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ON THE HARMONIC ENERGY AND THE HARMONIC

ESTRADA INDEX OF GRAPHS

Akbar Jahanbani1, Hassan Hekmatyan Raz2

Let G be a graph with n vertices and di is the degree of its ith vertex( di
is the degree of vi), then the harmonic matrix of G is the square matrix of
order n whose (i, j)-entry is equal to 2

di+dj
if the ith and jth vertex of G are

adjacent, and zero otherwise. The main purpose of this paper is to introduce
the harmonic Estrada index of a graph. Moreover we establish upper and
lower bounds for these energy and index separately also we investigate the
relations between the harmonic Estrada index and the harmonic energy.

1. INTRODUCTION

Let G = (V,E) be a simple connected graph with the vertex set V (G) =
{v1, v2, ..., vn} and edge set E(G), where |V (G)| = n and |E(G)| = m. Let di be
the degree of the ith vertex vi ∈ V , for i = 1, 2, ..., n. For a graph G, the harmonic
index H(G) is defined in [25] as H(G) =

∑
uivj∈E(G)

2
di+dj

. The chromatic number

χ′(G) of G is the smallest number of colors needed to color all vertices of G in such
a way that no pair of adjacent vertices get the same color. Let the vertices of
G be labeled as v1, v2, . . . , vn. The adjacency matrix of a graph G is the square
matrix A = A(G) = [aij ] , in which aij = 1 if vi is adjacent to vj and aij = 0 ,
otherwise. For a graph G, its characteristic polynomial P (G, x) is the characteristic
polynomial of its adjacency matrix, that is, P (G, x) = det(xI − A(G)). Let λ1 >
λ2 > · · · > λn be the eigenvalues of its adjacency matrix A(G). Then the spectrum
of G is Spec(G) = {λ1, λ2, . . . , λn}. These form the adjacency spectrum of G [3].

2010 Mathematics Subject Classification. 05C50.
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Thus

detA =

n∏
i=1

λi.

The harmonic matrix of a graph G is a square matrix H(G) = [hij ] of order n,
defined in [25] as

hij =


0 if the vertices vi and vj of G are not adjacent

2
(di+dj)

if the vertices vi and vj of G are adjacent

0 if i = j.

The eigenvalues of the harmonic matrix H(G) are denoted by γ1, γ2, . . . , γn and are
said to be the H-eigenvalues of G and their collection is called harmonic spectrum
or H-spectrum of G. We note that since the harmonic matrix is symmetric, its
eigenvalues are real and can be ordered as γ1 > γ2 > · · · > γn. Favaron et al.
[20] considered the relation between harmonic index and the eigenvalues of graphs.
Zhong [36] found the minimum and maximum values of the harmonic index for
simple connected graphs and trees, and characterized the corresponding extremal
graphs. Deng, Balachandran, Ayyaswamy, Venkatakrishnan [8] considered the re-
lation relating the harmonic index H(G) and the chromatic number and proved
that χ(G) 6 2H(G) by using the effect of removal of a minimum degree vertex
on the harmonic index. Deng, Tang, Zhang [6] considered the harmonic index
H(G) and the radius r(G). Deng, Balachandran, Ayyaswamy, Venkatakrishnan
[7] determined the trees with the second-the sixth maximum harmonic indices, and
unicyclic graphs with the second-the fifth maximum harmonic indices, and bicyclic
graphs with the first-the fourth maximum harmonic indices.
The sum-connectivity index χ′(G) and the general sum-connectivity index χα(G)
were recently proposed by Zhou and Trinajstić in [37, 38] and defined as

χ′(G) =
∑

uv∈E(G)

(d(u) + d(v))
−1
2

and

(1) χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α,

where α is a real number. Some mathematical properties of the (general) sum-
connectivity index on trees, molecular trees, unicyclic graphs and bicyclic graphs
were given in [12, 13, 14].
This paper is organized as follows. In Section 2, we give a list of some previously
known results. In Section 3, we obtain lower and upper bounds for the harmonic
energy of graph G. In Section 4, we put forward the concept of harmonic Estrada
index, and obtain lower and upper bounds for it. In Section 5, we investigate the
relations between the harmonic Estrada index and the harmonic energy. All graphs
considered in this paper are simple.
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2. PRELIMINARIES AND KNOWN RESULTS

In this section, we shall list some previously known results that will be needed
in the next sections. In this section we first calculate tr(H2) , tr(H3) and tr(H4)
, where tr denotes the trace of a matrix. Now let us present the following lemma
as the first preliminary result. Denote by Nk the k-th spectral moment of the
harmonic matrix H, i. e.,

(2) Nk =

n∑
j=1

(γi)
k

and recall that Nk = tr(Hk).

Lemma 1. Let G be a graph with n vertices and harmonic matrix H. Then

(1) N0 =

n∑
i=1

(γi)
0 = n,

(3)

(2) N1 = tr(H) = 0,
(4)

(3) N2 = tr(H2) = 8χ−2(G),

(5)

(4) N3 = tr(H3) = 32
∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)
,

(6)

(5) N4 = tr(H4) =

n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2

.

(7)

where
∑
i∼j indicates summation over all pairs of adjacent vertices vi, vj .

Proof. By definition, the diagonal elements of H are equal to zero. Therefore the
trace of H is zero.
Next, we calculate the matrix H2. For i = j

(H2)ii =

n∑
j=1

HijHji =

n∑
j=1

(Hij)
2 =

∑
i∼j

(Hij)
2 =

∑
i∼j

4

(di + dj)2
.

whereas for i 6= j

(H2)ij =

n∑
j=1

HijHji = HiiHij+HijHjj+
∑

k∼i, k∼j

HikHkj =
2

(di + dj)

∑
k∼i, k∼j

4

(dk)2
.
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Therefore

tr(H2) =

n∑
i=1

∑
i∼j

4

(di + dj)2
= 8

∑
i∼j

1

(di + dj)2
.

Hence by Equality (1), we have

tr(H2) = 8χ−2(G).

Since the diagonal elements of H3 are

(H3)ii =

n∑
j=1

Hij(H
2)jk =

∑
i∼j

2

(di + dj)
(H2)ij =

∑
i∼j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)

we obtain

tr(H3) =

n∑
i=1

∑
i∼j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)
= 32

∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)
,

wher
∑
k∼i, k∼j

1
(dk)2 =

∑
k∼i, k∼j

1
(di+dk)(dk+dj)

.

We now calculate tr(H4). Because tr(H4) = ‖H2‖2F , where ‖H2‖2F denotes the
Frobenius norm of H2, we obtain

tr(H4) =

n∑
i,j=1

| (H2)ii |2=
∑
i=j

| (H2)ii |2 +
∑
i 6=j

| (H2)ii |2

=

n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2

.

Remark 1. For any real x, the power-series expansion of ex, is the following

ex =
∑
k>0

xk

k!
.(8)

Lemma 2. For any non-negative real x, x, ex > 1 + x + x2

2 + x3

3 + x4

4 . Equality
holds if and only if x = 0.

Theorem 1. [4] (Chebishev inequality) Let a1 ≤ a2 6 · · · 6 an and b1 ≤ b2 6
· · · 6 bn be real numbers. Then we have( n∑

i=1

ai

)( n∑
i=1

bi

)
6 n

n∑
i=1

aibi,

equality occurs if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.
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Remark 2. For nonnegative x1, x2, . . . , xn and k > 2,

(9)

n∑
i=1

(xi)
k 6 (

n∑
i=1

xi
2)

k
2 .

Lemma 3. [35] Let G be a graph with m edges. Then for k > 4, Mk+2 >Mk with
equality for all even k > 4 if and only if G consists of m copies of complete graph
on two vertices and possibly isolated vertices, and with equality for all odd k > 5 if
and only if G is a bipartite graph.

Lemma 4. (Rayleigh-Ritz) [24] If B is a real symmetric n× n matrix with eigen-
values λ1(B) > λ2(B) 6 · · · 6 λn(B), then for any X ∈ Rn, (X 6= 0),

XtBX 6 λ1(B)XtX.

Equality holds if and only if X is an eigenvector of B, corresponding to the largest
eigenvalue λ1(B).

Theorem 2. [8] Let G be a simple graph with the chromatic number χ(G) and
the harmonic index H(G), then

χ(G) 6 2H(G),

with equality if and only if G is a complete graph possibly with some additional
isolated vertices.

3. BOUNDS FOR THE HARMONIC ENERGY

In this section, we study energy and harmonic energy of graph G. We also
give lower and upper bounds for it.
The energy of the graph G is defined as:

(10) E = E(G) =

n∑
i=1

| λi | .

where λi, i = 1, 2, . . . , n , are the eigenvalues of graph G.
This concept was introduced by I. Gutman and is intensively studied in chemistry,
since it can be used to approximate the total π-electron energy of a molecule
(see, e.g. [22, 23] ). After 1978 the graph-energy concept was presented to the
mathematico-chemical community on several other occasions [23, 29]. Initially, the
response of other colleagues was almost nil. However, around the turn of the cen-
tury the study of E suddenly became a rather popular topic both in mathematical
chemistry and in pure mathematics. Of the numerous papers on graph energy that
recently appeared, since then, the numerous bounds for energy were found (see,
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e.g. [1, 21, 26, 27, 28]).
Therefore, by considering this, the harmonic energy defined in [25] as

(11) HE(G) =

n∑
i=1

| γi |,

where γ1, γ2, . . . , γn are eigenvalues of the harmonic matrix.
Bearing this in mind, we immediately arrive at the following estimates:

Lemma 5. Let G be a connected graph with n > 2 vertices. Then the spectral
radius of the harmonic matrix is bounded from below as

(12) γ1 >
2H(G)

n
.

