
e - I S S N :  2 1 4 8 - 7 4 5 6

h t tp : / / � j a te .ne t /

Internat�onal Journal of
Assessment Tools �n Educat�on

Volume: 6  Issue: 5-Spec�al Issue  2019



Dr. Izzet KARA
Ed�tor �n Ch�ef
Internat�onal Journal of Assessment Tools �n Educat�on

Pamukkale Un�vers�ty, 
Educat�on Faculty,
Department of Mathemat�c and Sc�ence Educat�on, 
20070, Den�zl�, Turkey

Phone   : +90 258 296 1036
Fax       : +90 258 296 1200
E-ma�l   :  �jate.ed�tor@gma�l.com   

Publ�sher :   İzzet KARA
Frequency :   4 �ssues per year start�ng from June 2018 (March, June, September, December)
Onl�ne ISSN :   2148-7456
Webs�te :   http://www.�jate.net/�ndex.php/�jate
                        http://derg�park.org.tr/�jate
Des�gn & Graph�c:   IJATE

Support Contact
Dr. İzzet KARA
Journal Manager & Found�ng Ed�tor
Phone  : +90 258 296 1036
Fax      : +90 258 296 1200
E-ma�l  :  �kara@pau.edu.tr

Internat�onal Journal of Assessment Tools �n Educat�on (IJATE) �s a peer-rev�ewed onl�ne journal.
The sc�ent�f�c and legal respons�b�l�ty for manuscr�pts publ�shed �n our journal belongs to the authors(s).

e-ISSN  2148-7456

http://www.�jate.net/�ndex.php/�jate/�ndex

Volume  6   Issue  5 - Spec�al Issue 2019



International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019) 

ISSN: 2148-7456  ii 

 

 

International Journal of Assessment Tools in Education 

  

International Journal of Assessment Tools in Education (IJATE) is an international, peer-

reviewed online journal. IJATE is aimed to receive manuscripts focusing on evaluation and 

assessment in education. It is expected that submitted manuscripts could direct national and 

international argumentations in the area. Both qualitative and quantitative studies can be 

accepted, however, it should be considered that all manuscripts need to focus on assessment 

and evaluation in education. 

IJATE as an online journal is sponsored and hosted by TUBITAK-ULAKBIM (The Scientific 

and Technological Research Council of Turkey). 

There is no submission or publication process charges for articles in IJATE. 

 

IJATE is indexed in: 

• Emerging Sources Citation Index (ESCI) (Web of Science Core Collection) 

• TR Index (ULAKBIM), 

• ERIH PLUS, 

• DOAJ,  

• Index Copernicus International 

• SIS (Scientific Index Service) Database, 

• SOBIAD, 

• JournalTOCs, 

• MIAR 2015 (Information Matrix for Analysis of the Journals), 

• idealonline, 

• CrossRef, 

• ResearchBib, 

• International Scientific Indexing 

https://dbh.nsd.uib.no/publiseringskanaler/erihplus/periodical/info?id=488092


International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019) 

ISSN: 2148-7456  iii 

 

Editors 

Dr. H.Ibrahim Sari, Kilis 7 Aralik University, Turkey 

Editorial Board 

Dr. Safiye Bilican Demir, Kocaeli University, Turkey 

Dr. Nuri Doğan, Hacettepe University, Turkey 

Dr. Selahattin Gelbal, Hacettepe University, Turkey 

Dr. Anne Corinne Huggins-Manley, University of Florida, United States 

Dr. Violeta Janusheva, "St. Kliment Ohridski" University, Republic of Macedonia 

Dr. Francisco Andres Jimenez, Shadow Health, Inc., United States 

Dr. Nicole Kaminski-Öztürk, University of Illinois at Chicago, United States 

Dr. Orhan Karamustafaoglu, Amasya University, Turkey 

Dr. Yasemin Kaya, Atatürk University, Turkey 

Dr. Hulya Kelecioglu, Hacettepe University, Turkey 

Dr. Hakan Koğar, Akdeniz University, Turkey 

Dr. Sunbok Lee, University of Houston, United States 

Dr. Froilan D. Mobo, Ama University, Philippines 

Dr. Ibrahim A. Njodi, University of Maiduguri, Nigeria 

Dr. Jacinta A. Opara, Kampala International University, Uganda 

Dr. Nesrin Ozturk, Ege University, Turkey 

Dr. Turan Paker, Pamukkale University, Turkey 

Dr. Abdurrahman Sahin, Pamukkale University, Turkey 

Dr. Ragip Terzi, Harran University, Turkey 

Dr. Hakan Türkmen, Ege University, Turkey 

Dr. Hossein Salarian, University of Tehran, Iran 

Dr. Kelly Feifei Ye, University of Pittsburgh, United States 

English Language Editors 

Dr. Hatice Altun, Pamukkale University, Turkey 

Dr. Çağla Atmaca, Pamukkale University, Turkey 

Dr. Sibel Kahraman, Pamukkale University, Turkey 

Arzu Kanat Mutluoğlu - Pamukkale University, Turkey 

Copy & Language Editor 

Anıl Kandemir, Middle East Technical University, Turkey 

 

