
e - I S S N : 2 1 4 8 - 7 4 5 6

h t tp : / / � j a te .ne t /

Internat�onal Journal of
Assessment Tools �n Educat�on

Volume: 6 Issue: 5-Spec�al Issue 2019

Dr. Izzet KARA
Ed�tor �n Ch�ef
Internat�onal Journal of Assessment Tools �n Educat�on

Pamukkale Un�vers�ty,
Educat�on Faculty,
Department of Mathemat�c and Sc�ence Educat�on,
20070, Den�zl�, Turkey

Phone : +90 258 296 1036
Fax : +90 258 296 1200
E-ma�l : �jate.ed�tor@gma�l.com

Publ�sher : İzzet KARA
Frequency : 4 �ssues per year start�ng from June 2018 (March, June, September, December)
Onl�ne ISSN : 2148-7456
Webs�te : http://www.�jate.net/�ndex.php/�jate
 http://derg�park.org.tr/�jate
Des�gn & Graph�c: IJATE

Support Contact
Dr. İzzet KARA
Journal Manager & Found�ng Ed�tor
Phone : +90 258 296 1036
Fax : +90 258 296 1200
E-ma�l : �kara@pau.edu.tr

Internat�onal Journal of Assessment Tools �n Educat�on (IJATE) �s a peer-rev�ewed onl�ne journal.
The sc�ent�f�c and legal respons�b�l�ty for manuscr�pts publ�shed �n our journal belongs to the authors(s).

e-ISSN 2148-7456

http://www.�jate.net/�ndex.php/�jate/�ndex

Volume 6 Issue 5 - Spec�al Issue 2019

International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019)

ISSN: 2148-7456 ii

International Journal of Assessment Tools in Education

International Journal of Assessment Tools in Education (IJATE) is an international, peer-

reviewed online journal. IJATE is aimed to receive manuscripts focusing on evaluation and

assessment in education. It is expected that submitted manuscripts could direct national and

international argumentations in the area. Both qualitative and quantitative studies can be

accepted, however, it should be considered that all manuscripts need to focus on assessment

and evaluation in education.

IJATE as an online journal is sponsored and hosted by TUBITAK-ULAKBIM (The Scientific

and Technological Research Council of Turkey).

There is no submission or publication process charges for articles in IJATE.

IJATE is indexed in:

• Emerging Sources Citation Index (ESCI) (Web of Science Core Collection)

• TR Index (ULAKBIM),

• ERIH PLUS,

• DOAJ,

• Index Copernicus International

• SIS (Scientific Index Service) Database,

• SOBIAD,

• JournalTOCs,

• MIAR 2015 (Information Matrix for Analysis of the Journals),

• idealonline,

• CrossRef,

• ResearchBib,

• International Scientific Indexing

https://dbh.nsd.uib.no/publiseringskanaler/erihplus/periodical/info?id=488092

International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019)

ISSN: 2148-7456 iii

Editors

Dr. H.Ibrahim Sari, Kilis 7 Aralik University, Turkey

Editorial Board

Dr. Safiye Bilican Demir, Kocaeli University, Turkey

Dr. Nuri Doğan, Hacettepe University, Turkey

Dr. Selahattin Gelbal, Hacettepe University, Turkey

Dr. Anne Corinne Huggins-Manley, University of Florida, United States

Dr. Violeta Janusheva, "St. Kliment Ohridski" University, Republic of Macedonia

Dr. Francisco Andres Jimenez, Shadow Health, Inc., United States

Dr. Nicole Kaminski-Öztürk, University of Illinois at Chicago, United States

Dr. Orhan Karamustafaoglu, Amasya University, Turkey

Dr. Yasemin Kaya, Atatürk University, Turkey

Dr. Hulya Kelecioglu, Hacettepe University, Turkey

Dr. Hakan Koğar, Akdeniz University, Turkey

Dr. Sunbok Lee, University of Houston, United States

Dr. Froilan D. Mobo, Ama University, Philippines

Dr. Ibrahim A. Njodi, University of Maiduguri, Nigeria

Dr. Jacinta A. Opara, Kampala International University, Uganda

Dr. Nesrin Ozturk, Ege University, Turkey

Dr. Turan Paker, Pamukkale University, Turkey

Dr. Abdurrahman Sahin, Pamukkale University, Turkey

Dr. Ragip Terzi, Harran University, Turkey

Dr. Hakan Türkmen, Ege University, Turkey

Dr. Hossein Salarian, University of Tehran, Iran

Dr. Kelly Feifei Ye, University of Pittsburgh, United States

English Language Editors

Dr. Hatice Altun, Pamukkale University, Turkey

Dr. Çağla Atmaca, Pamukkale University, Turkey

Dr. Sibel Kahraman, Pamukkale University, Turkey

Arzu Kanat Mutluoğlu - Pamukkale University, Turkey

Copy & Language Editor

Anıl Kandemir, Middle East Technical University, Turkey

International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019)

ISSN: 2148-7456 iv

Table of Contents

Research Article

Computation of the Response Similarity Index M4 in R under the Dichotomous and Nominal

Item Response Models

Pages : 1-19

Cengiz Zopluoglu

Educational data mining: A tutorial for the rattle package in R

Pages : 20-36

Okan Bulut, Hatice Cigdem Yavuz

Determination of Sample Size and Observation Units

Pages : 37-43

Tülin ACAR

Computer Adaptive Testing Simulations in RCoping with Unbalanced Designs of

Generalizability Theory: G String V

Pages : 44-56

Basak Erdem Kara

Coping with Unbalanced Designs of Generalizability Theory: G String V

Pages : 57-69

Gülşen Taşdelen Teker

https://dergipark.org.tr/en/pub/ijate/issue/43543/527299
https://dergipark.org.tr/en/pub/ijate/issue/43543/527299
https://dergipark.org.tr/en/pub/ijate/issue/43543/627361
https://dergipark.org.tr/en/pub/ijate/issue/43543/591669
https://dergipark.org.tr/en/pub/ijate/issue/43543/621157
https://dergipark.org.tr/en/pub/ijate/issue/43543/621157
https://dergipark.org.tr/en/pub/ijate/issue/43543/621157

International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019)

ISSN: 2148-7456 v

Dear Researchers, Readers and Contributors,

As the International Journal of Assessment Tools (IJATE), we are thrilled to announce that the

2019 Special Issue has been published. The main theme of the special issue was “Promoting

Free/Libre Software Use in Educational Measurement”. The target was to promote and

spread free/libre software use in the field of educational measurement and our aim was to set

up a link between programmers and practitioners.

As the IJATE Editorial Team, we would like to thank all authors that submitted a paper, for

their interest in the journal. We are happy to see that the special issue brought too much voice,

and we received too many e-mails, questions and submissions. However, we had to consider

the ones that met submission guidelines, aim and scope of the special issue. Our acceptance rate

for this special issue was 50%.

We also would like to thank our reviewers for the effort and expertise that they contribute to

reviewing, without which it would be impossible to maintain the high standards of our journal.

I am indebted to the Editor-in-Chief, Prof. Izzet Kara, Associate Editors, Drs. Eren Can Aybek

and Ozen Yildirim for the tremendous support that they provided. It would not be possible to

publish this issue without their encouragement, support and sincere. The success of this journal

is indicative of these three researchers’ efforts.

We hope you enjoy reading the papers published in the special issue and benefit from them. I

encourage you to continue to send us your invaluable feedback and ideas for further

improvement of your journal.

Dr. Halil Ibrahim Sari

Editor of Special Issue

International Journal of Assessment Tools in Education

 2019, Vol. 6, No. 5-Special Issue, 1–19

https://dx.doi.org/10.21449/ijate.527299

 Published at http://www.ijate.net http://dergipark.gov.tr/ijate Research Article

 1

Computation of the Response Similarity Index M4 in R under the
Dichotomous and Nominal Item Response Models

Cengiz Zopluoglu 1,*

1 School of Education and Human Development, University of Miami, USA

ARTICLE HISTORY

Received: 26 October 2018

Revised: 12 February 2019

Accepted: 14 February 2019

KEYWORDS

response similarity,
M4,
test fraud,
item response theory,
test security

Abstract: Unusual response similarity among test takers may occur in
testing data and be an indicator of potential test fraud (e.g., examinees copy
responses from other examinees, send text messages or pre-arranged signals
among themselves for the correct response, item pre-knowledge). One index
to measure the degree of similarity between two response vectors is M4
proposed by Maynes (2014). M4 index is based on a generalized trinomial
distribution and it is computationally very demanding. There is currently no
accessible tool for practitioners who may want to use M4 in their research
and practice. The current paper introduces the M4 index and its
computational details for the dichotomous and nominal item response
models, provides an R function to compute the probability distribution for
the generalized trinomial distribution, and then demonstrates the
computation of the M4 index under the dichotomous and nominal item
response models using R.

1. INTRODUCTION

In an era of high-stakes testing, maintaining the integrity of test scores has become an important
issue and another aspect of test score validity. Unusual response similarity among test takers is
a type of irregularity which may occur in testing data and be an indicator of potential test fraud
such as sharing item responses among students during an exam, coaching of students by a
teacher or a test proctor during an exam, or item pre-knowledge. In order to identify unusual
response similarity among examinees, response similarity indices focus on the likelihood of
agreement between two response vectors under the assumption of independent responding. The
response indices differ in how they utilize the evidence of agreement and also in the reference
statistical distribution used for computing the likelihood of observed agreement between two
response vectors. For instance, while a well-known index developed by van der Linden and
Sotaridona (2006) uses a generalized binomial distribution to model the number of all matching
responses, the M4 index (Maynes, 2014) is using a generalized trinomial distribution to model
the joint distribution of the number of matching correct responses and matching incorrect
responses. In this paper, I first introduce the computational details of the M4 index as provided

CONTACT: Cengiz Zopluoglu c.zopluoglu@miami.edu School of Education and Human Development,
University of Miami, USA

ISSN-e: 2148-7456 /© IJATE 2019

Zopluoglu

 2

by Maynes (2014, 2017), then discuss how it can be computed in R and illustrate its use under
the dichotomous and nominal item response models.

2. THE M4 INDEX

Suppose that 𝑃 and 𝑄 are two disjoint events and 𝑅 = 𝑃′𝑄′, where 𝑃 represents the
probability of matching correct response, 𝑄 represents the probability of matching incorrect
response, and 𝑅 represents the probability of nonmatching response between two test takers
for the ith item. By definition, we know that 𝑅 = 1 − (𝑃 + 𝑄). The probability of observing
m correct matches and n incorrect matches between two test takers for I items is equal to

𝑇ூ(𝑚, 𝑛) = (

ூି

ୀ

ூି

ୀ

− 1)ାିି ቀ
𝑏
𝑚

ቁ ቀ
𝑎
𝑛

ቁ 𝑆ூ;,

where 𝑆ூ;, = ∑𝑃௨భ
𝑃௨మ

. . . 𝑃௨್
𝑄௩భ

𝑄௩మ
. . . 𝑄௩ೌ

 and summation is extended over all possible pairs
of disjoint subsets {𝑢ଵ, 𝑢ଶ, . . . , 𝑢} and {𝑣ଵ, 𝑣ଶ, . . . , 𝑣} of the set {1,2,…,I} (Charalambides,
2005). Maynes (2017) indicated that this quantity may be computed using a recursive formula
as shown below:

𝑇ାଵ(𝑚, 𝑛) = 𝑃ାଵ𝑇(𝑚 − 1, 𝑛) + 𝑄ାଵ𝑇(𝑚, 𝑛 − 1) + 𝑅ାଵ𝑇(𝑚, 𝑛)

with boundary conditions 𝑇(0,0) = 1 and 𝑇(𝑚, 𝑛) = 0. The recursive formula starts with k=0
and ends with k=I-1. When 𝑇ூ(𝑚, 𝑛) is computed for all possible combinations of m and n, the
desired tail probability can be computed using a sub-ordering principle. First, the probabilities
for all bivariate points (𝑢, 𝑣) are added where u is greater than m and v is greater than n. Let
this quantity be 𝐷,. Then, all values of 𝑇ூ(𝑎, 𝑏) where 𝐷, ≥ 𝐷, are found and summed
up to obtain the desired tail probability.

2.1 Calculating the P and Q vectors using Item Response Models

In order to compute the M4 index, one has to obtain the vectors of probabilities for the
correct match and incorrect match between two test takers. While these values could be
empirically derived from a large dataset, they can be obtained based on item response models
as this is a typical practice for other similar indices in the literature such as 𝜔 (Wollack, 1997)
and generalized binomial test (van der Linden and Sotaridona, 2006).

2.2. Dichotomous Item Response Data

Suppose a researcher or practitioner has dichotomous item response data (e.g., 0/1,
correct/incorrect, true/false) and wants to compute the M4 index. A variety of dichotomous IRT
models are available for use depending on which one fits better to the data. The most general
version of a dichotomous IRT model can be written as

𝜋(𝑌 = 1|𝜃 , 𝑎, 𝑏 , 𝑐, 𝑑) = 𝑐 + (𝑑 − 𝑐)
𝑒(ఏೕି)

1 + 𝑒(ఏೕି)
,

where 𝜋(𝑌 = 1|𝜃 , 𝑎, 𝑏, 𝑐, 𝑑) is the probability of correct response for the jth person on the
ith item given the item and person parameters; 𝑎, 𝑏, 𝑐, and 𝑑 are the discrimination,
difficulty, guessing, and slipping parameters, respectively, for the ith item; and, 𝜃 is the person
location parameter for the jth person. These parameters have to be estimated from the item
response data prior to computing the M4 index. If the 𝑑 parameter is fixed to one for all items,
the model reduces to a 3-PL IRT model. In addition, if the 𝑐 parameter is also fixed to zero for
all items, the model reduces to a 2-PL IRT model. In addition, if the 𝑎 parameter is constrained
to be equal for all items, the model reduces to a 1-PL IRT model.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 3

Once the item and person parameters are estimated, the probability of matching correct response
on the 𝑖th item for two test takers, person 𝑗 and person 𝑠, can be computed as

𝑃 = 𝜋(𝑌 = 1|𝜃) × 𝜋௦(𝑌 = 1|𝜃௦).

Similarly, the probability of matching incorrect response on the 𝑖th item for these test takers
can be computed as

𝑄 = ൫1 − 𝜋(𝑌 = 1|𝜃)൯ × (1 − 𝜋௦(𝑌 = 1|𝜃௦)).

Finally, the probability of not matching on the 𝑖th item can simply be computed as

𝑅 = 1 − (𝑃 + 𝑄).

2.3. Nominal Response Data

Suppose that a researcher or practitioner has a multiple-choice test data with multiple response
alternatives available for each item. One of these response alternatives is the correct response
(key) and the remaining response alternatives are the incorrect responses (distractors). Note that
there are a few number of alternative models proposed in the literature for such nominal
response data (Bock, 1972; Penfield and de la Torre, 2008; Thissen & Steinberg, 1997). One
can choose any of these models for modeling probabilities. We consider here the original
Nominal Response Model (NRM; Bock, 1972) as it has been used in the literature for other
indices and there are already available existing tools in R to reliably estimate the parameters of
NRM. In NRM, the probability of selecting the 𝑘th response alternative among 𝑚 alternatives
of the 𝑖th item for the 𝑗th person is written as

𝜋 =

അೖశഊೖഇೕ

∑
അೖశഊೖഇೕ

ೖసభ

 ,

where 𝜁 is the intercept and 𝜆 is the slope parameter for the 𝑘th response alternative of the
𝑖th item, and 𝜃 is the person location parameter for the jth person.

Once the item and person parameters are estimated for NRM, the probability of matching
correct response on the 𝑖th item for two test takers, person 𝑗 and person 𝑠, can be computed as

𝑃 = 𝜋

ୀଵ

× 𝜋௦ × 𝐼(𝑘 = 𝑟),

where 𝑟 is the correct response alternative for the 𝑖th item and 𝐼(.) is an indicator variable that
equals to 1 if the statement in parentheses is true, 0 otherwise. In a similar way, the probability
of matching incorrect response on the 𝑖th item for these two test takers can be computed as

𝑄 = 𝜋

ୀଵ

× 𝜋௦ × 𝐼(𝑘 ≠ 𝑟).

The probability of not matching on the 𝑖th item can be computed as shown before.

3. R CODE FOR COMPUTING THE M4 INDEX

3.1. Computing the generalized trinomial distribution for a given P and Q vectors

Table 1 shows an R function to compute the joint distribution of matching correct and matching
incorrect responses using the recursive algorithm. The function requires two vectors as input 𝐏
and 𝐐. 𝐏 is a vector of probabilities for matching on a correct response and 𝐐 is a vector of
probabilities for matching on an incorrect response for 𝐼 items. Both vectors have a length of 𝐼.
The function also requires two numbers 𝑚 and 𝑛, 𝑚 representing the observed number of
correct matches and 𝑛 is the observed number of incorrect matches between two test takers.

Zopluoglu

 4

Table 1. An R function to compute the generalized trinomial distribution and its tail probability given
the vector of probabilities for two disjoint events and specified numbers.

gtd <- function(P,Q,m,n) {

 R <- 1-(P+Q)
 I=length(P)

 rec <- vector("list",I+1)
 rec[[1]]=matrix(0,nrow=I+1,ncol=I+1)
 rec[[1]][1,1] <- 1
 for(k in 2:(I+1)){
 rec[[k]] = R[k-1]*rec[[k-1]]+
 rbind(0,P[k-1]*rec[[k-1]])[-(I+2),]+
 cbind(0,Q[k-1]*rec[[k-1]])[,-(I+2)]
 }

 for(k in 1:(I+1)){ rec[[k]]=t(rec[[k]])}

 upper <- matrix(nrow=I+1,ncol=I+1)
 for(x in 1:(I+1)){
 for(y in 1:(I+1)) {
 upper[x,y] = sum(rec[[I+1]][x:(I+1),y:(I+1)])
 }
 }

 prob.table <- expand.grid(0:I,0:I)
 colnames(prob.table) <- c("IncorrectMatch","CorrectMatch")
 prob.table <- prob.table[which(rowSums(prob.table)<=I),]
 prob.table <- prob.table[order(prob.table[,1]),]
 prob.table <- cbind(prob.table,0,0,0,0)
 prob.table[,3] <- I-(rowSums(prob.table[,1:2]))
 for(i in 1:(nrow(prob.table))){
 x=prob.table[i,1]
 y=prob.table[i,2]
 prob.table[i,4] <- upper[x+1,y+1]
 prob.table[i,5] <- rec[[I+1]][x+1,y+1]
 }

 for(i in 1:(nrow(prob.table))){
 r = prob.table[i,4]
 marked = which(prob.table[,4] <= r)
 prob.table[i,6] <- sum(prob.table[marked,5])
 }

 colnames(prob.table)[3:6] <- c("NonMatch","Upper",
 "Probability","TailProbability")
 p = prob.table[which(prob.table[,1]==n & prob.table[,2]==m),6]
 list(prob.table[,-4],p)
}

This function returns a list with two elements. The first one is a table including the probabilities
for the joint distribution of number of correct and incorrect matches (Probability column) and
tail probabilities (Tail Probability column). The tail probability is the probability of observing
the number of correct and incorrect matches or more extreme number of matches. The tail
probability can be compared to an alpha level (e.g., .01) to make a decision about whether or
not the observed similarity is significantly unusual under the assumption of independent
responding.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 5

Table 2. An example of use for the R function to compute the generalized trinomial distribution and its
tail probability given the vector of probabilities for two disjoint events and specified numbers.