Proof. Let H = ||hij || be the harmonic matrix corresponding to H. By Lemma 4,
for any vector X = (x1, x2, . . . , xn)t,

XtHX =

( n∑
j,j∼1

xjhj1,

n∑
j,j∼2

xjhj2, . . . ,

n∑
j,j∼n

xjhjn

)t
X

= 2
∑
i∼j

hijxixj(13)

because hij = hji. Also,

(14) XtX =

n∑
i=1

x2
i .

Using Eqs. (13) and (14), by Lemma 4, we obtain

(15) γ1 >

2
∑
i∼j

hijxixj

n∑
i=1

x2
i

.

Since (15) is true for any vector X, by putting X = (1, 1, . . . , 1)t, we have

γ1 >
2H(G)

n
.

Remark 3. Let G be a graph with n vertices, by Theorem 2 and Lemma 5, we

have γ1 > χ(G)
n .

Theorem 3. Let G be a non-empty graph with n vertices. Then

HE(G) ≤ χ(G)

n
+

√
(n− 1)

(
8χ−2(G)− χ(G)

n

)2)
.
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Proof. Let γ1 > γ2 > · · · > γn−1 > γn be the eigenvalues of G. By the Cauchy −
Schwartz inequality,

n∑
i=1

| γi |6

√√√√(n− 1)

n∑
i=2

γ2
i =

√
(n− 1)(8χ−2(G)− γ2

1).

Hence

HE(G) 6 γ1 +
√

(n− 1)(8χ−2(G)− γ2
1).

Note that the function K(x) = x+
√

(n− 1)(8χ−2(G)− x2) decreases for χ(G)
n2 6

x 6 χ(G)
n . By Remark 3, we have γ1 > χ(G)

n , therefore

γ1 >
χ(G)

n
>
χ(G)

n2
.

So K(γ1(G)) 6 K

(
χ(G)
n

)
, which implies that

HE(G) ≤ χ(G)

n
+

√
(n− 1)

(
8χ−2(G)−

(
χ(G)

n

)2)
.

Remark 4. [31] For the roots x1 > x2 > · · · > xn of an arbitrary polynomial
Pn(x) from this class, the following values were introduced

x̄ =
1

n

n∑
i=1

xi,(16)

∆ = n

n∑
i=1

x2
i −

( n∑
i=1

xi

)2

.(17)

Then upper and lower bounds for the polynomial roots, xi, i = 1, 2, . . . , n, were
determined in terms of the introduced values

x̄+
1

n

√
∆

n− 1
6 x1 6 x̄+

1

n

√
(n− 1)∆.

Lemma 6. Let G be a simple graph with n > 2, vertices. Then

1

n

√
8nχ−2(G)

n− 1
6 γ1 6

1

n

√
8n(n− 1)χ−2(G).

Proof. Let the characteristic polynomial of a graph G is the following:

ϕn(x) =

n∏
i=1

(x− γi) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn.
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Since

a1 = −
n∑
i=1

γi = 0

and

a2 =
1

2

[( n∑
i=1

γi

)2

−
n∑
i=1

γ2
i

]
= −4χ−2(G),

the polynomial ϕn(x) belongs to a class of real polynomials Pn(0,−4χ−2(G)), From
the equalities

x̄ =
1

n

n∑
i=1

γi = 0

and

∆ = n
n∑
i=1

γ2
i −

( n∑
i=1

γi

)2

= 8nχ−2(G)

and Remark (4), we obtain that for the eigenvalues γ1.

Theorem 4. Let G be a non-empty graph with n vertices. Then

HE(G) ≤ 1

n

√
8nχ−2(G)

n− 1
+

√
(n− 1)

(
8χ−2(G)−

(
1

n

√
8nχ−2(G)

n− 1

)2)
.

Proof. Let γ1 > γ2 > · · · > γn−1 > γn be the eigenvalues of G. By the Cauchy −
Schwartz inequality,

n∑
i=1

| γi |6

√√√√(n− 1)

n∑
i=2

γ2
i =

√
(n− 1)(8χ−2(G)− γ2

1).

Hence

HE(G) 6 γ1 +
√

(n− 1)(8χ−2(G)− γ2
1).

Note that the function F (x) = x+
√

(n− 1)(8χ−2(G)− x2) decreases for 1
n2

√
8nχ−2(G)
n−1 6

x 6 1
n

√
8nχ−2(G)
n−1 . By Lemma 6, we have γ1 > 1

n

√
8nχ−2(G)
n−1 , therefore

γ1 >
1

n

√
8nχ−2(G)

n− 1
>

1

n2

√
8nχ−2(G)

n− 1
.

So F (γ1(G)) 6 F

(
1
n

√
8nχ−2(G)
n−1

)
, which implies that

HE(G) ≤ 1

n

√
8nχ−2(G)

n− 1
+

√
(n− 1)

(
8χ−2(G)−

(
1

n

√
8nχ−2(G)

n− 1

)2)
.
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Theorem 5. Let G be a non-empty graph with n vertices. Then

(18) e−
√

8χ−2(G) 6 HE(G) 6 e
√

8χ−2(G).

Proof. Lower bound, by definition of harmonic energy and by the arithmetic-
geometric mean inequality, we have

HE(G) =

n∑
i=1

| γi |= n(
1

n

n∑
i=1

| γi |) > n( n
√
| γ1 || γ2 | · · · | γn |).

By the geometric and harmonic mean inequality, we have

n( n
√
| γ1 || γ2 | · · · | γn |) > n(

n∑n
i=1

1
|γi|

)

> n(
n∑n

i=1
1
|γi|
∑n
i=1 | γi |

)

> n(
n

n
∑n
i=1

1
|γi| | γi |

), ( by Theorem 1)

> n(
n

n2
∑n
i=1 | γi |

)

> n(
n

n2
∑n
i=1 e

|γi|
)

=
1∑n

i=1

∑
k>0

(|γi|)k
k!

=
1∑

k>0
1
k! (
∑n
i=1(| γi |)k)

>
1∑

k>0
1
k! (
∑n
i=1(| γi |)2)

k
2

, (by Inequality 9)

=
1∑

k>0
1
k! (
∑n
i=1(γi)2)

k
2

=
1∑

k>0
1
k!

(√
8χ−2(G)

)k , (by Equality 5)

=
1

e
√

8χ−2(G)
.

Therefore, we have

HE(G) > e−
√

8χ−2(G).
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Upper bound, by definition of harmonic energy, we have

HE(G) =

n∑
i=1

| γi |<
n∑
i=1

e|γi| =

n∑
i=1

∑
k>0

(| γi |)k

k!

=
∑
k>0

1

k!

n∑
i=1

(| γi |)k

≤
∑
k>0

1

k!
(

n∑
i=1

(| γi |)2)
k
2 , ( by Inequality 9)

=
∑
k>0

1

k!
(

n∑
i=1

(γi)
2)

k
2

=
∑
k>0

1

k!

(
8χ−2(G)

) k
2

, (by Equality 5)

=
∑
k>0

1

k!

(√
8χ−2(G)

)k
= e
√

8χ−2(G).

Therefore, we have

HE(G) 6 e
√

8χ−2(G).

Theorem 6. Let G be a graph with n vertices. Then√
8χ−2(G) 6 HE(G) 6

√
8nχ−2(G).

Proof. By Cauchy-Schwarz inequality, for real numbers ai and bi, we have( n∑
i=1

aibi

)2

6

( n∑
i=1

a2
i

)( n∑
i=1

b2i

)
,

assuming, ai = 1, bi =| γi |, we have( n∑
i=1

| γi |
)2

6 n

( n∑
i=1

| γi |2
)

= n

n∑
i=1

(γi)
2 = 8nχ−2(G).

Therefore
HE(G) 6

√
8nχ−2(G).

Therefore this gives the upper bound for HE(G). Now for the lower bound of
HE(G), we can easily obtain the inequality

HE(G)2 =

( n∑
i=1

| γi |
)2

>
n∑
i=1

| γi |2= 8χ−2(G).
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Theorem 7. Let G be a connected graph with n vertices. Then

HE(G) >
√

8χ−2(G) + n(n− 1) | detH | 2n .

Proof. By the definition of harmonic energy, we have

HE(G)2 =

( n∑
i=1

| γi |
)2

=

n∑
i=1

| γi |2 +2
∑

16i6j6n

| γi || γj |

= 8χ−2(G) + 2
∑

16i6j6n

| γi || γj |

= 8χ−2(G) + 2
∑
i 6=j

| γi || γj | .

Since, for nonnegative numbers, the arithmetic mean is not smaller than the geo-
metric mean, we then have

1

n(n− 1)

∑
i 6=j

| γi || γj |>
(∏
i 6=j

| γi || γj |
) 1
n(n−1)

=

( n∏
i=1

| γi |2(n−1)

) 1
n(n−1)

=

n∏
i=1

| γi |
2
n=| detH | 2n .

Theorem 8. Let G be a graph with n vertices. Then

HE(G) 6
8χ−2(G) + n

2
.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be sequences of real numbers. and
c1, c2, . . . , cn and d1, d2, . . . , dn are nonnegative, then Then the following inequality
is valid (see [11])

(19)
n∑
i=1

di

n∑
i=1

cia
2
i +

n∑
i=1

ci

n∑
i=1

dib
2
i > 2

n∑
i=1

aici

n∑
i=1

bidi.

For ai := |γi|, bi := ci = di = 1, i = 1, 2, . . . n, inequality () becomes

n∑
i=1

1

n∑
i=1

|γi|2 +

n∑
i=1

1

n∑
i=1

1 > 2

n∑
i=1

|γi|
n∑
i=1

1.

Therefore, by equalities (5) and (11), we have

HE(G) 6
8χ−2(G) + n

2
.
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4. BOUNDS FOR THE HARMONIC ESTRADA INDEX

In this section, we consider the harmonic estrada index of graph G. We also
give lower and upper bounds for it. As a new direction for the studying on indexes
and their bounds, we will introduce and investigate harmonic estrada index and its
bounds. A graph-spectrum-based graph invariant, recently put forward by Estrada
[10], is defined as

EE = EE(G) =

n∑
i=1

eλi .