 

 

 

 



International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019) 

ISSN: 2148-7456  iv 

Table of Contents 

Research Article 

Computation of the Response Similarity Index M4 in R under the Dichotomous and Nominal 

Item Response Models  

Pages : 1-19  

Cengiz Zopluoglu  

Educational data mining: A tutorial for the rattle package in R  

Pages : 20-36  

Okan Bulut, Hatice Cigdem Yavuz  

Determination of Sample Size and Observation Units  

Pages : 37-43  

Tülin ACAR  

Computer Adaptive Testing Simulations in RCoping with Unbalanced Designs of 

Generalizability Theory: G String V  

Pages : 44-56  

Basak Erdem Kara 

Coping with Unbalanced Designs of Generalizability Theory: G String V  

Pages : 57-69  

Gülşen Taşdelen Teker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://dergipark.org.tr/en/pub/ijate/issue/43543/527299
https://dergipark.org.tr/en/pub/ijate/issue/43543/527299
https://dergipark.org.tr/en/pub/ijate/issue/43543/627361
https://dergipark.org.tr/en/pub/ijate/issue/43543/591669
https://dergipark.org.tr/en/pub/ijate/issue/43543/621157
https://dergipark.org.tr/en/pub/ijate/issue/43543/621157
https://dergipark.org.tr/en/pub/ijate/issue/43543/621157


International Journal of Assessment Tools in Education, Vol. 6, No. 5-Special Issue, (2019) 

ISSN: 2148-7456  v 

 

Dear Researchers, Readers and Contributors, 

As the International Journal of Assessment Tools (IJATE), we are thrilled to announce that the 

2019 Special Issue has been published. The main theme of the special issue was “Promoting 

Free/Libre Software Use in Educational Measurement”. The target was to promote and 

spread free/libre software use in the field of educational measurement and our aim was to set 

up a link between programmers and practitioners. 

As the IJATE Editorial Team, we would like to thank all authors that submitted a paper, for 

their interest in the journal. We are happy to see that the special issue brought too much voice, 

and we received too many e-mails, questions and submissions. However, we had to consider 

the ones that met submission guidelines, aim and scope of the special issue. Our acceptance rate 

for this special issue was 50%. 

We also would like to thank our reviewers for the effort and expertise that they contribute to 

reviewing, without which it would be impossible to maintain the high standards of our journal. 

I am indebted to the Editor-in-Chief, Prof. Izzet Kara, Associate Editors, Drs. Eren Can Aybek 

and Ozen Yildirim for the tremendous support that they provided. It would not be possible to 

publish this issue without their encouragement, support and sincere. The success of this journal 

is indicative of these three researchers’ efforts. 

We hope you enjoy reading the papers published in the special issue and benefit from them. I 

encourage you to continue to send us your invaluable feedback and ideas for further 

improvement of your journal. 

 

Dr. Halil Ibrahim Sari 

Editor of Special Issue  

 



 

International Journal of Assessment Tools in Education

 2019, Vol. 6, No. 5-Special Issue, 1–19 

https://dx.doi.org/10.21449/ijate.527299

 Published at http://www.ijate.net            http://dergipark.gov.tr/ijate                                       Research Article 

 

 1 

 

Computation of the Response Similarity Index M4 in R under the 
Dichotomous and Nominal Item Response Models 

 

Cengiz Zopluoglu 1,* 

 
1 School of Education and Human Development, University of Miami, USA 

 

ARTICLE HISTORY 

Received: 26 October 2018 

Revised: 12 February 2019 

Accepted: 14 February 2019 
 

KEYWORDS 

response similarity, 
M4, 
test fraud,  
item response theory,  
test security 

Abstract: Unusual response similarity among test takers may occur in 
testing data and be an indicator of potential test fraud (e.g., examinees copy 
responses from other examinees, send text messages or pre-arranged signals 
among themselves for the correct response, item pre-knowledge). One index 
to measure the degree of similarity between two response vectors is M4 
proposed by Maynes (2014). M4 index is based on a generalized trinomial 
distribution and it is computationally very demanding. There is currently no 
accessible tool for practitioners who may want to use M4 in their research 
and practice. The current paper introduces the M4 index and its 
computational details for the dichotomous and nominal item response 
models, provides an R function to compute the probability distribution for 
the generalized trinomial distribution, and then demonstrates the 
computation of the M4 index under the dichotomous and nominal item 
response models using R. 