P <- c(0.45,0.60,0.30,0.55,0.58,0.42,0.60,0.25)
Q <- c(0.15,0.20,0.07,0.10,0.12,0.18,0.30,0.05)
M4 <- gtd(P, Q, m=3,n=2)
M4
 [[1]]
 IncorrectMatch CorrectMatch NonMatch Probability TailProbability
 1 0 0 8 0.00014817600 1.00000000000
 10 0 1 7 0.00229866840 0.99985182400
 19 0 2 6 0.01383419478 0.99755315560
 28 0 3 5 0.04290090345 0.98371896082
 37 0 4 4 0.07560196143 0.88706918856
 46 0 5 3 0.07769363787 0.52528666715
 55 0 6 2 0.04534833951 0.21852241329
 64 0 7 1 0.01366565580 0.05554589926
 73 0 8 0 0.00162785700 0.00412010397
 2 1 0 7 0.00084360360 0.94081805737
 11 1 1 6 0.00964994464 0.93997445377
 20 1 2 5 0.04325532057 0.93032450913
 29 1 3 4 0.09890315828 0.81146722713
 38 1 4 3 0.12439288143 0.71256406885
 47 1 5 2 0.08552521188 0.36981797220
 56 1 6 1 0.02949871068 0.11179242607
 65 1 7 0 0.00393499620 0.01063825410
 3 2 0 6 0.00161592858 0.58817118742
 12 2 1 5 0.01406754191 0.58655525884
 21 2 2 4 0.04720104978 0.57248771693
 30 2 3 3 0.07777505708 0.44759302928
 39 2 4 2 0.06577034703 0.28429276032
 48 2 5 1 0.02674781613 0.08229371539
 57 2 6 0 0.00408353481 0.01472178891
 4 3 0 5 0.00147975807 0.17317407378
 13 3 1 4 0.00975200588 0.17169431571
 22 3 2 3 0.02374799388 0.16194230983
 31 3 3 2 0.02640188988 0.13819431595
 40 3 4 1 0.01320810993 0.04114389883
 49 3 5 0 0.00237669012 0.00670325790
 5 4 0 4 0.00073634463 0.04188024346
 14 4 1 3 0.00354190993 0.02793578890
 23 4 2 2 0.00583529943 0.02439387897
 32 4 3 1 0.00383679063 0.01855857954
 41 4 4 0 0.00084883518 0.00116303490
 6 5 0 3 0.00020646381 0.00432656778
 15 5 1 2 0.00067335552 0.00249224697
 24 5 2 1 0.00065585655 0.00181889145
 33 5 3 0 0.00019058868 0.00031419972
 7 6 0 2 0.00003170475 0.00012361104
 16 6 1 1 0.00006111576 0.00009190629
 25 6 2 0 0.00002628801 0.00003079053
 8 7 0 1 0.00000239652 0.00000450252
 17 7 1 0 0.00000203796 0.00000210600
 9 8 0 0 0.00000006804 0.00000006804

 [[2]]
 [1] 0.4476

Zopluoglu

 6

Suppose that two test takers responded to eight items and we know the probability of matching
correct and matching incorrect responses for each item (𝐏 and 𝐐 vectors). Also, suppose that
these two test takers have the same correct answer for three items and the same incorrect
response for two items. How likely this outcome would be? Table 2 presents the results obtained
from the R function provided in Table 1 for this specific scenario.

The Table 2 indicates that observing three correct and two incorrect matches for a pair of test
takers with the given 𝐏 and 𝐐 is 0.0778. For the same pair, observing three correct and two
incorrect matches or more extreme similarity is 0.4476. If we use a type-I error rate of 0.01,
then we can decide that the response similarity between these two test takers is not significantly
unusual because the tail probability is not smaller than .01.

3.2. Computing M4 for Dichotomous Data

For a given dichotomous dataset, the steps to compute the M4 statistics between two test takers
are below:

1. Decision about the dichotomous IRT model to use. Researchers can choose a particular
model based on their own judgement, or can fit all possible models and then empirically
decide the best fitting model. The researchers are strongly encouraged to evaluate the
plausibility of model assumptions such as unidimensionality and local independent
before proceeding.

2. Estimation of item and person parameters based on the chosen dichotomous IRT model
in Step 1.

3. Computation of the P and Q vectors for two test takers given their estimated person
parameters and the estimated item parameters.

4. Computation of the tail probability for the observed number of correct and incorrect
matches between these two test takers using the gtd() function introduced above.

For demonstration, I will use a dichotomous dataset that is publicly available on the following
link https://itemanalysis.com/example-data-files/. This dataset includes binary responses to 56
items for 6,000 test takers. Table 3 and Table 4 shows the code to import the dataset and then
fitting the 1-, 2-, and 3-PL IRT models using the mirt package (Chalmers, 2012) to decide the
best fitting model. Based on the model fit indices, the best fitting model is the 3-PL IRT model.

Table 3. R code to import the dataset and display the first few rows

setwd("Path to file") # Here you put the path to the folder for the dataset

exam1 <- read.csv("exam1_scored.txt") # Import the dataset

dim(exam1) # Ask R to show the dimensions of the dataset

[1] 6000 56 # This indicates there are 6,000 rows and 56 columns

head(exam1,3) # Ask R to display the first three rows of the dataset

 item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11
 1 1 0 0 0 1 1 1 1 0 1 1
 2 1 0 1 0 1 1 0 1 1 1 1
 3 1 0 0 1 0 0 0 1 1 1 1
 item12 item13 item14 item15 item16 item17 item18 item19 item20 item21
 1 1 1 1 1 1 1 1 1 0 0
 2 1 1 1 1 1 0 0 1 1 0
 3 1 1 0 1 1 0 0 1 1 0

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 7

Table 3. Continued

 item22 item23 item24 item25 item26 item27 item28 item29 item30 item31
 1 1 0 1 1 1 0 0 1 0 0
 2 1 1 1 0 1 0 1 0 0 1
 3 0 1 1 0 1 0 0 0 1 0
 item32 item33 item34 item35 item36 item37 item38 item39 item40 item41
 1 1 1 1 1 1 0 1 1 1 1
 2 0 1 1 0 0 1 0 0 1 0
 3 1 1 0 0 1 0 1 0 1 1
 item42 item43 item44 item45 item46 item47 item48 item49 item50 item51
 1 1 1 0 1 0 0 0 0 0 1
 2 0 1 0 0 0 0 0 0 0 1
 3 0 1 0 0 1 1 0 1 1 1
 item52 item53 item54 item55 item56
 1 0 1 0 0 1
 2 0 1 1 1 0
 3 1 1 0 1 1

Table 4. R code to fit dichotomous IRT models, to choose the best fitting model, and to estimate item
and person parameters for the best fitting model

install.packages("mirt") # Install the mirt package into your computer
require(mirt) # Load the library to the R session

Fit 1PL model

 mod <- 'F = 1-56
 CONSTRAIN = (1-56,a1)'

 onePL <- mirt(data = exam1, model = mod, itemtype="2PL",SE=TRUE)

Fit 2PL model

 twoPL <- mirt(data = exam1, model = 1,itemtype="2PL",SE=TRUE)

Fit 3PL model

 threePL <- mirt(data = exam1, model = 1,itemtype="3PL",SE=TRUE)

Compare the model fit

 anova(onePL,twoPL) # 1PL vs 2PL
 anova(twoPL,threePL) # 2PL vs 3PL
 # 3 PL fits best.

Item parameters for the 3PL model

 ipar <- coef(threePL,IRTpars=TRUE,simplify=TRUE)$items[,1:3]
 head(ipar,3) # display the item parameters for the first 3 rows

 a b g
 item1 1.0503 -0.37464 0.306052
 item2 0.6379 -0.02992 0.050127
 item3 1.5072 -1.27318 0.064474
Estimate the ML theta estimates

Zopluoglu

 8

Table 4. Continued

 mle <- fscores(threePL,method="ML") # This generates a 6000 x 1 matrix

 head(mle,3) # display the ML theta estimates for the first 3 rows
 F1
 [1,] 0.32301
 [2,] -0.07246
 [3,] 0.25915

Then, I save the estimated item parameters for the 3PL model into an object (ipar) and estimate
the maximum likelihood person parameter estimates. Given these estimated item and person
parameters based on the 3-PL model, suppose that we want to compute the M4 response
similarity statistic for two test takers, subjects 1035 and 1567. We need to compute P and Q
vectors. In order to compute the P and Q vectors, we have to compute the probability of correct
response for each item for these two test takers using the estimated item parameters and their
estimated person parameters. Table 5 shows the R code to compute the P and Q vectors for
individuals 1035 and 1567 based on the estimated person parameters and item parameters.

These two test takers are matching on the correct response for 40 items and matching on the
incorrect response for three items. Given their joint probability vectors for the correct and
incorrect responses across all items (P and Q vectors), Table 6 shows how to use the gtd()
function to compute the probability for the degree of the observed similarity or more extreme
similarity between these two test takers. The tail probability is 0.557. This indicates that the
observed similarity between these two test takers are not very unlikely. Therefore, we can
conclude that there is no unusual degree of response similarity between the two test takers. It
may be sometimes useful to visually present the results. Table 7 shows the R code to create a
contour plot which was also discussed in Maynes (2017). In this contour plot, the boundary
lines represent the likelihood of .01, .001, .0001, and .0001 for the number of correct and
incorrect matches between two response vectors. In addition, the observed number of correct
and incorrect matches is marked in the plot. One can easily demonstrate how likely the observed
similarity is between two response vectors using this plot.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 9

Table 5. R code to compute the P and Q vectors for individuals 1035 and 1567 based on the estimated
person parameters and item parameters

 # Estimated theta for Person 1035 and person 1567

 th1 <- mle[1035,1]

 th1
 F1
 1.415

 th2 <- mle[1567,1]

 th2
 F1
 1.577

 # A small function to compute the probability of correct response
 # given the item and person parameters for the 3-PL model

 prob <- function(ip,th){
 # ip - n x 3 item parameter matrix. Columns are a, b, g respectively
 # th - a numeric value

 ip[,3]+((1-ip[,3])*(1/(1+exp(-ip[,1]*(th-ip[,2])))))
 }

 # Probability of correct response across items for the two test takers

 P1 <- prob(ip=ipar,th=th1) # Test taker 1035

 P1
 item1 item2 item3 item4 item5 item6 item7 item8 item9 item10
 0.9081 0.7296 0.9840 0.7483 0.8505 0.9322 0.7347 0.9950 0.7968 0.9924
 item11 item12 item13 item14 item15 item16 item17 item18 item19 item20
 0.9939 0.7983 0.9855 0.7202 0.9288 0.7388 0.6960 0.7229 0.9820 0.8225
 item21 item22 item23 item24 item25 item26 item27 item28 item29 item30
 0.8964 0.8104 0.7232 0.9633 0.8764 0.9615 0.3099 0.6112 0.7061 0.7084
 item31 item32 item33 item34 item35 item36 item37 item38 item39 item40
 0.5605 0.5130 0.9455 0.8687 0.9789 0.9653 0.8835 0.6294 0.5555 0.8618
 item41 item42 item43 item44 item45 item46 item47 item48 item49 item50
 0.9160 0.7597 0.8911 0.7167 0.9202 0.9097 0.8501 0.8702 0.7808 0.9943
 item51 item52 item53 item54 item55 item56
 0.9947 0.8833 0.8771 0.5813 0.7557 0.9771
 P2 <- prob(ip=ipar,th=th2) # Test taker 1567
 P2
 item1 item2 item3 item4 item5 item6 item7 item8 item9 item10
 0.9208 0.7491 0.9874 0.7646 0.8650 0.9421 0.7658 0.9963 0.8196 0.9944
 item11 item12 item13 item14 item15 item16 item17 item18 item19 item20
 0.9955 0.8186 0.9889 0.7465 0.9420 0.7773 0.7228 0.7476 0.9874 0.8556
 item21 item22 item23 item24 item25 item26 item27 item28 item29 item30
 0.9173 0.8493 0.7807 0.9750 0.9040 0.9686 0.3673 0.6409 0.7358 0.7469
 item31 item32 item33 item34 item35 item36 item37 item38 item39 item40
 0.5960 0.5637 0.9583 0.8986 0.9857 0.9754 0.9059 0.6572 0.5921 0.8797
 item41 item42 item43 item44 item45 item46 item47 item48 item49 item50
 0.9302 0.7822 0.9076 0.7676 0.9413 0.9284 0.8868 0.9025 0.8103 0.9968

Zopluoglu

 10

Table 5. Continued

 item51 item52 item53 item54 item55 item56
 0.9969 0.9092 0.9061 0.6091 0.7960 0.9841
Joint probability of correct response across items (P vector)

 P <- P1*P2
 P
 item1 item2 item3 item4 item5 item6 item7 item8 item9 item10
 0.8362 0.5466 0.9716 0.5722 0.7357 0.8782 0.5626 0.9914 0.6530 0.9868
 item11 item12 item13 item14 item15 item16 item17 item18 item19 item20
 0.9894 0.6535 0.9746 0.5376 0.8750 0.5743 0.5031 0.5405 0.9696 0.7037
 item21 item22 item23 item24 item25 item26 item27 item28 item29 item30
 0.8223 0.6882 0.5647 0.9392 0.7923 0.9313 0.1138 0.3918 0.5195 0.5292
 item31 item32 item33 item34 item35 item36 item37 item38 item39 item40
 0.3341 0.2892 0.9061 0.7806 0.9649 0.9416 0.8003 0.4137 0.3290 0.7581
 item41 item42 item43 item44 item45 item46 item47 item48 item49 item50
 0.8521 0.5943 0.8088 0.5501 0.8662 0.8446 0.7539 0.7854 0.6326 0.9911
 item51 item52 item53 item54 item55 item56
 0.9916 0.8032 0.7947 0.3541 0.6015 0.9616

Joint probability of incorrect response across items (Q vector)

 Q <- (1-P1)*(1-P2)
 Q
 item1 item2 item3 item4 item5 item6
 0.00727836 0.06782913 0.00020138 0.05923844 0.02017187 0.00392514
 item7 item8 item9 item10 item11 item12
 0.06213472 0.00001822 0.03665862 0.00004270 0.00002744 0.03658889
 item13 item14 item15 item16 item17 item18
 0.00016096 0.07092701 0.00412716 0.05816974 0.08425009 0.06993389
 item19 item20 item21 item22 item23 item24
 0.00022726 0.02563475 0.00855995 0.02857902 0.06068258 0.00091665
 item25 item26 item27 item28 item29 item30
 0.01186580 0.00120889 0.43662558 0.13959138 0.07765921 0.07378293
 item31 item32 item33 item34 item35 item36
 0.17755613 0.21249479 0.00227399 0.01332128 0.00030215 0.00085127
 item37 item38 item39 item40 item41 item42
 0.01096429 0.12702758 0.18128293 0.01663444 0.00586350 0.05232573
 item43 item44 item45 item46 item47 item48
 0.01005836 0.06584107 0.00468136 0.00646589 0.01696561 0.01265535
 item49 item50 item51 item52 item53 item54
 0.04159484 0.00001832 0.00001658 0.01059035 0.01153943 0.16365438
 item55 item56
 0.04983442 0.00036321
 # Observed number of correct matches between the two test takers

 m = sum (exam1[1035,]==1 & exam1[1567,]==1)
 m
 [1] 40

 # Observed number of incorrect matches between the two test takers

 n = sum (exam1[1035,]==0 & exam1[1567,]==0)
 n
 [1] 3

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 11

Table 6. R code to compute the M4 response similarity index between examinees 1035 and 1567 based
on the P and Q vectors computed from dichotomous item response data

 M4 <- gtd(P=P,Q=Q,m=m,n=n)

 M4[[1]] # Probabilities for the trinomial distribution

 IncorrectMatch CorrectMatch NonMatch Probability TailProbability

 1 0 0 56 3.278e-46 1.000e+00
 58 0 1 55 2.769e-43 1.000e+00
 115 0 2 54 1.070e-40 1.000e+00
 ………
 3136 0 55 1 5.728e-09 4.383e-08
 3193 0 56 0 2.057e-10 7.333e-10
 2 1 0 55 2.259e-45 9.985e-01
 59 1 1 54 1.904e-42 9.985e-01
 116 1 2 53 7.336e-40 9.985e-01
 ………
 3080 1 54 1 4.626e-08 3.585e-07
 3137 1 55 0 1.814e-09 8.515e-09
 3 2 0 54 7.426e-45 9.685e-01
 60 2 1 53 6.242e-42 9.685e-01
 117 2 2 52 2.399e-39 9.685e-01
 ………
 3024 2 53 1 1.505e-07 9.657e-07
 3081 2 54 0 6.304e-09 3.612e-08
 ………
 54 53 0 3 2.169e-106 6.136e-101
 111 53 1 2 4.364e-104 6.136e-101
 168 53 2 1 2.826e-102 6.131e-101
 225 53 3 0 5.848e-101 5.849e-101
 55 54 0 2 2.227e-109 1.082e-105
 112 54 1 1 3.108e-107 1.082e-105
 169 54 2 0 1.051e-105 1.051e-105
 56 55 0 1 1.391e-112 1.021e-110
 113 55 1 0 1.007e-110 1.007e-110
 57 56 0 0 3.968e-116 3.968e-116

 M4[[2]] # Tail Probability

 [1] 0.5571

Zopluoglu

 12

Table 7. R code to create a contour plot for a visual representation of the result provided by the M4
index

install.packages("lattice")

library(lattice)

obs <- c(40,3)

contourplot(TailProbability ~ CorrectMatch + IncorrectMatch,
 data=M4[[1]],
 labels=FALSE,
 xlab="Number of Correct Matches",
 ylab="Number of Incorrect Matches",
 panel=function(at,lty,...){
 panel.contourplot(at = .00001, lty = 1,...)
 panel.contourplot(at = .0001, lty = 2,...)
 panel.contourplot(at = .001, lty = 3,...)
 panel.contourplot(at = .01, lty = 4,...)
 panel.points(x=obs[1],y=obs[2], pch=15, cex=1)
 },
 key=list(corner=c(1,.9),lines=list(lty=c(1,2,3)),
 text=list(c("p=0.00001","p=0.0001","p=0.001","p=0.01"))),
 scales=list(y=list(at=seq(0,56,4)),x=list(at=seq(0,56,4)))

Figure 1. Contour plot for the joint probability distribution of correct and incorrect matches

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 13

3.3. Computing M4 for Nominal Response Data

The steps to compute the M4 index for nominal response data are identical to the dichotomous
dataset. In particular, we are interested in multiple-choice test data where one of the response
options is considered as the correct response (key) and other response options are considered
as the incorrect responses (distractors). As mentioned before, there are a few number of
alternative models proposed in the literature for multiple-choice test data (Bock, 1972; Penfield
and de la Torre, 2008; Thissen & Steinberg, 1997). One can choose any of these models for
modeling probabilities. We consider here the original Nominal Response Model (NRM; Bock,
1972). For this section, I will use the nominal version of the dichotomous dataset used before.
We will also need a vector of correct response option for these 56 items. In order to fit NRM in
the mirt package, we first transform these nominal A, B, C, and D response categories in the
dataset to numbers 1, 2, 3, and 4, respectively. Then, we also need to recode data such that the
correct response option is always assigned to the highest number possible (e.g., four in this
case). Table 8 shows a compilation of R code to prepare the dataset for the data analysis.