EE is usually referred as the Estrada index. Although invented in 2000, the Estrada
index has found numerous applications. The Estrada index has been successfully
employed to quantify the degree of folding of long-chain molecules, especially pro-
teins, and to measure the centrality of complex (reaction, metabolic, communica-
tion, social, etc.) networks. There is also a connection between the Estrada index
and the extended atomic branching of molecules.

Mk = Mk(G) =

n∑
i=1

(λi)
k.

Where Mk = Mk(G) is the k-th spectral moment of the graph G. Some mathe-
matical properties of the Estrada index were established. One of most important
properties is the following:

EE =

∞∑
i=1

Mk(G)

k!
.

It is well known that [18] Mk(G) is equal to the number of closed walks of length k
of the graph G. There have been found a lot of chemical and physical applications,
including quantifying the degree of folding of long-chain proteins,[15, 16, 17] and
complex networks [18]. Mathematical properties of this invariant can be found in
e.g. [35, 33, 34]. Recently, the analogous concepts of Estrada indices of this kind
are the:

• Zagreb Estrada Index, ZEE = ZEE(G) =

n∑
i=1

eζi [32],

• Harary Estrada index, H ′EE = H ′EE(G) =

n∑
i=1

eµi [19],

• Resolvent Estrada index, EEr = EEr(G) =

n∑
i=1

(
1− λi

n− 1

)−1

[9],

• Randić Estrada index REE = REE(G) =

n∑
i=1

eρi [2].
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Let thus G be a graph of order n whose harmonic eigenvalues are γ1 > γ2 >
· · · > γn. Then the harmonic Estrada index of G, denoted by HEE, is defined to
be

HEE = HEE(G) =

n∑
i=1

eγi .

Recalling Eq. (2), it follows that

HEE(G) =

∞∑
i=1

Nk
k!
.

We begin this section with theorem as follows:

Theorem 9. Let G be a graph with n vertices. Then

HEE(G) > n+ 8χ−2(G) + 32
∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)(
sinh(1)− 1

)

+

(
cosh(1)− 1

) n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2
 .

Proof. Note that N2 = 8χ−2(G). By Lemma 3,

HEE(G) = n+ 8χ−2(G) +
∑
k>1

N2k+1

(2k + 1)!
+
∑
k>1

N2k+2

(2k + 2)!

> n+ 8χ−2(G) +
∑
k>1

N3

(2k + 1)!
+
∑
k>1

N4

(2k + 2)!

= n+ 8χ−2(G) + 32
∑
i∼j

1

(di + dj)2

( ∑
k∼i, k∼j

1

(dk)2

)(
sinh(1)− 1

)

+

(
cosh(1)− 1

) n∑
i=1

(∑
i∼j

4

(di + dj)2

)2

+
∑
i 6=j

4

(di + dj)2

( ∑
k∼i, k∼j

4

(dk)2

)2
 .

Theorem 10. Let G be a graph with n vertices. Then

(20) HEE(G) 6 n− 1 + e
√

8χ−2(G)−1.

Proof. Let n+ be the number of positive harmonic eigenvalues ofG. Since f(x) = ex
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monotonically increases in the interval (∞,+∞) and m 6= 0, we get

HEE =

n∑
i=1

eγi < n− n+

n+∑
i=1

eγi = n− n+

n+∑
i=1

∑
k>0

(γi)
k

k!

= n+
∑
k>1

1

k!

n+∑
i=1

(γi)
k(21)

6 n+
∑
k>1

1

k!

[ n+∑
i=1

γ2
i

] k
2

= n+
∑
k>1

1

k!

[ n+∑
i=1

γ2
i

] k
2

.

Since every (n,m)-graph with m 6= 0 has K2 as its induced subgraph and the
spectrum of K2 is 1,−1 it follows from the interlacing inequalities that γn 6 1,

which implies that,

n∑
i=n++1

(γi)
2 > 1. Consequently,

HEE < n+
∑
k>1

1

k!

[
8χ−2(G)− 1

] k
2

= n− 1 + e
√

8χ−2(G)−1.

Theorem 11. Let G be a graph with n vertices. Then

HEE(G) >

√√√√√
n2 + 8nχ−2(G) +

32
∑
i∼j

1
(di+dj)2

(∑
k∼i, k∼j

1
(dk)2

)
3

+
1

12
nN4 + 16n2(χ−2)2(G).

Proof. Suppose that γ1, γ2, . . . , γn is the spectrum of G. Using Lemma 2 we have

HEE(G)2 =

n∑
i=1

n∑
j=1

eγi+γj

>
n∑
i=1

n∑
j=1

(
1 + γi + γj +

(γi + γj)
2

2
+

(γi + γj)
3

6
+

(γi + γj)
4

24

)

=

n∑
i=1

n∑
j=1

(
1 + γi + γj +

γ2
i

2
+
γ2
j

2
+ γiγj +

γ3
i

6
+
γ3
j

6
+
γ2
i γj
2

+
γiγ

2
j

2

+
γ4
i

24
+
γ4
j

24
+
γ2
i γ

2
j

4
+
γ3
i γj
6

+
γiγ

3
j

6

)
.
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By equality (4)-(7), we have the following equations:

n∑
i=1

n∑
j=1

(γi + γj) = n

n∑
i=1

γi + n

n∑
j=1

γj = 0.

n∑
i=1

n∑
j=1

γiγj = (

n∑
i=1

γi)
2 = 0.

n∑
i=1

n∑
j=1

(
γ2
i

2
+
γ2
j

2
) =

n

2

n∑
i=1

γ2
i +

n

2

n∑
j=1

γ2
j = 8nχ−2(G).

n∑
i=1

n∑
j=1

(
γ3
i

6
+
γ3
j

6
) =

n

6

n∑
i=1

γ3
i +

n

6

n∑
j=1

γ3
j =

32
∑
i∼j

1
(di+dj)2

(∑
k∼i, k∼j

1
(dk)2

)
3

.

n∑
i=1

n∑
j=1

(
γ4
i

24
+
γ4
j

24
) =

n

24

n∑
i=1

γ4
i +

n

24

n∑
j=1

γ4
j =

1

12
nN4.

n∑
i=1

n∑
j=1

γ2
i γ

2
j

4
= 16n2

(∑
i∼j

1

(di + dj)2

)2

= 16n2(χ−2)2(G).

n∑
i=1

n∑
j=1

γiγ
3
j

6
=

1

6

n∑
i=1

γi

n∑
j=1

γ3
j = 0.

n∑
i=1

n∑
j=1

γ3
i γj
6

=
1

6

n∑
i=1

γ3
i

n∑
j=1

γj = 0.

n∑
i=1

n∑
j=1

γiγ
2
j

2
=

1

2

n∑
i=1

γi

n∑
j=1

γ3
j = 0.

n∑
i=1

n∑
j=1

γ2
i γj
2

=
1

2

n∑
i=1

γ2
i

n∑
j=1

γj = 0.

Combining the above relations, we get

HEE(G) >

√√√√√
n2 + 8nχ−2(G) +

32
∑
i∼j

1
(di+dj)2

(∑
k∼i, k∼j

1
(dk)2

)
3

+
1

12
nN4 + 16n2(χ−2)2(G).

Theorem 12. Let G be a graph with n vertices. Then

HEE(G) > e
2H(G)
n +

n− 1

e
2H(G)
n
n−1

.
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Proof. By difinition of harmonic Esterada index and using arithmetic-geometric
mean inequality, we obtain

HEE(G) = eγ1 + eγ2 + · · ·+ eγn

> eγ1 + (n− 1)

( n∏
i=2

eγi
) 1
n−1

(22)

= eγ1 + (n− 1)

(
e−γ1

) 1
n−1

by Equality (4).(23)

Now we consider the following function

f(x) = ex +
n− 1

e
x
n−1

for x > 0. We have

f(x) > ex +
n− 1

e
x
n−1

for x > 0. It is easy to see that f is an increasing function for x > 0. From the
Equation (23) and Lemma 5, we obtain

HEE(G) > e
2H(G)
n +

n− 1

e
2H(G)
n
n−1

.

5. BOUND FOR THE HARMONIC ESTRADA INDEX INVOLVING
THE HARMONIC ENERGY

In this section, we investigate the relations between the harmonic Estrada
index and the harmonic energy.

Theorem 13. The harmonic Estrada index HEE(G) and the graph harmonic
energy HE(G) satisfy the following inequality:

(24)
1

2
HE(G)(e− 1) + n− n+ 6 HEE(G) 6 n− 1 + e

HE(G)
2 .

Proof. Lower bound, since ex > 1 + x, equality holds if and only if x = 0 and
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ex > ex, equality holds if and only if x = 1. We have

HEE(G) =

n∑
i=1

eγi =
∑
γi>0

eγi +
∑
γi60

eγi

>
∑
γi>0

eγi +
∑
γi60

(1 + γi)

= e(γ1 + γ2 + · · ·+ γn+) + (n− n+) + (γn++1 + · · ·+ γn)

= (e− 1)(γ1 + γ2 + · · ·+ γn+) + (n− n+) +

n∑
i=1

γi

=
1

2
HE(G)(e− 1) + n− n+.

Upper bound. From (21),

HEE(G) 6 n+
∑
k>1

1

k!

n+∑
i=1

(γi)
k 6 n+

∑
k>1

1

k!

( n+∑
i=1

γi

)k
= n− 1 + e

HE(G)
2 .

Theorem 14. Let G be a graph with largest eigenvalue γ1 and let p, τ and q be,
respectively, the number of positive, zero and negative eigenvalues of G. Then

(25) HEE(G) > eγ1 + τ + (p− 1)e
HE(G)−2γ1

2(p−1) + qe−
HE(G)

2q .

