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Abstract

In this paper we present some of my favorite problems, all the time open, in the fixed point theory. These
problems are in connection with the following two:

• Which properties have the fixed point equations for which an iterative algorithm is convergent ?
• Let us have a fixed point theorem, T , and an operator f (single or multivalued) which does not satisfy

the conditions in T . In which conditions the operator f has an invariant subset Y such that the restriction
of f to Y , f

∣∣
Y
, satisfies the conditions of T ?
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1. Introduction

In this paper we present some problems, all the time open problems, in the fixed point theory. These
problems are in connection with the following two research directions:

(I) Which properties have the fixed point equations for which an iterative algorithm is convergent ?

(II) Let us have a fixed point theorem, T , and an operator f (single or multivalued) which does not satisfy
the conditions in the theorem T . In which conditions the operator f has an invariant subset Y such
that the restriction of f to Y , f

∣∣
Y
, satisfies the conditions of T ?

Throughout this paper, the standard notations and terminology are used. See for example, [33], [37] and
[49]. For the basic fixed point theorems, see: [13], [19], [3], [9], [49] and [55].
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2. Picard and weakly Picard operators

Let (X,→) be an L-space ( (X, τ)-topological space, τ→; (X, d)-metric space, d→; (X, ‖·‖)-normed space,
‖·‖→, ⇀; . . .) and f : X → X be an operator.

By definition, f is a weakly Picard operator if the sequence {fn(x)}n∈N converges for all x ∈ X at its
limit (which may depend on x) is a fixed point of f . If f is a weakly Picard operator, then we consider the
operator f∞ : X → X, defined by, f∞(x) := lim

n→∞
fn(x).

We remark that the operator f∞ is a set retraction on the fixed point set of f , Ff .
If f is a weakly Picard operator and Ff = {x∗}, then by definition f is called Picard operator. If f is a

Picard operator, we have that,
Ff = Ffn = {x∗}, for all n ∈ N∗

and if f is a weakly Picard operator, then,

Ff = Ffn 6= ∅, for all n ∈ N∗.

In the case of a metric space and of a contraction we have the following result.

Theorem 2.1 (see [47]). Let (X, d) be a complete metric space and f : X → X be an l-contraction. Then
we have:

(i) f is a Picard operator (Ff = {x∗}).

(ii) d(x, x∗) ≤ ψ(d(x, f(x))), for all x ∈ X, where ψ(t) = t
1−l , t ≥ 0.

(iii) If {yn}n∈N is a sequence in X such that

d(yn, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

(iv) If {yn}n∈N is a sequence in X such that

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

From this result, the following problem rises:

Problem 2.2. Let (X, d) be a complete metric space and f : X → X be an operator. Which metric
conditions on f imply a similar conclusion as that of Theorem 2.1 ?

Let us consider another result:

Theorem 2.3 (see [48]). Let (X, d) be a complete metric space and f : X → X be an operator. We suppose
that:

(1) There exists l ∈]0, 1[ such that,

d(f2(x), f(x)) ≤ ld(x, f(x)), for all x ∈ X,

i.e., f is a graphic contraction.

(2) lim
n→∞

f(fn(x)) = f( lim
n→∞

fn(x)), for all x ∈ X.

Then we have:
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(i) f is a weakly Picard operator.

(ii) d(x, f∞(x)) ≤ 1
1−ld(x, f(x)), for all x ∈ X.

(iii) For x∗ ∈ Ff , let Xx∗ := {x ∈ X | fn(x)→ x∗ as n→∞}. Let {yn}n∈N be a sequence in Xx∗ such that

d(yn, f(yn))→ 0 as n→∞.

Then, yn → x∗ as n→∞.

(iv) Let {yn}n∈N be a sequence in Xx∗, x∗ ∈ Ff . If l < 1
3 and

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.

This result suggests the following problem:

Problem 2.4 (see [48]). Which metric conditions imposed on an operator f imply a similar conclusion as
that in Theorem 2.3 ?

For a better understanding of the above problems, let us consider the following considerations:

(a) A weakly Picard operator f : (X, d) → (X, d) satisfies a retraction-displacement condition (see [8]) if
there exists an increasing function ψ : R+ → R+, ψ(0) = 0 and continuous in 0, such that

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ X.

This condition is useful in studying the data dependence of the fixed point, and of Ulam stability of
the fixed point equations (see [44]).

So, conclusions (ii) in Theorems 2.1 and 2.3 are retraction-displacement conditions for the operator f .

(b) Conclusions (iii) in Theorems 2.1 and 2.3 can be formulated as follows: The fixed point problem for
the operator f is well posed.

(c) Conclusions (iv) in Theorems 2.1 and 2.3 can be formulated as follows: The operator f has the
Ostrowski property.

Problem 2.5. To study similar problems in the case of multivalued operators.

References for Problems 2.2 - 2.5: [47], [48], [39], [50], [52], [8], [28], [31], [32], [49], [51], [56], [57], [54],
. . .

Problem 2.6. To study similar problems in the case of a convergent iterative algorithm.

References: [42], [27], [7], [6], [25], [26], . . .

3. Conjecture on global asymptotic stability

Let (X,→) be an L-space and f : X → X be an operator. A fixed point x∗ of f is by definition globally
asymptotically stable if f is a Picard operator, i.e., fn(x)→ x∗ as n→∞, for all x ∈ X.

In 1976, J.P. LaSalle presented (see [20]) the following conjecture:

Conjecture 1 (LaSalle’s Conjecture). Let f : Rm → Rm be such that:

(i) there exists x∗ ∈ Rm with f(x∗) = x∗;
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(ii) f ∈ C1(Rm,Rm);

(iii) the spectral radius of the differential of f at x, ρ(df(x)) < 1, for all x ∈ Rm.

Then, x∗ is globally asymptotically stable.

Papers on this conjecture were given by (see [46]): A. Cima - A. Gasull - F. Mañosas (1995, 1999, 2001,
2011, 2014), G. Meisters (1996), A.G. Aksoy - M. Martelli (2001), A. Castañeda - V. Guiñez (2012), D.
Cheban (2014), . . . The results are as follow:

(a) counterexamples to LaSalle Conjecture;

(b) classes of functions for which LaSalle Conjecture is a theorem;

(c) to study the dynamic generated by a function f ∈ C1(Rm,Rm), with ρ(df(x)) < 1, for all x ∈ Rm.

We have the following remark: Let (X,→) be an L-space and f : X → X be an operator. The following
statements are equivalent:

(i) f is a Picard operator;

(ii) for all k ∈ N∗, fk is a Picard operator;

(iii) there exists k ∈ N∗ such that fk is a Picard operator.

Starting from this general remark, in [46] the following conjecture is presented.

Problem 3.1 (a conjecture). Let X be a real Banach space, Ω ⊂ X be an open, convex subset and
f : Ω→ Ω be an operator. We suppose that:

(i) f ∈ C1(Ω, X);

(ii) ρ(dfk(x)) < 1, for all x ∈ Ω and all k ∈ N∗;

(iii) Ff 6= ∅.

Then, f is a Picard operator.

In connection with the above conjecture the following problems arise:

Problem 3.2. In which conditions we have that:

ρ(df(x)) < 1, for all x ∈ Ω ⇒ ρ(dfk(x)) < 1, for all x ∈ Ω and all k ∈ N∗?

Problem 3.3. In which conditions we have that:

ρ(df(x)) < 1, for all x ∈ Ω ⇒ f is nonexpansive with respect to
an equivalent norm on X?

We remember that if (X, ‖·‖) is a complex Banach space and f : X → X is a bounded linear operator
with the spectrum σ(f), then (see [17], [5], [14], [4], . . . )

ρ(f) = sup
λ∈σ(f)

|λ| = lim
n→∞

‖fn‖
1
n = inf

n∈N∗
‖fn‖

1
n = inf

|·|∼‖·‖
|f |.

If X is a real Banach space and f : X → X is a bounded linear operator, XC the complexification of X,
fC : XC → XC the complexification of f , then by definition, ρ(f) := ρ(fC).

References: [46], [20], [4], [25], [26], . . .



Ioan A. Rus, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 1–10 5

4. Nonexpansive operators and graphic contractions

Problem 4.1. Let (X, ‖·‖) be a (real or complex) Banach space. Which nonexpansive operators f : X → X
are graphic contractions ?

Commentaries: If f is a graphic contraction then inf
x∈X
‖x− f(x)‖ = 0. If Ω ⊂ X is an invariant subset of

f and f is a graphic contraction then, inf
x∈X
‖x− f(x)‖ = 0. On the other hand, in the case of nonexpansive

operators we have the following Goebel-Karlovitz Lemma (see [12]): Let Ω ⊂ X be a convex, closed and
bounded subset. Let D ⊂ Ω be a weakly compact, convex, minimal invariant set for a nonexpansive operator
f : Ω → Ω. If for a sequence {xn}n∈N, lim

n→∞
‖xn − f(xn)‖ = 0, then for any z ∈ D, we have that,

lim
n→∞

‖z − xn‖ = diam(D).
So, the above problem is a hard one.

Problem 4.2. Let X be an ordered Banach space. Which increasing, linear and nonexpansive operators
f : X → X are graphic contractions ?

Problem 4.3. Let X be a Banach space. Which multivalued nonexpansive operators T : X → P (X) are
graphic contractions ?

References: [36], [40], [43], [45], [1], [2], [10], [16], [19], [18], [30], [39], [49], . . .

5. Abstract and concrete Gronwall lemmas

Let (X,→,≤) be an ordered L-space and f : X → X be an operator. The following results are well
known (see [38]:

Lemma 5.1 (Abstract Gronwall Lemma for Picard operators). We suppose that:

(i) f is a Picard operator (Ff = {x∗});

(ii) f is an increasing operator.

Then we have that:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ x∗;

(b) x ∈ X, x ≥ f(x) ⇒ x ≥ x∗.

Lemma 5.2 (Abstract Gronwall Lemma for weakly Picard operators). We suppose that:

(i) f is a weakly Picard operator;

(ii) f is an increasing operator

Then we have that:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞(x);

(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞(x).

The above abstract Gronwall lemmas are very usefully for giving some concrete Gronwall lemmas. On
the other hand a large number of concrete Gronwall lemmas are obtained by direct proofs. The following
problems are arising:

Problem 5.3. In which Gronwall lemmas the upper bounds are fixed points of the corresponding operator
?

Problem 5.4. If there are found solutions for the Problem 5.3, which of them are consequences of some
abstract Gronwall lemmas ?

References: [38], [35], [21], [11], [22], [23], [33], [39], [49], . . .
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6. Invariant subsets with fixed point property

For a rigorous formulation of a problem (II), from Introduction, we recall a few basic notions and
examples of the fixed point structure theory (see [37]).

Let C be a class of structured sets (ordered sets, ordered linear spaces, topological spaces, metric spaces,
Hilbert spaces, Banach spaces, ordered Banach spaces, generalized metric spaces, . . . ). Let Set∗ be the class
of nonempty sets and if X is a nonempty set, then, P (X) := {Y ⊂ X | Y 6= ∅}. We also shall use the
following notations:

P (C) := {U ∈ P (X) | X ∈ C},
M(U, V ) := {f : U → V | f is an operator},
M(U) := M(U,U),
S : C ( Set∗, X 7→ S(X) ⊂ P (X),
M : DM ⊂ P (C)× P (C) ( M(P (C), P (C)), (U, V ) 7→M(U, V ) ⊂M(U, V )

By a fixed point structure (f.p.s.) on X ⊂ C we understand a triple (X,S(X),M) with the following
properties:

(i) U ∈ S(X) ⇒ (U,U) ∈ DM ;

(ii) U ∈ S(X), f ∈M(U) ⇒ Ff 6= ∅;

(iii) M is such that:

(Y, Y ) ∈ DM , Z ∈ P (Y ), (Z,Z) ∈ DM ⇒M(Z) ⊃ {f
∣∣
Z
| f ∈M(Y )}.

Here are some examples of f.p.s.

Example 6.1 (The f.p.s. of progressive operators). Let C be the class of partially ordered sets. For
(X,≤) ∈ C, let

S(X) := {Y ∈ P (X) | (Y,≤) has at least a maximal element}

and
M(Y ) := {f : Y → Y | x ≤ f(x), for all x ∈ Y }.

Then, (X,S(X),M) is a f.p.s.

Example 6.2 (The Tarski’s f.p.s.). Let C be the class of partially ordered sets. For (X,≤) ∈ C, let

S(X) := {Y ∈ P (X) | (Y,≤) is a complete lattice}

and
M(Y ) := {f : Y → Y | f is an increasing operator}.

Then, (X,S(X),M) is a f.p.s.

Example 6.3 (The f.p.s. of contractions). Let C be the class of complete metric spaces. Let

S(X) := {Y ∈ P (X) | Y is closed}

and
M(Y ) := {f : Y → Y | f is a contraction}.

Then, (X,S(X),M) is a f.p.s.
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Example 6.4 (The f.p.s. of Schauder). Let C be the class of Banach spaces. Let

S(X) := {Y ∈ P (X) | Y is compact and convex}

and
M(Y ) := {f : Y → Y | f is continuous}.

Then, (X,S(X),M) is a f.p.s.

Now, our problem (II) takes the following form:

Problem 6.5. Let (X,S(X),M) be a f.p.s. on X ∈ C and f : A→ A be an operator with A ⊂ X. In which
conditions there exists Y ⊂ A such that

(a) Y ∈ S(X);

(b) f(Y ) ⊂ Y ;

(c) f
∣∣
Y
∈M(Y ) ?

We have a similar problem in the case of multivalued operators.
References: [37], [41], [29], [49], . . .

7. Strict fixed point problems

Let X be a nonempty set and T : X → P (X) be a multivalued operator. Let FT := {x ∈ X | x ∈ T (x)}
be the set of fixed point of T and (SF )T := {x ∈ X | T (x) = {x}} be the strict fixed point set of T .

We have the following result (see [33], p.87):
Let (X, d) be a metric space and T : X → P (X) be a multivalued l-contraction. If, (SF )T 6= ∅, then,

FT = (SF )T = {x∗}.

The following problem is arising:

Problem 7.1. For which multivalued generalized contractions we have that

(SF )T 6= ∅ ⇒ FT = (SF )T = {x∗} ?

Problem 7.2. Let (X,S(X),M◦) be a multivalued fixed point structure (see [37]) on X ∈ C. Let Y ∈ S(X)
and T ∈M◦(Y ). In which conditions we have that

FT = (SF )T ?

Commentaries:

(1) Let f, g : R→ R be such that:

(a) Ff = Fg;

(b) x ≤ f(x) ≤ g(x), for all x ∈ R.

Let T : R→ P (R) be defined by,

T (x) := {tf(x) + (1− t)g(x) | t ∈ [0, 1]}.

Then we have that, FT = (SF )T .
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(2) Let (X, d) be a metric space, X =
⋃
λ∈Λ

Xλ be a partition of X, and for each λ ∈ Λ, Tλ : Xλ → P (Xλ)

be a multivalued contraction with respect to the Pompeiu-Hausdorff functional. We suppose that,
(SF )Tλ 6= ∅, for all λ ∈ Λ.

Let T : X → P (X) be defined by, T (x) = Tλ(x), if x ∈ Xλ, λ ∈ Λ.

It is clear that, FT = (SF )T 6= ∅.

(3) Let (X,S(X),M) be a fixed point structure of progressive operators on a partially ordered set (X,≤).
Let Y ∈ S(X) and f, g ∈M(Y ). We suppose that:

(a) f(x) ≤ g(x), for all x ∈ Y ;

(b) x < f(x), for each nonmaximal element x ∈ Y .

Let T : Y → P (Y ) be a multivalued operator defined by,

T (x) := {y ∈ Y | f(x) ≤ y ≤ g(x)}.

Then, FT = (SF )T 6= ∅.

References: [34], [53], [28], [49], [31], . . .

8. Commutative pairs of operators with coincidence property

Problem 8.1. Which are the f.p.s. (X,S(X),M), X ∈ C, with the following property:

Y ∈ S(X), f, g ∈M(Y ), f ◦ g = g ◦ f ⇒ there
exists x ∈ Y such that f(x) = g(x)?

Commentaries:

(1) In the case of Tarski’s fixed point structure we have that, Ff ∩ Fg 6= ∅.

(2) In the case of Schauder’s fixed point structure, the Problem 8.1 takes the following form:

Conjecture 2 (Horn’s Conjecture). Let X be a Banach space, Y ⊂ X, compact and convex subset
and f, g : Y → Y be two continuous operators. If f ◦ g = g ◦ f , then there exists x ∈ Y such that
f(x) = g(x).

(3) The Horn’s Conjecture includes:

Conjecture 3 (Schauder-Browder-Nussbaum Conjecture). Let X be a Banach space, Y ⊂ X be a
bounded, closed and convex subset and f : Y → Y be a continuous operator. If there exists n0 ∈ N∗
such that fn0 is compact, then Ff 6= ∅.

References: [37], [41], [15], [24], [18], [49], . . .
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1. Introduction

In classical physics, the ordinary differential equation

x′(t) = −ax(t) + g(t) (1.1)

is sometimes called the relaxation equation (cf. [6, p. 138], [11]) when the constant a is positive. A general-
ization of (1.1) in a fractional calculus setting is the fractional relaxation equation

Dqx(t) = −ax(t) + g(t), (1.2)

where Dq denotes a fractional differential operator of order q with q ∈ (0, 1) (cf. [6, p. 138]; [12, p. 292]; [17,
p. 224]).

This paper is a study of (1.2) when g(t) is a polynomial. For given a > 0 and g, we will prove that this
equation has a unique continuous solution on the half-closed interval [0,∞) and that necessarily x(0) = 0.
Furthermore, in Section 7, we will derive a formula that expresses this solution as a sum involving two-
parameter Mittag-Leffler functions (cf. (7.13)). Moreover, we will show that each term of this sum can also
be expressed as a convolution integral involving the solution of the integral equation

R(t) = λtq−1 − λ
∫ t

0
(t− s)q−1R(s) ds, (Rλ)

where λ is a positive constant related to the value of the constant a. In fact, it is well-established that
(Rλ) has a unique continuous solution on the interval (0,∞) whenever λ and q are positive constants with
q ∈ (0, 1). A proof of this for a more general version of equation (Rλ) can be found in the 1971 monograph
by Miller [14, Ch. IV].