Table 8. R code to prepare nominal response data for data analysis

Import dataset

 exam1_nom <- read.csv("exam1_nominal.txt")

 dim(exam1_nom)
 [1] 6000 56

 head(exam1_nom,3) # display the first 3 rows of the dataset

 item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11
 1 A A D D C B C D D D C
 2 A B C C C B A D A D C
 3 A C D B D D D D A D C
 item12 item13 item14 item15 item16 item17 item18 item19 item20 item21
 1 A D C A B D B A B B
 2 A D C A B A D A C B
 3 A D D A B A A A C B
 item22 item23 item24 item25 item26 item27 item28 item29 item30 item31
 1 A D B C B A C A C A
 2 A C B D B C A D B C
 3 C C B B B B D D A A
 item32 item33 item34 item35 item36 item37 item38 item39 item40 item41
 1 B B A B D C A D C D
 2 A B A D B D B C C A
 3 B B C C D B A C C D
 item42 item43 item44 item45 item46 item47 item48 item49 item50 item51
 1 A B C C C D B D D D
 2 D B C A B A D A D D
 3 D B D A D B D C B D
 item52 item53 item54 item55 item56
 1 D C A D D
 2 C C B A C
 3 A C C A D

Key response vector (correct responses for 56 items)

 key <- c("A","D","C","B","C","B","C","D","A","D","C","A","D","C",
 "A","B","D","B","A","C","A","A","C","B","C","B","D","A",

Zopluoglu

 14

Table 8. Continued

 "A","A","C","B","B","A","B","D","D","A","D","C","D","A",
 "B","B","C","D","B","C","C","B","D","A","C","B","A","D")

Recode A,B,C,D to 1,2,3,4

 for(i in 1:ncol(exam1_nom)){

 exam1_nom[,i]=ifelse(exam1_nom[,i]=="A",1,
 ifelse(exam1_nom[,i]=="B",2,
 ifelse(exam1_nom[,i]=="C",3,
 ifelse(exam1_nom[,i]=="D",4,NA))))
 }

Recode the vector of key responses

 new.key <- ifelse(key=="A",1,
 ifelse(key=="B",2,
 ifelse(key=="C",3,
 ifelse(key=="D",4,NA))))

Recode the data so that the correct option is always scored as 4

for(i in 1:ncol(exam1_nom)) {

 hold1 <- which(exam1_nom[,i]==new.key[i])
 hold2 <- which(exam1_nom[,i]==4)

 exam1_nom[hold1,i]= 4
 exam1_nom[hold2,i]= new.key[i]
}

head(exam1_nom,3) # display the first 3 rows of recoded data

 item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11
 1 4 1 3 2 4 4 4 4 1 4 4
 2 4 2 4 3 4 4 1 4 4 4 4
 3 4 3 3 4 3 2 3 4 4 4 4
 item12 item13 item14 item15 item16 item17 item18 item19 item20 item21
 1 4 4 4 4 4 4 4 4 2 2
 2 4 4 4 4 4 1 2 4 4 2
 3 4 4 3 4 4 1 1 4 4 2
 item22 item23 item24 item25 item26 item27 item28 item29 item30 item31
 1 4 3 4 4 4 1 3 4 3 1
 2 4 4 4 3 4 3 4 1 2 4
 3 3 4 4 2 4 2 1 1 4 1
 item32 item33 item34 item35 item36 item37 item38 item39 item40 item41
 1 4 4 4 4 4 3 4 4 4 4
 2 1 4 4 2 2 4 2 3 4 1
 3 4 4 3 3 4 2 4 3 4 4
 item42 item43 item44 item45 item46 item47 item48 item49 item50 item51
 1 4 4 3 4 3 2 2 3 2 4
 2 1 4 3 1 2 1 3 1 2 4
 3 1 4 2 1 4 4 3 4 4 4
 item52 item53 item54 item55 item56
 1 1 4 1 1 4
 2 3 4 4 4 3
 3 4 4 3 4 4

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 15

Once the dataset is prepared, we fit the nominal response model using the mirt package and
extract the item parameters. In the nominal response model, each response category has one
slope and one intercept parameter. Table 9 shows the R code to fit the model and estimate the
item and person parameters. As it is seen, the item parameter matrix has eight columns with the
first four columns (labeled as a1, a2, a3, and a4) are response category slope parameters and
the last four columns (labeled as c1, c2, c3, and c4) are response category intercept parameters.
Once these item parameters are obtained, we also estimate a person parameter for each
individual based on maximum likelihood estimation.

Table 9. R code to fit the nominal response model and estimate item and person parameters

Fit the Nominal Response Model

nrm <- mirt(exam1_nom, 1, 'nominal')

Item parameter estimates

ipar.nrm <- coef(nrm, simplify=T, IRTpars = TRUE)$item

head(ipar.nrm,3) # display the first 3 rows of item parameter matrix

 a1 a2 a3 a4 c1 c2 c3 c4
 item1 0.29203 -0.36571 -0.69963 0.7733 0.0001801 -0.7811 -0.95435 1.7352
 item2 0.14899 -0.17617 -0.43625 0.4634 -0.3189671 -0.3362 -0.29905 0.9542
 item3 -0.71860 -0.45263 -0.17098 1.3422 -1.3477243 -0.8299 -0.37141 2.5490

Person parameter estimates

theta.ML <- fscores(nrm,method="ML")

head(theta.ML,3) # display the first 3 rows of the person parameter matrix
 F1
 [1,] 0.21598
 [2,] -0.32331
 [3,] -0.05163

In order to compute the P and Q vectors based on nominal response data, we first need to create
a function to compute the probability of selecting each response category on each item for a
person given the nominal response model item parameter and the person parameter estimates.
The R code in Table 10 takes the nominal response model estimated item parameter matrix
obtained from the mirt package and the person parameter estimates for an individual as inputs
and returns a matrix of probabilities for each response option on each item for the individual.
For instance, we can see that the model predicted probabilities of choosing response categories
1, 2, 3, and 4 (correct response) for subject 1035 on the first item are .071, .011, .005, and .913,
respectively. Similarly, the model probabilities of choosing response categories 1, 2, 3, and 4
(correct response) for subject 1567 on the first item are .050, .004, .002, and .944. Once the
probability matrix for each subject is obtained, then the P vector, joint probability of matching
on the correct response for each item, and Q vector, joint probability of matching on an incorrect
response for each item, are computed. For instance, the probability of matching on the response
category 4 (correct response) for subject 1035 and subject 1567 would be equal to 0.913*0.944
= 0.861 and the probability of matching on the response category 1, 2, or 3 would be
(0.071*0.050 + 0.011*0.004 + 0.005*0.002) = 0.004. You can see at the end of Table 10 that
we do this computation for each item and create the P and Q vectors.

Zopluoglu

 16

After we obtain the P and Q vectors, we can now compute the M4 index for the same two test
takers 1035 and 1567 using the nominal response data. Table 11 shows the R code to run gtd()
function again taking the P and Q vectors, observed number of matches on correct responses
(m), and observed number matches on incorrect responses (n) as inputs, and returns the
generalized trinomial distribution for the number of correct and incorrect matches for every
possible outcome. Also, the function returns the tail probability for observing more extreme
similarity between two test takers. The tail probability is 0.9378 and can be compared to a
conventional alpha level (e.g., 0.01) to make a decision about the degree of unusual similarity.

4. FINAL REMARKS
A very nice theoretical introduction and discussion of the M4 index have been provided by
Maynes (2017); however, there has not been an accessible tool to compute the M4 index for
other practitioners and researchers in the field of educational testing. The M4 index is a
computationally demanding method. Its computation requires recursive algorithms that may
not very easy to understand and implement. In this paper, I introduced an R function to compute
the probabilities of the generalized trinomial distribution for two disjoint events, and
demonstrated how this function can be used along with other R item response theory packages
(e.g., mirt) to compute the M4 index under the dichotomous and nominal item response models.
The availability of an open source computational tool will help the practitioners and the
consumers of this index understand the nature of the M4 index better and will also help
researchers conduct deeper investigations in the future about the properties of the M4 index
under different conditions with real and simulated datasets.

Table 10. R code to compute the P and Q vectors based on nominal response dataset for individuals
1035 and 1567 based on the estimated person parameters and item parameters

An internal function to compute the probability of choosing each response
category of each item given the item parameter matrix and a person
parameter estimate

irtprob <- function(th, item.param) {

Inputs:

 # item.param - n x 4 item parameter matrix.
 # First four columns are slopes, and the last four columns
are

 # intercepts

th - ability - a numeric value

 n.opt = ncol(item.param)/2
 prob <- matrix(nrow = nrow(item.param), ncol = ncol(item.param)/2)
 for (j in 1:ncol(prob)) {
 prob[,j] = exp((item.param[, j] * th) + item.param[,j +
n.opt])
 }
 prob <- prob/rowSums(prob)
 prob
 }

Estimated theta for Person 1035 and person 1567 based on nominal response
model

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 17

Table 10. Continued

 th1 <- theta.ML[1035,1]

 th1
 F1
 1.692

 th2 <- theta.ML[1567,1]
 th2
 F1
 2.514

 # Probability matrices. These have 56 rows, each row is representing an
item
 # They have four columns, each column is representing a response category

 P1 <- irtprob(item.param=ipar.nrm,th=th1) # Test taker 1035
 P1
 [,1] [,2] [,3] [,4]
 [1,] 0.07131223 0.0107270 0.0051265 0.9128
 [2,] 0.12456912 0.0706226 0.0472016 0.7576
 ……….
 [55,] 0.15651175 0.0552107 0.0473266 0.7410
 [56,] 0.00444109 0.0067377 0.0093141 0.9795
 P2 <- irtprob(item.param=ipar.nrm,th=th2) # Test taker 1567
 P2
 [,1] [,2] [,3] [,4]
 [1,] 0.049684924 0.0043540 0.00158164 0.9444
 [2,] 0.104793552 0.0454847 0.02455257 0.8252
 ……
 [55,] 0.102024390 0.0296282 0.02506444 0.8433
 [56,] 0.001038142 0.0017010 0.00266656 0.9946

 # Joint probability of correct and incorrect responses across items
 #(P and Q vector)

 # Note that in this recoded dataset used to fit the model,
 # we re-coded the correct response as 4 for all items
 # So, 1, 2, and 3 are incorrect responses.

 P <- P1[,4]*P2[,4]

 Q <- rowSums(P1[,1:3]*P2[,1:3])

 # Observed number of correct matches between the two test takers

 m <- sum((exam1_nom[1035,]==exam1_nom[1567,] &
 exam1_nom[1035,]==4)*1,na.rm=TRUE)

 # Observed number of incorrect matches between the two test takers

 n <- sum((exam1_nom[1035,]==exam1_nom[1567,] &
 exam1_nom[1035,]!=4)*1,na.rm=TRUE)

Zopluoglu

 18

Table 11. R code to compute the M4 response similarity index between examinees 1035 and 1567 based
on the P and Q vectors computed from nominal response data

 M4 <- gtd(P=P,Q=Q,m=m,n=n)

 M4[[1]] # Probabilities for the trinomial distribution

 IncorrectMatch CorrectMatch NonMatch Probability TailProbability
 1 0 0 56 1.251e-50 1.000e+00
 58 0 1 55 2.847e-47 1.000e+00
 115 0 2 54 2.717e-44 1.000e+00
 ………
 3136 0 55 1 5.428e-08 2.222e-07
 3193 0 56 0 1.836e-09 8.750e-09
 2 1 0 55 3.301e-50 9.034e-01
 59 1 1 54 7.505e-47 9.034e-01
 116 1 2 53 7.153e-44 9.034e-01
 ………
 3080 1 54 1 1.661e-07 9.390e-07
 3137 1 55 0 6.320e-09 2.739e-08
 3 2 0 54 4.188e-50 5.360e-01
 60 2 1 53 9.512e-47 5.360e-01
 117 2 2 52 9.054e-44 5.360e-01
 ………
 3024 2 53 1 2.111e-07 1.202e-06
 3081 2 54 0 8.794e-09 5.272e-08
 4 3 0 53 3.405e-50 2.439e-01
 61 3 1 52 7.727e-47 2.439e-01
 118 3 2 51 7.345e-44 2.439e-01
 ………
 2968 3 52 1 1.538e-07 7.729e-07
 3025 3 53 0 6.912e-09 3.431e-08
 ………
 56 55 0 1 3.362e-144 1.259e-141
 113 55 1 0 1.256e-141 1.256e-141
 57 56 0 0 9.791e-149 9.791e-149

 M4[[2]] # Tail Probability
 [1] 0.9378

ORCID
Cengiz Zopluoglu https://orcid.org/0000-0002-9397-0262

5. REFERENCES

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in
two or more nominal categories. Psychometrika, 37(1), 29-51.

Chalmers, R.P. (2012). mirt: A Multidimensional Item Response Theory Package for the R
Environment. Journal of Statistical Software, 48(6), 1 - 29. URL http://www.jstatsoft.or
g/v48/i06/

Charalambides, C. A. (2005). Combinatorial methods in discrete distributions (Vol. 600). John
Wiley & Sons.

Gabriel, T. (2010, December 27). Cheaters find an Adversary in Technology. The New York
Times. Retrieved from https://www.nytimes.com/2010/12/28/education/28cheat.html

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 1-19

 19

Maynes, D.D. (2014). Detection of non-independent test taking by similarity analysis. In N. M.
Kingston and A. K. Clark (Eds.) Test fraud: Statistical detection and methodology (pp.
53-82). Routledge: New York, NY.

Maynes, D. D. (2017). Detecting potential collusion among individual examinees using
similarity analysis. In GJ Cizek and JA Wollack (eds.), Handbook of quantitative methods
for detecting cheating on tests, Chapter 3, 47-69. Routledge, New York, NY.

Penfield, R. D., de la Torre, J., & Penfield, R. (2008). A new response model for multiple-
choice items. Presented at the annual meeting of the National Council on Measurement
in Education, New York.

Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items.
Psychometrika, 49(4), 501-519.

van der Linden, W. J., & Sotaridona, L. (2006). Detecting answer copying when the regular
response process follows a known response model. Journal of Educational and
Behavioral Statistics, 31(3), 283-304.

Wollack, J. A. (1997). A nominal response model approach for detecting answer copying.
Applied Psychological Measurement, 21(4), 307-320.

International Journal of Assessment Tools in Education

 2019, Vol. 6, No. 5-Special Issue, 20–36

https://dx.doi.org/10.21449/ijate.627361

 Published at http://www.ijate.net http://dergipark.gov.tr Research Article

 20

Educational data mining: A tutorial for the rattle package in R

Okan Bulut 1,*, Hatice Cigdem Yavuz 2

1 Centre for Research in Applied Measurement and Evaluation, University of Alberta, Edmonton, AB, Canada
2 Cukurova University, Faculty of Education, Sarıçam/Adana, Turkey

ARTICLE HISTORY

Received: 01 October 2018

Accepted: 05 December 2019

KEYWORDS

Educational data mining,

rattle,

Decision tree,

Random forest,

Support vector machines

Abstract: Educational data mining (EDM) has been a rapidly growing
research field over the last decade and enabled researchers to discover
patterns and trends in education with more sophisticated methods. EDM
offers promising solutions to complex educational problems. Given the
rapid increase in the availability of big data in education and software
programs to analyze big data, the demand for user-friendly, free software
programs to implement EDM methods also continues to increase. The R
programming language has become a popular environment for data mining
due to its availability and flexibility. The rattle package in R contains a set
of functions to implement data mining with a graphical user interface. This
study demonstrates three widely used data mining algorithms (classification
and regression tree, random forest, and support vector machine) in EDM
using real data from the 2015 administration of the Programme for
International Student Assessment (PISA). First, a brief introduction to EDM
is provided along with the description of the selected data mining
algorithms. Then, how to perform data mining analysis using the rattle’s
graphical user interface is demonstrated. The study concludes by comparing
the results of the selected data mining algorithms and highlighting how
those algorithms can be utilized in the context of educational research.

1. INTRODUCTION

As an interdisciplinary field, educational data mining (EDM) refers to the development and use
of advanced statistical methods to explore and identify patterns and relationships in data derived
from educational settings. EDM aims to implement advanced machine learning and data mining
algorithms (1) to exploit unprocessed data from educational settings (e.g., large-scale
assessments, records of students’ academic progress in school, and log data from e-learning
systems), (2) to discover relations, patterns, and trends in education, and (3) to use the
discovered information in order guide and improve the decision-making process in educational
practices. The increasing availability and popularity of big data in education has created new
pathways for educational researchers who are interested in applying EDM methods to find
solutions for various problems in education – such as enhancing the quality of online learning
environments (Ducange, Pecori, Sarti, & Vecchio, 2016), early prediction of student dropouts

CONTACT: Okan Bulut bulut@ualberta.ca Centre for Research in Applied Measurement and
Evaluation, University of Alberta, Edmonton/Alberta, Canada

ISSN-e: 2148-7456 /© IJATE 2019

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 21

(Aulck, Velagapudi, Blumenstock, & West, 2016), and forecasting students’ academic
performance and identifying students who might be at risk of academic failure (Hussain, Zhu,
Zhang, Abidi, & Ali, 2019).

Educational researchers who intend to use the EDM methods typically follow a deductive
reasoning approach in which they first collect or get access to large volumes of data, explore
the data visually and statistically, and then do further investigations in order to discover hidden
patterns and relationships in the data. Unlike theory-driven educational research that usually
aims to obtain evidence supporting a priori hypothesis, the primary goal of a typical EDM
process is to find and extract new knowledge from the data without a particular priori hypothesis
and to use the discovered information for the purpose of building new theory, if possible. In the
context of EDM, educational researchers’ interests are mainly focused on several dimensions,
such as learning, predictive, behavioral, and visual analytics (Aldowah, Al-Samarraie, & Fauzy,
2019). Recent systematic review studies have also highlighted a vast and growing body of
research on EDM and its applications in various areas of education (e.g., Aldowah et al., 2019;
Baker, Martin, & Rossi, 2017; Dutt, Ismail, & Herawan, 2016; Peña-Ayala, 2014). The findings
of these review studies reveal that educational researchers will continue to harness the power
of EDM for solving complex problems in education with the availability of big data in
education.

From the methodological point of view, EDM methods are the same as the data mining methods
utilized in other scientific fields (e.g., business, finance, medicine, and agriculture). The current
data mining methods can be categorized into two main types according to the availability of a
target (i.e., dependent) variable in the data: supervised (also known as predictive) and
unsupervised (also known as descriptive). Supervised data mining methods are appropriate
when the researcher wants to predict a specific target variable that is already available in the
data. Typical examples of supervised data mining applications include regression and
classification tasks where the researcher wants to predict either a categorical (classification) or
continuous (regression) variable using a set of predictors (i.e., features) available in the data.
Unsupervised data mining methods are appropriate when the goal is to find hidden structures
or relations in the data instead of predicting a target variable. Common examples of
unsupervised data mining applications include clustering, association rule mining, and
dimensionality reduction. A detailed review of data mining methods commonly used in
educational research can be found in Aldowah et al. (2019) and Peña-Ayala (2014).

In education, researchers and practitioners are often interested in research problems in which
the primary goal is the prediction of an outcome (i.e., dependent) variable from a set of
predictors (Berland, Baker, & Blikstein, 2014; Sinharay, 2016). Therefore, EDM applications
mostly involve supervised data mining methods, instead of unsupervised data mining methods.
Previous research indicated that the supervised data mining methods often provide higher
prediction accuracy than traditional methods, such as multiple linear and logistic regression
(e.g., Fernández-Delgado, Cernadas, Barro, & Amorim, 2014; Koon & Petscher, 2015, 2016;
Spikol, Ruffaldi, Dabisias, & Cukurova, 2018). This study focuses on three data mining
algorithms that can be used for both classification and regression problems: classification and
regression trees (CART; Breiman, Friedman, Olshen, & Stone, 1984), random forest (RF;
Breiman, 2001), and support vector machines (SVM; Cortes & Vapnik, 1995). These
algorithms have been widely used in previous EDM research due to their relatively lower
complexity and ease of implementation and interpretation (e.g., Guruler, Istanbullu, &
Karahasan, 2010; Ivancevic, Celikovic, & Lukovic, 2011; Mccuaig & Baldwin, 2012; Pardos,
Wang, & Trivedi, 2012).