Proof. Let γ1 > · · · > γp be the positive, and γn−q+1, . . . , γn be the negative
eigenvalues of G. As the sum of eigenvalues of a graph is zero, one has

HE(G) = 2

n∑
i=1

γi = −2

n∑
i=n−q+1

γi.

By the arithmetic-geometric mean inequality, we have

(26)

p∑
i=2

eγi > (p− 1)e
(γ2+···+γp)

(p−1) = (p− 1)e
HE(G)−2γ1

2(p−1) .

Similarly,

(27)

n∑
i=n−q+1

eγi > qe−
HE(G)

2q .

For the zero eigenvalues, we also have

n−q∑
i=p+1

eγi = τ.
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So we obtain

HEE(G) > eγ1 + τ + (p− 1)e
HE(G)−2γ1

2(p−1) + qe−
HE(G)

2q .
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19. A. Güngör, A. Sinan Cevik: On the Harary energy and Harary Estrada index of a
graph, MATCH Commun. Math. Comput. Chem, 64, (2010) 280-296.
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ON SIZE, ORDER, DIAMETER AND

VERTEX-CONNECTIVITY

S. Mukwembi‡, S. Munyira†

Let G be a finite connected graph. We give an asymptotically sharp upper
bound on the size of G in terms of its order, diameter and vertex-connectivity.
The result is a strengthening of an old classical theorem of Ore [5] if vertex-
connectivity is prescribed and constant.

1. Introduction

Let G be a finite connected graph with vertex set V (G) and edge set E(G).
We denote the order of G by n and the size by m. The distance, dG(u, v), between
vertices u and v in G is the length of a shortest u−v path in G. The eccentricity of
a vertex v ∈ V (G) is the maximum distance between v and any other vertex in G.
The degree, deg v, of a vertex v of G is the number of edges incident with it, and
the diameter of G, d, is max{dG(u, v) : u, v ∈ V }, whilst the radius of G, r, is the
minimum value of the eccentricities of vertices of G. The vertex-connectivity κ(G)
of G is defined as the minimum number of vertices whose deletion from G results
in a disconnected or trivial graph. We say that G is k-vertex-connected, or simply
k-connected, if κ(G) ≥ k.

The diameter, apart from being an interesting graph theoretical parameter,
plays an important role in analysing communication networks ( see for example
[1]). In such networks the time delay or signal disgradation for sending a message
from one point to another is often proportional to the distance between the two
points. The diameter can be used to indicate the worst case performance.

Several bounds on the size of a graph in terms of other graph parameters, for
example, order and radius [3, 6], order and degree set [7], and order and domination

2010 Mathematics Subject Classification. 05C12.
Keywords and Phrases. size, vertex-connectivity, diameter.
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number [2] have been investigated. An upper bound on the size in terms of order
and diameter was determined by Ore [5] as early as 1968. Several authors [6, 7]
have presented simple and short proofs to Ore’s theorem. Recently one of the
present authors [4] reported on the size, order, diameter and minimum degree. In
this note we present an upper bound on the size in terms of order, diameter and
vertex-connectivity. The bound, for a fixed vertex-connectivity κ, is a strengthening
of Ore’s theorem [5], which we state below

Theorem 1. Let G be a connected graph of order n, diameter d and size m. Then

m ≤ 1

2
(n− d− 1)(n− d+ 4) + d =

1

2
(n− d)2 +O(n).

2. Results

Let G be a finite connected graph of order n, size m and diameter d. From now on-
wards v0 ∈ V (G) is a fixed vertex of eccentricity d and for each i = 0, 1, 2, 3, . . . , d,

Ni := {x ∈ V (G)|dG(x, v0) = i}.

The following result is a strengthening of Ore’s theorem if vertex-connectivity
is prescribed and constant.

Theorem 2. Let G be a κ-connected graph of order n, diameter d and size m.
Then

m ≤ 1

2
(n− κd)2 +O(n)

and the bound, for fixed κ, is asymptotically tight.

Proof. Assume the notation for v0 and Ni as above. Note that |Ni| ≥ κ,
for all i = 1, 2, . . . , d − 1. For each Ni, i = 1, 2, . . . , d − 1, choose any κ vertices
and let this set be N ′i = {ui1, ui2, . . . , uiκ}. For each j = 1, 2, . . . , κ, let Pj :=
{u1j , u2j , u3j , . . . , ud−1j} and N = ∪κj=1Pj . Then,

(1) |N | = κ(d− 1).

Claim 1. Let N be as above. Then
∑
x∈N

deg x ≤ O(n).

Proof of Claim 1: First consider Pj . Partition Pj as follows:
Pj = U1 ∪ U2 ∪ U3, where

U1 = {u1j , u4j , u7j , . . .},

U2 = {u2j , u5j , u8j , . . .},

and
U3 = {u3j , u6j , u9j , . . .}.



On size, order, diameter and vertex-connectivity 23

Note that for any x, y ∈ Ui, i = 1, 2, 3 we have N [x] ∩N [y] = ∅. It follows that

n ≥ |∪x∈UiN [x]| =
∑
x∈Ui

deg x+ |Ui|, for i = 1, 2, 3.

Therefore,

3n ≥
∑
x∈U1

deg x+
∑
x∈U2

deg x+
∑
x∈U3

deg x+ |U1|+ |U2|+ |U3|

=
∑
x∈Pj

deg x+ |Pj |

Thus,
∑
x∈Pj

deg x ≤ 3n− |Pj |. We conclude that

∑
x∈N

deg x =

κ∑
j=1

(
∑
x∈Pj

deg x)

≤
κ∑
j=1

(3n− |Pj |)

≤ 3nκ− |N |
= O(n),

as required.

Now let Q = V −N . Then from (1)

(2) |Q| = n− κ(d− 1).

Claim 2. Let x ∈ Q. Then deg x ≤ n− κd+O(1).

Proof of Claim2: Let x ∈ Q. Then x can only be adjacent to vertices from
at most 3 of the sets Ni, i = 1, 2, 3, . . . , d − 1. Hence x is adjacent to at most 3κ
vertices from N . It follows that

deg x ≤ |Q|+ 3κ

= n− κ(d− 1) + 3κ

= n− κd+ 4κ,

as desired.
By Claim 2, and from (2), we have∑

x∈Q
deg x ≤

∑
x∈Q

(n− κd+O(1))

≤ (n− κ(d− 1)) (n− κd+O(1))

= (n− κd)2 +O(n).
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Combining this and Claim 1, we get∑
x∈V

deg x =
∑
x∈N

deg x+
∑
x∈Q

deg x

≤ (n− κd)2 +O(n).

It follows, by the Handshaking Lemma that

m =
1

2

∑
x∈V

deg x ≤ 1

2
(n− κd)2 +O(n).

To see that the bound is asymptotically sharp, consider the graph Gn,d,κ = G0 +
G1 + . . .+Gκ where Gi = Kκ for i = 0, 1, 2, 3, · · · , d− 1 and Gd = Kn−κd. �

Using the counting technique employed in Theorem 2, we obtain the following
theorem which is an improvement of Vizing’s Theorem [8] if vertex-connectivity is
prescribed.

Theorem 3. Let G be a κ-connected graph of order n, radius r and size m. Then

m ≤ 1

2
(n− 2rκ)2 +O(n).

Moreover, this inequality is, for a fixed κ, asymptotically tight. �
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§1 Introduction 

In early May of 2018 I got an astonishing e-mail from Turkey mathematician, Dr. Süleyman Ediz, 

asking to write an essay to a new journal MATI to be dedicated solely to those papers dealing with the 

mathematical aspects of the topological index (TI). 

This is the most honorable and kindest offer from the group of distinguished scholars who are taking 

care of my beloved son bestowed to me nearly half a century ago. However, after to-and-fro net surfing I 

happened to know that these ladies and gentlemen don’t seem to know the detailed birth and growth 

history of my son and his family. Then I decided to let them know the most private features of TI and the 

family talk around him including his godfather as honestly as I can, of course, within the scope of a 

scientific paper. 

 

§2 Personal history of Haruo Hosoya (HH) related to TI 

In 1936
*1 

HH was born in Kamakura, an old capital town of Japan in 12th century, which is located 

to the 50 km south of Tokyo. He entered Univ. of Tokyo in 1955 to study chemistry, and in 1964 took the 

degree of Doctor of Science for “the research on the structure of reactive intermediates and reaction 

mechanism” under Prof. Saburo Nagakura. During his under-graduate age HH happened to estimate the 

boiling points of octane isomers reasonably well with ρ=0.942 using his own naïve conjecture. The 

detailed story about it is documented in his memoir “The topological index Z before and after 1971” [1]. 

However, this study is nothing related to his doctoral thesis and also to the biophysical study of vision 

research performed in Univ. of Michigan as a post-doctoral fellow under the direction of Prof. John Platt 

during 1967 and 1968. 

Ironically enough, although Platt who worked with the Nobel Laureate Robert Mulliken in Chicago 

was the only scientist that realized the importance of the “pass number w” of Harry Wiener proposed in 

1947 [2,3], HH did not know anything about the graph theory nor the papers by these pioneers in QSAR 

study during his one-year stay in Ann Arbor. 

In the spring of 1969 HH became associate professor of chemistry in Ochanomizu Univ. in Tokyo. 

In Japan among almost one hundred national universities other than several hundred private universities, 

Ochanomizu and Nara are only for women students. This means that the level of the students is rather 



high, which, however, does not mean a good place for a professor to perform active research. Namely HH 

had to struggle with no research assistant, no modern instruments, no fund, but with a few master and 

under-graduate students.  