There is also the recent paper [3] that investigates (Rλ) directly. Not only is the existence and uniqueness
of a continuous solution of (Rλ) on (0,∞) proven there but also a formula for it is derived, namely

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq), (1.3)

where Eα,β (α, β > 0) denotes the two-parameter Mittag-Leffler function:

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
. (1.4)

We use the following established terminology: resolvent equation refers to equation (Rλ) and resolvent
refers to its solution (1.3).

For given constants λ > 0 and q ∈ (0, 1), important characteristics of the resolvent (1.3) are:

(i) For all t > 0, 0 < R(t) ≤
(

q

q + λtq

)
λtq−1.

(ii) R(t)→∞ as t→ 0+ and R(t)→ 0 as t→∞.

(iii) The graph of R is decreasing and concave upward on (0,∞). In fact, R is completely monotone on
(0,∞). That is, R(t) is infinitely differentiable on (0,∞) and (−1)kR(k)(t) ≥ 0 for all t > 0 and for
k = 0, 1, 2, . . . .

(iv) For all t > 0,
1

1 + q
λtq
≤
∫ t

0
R(s) ds ≤ 1− e−

λtq

q .

(v)
∫∞
0 R(s) ds = 1.
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(vi) For given λ > 0, R is the unique continuous solution on (0,∞) of the initial value problem

Dqx(t) = −λΓ(q)x(t), lim
t→0+

t1−qx(t) = λ.

Items (i) and (ii) are proved in [3, Cor. 4.6, Thm. 7.3]. In [14, Thm. 7.2], Miller states that the solution
of the above-mentioned general version is completely monotone; for a proof of this, he references [7] (cf. [14,
p. 243]). A proof for the less general (1.3) that is based on the complete monotonicity of Eq,q(−t) for t ≥ 0 is
given in [3, pp. 29–30]. Item (iv) is proved in [3, Thm. 4.5]. Clearly (iv) implies (v). A proof of (vi) is found
in [3, Thm. 5.2].

The resolvent (1.3) is also expressed in terms of classical functions of mathematical physics in [3] and [5]
for the following values of q. For q = 1/2, it is shown in [3, (6.12)] that

R(t) = λΓ(12)t−1/2E 1
2
, 1
2
(−λΓ(12)t1/2)

=
λ√
t
− πλ2eπλ2t

(
1− erf(λ

√
πt)
)
, (1.5)

where erf(·) is the error function (cf. (4.14)). In [5, (5.7)], after adjusting the notation there to be in accord
with this paper, we find for q = 1/3 the formula

R(t) =
λ

( 3
√
t)2
−
√

3σ

2πλ 3
√
t

+ σ3e−σt

[
1 +

1

Γ(13)
γ(13 ,−σt) +

√
3

2π
Γ(13)γ(23 ,−σt)

]
(1.6)

where σ :=
[
λΓ(13)

]3 and γ(·, ·) denotes the lower incomplete gamma function (cf. (4.20)). In Figure 1 of
Section 4 the solid [resp. dashed] concave-upward curve is the graph of (1.5) [resp. (1.6)].

2. Riemann-Liouville Operators

For a function f that is (Riemann) integrable, we employ the integral operator J defined by

Jf(t) :=

∫ t

0
f(s) ds.

Furthermore, for n ∈ N (set of natural numbers), let the operator Jn denote the n-fold iterate of J ; that is,

Jn := JJn−1 for n ≥ 1

where J0 := I, the identity operator. For example, taking n = 2 and applying J2 to an integrable function
f , we have

J2f(t) =

∫ t

0
Jf(s) ds =

∫ t

0

(∫ s

0
f(u) du

)
ds =

∫ t

0

(∫ t2

0
f(t1) dt1

)
dt2

or

J2f(t) =

∫ t

0
dt2

∫ t2

0
f(t1) dt1.

In general,

Jnf(t) =

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
f(t1) dt1. (2.1)

This particular iterated integral can be expressed in terms of a single integral with a weighted integrand
as in (2.2) below. It is known as Cauchy’s formula for repeated integration (cf. [16, p. 38]). This formula
is found in Abramowitz and Stegun’s handbook [1, (25.4.58)]; and in some textbooks, such as [8, p. 487], it
appears as an exercise. We omit its proof here because it is basically the mathematical induction argument
that is used in the proof of Theorem 3.2 in Section 3.
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Theorem 2.1 (Cauchy’s formula for repeated integration). Let n ∈ N. If f is integrable on [0, T ], then

Jnf(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1f(s) ds (2.2)

for t ∈ [0, T ].

Now let us extend the values of n in (2.2) from N to R+ (set of strictly positive real numbers) by replacing
(n − 1)! with Γ(n), where Γ denotes the Gamma function. This leads to the well-known definition of the
Riemann-Liouville integral operator of order n.

Definition 2.2. For any n ∈ R+, Jn denotes the integral operator

Jnf(t) :=
1

Γ(n)

∫ t

0
(t− s)n−1f(s) ds, (2.3)

where f denotes a function for which the integral exists. Jn is called the Riemann-Liouville fractional integral
operator of order n. Furthermore, J and J0 denote the operators

J := J1 and J0 := I (2.4)

where I denotes the identity operator.

Just as the integral operator Jn can be defined for all values of n ∈ R+, the same is true of Dn, namely,
the classical ordinary differential operator of order n ∈ N. That is, for an n-times differentiable function f ,

Df(t) :=
d

dt
f(t), D2f(t) :=

d2

dt2
f(t), . . . , Dnf(t) :=

dn

dtn
f(t).

This can be expressed recursively as follows:

Dn := DDn−1 for n ≥ 2,

where D1 := D and D0 := I, the identity operator.
In the following extension of the definition of Dn, we employ the floor function b·c, where bnc denotes

the largest integer less than or equal to n.

Definition 2.3. For a given n ∈ R+, Dn denotes the differential operator

Dnf := DmJm−nf (2.5)

where m = bnc+ 1 and f denotes a function for which the right-hand side exists. For n = 0, Dnf := f . Dn

is called the Riemann-Liouville fractional differential operator of order n (cf. [6, p. 27]).

Remark 2.4. The symbol Dn on the left-hand side of (2.5) denotes the fractional differential operator of
order n whereas Dm on the right-hand side denotes the ordinary differential operator dm/dtm since m ∈ N.
If n ∈ N, then m = bnc+ 1 = n+ 1; so

Dnf = Dn+1J1f = DnDJf = DnIf = Dnf.

Thus the definition of the operator Dn is well-defined.

Remark 2.5. Combining (2.3) and (2.5), we obtain the form

Dnf(t) =
1

Γ(m− n)

dm

dtm

∫ t

0
(t− s)m−n−1f(s) ds (2.6)

that is found in well-known works such as [10, (2.1.10) on p. 70].
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Example 2.6. Let n = q where 0 < q < 1. Then

m = bqc+ 1 = 1 and m− n = 1− q.

Consequently,
Dqf(t) = D1J1−qf(t) = DJ1−qf(t)

or

Dqf(t) =
1

Γ(1− q)
d

dt

∫ t

0
(t− s)−qf(s) ds. (2.7)

3. Cauchy’s Formula for the Resolvent

Theorem 3.1. Let n ∈ R+. Let R be the resolvent, namely, the unique continuous solution of (Rλ) on
(0,∞). Then ∫ t

0

∫ s

0
(s− u)n−1R(u) du ds =

∫ t

0

∫ t

u
(s− u)n−1R(u) ds du

for all t > 0.

Proof. See the proof of Theorem 4.3 in [3], where the Tonelli-Hobson test ([2, p. 415], [15, p. 93]) is employed;
and note that the proof is valid not only for n ∈ (0, 1) but for all n > 0.

We now use this theorem to show that Cauchy’s formula for repeated integration can be applied to the
resolvent R(t), notwithstanding the singularity at t = 0.

Theorem 3.2. For n ∈ N,

JnR(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1R(s) ds (3.1)

for t ≥ 0.

Proof. For a given t ≥ 0, it is well-known (cf. [14, Ch. IV]) that the resolvent integral function

JR(t) =

∫ t

0
R(s) ds (3.2)

exists. Furthermore, it is proven in [3, Thm. 9.5] that

JR(t) = 1− Eq(−λΓ(q)tq)

where Eα, for α ∈ R+, denotes the one-parameter Mittag-Leffler function, which is defined by

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
. (3.3)

Since Eq(z) is an entire function of z (cf. [6, Thm. 4.1]) in the complex plane, it follows that

JnR(t) =

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
R(t1) dt1

exists and is continuous on [0,∞) for each n ∈ N.
Note that (3.1) simplifies to (3.2) when n = 1. We complete the proof using mathematical induction to

establish that (3.1) is true for all n ∈ N. Suppose that (3.2) is also true when n = k for some k ∈ N. Then

Jk+1R(t) = JJkR(t) =

∫ t

0
JkR(s) ds

=

∫ t

0

[
1

(k − 1)!

∫ s

0
(s− u)k−1R(u) du

]
ds.
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Interchanging the order of integration and appealing to Theorem 3.1, we have

Jk+1R(t) =
1

(k − 1)!

∫ t

0

(∫ t

u
(s− u)k−1ds

)
R(u) du

=
1

(k − 1)!

∫ t

0

[
(s− u)k

k

]s=t
s=u

R(u) du

=
1

(k − 1)!

∫ t

0

[
(t− u)k

k

]
R(u) du =

1

k!

∫ t

0
(t− u)kR(u) du,

which is precisely (3.1) when n = k + 1. Thus, as (3.1) is true for n = 1, it must be true for all n ∈ N.

The following result will be needed in the next section to prove Lemma 4.2. Although the proof is
straightforward, it can be found in a number of places (e.g., [6, p. 28]).

Lemma 3.3. Let q ∈ (0, 1) and p > −1. If p 6= q − 1, then

Dqtp =
Γ(p+ 1)

Γ(p− q + 1)
tp−q (3.4)

for t > 0. If p = q − 1, then Dqtp = 0 for t > 0.

4. Solution of a fractional relaxation equation

The following proof is an adaptation of a proof in [6, Thm. 2.14].

Theorem 4.1. Let n ∈ R+
0 , where R+

0 = R+ ∪ {0}. If a function f is continuous and absolutely integrable
on an interval (0, T ], then

DnJnf(t) = f(t) (4.1)

for all t ∈ (0, T ].

Proof. This is trivially true for n = 0 since by definition J0 := I and D0 := I. It is also true for n = 1
because by the Fundamental Theorem of Calculus

D1J1f(t) = DJf(t) =
d

dt

∫ t

0
f(s) ds = f(t)

for 0 < t ≤ T . It follows from this and an induction argument that (4.1) is true for all n ∈ N0, where
N0 := N ∪ {0}.

Now consider (4.1) for a given n > 0 when it is not a positive integer. Then, by Definition 2.3,

DnJnf = DmJm−nJnf

where m = bnc+ 1. Since f by hypothesis is continuous and absolutely integrable on (0, T ] and m+ n ≥ 1,
we have

Jm−nJnf(t) = J (m−n)+nf(t) = Jmf(t)

for 0 ≤ t ≤ T by [4, Lemma 4.8]. As a result, since m ∈ N,

DnJnf(t) = DmJmf(t) = f(t)

for 0 < t ≤ T .

The following result relates solutions of (1.2) to those of a Volterra integral equation when g(t) ≡ b, a
constant. It will be extended to all polynomials in Section 7.
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Lemma 4.2. Let a, b, and q be constants with a > 0, b ∈ R, and q ∈ (0, 1). If there is a continuous solution
of the fractional relaxation equation

Dqx(t) = −ax(t) + b (4.2)

on the interval [0,∞), then it is also a solution of

x(t) = βtq − λ
∫ t

0
(t− s)q−1x(s) ds (4.3)

on [0,∞) when β and λ have the values

β =
b

Γ(q + 1)
and λ =

a

Γ(q)
. (4.4)

Conversely, let β ∈ R and λ > 0 and suppose there is a continuous solution of the integral equation (4.3) on
[0,∞). Then it is also a continuous solution of (4.2) on [0,∞) when

a = λΓ(q) and b = βΓ(q + 1). (4.5)

Proof. Let β ∈ R and λ > 0 be given constants. Then let a and b be defined by (4.5). Suppose there is a
continuous function x(t) that satisfies the integral equation (4.3) on [0,∞). Expressing this in terms of the
Riemann-Liouville integral operator (2.3), we obtain

x(t) = βtq − λΓ(q) · 1

Γ(q)

∫ t

0
(t− s)q−1x(s) ds = βtq − aJqx(t).

Applying the Riemann-Liouville differential operator Dq to this and using Theorem 4.1, we get

Dqx(t) = βΓ(q + 1)− ax(t) = b− ax(t)

since Dqtq = Γ(1 + q) (cf. Lemma 3.3). In other words, the function x(t) must also be a solution of (4.2) on
[0,∞). Note from (4.3) that x(0) = 0.

Now let a > 0 and b ∈ R be given constants. Then define constants β ∈ R and λ > 0 by (4.4) and
suppose x(t) is a continuous function satisfying (4.2) on [0,∞). And so

DJ1−qx(t) = −ax(t) + b

since Dq = DJ1−q. For a fixed t > 0, let η ∈ (0, t). The integration∫ t

η

d

ds
J1−qx(s) ds =

∫ t

η
(−ax(s) + b) ds

yields

J1−qx(t)− J1−qx(η) = −a
∫ t

η
x(s) ds+ b(t− η). (4.6)

Lemma 3.1 in [3, p. 5] implies that

lim
η→0+

J1−qx(η) =
1

Γ(1− q)
lim
η→0+

∫ η

0
(η − s)−qx(s) ds = 0. (4.7)

Because of this and the continuity of x on [0,∞), we obtain

J1−qx(t) = −a
∫ t

0
x(s) ds+ bt = −aJx(t) + bt
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upon taking the limit of both sides of (4.6) as η → 0+. Then the application of D1−q yields

D1−qJ1−qx(t) = −aD1−qJx(t) + bD1−qt,

which because of Theorem 4.1 and (2.5) simplifies to

x(t) = −aDJqJx(t) + bD1−qt. (4.8)

It follows from [4, Lemma 4.8] that

DJqJx(t) = DJJqx(t) = Jqx(t)

and from Lemma 3.3 that
D1−qt =

1

Γ(q + 1)
tq.

Therefore, we conclude from (4.8) that any continuous solution of (4.2) on [0,∞) must also be a solution of

x(t) = −aJqx(t) +
b

Γ(q + 1)
tq

= − a

Γ(q)

∫ t

0
(t− s)q−1x(s) ds+ βtq = βtq − λ

∫ t

0
(t− s)q−1x(s) ds.

Moreover, we see from this integral equation that x(0) = 0.

Remark 4.3. Observe in the statement of Lemma 4.2 that no initial condition accompanies the fractional
differential equation (4.2). At first this may appear to be an oversight until we realize from the proof that
positing the existence of a continuous solution x(t) of (4.2) for t ≥ 0 implies x(0) = 0.

With the next theorem we complete what was initiated with Lemma 4.2 and that is to show that (4.2)
and (4.3) do in fact share the same continuous solution on [0,∞). But first let us dispose of the special case
b = 0.

Lemma 4.4. There is one and only one continuous solution of

Dqx(t) = −ax(t) (a > 0) (4.9)

on [0,∞); it is the trivial solution x(t) ≡ 0.

Proof. It follows from Lemma 4.2 that any continuous solution of (4.9) on [0,∞) must also be a continuous
solution of

x(t) = −λ
∫ t

0
(t− s)q−1x(s) ds

where λ = a/Γ(q). But the only solution of this integral equation is x(t) ≡ 0 (cf. [3, p. 15]).

Theorem 4.5. For given constants a > 0, b ∈ R, and q ∈ (0, 1), the fractional relaxation equation (4.2) has
one and only one continuous solution on [0,∞), namely

x(t) =
b

a

∫ t

0
R(s) ds =

b

a
[1− Eq(−atq)] , (4.10)

where R denotes the resolvent corresponding to λ = a/Γ(q). This is also the unique continuous solution of
the integral equation (4.3) on [0,∞) when β and λ have the values given by (4.4).
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Proof. First consider the integral equation (4.3) where β ∈ R and λ > 0 are given constants. From [3,
Thm. 8.3] we know that if a function f is continuous on the interval [0,∞), then

x(t) = f(t)− λ
∫ t

0
(t− s)q−1x(s) ds

has a unique continuous solution on [0,∞). Moreover, this solution is given by the linear variation of
parameters formula:

x(t) = f(t)−
∫ t

0
R(t− s)f(s) ds.

Taking f(t) = βtq, this becomes

x(t) = βtq −
∫ t

0
R(t− s)βsq ds = βtq − β

∫ t

0
(t− u)qR(u) du. (4.11)

In other words, this is the unique continuous solution of (4.3) on [0,∞).
But we can simplify (4.11) as follows: integrating the resolvent equation (Rλ) and interchanging the order

of integration (cf. Thm. 3.1), we obtain∫ t

0
R(s) ds =

λ

q
tq − λ

q

∫ t

0
(t− u)qR(u) du.

Thus, ∫ t

0
(t− u)qR(u) du = tq − q

λ

∫ t

0
R(s) ds.

Substituting this into (4.11) and defining a and b by (4.5), we get

x(t) = βtq − β
[
tq − q

λ

∫ t

0
R(s) ds

]
= βq · 1

λ

∫ t

0
R(s) ds

=
bq

Γ(q + 1)
· Γ(q)

a

∫ t

0
R(s) ds =

b

a

∫ t

0
R(s) ds.

In [3, Thm. 9.5], we find the formula ∫ t

0
R(s) ds = 1− Eq(−atq).

Therefore (4.10) is the unique continuous solution of (4.3). Moreover, Lemma 4.2 implies that it is also the
unique continuous solution of (4.2) on [0,∞).