The CART algorithm relies on stratifying a large dataset into a number of smaller subsets in
which separate regression models can be built for either continuous or categorical outcome

Bulut & Yavuz

 22

variables. Then, the model provides a set of classification or regression rules in a decision tree
based on the nodes generated from the utilized predictors (Agarwal, Pandey, & Tiwari, 2012).
As a nonparametric approach, CART does not make explicit assumptions about the
distributions of variables, and thus it can produce relatively more accurate predictions (e.g.,
Strobl, 2013). The RF algorithm is similar to the CART algorithm in terms of relying on a
regression or classification tree model for prediction. However, unlike CART, the RF algorithm
generates many decision trees and combines all of them for making a final prediction (Breiman,
2001). Therefore, the RF algorithm can overcome many estimation issues (e.g., instability, high
bias, and under-representation of classifications) in the CART algorithm because predictions
are made based on the combination of many tree models that are generated differently using
bootstrap samples, instead of a single decision tree model based on the entire sample (Sinharay,
2016; Williams, 2011). Differently from the previous two algorithms, the SVM algorithm relies
on creating a separating hyperplane in an N-dimensional prediction space where N refers to the
number of available predictors in the data. A hyperplane can be considered as a decision
boundary that helps separate or classify the data points. If the outcome variable is categorical,
then the hyperplane aims to create classes having the maximum distance between each other
(Williams, 2011). If, however, the outcome variable is continuous, then the hyperplane creates
a regression line (or plane) that can minimize the difference between the predicted and original
values of the outcome variable.

Currently, there are many software programs that are capable of implementing the data mining
algorithms mentioned above – such as RapidMiner, Weka, KEEL, KNIME, Orange, Python,
R, and IBM SPSS Modeler (see Slater, Joksimović, Kovanovic, Baker, and Gasevic [2017] for
a detailed review). Some of these programs (e.g., RapidMiner, Weka, and IBM SPSS Modeler)
provide a graphical user interface (GUI) for users to easily select an algorithm along with the
type of data mining analysis that they want to perform. Compared to these software programs,
advanced programming languages such as Python and R (R Core Team, 2019) can provide
users with more sophisticated tools to explore, organize, visualize, and model the data within
the same computing environment. However, the amount of time that it takes to learn a new
programming language and to achieve expertise in it can be very long for novice users who do
not have any previous experience in programming. An exception in this situation is the rattle
package (Williams, 2011) that provides a user-friendly GUI to perform data mining analysis
within the R statistical computing environment (R Core Team, 2019). The rattle package can
perform data mining analysis using a variety of advanced algorithms. The purpose of this study
is to demonstrate how to use the rattle package for performing data mining analysis. Using a
real dataset from a large-scale international assessment, the implementation of the CART, RF,
and SVM algorithms using the rattle package is demonstrated. The steps for building and
evaluating a predictive model in the rattle are also described in detail.

2. METHOD

2.1. Study Group

The sample of this study comes from the 2015 administration of the Organisation for Economic
Co-operation and Development’s (OECD) Programme for International Student Assessment
(PISA). PISA is a large-scale, international assessment program that assesses the extent to
which 15-year-old students have acquired adequate competency in various subject areas such
as reading, mathematics, and science (OECD, 2018). The 2015 administration of PISA involved
approximately 540,000 15-year-old students from 72 participating countries and economies.
The sample of this study consists of 5896 students (49.83 % female) who participated in PISA
2015 from Turkey. This study uses the PISA dataset for the demonstration of the rattle package
because the dataset is publicly available through the OECD website

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 23

(http://www.oecd.org/pisa/) and it consists of many categorical and continuous variables from
students and schools – which creates a large-size database suitable for an EDM research study.

2.2. Measures

2.2.1. Scientific Literacy Test in PISA 2015

The primary focus of PISA 2015 was to assess students’ scientific literacy as well as their
attitudes and preferences regarding learning experiences in science. The results of PISA 2015
suggest that there is a large variation in students’ competency levels in science and that this
variation can be explained by many factors, such as demographic variables, socioeconomic
status, students’ participation in science-related activities, and the opportunity to learn science
at school (Mostafa, Echazarra & Guillou, 2018; OECD, 2018). In this study, students’
performance levels in scientific literacy were obtained from the PISA 2015 Scientific Literacy
Test. The scientific literacy test was designed to assess three major competencies: explaining
phenomena scientifically, evaluating and designing scientific inquiry, and interpreting data and
evidence scientifically (OECD, 2017). Moreover, 36% of the items in the test were in physical,
36% in living, 28% in earth and space context. Students’ scores obtained from the test were
scaled with a mean of 500 and a standard deviation of 100. The average scientific literacy score
in PISA 2015 was 493 across all participating countries. Using this score as a cutoff value, a
categorical variable (science_perf) was created. For students whose scores were equal or higher
than 493, science_perf was labeled as “High”. If, however, students’ scores were less than 493,
then the label of “Low” was assigned to science_perf. The resulting categorical variable was
used as the outcome variable in the data mining analysis.

2.2.2. The student questionnaire

The other variables regarding students (i.e., predictors) were obtained from the student
questionnaire of PISA 2015. Table 1 shows the complete list of the variables used in this study.

Table 1. The list of the variables used in this study

Variable Data type Description
gender Categorical Female=1, Male=0
computer Categorical Owning a computer at home; Yes=1, No=0
software Categorical Owning software at home; Yes=1, No=0
internet Categorical Owning internet at home; Yes=1, No=0
desk Categorical Owning a desk at home; Yes=1, No=0
own.room Categorical Owning a room at home; Yes=1, No=0
quiet.study Categorical Owning a quiet study area at home; Yes=1, No=0
ANXTEST Numeric Test anxiety
COOPERATE Numeric Enjoying cooperation
EMOSUPS Numeric Parents emotional support
PARED Numeric Highest education of parents in years
TMINS Numeric Learning time in total
ESCS Numeric Index of economic, social and cultural status
TEACHSUP Numeric Teacher support in a science class
TDTEACH Numeric Teacher-directed science instruction
IBTEACH Numeric Inquiry-based science teaching and learning practices
SCIEEFF Numeric Science self-efficacy
science_perf Categorical If science scores >= 493, High; Low otherwise

Bulut & Yavuz

 24

2.3. Procedure

To use the rattle package, readers first need to download and install the R software program
into their computers. Readers who have no experience regarding downloading, installing, and
using R are recommended to check the program manual on the CRAN website (https://cran.r-
project.org/doc/manuals/r-release/R-intro.pdf) prepared by Venables, Smith, and the R Core
Team (2019). The rattle package contains a set of functions to implement data mining with a
GUI. The latest installation instructions can be found at http://rattle.togaware.com. In this study,
Rattle version 5.2.0 was used for data mining analysis. To download and install the rattle
(Williams, 2011) and its required extension RGtk2 (Lawrence & Lang, 2010), the following
codes must be executed in the R console (note that this step requires Internet connection):

#Installing the packages

install.packages("rattle")

install.packages("RGtk2")

Once the packages have been installed successfully, both packages must be activated using the
library command in R:

#Activating the packages

library("rattle")

library("RGtk2")

The next step is to the rattle command, which will open the rattle GUI as demonstrated in
Figure 1.

#Opening the rattle GUI

rattle()

The rattle GUI can read several data formats, such as text files with .txt, .dat, or .csv extensions,
RData files, and Open Database Connectivity (ODBC) files. This study uses “pisa_turkey.csv”,
which consists of the variables listed in Table 1. To open the pisa_turkey.csv in the rattle, the
first step is to click “Filename” under the “Data” tab and look for the data file in the computer.
Once the data file is found, the “Open” and “Execute” buttons should be clicked, respectively.
This process will open the pisa_turkey.csv file in the rattle and load the dataset into the program
(see Figure 2). For other types of data formats, the same procedure can be followed by selecting
a specific file format available under “Source”. Once a dataset is properly read and loaded into
the rattle, a summary screen of the dataset becomes available (see Figure 3). The summary
menu shows all the variables in the dataset, types of variables (numeric or categorical), and the
role of the variables (e.g., input, target, and identity). Furthermore, the “Comment” column in
the summary screen can help users identify potential issues in the variables (e.g., extreme
missingness). Using the summary menu, users can change the default preferences regarding the
variables. For example, the outcome variable must be labeled as “Target” so that this variable
can be used as the outcome variable in the modeling stage. If the user wants to exclude some
variables from the dataset, these variables should be labeled as “Ignore”. Note that changes
made on the summary screen will be saved only after the user clicks the “Execute” button.
Otherwise, changes made on the variables will be lost.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 25

Figure 1. The graphical user interface (GUI) of the rattle

Figure 2. Loading the data

3

1

2

4

Bulut & Yavuz

 26

Figure 3. The view of the “pisa_turkey.csv” dataset

3. RESULTS/FINDINGS

This section demonstrates how to implement the CART, RF, and SVM algorithms for the
prediction of students’ proficiency status in the scientific literacy test. For each algorithm, the
rattle will require users to download and install the required packages for the first-time
implementation. Therefore, users should accept and install the suggested packages if the rattle
shows any warning messages about downloading and installing such packages. By default, the
rattle should be able to recognize “science_perf” as the target variable. However, if this is not
the case, it must be specified as “Target” under the Data option before running the subsequent
analyses (see Figure 3). Once the “Partition” option is checked, the rattle splits the dataset into
three parts: training dataset (70% of the dataset), test dataset (15% of the dataset), and the
validation dataset (the remaining 15% of the dataset). These partitions are created using random
sampling based on the seed value (default = 42) under the Data tab. Using the same seed ensures
that the user can get the same randomly drawn training, test, and validation datasets every time
the rattle is used for the same dataset. The training dataset is used for model building and the
other two datasets are used for evaluating the accuracy of predictions made from the model.
Alternatively, two datasets (e.g., training with 70% and validation with 30%) can be created by
typing 70/30 inside the “Partition” box.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 27

3.1. Classification and regression trees (CART)

The first two steps to build a decision tree using the CART approach are to switch to the
“Model” tab in the rattle and to select the “Tree” option (see Figure 4). Then, the third step is
to set the model parameters. “Min Split” is the minimum number of observations that must exist
in a node (default = 20); “Min Bucket” is the minimum number of observations in any terminal
node (default is Min Split/3); “Max Depth” is the maximum depth of any node of the final tree
(default = 3); and “Complexity” is the complexity parameter to prune the subtrees that do not
improve the overall model fit (default = 0.01). If this parameter is set to zero, then the CART
algorithm keeps all the estimated nodes and typically creates a highly complex model that might
be hard to interpret. However, a large value for the complexity parameter might also be
detrimental to the model because it would remove many useful nodes from the model and leave
a simple model with a very low predictive accuracy. Therefore, users are recommended to build
several models by tuning the model parameters based on resulting model evaluation indices
(e.g., accuracy, sensitivity, and recall). The fourth step is to click on the “Execute” button –
which runs the CART algorithm based on the requested settings. The CART algorithm uses all
the variables selected as “input” under the Data tab to predict the target variable (science_perf).
Once the estimation is complete, the results can be printed on the screen by clicking on the
“Rules” button. Furthermore, visualizations can be drawn for the final decision tree model by
clicking the “Draw” button. Figure 4 illustrates the steps to be followed to implement the CART
approach and the output returned from the rattle.

Figure 4. Building a predictive model with the CART algorithm

2

 1

5

4

6
3

Bulut & Yavuz

 28

The output returned from the CART model shows the rules that were used to create the nodes
in the decision tree. The output shows the decision nodes and the terminal nodes that were
specified with *. For example, a decision node was created based on ESCS (index of economic,
social and cultural status) at the beginning of the tree. Based on whether students’ ESCS index
values were equal or larger than -0.5027, two branches were created in the decision tree model.
Then, the group of students who meet the ESCS condition is split into two additional branches
depending on whether their total learning time (TMINS) is less than 1660 minutes. The
remaining nodes can be interpreted in a similar manner. A relatively easier way to see all the
nodes in the model is to draw a decision tree plot. The “Draw” option under the Model tab
generates a decision tree plot based on the nodes summarized in the output. Figure 5 shows the
decision tree plot returned from the rattle for the prediction of the proficiency status in scientific
literacy (i.e., science_perf).

Figure 5. The decision tree plot for the prediction of science_perf

In Figure 5, the categories of science_perf are color-coded where the blue color boxes represent
the “Low” category and the green color boxes represent the “High” category. Within each box,
the two values in the middle represent the probabilities of the first and second categories. For
example, the first terminal node on the right-hand side of the plot shows that students who have
ESCS index values smaller than -0.5 have the probabilities of 14% of being in the “Low”
category and 86% of being in the “High” category. The number at the bottom of each box
represents the percentage of observations in the node. Focusing on the same blue box from the
previous example, 77% of the students in the training dataset fall into the node where ESCS is
smaller than -0.5. Figure 5 also shows that only four of the input variables (ESCS, IBTEACH,
TDTEACH, and TMINS) were used as the predictors. This is because the CART algorithm
keeps the predictors that can significantly contribute to the prediction, depending on the selected
model parameters (e.g., complexity, min split, and max depth).

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 29

3.2. Random forest (RF)

To implement the RF algorithm for the same classification task (i.e., predicting science_perf)
in the rattle, the “Forest” option must be selected under the “Model” tab. Then, the model
parameters need to be determined. “Trees” refer to the numbers of decision (or regression) trees
to be built (default = 500); “Variables” is the number of predictors randomly sampled as
candidates at each split (default = square root of the number of predictors for classification and
the number of predictors / 3 for regression); and “Sample Size” is the sizes of sample to draw
(default = 0.632 * the number of observations in the training dataset). Once the model
parameters are determined, the next step is to click on the “Execute” button to perform the
analysis. Like the CART algorithm, the RF algorithm also uses all of the input variables to
predict the target variable (science_perf). Once the estimation is complete, the results can be
printed on the screen by clicking the “Rules” and “Importance” buttons. Figure 6 shows the
steps to be followed to implement the RF algorithm and to view the output in the rattle.

Figure 6. Building a predictive model with the RF algorithm

The output returned from the RF algorithm shows the number of observations used for building
the model, the formula used to build the predictive model, and the selected model parameters.
The output also shows additional information, such as the out-of-bag (OOB) estimate of the
error rate and the confusion matrix. OBB is a method of measuring the prediction error of a
predictive model estimated with the RF algorithm. In this example, the OOB estimate of error
rate is 16.67 %, suggesting that 83.33 % of the predictions made for science_perf is correct
within the training dataset. Additionally, the visual output returned from the “Importance” and
“Errors” indicates the importance of the predictors in the prediction process (Figure 7) and error

1

4

2

3

Bulut & Yavuz

 30

rates across all of the decision trees built for the model (Figure 8). Based on the variable
importance measures shown in Figure 7, ESCS, IBTEACH, TMINS, and computer appear to
be the strongest predictors in the estimated model since they have higher importance values,
compared to the other variables. Although there is no particular cut-off value to determine
which predictors are more important, the predictive power of these variables appears to be
relatively higher than the other variables (see the “High” category of the top-left corner of
Figure 7). The findings also suggest that the model error rates did not change after 100 trees.
That is, the same model could be estimated with only 100 trees to obtain the final model more
efficiently.

Figure 7. A plot of variable importance for the RF algorithm

Figure 8. A plot of error rates for the RF algorithm

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 31

3.3. Support vector machine (SVM)

To implement the SVM algorithm for predicting science_perf, the “SVM” option must be
selected under the “Model” tab. Unlike the CART and RF algorithms, there are not many model
parameters to choose for the SVM algorithm. Instead, the most important decision that users
must make is the selection of a kernel function. The default kernel function in the rattle is
“rbfdot”, which refers to the Gaussian radial basis function. The “rbfdot” function is a general-
purpose kernel suitable for cases where there is no prior knowledge about the data. There are
also other popular kernel functions available for the SVM algorithm, such as “polydot” for the
polynomial kernel function and “vanilladot” for the linear kernel function. Non-linear kernels
often provide a better model-data fit than linear kernels at the expense of high computational
complexity and estimation time. Once a kernel is selected, the next step is to click on the
“Execute” button to perform the analysis. Like the previous algorithms, the SVM algorithm
also utilizes all of the selected input variables to predict the target variable (science_perf). Once
the estimation is complete, the results are printed on the screen. Figure 9 shows the steps to be
followed to implement the SVM algorithm in the rattle.

Figure 9. Building the support vector machine classification model

The output returned from the SVM algorithm shows the default settings used in the estimation
process (the cost parameter of C as 1 and the hyperparameter of sigma as 0.0408). In addition,
the output shows the number of support vectors created in the model (1651). An important
section of the output is “Training error”. The results show that the overall prediction error in
the training dataset was around 20.53%. That is, roughly 80% of the predictions made for
science_perf in the training dataset are accurate. It should be noted that although the output
resulted from the SVM algorithm is quite concise in the rattle compared to those from the
CART and RF algorithms, it is often much more difficult to interpret the content of this output
given the complex hyperparameters used in the SVM algorithm.

1

2

3

Bulut & Yavuz

 32

3.4. Evaluating models

Unlike traditional statistical methods, the data mining methods require researchers to build
several models, evaluate outcomes from each model, adjust the models accordingly, and
continue to tune the models until an acceptable level of accuracy is reached. As demonstrated
in this tutorial, several algorithms can also be used for the same classification or regression task.
Therefore, researchers must not only tune their models but also select the most suitable
algorithm based on the model evaluation measures. In the rattle, model evaluation can be
performed using the options under the “Evaluate” tab. For model evaluation, either validation
or test datasets should be used because these datasets consist of the observations that the
algorithms have not seen when building the prediction model. Figure 10 shows the steps to view
the error matrix from the SVM algorithm, although the same steps can be followed to see the
same output for other algorithms as well. This tutorial focused on the prediction of a binary
outcome variable (science_perf), and thus the error matrix returns a two-by-two matrix of
predicted and actual values and proportions of the two categories (i.e., “High” and “Low”
proficiency in scientific literacy). The overall prediction error for the SVM-based model is 21%
and the average classes (i.e., category) error is 49.4%. The error matrix shows that the prediction
accuracy of the “Low” category was precise, whereas the prediction accuracy of the “High”
category was quite poor.

Figure 10. The view of the “Evaluate” tab in rattle

The “Evaluate” tab offers many useful measures for model evaluation. For example, the
sensitivity, specificity, precision, and recall plots can be created using the “Sensitivity” and
“Precision” options under the “Evaluate” tab. Users must select one of these evaluation options
and click “Execute” to draw the plots. Table 2 shows the calculation of the evaluation measures
available in the rattle.

1

2

3

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 33

Table 2. Evaluation measures for the classification of “Low” and “High” groups in science_perf

Predicted Classification
Actual Classification

Low proficiency in science High proficiency in science

Low proficiency in science True Positive (TP) False Positive (FP)

High proficiency in science False Negative (FN) True Negative (TN)

Note: Sensitivity = TP/TP+FN; Specificity = TN/TN+FP; Precision = TP/(TP+FP); Recall = TP/(TP+FN)

To compare the results from different data mining algorithms, the models must be estimated
with each algorithm first so that the evaluation measures under the “Evaluation” tab can draw
the plots by including the results from all algorithms. Figures 11 and 12 show the plots of
sensitivity/specificity and precision/recall across the three data mining algorithms (i.e., CART,
RF, and SVM). Figure 11 shows that there is a significant trade-off between sensitivity and
specificity for all the algorithms. As the specificity level (i.e., detecting “High”) increases, the
sensitivity level (i.e., detecting “Low”) decreases. Among the three algorithms, the performance
of the RF algorithm appears to be the best in terms of balancing sensitivity and specificity.
Figure 12 shows the precision and recall levels across the three algorithms. The results suggest
that all the algorithms indicate high precision and recall values in predicting the “High” and
“Low” values of science_perf. Given the similar precision and recall values across the three
algorithms, sensitivity and specificity can be more decisive evaluation measures for the
example presented in this study.

Figure 11. The sensitivity and specificity plots of the three data mining algorithms (Note: rpart refers
to CART, rf refers to RF, and ksvm refers to SVM).