 Luckily enough he called to remember his private research note on his first QSAR (quantitative 

structure-activity relationship) study, and with the knowledge of Hückel molecular orbital theory he could 

find his own graph-theoretical recipe for obtaining the coefficients of the characteristic polynomial, 

PG(x)=(–1)
N

det(A–xE), for tree graph G by using the non-adjacent number, p(G,k)’s, as follows [4]: 

  P
G
(x) = (−1)k p(G,k)

k=0

N /2 

∑ xN−2k (G ∈ tree).      (1)  

 Then the “topological index” Z is proposed to be defined as the sum of the p(G,k)’s as 

  Z = p(G,k)
k=0

N /2 

∑ .       (2) 

The Z-counting polynomial QG(x) is also defined as 

  Q
G
(x) = p(G,k) xk

k=0

N /2 

∑ .      (3) 

Naturally we have 

  Z =Q
G
(1).        (4) 

 Many years later acyclic [5], reference [6], and matching [7] polynomials MG(x)’s were proposed to 

be defined independently by several mathematical chemists and mathematicians, such as Zagreb group, 

Aihara, and Farrell.  

  M
G
(x) = (−1)k

k=0

N /2 

∑ p(G,k) xN−2k .      (5) 

Since all of them are using the p(G,k) numbers of HH, these polynomials are essentially the same as 

QG(x).  

 Now let us go back to discuss our Z. HH succeeded in finding good correlation between several 

thermodynamic quantities, such as boiling point and entropy, and the Z obtained from the carbon atom 

skeleton graph of saturated hydrocarbon molecules. 

 In the autumn of 1970 HH read a paper on his TI at the Symposium on the Electronic Structure of 

Molecules held in Electro-Communication Univ. of Tokyo. Although his presentation of this new idea 

was welcomed by the audience at that time, HH had to be confronted by the conservative and hard wall of 

the societies of chemists all over the world.  

 First, the letter to Chemical Physics Letters was rejected severely from the following reasons. “Since 

such a simple proposal must have been made by some other people, try to explore document survey in 



other fields of science. Further, physico-chemical discussion is lacking in this letter.” In 1973 when HH 

met the Editor E. Heilbronner in Basel, he himself betrayed this secret and made his apology to HH.  

 Anyway the first paper of TI, “Topological index. A newly proposed quantity characterizing the 

topological nature of structural isomers of saturated hydrocarbons” was published in Bulletin of the 

Chemical Society of Japan (BCSJ) in September of 1971 [4], but later HH was told that at least two 

designated referees quitted their job before this official debut of TI. They must have been severely vexed 

by the unique idea of Z-index. 

 However, after this a number of TI papers began to be proposed by chemists all over the world 

especially in Eastern Europe and US, and the term TI became a common noun. Thus Z-index of HH is 

now called as “the TI” or “Hosoya index,” and according to Balaban HH is the “godfather” of TI [8]. 

Among many reviews and monographs introducing the TI’s the book by Devillers and Balaban develops 

the detailed historical development of TI and Z-index [9], especially in the chapter by Ivanciuc and 

Balaban [10]. 

 The first TI paper by HH [4] is now being cited frequently not only by mathematical chemists but 

also by mathematicians and information scientists. According to GoogleScholar the total citation number 

is exceeding 1700 as of the summer of 2018, and this number is increasing weekly nearly after half a 

century since its debut.   

 Notwithstanding of dramatic debut and checkered youth, things surrounding TI was changing into 

warm atmosphere especially after the turn of the century.  

 Ramon Carbo-Dorca, Professor of the Institute of Computational Chemistry, University of Girona 

organized Vth Girona Seminar on Molecular Similarity dedicated to HH. The invited guests were P. 

Mezey, J. Galvez, J. Devillers, E. Estrada, S. Basak, J. Cioslowski, S. Iwata, K. Hirao, and H. Nakatsuji, 

etc. 

 HH retired from Ochanomizu Univ. in the spring of 2002 after serving 31 years.
*1

 He invited A. T. 

Balaban and M. Randic to Tokyo on this occasion, where Balaban declared that HH is the godfather of TI 

in his lecture at Ochanomizu [8]. As a matter of fact, most of the audience there didn’t know the true 

meaning of “godfather” in Christianity but seemed to relate HH to the famous Mafia. 

 In September of 2002 the special issue in honor of HH was published in Inter-electronic J. of 

Molecular Design for which J.-I. Aihara was nominated as the guest editor [11]. On top of this issue Ref. 

[1] by HH is printed. Many distinguished mathematical chemists are contributing to it, such as A. T. 

Balaban, J. Gasteiger, N. F. Zefirov, N. Trinajstic, O. Ivanciuc, Y. Jiang, etc. All of the 50 contributed 

papers can freely be downloaded. 

 In October of 2002 International Symposium on Thirty-First Year of the Topological Index was 



organized by U. Nagashima and K. Takano in Tokyo. Main Guests were: J-I Aihara, S. Fujita, A. 

Graovac, I. Gutman, S. Basak, and K. Funatsu.  

 

3  Topological index versus molecular descriptor 

 As introduced above the term “topological index” is a sloppy Japanese English invented by HH. 

Although there were proposed other names such as “molecular descriptor” by some groups of 

mathematical chemists [12,13], TI was gradually prevailing until now. The reason why HH is 

appreciating this big but invisible movement is as follows. If in the early stage such as in 1970’s or 

1980’s the term molecular descriptor prevailed, almost no mathematicians got interested into such a 

fantastic world of TI, and as a result the new journal MATI would not be born out.  

 Although the Wiener index w is now known as the first TI, Wiener himself was concerned only with 

acyclic hydrocarbon molecules, or tree-graphs [2]. While his original definition of the path number w can 

be applied only to trees, HH redefined it by using the distance matrix D, which can commonly be applied 

to tree and non-tree graphs as in his first TI paper [4]. Due to this HH paper Wiener’s w could gain such 

monumental position to date that is attracting the interest of many scientists including mathematicians.  

 The string of fate connecting HH and Wiener was still continuing up to 1988, when HH wrote a 

paper “On some counting polynomials in chemistry” in Discrete Applied Math. [14] where he proposed 

the following polynomial, 

  H
G
(x) = d

k

k=1

l

∑ x
k ,       (6) 

under the name of “Wiener polynomial,” because the famous TI’s of Wiener’s w and p can formally be 

derived as follows. 

  w = H'
G
(1)       (7) 

and 

  p = H'''(0)/6.       (8) 

 However, thanks to I. Gutman et al. this polynomial (6) is now widely called as “Hosoya polynomial” 

[15]. They might have considered the contribution of HH who opened the Pandora’s box. 

 Though not directly related to this topics, HH began to play with the “distance polynomial” SG(x) as 

early as 1973, when he proposed to define this polynomial by using the distance matrix D for a given 

graph as [16] 

  S
G
(x) = (−1)N det(D− xE).       (9) 

However, in a few years later Graham and Lovasz quite independently proposed to define the same 

polynomial [17]. These coincidental proposals triggered their joint work to yield a joint letter [18], which 



was published in the very first issue of the J. Graph Theory edited by Frank Harary.  

 Although this was just a short letter of only three pages, it is one of the two monumental and 

important papers to HH that gave him the Erdös number of 2. Another one is a joint paper of HH and his 

academic uncle, Harary [19] on the perfect matching numbers of some interesting graphs, which, 

however, is not explained here.    

 

4  Various aspects of Z-index 

 In the beginning Z-index was found to have good correlation with several thermodynamic properties 

of saturated hydrocarbon molecules [4]. However, soon after that with a little modification it was shown 

to be well correlated also with the π-electronic energy Eπ of conjugated hydrocarbon molecules [20]. 

This property comes from the fact that Eπ of those molecules (either tree or non-tree) is determined from 

the zeros of the solution of PG(x)=0. For trees PG(x) is closely related to Z through (1) and (2), whereas 

for non-trees we need such correction terms to (1) that are dependent on the degree of the ring structure. 

Thus in a global sense Z-index correlates roughly not only with various thermodynamic properties but 

also with π-electronic structure of molecules.  

 Now let us go back to more mathematical features about the Z-indices of various series of graphs. 

The Z-values of the path graphs Sn’s are nothing else but the Fibonacci numbers, 1, 2, 3, 5, 8, , while 

those of the monocyclic rings Cn’s starting from a triangle are the Lucas numbers, 4, 7, 11, 18, [21]. 

These interesting properties are already introduced in the famous book by Koshy [22], together with the 

Hosoya triangle. 

 These interesting properties of Z-index are found to come from the close relationship between the 

two kinds of Chebyshev polynomials and the matching polynomials of path Sn and monocyclic ring 

graphs Cn. The second and first kinds of Chebyshev polynomials, Un and Tn, are defined as follows [23]: 

  U
n
(cosθ ) = sin(n+1)θ / sinθ      (10) 

and 

  T
n
(cosθ ) = cosnθ.       (11) 

 The matching polynomials of Sn and Cn graphs are obtained to be as given in Tables 1 and 2, 

respectively, which are compared to Un(x) and Tn(x), respectively. Note the following equalities,  

  MSn(x) = Un(x/2)      (12) 

and  

    MCn(x) = 2 Tn(x/2).      (13) 

 The sums of the absolute values of the coefficients of these two MG(x) polynomials are nothing else 

but the Fibonacci and Lucas numbers, respectively.  



  

       Table  1.  Sn, Un, and Fibonacci     Table  2.  Cn, Tn, and Lucas 

 

   

 

 There are two different types of Hermite polynomials as, 

  Hn (x) = (−1)
n
e
x2 d

n

dx
n
e
−x2  (physicists’)    (14) 

and 

  Hen(x) = (−1)
n
e
x2/2 d

n

dx
n
e
−x2/2  (probabilists’) [24].   (15) 

They are connected with each other as 

  Hen(x) = 2
−n/2
Hn (x / 2).      (16) 

 According to Wolfram Mathworld, Hen(x) is the independence (matching) polynomial of the 

complete graph Kn [25] as shown in Table 3. That is  

  MKn(x) = Hen(x).      (17) 

 

       Table 3.  Complete graph Kn and Hermite polynomials.  