Remark 4.6. We have shown that there is one and only one continuous solution x(t) of the fractional
relaxation equation (4.2) on the half-closed interval [0,∞). Moreover, from (4.10) we see that x(0) = 0.
Thus, the initial value problem

Dqx(t) = −ax(t) + b, x(0) = x0

has no continuous solution on [0,∞) unless x0 = 0.
Also, observe that if we formally let q = 1 in (4.10), then it simplifies to

x(t) =
b

a
[1− E1(−at)] =

b

a

(
1− e−at

)
(4.12)

since E1(z) = ez (cf. (3.3)). Note that this is the unique continuous solution of the classical initial value
problem

x′(t) = −ax(t) + b, x(0) = 0.
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Corollary 4.7. If b 6= 0, then solution (4.10) has the following properties:

(i) x(0) = 0.
(ii) limt→∞ x(t) = b/a.
(iii) If b > 0 (b < 0), then x(t) is strictly increasing (decreasing) on [0,∞) and x(t) > 0 (x(t) < 0) for all

t > 0.
(iv) If b > 0 (b < 0), then x(t) is concave downward (upward) on (0,∞).
(v) If b > 0, then the derivative x′(t) is completely monotone on (0,∞), whereas −x′(t) is completely

monotone on (0,∞) if b < 0.

Proof. Properties (i) and (ii) follow from (4.10) from which we see that x(0) = 0 and

lim
t→∞

x(t) =
b

a
lim
t→∞

∫ t

0
R(s) ds =

b

a

∫ ∞
0

R(s) ds =
b

a
.

Since the derivative of (4.10) is

x′(t) =
b

a

d

dt

∫ t

0
R(s) ds =

b

a
R(t), (4.13)

it follows that x′(t) > 0 if b > 0. And so x(t) is strictly increasing on [0,∞). This together with x(0) = 0
implies that x(t) > 0 for t > 0. Likewise, if b < 0, then x(t) is strictly decreasing on [0,∞) and x(t) < 0 for
t > 0. This concludes the proof of (iii).

To prove (iv), we use the result stated in Section 1 that the resolvent R is a completely monotone function
on (0,∞). Thus,

x′′(t) =
b

a
R′(t).

And so x′′(t) ≤ 0 if b > 0 and x′′(t) ≥ 0 if b < 0.
Finally, (v) follows from (4.13) and the complete monotonicity of R.

Example 4.8. We illustrate some of the properties of solutions of (4.2) that are enumerated in Corollary 4.7
by choosing two different values of q and graphing the corresponding solutions (4.10). For both values, let
a = b = 1.

First let q = 1/2. Then (4.10) is
x(t) = 1− E1/2(−

√
t).

According to [10, (1.8.6)],
E1/2(z) = ez

2
[1 + erf(z)]

where erf(z) is the error function:

erf(z) :=
2√
π

∫ z

0
e−u

2
du. (4.14)

Thus,
x(t) = 1− et

[
1 + erf(−

√
t)
]

= 1− et + et erf(
√
t) (4.15)

is the unique continuous solution of
D1/2x(t) = −x(t) + 1 (4.16)

on [0,∞). The graph of (4.15) is the solid concave-downward curve in Figure 1. (All the graphs in this paper
were created with MapleTM 17.)

Now let q = 1/3. By (4.10) the unique continuous solution of

D1/3x(t) = −x(t) + 1 (4.17)

on [0,∞) is
x(t) = 1− E1/3(−

3
√
t). (4.18)
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Figure 1: Solutions (1.5), (1.6), (4.15) and (4.21).

The second term can be calculated with the help of formula (1.8.5) in [10]: for m = 2, 3, 4, . . . ,

E1/m(z) = ez
m

[
1 +m

∫ z

0
e−u

m

(
m−1∑
k=1

uk−1

Γ(k/m)

)
du

]
.

Consequently,

E1/3(t) = et
3

[
1 + 3

∫ t

0
e−u

3

(
1

Γ(1/3)
+

u

Γ(2/3)

)
du

]
= et

3

[
1 +

3

Γ(1/3)

∫ t

0
e−u

3
du+

3

Γ(2/3)

∫ t

0
u e−u

3
du

]
. (4.19)

We can also express the solution (4.18) in terms of the lower incomplete gamma function γ(a, z), namely

γ(a, z) :=

∫ z

0
ua−1e−u du. (4.20)

Changing the variable of integration to z = u3, we obtain∫ t

0
e−u

3
du =

1

3

∫ t3

0
z−2/3e−z dz =

1

3
γ(1/3, t3).

Likewise, the same change of variable yields∫ t

0
u e−u

3
du =

1

3

∫ t3

0
z−1/3e−z dz =

1

3
γ(2/3, t3).

Thus,

E1/3(t) = et
3

[
1 +

γ(1/3, t3)

Γ(1/3)
+
γ(2/3, t3)

Γ(2/3)

]
.

Therefore, an alternative form of (4.18) is

x(t) = 1− e−t
[
1 +

γ(1/3,−t)
Γ(1/3)

+
γ(2/3,−t)

Γ(2/3)

]
. (4.21)

Its graph is the concave-downward dashed curve in Figure 1.
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5. Generalization of the equation of motion of a falling body

Consider the vertical downward motion of a body of mass m when it is released from rest above the
ground. Besides the force due to gravity and the resisting force (drag force) exerted on the body as it moves
through the air, assume that all other forces acting on the body are negligible. Also, let us suppose that the
drag force is proportional to the velocity v of the body. Since the direction of the drag force is opposite that
of the velocity of the body (downward, which we take as negative), the drag force Fd points upward. Thus
Fd = −kmv, where the proportionality constant k > 0. Since the gravitational force acting on the body is
Fg = −mg, Newton’s second law of motion yields

m
dv

dt
= Fg + Fd = −mg − kmv.

Hence, we obtain the familiar classical equation of motion

dv

dt
= −kv − g, v(0) = 0 (5.1)

that is found in most undergraduate physics textbooks, such as [13, p. 68]. Solving (5.1) by either separating
variables or using the integrating factor ekt, we obtain the solution

v(t) = −g
k

+
g

k
e−kt. (5.2)

Now suppose we generalize the equation of motion (5.1) by replacing the classical differential operator
d/dt with the Riemann-Liouville operator Dq. But this does not make complete sense due to the dimensional
inconsistency of the units, where we see from (5.1) that k has the dimension of inverse time. However, we
can rectify this with the replacement

d

dt
→ k1−qDq

suggested by Rosales et al. in [18, p. 519]. (Actually they use the Caputo fractional derivative; however, since
q ∈ (0, 1) and the initial condition is v(0) = 0, the Caputo and Riemann-Liouville derivatives are equivalent.)
Consequently, the fractional generalization of (5.1) is

k1−qDqv = −kv − g, v(0) = 0

or
Dqv = −kqv − kq−1g, v(0) = 0. (5.3)

From Theorem 4.5 we see that the unique continuous solution of (5.3) is

v(t) = −g
k

+
g

k
Eq(−(kt)q). (5.4)

This agrees with the velocity formula in [18]. Note that by formally letting q = 1, (5.4) simplifies to (5.2)
because of (3.3).

6. Repeated integration of the resolvent

Lemma 6.1. Let R(t) be the resolvent, namely, the unique continuous solution of (Rλ) on (0,∞). Then∫ t

0
R(s) ds =

λ

q

[
tq −

∫ t

0
(t− u)qR(u) du

]
(6.1)

for t ≥ 0.
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Proof. Integrating (Rλ) and interchanging the order of integration (cf. Thm. 3.1), we get∫ t

0
R(s) ds = λ

∫ t

0
sq−1 ds− λ

∫ t

0

∫ s

0
(s− u)q−1R(u) du ds

=
λ

q
tq − λ

∫ t

0

(∫ t

u
(s− u)q−1 ds

)
R(u) du

=
λ

q
tq − λ

q

∫ t

0
(t− u)qR(u) du.

Theorem 6.2. Let n ∈ N. The nth repeated integral of the resolvent R(t), namely

JnR(t) =

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
R(t1) dt1,

is given by the formula

JnR(t) =
λΓ(q)

Γ(q + n)

[
tq+n−1 −

∫ t

0
(t− u)q+n−1R(u) du

]
(6.2)

for t ≥ 0.

Proof. It follows from Lemma 6.1 that formula (6.2) holds for n = 1. Let us show via a proof by induction
that it holds for all n ∈ N.

Suppose for some k ∈ N that (6.2) holds for n = k. Then

Jk+1R(t) =

∫ t

0
JkR(s) ds

=
λΓ(q)

Γ(q + k)

∫ t

0

[
sq+k−1 −

∫ s

0
(s− u)q+k−1R(u) du

]
ds

=
λΓ(q)

Γ(q + k)

[
tq+k

q + k
−
∫ t

0

∫ s

0
(s− u)q+k−1R(u) du ds

]
.

Interchanging the order of integration as in Theorem 3.1, we obtain

Jk+1R(t) =
λΓ(q)

Γ(q + k)

[
tq+k

q + k
−
∫ t

0

(∫ t

u
(s− u)q+k−1 ds

)
R(u) du

]
=

λΓ(q)

Γ(q + k)

[
1

q + k
tq+k − 1

q + k

∫ t

0
(t− u)q+kR(u) du

]
=

λΓ(q)

Γ(q + k + 1)

[
tq+k −

∫ t

0
(t− u)q+kR(u) du

]
.

This shows that (6.2) holds for n = k + 1 if it holds for n = k. Therefore, by induction, (6.2) holds for all
n ∈ N.

Corollary 6.3. Let m ∈ N0, λ > 0, and q ∈ (0, 1). Let R(t) be the resolvent corresponding to the parameter
λ, i.e., the unique continuous solution of (Rλ). Then∫ t

0
(t− s)q+mR(s) ds = tq+m − 1

λ
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds. (6.3)

Proof. From Theorems 3.2 and 6.2, we have two different formulas for JnR(t). As a result, setting n = m+1
in (3.1) and (6.2), we get

λΓ(q)

Γ(q +m+ 1)

[
tq+m −

∫ t

0
(t− s)q+mR(s) ds

]
=

1

m!

∫ t

0
(t− s)mR(s) ds.

Now solve this for the integral on the left-hand side.
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7. Solution of (1.2) for a given polynomial g

The first result of this section generalizes Lemma 4.2.

Lemma 7.1. Let a > 0, b ∈ R, m ∈ N0, and q ∈ (0, 1). If there is a continuous solution of

Dqx(t) = −ax(t) + btm (7.1)

on [0,∞), then it is also a solution of

x(t) = βtq+m − λ
∫ t

0
(t− s)q−1x(s) ds (7.2)

on [0,∞) when

β =
bm!

Γ(q +m+ 1)
and λ =

a

Γ(q)
. (7.3)

Conversely, let β ∈ R and λ > 0 and suppose there is a continuous solution of (7.2) on [0,∞). Then it is
also a continuous solution of (7.1) on [0,∞) when

a = λΓ(q) and b =
β

m!
Γ(q +m+ 1). (7.4)

Proof. Equation (7.2), written in terms of the Riemann-Liouville integral operator, is

x(t) = βtq+m − λΓ(q)Jqx(t).

Applying the differential operator Dq, we get

Dqx(t) = βDqtq+m − λΓ(q)DqJqx(t) = β
Γ(q +m+ 1)

Γ(m+ 1)
tm − ax(t)

=
β

m!
Γ(q +m+ 1)tm − ax(t) = −ax(t) + btm,

where we have used Theorem 4.1, Lemma 3.3, and (7.4). Thus, if a continuous solution of (7.2) exists for
t ≥ 0, it must also be a solution of (7.1) when a and b have the values given by (7.4).

Conversely, suppose there exists a continuous solution x(t) of (7.1) on [0,∞); hence

DJ1−qx(t) = −ax(t) + btm.

Integrating, as in the proof of Lemma 4.2, we have∫ t

η

d

ds
J1−qx(s) ds =

∫ t

η
(−ax(s) + bsm) ds

or

J1−qx(t)− J1−qx(η) =

∫ t

η
(−ax(s) + bsm) ds. (7.5)

Taking the limit of both sides as η → 0+, we obtain

J1−qx(t) =

∫ t

0
(−ax(s) + bsm) ds = −aJx(t) +

b

m+ 1
tm+1

since J1−qx(η)→ 0 (cf. (4.7)). Applying D1−q, we get

D1−qJ1−qx(t) = −aDJqJx(t) +
b

m+ 1
DJqtm+1
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or
x(t) = −aJqx(t) +

b

m+ 1
· Γ(m+ 2)

Γ(m+ q + 1)
tm+q

because of Lemma 3.3 and Theorem 4.1. Since m ∈ N0, this simplifies to

x(t) = −aJqx(t) +
bm!

Γ(m+ q + 1)
tm+q.

We conclude that if a continuous solution x(t) of (7.1) exists, then it must also be a solution of

x(t) =
bm!

Γ(m+ q + 1)
tm+q − a

Γ(q)

∫ t

0
(t− s)q−1x(s) ds.

In the next theorem we prove that (7.1) does have a unique continuous solution on [0,∞). Moreover, with
the following formula, which is found in [17, p. 25], we show how to express it in terms of a Mittag-Leffler
function.

Lemma 7.2. Let γ ∈ R and α, β, p ∈ R+. Then∫ t

0
(t− s)p−1Eα,β(γsα)sβ−1 ds = Γ(p)tp+β−1Eα,β+p(γt

α) (7.6)

for t > 0.

Proof. Let us use (1.4) to write the integrand as the sum

(t− s)p−1Eα,β(γsα)sβ−1 = (t− s)p−1
( ∞∑
k=0

(γsα)k

Γ(kα+ β)

)
sβ−1 =

∞∑
k=0

gk(s),

where

gk(s) := (t− s)p−1 γk

Γ(kα+ β)
skα+β−1.

Using an integration formula in [4, (4.4)] (or [6, p. 229 ]), we find for t > 0 that∫ t

0
|gk(s)| ds =

|γ|k

Γ(kα+ β)

∫ t

0
(t− s)p−1skα+β−1 ds

=
|γ|k

Γ(kα+ β)
tp+kα+β−1

Γ(p)Γ(kα+ β)

Γ(p+ kα+ β)
= Γ(p)tp+β−1

(|γ|tα)k

Γ(kα+ β + p)
<∞.

It then follows from a generalization of Levi’s theorem for series ([2, p. 269]) that∫ t

0
(t− s)p−1Eα,β(γsα)sβ−1 ds =

∫ t

0

∞∑
k=0

gk(s) ds =

∞∑
k=0

∫ t

0
gk(s) ds

= Γ(p)tp+β−1
∞∑
k=0

(γtα)k

Γ(kα+ β + p)
= Γ(p)tp+β−1Eα,β+p(γt

α).

With the integration formulas involving the resolvent that we found in Section 6.1 and the variation of
parameters formula that was used earlier in the proof of Theorem 4.5, we can now establish the existence of
continuous solutions of equations (7.1) and (7.2) on [0,∞) and their uniqueness.
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Theorem 7.3. Let a > 0, b ∈ R, m ∈ N0, and q ∈ (0, 1). The fractional relaxation equation (7.1) has the
unique continuous solution

x(t) =
b

a

∫ t

0
(t− s)mR(s) ds = bm! tq+mEq,q+m+1(−atq) (7.7)

on [0,∞), where R denotes the resolvent corresponding to λ = a/Γ(q). It is also the unique continuous
solution of the integral equation (7.2) on [0,∞) when β and λ have the values given by (7.3).

Proof. First consider the integral equation (7.2) for given values of β ∈ R and λ > 0. By the variation of
parameters formula, the function

x(t) = βtq+m −
∫ t

0
R(t− s)βsq+m ds = βtq+m − β

∫ t

0
(t− s)q+mR(s) ds

is the unique continuous solution of (7.2) on [0,∞). Because of Corollary 6.3, this solution can be simplified
as follows: first define a and b by (7.4). Then

x(t) = βtq+m − β
[
tq+m − 1

λ
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds

]
=
β

λ
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds

=
bm!

Γ(q +m+ 1)
· Γ(q)

a
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds

=
b

a

∫ t

0
(t− s)mR(s) ds. (7.8)

In short, we have shown that (7.8) is the unique continuous solution of (7.2) on [0,∞) if a and b have the
values given by (7.4). Furthermore, we can see from Lemma 7.1 that it is also the unique continuous solution
of the fractional differential equation (7.1) on [0,∞).

Finally, let us show how to express (7.8) in terms of a Mittag-Leffler function. From (1.3) we find that
the resolvent of (Rλ) corresponding to λ = a/Γ(q) is

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq) = atq−1Eq,q(−atq).

Hence, from (7.8) we have

x(t) =
b

a

∫ t

0
(t− s)mR(s) ds = b

∫ t

0
(t− s)msq−1Eq,q(−asq) ds.

Then, by setting p = m+ 1, α = β = q, and γ = −a in Lemma 7.2, we obtain

x(t) = bΓ(m+ 1)t(m+1)+q−1Eq,q+m+1(−atq) = bm!tm+qEq,q+m+1(−atq)

for t > 0. Note this formula is also valid for t = 0 since from (7.8) we see that x(0) = 0.

Remark 7.4. According to (7.7), the solution of (7.1) when m = 0 is

x(t) =
b

a

∫ t

0
R(s) ds = b tqEq,q+1(−atq).

From equations (9.7) and (9.8) in [3], we see that

tqEq,q+1(−atq) =
1

a
[1− Eq(−atq)] .

Thus,

x(t) =
b

a
[1− Eq(−atq)] ,

which is precisely what was stated in Theorem 4.5.
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Remark 7.5. If we disregard the hypothesis that q ∈ (0, 1) and set q = 1, then (7.7) becomes

x(t) = bm! t1+mE1,2+m(−at).

Can this formal substitution be justified? In [6, p. 69] and [17, p. 18], we find the formulas:

E1,1(x) = ex and E1,n(x) =
1

xn−1

(
ex −

n−2∑
k=0

xk

k!

)
for n = 2, 3, . . . .

Setting n = 2 +m and x = −at, we obtain

x(t) = bm! t1+m
1

(−at)m+1

(
e−at −

m∑
k=0

(−at)k

k!

)

= (−1)m+1 bm!

am+1
e−at − (−1)m+1 bm!

am+1

m∑
k=0

(−at)k

k!

= (−1)m+1 bm!

am+1
e−at +

b

a

m∑
k=0

(−1)m+2+k m!

am−kk!
tk.