Bulut & Yavuz

 34

Figure 12. The precision and recall plots of the three data mining algorithms (Note: rpart refers to
CART, rf refers to RF, and ksvm refers to SVM).

4. DISCUSSION and CONCLUSION

The purpose of this study was to demonstrate the implementation of the three data mining
algorithms (i.e., CART, RF, and SVM) using the rattle package (Williams, 2011) in R (R Core
Team, 2019). The selected algorithms are widely used methods in EDM research for both
classification and regression tasks. The example used in this study demonstrated how to build
classification models using the CART, RF, and SVM algorithms for predicting students’
proficiency levels (low or high) in the scientific literacy test of PISA 2015. In addition, the
model evaluation stages were also described.

Based on the results of this study, the RF algorithm appeared to be the best performing
algorithm for predicting students’ proficiency levels in the scientific literacy test of PISA 2015.
This is not a surprising finding because the RF algorithm often provides accurate prediction
results in datasets that contain both numerical and categorical predictors (i.e., features). These
findings tie well with a previous study wherein Fernández-Delgado et al. (2014) compared the
performances of 179 classification algorithms using 121 real datasets. The researchers found
that the RF algorithm was the best algorithm for most real world classification problems,
followed by the SVM algorithm. A similar pattern of results was obtained in the current study.

The results from the three algorithms were somewhat different in this study mainly because
each algorithm handles different types of variables and their relationships in the pisa_turkey
dataset. For example, the CART algorithm yielded sensitivity and specificity values similar to
those from the other two algorithms, but it used fewer predictors in the estimation. Depending
on what complexity parameter has been selected, the decision tree model can either retain or
eliminate the subtrees created based on relatively less important predictors in the dataset.
Furthermore, when some predictors are highly correlated, the CART algorithm may choose
only one of those predictors and ignore the others. Therefore, researchers are recommended to
choose an algorithm and tune its parameters after careful consideration and review of their data.

As a free software program, the rattle uses many powerful packages available within the R
computing environment for conducting data mining analysis. Unlike the R software program
that requires users to type and execute their codes, the rattle provides a user-friendly GUI that
enables users to import their data files easily, select an algorithm from a variety of options, and
evaluate the results using model evaluation measures. The output returned from the rattle

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 20-36

 35

involves both statistical and visual outcomes to facilitate users’ evaluation and fine-tuning of
their models. Although it is not demonstrated in this study, the rattle is also capable of providing
users with the opportunity to explore their datasets descriptively and to transform variables
(e.g., rescaling, recoding, and normalizing) before performing further analysis. In addition, the
rattle is capable of performing unsupervised data mining, including clustering with k-means
and hierarchical clustering methods and association rule analysis. For advanced R users who
might prefer to keep the R codes for their analysis, the rattle provides a script that presents the
underlying R codes for all analyses conducted in the program under the “Log” tab. For a
comprehensive review of the rattle, readers are recommended to check out Data Mining with
Rattle and R by Williams (2011) who is also the author of the rattle.

Acknowledgements
This study used some materials from the workshop of “Exploring, Visualizing, and Modeling
Big Data with R” held at the 2019 annual meeting of the National Council on Measurement in
Education, Toronto, ON, Canada.

ORCID

Okan Bulut https://orcid.org/0000-0001-5853-1267
Hatice Cigdem Yavuz https://orcid.org/0000-0003-2585-3686

5. REFERENCES
Agarwal, S., Pandey, G. N., & Tiwari, M. D. (2012). Data mining in education: Data

classification and decision tree approach. International Journal of e-Education, e-
Business, e-Management and e-Learning, 2(2), 140.

Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational Data Mining and
Learning Analytics for 21st century higher education: A Review and Synthesis.
Telematics and Informatics, 37, 13-49.

Aulck, L., Velagapudi, N., Blumenstock, J., & West, J. (2016). Predicting student dropout in
higher education. arXiv preprint arXiv:1606.06364.

Baker, R. S., Martin, T., & Rossi, L. M. (2017). Educational data mining and learning analytics.
In A. A. Rupp & J. P. Leighton (Eds.), The handbook of cognition and assessment:
Frameworks, methodologies, and applications (pp. 379-396). Oxford, UK: John Wiley
& Sons, Inc.

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning
analytics: Applications to constructionist research. Technology, Knowledge and
Learning, 19(1-2), 205-220.

Breiman, L. (2001). Random forest. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and

regression trees. Belmont, CA: Wadsworth.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Ducange, P., Pecori, R., Sarti, L., & Vecchio, M. (2016, October). Educational big data mining:

how to enhance virtual learning environments. In International Joint Conference
SOCO’16-CISIS’16-ICEUTE’16 (pp. 681-690). Springer, Cham.

Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining.
IEEE Access, 5, 15991-16005.

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds
of classifiers to solve real world classification problems? The Journal of Machine
Learning Research, 15(1), 3133-3181.

Guruler, H., Istanbullu, A., & Karahasan, M. (2010). A new student performance analysing
system using knowledge discovery in higher educational databases. Computers &
Education, 55(1), 247-254.

Bulut & Yavuz

 36

Hussain, M., Zhu, W., Zhang, W., Abidi, S. M. R., & Ali, S. (2019). Using machine learning
to predict student difficulties from learning session data. Artificial Intelligence
Review, 52(1), 381-407.

Ivancevic, V., Celikovic, M., & Lukovic, I. (2011). Analyzing student spatial deployment in a
computer laboratory. In Proceedings of the 4th international conference on educational
data mining (pp. 265–270).

Koon, S., & Petscher, Y. (2015). Comparing methodologies for developing an early warning
system: Classification and regression tree model versus logistic regression. REL 2015-
077. Regional Educational Laboratory Southeast.

Koon, S., & Petscher, Y. (2016). Can scores on an interim high school reading assessment
accurately predict low performance on college readiness exams? REL 2016-124.
Regional Educational Laboratory Southeast.

Lawrence, M., & Lang, D. T. (2010). RGtk2: A ghraphical user interface toolkit for R. Journal
of Statistical Software, 37(8), 1-52.

Mccuaig, J., & Baldwin, J. (2012). Identifying successful learners from interaction behaviour.
In Proceedings of the 5th international conference on educational data mining (pp. 160–
163).

Mostafa, T., Echazarra, A., & Guillou, H. (2018). The science of teaching science: An
exploration of science teaching practices in PISA 2015. OECD Education Working
Papers, No. 188. Paris, France: OECD Publishing.

OECD (2017). PISA 2015 Assessment and Analytical Framework: Science, Reading,
Mathematic, Financial Literacy and Collaborative Problem Solving. PISA, OECD
Publishing, Paris, https://doi.org/10.1787/9789264281820-en

OECD (2018). PISA 2015 results in focus. Retrieved from https://www.oecd.org/pisa/pisa-
2015-results-in-focus.pdf

Pardos, Z. A., Wang, Q. Y., & Trivedi, S. (2012). The real world significance of performance
prediction. In Proceedings of the 5th international conference on educational data mining
(pp. 192–195).

Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of
recent works. Expert System with Applications, 41(4), 1432-1462. http://dx.doi.org/10.1
016/j.eswa.2013.08.042

R Core Team (2019). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.

Sinharay, S. (2016). An NCME instructional module on data mining methods for classification
and regression. Educational Measurement: Issues and Practice, 35(3), 38–54.
http://dx.doi.org/10.1111/emip.12088

Slater, S., Joksimović, S., Kovanovic, V., Baker, R. S., & Gasevic, D. (2017). Tools for
Educational Data Mining: A Review. Journal of Educational and Behavioral Statistics,
42(1), 85–106. https://doi.org/10.3102/1076998616666808

Spikol, D., Ruffaldi, E., Dabisias, G., & Cukurova, M. (2018). Supervised machine learning in
multimodal learning analytics for estimating success in project‐based learning. Journal
of Computer Assisted Learning, 34(4), 366-377.

Strobl, C. (2013). Data mining. In T. Little (Ed.), The Oxford handbook of quantitative methods
in psychology (Vol. 2, pp. 678–700). New York, NY: Oxford University Press.

Venables, W. N., Smith, D. N., & the R Core Team (2019). An introduction to R. Retrieved
from https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Williams, G. J. (2011). Data mining with Rattle and R: The art of excavating data for knowledge
discovery. New York: Springer-Verlag.

International Journal of Assessment Tools in Education

 2019, Vol. 6, No. 5-Special Issue, 37–43

https://dx.doi.org/10.21449/ijate.591669

 Published at http://www.ijate.net http://dergipark.gov.tr Research Article

Determination of Sample Size and Observation Units

Tülin Acar 1,*

1 Parantez Education Research Consultancy Publishing, Ankara, Turkey

ARTICLE HISTORY

Received: 13 July 2019

Revised: 06 October 2019

Accepted: 05 November 2019

KEYWORDS

Simple Random Sampling,

Systematic Sampling,

Stratified Sampling,

Probability Sampling,

Abstract: The purpose of this study was to write programs to define
sampling sizes and observation units by probability sampling methods and
to provide an idea for software developers. The algorithms of the programs
were written in Python 3. The programs may be run by double-clicking on
the Windows operating system or by the command prompt of the DOS
operating system. Each exe file has a memory space of 5 megabits on
average. In this respect, the application files are very useful in terms of
sharing by email and mobility by USB memory sticks.

1. INTRODUCTION

The purpose of science is to make explanations about "an object of research or its properties".
The "method" is one of the principal issues in both creating scientific explanations that do not
contract reason and logic and verifying or falsifying the existing explanations. Method is a kind
of program for the things to do (Thomas, 2009). In this respect, acquisition of object(s), the
number of objects observed, the representativeness of the objects selected, and whether objects
are selected impartially are as critical as a scientific researcher's purpose, theory and
hypotheses.

Since science has a language and a method, not all analyses, studies or observations are
considered scientific, because the quality of being scientific implies a set of activities that do
not rest on mere judgments but on proofs and methods. Both accuracy and ethics of the
conclusions made in a study point to the soundness of the method of research. Therefore, a
sound and strong method of scientific research rests on the knowledge of the researchers and
their sensitivity of following the procedure and principles.

Testing/observing how many units/objects does it take to conduct a valid and sound research?
Contrary to popular belief, the answer to this question is not related to a study being qualitative
or quantitative. At this point, the object and subject matter of science or a scientific study takes
priority. Science is what can be known by information. In other words, science is an effort to

CONTACT: Tülin ACAR totbicer@gmail.com Parantez Education Research Consultancy Publishing,
Ankara, Turkey

ISSN-e: 2148-7456 /© IJATE 2019

Acar

 38

explain/study a part of reality. Therefore, this effort to explain is possible by induction or
deduction. Based on the principles of reasoning (deduction or induction) that must be employed
in the effort to explain a part of reality, categorization of scientific studies as qualitative or
quantitative research and association of certain sampling methods with the categorized types of
research contradicts the nature of science. Just as the object of information in physics is not the
same as that of anthropology, the nature of an object of information of a study cannot be
associated with a researcher being qualitative or quantitative. The quality of being qualitative
or quantitative is about the measurement and its result. Therefore, the answers to the question
of "testing/observing how many units/objects does it take to conduct a valid and sound
research?" are not about qualitative or quantitative research type.

One of the most essential elements to be distinguished in a scientific study that attempts to
explain reality is to decide whether the sampling or a sample of the properties of the object of
study should be analyzed. Sampling is a selection process. On the other hand, a sample is a
specimen, a part of the whole. The question of "testing/observing how many units/objects does
it take to conduct a valid and sound research?" will be inadequate when this difference is
ignored. An initial principle will be necessary for a selection from defined
units/objects/elements. The said initial principle may have several different sampling methods.
In this case, sampling methods should inevitably have strengths and weaknesses compared to
each other.

The method of sampling should not be considered merely a process of defining a number of
units/objects/elements. The method of sampling is one of the premises of making a logical
explanation about the subject matter of the object of research. For instance, it is not reasonable
to take soil samples from every square meter of land using simple random sampling or
purposeful sampling for the soil analysis of a field of 5 dunams since it is not compulsory to
ensure that the sample is representative of the whole in such a study. On the other hand, for a
research on reading comprehension of students in Turkey, it is essential for the students to be
representative of the whole. Therefore, it is necessary to grasp the distinctive properties of all
sampling methods. In the literature, sampling methods are principally classified in two
categories, namely, probability sampling and non-probability sampling (Rubin & Babbie,
2010). Those sampling methods are summarized in Table 1.

In the probability sampling method, units/elements/items are selected from a defined universe
based on a statistical probability. However, in the non-probability sampling method, the number
of units/elements/items is not determined and units/elements/items are not selected based on a
probability and sampling size. Defining a sampling size from the universe using non-probability
sampling is accompanied by the selection of the observation units to be included in sampling.
This selection process may be tedious for a researcher for studies with a broad universe in
particular. Ways to save time and effort bring computer technologies to the mind. Computer
technologies makes positive contributions to the research process particularly for the
probability sampling methods. Software that is used to define the sample size and observation
units is written by different programming languages including PHP, Java, C, C++, R, and
Python.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 37-43

 39

Table 1. Sampling methods and descriptive properties

 Descriptive properties

A Probability
Sampling

A.1. Simple Random
Sampling

The probability of all units/elements/items being selected
is equal and independent of one another.

A.2. Systematic
Sampling

The initial unit/element/item is selected randomly.
Nevertheless, selection of other units/elements/items
depends on the selection coefficient.

A.3. Stratified Sampling The universe is made up of sub-strata (i.e. universes) that
are heterogeneous among each other but each
homogeneous in itself. Units/elements/items are selected
randomly, taking into consideration the strata's rate of
representation of the universe.

B. Non-
probability
Sampling

B.1. Convenience
Sampling

Units/elements/items that are easier to reach based with the
prevailing conditions are studied.

B.2.Purposive Sampling Units/elements/items are studied based on defined and
restricted properties.

B.3. Quota Sampling The universe is made up of sub-strata (i.e. universes) that
are heterogeneous among each other but each
homogeneous in itself. Units/elements/items are selected
based on a quota.

B.4. Panel Sampling Units/elements/items that make the whole are
homogeneous in their properties, regardless of the size of
the universe. Therefore, the sample is taken from the whole.

1.1. Aim of the Study

The purpose of this study was to write programs to define sampling sizes and observation units
by probability sampling methods. Also it was to provide an idea for software developers.

2. METHOD

The algorithms of the programs were written in Python 3. Python is an object-oriented,
interpretive, modular, interactive, high-level programming language that is fast and easy to
learn (Sahoo& Sahoo, 2016). Codes of the programs written were shared as open source, and
user's guides were prepared for the application files. The py code and MIT licenses of the
programs can be accessed via Github.

2.1 Determination of the Sampling Size and Observation Units by Simple Random
Sampling

Sampling size for simple random sampling is calculated at two stages using the equation below
(Royse, Thyer&Padgett, 2010).

N

n
n

nsizeSample
0

0

1
)(and

2

2

0

1

c

PPZ
n

)](*[*

Where:

n0= Initial size

Acar

 40

N= Universe size

Z = Standard Z value for the level of reliability (e.g. ±1.96)

c = Acceptable amount of error (e.g. ±5)

P= Estimated rate of the sampling of interest in the universe (e.g. 50%)

The algorithm written in Python based on this calculation formula is available at
https://github.com/totbicer/Simple-Random-Sampling. The application Random_sampling.exe
is available at https://parantezanaliz.com/programs/Random_sampling.zip. Once the
Random_sampling.exe is run, data is input in four steps as seen in Figure 1.

Figure 1. Screenshot of the simple random sampling program

Step 1: A numerical value is input with the defined and restricted size of the universe being a
number. Assume that there are 500 units in the universe.

Step 2: A numerical value is input with the sampling error being an natural number between 1
and 100. Assume that the sampling error is 5.

Step 3: The confidence level is input. A numerical value of 95 or 99 is input. Assume that the
confidence level is 95%.

Step 4: A numerical value is input with the probability or observation frequency of an event or
fact of interest being a natural number. If no information is available as to the probability of
happening or being observed, the value should be 50. Thus, the probability of happening or
being for each of the observations is equal. For instance, 50 is input for a probability of 50%,
30 is input for a probability of 30%.

Figure 2. Result of the simple random sampling program

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 37-43

 41

When the operation is continued, a simple random sampling is made to show the computed
sampling size as shown in Figure 2. Based on the assumption that units in the universe are
represented by ordinal numbers, ordinal numbers of the units randomly selected are listed on
the screen.

2.2 Determination of Observation Units by Systematic Sampling

Based on the simple random sampling method or a sampling size determined hypothetically,
the unit selection process is performed by the following equation (Babbie, 2008).

k = N / n and Ssn= It is determined randomly between 1 and k value.

Where:

N= Universe size

n= Sampling size

k= Selection coefficient

Ssn= Starting sequence number

The algorithm written in Python based on this calculation formula is available at
https://github.com/totbicer/Systematic-Sampling. The application Systematic_sampling.exe is
available at https://parantezanaliz.com/programs/Systematic_sampling.zip. Once the
Systematic_sampling.exe is run, data is input in two steps as seen in Figure 3.

Step 1: A numerical value is input with the defined and restricted size of the universe being a
number. Assume that there are 500 units in the universe.

Step 2: A numerical value is input with the sampling size being a natural number. Assume that
sampling size is 50.

Figure 3. Screenshot of the systematic sampling program

As can be seen in Figure 3, the selection coefficient and the randomly selected initial number
are shown on the screen. Based on the assumption that units in the universe are represented by
ordinal numbers, ordinal numbers of the units selected by the systematic sampling method are
listed on the same screen.

2.3 Determination of the Sizes of the Strata with Stratified Sampling

In the stratified sampling method, if a sampling size is not available, the sampling size is
determined firstly by the simple random sampling method. Based on a known or determined
sampling size and the number of strata, observation units are selected by the equations below
(Kalton, 1983).

Wh = Nh / N and Fh = Wh*Ss

Acar

 42

Where:

h= Number of stratum

Nh= h. sampling size of stratum

N= Universe size, ∑𝑁

Wh = Representation rate of the stratum of the universe, ∑𝑊 = 1

Ss= Sampling size

Fh= h. sampling size for the stratum

The algorithm written in Python based on this calculation formula is available at
https://github.com/totbicer/Stratified-Sampling. The application Stratified_sampling.exe is
available at https://parantezanaliz.com/programs/Stratified_sampling.zip. Once the
Stratified_sampling.exe is run, data is input in four steps as seen in Figure 4.

Step 1: A numerical value is input with the defined and restricted size of the universe being a
number. Assume that there are 500 units in the universe.

Step 2: A numerical value is input with the sampling size being a natural number. Assume that
sampling size is 217.

Step 3: A numerical value is input with the number of strata being a natural number. For
instance, assume that there are 3 strata in the universe.

Step 4: A numerical value is input with the number of units/observations for each stratum being
a natural number. For instance, assume that there are 150, 50 and 300 observations for each
stratum.

Figure 4. Screenshot of the stratified sampling program.

The rate of representation of each stratum of the universe and the number of units to be sampled
for the strata are output on the screen. The process of selecting observation units of a specified
number for the strata may also be performed randomly or systematically.

3. CONCLUSION

Execution files in exe format written in Python 3 were prepared to determine the sampling size
and observation units for the probability sampling methods. Each program was shared as as
open source in trial version for a year. Updates were made during the trial period to ensure that
the language and the expressions were clear and comprehensible. No software error was
reported during the trial period.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 37-43

 43

The programs may be run by double-clicking on the Windows operating system or by the
command prompt of the DOS operating system. Each exe file has a memory space of 5 megabits
on average. In this respect, the application files are very useful in terms of sharing by email and
mobility by USB memory sticks.

