′ (b)|mq(1−(1−t)α)
dt

= |f ′′ (b)|mq
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣
( |f ′′ (a)|
|f ′′ (b)|m

)q(1−t)α

dt

= M7 (α,m, q)

From (2.5) and (2.6), we have
∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2





(∫ 1
2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ dt

)1− 1
q

M6 (α,m, q)
1
q

+

(∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ dt

)1− 1
q

M7 (α, m, q)
1
q





= (b− a)2
(

1
162

)1− 1
q (

M6 (α, m, q)
1
q + M7 (α, m, q)

1
q

)

where we use the fact that
∫ 1

2

0

∣∣∣∣
t

2

(
1
3
− t

)∣∣∣∣ dt =
∫ 1

1
2

∣∣∣∣(1− t)
(

t

2
− 1

3

)∣∣∣∣ dt =
1

162
.

So, the proof is completed. ¤

Corollary 2.5. Let f : I ⊂ [0,∞) → (0,∞) be a differentiable mapping on I◦

such that f ′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′ (x)|q is decreasing and
m−geometrically convex on [min {1, a} , b] , for b ≥ 1, and for m ∈ (0, 1], q ≥ 1,
then the following inequality holds;

∣∣∣∣∣
1
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ (b− a)2
(

1
162

)1− 1
q (

M6 (1,m, q)
1
q + M7 (1,m, q)

1
q

)

where M6 (1,m, q) and M7 (1,m, q) are in the Theorem 5.
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