Thus,

x(t) =
b

a

m∑
k=0

(−1)m−k
m!

k! am−k
tk +

b

a
(−1)m+1m!

am
e−at. (7.9)

Writing out some of the terms of (7.9), we have

x(t) =
b

a

[
(−1)m

m!

am
+ (−1)m−1

m!

am−1
t+ · · ·+ tm

]
+ (−1)m+1 bm!

am+1
e−at.

Now note that when we evaluate this at t = 0, we get

x(0) = (−1)m
bm!

am+1
+ (−1)m+1 bm!

am+1
= 0,

which agrees with the value of (7.7) at t = 0. Also note that the fractional differential operator Dq is defined
to be the ordinary first-order differential operator D when q = 1 (cf. Def. 2.3). So the formal substitution
q = 1 in (7.7) suggests that (7.9) is the solution of the classical initial value problem

x′(t) = −ax(t) + btm, x(0) = 0. (7.10)

Let us see if this is truly the case.
By the classical variation of parameters formula, the solution of (7.10) is

x(t) = e−atx(0) +

∫ t

0
e−a(t−s)bsm ds, (7.11)

which simplifies to

x(t) = be−at
∫ t

0
smeas ds

since x(0) = 0. Integrating by parts or consulting a table of integrals, such as [9, 2.321], we find that∫
smeas ds = eas

m∑
k=0

(−1)k
k!

ak+1

(
m

k

)
sm−k.
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Hence,

x(t) = be−at
∫ t

0
smeas ds = b

m∑
k=0

(−1)k
k!

ak+1

(
m

k

)
tm−k − b(−1)m

m!

am+1
e−at

=
b

a

m∑
k=0

(−1)k
m!

(m− k)!ak
tm−k +

b

a
(−1)m+1m!

am
e−at.

With an appropriate change in the index of summation, we see that this is equivalent to (7.9). In sum, we
have shown that (7.9) does in fact solve the classical initial value problem (7.10).

Because of Corollary 6.3 and Theorem 7.3, we can express the convolution of tp for p > −1 and the
resolvent R in terms of two-parameter Mittag-Leffler functions. This is the content of the next result.

Corollary 7.6. Let m ∈ N0. Let R be the resolvent of (Rλ); that is,

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq)

where λ > 0 and 0 < q < 1. Then for p > −1,∫ t

0
(t−s)pR(s) ds

=


tq−1 − Γ(q)tq−1Eq,q(−λΓ(q)tq) if p = q − 1

λΓ(q)m! tq+mEq,q+m+1(−λΓ(q)tq) if p = m

tq+m − Γ(q +m+ 1)tq+mEq,q+m+1(−λΓ(q)tq) if p = m+ q.

Proof. Suppose p = q − 1. Then it follows from (Rλ) and (1.3) that∫ t

0
(t− s)q−1R(s) ds = tq−1 − 1

λ
R(t) = tq−1 − 1

λ

[
λΓ(q)tq−1Eq,q(−λΓ(q)tq)

]
= tq−1 − Γ(q)tq−1Eq,q(−λΓ(q)tq).

Now suppose p = m where m ∈ N0. Then from Theorem 7.3 we have∫ t

0
(t− s)mR(s) ds = am! tq+mEq,q+m+1(−atq)

= λΓ(q)m! tq+mEq,q+m+1(−λΓ(q)tq)

since a = λΓ(q).
Finally consider the case when p = m+ q. Then it follows from the previous case and Corollary 6.3 that∫ t

0
(t− s)m+qR(s) ds

= tq+m − 1

λ
· Γ(q +m+ 1)

Γ(q)m!
· λΓ(q)m! tq+mEq,q+m+1(−λΓ(q)tq)

= tq+m − Γ(q +m+ 1)tq+mEq,q+m+1(−λΓ(q)tq).

Our final result employs Theorem 7.3 to obtain the unique continuous solution of

Dqx(t) = −ax(t) + g(t) (1.2)

on the interval [0,∞) when g(t) is a given polynomial.
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Theorem 7.7. Let q ∈ (0, 1) and a > 0. Let n ∈ N0 and bm ∈ R for m = 0, 1, 2, . . . , n. The fractional
relaxation equation

Dqx(t) = −ax(t) +

n∑
m=0

bmt
m (7.12)

has one and only one continuous solution on [0,∞), namely,

x(t) =
n∑

m=0

bmm!tq+mEq,q+m+1(−atq). (7.13)

Proof. For m = 0, 1, . . . , n, let xm denote the continuous solution of

Dqx(t) = −ax(t) + bmt
m

on [0,∞), whose existence and uniqueness was established with Theorem 7.3. It is clear from (2.7) that Dq

is a linear operator. Consequently,

Dq

(
n∑

m=0

xm(t)

)
=

n∑
m=0

Dqxm(t) =
n∑

m=0

(−axm(t) + bmt
m)

= −a
n∑

m=0

xm(t) +

n∑
m=0

bmt
m = −a

n∑
m=0

xm(t) + g(t)

where

g(t) :=
n∑

m=0

bmt
m. (7.14)

Thus x(t) :=
∑n

m=0 xm(t) is a continuous solution of (7.12) on [0,∞).
As for uniqueness, suppose that y(t) is also a continuous solution. Applying the operator Dq to

z(t) := x(t)− y(t),

we get
Dqz(t) = −ax(t) + g(t)− [−ay(t) + g(t)] = −a [x(t)− y(t)] = −az(t)

for t ≥ 0. It follows from Lemma 4.4 that z(t) ≡ 0. In other words, y(t) ≡ x(t) on [0,∞).
Finally, we obtain (7.13) from (7.7).

Example 7.8. The equation
D1/2x(t) = −x(t) + 1− 3t− 2t2 + t3 (7.15)

has the unique continuous solution

x(t) = t3 − 16

5
√
π
t5/2 + t2 − 8

3
√
π
t3/2 − t+

2√
π
t1/2 (7.16)

on the interval [0,∞).

Proof. Referring to (7.12) and (7.14), we have q = 1/2, a = 1, and

g(t) =
3∑

m=0

bmt
m = 1− 3t− 2t2 + t3 (7.17)

where
b0 = 1, b1 = −3, b2 = −2, b3 = 1.
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Accordingly, we see from (7.13) that

x(t) =

3∑
m=0

bmm!t
1
2
+mE 1

2
, 1
2
+m+1(−

√
t)

= t
1
2E 1

2
, 3
2
(−
√
t)− 3t

3
2E 1

2
, 5
2
(−
√
t)− 4t

5
2E 1

2
, 7
2
(−
√
t) + 6t

7
2E 1

2
, 9
2
(−
√
t)

is the unique continuous solution of (7.15) on [0,∞).
Each of these four terms can be expressed as a finite sum of powers of t and a constant multiple of

et erf(
√
t). For instance, consider the second term. From (1.4) we have

E 1
2
, 5
2
(t) =

∞∑
k=0

tk

Γ(12k + 5
2)
. (7.18)

By the Cauchy-Hadamard formula for convergence and Stirling’s formula for the Gamma function, the power
series (1.4) defining Eα,β(z) converges absolutely for all z in the complex plane (cf. [6, p. 68]), and a fortiori
for all real values of z. Consequently, we can rearrange the terms of (7.18) as follows:

E 1
2
, 5
2
(t) =

∞∑
k=2

t2k−3

Γ(k + 1)
+

∞∑
k=2

t2k−4

Γ(k + 1
2)
.

In [1, (6.1.12)] we find the formula

Γ
(
k + 1

2

)
=

1 · 3 · 5 · 7 . . . (2k − 1)

2k
Γ
(
1
2

)
.

Thus,

E 1
2
, 5
2
(t) =

∞∑
k=2

t2k−3

k!
+

1√
π

∞∑
k=2

2kt2k−4

1 · 3 · 5 · 7 . . . (2k − 1)
.

It then follows that

t
3
2E 1

2
, 5
2
(−
√
t) = −

∞∑
k=2

tk

k!
+

1√
π

∞∑
k=2

2ktk−
1
2

1 · 3 · 5 · 7 . . . (2k − 1)

= 1 + t−
∞∑
k=0

tk

k!
− 2√

π
t
1
2 +

1√
π

∞∑
k=1

2ktk−
1
2

1 · 3 · 5 · 7 . . . (2k − 1)

= 1 + t− et − 2√
π
t
1
2 +

2√
π

∞∑
k=1

2k−1tk−
1
2

1 · 3 · 5 · 7 . . . (2k − 1)
.

Changing the index of summation, we have

t
3
2E 1

2
, 5
2
(−
√
t) = 1 + t− et − 2√

π
t
1
2 +

2√
π

∞∑
n=0

2ntn+
1
2

1 · 3 · 5 · 7 . . . (2n+ 1)
.

Employing the series expansion

et
2

erf(t) =
2√
π

∞∑
n=0

2nt2n+1

1 · 3 · 5 · 7 . . . (2n+ 1)

found in [1, (7.1.6)], we see that

− 3t
3
2E 1

2
, 5
2
(−
√
t) = −3− 3t+ 3et +

6√
π
t
1
2 − 3et erf(

√
t). (7.19)
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Similar calculations yield the following:

t
1
2E 1

2
, 3
2
(−
√
t) = 1− et + et erf(

√
t), (7.20)

− 4t
5
2E 1

2
, 7
2
(−
√
t) = −4− 4t− 2t2 + 4et +

16

3
√
π
t
3
2 − 8√

π
t
1
2 − 4et erf(

√
t), (7.21)

and

6t
7
2E 1

2
, 9
2
(−
√
t) = 6 + 6t+ 3t2 + t3 − 6et − 16

5
√
π
t
5
2 − 8√

π
t
3
2

− 12√
π
t
1
2 + 6et erf(

√
t). (7.22)

Adding together the terms (7.19)–(7.22), we obtain (7.16).

As in Remark 7.5, let us compare the solution (7.16) of the fractional relaxation equation (7.15) with the
solution of the initial value problem

y′(t) = −y(t) + 1− 3t− 2t2 + t3, y(0) = 0. (7.23)

Applying the variation of parameters formula or simply multiplying the differential equation by the inte-
grating factor et and then integrating by parts and using the initial condition y(0) = 0, we obtain the
solution

y(t) = −6 + 7t− 5t2 + t3 + 6e−t. (7.24)

The graph of the solution y(t) (dashed curve) is shown in Figure 2. The solid curve is the graph of the
solution (7.16) of the fractional relaxation equation (7.15). The curve that begins at (0, 1) (dotted curve ) is
the graph of the polynomial (7.17).

Figure 2: Graphs of (7.16), (7.17), and (7.24).
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Abstract

We prove a fixed point theorem for a kind of Ćirić type contractions in complete metric spaces. In order to
demonstrate the assumption of the fixed point theorem, we give an example. We also clarify the mathematical
structure of some fixed point theorem proved by Mınak-Helvacı-Altun and Wardowski-Dung independently.
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1. Introduction

Throughout this paper we denote by N the set of all positive integers and by R the set of all real numbers.
In 2012, Wardowski in [10] introduced the concept of F -contraction and proved the following fixed point

theorem.

Theorem 1.1 (Theorem 2.1 in Wardowski [10]). Let (X, d) be a complete metric space and let T be a F-
contraction on X, that is, there exist a function F from (0,∞) into R and real numbers τ ∈ (0,∞) and
k ∈ (0, 1) satisfying the following:

(F1) F is strictly increasing.
(F2) For any sequence {αn} of positive numbers, limn αn = 0 ⇔ limn F (αn) = −∞.
(F3) lim[tk F (t) : t→ +0] = 0.
(F4) τ + F ◦ d(Tx, Ty) ≤ F ◦ d(x, y) for any x, y ∈ X with Tx 6= Ty.

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Email address: suzuki-t@mns.kyutech.ac.jp (Tomonari Suzuki)
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In 2014, Mınak, Helvacı and Altun in [6] and Wardowski and Dung in [11] independently proved the
following fixed point theorem.

Theorem 1.2 (Theorem 2.2 in [6], Theorem 2.4 in [11]). Let (X, d) be a complete metric space and let T be
a mapping on X. Assume that there exist a function F from (0,∞) into R and real numbers τ ∈ (0,∞) and
k ∈ (0, 1) satisfying (F1)–(F3) and the following:

(F5) τ + F ◦ d(Tx, Ty) ≤ F ◦ L(x, y) for any x, y ∈ X with Tx 6= Ty, where L is defined by

L(x, y) = max
{
d(x, y),

d(x, Ty) + d(Tx, y)

2
, d(x, Tx), d(y, Ty)

}
. (1.1)

Assume also either of the following:

(F6) T is continuous.
(F7) F is continuous.

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

We assume (F6) or (F7) additionally. So, we note that Theorem 1.2 is not a generalization of Theorem
1.1. Also F appears in both sides of (F5). So, we do not understand the mathematical structure of Theorem
1.2 easily.

Motivated by the above, in this paper, we clarify the mathematical structure of Theorem 1.2. Indeed, in
the case of (F6), we can prove Theorem 1.2 by using the known result (Theorem 4.1). Also we can weaken
the assumption of (F7) (see Theorem 2.1). In both cases, we do not use F . Finally we give an example
(Example 5.1), which implies that we cannot generalize Theorem 1.1 with using L. Also, Example 5.1 tells
that the assumption of the new fixed point theorem (Theorem 2.1) is reasonably weak.

2. Main Result

In this section, we prove the following fixed point theorem.

Theorem 2.1. Let (X, d) be a complete metric space and let T be a mapping on X. Define a function L
from X ×X into [0,∞) by (1.1). Assume that there exists a function ϕ from [0,∞) into itself satisfying the
following:

(i) ϕ(t) < t for any t ∈ (0,∞).
(ii) For any ε > 0, there exists δ > 0 such that

ε < t < ε+ δ implies ϕ(t) ≤ ε.

(iii) d(Tx, Ty) ≤ ϕ ◦ L(x, y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Remark 2.2.

• Define a subset Q of [0,∞)2 by

Q =
{(
L(x, y), d(Tx, Ty)

)
: x, y ∈ X

}
. (2.1)

Then Q satisfies Condition C(0, 1, 0) (see Section 3).

• Since we do not assume the nondecreasingness of ϕ, we cannot prove this theorem by using Theorem 5
in [9].
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Proof of Theorem 2.1. Since L(x, y) = 0 implies d(Tx, Ty) = 0, without loss of generality, we may assume
ϕ(0) = 0. By (i), we can easily prove that (ii) is equivalent to the following:

(ii’) For any ε > 0, there exists δ > 0 such that t < ε+ δ implies ϕ(t) ≤ ε.

We will show the following:

x 6= y ⇒ d(Tx, Ty) < L(x, y), (2.2)
d(Tx, Ty) ≤ L(x, y). (2.3)

Indeed, if x 6= y holds, then L(x, y) > 0 holds. We have by (i) and (iii)

d(Tx, Ty) ≤ ϕ ◦ L(x, y) < L(x, y).

Thus (2.2) holds. If x = y holds, then we have

d(Tx, Ty) = 0 ≤ L(x, y).

Combining this with (2.2), we obtain (2.3).
We next show the following:

x 6= Tx ⇒ d(Tx, T 2x) < d(x, Tx), (2.4)

d(Tx, T 2x) ≤ d(x, Tx), (2.5)
L(x, Tx) = d(x, Tx). (2.6)

Indeed we have

L(x, Tx) = max
{
d(x, Tx),

d(x, T 2x) + d(Tx, Tx)

2
, d(x, Tx), d(Tx, T 2x)

}
= max

{
d(x, Tx),

d(x, T 2x)

2
, d(Tx, T 2x)

}
= max

{
d(x, Tx),

d(x, Tx) + d(Tx, T 2x)

2
, d(Tx, T 2x)

}
= max{d(x, Tx), d(Tx, T 2x)}.

If x 6= Tx holds, then we have by (2.2)

d(Tx, T 2x) < L(x, Tx) = max{d(x, Tx), d(Tx, T 2x)}.

So we obtain (2.4). Using (2.4), we can prove (2.5) and (2.6).
Fix u ∈ X and define a sequence {un} in X by un = Tnu for n ∈ N. From (2.5), {d(un, un+1)} is

nonincreasing. So {d(un, un+1)} converges to some ε1 ≥ 0. Arguing by contradiction, we assume ε1 > 0.
From (ii’), there exists δ1 > 0 satisfying the following:

• t < ε1 + δ1 implies ϕ(t) ≤ ε1.

From the definition of ε1, we can choose ν ∈ N satisfying

L(uν , uν+1) = d(uν , uν+1) < ε1 + δ1.

Then we have
0 < ε1 ≤ d(uν+1, uν+2) ≤ ϕ ◦ L(uν , uν+1) ≤ ε1

and hence by (2.4),
ε1 ≤ d(uν+2, uν+3) < d(uν+1, uν+2) = ε1,

which implies a contradiction. Therefore we obtain ε1 = 0. That is, limn d(un, un+1) = 0 holds. Fix ε2 > 0.
Then from (ii’), there exists δ2 > 0 satisfying the following:
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• t < ε2 + 2 δ2 implies ϕ(t) ≤ ε2.
Let ` ∈ N be large enough to satisfy d(u`, u`+1) < δ2. We will show

d(u`, u`+j) < ε2 + δ2 (2.7)

for j ∈ N by induction. It is obvious that (2.7) holds when j = 1. We assume that (2.7) holds for some
j ∈ N. Then we have by (2.5)

d(u`, u`+j+1) + d(u`+1, u`+j)

≤ d(u`, u`+j) + d(u`+j , u`+j+1) + d(u`+1, u`) + d(u`, u`+j)

< 2 ε2 + 4 δ2.

Hence

L(u`, u`+j)

= max
{
d(u`, u`+j),

d(u`, u`+j+1) + d(u`+1, u`+j)

2
, d(u`, u`+1), d(u`+j , u`+j+1)

}
< ε2 + 2 δ2

holds. So we have
d(u`+1, u`+j+1) ≤ ϕ ◦ L(u`, u`+j) ≤ ε2

and hence
d(u`, u`+j+1) ≤ d(u`, u`+1) + d(u`+1, u`+j+1) < δ2 + ε2.