     

     

φ

x6 – 5x4 + 6x2 – 1

x5 – 4x3 + 3x

x4 – 3x2 + 1

x3 – 2x

x2 – 1

x

1

64x6 – 80x4 + 24x2 – 1

32x5 – 32x3 + 6x

16x4 – 12x2 + 1

8x3 – 4x

4x2 – 1

2x

1

MSn(x) = Un(x/2) Un(x)Sn Z

1

2

1

3

5

8

13

φ

x6 – 6x4 + 9x2 – 2

x5 – 5x3 + 5x

x4 – 4x2 + 2

x3 – 3x

x2 – 2

x

2

32x6 – 48x4 + 18x2 – 1

16x5 – 20x3 + 5x

8x4 – 8x2 + 1

4x3 – 3x

2x2 – 1

x

1

MCn(x) = 2Tn(x/2) Tn(x)Cn Z

2

3

1

4

7

11

18

φ

x5 – 10x3 + 15x

x4 – 6x2 + 3

x3 – 3x

x2 – 1

x

1

32x5 – 160x3 + 120x

16x4 – 48x2 + 12

8x3 – 12x

4x2 – 2

1

Hn(x)Kn
Z

1

2

1

4

10

26

n

0

2

2x1

3

4

5

MKn(x) = Hen(x)



 In Table 3 are given the Z-values of Kn, which are found to be equal to the numbers of Young 

tableaux of size n, Y(n). Further, the p(G,k) numbers for Kn just correspond to the partial set of Y(n). For 

example see Fig. 1, where all the Young tableaux diagrams below n=5, are given together with the 

selection of non-adjacent edges for contributing to p(G,k) counting in red bars. The readers can realize 

this property by checking the coefficients of the Z-counting polynomial QKn(x), or MKn(x), for a given set 

of n and k.  

  

  

Fig. 1  Correlation between the p(G,k) selection for Kn and construction of Young tableaux diagrams. 

 

 In this way matching polynomials for typical series of graphs are found to be closely related to some 

of the orthogonal polynomials [26]. This means that the concept of the p(G,k) numbers and Z-index 

involves very important mathematical properties connecting between geometry and algebra. In this sense 

they are superior to other TI’s. 

 On the other hand, from a global point of view Z-index can be proposed for using a rough sorting 
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device for coding and classifying the structures of various kinds of graphs [27].  

    Renowned computer scientist A. Mowshowitz wrote a paper “The Hosoya entropy of a graph” with 

M. Dehmer, an information scientist [28]. They got a hint from the Z-index of HH, and defined the partial 

Hosoya polynomial and further Hosoya entropy. Further many other Hosoya items are introduced by 

them, such as, Hosoya equivalent, Hosoya profile, Hosoya graph decomposition, etc. On the other hand, 

T. Aurues, a medical doctor in Japan, wrote an interesting paper “The Fibonacci sequences in nature 

implies thermodynamic maximum entropy” in which he writes that Z-index might provide the maximum   

entropy values of molecular surface electrons [29]. These two papers suggest that Z-index has some 

potential features related to entropy. 

 Thus, in spite of its debut in the QSAR study of chemical substances Z-index of HH was found to be   

applied not only to mathematical but also to a wide variety of scientific problems. Then in 2012 HH 

decided to write a monograph of TI but in Nihongo dedicated solely to its mathematical aspects 

intentionally excluding chemical relevance [30]. For the interested readers the chapter titles will be 

introduced here. 

 1  The basic series of numbers and polynomials. 

 2  Graph theory and TI. 

 3  Non-tree graphs and their TI’s. 

 4  Pell equation and TI. 

 5  Indefinite equation of Diophantos and TI. 

 6  Pythagorean triangles and TI. 

 7  Further development of TI. 

 More extensive and dramatic development is expected for TI’s. This is the final remark from HH. 
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ENERGY CONDITIONS FOR SOME HAMILTONIAN

PROPERTIES OF GRAPHS

Rao Li

The energy of a graph is defined as the sum of the absolute values of the

eigenvalues of the graph. In this note, we present energy conditions for some

Hamiltonian properties of graphs.

1. INTRODUCTION

All the graphs considered in this note are undirected graphs without loops or
multiple edges. Notation and terminology not defined here follow those in [1]. Let
G be a graph of order n with e edges. We use δ = δ(G) and ∆ = ∆(G) to denote
the minimum and maximum degrees of G, respectively. The 2-degree, denoted t(v),
of a vertex v in G is defined as the sum of degrees of vertices adjacent to v. We
use T = T (G) to denote the maximum 2-degree of G. Obviously, T (G) ≤ (∆(G))2.
A bipartite graph G is called semiregular if all the vertices in the same vertex part
of a bipartition of the vertex set of G have the same degree. The independence
number, denoted α = α(G), is defined as the size of the largest independent set in
G. The eigenvalues µ1(G) ≥ µ2(G) ≥ ... ≥ µn(G) of the adjacency matrix A(G) of
G are called the eigenvalues of G. The spread, denoted Spr(G), of G is defined as
µ1(G)− µn(G). The energy, denoted Eng(G), of G is defined as

∑n
i=1 |µi(G)| (see

[5]). A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the
vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A
path P in a graph G is called a Hamiltonian path of G if P contains all the vertices
of G. A graph G is called traceable if G has a Hamiltonian path. In this note,
we will present energy conditions for Hamiltonicity and traceability of graphs. The
main results are as follows.

2010 Mathematics Subject Classification. 05C50, 05C45.
Keywords and Phrases. energy, Hamiltonian properties.
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Theorem 1. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e
edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
,

then G is Hamiltonian or G is Kk, k+1 with n = 2k + 1.

Theorem 2. Let G be a k-connected graph with n ≥ 2 vertices and e edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
,

then G is traceable.

2. LEMMAS

In order to prove Theorems 1 and 2, we need the following lemmas. Lemma
1 below is Theorem 1.5 on Page 26 in [4].

Lemma 1. [4] For a graph G with n vertices and e edges,

Spr(G) ≤ µ1 +
√

2e− µ2
1 ≤ 2

√
e.

Equality holds throughout if and only if equality holds in the first inequality; equiv-
alently, if and only if e = 0 or G is Ka, b for some a, b with e = ab and a+ b ≤ n.

Lemma 2 below is Corollary 3.4 on Page 2731 in [7].

Lemma 2. [7] Let G be a graph. Then Spr(G) ≥ 2δ
√

α(G)
n−α(G) . If equality holds,

then G is a semiregular bipartite graph.

Lemma 3 is Theorem 1 on Page 5 in [2].

Lemma 3. [2] Let G be a connected graph. Then µ1 ≤
√
T (G) with equality if

and only if G is either a regular graph or a semiregular bipartite graph.

Lemma 4 follows from Proposition 2 on Page 174 in [3].

Lemma 4. [3] Let G be a graph. Then µn ≥ −
√
dn2 e b

n
2 c with equality if and only

if G is Kdn2 e,b
n
2 c.
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3. PROOFS

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem
1. Suppose, to the contrary, that G is not Hamiltonian. Since G is k-connected
(k ≥ 2), G has a cycle. Choose a longest cycle C in G and give an orientation
on C. Since G is not Hamiltonian, there exists a vertex u0 ∈ V (G) − V (C). By
Menger’s theorem, we can find s (s ≥ κ) pairwise disjoint (except for u0) paths
P1, P2, ..., Ps between u0 and V (C). Let vi be the end vertex of Pi on C, where
1 ≤ i ≤ s. Without loss of generality, we assume that the appearance of v1, v2, ...,
vs agrees with the orientation of C. We use v+

i to denote the successor of vi along
the orientation of C, where 1 ≤ i ≤ s. Since C is a longest cycle in G, we have
that v+

i 6= vi+1, where 1 ≤ i ≤ s and the index s + 1 is regarded as 1. Moreover,
S := {u0, v

+
1 , v

+
2 , ..., v

+
s } is independent (otherwise G would have cycles which are

longer than C). Then α ≥ s+ 1 ≥ k + 1.

Some proof techniques in [6] will be used in the remainder of the proofs.
From Cauchy-Schwarz inequality, we have that

Eng(G) =

n∑
i=1

|µi| = |µ1|+ |µn|+
n−1∑
i=2

|µi|

≤ µ1 − µn +

√√√√(n− 2)

n−1∑
i=2

µ2
i

= µ1 − µn +

√√√√(n− 2)

(
n∑
i=1

µ2
i − µ2

1 − µ2
n

)

= µ1 − µn +
√

(n− 2)(2e− (µ1 − µn)2 − 2µ1µn).

Then by Lemmas 1, 2, 3, 4, α ≥ k+1 and assumptions of Theorem 1, we have that

2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
≤ Eng(G) ≤

2
√
e+

√
(n− 2)

(
2e+ 2

√
T dn

2
e bn

2
c − 4δ2α

n− α

)

≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(s+ 1)

n− s− 1

)

≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
.
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Thus

Eng(G) = 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
.

Therefore, µ2 = · · · = µn−1, Spr(G) = 2
√
e = 2δ

√
α

n−α , α = s+ 1 = k+ 1, µ1 = T ,

and µn = −
√
dn2 e b

n
2 c. In view of Lemmas 1, 2, 3, 4, we have that S is a largest

independent set of size α = k + 1 and G is Kdn2 e,b
n
2 c.

If n is even, then G is Kr, r where n = 2r for some integer r ≥ 2. Thus
r = α = k + 1 and G is Hamiltonian, a contradiction.