ORCID

Tülin ACAR https://orcid.org/0000-0001-7976-5521

4. REFERENCES

Babbie, E. (2008). The basics of social research. USA: Thomson Coperaion

Kalton, G. (1983). Introduction to survey sampling. , USA: Sage Publications Ltd

Royse, D., Thyer, B. A. & Padgett, D. (2010). Program evaluation: An ıntroduction. USA:
Cengage Learning

Rubin, A. & Babbie, E.R. (2010). Essential research methods for social work. USA: Cengage
Learning

Sahoo, R. & Sahoo, G. (2016). Computer science with python. India: Newsaraswati House Pvt.
Ltd.

Thomas, G. (2009). How to do your research project: A guide for students in education and
applied social sciences. Londan: Sage Publications Ltd

International Journal of Assessment Tools in Education

 2019, Vol. 6, No. 5-Special Issue, 44–56

https://dx.doi.org/10.21449/ijate.621157

 Published at http://www.ijate.net http://dergipark.gov.tr Research Article

 44

Computer Adaptive Testing Simulations in R

Başak Erdem-Kara 1,*

1 Hacettepe University, Education Faculty, Measurement and Evaluation in Education Department, Turkey

ARTICLE HISTORY

Received: 17 September 2019

Accepted: 04 December 2019

KEYWORDS

Computer adaptive testing,

Simulation,

R programming language

Abstract: Computer adaptive testing is an important research field in
educational measurement, and simulation studies play a critically important
role in CAT development and evaluation. Both Monte Carlo and Post Hoc
simulations are frequently used in CAT studies in order to investigate the
effects of different factors on test efficiency and to compare different test
designs. Although there are several softwares for CAT simulations, R is
preferred since it includes many free packages and gives researchers
opportunity to write their own functions according to their own
requirements besides being free. The purpose of this study is to make an
introduction and demonstration of how to use catR package in CAT
simulations. Different examples were provided in the context of this study
and R codes were presented with explanations. Then, the output files were
briefly explained. It is thought that this paper is helpful for the researchers
who are interested in CAT simulations.

1. INTRODUCTION

Over recent decades, advances in computer technology have made computer based tests (CBT)
a popular alternative to linear tests. Especially computer adaptive test (CAT) which is a kind of
CBT, have become popular since they provide more efficient and more precise measurement
of test takers’ performance than those that linear tests provide (Wainer & Mislevy, 2000; Weiss
& Kingsbury, 1984; Yan, Lewis & von Davier, 2014). In computer adaptive tests, each new
item that examinee faces with is selected from the item pool according to examinees’
performance on all previous items. Since examinees only face with items appropriate for their
ability levels, they do not have to spend time for easier or more difficult questions for
themselves. As a result, the test results in a shorter length (Hendrickson, 2007; Wainer, 2000).

Adaptive testing is a well-established procedure and an active research field in educational and
psychological assessment (Magis & Raiche, 2011; Magis, Yan & von Davier, 2017). However,
while developing an adaptive test, there are lots of factors to be determined such as the
properties of item bank, test length, test design, content balancing, item exposure etc.
Researchers try to find an answer for the question ‘In what conditions, does the test perform
best?’ or ‘How does test performance change under different conditions?’. Collecting empirical
data is not always possible or costly while manipulating different conditions. Therefore,

CONTACT: Başak ERDEM-KARA basakerdem@hacettepe.edu.tr Hacettepe University, Education
Faculty, Measurement and Evaluation in Education Department, Turkey

ISSN-e: 2148-7456 /© IJATE 2019

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 44-56

 45

simulation studies can be a useful way to investigate those questions (Bulut & Sünbül, 2017;
Lee, Choi & Cohen, 2018; Magis, Yan & von Davier, 2017). Similarly, Han & Kosinski (2014)
stated that simulation techniques have critically important roles for CAT development and
evaluation.

There are several softwares for CAT simulations such as SimulCAT (Han, 2012), CATSim
(Weiss & Guyer, 2010) or Firestar (Choi, 2009). In the context of this study, the demonstration
of how to use R programming language (R Core Team, 2017) for CAT simulations through the
usage of ‘catR’ package on RStudio 1.1.463 was aimed. As Magis, Yan & von Davier (2017)
stated, R gives researchers the chance of adding their own functions according to their
requirements and additional free packages can be installed easily. This is the reason why it was
preferred in this study. In the context of the present study, firstly computer adaptive testing was
explained with basic concepts and terms and the demonstration of CAT simulations with catR
package was given afterwards.

2. COMPUTER ADAPTIVE TESTING

Embretson and Reise (2000) stated that the main purpose of CAT is to provide maximally
efficient and informative items for each test taker. For this purpose, different items are
administered to different examinees according to their proficiency levels. The ability level of
test takers are estimated and updated after the administration of each item and the next item is
chosen based on that updated level then. That process continues until stopping criterion is met.
The schematic representation of testing process is given in Figure 1 below.

Figure 1. Schematic representation of CAT process

Weiss and Kingsburry (1984) stated that there are six main components of computer adaptive
test procedure. Those are (a) Item response model, (b) Item pool, (c) Starting rule, (d) Item
selection rule, (e) Scoring rule and a (f) Termination criterion.

Item response model: In adaptive testing, different sets of items are administered to the
examinees since each examinee takes items according to his/her proficiency level. Thus, their
abilities are estimated independently of the particular selection of test items. IRT models are

Start with an item/items

Estimate the ability level

Administer next item chosen
based on the estimated ability

level

Stopping rule
satisfied?

S
to

p
th

e
te

st
 a

nd
 e

st
im

at
e

th
e

fi
na

l a
bi

li
ty

Update the ability level
(re-estimate)

Yes

Erdem-Kara

 46

important since they give the opportunity to make the ability estimation independently of item
selection. Thus, examinees taking different item sets can be compared (Lord, 1984; Magis,
Duanli & von Davier, 2017).

Item pool: An item pool of large number of items including a wide range of item parameters is
necessary. Since every test taker takes the item suitable for her/his ability, there should be items
providing efficient measurement through all ability levels.

Starting rule: In that step, first items to start the test are defined. If the initial theta of examinee
is known, test starts with the item/s suitable for that examinee’s ability level. However, when
that initial value is not known, researchers should assign an initial theta value in order to choose
the first item/s. The most common way of that assignment is to assign the average ability level
of population as initial theta (Thompson, 2007).

Item selection rule: After initial item/s are administered and the ability value is estimated, an
item selection rule is required in order to choose the next item. There are lots of item selection
methods but the most common ones are Maximum Fisher Information (MFI) and Bayesian
methods (Wang, 2017; Weiss &Kingsbury, 1984).

Scoring rule: Ability estimation method should be specified in this step. Although different
methods are used for ability estimation purposes, the most preferred ones are Maximum
Likelihood Estimation (MLE) and Bayesian methods (EAP and MAP).

Termination criteria: As the last step, a criterion should be specified on where to stop the testing
process. The possible criteria are test length or a value of standard error. If the length is
specified, the testing process stops when the specified length is met. On the other hand, test
continue until the desired measurement precision level is satisfied with ‘standard error’ criteria.
Therefore, test takers may take different number of items on that criterion since different people
can reach the criterion with different number of items (Thissen and Mislevy, 2000; Wang,
2017).

After that brief introduction on computer adaptive tests and its main components, demonstration
of how to use R in CAT simulations was made with example R codes.

3. USING R IN CAT SIMULATIONS

In CAT simulations catR 3.16 version was used for demonstration purposes. The main functions
for CAT simulations in catR are randomCAT() and simulateRespondents() functions. While
simulateRespondents() function allows the multiple generation of CAT response patterns,
randomCAT() results in generation of only one single response pattern. Since we are interested
in the multiple generations at the same time in the context of this study, simulateRespondents()
functions are explained and exemplified below.

Input arguments in simulateRespondents() function are summarized by Magis, Yan and von
Davier (2017) and given in Figure 2. Detailed information is provided for the related arguments
inside the function.

In thetas argument, true ability levels of all examinees are provided in a vector form.

itemBank argument should be a matrix including the item parameters and include as many rows
as item numbers. The column number of matrix differs according to the used IRT model.

model argument is NULL if the IRT model is dichotomous.

responsesMatrix includes item responses. If it is not specified, that matrix is randomly
generated by using given item parameters. If the researcher is interested in Post-Hoc simulation,
responses of each examinee to all questions should be provided in a matrix.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 44-56

 47

Figure 2. Input arguments in simulateRespondents() function (Magis, Yan &von Davier, 2017)

Start function allows you to define the starting rule on the CAT process. In the start list,

fixItems: either researcher selects the items to be administered as the first items with that
command or items are selected by another function and, in this case, that command is
useless.

nrItems helps researchers to define number of starting items to be chosen randomly. Default
is 1.

startSelect helps researchers to choose the item selection method.

randomesque is about item exposure issue. The number of specified items are picked up
optimally before one single item is selected randomly.

theta a vector of the initial ability levels for selecting the first items

In the test list; details about ability estimators, the item selection rule and the item exposure
issue are specified. Most commonly used arguments in the test list are given and explained
below:

method: the ability estimation method is specified with method argument. There are four
possible ability estimators; "BM", "ML", "EAP", "ROB". If the selected method is BM or
EAP, priorDist and PriorPAr arguments are necessary.

itemSelect: Item selection rule during the process is chosen with itemSelect argument.
Possible choices are "MFI", "bOpt", "thOpt", "MLWI", "MPWI", "MEPV", "MEI", "KL",
"KLP", "progressive", "proportional" and "random".

randomesque: As in the start list, this argument is related to the item exposure issue.
Specified number of items are chosen with the item selection rule and next item to be
administered is pickep up among those randomly. Default value is 1.

The stop list consists of termination rule components. Most commonly used arguments are;

Erdem-Kara

 48

rule: This argument is necessary to specify how to stop the test. Possible choices are
"length", "precision", "classification" and "minInfo". If we want to stop the test after the
specified item number, "length" argument; to stop the test according to pre-specified
precision level, "precision" argument is used.

thr: thr specifies the threshold related to the specified stopping rule. When the rule is
length, thr indicates the maximal number of items to be used in the test.

rmax argument indicates the maximum exposure rate of an item. For instance, if it is set to 0.8,
it means that an item in the pool can be administered to maximum 800 examinee out of 1000.

Output options will be explained by the examples.

3.1. Example 1

In the first example, a Monte Carlo simulation with 2000 examinees on an item pool of 300
items was presented step by step.

Since there was no item pool or theta values, those two were generated firstly.

Item Pool and Theta Generation

In order to generate item parameters genDichoMatrix() function can be used. The number of
items, IRT model and parameter distributions are specified in that function. Although
dichotomous IRT models were used for illustration in this study, catR package included
polytomous models as well for those interested.

Dichotomous IRT model options: "1PL", "2PL", "3PL" or "4PL"

Distribution options: Normal distribution with c("norm",mean, sd)
 Log-normal distribution with c("lnorm", mean, sd)
 Uniform distribution with c("unif", min, max)
 Beta distribution with c("beta", alpha, beta)

- aPrior may have normal (default), log-normal or uniform
- bPrior may have normal (default), or uniform
- cPrior and dPrior may have uniform or Beta distributions.

An item pool of 300 items was generated according to three-parameter logistic model. R codes
are presented in Table 1.

Table 1. R codes used in item parameters and theta generation

#Firstly install package catR
install.packages("catR")

#Activate installed package
library("catR")

#The function genDichoMatrix creates a matrix of item parameters for dichotomous IRT models.
#Item pool is generated with 3PL. So a,b,c parameters should be specified.
itPar<-genDichoMatrix(items=300, model = "3PL", aPrior = c("unif", 0.5, 2),
 bPrior = c("norm", 0, 1), cPrior = c("beta", 4, 16),
 seed = 1)

#theta values were generated by using the standard normal distribution and stored in theta o
bject.
theta<-rnorm(2000,0,1)

Standard normal distribution for difficulty parameters, uniform distribution for discrimination
parameters with min: 0.5 and max: 2.0 values and beta distribution for guessing parameters

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 44-56

 49

β(4,16) was used. seed function was used to get reproducible results. If random numbers are
generated without seed function, different results are obtained in each attempt. If researchers
want to get the same results in each trial, they should use the seed function.
As a result of running those codes, item parameters of 300 items generated according to 3 PL
with specified parameters were obtained and those parameters were stored in ‘itPar’ object.
Besides, theta values of 2000 people generated with standard normal distribution were stored
in ‘theta’ object. Parameters of the first 6 items in the pool were obtained with head() function
and given in Figure 3.

Figure 3. Generated item parameters of first six items

We have generated theta values and item parameters before and stored the data in ‘theta’ and
‘itPar’ objects respectively. Now, by using them, a CAT simulation was started with the codes
below (Table 2). That simulation is about 45 item CAT application on 2000 examinees on an
item pool of 300 items.

Table 2. R codes for CAT simulation

start <- list(nrItems=1, theta = 0, startSelect="MFI", randomesque = 10)
test <- list(method = "EAP", itemSelect = "MFI", priorDist = "norm",
 priorPar = c(0, 1), randomesque = 10)
stop <- list(rule ="length", thr = 45)
final <- list(method = "EAP", priorDist = "norm", priorPar = c(0, 1))

catResults1<- simulateRespondents(thetas = theta, itemBank = itPar,
 rmax = 0.2, start = start, test = test, stop = stop,
 final = final, save.output = TRUE,
 output = c("","catR","txt"))

In this simulation; start, test, stop and final rules were specified first. Examinees started with
one randomly chosen item among the 10 most informative items at the starting ability level zero
since Maximum Fisher Information was used. In the test list, EAP and MFI were selected as
ability estimation and item selection methods respectively. Again, 10 most optimal items were
chosen and one of them was randomly chosen to be administered. As a stopping rule, length
was specified and it was defined that test should be stopped when 45 items were reached. Lastly,
the final ability was estimated with the EAP method again. Inside simulateRespondents()
function, previously generated ‘theta’ and ‘itPar’ objects were used for theta and itemBank
arguments. The maximum exposure rate was restricted to 0.2 which means that an item could
be administered to 400 out of 2000 examinees. save.output argument was chosen TRUE since
I wanted to save the output file and details were specified in output argument. output is a vector
of three components and the first one is to define either the file path or "" (default). Second one
is either the initial part of the output file name or "catR" and the third one is the file type which
will be saved (either "txt" or "csv" (default)). Saving process results in three different files:
“main”, “responses”, and “tables”. “tables” and “responses” files include more detailed
knowledge than “main” file. “responses” file indicates administered items, response pattern and
estimated thetas after each item for each of 2000 examinees. “tables” file shows the true theta,

Erdem-Kara

 50

estimated theta, final standard error and total number of administered items for each examinee.
Lastly, “main” file includes general information about the process which is given in Figure 4.
In case you don’t use the save option, that is the same output come up in ‘Console’ in RStudio
when simulation have been finished. Besides, simulation results were stored in ‘catResults1’
object.

Figure 4. Main output come up after the simulation process in Example 1

This output includes summary statistics on average test length, correlation, RMSE and bias
values and item exposure issues. The simulation process took 11.046 minutes on a computer
with IntelCore i7-6700HQ processor. The mean test length was 45 since the test was specified
as the fixed test length with 45 items. Correlation, bias and RMSE values were computed
through all test takers and computed as 0.957, 0.005 and 0.302 respectively. Those values can
be used in order to get information about test efficiency. Besides, different combinations for
test designs for instance the effect of changing the item selection method and/or stopping
criteria can be compared with the help of those values in terms of test efficiency. 135 out of
300 items in the pool had maximum exposure rate of 0.2 which meant that 135 items
administered on 400 examinees and the usage of these items was restricted after that point. On
the other hand, three items which had minimum exposure rate were not administered to anyone.
In the conditional results part, examinees are divided into 10 equal intervals according to their
ability levels; then mean theta, RMSE, bias, test length, standard error values were provided.
As displayed in Figure 4, examinees were divided into ten subgroups of 200 people and detailed
information on each interval was provided.

Another feature provided by catR package is graphical demonstration. Graphics related to the
simulation results ‘catResults1’ can be obtained with the following code given in Table 3;

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 44-56

 51

Table 3. R codes for simulation graphs

#There are different graph types. If type="all" is used, six different graphs come up. In c
ase only one specific graph is demanded, type should be changed.
plot(catResults1, type = "all")

The result of that command is given in Figure 5.

Figure 5. The graphical representation of simulation

Those are graphs which can be plotted for fixed test length. Some other graph types can also
show up if stopping rule is changed. Graph types in Figure 5 are briefly explained below.

- Accuracy: In that plot, the scatter plot of true versus estimated abilities is presented. As can
be seen in Figure 5, there is a strong positive relationship between true and estimated abilities.

- Conditional bias: True theta values’ deciles are taken as x axis values and the graph is plotted
as a function of bias and those deciles. As can be seen in the graph, bias value decreases with
the increase of theta.

- Conditional RMSE: As in conditional bias graph, true theta deciles are in the x axis and the
graph is plotted by using RMSE and the deciles. While RMSE had the lowest value at the left
end of the true theta axis, it decreased with the increase of theta. After value of 0, it followed
a waved way towards the right end of true thetas.

- Exposure rates: This graph indicates that the first 200 items in the item bank had maximum
item exposure rate which was set as 0.20. After the first 200 items, the mentioned rate started
to fall and it was zero finally, which means that last items were not used in the process.

- Cumulative exposure rates: As indicated in Figure 5, most of the required items were chosen
through the first 200 items and the remaining ones were chosen from the last 100 items in the
bank.

- Exposure and a parameter: That graph provided information on how discrimination values of
the items in the bank affected the item exposure rate. As it can be seen, the items with low
discrimination index have generally the lowest item exposure rate. High discriminating items
were preferred more. It can be said that the higher item discrimination index, the higher item
exposure rate.

Erdem-Kara

 52

In this example, a brief explanation of how to use R codes for a Monte Carlo simulation in
computer adaptive testing was presented and related outputs were briefly mentioned. Response
pattern was generated during CAT simulation by using the given item parameters and theta
values. Next, another example the response pattern of which was not generated during the
process and given by the researcher, was presented.

3.2. Example 2

Another example is presented here in order to illustrate how to use catR with a specific existing
response pattern matrix that the researcher had. Besides, the termination rule was changed in
order to see the different aspect other than those in Example 1. Since we didn’t have a real
response pattern matrix, a matrix was generated as an example in the first step.

Response Pattern Generation

After the generation of item parameters, item responses can be generated with genPattern()
function as long as ability values are available. Theta values and item parameters are specified
inside that function. By using ‘theta’ and ‘itPar’ objects generated in Example 1, the response
patterns of 2000 people were generated and stored in data object. Related codes are presented
in Table 4.

Table 4. R codes used in response pattern generation

#Before data generation, a 'data' object was defined in order to save generated patterns in
to it. Data matrix should have as many row as the length of theta and as many columns as th
e number of items.
data<-matrix(NA, length(theta), nrow(itPar))
for (i in 1:length(theta)){
 data[i,]<-genPattern(th = theta[i], itPar)}

genPattern function generates only one pattern according to the given item parameters and the
specified theta in it. In order to generate 2000 examinees’ response patterns "for" loop was
used. A brief information on for loops and how they can be used are presented here.

for loops:

A loop is a way of automating a multi-step process that need to be repeated. It gives the chance
of automate parts of the code. There are several ways of this automatization. Since for loops
were used in the context of this study, an example of it was presented (Table 5).

Table 5. R codes for for loops

for (i in c(1:10)) print(i^2) #run

#output is like:

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
[1] 49
[1] 64
[1] 81
[1] 100

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 44-56

 53

In the example above, the square of the integers from 1 to 10 was calculated in one command.
There is no need to write separate ten codes for all of the integers.

When we go back to our own example, data generation process was replicated 2000 times (the
number of examinee) and the generated patterns were stored in data object. Now, data object
has a matrix of 2000 rows (the number of examinees) and 300 columns (the number of items).
Each row represents the response pattern of an examinee on 300 items.