Thus, (2.7) holds with j := j+1. So, by induction, (2.7) holds for every j ∈ N. Since ε2 > 0 is arbitrary, we
obtain

lim
n→∞

sup
m>n

d(un, um) = 0,

which implies that {un} is Cauchy. Since X is complete, {un} converges to some z ∈ X. Arguing by
contradiction, we assume τ := d(z, Tz) > 0. Since {un} converges to z, we can choose µ ∈ N satisfying

max{d(z, uµ), d(z, uµ+1), d(uµ, uµ+1)} < min{τ − ϕ(τ), τ/2}.

We have

L(z, uµ)

= max
{
d(z, uµ),

d(z, uµ+1) + d(Tz, uµ)

2
, d(z, Tz), d(uµ, uµ+1)

}
= max

{ τ
2
,
τ/2 + d(Tz, z) + d(z, uµ)

2
, τ,

τ

2

}
= max

{
τ,
τ/2 + τ + τ/2

2

}
= τ.

Hence
d(Tz, uµ+1) ≤ ϕ ◦ L(z, uµ) = ϕ(τ)

holds. We have
τ = d(z, Tz) ≤ d(z, uµ+1) + d(uµ+1, T z) < τ − ϕ(τ) + ϕ(τ) = τ,

which implies a contradiction. Therefore we have shown that z is a fixed point of T .
Let w ∈ X be a fixed point of T . Then we have

L(z, w) = max
{
d(z, w),

d(z, w) + d(z, w)

2
, d(z, z), d(w,w)

}
= d(z, w)

and hence
d(z, w) = d(Tz, Tw) ≤ ϕ ◦ L(z, w) = ϕ ◦ d(z, w),

which implies d(z, w) = 0, thus, the fixed point z is unique.
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3. Contractive Conditions

In this section, we study contractive conditions.

Definition 3.1. Let X be a nonempty set and let p and d be functions from X ×X into [0,∞). Let T be a
mapping on X.

(1) T is said to be a CJM contraction [2, 4, 5] if the following hold:
(1-i) For any ε > 0, there exists δ > 0 such that p(x, y) < ε+ δ implies d(Tx, Ty) ≤ ε.
(1-ii) d(Tx, Ty) < p(x, y) for any x, y ∈ X with d(Tx, Ty) > 0.

(2) T is said to be of New-type [9] if there exists a function ϕ from [0,∞) into itself satisfying the following:
(2-i) ϕ(0) = 0.
(2-ii) ϕ(t) < t for any t ∈ (0,∞).
(2-iii) For any ε > 0, there exists δ > 0 such that ε < t < ε+ δ implies ϕ(t) ≤ ε.
(2-iv) d(Tx, Ty) ≤ ϕ ◦ p(x, y) for all x, y ∈ X.

(3) T is said to be a Browder contraction [1] if there exists a function ϕ from [0,∞) into itself satisfying
the following:

(3-i) ϕ is nondecreasing and right continuous.
(3-ii) ϕ(t) < t for any t ∈ (0,∞).
(3-iii) d(Tx, Ty) ≤ ϕ ◦ p(x, y) for all x, y ∈ X.

In order to concentrate on contractive conditions, we consider subsets of [0,∞)2, see [3]. We give defini-
tions which are strongly connected with contractive conditions in Definition 3.1.

Definition 3.2. Let Q be a subset of [0,∞)2.

(1) Q is said to be CJM if the following hold:
(1-i) For any ε > 0, there exists δ > 0 such that u ≤ ε holds for any (t, u) ∈ Q with t < ε+ δ.
(1-ii) u < t holds for any (t, u) ∈ Q with u > 0.

(2) Q is said to be of New-type if there exists a function ϕ from [0,∞) into itself satisfying the following:
(2-i) ϕ(0) = 0.
(2-ii) ϕ(t) < t for any t ∈ (0,∞).
(2-iii) For any ε > 0, there exists δ > 0 such that ε < t < ε+ δ implies ϕ(t) ≤ ε.
(2-iv) u ≤ ϕ(t) for all (t, u) ∈ Q.

(3) Q is said to be a Browder if there exists a function ϕ from [0,∞) into itself satisfying the following:
(3-i) ϕ is nondecreasing and right continuous.
(3-ii) ϕ(t) < t for any t ∈ (0,∞).
(3-iii) u ≤ ϕ(t) for all (t, u) ∈ Q.

The following obviously holds. See also Proposition 6 in [7].

Proposition 3.3. Let X be a nonempty set and let p and d be functions from X ×X into [0,∞). Let T be
a mapping on X. Define a subset Q of [0,∞)2 by

Q =
{(
p(x, y), d(Tx, Ty)

)
: x, y ∈ X

}
. (3.1)

Then the following hold:

(i) T is a CJM contraction iff Q is CJM.
(ii) T is of New-type iff Q is of New-type.
(iii) T is a Browder contraction iff Q is Browder.

Very recently, the concept of Condition C(p, q, r) was introduced in [8]. Using this concept, we can
compare contractive conditions quite easily.
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Definition 3.4 ([8]). Let Q be a subset of [0,∞)2.

(1) Q is said to satisfy Condition C(0, 0, 0) if the following hold:
(1-i) u < t for any (t, u) ∈ Q with u > 0.
(1-ii) There does not exist τ > 0 and a sequence {(tn, un)} in Q satisfying τ < tn, τ < un and

limn tn = limn un = τ .
(2) Q is said to satisfy Condition C(0, 0, 1) if the following hold:
(2-i) Q satisfies Condition C(0, 0, 0).
(2-ii) There does not exist τ > 0 and a sequence {(tn, un)} in Q satisfying τ < tn, un = τ and

limn tn = τ .
(3) Q is said to satisfy Condition C(0, 0, 2) if the following hold:
(3-i) Q satisfies Condition C(0, 0, 0).
(3-ii) There does not exist τ > 0 and a sequence {(tn, un)} in Q satisfying τ < tn, un ≤ τ and

limn tn = limn un = τ .
(4) Q is said to satisfy Condition C(0, 1, 0) if the following hold:
(4-i) Q satisfies Condition C(0, 0, 0).
(4-ii) There does not exist τ > 0 and a sequence {(tn, un)} in Q satisfying tn = τ , un < τ and

limn un = τ .
(5) Q is said to satisfy Condition C(1, 0, 0) if the following hold:
(5-i) Q satisfies Condition C(0, 0, 0).
(5-ii) There does not exist τ > 0 and a sequence {(tn, un)} in Q satisfying tn < τ , un < τ and

limn tn = limn un = τ .
(6) Let (p, q, r) ∈ {0, 1}2×{0, 1, 2}. Then Q is said to satisfy Condition C(p, q, r) if Q satisfies Conditions

C(p, 0, 0), C(0, q, 0) and C(0, 0, r).

Remark 3.5. The expressions on the above conditions are a little different from those in [8]. Of course,
both are essentially the same.

The following was essentially proved in [8].

Proposition 3.6 ([8]). Let Q be a subset of [0,∞)2. Then the following hold:

(i) Q is CJM iff Q satisfies Condition C(0, 0, 0).
(ii) Q is of New-type iff Q satisfies Condition C(0, 1, 0).
(iii) Q is Browder iff Q satisfies Condition C(1, 1, 2).

We prove the following lemma, which plays an important role in this paper.

Lemma 3.7. Let X be a nonempty set and let p and d be functions from X × X into [0,∞). Let T be a
mapping on X. Assume that there exist a nondecreasing function F from (0,∞) into R and a real number
τ ∈ (0,∞) satisfying

d(Tx, Ty) > 0 ⇒ τ + F ◦ d(Tx, Ty) ≤ F ◦ p(x, y)

for any x, y ∈ X. Define a subset Q of [0,∞)2 by (3.1). Then the following hold:

(i) Q satisfies Condition C(1, 0, 0).
(ii) If F is right continuous, then Q satisfies Condition C(1, 0, 1).
(iii) If F is left continuous, then Q satisfies Condition C(1, 1, 0).
(iv) If F is continuous, then Q satisfies Condition C(1, 1, 2).

Remark 3.8. (iii) and (iv) were essentially proved in [7]. See Remark below the proof of Theorem 17 in [7].
For the sake of completeness, we give a proof. We note that the proof below is much simpler than that in [7].
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Proof of Lemma 3.7. We first show (i). Let (t, u) ∈ Q satisfy u > 0. Then there exist x, y ∈ X satisfying
p(x, y) = t and d(Tx, Ty) = u. From the assumption, we have τ + F (u) ≤ F (t), which implies u < t.
Arguing by contradiction, we assume that there exist υ > 0 and sequences {tn} and {un} in (υ,∞) satisfying
(tn, un) ∈ Q and limn(tn, un) = (υ, υ). Then we have

τ + lim
t→υ+0

F (t) = τ + lim
n→∞

F (un) ≤ lim
n→∞

F (tn) = lim
t→υ+0

F (t).

Since limt→υ+0 F (t) ∈ R, we obtain a contradiction. Thus, Q satisfies Condition C(0, 0, 0). Also, arguing by
contradiction, we assume that there exist υ > 0 and sequences {tn} and {un} in (0, υ) satisfying (tn, un) ∈ Q
and limn(tn, un) = (υ, υ). Then we have

τ + lim
t→υ−0

F (t) = τ + lim
n→∞

F (un) ≤ lim
n→∞

F (tn) = lim
t→υ−0

F (t),

which implies a contradiction. Therefore we have shown that Q satisfies Condition C(1, 0, 0).
In order to prove (ii), we assume that F is right continuous. Arguing by contradiction, we assume that

there exist υ > 0 and a sequence {tn} in (υ,∞) satisfying (tn, υ) ∈ Q and limn tn = υ. Then we have

τ + F (υ) ≤ lim
n→∞

F (tn) = lim
t→υ+0

F (t) = F (υ),

which implies a contradiction. Therefore we obtain (ii).
In order to prove (iii), we assume that F is left continuous. Arguing by contradiction, we assume that

there exist υ > 0 and a sequence {un} in (0, υ) satisfying (υ, un) ∈ Q and limn un = υ. Then we have

τ + F (υ) = τ + lim
t→υ−0

F (t) = τ + lim
n→∞

F (un) ≤ F (υ),

which implies a contradiction. Therefore we obtain (iii).
In order to prove (iv), we assume that F is continuous. Arguing by contradiction, we assume that there

exist υ > 0 and sequences {tn} and {un} in (0,∞) satisfying (tn, un) ∈ Q and limn(tn, un) = (υ, υ). Then
we have

τ + F (υ) = τ + lim
n→∞

F (un) ≤ lim
n→∞

F (tn) = F (υ),

which implies a contradiction. Therefore we obtain (iv).

4. Proof of Theorem 1.2

In this section, in order to clarify the mathematical structure of Theorem 1.2, we give a proof of Theorem
1.2.

Theorem 4.1 (Theorem 2 in Jachymski [4]). Let (X, d) be a complete metric space and let T be a continuous
mapping on X. Define L by (1.1). Assume the following:
(i) For any ε > 0, there exists δ > 0 such that ε < L(x, y) < ε+ δ implies d(Tx, Ty) ≤ ε.
(ii) L(x, y) > 0 implies d(Tx, Ty) < L(x, y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Now we give a proof of Theorem 1.2.

Proof of Theorem 1.2. Define a subset Q of [0,∞)2 by (2.1).
We first assume (F6). Then by Lemma 3.7, Q satisfies Condition C(1, 0, 0). So Q satisfies Condition

C(0, 0, 0). By Proposition 3.6, Q is CJM. Thus, all the assumption of Theorem 4.1 holds. By Theorem 4.1,
we obtain the desired result.

We next assume (F7). Then by Lemma 3.7, Q satisfies Condition C(1, 1, 2). In particular, Q satisfies
Condition C(0, 1, 0). By Proposition 3.6, Q is of New-type. Using Theorem 2.1, we obtain the desired
result.

Remark 4.2. We do not need (F3).
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5. Example

The following example tells that the assumption of Theorem 2.1 is reasonably weak. Also the example
implies that we cannot generalize Theorem 1.1 with using L.

Example 5.1. Put X = [0, 1] and let d be as usual. Define a mapping T on X by

Tx =

{
1 if x = 0

x/2 if x > 0.

Define L and Q by (1.1) and (2.1), respectively. Then the following assertions hold:

(i) (X, d) is a complete metric space.
(ii) T does not have a fixed point.
(iii) Q does not satisfy Condition C(0, 1, 0).
(iv) Q satisfies Condition C(1, 0, 2).

Proof. (i) and (ii) are obvious. Let us prove (iii) and (iv). For x ∈ X \ {0}, we have

L(x, 0) = d(0, T0) = 1,

d(Tx, T0) = d(x/2, 1) = 1− x/2.

Define a sequence {(tn, un)} in Q by

tn := L(2−n, 0) = 1,

un := d(T2−n, T0) = 1− 2−n−1.

Then, since {un} converges to 1, Q does not satisfy Condition C(0, 1, 0). For x, y ∈ X \ {0}, we have

d(Tx, Ty) = (1/2) d(x, y) ≤ (1/2)L(x, y).

So Q satisfies Condition C(1, 0, 2).
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Abstract

We introduce iterative methods approximating fixed points for nonlinear operators defined on infinite-
dimensional spaces. The starting points are the Implicit and Explicit Midpoint Rules, which generate polyg-
onal functions approximating a solution for an ordinary differential equation in finite-dimensional spaces.
The purpose is to determine suitable conditions on the mapping and the underlying space, in order to get
strong convergence of the generated sequence to a common solution of a fixed point problem and a variational
inequality. The authors contributions appear in the papers [34], [60], [61].

Keywords: polygonal functions, Implicit Midpoint Rules, Explicit Midpoint Rules, strong convergence
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1. Introduction

Let (X, ‖ · ‖) be an infinite dimensional Banach space, C ⊂ X a nonempty and closed set, T : C → C a
nonlinear operator with Fix(T ) = {z ∈ C : Tz = z} 6= ∅.

A classical problem in Metric Fixed Point Theory can be formulated as:
Examine the conditions under which the equation x = Tx may be solved by successive approximations:{

x0 ∈ C,
xn+1 = Txn, n ≥ 0.

(1.1)

Recall that a mapping T : C → C is said L-Lipschitzian if there exists a constant L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ E.

In particular,
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if L < 1 then T is called contraction;

if L = 1 then T is said nonexpansive.

The first result, dealing with the convergence of sequence (1.1), is the well known Banach Principle ([5]). It
holds for contractions defined on a complete metric space. Nevertheless, under the same hypothesis, if the
mapping T is nonexpansive, then it is not guaranteed neither the existence nor the uniqueness of a fixed
point; moreover, the sequence of iterates (1.1) may fail to converge to the fixed point even if it exists (see
[38, example 2.1] and [18, examplemple 6.4])

Recognition of fixed point existence results for nonexpansive mappings has a significant line of research
in the works of Browder [8], Gohde [37] and Kirk [51] published in 1965. We recall the following results,
which were proved independently:

Theorem 1.1 (Browder-Gohde’s theorem). If C is a bounded, closed and convex subset of a uniformly
convex Banach space X and if T : C → C is nonexpansive, then T has a fixed point.

Theorem 1.2 (Kirk’s theorem). Let C be a weakly-compact, convex subset of a Banach space X. Assume
that C has the normal structure property , then any nonexpansive mapping T : C → C has a fixed point.

Nonexpansive mappings, besides being a generalization of contractions, represent a class of interest for
its connection with

• Evolution inclusions: 0 ∈ du
dt + T (t)u, where T (t) is, in general, set-valued and accretive or dissipative

and minimally continuous.

• Convex minimization problems: let C a closed and convex subset of a real Hilbert space H, φ : C → R
a convex and Fréchet differentiable function, finding x0 ∈ C such that

φ(x0) = min
x∈C

φ(x),

that is equivalent to solve
〈∇φ(x0), y − x0〉 ≥ 0, ∀y ∈ C,

can be treated as the fixed point problem

x0 = PC(x0 −
1

LF
∇φ(x0)),

where 1
LF

is the Lipschitz constant for ∇φ.

These facts promoted the development of two basic research directions:

• Study of suitable assumptions regarding the structure of the underlying space X and/or restrictions
on T to ensure the existence of at least a fixed point;

• Construction of iterative methods for approximating the fixed points of T .

Historically, one of the most investigated methods approximating fixed points of nonexpansive mappings
dates back to 1953 and is known as Mann’s method, in light of Mann [58]. Let C be a nonempty, closed
and convex subset of a Banach space X, Mann’s scheme is defined by{

x0 ∈ C,
xn+1 = αnxn + (1− αn)T (xn), n ≥ 0,

(1.2)

where (αn)n∈N is a real control sequence in (0, 1).
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Given a nonexpansive mapping T with at least a fixed point, from [72] it is known that if
∑∞

n=1 αn(1−
αn) = +∞ and C is a subset of a uniformly convex Banach space with Fréchet differentiable norm, then
the sequence generated by (1.2) weakly converges to a fixed point of T . This result has been generalized in
2001 [30, Theorem 6.4], under the same hypotheses of the parameters sequence, to a more general setting of
Banach spaces.

However the convergence is not strong, in general, even in a Hilbert space setting, as shows the celebrated
counterexample in [35]. Since then, many modifications to the original Mann’s algorithm have been provided
in order to get strong convergence (see the books [1], [6] and the papers [16], [21], [40], [48], [50], [62], [65],
[66], [81], [92], [93] with references therein). In detail, we mention the schemes obtained by:

Ishikawa ([46]): {
x0 ∈ C,
xn+1 = (1− αn)xn + αnT (βnxn + (1− βn)Txn), n ≥ 0.

Halpern, ([39]): {
x0, u ∈ C,
xn+1 = αnu+ (1− αn)Txn n ≥ 0.

Moudafi, ([64]): {
x0 ∈ C,
xn+1 = αnf(xn) + (1− αn)Txn n ≥ 0,

where (αn)n∈N, (βn)n∈N ∈ (0, 1) and f : C → C is a contraction.

More recently there exist other attempts to give iterative methods for nonexpansive mappings arising
from a different perspective. In detail, consider an initial value problem for ODE’s (Ordinary Differential
Equations) of the type {

x′(t) = Φ(x(t))

x(t0) = x0

(1.3)

Most of equations of type (1.3) cannot be solved in closed form, therefore numerical integration becomes
an important tool in order to get informations about the solution trajectory. To this regard, we recall the
Midpoint Numerical Rules. Given a time interval [t0, T ], these procedures compute for each positive integer
N :

• The step-size h = T−t0
N ,

• The time nodes {tn = t0 + nh}Nn=0,

• Approximate values {yn}Nn=0 of the solution x(t), yn ≈ x(tn);

• The polygonal YN (t), connecting each pair of consecutive points (tn, yn), (tn+1, yn+1), for n = 0, 1, . . . , N.