If n is odd, then G is Kr, r+1 where n = 2r + 1 for some integer r ≥ 2. Thus
r + 1 = α = k + 1 and G Kk, k+1 with n = 2k + 1.

This completes the proof of Theorem 1. �

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2.
Suppose, to the contrary, that G is not traceable. Choose a longest path P in G
and give an orientation on P . Let x and y be the two end vertices of P . Since G
is not traceable, there exists a vertex u0 ∈ V (G) − V (P ). By Menger’s theorem,
we can find s (s ≥ k) pairwise disjoint (except for u0) paths P1, P2, ..., Ps between
u0 and V (P ). Let vi be the end vertex of Pi on P , where 1 ≤ i ≤ s. Without
loss of generality, we assume that the appearance of v1, v2, ..., vs agrees with the
orientation of P . Since P is a longest path in G, x 6= vi and y 6= vi, for each i with
1 ≤ i ≤ s, otherwise G would have paths which are longer than P . We use v+

i to
denote the successor of vi along the orientation of P , where 1 ≤ i ≤ s. Since P
is a longest path in G, we have that v+

i 6= vi+1, where 1 ≤ i ≤ s − 1. Moreover,
S := {u0, v

+
1 , v

+
2 , ..., v

+
s , x} is independent (otherwise G would have paths which

are longer than P ). Then α ≥ s+ 2 ≥ k + 2.

Using the proofs which are similar to the ones in Proof of Theorem 1, we
have that

2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
≤ Eng(G) ≤

2
√
e+

√
(n− 2)

(
2e+ 2

√
T dn

2
e bn

2
c − 4δ2α

n− α

)

≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(s+ 2)

n− s− 2

)
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≤ 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
.

Thus

Eng(G) = 2
√
e+

√
2(n− 2)

(
e+

√
T dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
.

Therefore, µ2 = · · · = µn−1, Spr(G) = 2
√
e = 2δ

√
α

n−α , α = s+ 2 = k+ 2, µ1 = T ,

and µn = −
√
dn2 e b

n
2 c. In view of Lemmas 1, 2, 3, 4, we have that S is a largest

independent set of size α = k + 2 and G is Kdn2 e,b
n
2 c.

If n is even, then G is Kr, r where n = 2r for some integer r. Thus r = α =
k + 2 and G is traceable, a contradiction.

If n is odd, then G is Kr, r+1 where n = 2r + 1 for some integer r. Thus
r + 1 = α = k + 2 and G is Kk+1, k+2 with n = 2k + 3 and G is traceable, a
contradiction.

This completes the proof of Theorem 2. �

Notice that µ1 ≤
√
T ≤ ∆ and G is regular when µ1 = ∆. Thus Theorem 1

and Theorem 2 have the following Corollary 1 and Corollary 2, respectively.

Corollary 1. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e
edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
∆ dn

2
e bn

2
c − 2δ2(k + 1)

n− k − 1

)
,

then G is Hamiltonian.

Corollary 2. Let G be a k-connected graph with n ≥ 2 vertices and e edges. If

Eng(G) ≥ 2
√
e+

√
2(n− 2)

(
e+

√
∆ dn

2
e bn

2
c − 2δ2(k + 2)

n− k − 2

)
,

then G is traceable.
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NEW BOUNDS FOR THE HARARY ENERGY AND
HARARY ESTRADA INDEX OF GRAPHS

Akbar Jahanbani

The harary index is defined as the sum of reciprocal distances between all
pairs of vertices in a nontrivial connected graph. In this paper, we establish
upper and lower bounds for the harary energy and harary Estrada index in
terms of graph invariants such as the number of vertices, the number degree
sequence and spectral radius.

1. INTRODUCTION

Let G be a simple, undirected, connected graph with n vertices and m edges.
Let the vertices of G be labeled as v1, v2, . . . , vn. The adjacency matrix of a graph
G is the square matrix A = A(G) = [aij ], in which aij = 1 if vi is adjacent to vj
and aij = 0 , otherwise. The eigenvalues of A(G) are the adjacency eigenvalues of
G, they are labeled as λ1, λ2, . . . , λn. These form the adjacency spectrum of G [3].
Thus

detA =

n∏
i=1

λi.

The rank matrix of A is the maximal number of linearly independent column
vectors in A. The distance between the vertices vi and vj , denoted by dij , is the
length of the shortest path joining vi and vj . The harary matrix [13] of a graph G
is a square matrix H = [Hij ] of order n, where

hij =

{
1
dij

if i 6= j

0 if i = j.

2010 Mathematics Subject Classification. 05C50
Keywords and Phrases. Eigenvalue of graph, Harary energy, Spectral radius, Harary Estrada index.
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The eigenvalues of H(G) labeled as ρ1 > ρ2 > · · · > ρn are said to be the harary
eigenvalues or H-eigenvalues of G and their collection is called harary spectrum
or H-spectrum of G. harary matrix (also called as reciprocal distance matrix [22])
of a graph was introduced by Ivanciuc et al. In [13] which has in use the study
of molecules in QSPR (quantitative structure property relationship) models [13].
Two non-isomorphic graphs are said to be H- cospectral if they have same H-
spectra. The results on H-eigenvalues of a graph are obtained in [2, 4, 7, 12, 26].
The details about ordinary graph energy can be found in [23]. Bounds for the
harary energy of a graph are reported in [1, 2, 8].
The paper is organized as follows. In Section 2, we give a list of some previously
known results. In Section 3, we present bounds on the harary energy. In Section
4, we present bounds on the harary Estrada index.

2. PRELIMINARIES AND KNOWN RESULTS

In this section, we shall list some previously known results that will be
needed in the next sections. Recall that [8] for a graph with harary eigenvalues
ρ1, ρ2, . . . , ρn, Nk = tr(Hk) =

∑n
i=1 (ρi)

k.

N0 = n,(1)

N1 = tr(H) = 0,(2)

N2 = tr(H2) = 2κ.(3)

Where

κ =
∑

16i6j6n

(
1

dij
)2.

Now let us present the following lemma as the first preliminary result.

Lemma 1. Let G be a graph with n vertices and harary matrix H. Then

N3 = tr(H3) = 2
∑

16i<j6n

1

(dij)2

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)
.(4)

N4 = tr(H4) =

n∑
i=1

( n∑
j=1

1

(dij)2

)2

+
∑

16i<j6n

1

(dij)2

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)2

.(5)

Proof. By definition, the diagonal elements and for i = 1, 2, ..., n, the (i, i)-entry of
[H(G)]2 is equal to

(H2)ij =

n∑
j=1

HijHji =

n∑
j=1

(Hij)
2 =

n∑
j=1

(Hij)
2 =

n∑
j=1

1

(dij)2
.
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Hence

(H2)ij =

n∑
j=1

HijHji = HiiHij+HijHjj+
∑

16i<k6n
16k<j6n

HikHkj =
1

(dij)

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)
.

Since the diagonal elements of H3 are

(H3)ii =

n∑
j=1

Hij(H
2)jk =

∑
16i<j6n

1

(dij)
(H2)ij =

∑
16i<j6n

1

(dij)2

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)

we obtain

tr(H3) =

n∑
i=1

∑
16i<j6n

1

(dij)2

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)
= 2

∑
16i<j6n

1

(dij)2

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)
.

We now calculate tr(H4). Because tr(H4) = ‖H2‖2F , where ‖H2‖2F denotes the
Frobenius norm of H2, we obtain

tr(H4) =

n∑
i,j=1

| (H2)ii |2=

n∑
j=1

| (H2)ii |2 +
∑

16i<j6n

| (H2)ij |2

=

n∑
i=1

( n∑
j=1

1

(dij)2

)2

+
∑

16i<j6n

1

(dij)2

( ∑
16i<k6n
16k<j6n

1

(dik)(dkj)

)2

.

For any square matrix A we denote by ρ1(A) its spectral radius ρ1(A) =
max[| λ |: λ is an eigenvalue forA]. We obtain lower bounds for ρ1.

Lemma 2. [24] Let A be a real matrix with r = rank(A) > 2.

If tr(A2) > (tr(A))2

r , then

ρ(A) >
| tr(A) |

r
+

√
[tr(A2)− ( 1

r )(tr(A))2]

(r(r − 1))
.

Lemma 3. [25] If x1, x2, . . . , xn are real numbers such that

xn 6 xn−1 6 · · · 6 x2 6 x1,

then

n∑
i=1

xi

n
+

√√√√√√√√√ 1

n(n− 1)

n∑
i=1

xi −
n∑
i=1

xi

n


2

6 x1.
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Lemma 4. [25] Let y1, y2, . . . , yn are real numbers and k is any positive integer,
then 

n∑
i=1

y2k
i

n
+

√√√√√√√√√ 1

n(n− 1)

n∑
i=1

yi −
n∑
i=1

y2k
i

n


2


1
2k

6 max
i
| yi | .

By equations (2 ), (3 ) and Lemma 2, we can obtain follow lemma.

Lemma 5. Let G be a graph with n vertices, r = rank(H) > 2 and ρ1 > ρ2 >
· · · > ρn be its eigenvalues of the harary matrix H.

If tr(H2) > (tr(H))2

r , then

ρ1 >

√
2κ

r(r − 1)
.

Now equations (2 ), (3 ) and Lemma 3, we can obtain follow lemma.

Lemma 6. Let G be a graph with n vertices and ρ1 > ρ2 > · · · > ρn be its
eigenvalues of the harary matrix H. Then

ρ1 >

√
2κ

n(n− 1)
.

By equations (2 ), (3 ), (5 ) and Lemma 4 (for k=1) , we can obtain follow
lemma.

Lemma 7. Let G be a graph with n vertices and ρ1 > ρ2 > · · · > ρn be its
eigenvalues of the harary matrix H. Then

ρ1 >

√√√√2κ

n
+

√
1

n(n− 1)

(
N4 −

4κ

n

)
.