There was no responseMatrix argument in Example 1 since it was generated during the process.
However, in Example 2, it was thought that researcher had the test takers’ responses to full item
bank and tested the performance of CAT on these responses. So responseMatrix should be
defined as indicating each row represents the response of an examinee. Missing responses are
not accepted. The generated response pattern matrix ‘data’ was defined as responsesMatrix.

In order to see a different aspect, stopping rule was updated and rather than that everything
was same such as ability estimation rule, item selection rule, item exposure issues etc. The
code for the simulation process is given below in Table 6. The results were given in the output
in Figure 6 below.

Table 6. R codes for the simulation

start <- list(nrItems=1, theta = 0, startSelect="MFI", randomesque = 10)
test <- list(method = "EAP", itemSelect = "MFI", priorDist = "norm",
 priorPar = c(0, 1), randomesque = 10)

#The test stops either when the standard error reaches 0.3 or when 45 item is administered.
It is terminated on when one of the criterion is met.
stop <- list(rule =c("precision", "length"), thr = c(0.3, 45))
final <- list(method = "EAP", priorDist = "norm", priorPar = c(0, 1))

Maximum exposure rate was restricted to 0.2
catResults2<-simulateRespondents(thetas = theta, itemBank = itPar,
 responsesMatrix=data, rmax = 0.2,
 start = start, test = test, stop = stop,
 final = final)

As displayed in Figure 6, the mean test length was 29.067 items. Since both precision and length
criteria were specified for the termination rule, the test was stopped when one of those criteria
was met. Not all of the test takers needed to take 45 items and this decreased the average test
length. The correlation between assigned thetas and the estimated thetas are 0.972 which
indicates a strong positive relationship. 63 items had the maximum exposure rate and 34 of the
items in the bank were never used. Plots of this simulation were obtained by using the plot()
function as in the previous example and were given in Figure 7.
Since “precision” was added as a termination rule, four different graph types that could not be
obtained for “length” rule were also obtained: “Stop rule satisfied”, “Test length”, “Conditional
test length” and “Conditional standard error”.

Erdem-Kara

 54

Figure 6. Main output come up after the simulation process in Example 2

Figure 7. The graphical representation of simulation results

- Stop rule satisfied: That graph gives information about the proportion of test takers that the
stopping rule is satisfied for. Since the length rule was included with the precision criteria,
that proportion was 1 through all thetas.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 44-56

 55

- Test length: It indicates that how many percent of examinees took how many items.
- Conditional test length: Theta deciles are in the x axis and the graph is plotted by using average

test length and the deciles. The maximum test length was obtained on the theta value interval
less than -1.5. On the other hand, minimum test length was around the point of theta=0.5

- Conditional standard error: It provides information on average conditional standard error. As
it can be seen in the graph, the average standard error was highest in the left end of theta
continuum and the lowest one was around 0.5 value.

3.3. Example 3

Lastly, an example R code for replication purposes was illustrated. Let’s think that we want to
make 10 replications on the first example of which codes are given in Table 2. Everything is
same with that code; however random generation of the item responses should be fixed with
genSeed argument since the purpose was replication. By the way, several different functions
can be used for replication purposes but the replication was made by using for loop in this
example.

As illustrated in Table 7; start, test, stop and final functions were same as the first example. The
difference appeared in the simulateRespondents function. The function was written in a for loop;
and then genSeed argument was added in order to get the same item responses for each
replication. genSeed should have the same length as thetas. Outputs were saved for each
replication separately with output function. For instance, the output files of the first replication
were saved as “cat-1.main”, “cat-1.tables” and “cat-1.responses”. Thus, results of each
replication can be examined with those files.

Table 7. R codes for replication purposes

start <- list(nrItems=1, theta = 0, startSelect="MFI", randomesque = 10)
test <- list(method = "EAP", itemSelect = "MFI", priorDist = "norm",
 priorPar = c(0, 1), randomesque = 10)
stop <- list(rule ="length", thr = 45)
final <- list(method = "EAP", priorDist = "norm", priorPar = c(0, 1))

r indicates the number of replication
Different results for each replication is saved in different files with output command.
for (r in 1:10) {
 catResults3<-simulateRespondents(thetas=theta, itemBank=itPar,
 start = start, test = test, stop=stop,
 final = final, genSeed=1:length(theta),
 rmax=0.20, save.output = T,
 output=c("cat",-r,"catR","dat"))}

4. DISCUSSION and CONCLUSION
With its growing popularity, computer adaptive testing has an important place on educational
measurement and psychometry. Since it provides a greater measurement precision with shorter
test length in comparison to the linear tests, it attracts the attention of researchers and
practitioners much. Besides, it is difficult to work with the real data by manipulating different
conditions to find the best conditions. So, simulation studies have an important place in both
CAT development and evaluation. In this study, some examples on how to use catR package in
CAT simulations have been demonstrated. Given examples included how to make a simulation
without having a response pattern, with an existing response pattern and how to make
replication studies. Mainly used functions and the way how they were used were explained and
the outputs were interpreted briefly. It is thought that this paper will help researchers interested
in CAT simulations.

ORCID
Başak ERDEM-KARA https://orcid.org/0000-0003-3066-2892

Erdem-Kara

 56

5. REFERENCES
Bulut, O. & Sünbül, Ö. (2017). R programlama dili ile madde tepki kuramında monte carlo

simülasyon çalışmaları [Monte carlo simulation studies in item response theory with the
R programming language]. Journal of Measurement and Evaluation in Education and
Psychology, 8(3), 266-287. DOI: 10.21031/epod.305821

Choi, S. W. (2009). Firestar: Computerized adaptive testing simulation program for polytomous
item response theory models. Applied Psychological Measurement, 33(8), 644-645.

Embretson, S. E. & Reise, S. P. (2000). Item response theory for psychologists. Mahwah N.J.:
L. Erlbaum Associates.

Han, K. T. (2012). SimulCAT: Windows software for simulating computerized adaptive test
administration. Applied Psychological Measurement, 36(1), 64-66.

Han, K. T. & Kosinski, M. (2014). Software tools for multistage testing simulations. In D. Yan,
A. A. von-Davier & C. Lewis (Eds.), Computerized multistage testing: Theory and
applications (p. 411–420). CRC Press: Taylor&Francis Group.

Hendrickson, A. (2007). An NCME instructional module on multistage testing. Educational
Measurement: Issues and Practice, Summer 2007, 44-52.

Lee, S., Choi, Y.J., & Cohen, A. (2018). Automating simulation research for item response
theory using R. International Journal of Assessment Tools in Education, 5(4), 682-700.
Retrieved from http://ijate.net/index.php/ijate/article/view/596

Lord, F. M. (1984). Standard errors of measurement at different ability levels. ETS Research
Reports, 1984(1), I-11. Retrieved from https://onlinelibrary.wiley.com/doi/epdf/10.1002
/j.2330-8516.1984.tb00048.x

Magis D. & Raiche G. (2011). catR: An R package for computerized adaptive testing. Applied
Psychological Measurement, 35, 576-577.

Magis, D., Yan, D. & von-Davier, A. (Eds.). (2017). Computerized adaptive and multistage
testing with R: Using packages catr and mstr. Switzerland: Springer.

R Core Team. (2014). R: A language and environment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved from http://www.R-project.org/

Thissen, D. & Mislevy, R. J. (2000). Testing algorithms. In H. Wainer (Ed.), Computerized
adaptive testing: A primer (2. ed.). Mahwah N.J.: Lawrence Erlbaum Associates.

Thompson, N. A. (2007). A practitioner’s guide for variable-length computerized classification
testing. Practical Assessment Research & Evaluation, 12(1). Retrieved from
http://pareonline.net/getvn.asp?v=12&n=1

Wainer, H. (2000). Introduction and history. In H. Wainer (Ed.), Computerized adaptive
testing: A primer (2.ed., p. 1–22). Mahwah N.J.: Lawrence Erlbaum Associates.

Wainer, H. & Mislevy, R. J. (2000). Item response theory, item calibration, and proficiency
estimation. In H. Wainer (Ed.), Computerized adaptive testing: A primer (2. ed.).
Mahwah N.J.: Lawrence Erlbaum Associates.

Wang, K. (2017). A fair comparison of the performance of computerized adaptive testing and
multistage adaptive testing (Doctoral Dissertation). Michigan State University.

Weiss, D. J. & Kingsbury, G. G. (1984). Application of computer adaptive testing to
educational problems. Journal of Educational Measurement, 21(4), 361–375.
https://doi.org/10.1111/j.1745-3984.1984.tb01040.x

Weiss, D. J. & Guyer, R. (2010). Manual for CATSim: Comprehensive simulation of
computerized adaptive testing. St. Paul MN: Assessment Systems Corporation.

Yan, D., von-Davier, A. A. & Lewis, C. (2014b). Overview of computerized multistage tests.
In D. Yan, A. A. von-Davier & C. Lewis (Eds.), Computerized multistage testing. CRC
Press: Taylor&Francis Group.

International Journal of Assessment Tools in Education

 2019, Vol. 6, No. 5-Special Issue, 57–69

https://dx.doi.org/10.21449/ijate.658747

Published at http://www.ijate.net http://dergipark.gov.tr Research Article

 57

Coping with Unbalanced Designs of Generalizability Theory: G String V

Gülşen Taşdelen Teker 1,*

1Hacettepe University, Faculty of Medicine, Department of Medical Education and Informatics, Ankara, Turkey

ARTICLE HISTORY

Received: 28 October 2019

Accepted: 15 December 2019

KEYWORDS

Generalizability theory,

G String V,

Unbalanced design

Abstract: The aim of this paper is to introduce a software that is

appropriate for the generalizability theory for not only balanced but

also unbalanced data sets. Because it is possible to have unbalanced

data sets while conducting a study, the researchers have devised an

easy solution, other than deleting data, to balance the design to cope

with this situation. Thus, the software G String V will be introduced.

First, the generalizability theory will be reviewed, followed by a

description of the unbalanced synthetic data that was used to conduct

the analysis using the software. Explanations are provided for

installing the software, preparation of the data, and the step-by-step

data analysis. Moreover, the interpretation of the data is also

explained. Finally, the limitations of the software are shared.

1. INTRODUCTION

Generalizability (G) theory, which was developed by Cronbach, Gleser, Nanda and Rajaratnam

(1972) as an alternative to the classical test theory (CTT), is a statistical theory for evaluating

the dependability or reliability of behavioral measurements (Brennan, 2001a; Shavelson and

Webb, 1991). Conceptually, the G theory can be regarded as a multifaceted extension of the

CTT and can be seen as a combination of the CTT and variance analysis (Brennan, 2000; Suen

& Lei, 2007). Reliability, which is defined in the CTT as the consistency of the scores obtained

through measurements, can vary according to the source to which the error is connected. For

example, (i) when designing a reliability study to produce two sets of observations, one might

give the same test two times, separated by two weeks: test-retest reliability; (ii) designing a

reliability study to create two parallel forms of the test, as Form 1 and Form 2, and give the two

forms of the test on the same day: parallel forms reliability; or (iii) calculating the reliability of

a single form of a test on a single occasion: split-half reliability. Although there are multiple

sources of error for these three examples, the CTT takes only one error source as time, forms,

and items, respectively. In other words, the errors in the measurement results are considered as

the errors coming from only one source of variability, and this emerges as a restriction of the

CTT. Because the G theory can consider several sources of error simultaneously, estimations

can be made more accurately than the ones in the CTT.

CONTACT: Gülşen TAŞDELEN TEKER gulsentasdelen@gmail.com Hacettepe University, Faculty of

Medicine, Department of Medical Education and Informatics, Ankara, Turkey

ISSN-e: 2148-7456 /© IJATE 2019

https://dx.doi.org/10.21449/ijate.658747
http://www.ijate.net/
http://dergipark.gov.tr/
https://orcid.org/0000-0003-3434-4373

Taşdelen-Teker

 58

G theory is structured around different sources of variation, called facets. There are two main

types of facets, which are facet of differentiation and facet of instrumentation, according to

Brennan’s (2001) classification. In G theory, a behavioral measurement is conceived of as a

sample from a universe of admissible observations, which consists of all possible observations

on an object of measurement that a decision maker considers to be acceptable substitutes for

the observation in hand. The object of measurement is also referred to as the facet of

differentiation. You can easily determine the object of measurement of your research by

answering the question: “What are you trying to attach the measurement to?” The answer can

be students, items, etc. For instance, if you want your friends (n=10) to rate a number of dark

chocolates (n=3) on five three-point scales, the object of measurement is dark chocolate. If you

want to get patients’ satisfaction with their experiences on a hospital’s inpatient ward, the object

of measurement is ward. Alternatively, as a more familiar example, if you want to evaluate the

students’ performances in a classroom activity, then the object of measurement is student.

Whatever the object of measurement is, there is only one per analysis.

Although there are some researchers who use Brennan’s classification of facets (Cardinet,

Johnson & Pini, 2010: Cardinet, Tourneur & Allal, 1981), the facet of instrumentation is also

referred to as the facet of generalization in some sources (Bloch & Norman, 2015; Bloch &

Norman, 2012; Cardinet, Tourneur & Allal, 1976). This is acceptable and is also used in G

String terminology. Every observation of object of measurement is subject to error, derived

from various sources (Bloch & Norman, 2015). These sources are also called facets of

instrumentation and address the following question: “To what extent can I generalize a

measurement from one situation to another with a different level of the facet of

instrumentation?” There are two types of instrumentation facets, called fixed and random.

Typically, a random facet is created by randomly sampling levels of a facet. Meanwhile, when

the levels of a facet have not been sampled randomly from the universe of admissible

observations, and the intended universe of generalization is infinitely large, the concept of

exchangeability may be invoked to consider the facet as random (Shavelson & Webb, 1981). A

fixed facet arises in three conditions: (a) purposely selecting certain conditions and not

interested in generalizing beyond them, (b) finding it unreasonable to generalize beyond the

levels observed, or (c) when the entire universe of levels is small and all levels are included in

the measurement design (Shavelson & Webb, 2006). G theory is essentially a random effects

theory. Therefore, there should be at least one random facet in the data set.

According to Brennan (2001, p.108) the rules and equations of G theory assume that the objects

of measurement are not nested within some other facet. However, G theory can treat such

nested, or stratified, objects of measurement, but requires special consideration to do so. Objects

of measurement are stratified with respect to some other variable, and an investigator may be

interested in variability within levels of the stratification variable, as well as the variability

across levels (Brennan, 2001, p.153). For instance, assume that there are 100 people in each of

four regions (east, west, south, and north). Here, people are the object of measurement, and they

are nested in regions. According to Brennan (2001) it is quite complex to cope such designs.

Moreover, it is stated that if the design is unbalanced the procedures discussed do not apply,

and appropriate procedures are much more complicated. Bloch and Norman (2018) defined this

situation by using another term. According to them, when the facet of differentiation (object of

measurement) is nested within another facet, this facet is referred to as a facet of stratification.

For instance, there are students who are at different educational levels (senior vs. junior

students). Commonly the difference between the two groups is viewed as a test of construct

validity. However, in terms of reliability, the person variance should be computed within

educational levels (we want to see if we can differentiate among individuals at the same level).

Here, the educational level is a stratification facet (Bloch and Norman (2018). Although the

term “stratification facet” in not in Brennan’s (2001a) Generalizability Theory book, which can

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 57-69

 59

be defined as the bible of the G theory, it is important to explain the stratification facet because

G String V also uses this terminology.

There is also specific terminology associated with the design: crossed design and nested design.

Assume all students (s) respond to all the items (i) in a test so that students are crossed with

items. We denote this design as s x i. However, if each student responds to a different set of

items then it is expressed as items nested within students. We denote this design as i : s. A

crossed design is usually preferred in studies conducted using G Theory. The reason for this is

that all sources of error, associated with all probable facets and the interactions between those

facets, can be estimated in crossed-designed studies.

The importance of G theory lies in its applications to educational measurement. There are two

major functions of G theory. One of them is to evaluate the quality of measurement procedures

and the other is to make projections about how one can improve the quality of measurement

procedures (Chiu, 2001). The former function can be done through the generalizability (G)

study and it is possible to attain the second function via a decision (D) study. In other words, to

evaluate the dependability of behavioral measurements, a G study is designed to isolate and

estimate variation due to the object of measurement while examining as many facets of

measurement error as possible. A D study uses the information provided by the G study to

design the best possible application of the measurement for a particular purpose (Webb,

Shavelson & Haertel, 2006) and answers the question “What if…?” by designing variations in

measurement via optimization (Brennan, 2001). While planning the D study, the researcher

defines a universe of generalization, the set of facets and their levels to which he or she wants

to generalize, and specifies the proposed interpretation of the measurement. The decision maker

uses the information from the G study to evaluate the effectiveness of alternative designs for

minimum error and maximum reliability (Webb, Shavelson & Haertel, 2006).

Although there are wide applications of the theory, it has limitations in its capability of handling

unbalanced designs of the data. The number of observations in balanced designs is equal at each

level for the source of variability (Brennan, 2001a). By contrast, an unbalanced design has

unequal numbers of observations in its sub-classifications. For instance, there can be differing

numbers of items nested within testlets, pupils nested within differently sized classrooms, or

observers nested within occasions with an unequal number of observers present at each

occasion. These three examples are defined as unbalanced because the nested designs may be

purposely unbalanced, dictated by the context itself or created by unforeseen circumstances,

respectively. One other reason for unbalanced situations can be missing observations from

crossed and nested designs (Webb, Shavelson & Haertel, 2006). As sample sizes tend to be

small in the G theory analyses (Rios, Li & Faulkner-Bond, 2012; Taşdelen Teker & Güler,

2019), missing data becomes an important topic. Researchers normally prefer listwise deleting,

inputing missing observations, or employing unbalanced designs to deal with missing data.

Shavelson and Webb (1991) encouraged deleting data to create a balanced design to circumvent

estimation challenges. Shavelson, Webb and Rowley (1989) found little effect in the estimated

variance components when data was deleted to create balance. However, it can be problematic

for very small sample sizes, such as less than 20. Rios, Li and Faulkner-Bond (2012) conducted

a systematic review of the most recently published literature to understand the current

methodological trends in the G theory better. Unbalanced design was used in 19 of 58 studies

reviewed. Taşdelen Teker and Güler (2019) conducted a thematic content analysis of studies

using the G theory in the field of education in Turkey and found that 6 of 60 studies were

conducted with unbalanced design. According to the results of the above-mentioned review

studies of Rios, Li and Faulkner-Bond (2012), and Taşdelen Teker and Güler (2019), the ratio

of unbalanced designs is high enough to make coping with them indispensable.

Taşdelen-Teker

 60

Estimating variance components in unbalanced designs was challenging. Some or all methods

had problems of computational complexity, distributional assumptions, and biased estimation,

requiring decisions that could not be justified in the context of the G theory, or produced results

that were inconclusive (Brennan, 2001). However, now it is possible to run G and D studies to

estimate variance components and reliability coefficients by using the software G String V. The

main purpose of this study was to introduce a computer program that was appropriate for G

theory for balanced, and even more important, unbalanced data sets. According to the manual

of G String V (Bloch & Norman, 2018), because the software is based on variance component

estimates from urGENOVA, which was written by R. L. Brennan (2001a), the mathematical

formulation declared by Brennan (2001a) will be given before introducing the software.

Moreover, synthetic data taken from Brennan (2001a, p.224) will be provided to clarify the

notations. Lastly, the software will be introduced step by step by using the same synthetic data

shown in Table 1.

1.1. Synthetic Data and Mathematical Computations

Assume that eight students (s) take an 8-item test that is composed of three testlets (h)

containing 2, 4, and 2 items (i), respectively. Because the number of items per testlet is not

equal, the design is defined as unbalanced. It is a random facet nested design, symbolized as

sx(i:h). The data entry is shown in Table 1.