A midpoint numerical rule differs from another one for the way in which approximate values {yn}Nn=0 of the
solution are given. Therefore we count:

Implicit Midpoint Rule (IMR):{
y0 = x0

yn+1 = yn + hΦ
(
yn+yn+1

2

)
, n = 0, · · · , N − 1.

(1.4)
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Explicit Midpoint Rule (EMR):
y0 = x0,

ȳn+1 = yn + hΦ(yn),

yn+1 = yn + hΦ(yn+ȳn+1

2 ), n = 0, · · · , N − 1.

(1.5)

In both cases, the following theorem holds:

Theorem 1.3. [67] If Φ is a Lipschitz continuous and sufficiently smooth function, then the sequence
{YN}N∈N converges to the exact solution of (1.3), as N → ∞, uniformly on t ∈ [t0, T ], for any fixed
T > 0.

It can be noticed that if Φ = I − g, with I identity operator, then finding the critical points for{
x′(t) = Φ(x(t))

x(t0) = x0

is equivalent to solve the fixed point problem for g, x = g(x). This fact motivated M. A. Alghamdi, M. A.
Alghamdi, N. Shahzad and H-K Xu, in [3], to introduce a fixed point iteration for nonexpansive mappings
starting from formal analogy with the IMR scheme. The proposed method is implicit and is a Mann-type
scheme, named Implicit Midpoint Rule for nonexpansive mappings:{

x0 ∈ H,
xn+1 = (1− tn)xn + tnT (xn+xn+1

2 ), n ≥ 0,
(1.6)

where T : H → H is a nonexpansive mapping and (tn)n∈N is a sequence in (0, 1).
For this procedure, Alghamdi et al. proved the following weak convergence result:

Theorem 1.4. Let H be a Hilbert space and T : H → H a nonexpansive mapping with Fix(T ) 6= ∅.
Let (xn)n∈N be the sequence generated by{

x0 ∈ H
xn+1 = (1− αn)xn + αnT (xn+xn+1

2 ), n ≥ 0,

with (αn)n∈N ∈ (0, 1) satisfying the conditions

• α2
n+1 ≤ aαn, ∀n ≥ 0 and some a > 0,

• lim infn→∞ αn > 0.

The sequence (xn)n∈N weakly converges to a fixed point of T .

Our purpose is to provide a variation to (1.6) in order to get strong convergence. The modification line
is analogous to that adopted in 2015 by N. Hussain, G. Marino, L. Muglia, L. Alamri in their work [43]: the
proposed algorithm differs from scheme (1.6) for the introduction of a term αnµn(u − xn) that can also be
infinitesimal. The framework is still that of a Hilbert space H. The obtained scheme is given by{

x0, u ∈ H,
xn+1 = αnxn + (1− αn)T (xn+xn+1

2 ) + αnµn(u− xn), n ≥ 0,
(1.7)

where (αn)n∈N and (µn)n∈N are sequences in (0, 1] and T : H → H is a nonexpansive mapping.
We show that, under suitable conditions on the parameters (αn)n∈N and (µn)n∈N, the sequence (xn)n∈N,

generated by (1.7), converges strongly to the fixed point of T nearest to u.
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A different situation occurs if the starting point is the less known numerical EMR. Through formal
analogy with scheme (1.5), a recursive procedure for the fixed point problem x = Tx is obtained and it is
given by 

x0 ∈ H,
x̄n+1 = (1− tn)xn + tnT (xn)

xn+1 = (1− tn)xn + tnT (xn+x̄n+1

2 ), n ≥ 0,

(1.8)

with (tn)n∈N ∈ (0, 1) and T : H → H is a nonexpansive mapping.
We designate it with Explicit Midpoint Rule for nonexpansive mappings.
Moreover, if the midpoint xn+x̄n+1

2 in the evaluation of T in (1.8) is replaced with any convex combination
between xn and x̄n+1, then scheme (1.8) is named General Explicit Midpoint Rule for nonexpansive mappings.

We provide for the latter scheme the same formal modification as for the IMR for nonexpansive mappings,
following [43]. The proposed method is given by

x0, u ∈ H,
x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0

xn+1 = αnxn + (1− αn)T (snxn + (1− sn)x̄n+1) + αnµn(u− xn), n ≥ 0,

(1.9)

where (αn)n∈N, (µn)n∈N, (βn)n∈N, (sn)n∈N are sequences in (0, 1].
Even in this case, we show that the sequence generated by (1.9) strongly converges to the fixed point of

T closest to u.
Inspired by work [91] of H. K. Xu, M. A. Alghamdi, N. Shahzad and the paper [49] of Y. Ke and C. Ma,

we propose another explicit iterative method, starting from the EMR scheme for nonexpansive mappings. It
is called Generalized Viscosity Explicit Midpoint Rule (GVEMR) and is given by

x0 ∈ C
x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0,

xn+1 = αnf(xn) + (1− αn)T (snxn + (1− sn)x̄n+1), n ≥ 0.

(1.10)

Iteration (1.10) is obtained, from (1.8), introducing a viscosity term f ∈ ΠC and replacing the midpoint of
[xn, x̄n+1] with a generic point of the same interval in the evaluation of T .

The purpose is to approximate fixed points of quasi-nonexpansive mappings in Hilbert spaces. We recall
that a mapping T : C → C, with C a nonempty subset of a Banach space X, is said to be quasi-nonexpansive
if T has at least a fixed point and verify

‖Tx− q‖ ≤ ‖x− q‖, ∀q ∈ Fix(T ),∀x ∈ C.

This class of mappings, besides for including the class of nonexpansive operators with at least a fixed point,
is of interest for the researchers because they can be discontinuous (see, for examples, the pioneering works
[25], [27] and more recently the monograph [18]). In literature can be found several works dealing with the
fixed points approximation of a quasi-nonexpansive operators (see, for instance, [82], [26], [83], [56], [85]).

In a second stage, strong convergence results are proved for the class of quasi-nonexpansive mappings in
the more general setting of p-uniformly convex Banach spaces, for 1 < p < ∞, with new techniques with
respect to those employed in a Hilbert spaces framework.

The first main result is applicable to lp spaces; the second one, using the concept of ψ -expansive mappings
(see [33] and references therein), is applicable to Lp spaces which fail to have a weakly continuous duality
mapping.

2. Preliminaries

Throgouth the next sections, will be denoted with
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H, a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖;

X, a real Banach space with norm ‖ · ‖;

X∗, the dual space of X with duality pairing 〈x, x∗〉 = x∗(x) for each x ∈ X and x∗ ∈ X∗;

C, a closed and convex subset of H or X;

T : C → C, a nonexpansive or a quasi-nonexpansive mapping;

f : C → C, a θ-contraction for a certain θ ∈ [0, 1);

Fix(T ), the fixed points set of T ;

PFix(T ), the metric projection of C onto Fix(T );

Q : C → Fix(T ), a sunny nonexpansive retraction;

Jφ, the duality mapping associated to the gauge function φ;

J , the normalized duality mapping;

→, the strong convergence;

⇀, the weak convergence.

First of all we recall that, in a Hilbert space H, for each x, y ∈ H and λ ∈ [0, 1], the following inequalities
hold:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 (2.1)

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.2)

The framework of the convergence results in Theorem 3.17 and Theorem 3.22 is constituted by p-uniformly
convex Banach spaces. About the matter, we need to recall the following definitions:

Definition 2.1. [38] A normed space X is called uniformly convex if for any ε ∈ (0, 2] there exists a
δ = δ(ε) > 0 such that if x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε, then ‖x+y

2 ‖ ≤ 1− δ.

Definition 2.2. [38] The modulus of convexity of a Banach space X is the function δX : (0, 2] → (0, 1]
defined by

δX(ε) = inf

{
1− ‖x+ y

2
‖} : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

We mention a characterization for uniformly convex Banach spaces using the notion of modulus of
convexity:

Theorem 2.3. [18] A normed space X is uniformly convex if and only if δX(ε) > 0 for each ε ∈ (0, 2].

Definition 2.4. [18]
Let p > 1 be a real number. Then X is said to be p-uniformly convex if there is a constant c > 0 such

that
δX(ε) ≥ cεp.

From the definition, it follows that a p-uniformly convex Banach space is uniformly convex.

Example 2.5. [18]
If X = Lp (or lp), 1 < p <∞, then

1. δX(ε) ≥ 1
2p+1 ε

2, if 1 < p < 2,
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2. δX(ε) ≥ εp, if 2 ≤ p <∞.

In particular, for such class of Banach spaces, we mention that for all x, y ∈ X and λ ∈ [0, 1], the following
inequality is verified ([86]):

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − λ(1− λ)c‖x− y‖p (2.3)

for a certain positive constant c, for all x, y ∈ X and 0 ≤ λ ≤ 1 .
The concept of duality mapping appeared for first time in the work of Beurling and Livingston ([7]).

Definition 2.6. [18] A continuous and strictly increasing function φ : [0,+∞)→ [0,+∞) such that

φ(0) = 0

lim
t→∞

φ(t) = +∞,

is called a gauge function (or weight function).

Definition 2.7. [18] Given a gauge function φ, the mapping Jφ : X → 2X
∗ defined by

Jφ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖;φ(‖x‖) = ‖x∗‖}

is called the duality mapping with gauge function φ.

If the gauge φ is given by φ(t) = tp−1, 1 < p < +∞ for all t ∈ [0,+∞), then Jφ = Jp is known as pth
generalized duality mapping; in particular, for p = 2 J2 = J is called normalized duality mapping.

When we deal with jφ(x) we mean a (single-valued) selection of Jφ(x).

Lemma 2.8. [22] Let φ a gauge function and Φ(t) =
∫ t

0 φ(s) ds, then Φ is a convex function.

Definition 2.9. [22] The subdifferential of a proper functional g : X → (−∞,∞) is a map designed with

∂g : X → 2X
∗

and defined by
∂g(x) = {x∗ ∈ X∗ : g(y) ≥ g(x) + 〈y − x, x∗〉,∀y ∈ X}

The duality mapping Jφ, associated to φ, can be also described in the following way:

Theorem 2.10. [4] If Jφ is the duality mapping associated to a gauge φ, then

Jφx = ∂Φ(‖x‖) ∀x ∈ X.

Thus a subdifferential inequality holds:

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, jφ(x+ y)〉, jφ(x+ y) ∈ Jφ(x+ y) (2.4)

The following definition is due to Browder:

Definition 2.11. [9]
The duality mapping Jφ is said to be (sequentially) weak continuous if it is single-valued and maps

weakly convergent sequences in X to weak∗ convergent sequences in X∗, that is, if xn ⇀ x in X, then
Jφ(xn) ⇀∗ Jφ(x) in X∗.

Example 2.12. [90] For each 1 < p <∞, the generalized duality map Jp of lp is weakly continuous, instead
that of Lp fails to be weakly continuous.
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Example 2.13. [90] Let H be a real (infinite dimensional) Hilbert space. Then Jp is weakly continuous if
and only if p = 2.

For the fixed points set of a quasi-nonexpansive mapping the following result holds:

Theorem 2.14. [27, Theorem 1]
If C is a closed, convex subset of a strictly convex normed linear space, and T : C → C is quasi-

nonexpansive, then Fix(T ) = {z ∈ C : Tz = z} is a nonempty, closed and convex set in which T is
continuous.

Definition 2.15. [38] A nonempty subset K of C ⊂ X is said to be a retract of C if there exists a continuous
mapping Q : C → K with K = Fix(Q). Any such mapping Q is a retraction of C onto K

It is known (see [22]) that a Banach space X is smooth if and only if each duality mapping Jφ is single-
valued. In such spaces, a characterization for a sunny nonexpansive retraction is given by:

Lemma 2.16. [71, Lemma 2.7]
Let X be a smooth Banach space and let C a nonempty subset of X. Let Q : X → C a retraction and let

J be the normalized duality map on X. The the following are equivalent:

1. Q is sunny and nonexpansive,
2. ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉 for all x, y ∈ X,
3. 〈x−Qx, J(y −Qx)〉 ≤ 0 for all x ∈ X and y ∈ C.

Hence, there is at most one sunny nonexpansive retraction on C.

Remark 2.17. Previous lemma holds even if the normalized duality map J is replaced with the duality map
Jφ associated to a gauge function φ.

Let us recall the definition of ψ-expansive mapping (see papers [31], [32], [33], [54], [80] and references
therein).

Definition 2.18. [33] A mapping A : D(A) ⊂ X → X is said to be ψ-expansive if there exists a function
ψ : [0,+∞)→ [0,+∞) such that for every x, y ∈ D(A), the inequality ‖Ax−Ay‖ ≥ ψ(‖x− y‖) holds, with
ψ satisfying

• ψ(0) = 0;

• ψ(r) > 0 ∀r > 0;

• Either ψ is continuous or it is nondecreasing.

Finally, we recall that

Definition 2.19. [12] Let X be a real Banach space and C a nonempty and closed subset of X. A mapping
T : C → C is said to be demiclosed (at y), if for any (xn)n∈N , in C, the conditions xn ⇀ x and Txn → y
imply Tx = y.

For a nonexpansive mapping defined on a uniformly convex Banach space, the following holds:

Lemma 2.20. ([12, Theorem 3]) Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space X, and let T : C → X be a nonexpansive mapping. Then I − T is demiclosed, that is

(xn)n∈N ⊂ C, xn ⇀ x, (I − T )xn → y =⇒ (I − T )x = y.
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3. Convergence Results

Let’s start recalling iteration (1.7):{
x0, u ∈ H,
xn+1 = αnxn + (1− αn)T (xn+xn+1

2 ) + αnµn(u− xn), n ≥ 0,

We can notice that this method is well defined. Indeed, if T : H → H is a nonexpansive mapping, y, z, w
are given points in H and α ∈ (0, 1), then the mapping T̃ : H → H defined by

T̃ x = αy + (1− α)T (
z + x

2
) + w

is a contraction with constant 1−α
2 . Therefore T̃ has a unique fixed point. Hence we prove the following

result:

Theorem 3.1. [61, Theorem 3.2] Let H be a real Hilbert space and T : H → H a nonexpansive mapping
with Fix(T ) 6= ∅. Assume that the sequences (αn)n∈N, (µn)n∈N ∈ (0, 1] satisfy the conditions

(1) lim
n→∞

αn = 0,

(2)

∞∑
n=0

αnµn = +∞,

(3) lim
n→∞

|αn − αn−1|
αnµn

= 0,

(4) lim
n→∞

|µn − µn−1|
µn

= 0.

Then the sequence (xn)n∈N, generated by (??), strongly converges to the point qu ∈ Fix(T ) nearest to u, that
is ‖u− qu‖ = minx∈Fix(T ) ‖u− x‖.

A possible choise of parameters satisfying the hypotheses of Theorem 3.1 is given by

αn = µn =
1√
n

.

Remark 3.2. We point out that if u = 0 ∈ H, under the same hypotheses of Theorem 3.1, we get that the
sequence (xn)n∈N generated by{

x0 ∈ H,
xn+1 = αnxn + αnT (xn+xn+1

2 )− αnµnxn n ≥ 0

strongly converges to the point q ∈ Fix(T ) nearest to 0 ∈ H, that is, the fixed point of T with minimum
norm ‖q‖ = minx∈Fix(T ) ‖x‖.

A particular case of Theorem 3.1 is obtained for µn = 1. The resulting algorithm is a Halpern-type
iteration, for which we claim that:

Corollary 3.3. [61, Corollary 3.4] Let H be a real Hilbert space and T : H → H a nonexpansive maping
with Fix(T ) 6= ∅. If the sequence (αn)n∈N,⊂ (0, 1] satisfies the conditions

(1) lim
n→∞

αn = 0,
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(2)′
∞∑
n=0

αn = +∞,

(3)′ lim
n→∞

|αn − αn−1|
αn

= 0.

Then the sequence (xn)n∈N generated by{
x0, u ∈ H,
xn+1 = αnu+ (1− αn)T (xn+xn+1

2 ), n ≥ 0
(3.1)

strongly converges to the point qu ∈ Fix(T ) nearest to u, that is
‖u− qu‖ = minx∈Fix(T ) ‖u− x‖

Remark 3.4. Even in this case, it is considered the eventuality u = 0 ∈ H. Therefore, we get that, under
the same assumptions of Corollary 3.3, the sequence (xn)n∈N generated by{

x0 ∈ H,
xn+1 = (1− αn)T (xn+xn+1

2 ), n ≥ 0

strongly converges to the point q ∈ Fix(T ) nearest to 0 ∈ H, that is the fixed point of T with minimum
norm ‖q‖ = minx∈Fix(T ) ‖x‖.

For the sequence generated by (1.9)
x0, u ∈ H,
x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0

xn+1 = αnxn + (1− αn)T (snxn + (1− sn)x̄n+1) + αnµn(u− xn), n ≥ 0,

we prove the following:

Theorem 3.5. [61, Theorem 4.2] Let H be a real Hilbert space and T : H → H a nonexpansive mapping with
Fix(T ) 6= ∅. Under the assumptions (1), (2), (3), (4) of Theorem 3.1, if the sequences (αn)n∈N, (µn)n∈N, (βn)n∈N, (sn)n∈N ⊂
(0, 1] satisfy also the hypotheses

(5) lim
n→∞

|sn − sn−1|
αnµn

= 0

(6) lim
n→∞

|βn − βn−1|
αnµn

= 0

(7) lim sup
n→∞

βn(1− sn) + sn > 0,

then (xn)n∈N generated by (1.9) strongly converges to the point xu∗ ∈ Fix(T ) nearest to u, that is

‖u− xu∗‖ = min
x∈Fix(T )

‖u− x‖

An example of control sequences satisfying conditions (1)− (7) is given by

αn = sn = µn =
1√
n
, βn =

n

n+ 1

.
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Remark 3.6. In case u = 0, under the same assumptions of Theorem 3.5, we obtain strong convergence of
the sequence (xn)n∈N, generated by

x0 ∈ H,
x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0

xn+1 = αnxn + (1− αn)T (snxn + (1− sn)x̄n+1)− αnµnxn, n ≥ 0,

to the point x∗ ∈ Fix(T ) nearest to 0 ∈ H, that is the fixed point of T with minimum norm ‖x∗‖ =
minx∈Fix(T ) ‖x‖.