Lemma 8. Let G be a graph of order n. Then

HE(G) 6
√

2nκ.

Proof. By Cauchy-Schwarz inequality, for real numbers ai and bi, we have( n∑
i=1

aibi

)2

6

( n∑
i=1

a2
i

)( n∑
i=1

b2i

)
,

assuming, ai = 1, bi =| ρi | and equation (3), we have( n∑
i=1

| ρi |
)2

6 n

( n∑
i=1

| ρi |2
)

= n

n∑
i=1

(ρi)
2 = 2n

∑
16i6j6n

(
1

dij
)2.
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Therefore
HE(G) 6

√
2nκ.

3. BOUNDS FOR THE HARARY ENERGY OF GRAPHS

In this section, we obtain bounds for the harary energy in terms of number
of vertices, determinant of the adjacency matrix and distance between the vertices
of graph G.
The energy of the graph G is defined as:

(6) E = E(G) =

n∑
i=1

| λi | .

Where λi, i = 1, 2, . . . , n , are the eigenvalues of graph G.
This concept was introduced by I. Gutman and is intensively studied in chemistry,
since it can be used to approximate the total π-electron energy of a molecule (see,
e.g. [10, 11]. Since then, numerous other bounds for energy were found (see, e.g.
[9, 17, 18, 19]).
The harary energy of a (molecular) graph G was introduced by Güngör et al. [8]
as follows:

HE(G) =

n∑
i=1

| ρi |,

where ρ1, ρ2, . . . , ρn are eigenvalues of the harary matrix. We start by proving some
lower bounds for this energy of graphs.

Theorem 1. Let G be a graph of order n with m edges such that 2m > n. Then

HE(G) >

√
2κ

n(n− 1)
+ (n− 1)

 |detH|√
2κ

n(n−1)

 1
(n−1)

.

Proof. Starting with the arithmetic-geometric mean inequality, we have

HE(G) = ρ1 +

n∑
i=2

| ρi | > ρ1 + (n− 1)

( n∏
i=2

| ρi |
) 1

(n−1)

= ρ1 + (n− 1)

(
|detH|
ρ1

) 1
(n−1)

.

Now we consider the function

f(x) = x+ (n− 1)

(
|detH|
x

) 1
(n−1)

.
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Note that f is increasing for x >

(
|detH|

) 1
n(n−1)

. As well known from Lemma 6,

ρ1 >

√
2κ

n(n− 1)
.

Moreover, by Lemma 8 and the arithmetic geometric mean inequality, we have

ρ1 >

√
2κ

n(n− 1)
>

HE(G)

n(n− 1)
=

n∑
i=1

| ρi |

n(n− 1)
>

(
|detH|

) 1
n(n−1)

.

Therefore

HE(G) >

√
2κ

n(n− 1)
+ (n− 1)

 |detH|√
2κ

n(n−1)

 1
(n−1)

.

Theorem 2. Let G be a graph of order n with m edges such that 2m > n. Then

HE(G) >

√√√√2κ

n
+

√
1

n(n− 1)

(
N4 −

4κ

n

)

+ (n− 1)

 |detH|√
2κ
n +

√
1

n(n−1)

(
N4 − 4κ

n

)


1
(n−1)

.

Proof. Starting with the arithmetic-geometric mean inequality, we have

HE(G) = ρ1 +

n∑
i=2

| ρi | > ρ1 + (n− 1)

( n∏
i=2

| ρi |
) 1

(n−1)

= ρ1 + (n− 1)

(
|detH|
ρ1

) 1
(n−1)

.

Now we consider the function

f(x) = x+ (n− 1)

(
|detH|
x

) 1
(n−1)

.

Note that f is increasing for x >

(
|detH|

) 1
n

. As well known from Lemma 7, for

k = 1

ρ1 >

√√√√2κ

n
+

√
1

n(n− 1)

(
N4 −

4κ

n

)
.
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Moreover, by Lemma 8 and the arithmetic geometric mean inequality, we have

ρ1 >

√√√√2κ

n
+

√
1

n(n− 1)

(
N4 −

4κ

n

)
>

√
2κ

n

>
HE(G)

n
>

(
|detH|

) 1
n

.

Therefore

HE(G) >

√√√√2κ

n
+

√
1

n(n− 1)

(
N4 −

4κ

n

)

+ (n− 1)

 |detH|√
2κ
n +

√
1

n(n−1)

(
N4 − 4κ

n

)


1
(n−1)

.

Theorem 3. Let G be a graph of order n with m edges such that 2m > n and
rank(H) = r > 2. Then

HE(G) >

√
2κ

r(r − 1)
+ (n− 1)

 |detH|√
2κ

r(r−1)

 1
(n−1)

.

Proof. Starting with the arithmetic-geometric mean inequality, we have

HE(G) = ρ1 +

n∑
i=2

| ρi | > ρ1 + (n− 1)

( n∏
i=2

| ρi |
) 1

(n−1)

= ρ1 + (n− 1)

(
|detH|
ρ1

) 1
(n−1)

.

Now we consider the function

f(x) = x+ (n− 1)

(
|detH|
x

) 1
(n−1)

.

Note that f is increasing for x >

(
|detH|

) 1
n(n−1)

. As well known from Lemma 5,

ρ1 >

√
2κ

r(r − 1)
.
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Moreover, by Lemma 8 and the arithmetic geometric mean inequality, we have

ρ1 >

√
2κ

r(r − 1)
>

HE(G)

r(r − 1)
=

n∑
i=1

| ρi |

r(r − 1)
>

n∑
i=1

| ρi |

n(n− 1)
>

(
|detH|

) 1
n(n−1)

.

Therefore

HE(G) >

√
2κ

r(r − 1)
+ (n− 1)

 |detH|√
2κ

r(r−1)

 1
(n−1)

.

4. BOUNDS FOR THE HARARY ESTRADA INDEX OF GRAPHS

In this section, we obtain lower bounds for the harary Estrada index in terms
of number of vertices and distance between the vertices of graph G. The Estrada
index of a graph G is defined by

EE = EE(G) =

n∑
i=1

eλi .

Denoting by Mk = Mk(G) to the k-th moment of the graph G, we get

Mk = Mk(G) =

n∑
i=1

(λi)
k.

and recalling the power-series expansion of ex, we have

EE =

∞∑
i=1

Mk(G)

k!
.

In fact Estrada index of graphs has an important role in Chemistry and Physics
and there exists a vast litarature that studies this special index. In addition to the
Estrada’s papers depicted above, we may also refer[5, 6, 14, 15, 16, 20, 21] to
the reader for detail informations such as lower and upper bounds for EE in terms
of the number of vertices and edges, and some inequalities between EE and the
energy of G. The harary Estrada index of G, was introduced in [8] as follows:

HEE = HEE(G) =

n∑
i=1

eρi .

We begin this section with theorem as follows:
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Theorem 4. Let G be a graph of order n > 2. Then

HEE(G) > e

(√
2κ

n(n−1)

)
+

n− 1

e

(√
2κ

n(n−1)

) .
Proof. By definition of harary Estrada index, we have

HEE(G) = eρ1 + eρ2 + · · ·+ eρn

> eρ1 + (n− 1)

( n∏
i=2

) 1
n−1

> eρ1 + (n− 1)e

∑n
i=2 e

ρi

n−1

= eρ1 + (n− 1)e
−ρ1
n−1 .(7)

Now let us consider a function

f(x) = ex +
n− 1

e
x
n−1

, for x > 0.

Therefore f is an increasing function for x > 0. By Lemma 6, we have

ρ1 >

√
2κ

n(n− 1)
.

From Inequality (7), we get

HEE(G) > e

(√
2κ

n(n−1)

)
+

n− 1

e

(√
2κ

n(n−1)

) .

Theorem 5. Let G be a graph of order n > 2 and r = rank(A) ≥ 2. Then

HEE(G) > e

(√
2κ

r(r−1)

)
+

n− 1

e

(√
2κ

r(r−1)

) .
Proof. By definition of harary Estrada index, we hav

HEE(G) = eρ1 + eρ2 + · · ·+ eρn

> eρ1 + (n− 1)

( n∏
i=2

) 1
n−1

> eρ1 + (n− 1)e

∑n
i=2 e

ρi

n−1

= eρ1 + (n− 1)e
−ρ1
n−1 .(8)
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Now let us consider a function

f(x) = ex +
n− 1

e
x
n−1

, for x > 0.

Therefore f is an increasing function for x > 0. By Lemma 5, we have

ρ1 >

√
2κ

r(r − 1)
.

From Inequality (8), we get

HEE(G) > e

(√
2κ

r(r−1)

)
+

n− 1

e

(√
2κ

r(r−1)

) .

Theorem 6. Let G be a graph of order n > 2. Then

HEE(G) > e

(√
2κ
n +

√
1

n(n−1) (N4− 4κ
n )

)

+
n− 1

e

(√
2κ
n +

√
1

n(n−1) (N4− 4κ
n )

) .

Proof. By definition of harary Estrada index, we hav

HEE(G) = eρ1 + eρ2 + · · ·+ eρn

> eρ1 + (n− 1)

( n∏
i=2

) 1
n−1

> eρ1 + (n− 1)e

∑n
i=2 e

ρi

n−1

= eρ1 + (n− 1)e
−ρ1
n−1 .(9)

Now let us consider a function

f(x) = ex +
n− 1

e
x
n−1

, for x > 0.

Therefore f is an increasing function for x > 0. By Lemma 7, we have

ρ1 >

√√√√2κ

n
+

√
1

n(n− 1)

(
N4 −

4κ

n

)
.
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From Inequality (9), we get

HEE(G) > e

(√
2κ
n +

√
1

n(n−1) (N4− 4κ
n )

)

+
n− 1

e

(√
2κ
n +

√
1

n(n−1) (N4− 4κ
n )

) .
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