Table 1. sx(i:h) Unbalanced Design

Student
 Testlet 1 Testlet 2 Testlet 3

 Item 1 Item 2 Item 1 Item 2 Item 3 Item 4 Item 1 Item 2

1 4 5 3 3 5 4 5 7

2 2 1 2 3 1 4 4 6

3 2 4 4 7 6 5 8 7

4 1 3 5 4 5 5 4 5

5 3 3 6 7 5 7 8 9

6 1 2 5 6 4 4 5 6

7 3 5 6 8 6 7 7 8

8 0 1 1 2 0 4 7 8

As seen in Table 1, there is no missing data. It is strongly advised to cope with the missing data

by using standard statistical approaches before using G String V. However, if the researcher

forgets to deal with the missing data, then G String V will replace the missing values by the

grand mean and warn the user when this occurs.

The estimation of variance components in terms of mean squares are given in Table 2. The ni+

notation, given under the degrees of freedom (df) column of Table 2, is the total number of

levels of i over all levels of h; that is, 𝑛𝑖+ = ∑ 𝑛𝑖:ℎℎ . Moreover, ri and ti, which are used for the

estimation of variance components in terms of mean squares, are computed by using the

following equations: 𝑟𝑖 = ∑
𝑛𝑖:ℎ

2

𝑛𝑖+
ℎ and 𝑡𝑖 =

𝑛𝑖+−𝑟𝑖

𝑛ℎ−1
.

Table 2. sx(i:h) Unbalanced Design

Source of

Variance
df

Mean

Squares

Estimators of the variance components in terms of

mean squares

s ns-1 MSs σ2
s= [MS(s)-riMS(sh)/ti+(ri-ti)MS(si:h)/ti]/ni+

h nh-1 MSh σ2
h= [MS(h)-MS(i:h)-MS(sh)+MS(si:h)]/nsti

i:h ni+ - nh MSi:h σ2
i:h= [MS(i:h)-MS(si:h)]/ns

sh (ns-1)(nh-1) MSsh σ2
sh= [MS(sh)-MS(si:h)]/ti

si:h (ns-1)(ni+ -nh) MSsi:h,e σ2
si:h,e= MS(si:h,e)

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 57-69

 61

By using the variance components obtained from the G study, it is possible to estimate relative

and absolute error variances. After that, the error variances are used to estimate the

generalizability and dependability coefficients. The equations used for the estimations of

relative/absolute error variances and generalizability/dependability coefficients are given

below. Equation 1 is used to estimate the relative error variance (𝜎2(𝛿)) and Equations 2 and

3 are used to compute generalizability coefficients (𝐸𝜌2) for unbalanced sx(i:h) design.

Equation 4 is used for the estimation of absolute error variance. Then Equations 2 and 5 are

used for the estimation of index of dependability (ϕ). The �̆�ℎ term used for the estimation of

relative and absolute error variances is equal to �̆�ℎ =
𝑛𝑖+

2

∑ 𝑛𝑖:ℎ
2

ℎ
.

𝜎2(𝛿) =
𝜎𝑠ℎ

2

�̆�ℎ
+

𝜎𝑠𝑖:ℎ
2

𝑛𝑖+
 [1]

𝜎2(𝜏) = 𝜎2(𝑠) [2]

𝐸𝜌2 =
𝜎2(𝜏)

𝜎2(𝜏) + 𝜎2(𝛿)
 [3]

𝜎2(∆) =
𝜎ℎ

2

�̆�ℎ
+

𝜎𝑖:ℎ
2

𝑛𝑖+
+

𝜎𝑠ℎ
2

�̆�ℎ
+

𝜎𝑠𝑖:ℎ
2

𝑛𝑖+
 [4]

𝜙 =
𝜎2(𝜏)

𝜎2(𝜏) + 𝜎2(∆)
 [5]

2. THE SOFTWARE: G STRING V

G String V (Bloch & Norman, 2018) is a software that functions on the basis of urGENOVA

(Brennan, 2001b) and is used in G theory analyses. Because urGENOVA is a traditional

command line program that does not have a graphical user interface, users must specify their

parameters, which makes it difficult to work with. Moreover, although urGENOVA provides

the variance components for the individual effects, it does not calculate variance coefficients

under different conditions. However, G String V does this as well (Bloch & Norman, 2018). G

String V was designed and coded by Ralph Bloch as part of a project commissioned by The

Medical Council of Canada and was subsequently further developed. It is written in Java on the

Linux platform. The most recent version of the program runs under the Windows operating

system (Bloch & Norman, 2015) and Macintosh and Linux operating systems (Bloch &

Norman, 2018). The G-String V has a more user-friendly interface and therefore, is much easier

to use compared to urGENOVA.

2.1. Installing the Software

G String V can be downloaded for free from the Web. Researchers may install the latest version

of the G String V software, released in July 2018 from https://healthsci.mcmaster.ca/merit/res

earch/g_string_v. The program is contained in a software package called “G_String_V.jar”.

Before downloading the software, install Java Runtime JRE 8 on your computer if it is not

already installed. Then create a new folder called “G_String_V” in a suitable location of your

file system. After selecting your computer’s operating system (Windows, Mac-OS or Linux),

download the software package and copy it from the Downloads folder into the G_String_V

folder. Next, create a new sub-folder within the G_String_V folder called “work.” Then double

click on G_String_V. jar. As shown in Figure 1, set the “work” sub-folder as your working

directory by clicking the Setup and Set Working Directory buttons.

https://healthsci.mcmaster.ca/merit/research/g_string_v
https://healthsci.mcmaster.ca/merit/research/g_string_v

Taşdelen-Teker

 62

Figure 1. G String V Software Working Directory Setup Screen

2.2. Software Interface

The main interface of the G String V software is shown in Figure 2. This interface consists of

the main menu that includes File, Action, Setup, and Help. To start the analysis, click on Action.

There are three sub-menus under Action as seen in Figure 2. To start a new analysis click on

Action→ Start New and create a new G String V run. If you want to do multiple runs on a pre-

used data base then click on Use Existing. For the G String V to automatically count the number

of levels of each facet, which can be helpful for unbalanced nested designs, select Auto Index.

Figure 2. G String V Software Main Screen

2.3. Data Analysis using G String V

If starting with a new data set click on Start New as seen in Figure 2. From this point on,

analyzing with the G String V will be explained step by step. As seen in Table 1, Brennan's

example (2001, p. 224) will be used to better illustrate the steps. There are three testlets (h)

containing 2, 4, and 2 items (i), respectively; and answers to all of the questions for the eight

students (s). Because the items are nested within testlets and students answer all of the items,

the design can be symbolized as sx(i:h). Moreover, because the number of items per testlet is

not the same, the design is unbalanced, as previously stated.

2.3.1. Preparing Data for Analysis

While urGENOVA requires the data to be in ASCII text files (.dat or .txt), G String V is set up

to handle tab-delimited or fixed format text files. ASCII files can be easily generated from a

spreadsheet, such as Excel, by simply saving as a “Text - tab delimited (*.txt)” file (Bloch &

Norman, 2018). Like all previous versions of G String V and other software used for G theory

analysis (SPSS and EduG), G String V requires that the data be ordered, so that all records

related to a particular level of a facet are together. After entering the data in an Excel

spreadsheet, and saving as Text - tab delimited (*.txt) it can be used to run G theory analysis

via G String V.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 57-69

 63

Steps 1 and 2: Title and details of the conducted research

As seen in Figure 3, you can provide a unique name for your research in Step 1 and add more

comments to describe the details of the analysis in Step 2. Comments provide an explanation

of the study to the reader of the output. The information written here does not affect the

computations of the software, so if you do not want to enter any information omit this step by

clicking the Next Step button. To exemplify how it would appear in the output file, a title and

brief description of the data was entered.

Figure 3. G String V Software: (a) Step 1 and (b) Step 2

Steps 3 and 4: Defining object of measurement and facets

As seen in Figure 4(a), the object of measurement is specified in Step 3 by providing a

descriptive name and a corresponding one-character lowercase abbreviation for the object of

measurement. Although the object of measurement is usually crossed with other facets, it may

also be nested within another facet. For instance, as given in Brennan’s example (2001, p.154),

people can be nested within regions. Because of this, the nesting situation of the object of

measurement also should be specified. For the example discussed here, “crossed” should be

selected. Then specify the number of facets. For the example used here, there are two, testlet

and item. Each facet should be given a descriptive name and a one-character abbreviation in

Step 4, as seen in Figure 4(b). Moreover, the nested facets are specified by changing the default

“crossed” to “nested.” In our example, because the items are nested within testlets, the nesting

conditions of items have “nested” selected. The nesting condition of testlets remains “crossed”

by default.

The order of the facets is also important. They must be listed in the order they are encountered

in the data file, from slowest-moving to fastest-moving (Bloch & Norman, 2018). In other

words, the first facet to be declared is the one whose levels change least rapidly and the last

facet to be declared would be the one whose levels change the fastest (Cardinet, Johnson &

Pini, 2010). In our example, the first facet is testlet as it changes more slowly than items. More

clearly, if the data have one record per student, with all data for each testlet, then the responses

on each item of testlet, the order of facets would be: Testlet, Item.

Figure 4. G String V Software: (a) Step 3 and (b) Step 4

Taşdelen-Teker

 64

Steps 5 and 6: Setting order of facets and arrange nesting of the facets

In Step 5, the order of facets should be specified as they appear in the data set. For instance,

because each student’s answers to eight items are listed in one row, the asterisk is beside student

as seen in Figure 5(a). In Step 6, drag and drop the nested facets from the left side to the right

side. By doing so, the nested facets are located under the facet in which they are nested nested

as seen in Figure 5(b). Because items are nested within testlets in our example, the item facet

is dragged and dropped under the testlet facet and appears as i:h.

Figure 5. G String V Software: (a) Step 5 and (b) Step 6

Step 7: Locating data file

As seen in Figure 6(a), the exact location of the data file is selected. The data must be in an

ASCII text file. To do so, you can enter your data in Excel and save it as “Text (Tab delimited)

(*.txt).” After selecting the location of the data, you will see it on the screen. As seen in Figure

6(b), there are nine columns in the data file. The first column contains the student ID, which

means the actual data begins in the second column. To indicate how many columns are to be

skipped, enter the information in the “Skip” field. As you can see from the second screenshot

of Figure 6, “1” is in the “Skip” area, so the first column of the data becomes colorless, which

means it will not be analyzed. You can only skip fields at the beginning of the data, never in

the middle.

Figure 6. G String V Software Step 7: (a) Data location and (b) Data view

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 57-69

 65

Step 8: Specifying the sample sizes of object of measurement and facets

In Step 8, G String V asks for the sample size of the object of measurement and then the facets’

sample sizes. For nested variables, specify the number of levels at each level of the nesting

variable. For the object of measurement, this will be 8; for the testlet facet, this will be 3; and

for the item facet, this will be the number of items per testlet; 2, 4, and 2, as seen in Figure 7.

Figure 7. G String V Software Step 8

Step 9: Saving the Control File and obtaining variance components

After completing the specification by running the previous eight steps, a control file called

“gControl.txt” was also generated. It was stored in the working directory by default. In Step 9,

you can change both its name and folder as seen in Figure 8(a). After saving the proper control

file path, urGENOVA is executed automatically to calculate the variance components and the

coefficients (Bloch & Norman, 2018) as seen in Figure 8(b). Step 9 shows the variance

components as part of a G study of G theory.

Figure 8. G String V Software Step 9: (a) Saving control card and (b) urGENOVA output

Taşdelen-Teker

 66

Step 10: Calculating G Coefficients and Running D Studies

In Step 10, G String V calculates the G coefficients as seen in Figure 9(a). The first coefficient

is called the G coefficient and is symbolized as Eρ2, which is used for relative decisions. The

second coefficient is called the index of dependability (Brennan & Kane, 1977) and symbolized

as ϕ, which is used for absolute decisions. Furthermore, by changing levels and types of facets,

you can calculate different coefficients to answer the question “What if…?” as part of a D study

of the G theory. As seen in Figure 9(b), the level of testlet changed from 3 to 4, but the type of

facets was left as random. After this change, the Eρ2 and ϕ coefficients were also changed from

.73 to .79 and .45 to .53, respectively. After completing all the intended D studies, by changing

the levels of facets and clicking Next Step to obtain the results, close the software by clicking

File→Close from the menu bar.

Figure 9. G String V Software Step 10: (a) G study results and (b) D study results

2.4. Evaluation of the Results

After closing the software, the output file will be in your working directory, named as

“example1.txt.lis”. This file can be opened by Word. As seen in Figure 10(a), there is a control

card at the beginning of the output file. It contains the information entered in Step 1 (Example

1) and Step 2 (Brennan, 2001a, p.224). The names and levels of facets and the design of the

study are also on the control card. Figure 10(b) shows the ANOVA table created by

urGENOVA. The variance components used in the calculations of the 𝐸𝜌2and ϕ coefficients

are shown to the right of the table. It is possible to estimate variance components as negative

because of erroneous measurement models or sampling errors (Güler, Kaya Uyanık & Taşdelen

Teker, 2012). There are two different approaches to handle this situation. Cronbach et al.,

(1972) initially said that the negative variance should be replaced with zero, and that zero should

be used to calculate other variance components. Brennan (2001a), however, argued that this

suggestion could cause biased calculations of variance components. Cronbach responded by

saying that although the negative variance should be replaced by zero, the negative value itself

should be used to calculate other variance components (Atılgan, 2004). Negative variances are

set to zero when computing coefficients by using G String V.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 57-69

 67

Figure 10. Output file: (a) Control card and (b) ANOVA Table

Calculations of 𝐸𝜌2and ϕ coefficients are shown in the output below the ANOVA table. In

Figure 11(a), the estimated 𝐸𝜌2and ϕ coefficients are seen at the bottom of the figure and the

results of the D studies are shown in Figure 11(b). When the level of testlet changed from 3 to

4, there is an increase in Eρ2 and ϕ coefficients. More clearly, if the researcher increases the

number of testlets, for instance to cover content area better, the results will be more reliable.

Moreover, only the level of facets was changed and there was no change on the type of the facet

from random to fixed. The reason of remaining the testlet facet as random was that since the

entire universe of testlet levels was quite large and all levels were impossible to be included,

the researcher was interested in generalizing beyond 3 or 4 testlets.

Figure 11. Coefficient estimation based on (a) G study and (b) D Studies

3. LIMITATIONS OF G STRING V

The first limitation of G String V is related to the sample size of the data. The maximum number

of the facet of differentiation, which is the object of measurement, is 1500. If your sample size

is above this limit, it is stated on the G String V manual that you can write to the developers of

the software and they can furnish a modified version of it. The other limitation of the software

is related to the number of stratification facets of the study. For practical reasons, it cannot

handle more than four stratification facets. According to the results of two review studies

conducted by Rios, Li and Faulkner-Bond (2012) and Taşdelen Teker and Güler (2019), there

is no study that has more than one stratification facet. Meanwhile, when a researcher has more

than four stratification facets it has been suggested to collapse the facets that are unlikely to

contribute to error variance.

Taşdelen-Teker

 68

Acknowledgements

The author wish to thank the Hacettepe Üniversitesi Teknokent Teknoloji Transfer Merkezi for

proofreading process.

ORCID

Gülşen TAŞDELEN TEKER https://orcid.org/0000-0003-3434-4373

4. REFERENCES

Atılgan, H. (2004). Genellenebilirlik kuramı ve cok değişkenlik kaynaklı Rasch modelinin

karşılaştırılmasına ilişkin bir araştırma [A research on the comparison of the

generalizability theory and many facet Rasch model] (Doctoral Dissertation). Hacettepe

University, Ankara.

Bloch, R. & Norman, G. (2018). G String V User Manual. Hamilton, Ontario, Canada.

Bloch, R. & Norman, G. (2015). G String IV (Version 6.1.1) User Manual. Hamilton, Ontario,

Canada.

Bloch, R. & Norman, G. (2012). Generalizability theory for the perplexed: A practical

introduction and guide: AMEE Guide No. 68. Medical Teacher, 34 (11), 960-992. DOI:

10.3109/0142159X.2012.703791

Brennan, R. L. (2001a). Generalizability Theory. New York: Springer.

Brennan, R. L. (2001b). Manual for urGENOVA (Version 2.1) (Iowa Testing Programs

Occasional Paper Number 49). Iowa City, IA: Iowa Testing Programs, University of

Iowa.

Brennan, R. L. (2000). Performance Assessments from the Perspective of Generalizability

Theory. Applied Psychological Measurement, 24(4), 339-353.

Brennan. R. L., & Kane, M. T. (1977). An index of dependability for mastery tests. Journal of

Educational Measurement, 14, 277-289.

Cardinet, J., Johnson, S. & Pini, G. (2010). Applying Generalizability Theory using EduG. New

York, NY: Routledge – Taylor & Francis Group.

Cardinet, J., Tourneur, Y. & Allal, L. (1981). Extension of Generalizability Theory and Its

Applications in Educational Measurement. Journal of Educational Measurement, 18 (4),

183-204.

Cardinet, J., Tourneur, Y. & Allal, L. (1976). The Symmetry of Generalizability Theory:

Applications to Educational Measurement. Journal of Educational Measurement, 13 (2),

119-135.

Chiu, C. W. T. (2001). Scoring performance assessments based on judgments: Generalizability

theory. Boston, MA: Kluwer Academic.

Cronbach, L. J., Gleser, G. C., Nanda, H. & Rajaratnam, N. (1972). The Dependability of

Behavioral Measurements: Theory of Generalizability for Scores and Profiles. New

York: Wiley.

Furr, R. M. (2011). Scale construction and psychometrics for social and personality

psychology. Thousand Oaks, CA: Sage Publications Ltd.

Güler, N., Kaya Uyanık, G. & Taşdelen Teker, G. (2012). Genellenebilirlik Kuramı

[Generalizability Theory]. Ankara: PegemA Yayıncılık.

Rios, J.A., Li, X., & Faulkner-Bond, M. (2012, October). A review of methodological trends in

generalizability theory. Paper presented at the annual conference of the Northeastern

Educational Research Association, Rocky Hill, CT.

Shavelson, J. R. & Webb, N. M. (2006). Generalizability theory. In: Green, J.L., Camill, G.,

Elmore, P.B., editors. Handbook of complementary methods in education research.

Mahwah: Lawrence Erlbaum Associates Publishers, p. 309–322.

Shavelson, J. R. & Webb, N. M. (1991). Generalizability Theory: A Primer. Newbury Park.

CA: Sage Publications.

Int. J. Asst. Tools in Educ., Vol. 6, No. 5-Special Issue, (2019) pp. 57-69

 69

Shavelson, R.J., Webb, N.M., & Rowley, G.L. (1989). Generalizability theory. American

Psychologist, 44(6), 922-932.

Shavelson, R. J., & Webb, N. M. (1981). Generalizability theory: 1973–1980. British Journal

of Mathematical and Statistical Psychology, 34, 133–166.

Suen, H. K. & Lei, P.W. (2007). Classical Versus Generalizability Theory of Measurement.

Educational Measurement, 4, 1-13.

Taşdelen Teker, G. & Güler, N. (2019). Thematic Content Analysis of Studies Using

Generalizability Theory. International Journal of Assessment Tools in Education, 6(2),

279–299. https://dx.doi.org/10.21449/ijate.569996

Webb, N. M., Shavelson, R. J. & Haertel, E. H. (2006). Reliability Coefficients and

Generalizability Theory. Handbook of Statistics, 26, 81-124. DOI: 10.1016/S0169-

7161(06)26004

https://dx.doi.org/10.21449/ijate.569996

	6-5-special_issue-COVER
	6-5-special_issue-Cover-2
	Index-Coard-Contents
	v6_n5_S1
	v6_n5_S2
	v6_n5_S3
	v6_n5_S4
	v6_n5_S5