As in the previous case, in the eventuality µn = 1, for all n ∈ N, we have the following convergence result
for a Halpern-type method:

Corollary 3.7. [61, Corollary 4.4] Let H be a real Hilbert space and T : H → H a nonexpansive map-
ping with Fix(T ) 6= ∅. Assume that conditions (1), (2)′, (3)′ of Corollary 3.3 hold and that the sequences
(αn)n∈N, (βn)n∈N, (sn)n∈N satisfy also the hypotheses:

(5)′ lim
n→∞

|sn − sn−1|
αn

= 0,

(6)′ lim
n→∞

|βn − βn−1|
αn

= 0,

(7) lim sup
n→∞

βn(1− sn) + sn > 0,

then the sequence (xn)n∈N generated by
x0, u ∈ H
x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0

xn+1 = αnu+ (1− αn)T (snxn + (1− sn)x̄n+1), n ≥ 0,

(3.2)

strongly converges to the point xu∗ ∈ Fix(T ) nearest to u.

Remark 3.8. For u = 0, under the same assumptions of Corollary 3.7, we obtain strong convergence of the
sequence (xn)n∈N, generated by

x0 ∈ H,
x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0,

xn+1 = (1− αn)T (snxn + (1− sn)x̄n+1), n ≥ 0,

to the point x∗ ∈ Fix(T ) nearest to 0 ∈ H, that is the fixed point of T with minimum norm ‖x∗‖ =
minx∈Fix(T ) ‖x‖.

Let us consider the conditions:

(i) lim
n→∞

αn = 0,

(ii)

∞∑
n=0

αn =∞,

(iii) lim sup
n→∞

βn(1− βn)(1− sn) > 0.

A strong convergence result of the sequence (xn)n∈N generated by (1.10) to a fixed point of a quasi-
nonexpansive operator is proved in the framework of Hilbert spaces:
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Theorem 3.9. [60, Theorem 3.2] Let H be a real Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C → C be a quasi-nonexpansive mapping, with I−T demiclosed at 0, and f : C → C be
a contraction with coefficient θ ∈ [0, 1). Let (αn)n∈N, (sn)n∈N, (βn)n∈N be three sequences in (0, 1), satisfying
the conditions (i), (ii), (iii). Then, the sequence (xn)n∈N, defined in (??), strongly converges to q̄ ∈ Fix(T ),
which is the unique solution in Fix(T ) of the variational inequality (VI)

〈q̄ − f(q̄), q̄ − x〉 ≤ 0, ∀x ∈ Fix(T ). (3.3)

Remark 3.10. Conditions

• T is quasi-nonexpansive,

• I − T is demiclosed at 0,

appearing in the previous theorem, are not related. One could consider the following examples to confirm
this:

Example 3.11. [41, Example 2.3]
Let H = R, C = [0,+∞) and T : C → C a mapping defined by

Tx =

{
2x

x2+1 x ∈ (1,+∞)

0 x ∈ [0, 1]

It results that

• Fix(T ) = {0};
• T is discontinuous;

• T is quasi-nonexpansive, indeed if x ∈ [0, 1] then |Tx− 0| = 0 ≤ |x− 0|; while, if x ∈ (1,+∞) then |Tx− 0| =
2x

1+x2 ≤ 1 ≤ |x− 0|;

• Considering the sequence xn = 1 + 1
n ∈ (1, 2), it results that xn → 1 /∈ Fix(T ) and |xn − Txn| → 0, thus I − T

is not demiclosed at 0.

Example 3.12. [18, Example 8.2]
Let H = R, C = [0, 1] and T : C → H defined by Tx = 1− x

2
3 .

• Fix(T ) = {q}, with q ∈ (0, 1);

• T is a continuous pseudo-contraction, since I − T is monotone; therefore I − T is demiclosed at 0 (see
[93, Demi-closedness Principle]);

• T is not quasi-nonexpansive since:

– if x = 0, then |Tx− q| ≤ |x− q| implies 1− q ≤ q, and hence q ≥ 1
2

– if x = 1, then |Tx− q| ≤ |x− q| implies q ≤ 1− q, and hence q ≤ 1
2

Thus it must be q = 1
2 , that is a contradiction.

Remark 3.13. There exist mappings T : C → C, with Fix(T ) nonempty, which are quasi-nonexpansive
and such that I −T is demiclosed at 0. Among these, in addition to nonexpansive mappings, let us mention

• Nonspreading mappings, introduced by Kohsaka and Takahashi in 2008:

Definition 3.14. [52] Let X be a smooth, strictly convex and reflexive Banach space, let J be the
duality mapping of X and let C a nonempty, closed and convex subset of X. Then, a mapping
S : C → C is said to be nonspreading if

Φ(Sx, Sy) + Φ(Sy, Sx) ≤ Φ(Sx, y) + Φ(Sy, x),

for all x, y ∈ C, where Φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ X.



G. Marino and R. Zaccone, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 42–61 54

Particularly, if X is a Hilbert space, it is known that Φ(x, y) = ‖x − y‖2 for all x, y ∈ H. Then a
nonspreading mapping S : C → C in a Hilbert space is defined as follows:

2‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖x− Sy‖2,

for all x, y ∈ C.

• L-hybrid mappings, introduced by Aoyam et al. in 2010:

Definition 3.15. [2] Let T : H → H be a mapping and L a nonnegative number. We will say that T
is L-hybrid, signified as T ∈ HL , if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + L〈x− Tx, y − Ty〉, ∀x, y ∈ H.

Theorem 3.9 holds for these classes of mappings.

Remark 3.16. In Theorem 3.9, no additional assumption has been formulated for the limit of the sequence
(sn)n∈N, hence it could be that limn→∞ sn = 0.

Theorem 3.9 has been improved by Garcia-Falset, Marino and Zaccone in [34] in the more general setting
of p-uniformly convex Banach spaces, in which inequalities analogous to (2.1) and (2.2), valid in Hilbert
spaces, hold (see Xu’s paper [86] for a detailed survey).

Theorem 3.17. [34, Theorem 3.2] Let X be a p-uniformly convex Banach space, with 1 < p < +∞, having
a weakly sequentially continuous duality mapping Jφ. Let C be a nonempty, closed and convex subset of
X, T : C → C a quasi-nonexpansive mapping, such that I − T is demiclosed at 0,1 and f : C → C a
θ-contraction, for a certain θ ∈ [0, 1).

Let (xn)n∈N be generated by (1.10). Assume that the sequences (αn)n∈N, (βn)n∈N, (sn)n∈N satisfy the
conditions (i), (ii), (iii). If Fix(T ) is the sunny nonexpansive retract of C, with Q : C → Fix(T ) sunny
nonexpansive retraction, then (xn)n∈N strongly converges to q̄ = Q(f(q̄)). Further q̄ is the unique solution in
Fix(T ) of the variational inequality

〈f(q̄)− q̄, jφ(x− q̄)〉 ≤ 0, ∀x ∈ Fix(T ) (3.4)

Remark 3.18. In order to have a strong convergence result in the setting of a p-uniformly Banach space
X, we assume that X has weakly sequentially continuous duality mapping Jφ, for a certain gauge function
φ. This hypothesis, compared to the weak continuity for the normalized duality map J , that is frequently
assumed in trying to extend some results from the setting of Hilbert spaces to that of Banach spaces (see [47],
[78] and other works), allows us to include, for instance, also the sequential spaces lp. Indeed lp spaces, for
p 6= 2, fail to have weakly continuous map J , but they have generalized duality map Jp weakly sequentially
continuous (for a detailed survey, see [90]).

Concerning the hypotheses assumed for the control sequence in Theorem (3.17), as well as in Theorem 3.9,
no additional assumption has been formulated for the limit of sequence (sn)n∈N ⊂ (0, 1), that, for instance,
may converge to zero. (see Example 4.2).

In light of Theorem (3.17), we include the following corollary:

Corollary 3.19. [34, Corollary 3.4] Let X be a p-uniformly convex Banach space, for 1 < p < ∞, having
a weakly sequentially continuous duality mapping Jφ. Let C be a nonempty, closed and convex subset of
X, T : C → C a quasi-nonexpansive mapping, such that I − T is demiclosed at 0 and Fix(T ) = {q}. Let
f : C → C a θ-contraction, for a certain θ ∈ [0, 1).

Let (xn)n∈N be the sequence generated by (1.10).
If the sequences (αn)n∈N, (βn)n∈N, (sn)n∈N satisfy the conditions (i), (ii), (iii), then (xn)n∈N strongly

converges to q.
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Remark 3.20. The assert follows from Theorem (3.17), considered that Fix(T ) = {q} is a sunny nonex-
pansive retract of C, with sunny nonexpansive retraction the constant function Q(x) = q.

If X = H is a real Hilbert space, then X is 2-uniformly convex, with normalized duality mapping weakly
sequentially continuous. Let C be a closed and convex subset of H. From [27, Theorem 1], it is known that
if T : C → C is a quasi-nonexpansive then Fix(T ) is nonempty, closed and convex. Therefore the metric
projection PFix(T ) is a sunny nonexpansive retraction from C onto Fix(T ). Since there is at most one sunny
nonexpansive retraction (Lemma 2.16), we have that Q ≡ PFix(T ).

These considerations motivate the result that follows.

Corollary 3.21. [34, Corollary 3.5] Let H be real Hilbert space. Let C be a nonempty, closed and convex
subset of H, T : C → C a quasi-nonexpansive mapping, such that I − T is demiclosed at 0, and f : C → C
a θ-contraction, for a certain θ ∈ [0, 1).

Let (xn)n∈N be generated by 1.10. Assume that the sequences (αn)n∈N, (βn)n∈N, (sn)n∈N satisfy the
conditions (i), (ii) and (iii). Then (xn)n∈N strongly converges to q ∈ Fix(T ). Further q is the unique
solution in Fix(T ) of the variational inequality

〈f(q)− q, x− q〉 ≤ 0, ∀x ∈ Fix(T ).

Therefore Theorem 3.9 can be considered as a particular case of Theorem 3.17.
For the eventuality in which the Banach space X fails to have weakly sequentially continuous duality

map Jφ, as occurs for Lp spaces, we establish a strong convergence result for the GVEMR, assuming the
additional assumption that I − T is ψ-expansive (for more details on this type of mapping, see [33] and
references therein).

Theorem 3.22. [34, Theorem 3.7] Let X be a p-uniformly convex Banach space, for 1 < p < ∞, and
C ⊂ X a nonempty, closed and convex set. Let T : C → C a quasi-nonexpansive mapping such that I − T
is ψ-expansive, and f : C → C a θ-contraction for a certain θ ∈ (0, 1).

Let (xn)n∈N the sequence generated by (1.10). If the parameters sequences (αn)n∈N, (βn)n∈N and (sn)n∈N
satisfy the conditions (i), (iii), then (xn)n∈N strongly converges to to the unique fixed point of T .

4. Examples

Inspired to [44, Example 2] by Iemoto and Takahashi, we give an example for the convergence result
stated in Theorem 3.9 for the class of nonespreading operators:

Example 4.1. Let H be a Hilbert space. Assume that

B1 = {x ∈ H s.t. ‖x‖ ≤ 1},

B2 = {x ∈ H s.t. ‖x‖ ≤ 2},

B3 = {x ∈ H s.t. ‖x‖ ≤ 3}.

The mapping defined as

Sx =

{
0 if x ∈ B2

PB1(x) if x ∈ B3 \B2,

with PB1 the metric projection of H onto B1, is a nonspreading operator with Fix(S) = {0}, hence it is
quasi-nonexpansive. It is known that I − S is demiclosed at 0.

Moreover S is discontinuous, hence it is not nonexpansive.
Let us choose H = R, αn = 1

n , βn = n−1
2n , sn = 1

n , f(x) = x
2 , x0 = 3.
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The operator S can be written as

Sx =

{
0 if x ∈ [−2, 2]

PB1(x) if x ∈ [−3, 3] \ [−2, 2],

with B1 = [−1, 1], B2 = [−2, 2], C = [−3, 3].
While the sequence generated by (1.10) is given by

x̄n+1 =
n

2(n+ 1)
xn +

n+ 2

2(n+ 1)
Sxn, n ≥ 0

xn+1 =
xn

2(n+ 1)
+

(
n

n+ 1

)
S

(
xn
n+ 1

+
n

n+ 1
x̄n+1

)
, n ≥ 0.

Therefore the sequence (xn)n∈N is given by
x0 = 3,

x1 =
3

2
,

x2 =
3

8
,

. . .

xn+1 =
3

(n+ 1)!2n+1

that quickly converges to 0.

For Theorem (3.17) we include the following:

Example 4.2. Consider the real Banach space X = lp, for 1 < p < +∞ endowed with the norm ‖x‖ =

‖x‖p =
[∑∞

n=1 |xi|p
] 1
p , for x = (x1, x2, · · · , xn, · · · ).

Set
B1 = {x ∈ lp : ‖x‖ ≤ 1}

B2 = {x ∈ lp : ‖x‖ ≤ 2}

B3 = {x ∈ lp : ‖x‖ ≤ 3}

Let T : B3 → B3 the mapping defined as

Tx =

{
0lp x ∈ B2

PB1(x) x ∈ B3 rB2

where PB1(x) is the metric projection of X onto B1.
Let f : B3 → B3 the map defined as f(x) = 1

2x.
Let us put αn = 1

n+1 , βn = n
2(n+1) , sn = 1

n+1 .
We point out the following considerations:

• lp, with 1 < p <∞, is a p-uniformly convex Banach space with weakly continuous duality mapping Jp,

• Fix(T ) = {0},

• T is quasi-nonexpansive,

• T is not nonexpansive since it is discontinuous,



G. Marino and R. Zaccone, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 42–61 57

• I − T is demiclosed at 0.

Indeed if we consider xn ⇀ x ∈ B3 rB2 then we have that

‖xn − Txn‖ ≥ |‖xn‖ − ‖Txn‖ ≥ ‖xn‖ − 1,

so that lim infn→+∞ ‖xn − Txn‖ ≥ ‖x‖ − 1 ≥ 1.

We approach to the same conclusion if xn ⇀ x ∈ B2, with x 6= 0, considering that lim infn→+∞ ‖xn −
Txn‖ ≥ ‖x‖ > 0.

• f is a 1
2 -contraction,

• sequences (αn)n∈N, (βn)n∈N, (sn)n∈N satisfy conditions (i), (ii) and (iii) of Theorem 3.17.

Fixed x0 = (3, 0, 0, · · · ), then algorithm (1.10) is given by{
x̄n+1 = n

2(n+1)xn + n+2
2(n+1)Txn, n ≥ 0

xn+1 = xn
2(n+1) + n

n+1T
(
xn
n+1 + n

n+1 x̄n+1

)
n ≥ 0

It generates the sequence:
x0 = (3, 0, 0, · · · ),

x1 =
1

2
(3, 0, 0, · · · ),

x2 =
1

8
(3, 0, 0, · · · ),

. . .

xn+1 =
1

(n+ 1)!2n+1
(3, 0, 0, · · · ),

that converges to 0, as n→ +∞.

For Theorem (3.22), we give the following example in a p-uniformly convex Banach space that fails to
have a weakly continuous duality mapping:

Example 4.3. Let X = Lp([0, 1]), with 1 < p < +∞, endowed with the norm

‖x‖ = ‖x‖p =
[ ∫

[0,1]
|x(s)|p ds

] 1
p

and
B1 = {x ∈ Lp[0, 1] : ‖x‖ ≤ 1}

B2 = {x ∈ Lp[0, 1] : ‖x‖ ≤ 2}

Let T : B2 → B2 the map defined as

Tx =

{
0 x ∈ B1

−x x ∈ B2 rB1
(4.1)

and f : B2 → B2 such that f(x) = x
2 .

If we set αn = 1
(n+1)2

, βn = n
2(n+1) , sn = 1

n+1 then algorithm (1.10) becomes{
x̄n+1 = n

2(n+1)xn + n+2
2(n+1)Txn, n ≥ 0

xn+1 = xn
2(n+1)2

+
(
n2+2n
(n+1)2

)
T
(
xn
n+1 + n

n+1 x̄n+1

)
n ≥ 0

We observe that
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• Lp is a p-uniformly convex Banach space that fails to have a weakly continuous duality mapping,

• Fix(T ) = {0},

• T is quasi-nonexpansive,

• T is discontinuous so it is not nonexpansive,

• I − T is ψ-expansive. Indeed:

– if x, y ∈ B1, then ‖(I − T )x− (I − T )y‖ = ‖x− y‖,
– if x, y ∈ B2, then ‖(I − T )x− (I − T )y‖ = 2‖x− y‖,
– if x ∈ B1 and y ∈ B2, then

‖(I − T )x− (I − T )y‖ = ‖x− 2y‖
≥ 2‖y‖ − ‖x‖
≥ 1

Since
‖x− y‖ ≤ 3 ∀x ∈ B1, y ∈ B2,

then ‖(I − T )x− (I − T )y‖ ≥ 1
3‖x− y‖.

Therefore I − T is ψ-expansive with ψ(t) = t
3 , for t ∈ [0,+∞),

• f is a 1
2 -contraction,

• The sequences αn, βn and sn satisfy conditions 1) and 2) of the preceding theorem.

Fixed the constant function x0 = 2 in Lp([0, 1]), then the other terms of the sequence (xn)n∈N are
given by

x0 = 2

x1 = 1

x2 =
1

8

x3 =
1

144
· · ·

It can be noticed that, for n ≥ n0 ∈ N, the term T
(
xn
n + n−1

n x̄n+1

)
vanishes since ‖xnn + n−1

n x̄n+1‖ ≤ 1, then
xn+1 = xn

2n2 and limn→+∞ ‖ xn2n2 ‖ = 0.
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Abstract

This paper is devoted to the study of a Chebyshev-type method free of derivatives for solving nonlinear
equations in Banach spaces. Using the idea of restricted convergence domain, we extended the applicability
of the Chebyshev-type methods. Our convergence conditions are weaker than the conditions used in earlier
studies. Therefore the applicability of the method is extended. Numerical examples where earlier results
cannot apply to solve equations but our results can apply are also given in this study.
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1. Introduction

Let F : Ω ⊆ B1 −→ B2 be a Fréchet differentiable operator between the Banach spaces B1 and B2. Due
to the wide applications, finding a solution for equation

F (x) = 0 (1)

is an important problem in applied mathematics and computational sciences. Convergence analysis of itera-
tive methods require assumptions on the Fréchet derivatives of the operator F. That restricts the applicability
of these methods.
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In this paper we study the seventh convergence order Chebyshev-type method [13]:

yn = xn −A−1n F (xn),

zn = yn −BnF (yn), (2)
xn+1 = zn − CnF (zn),

where

An = [wn, xn;F ],

Bn = (3I −A−1n ([yn, xn;F ] + [yn, wn;F ]))A−1n ,

Cn = [zn, xn;F ]−1([wn, xn;F ] + [yn, xn;F ]− [zn, xn;F ])A−1n ,

wn = xn + γF (xn), γ ∈ R,

[., .;F ] denotes a divided difference of order one on Ω2 and x0 ∈ Ω is an initial point. Throughout this paper
L(B2,B1) denotes the set of bounded linear operators between B1 and B2.

The study of convergence of iterative algorithms is involving categories: semi-local and local convergence
analysis. The semi-local convergence is based on the information around an initial point, to derive conditions
ensuring the convergence of these algorithms, while the local convergence is based on the information around
a solution to get estimates of the computed radii of the convergence balls. Local results are important since
they tell us about the degree of difficulty in choosing initial points.

The above method was studied in [13]. Convergence analysis in [13] is based on the assumptions on
the Fréchet derivative F up to the order seven. In this study, we use only assumptions on the first Fréchet
derivative of the operator F in our convergence analysis, so the the method (2) can be applied to solve
equations but the earlier results cannot be applied [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] (see Example
3.2).

The rest of the paper is structured as follows. In Section 2 we present the local convergence analysis of
the method (2). We also provide a radius of convergence, computable error bounds and a uniqueness result.
Numerical examples are given in the last section.

2. Local convergence

We need a definition concerning the monotonicity of functions.

Definition 2.1. Let T : D ⊆ R × R −→ R be a function. We say T is nondecreasing on Ω, if for each
(a1, a2), (a3, a4) ∈ D with a1 ≤ a3, a2 ≤ a4,

T (a1, a2) ≤ T (a3, a4). (1)

Moreover, T is increasing on D, if a1 ≤ a3 and a2 < a4 or a1 < a3 and a2 ≤ a4 or a1 < a3 and a2 < a4
imply T (a1, a2) < T (a2, a4).

Let us introduce some parameters and scalar functions to be used in the local convergence of method (2)
that follows. Let γ ∈ R and δ ≥ 0 be parameters and let function ω0 : [0,+∞) × [0,+∞) −→ [0,+∞) be
continuous and nondecreasing with ω0(0, 0) = 0. Define parameter r0 by

r0 = sup{t ∈ [0,+∞) : ω0(δt, t) < 1}. (2)

Let v0 : [0, r0) −→ [0,+∞), ω1 : [0, r0) × [0, r0) −→ [0,+∞) be continuous and nondecreasing functions.
Define functions g1 and h1 on the interval [0, r0) by

g1(t) =
ω1(|γ|v0(t)t, t)
1− ω0(δt, t)
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and
h1(t) = g1(t)− 1.

Suppose that
ω1(0, 0) < 1. (3)

Suppose that
h1(t) −→ a positive number or +∞ as t −→ r−0 . (4)

We have by (3) that

h1(0) =
ω1(0, 0)

1− ω0(0, 0)
− 1 < 0. (5)

Then, by (4), (5) and the intermediate value theorem equation h1(t) = 0 has solutions in the interval
(0, r0). Denote by r1 the smallest such zero. Let v : [0, r0) −→ [0,+∞), ω2 : [0, r0) −→ [0,+∞) and
ω3 : [0, r0) × [0, r0) −→ [0,+∞) be continuous and nondecreasing functions. Define functions β, g2, h2 on
[0, r0) by

β(t) =
1 + ω0(δt, t) + ω2((δ + g1(t)t)t) + ω3((δ + g1(t))t, |γ|v0(t)t)v(g1(t)t)

(1− ω0(δt, t))2

g2(t) = (1 + β(t)v(g1(t)t))g1(t)

and
h2(t) = g2(t)− 1.

Suppose that
(1 + β(0)v(0))ω1(0, 0) < 1 (6)

and
h2(t) −→ a positive number or +∞ as t −→ r−0 (7)

We get by (6) that h2(0) < 0. So, by the intermediate value theorem equation h2(t) = 0 has solutions in the
interval (0, r0). Denote by r2 the smallest solution of h2(t) = 0 in the interval (0, r0). Define functions p1 and
hp1 on the interval [0, r0) by

p1(t) = ω0(g2(t)t, g1(t)t)

and
hp1(t) = p1(t)− 1.

We have by the definition of function w0 that hp1(0) < 0. Suppose that

hp1(t) −→ a positive number or +∞ as t −→ r−0 . (8)

Denote by rp1 the smallest solution of equation hp1(t) = 0 on the interval (0, r0). Define functions ϕ, g3, h3
on the interval [0, rp1) by

ϕ(t) =
1 + ω2((δ + g2(t)t) + ω0(g2(t)t, t)

(1− p1(t))(1− ω0(δt, t))

g3(t) = (1 + ϕ(t)v(g2(t)t))g2(t)

and
h3(t) = g3(t)− 1.

Suppose that
(1 + (1 + ω2(0))v(0)) (1 + β(0)v(0))ω1(0, 0) < 1, (9)

and
h3(t) −→ a positive number or +∞ as t −→ r−p1 . (10)
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We have that h3(0) < 0. Denote by r3 the smallest solution of equation h3(t) = 0 in the interval (0, r0).
Define the radius of convergence r by

r = min{ri} i = 1, 2, 3. (11)

Then, for each t ∈ [0, r)
0 ≤ gi(t) < 1 (12)

0 ≤ p(t) < 1 (13)

and
0 ≤ p1(t) < 1. (14)

Finally, define R∗ by
R∗ = max{r, δr}. (15)

Some alternatives to the aforementioned conditions are:
Equation

w0(δt, t) = 1

has positive solutions. Denoted by r0 the smallest such solution. Functions v0, ω1, v, ω2 and ω3 defined on
the same intervals as before are increasing. Then, clearly conditions (4), (7), (8) and (10) hold.

We can show the local convergence analysis of method (2).

Theorem 2.2. Let F : Ω ⊂ B1 → B2 be a continuously Fréchet differentiable operator and let [., .;F ] :
Ω × Ω −→ L(B1,B2)be a divided difference of order one on Ω × Ω for F. Suppose: there exists x∗ ∈ Ω and
function ω0 : [0,+∞) × [0,+∞) → [0,+∞) continuous and nondecreasing with ω0(0, 0) = 0 such that for
each x, y ∈ Ω,

F (x∗) = 0, F ′(x∗)−1 ∈ L(B2,B1); (16)

and
‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ ω0(‖x− x∗‖, ‖y − x∗‖). (17)

Let Ω0 = Ω ∩ B(x∗, r0). There exist γ ∈ R, δ ≥ 0, functions v0, v, ω2 : [0, r0) → [0,+∞), ω1, ω3 : [0, r0) ×
[0, r0)→ [0,+∞) such that for each x, y, z ∈ Ω0

‖I + γ[x, x∗;F ]‖ ≤ δ, (18)

‖[x, x∗;F ]‖ ≤ v0(‖x− x∗‖), (19)

‖F ′(x∗)−1[x, x∗;F ]‖ ≤ v(‖x− x∗‖), (20)

‖F ′(x∗)−1([x, y;F ]− [y, x∗;F ])‖ ≤ ω1(‖x− y‖, ‖y − x∗‖), (21)

‖F ′(x∗)−1([x, y;F ]− [z, y;F ])‖ ≤ ω2(‖x− z‖), (22)

‖F ′(x∗)−1([x, y;F ]− [z, x;F ])‖ ≤ ω3(‖x− z‖, ‖y − x‖), (23)

B̄(x∗, R∗) ⊆ Ω, (24)

(4), (7), (8) and (9) hold. Then, the sequence {xn} generated for x0 ∈ U(x∗, r)−{x∗} by method (2) is well
defined, remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following estimates
hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (25)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (26)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (27)

where the functions gi, i = 1, 2, 3 are defined previously. Furthermore, if there exists for R1 ≥ r such that

ω0(R1, 0) < 1 or ω0(0, R1) < 1, (28)

then the limit point x∗ is the only solution of equation F (x) = 0 in Ω1 := Ω ∩B(x∗, R1).
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Proof. The proof is induction based. By hypothesis x0 ∈ U(x∗, r)− {x∗}, the definition of w0, A0, r the
fact that ω0 is nondecreasing, we have that

‖F ′(x∗)−1(A0 − F ′(x∗))‖
≤ (by (17))ω0(‖w0 − x∗‖, ‖x0 − x∗‖)
≤ (by (2))ω0(‖x0 − x∗ + γ[x0, x

∗;F ](x0 − x∗)‖, ‖x0 − x∗‖)
≤ ω0(‖(I + γ[x0, x

∗;F ])(x0 − x∗)‖, ‖x0 − x∗‖)
≤ (by (1) and (2))ω0(δr, r) < 1. (29)

In view of (29) and the Banach perturbation lemma [2, 3], we get that A0 is invertible and

‖A−10 F ′(x∗)‖ ≤ 1

1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖)
. (30)

We also have that y0 is well defined by the first substep of method (2) for n = 0. We can write by method
(2) and (16) that

y0 − x∗ = (by (2))x0 − x∗ −A−10 F (x0)

= (by (10))A−10 (A0(x0 − x∗)− [x0, x
∗;F ](x0 − x∗))

= A−10 F ′(x∗)[F ′(x∗)−1([u0, x0;F ]− [x0, x
∗;F ])](x0 − x∗).

(31)

By the first substep of method (2) for n = 0, the definition of r, g1, the fact that w1 is nondecreasing, we
obtain in turn that

‖y0 − x∗‖
≤ (by (2)) ‖A−10 F ′(x∗)‖‖F ′(x∗)−1([w0, x0;F ]− [x0, x

∗;F ])‖‖x0 − x∗‖

≤ (by (21) and (30))
ω1(‖w0 − x0‖, ‖x0 − x∗‖)‖x0 − x∗‖

1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖)

≤ (by (2) and (19))
ω1(|γ|v0(‖x0 − x0‖)‖x0 − x∗‖
1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖)

‖x0 − x∗‖

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ (by (7) for i = 1) ‖x0 − x∗‖ < r, (32)

which shows (25) for n = 0 and y0 ∈ B(x∗, r). We need an estimate on ‖B0F
′(x∗)‖. By the definition of B0,

β and the fact that functions ω0, ω2, ω3 are nondecreasing, we have in turn that

‖B0F
′(x∗)‖

= ‖A−10 (3A0 − [y0, x0;F ]− [y0, w0;F ])A−10 ‖
≤ ‖A−10 F ′(x∗)‖2[‖F ′(x∗)−1F ′(x∗)‖

+‖F ′(x∗)−1([w0, w0;F ]− F ′(x∗))‖
+‖F ′(x∗)−1([w0, x0;F ]− [y0, x0;F ])‖
+‖F ′(x∗)−1([w0, x0;F ]− [y0, w0;F ])‖]

≤ (by (22), (23, (32))
1 + ω0(‖x0 − x∗‖, ‖x0 − x∗‖) + ω2(‖w0 − y0‖) + ω3(‖w0 − y0‖, ‖x0 − w0‖)

(1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖))2
≤ β(‖x0 − x∗‖). (33)

By the second substep of method (2), the fact that function v is nondecreasing , β is nonnegative and the
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definition of g2 we get in turn that

‖z0 − x∗‖
≤ (by the triangle inequality) ‖y0 − x∗‖+ ‖B0F

′(x∗)‖‖F ′(x∗)−1F (y0)‖
≤ (by (33)) (1 + β(‖y0 − x∗‖)v(‖y0 − x∗‖)) ‖y0 − x∗‖
≤ (by (32) and (33))

(1 + β(‖x0 − x∗‖)v(g1(‖x0 − x∗‖‖x0 − x∗‖)) g1(‖x0 − x∗‖)‖x0 − x∗‖
= (by the definition of function g2) g2(‖x0 − x∗‖)‖x0 − x∗‖
≤ (by (12) (for i=2)) ‖x0 − x∗‖ < r, (34)

which shows (26) for n = 0 and z0 ∈ B(x∗, r). We must show [z0, y0;F ]−1 ∈ L(B2,B1). We get that

‖F ′(x∗)−1([z0, y0;F ]− F ′(x∗))‖
≤ (by (17) )ω0(‖z0 − x∗‖, ‖y0 − x∗‖)
≤ (by (32) and (34) )ω0(g2(‖x0 − x∗‖)‖x0 − x∗‖, g1(‖x0 − x∗‖)‖x0 − x∗‖)
= (by the definition of function p1) p1(‖x0 − x∗‖) (35)
≤ (by (14) ) p1(r) < 1,

so
‖[z0, y0;F ]−1F ′(x∗)‖ ≤ 1

1− p1(‖x0 − x∗‖)
. (36)

To obtain an estimate on ‖C0F
′(x∗)‖,

‖F ′(x∗)−1(([w0, x0;F ]− [z0, x0;F ]) + (]y0, x0;F ]− F ′(x∗)) + F ′(x∗))‖
≤ (by (17) and (22) ) 1 + ω2(‖w0 − z0‖) + ω0(‖y0 − x∗‖, ‖x0 − x∗‖)
≤ (by the triangle inequality )

1 + ω2(‖w0 − x∗‖+ ‖z0 − x∗‖) + ω0(‖y0 − x∗‖, ‖x0 − x∗‖),

so by the definition of ϕ

‖C0F
′(x∗)‖ ≤ (by (31) and (36))

1 + ω2(‖w0 − x∗‖, ‖z0 − x∗‖) + ω0(‖y0 − x∗‖, ‖x0 − x∗‖)
(1− p1(‖x0 − x∗‖))(1− ω0δ(‖x0 − x∗‖, ‖x0 − x∗‖))

≤ ϕ(‖x0 − x∗‖) (37)

leading by the third substep of method (2) (by (11), (12) (for i = 2), and (37)) to the estimate

‖x1 − x∗‖
≤ (by the triangle inequality) ‖z0 − x∗‖+ ‖C0F

′(x∗)‖‖F ′(x∗)−1F (z0)‖
≤ (by (20) and (37) ) (1 + ϕ(‖x0 − x∗‖)v(‖z0 − x∗‖))‖z0 − x∗‖
≤ (by (34)) (1 + ϕ(‖x0 − x∗‖)v(g2(‖x0 − x∗‖)‖x0 − x∗‖)
×g2(‖x0 − x∗‖)‖x0 − x∗‖

= (by the definition of g3) g3(‖x0 − x∗‖)‖x0 − x∗‖ (38)
≤ (by (12) for i = 3) ‖x0 − x∗‖ < r,

which shows (27) and x1 ∈ U(x∗, r). The induction for (25)– (27) is completed in an analogous way, if we
replace x0, y0, z0, u0, x1 by xk, yk, zk, uk, xk+1, respectively, in the previous estimates. Then, it follows from
the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, (39)
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where c = g3(‖x0−x∗‖) ∈ [0, 1), that lim
k→∞

xk = x∗ and xk+1 ∈ U(x∗, r). Let y∗ ∈ Ω1 with F (y∗) = 0. Define

Q by Q = [y∗, x∗; f ]. Then, we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ (by (17))ω0(0, ‖y∗ − x∗‖)
≤ (by (28))ω0(0, R1) < 1, (40)

so Q is invertible. Then, from the identity 0 = F (y∗)− F (x∗) = Q(y∗ − x∗), we conclude that x∗ = y∗.
2

Remark 2.3. Method (2) is not changing if we use the new instead of the old conditions [13]. Moreover,
for the error bounds in practice we can use the computational order of convergence (COC) [14]

ξ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 0, 1, 2, . . .

instead of the error bounds obtained in Theorem 2.2.

3. Numerical Examples

The numerical examples are presented in this section. We choose

[x, y;F ] =

∫ 1

0
F ′(y + θ(x− y))dθ.

Example 3.1. Let X = R3,Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on Ω for q = (x, y, z)T by

F (q) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(q) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (18)-(23) conditions, we get ω0(s, t) = L0

2 (s+t), ω1(s, t) = Ls+L0t
2 , ω2(t) = 1

2e
1
L0 t, ω3(s, t) =

L
2 (s+ t), v0(t) = v(t) = 1

2(1 + e
1
L0 ), r0 = 1

L0
, δ = 1 + 1

2 |γ|(1 + e
1
L0 ), L0 = e− 1 and L = e. The parameters are

r1 = 0.2010, r2 = 0.0830, r3 = 0.0639 = r.

Example 3.2. Let X = C[0, 1],Ω = B̄(x∗, 1) and consider the nonlinear integral equation of the mixed
Hammerstein-type [7, 11] defined by

x(s) =

∫ 1

0
K(s, t)

x(t)2

2
dt,

where the kernel K is the Green’s function defined on the interval [0, 1]× [0, 1] by

K(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t.
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The solution x∗(s) = 0 is the same as the solution of equation (1), where F : C[0, 1] −→ C[0, 1]) is defined
by

F (x)(s) = x(s)−
∫ 1

0
K(s, t)

x(t)2

2
dt.

Notice that [5, 7, 8]

‖
∫ 1

0
K(s, t)dt‖ ≤ 1

8
.

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0
K(s, t)x(t)dt,

so since F ′(x∗(s)) = I,

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 1

8
‖x− y‖.

We can choose ω0(t, s) = ω1(t, s) = ω3(s, t) = t+s
16 , ω2(t) = 1

16 t, v(t) = 9
16 and δ = 1 + |γ| 916 . The parameters

are
r1 = 0.5805, r2 = 0.2623, r3 = 0.1463 = r.
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