1. INTRODUCTION 

In an era of high-stakes testing, maintaining the integrity of test scores has become an important 
issue and another aspect of test score validity. Unusual response similarity among test takers is 
a type of irregularity which may occur in testing data and be an indicator of potential test fraud 
such as sharing item responses among students during an exam, coaching of students by a 
teacher or a test proctor during an exam, or item pre-knowledge. In order to identify unusual 
response similarity among examinees, response similarity indices focus on the likelihood of 
agreement between two response vectors under the assumption of independent responding. The 
response indices differ in how they utilize the evidence of agreement and also in the reference 
statistical distribution used for computing the likelihood of observed agreement between two 
response vectors. For instance, while a well-known index developed by van der Linden and 
Sotaridona (2006) uses a generalized binomial distribution to model the number of all matching 
responses, the M4 index (Maynes, 2014) is using a generalized trinomial distribution to model 
the joint distribution of the number of matching correct responses and matching incorrect 
responses. In this paper, I first introduce the computational details of the M4 index as provided 
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by Maynes (2014, 2017), then discuss how it can be computed in R and illustrate its use under 
the dichotomous and nominal item response models.  

2. THE M4 INDEX 

Suppose that 𝑃 and 𝑄 are two disjoint events and 𝑅 = 𝑃′𝑄′, where 𝑃 represents the 
probability of matching correct response, 𝑄 represents the probability of matching incorrect 
response, and 𝑅 represents the probability of nonmatching response between two test takers 
for the ith item. By definition, we know that 𝑅 = 1 − (𝑃 + 𝑄). The probability of observing 
m correct matches and n incorrect matches between two test takers for I items is equal to 

𝑇ூ(𝑚, 𝑛) =   (

ூି

ୀ

ூି

ୀ

− 1)ାିି ቀ
𝑏
𝑚

ቁ ቀ
𝑎
𝑛

ቁ 𝑆ூ;, 

where 𝑆ூ;, = ∑𝑃௨భ
𝑃௨మ

. . . 𝑃௨್
𝑄௩భ

𝑄௩మ
. . . 𝑄௩ೌ

 and summation is extended over all possible pairs 
of disjoint subsets {𝑢ଵ, 𝑢ଶ, . . . , 𝑢} and {𝑣ଵ, 𝑣ଶ, . . . , 𝑣} of the set {1,2,…,I} (Charalambides, 
2005). Maynes (2017) indicated that this quantity may be computed using a recursive formula 
as shown below: 

𝑇ାଵ(𝑚, 𝑛) = 𝑃ାଵ𝑇(𝑚 − 1, 𝑛) + 𝑄ାଵ𝑇(𝑚, 𝑛 − 1) + 𝑅ାଵ𝑇(𝑚, 𝑛) 

with boundary conditions 𝑇(0,0) = 1 and 𝑇(𝑚, 𝑛) = 0. The recursive formula starts with k=0 
and ends with k=I-1. When 𝑇ூ(𝑚, 𝑛) is computed for all possible combinations of m and n, the 
desired tail probability can be computed using a sub-ordering principle. First, the probabilities 
for all bivariate points (𝑢, 𝑣) are added where u is greater than m and v is greater than n. Let 
this quantity be 𝐷,. Then, all values of 𝑇ூ(𝑎, 𝑏) where 𝐷, ≥ 𝐷, are found and summed 
up to obtain the desired tail probability. 

2.1 Calculating the P and Q vectors using Item Response Models 

In order to compute the M4 index, one has to obtain the vectors of probabilities for the 
correct match and incorrect match between two test takers. While these values could be 
empirically derived from a large dataset, they can be obtained based on item response models 
as this is a typical practice for other similar indices in the literature such as 𝜔 (Wollack, 1997) 
and generalized binomial test (van der Linden and Sotaridona, 2006). 

2.2. Dichotomous Item Response Data 

Suppose a researcher or practitioner has dichotomous item response data (e.g., 0/1, 
correct/incorrect, true/false) and wants to compute the M4 index. A variety of dichotomous IRT 
models are available for use depending on which one fits better to the data. The most general 
version of a dichotomous IRT model can be written as 

𝜋(𝑌 = 1|𝜃 , 𝑎, 𝑏 , 𝑐, 𝑑) = 𝑐 + (𝑑 − 𝑐)
𝑒(ఏೕି)

1 + 𝑒(ఏೕି)
, 

where 𝜋(𝑌 = 1|𝜃 , 𝑎, 𝑏, 𝑐, 𝑑) is the probability of correct response for the jth person on the 
ith item given the item and person parameters; 𝑎, 𝑏, 𝑐, and 𝑑 are the discrimination, 
difficulty, guessing, and slipping parameters, respectively, for the ith item; and, 𝜃  is the person 
location parameter for the jth person. These parameters have to be estimated from the item 
response data prior to computing the M4 index. If the 𝑑 parameter is fixed to one for all items, 
the model reduces to a 3-PL IRT model. In addition, if the 𝑐 parameter is also fixed to zero for 
all items, the model reduces to a 2-PL IRT model. In addition, if the 𝑎 parameter is constrained 
to be equal for all items, the model reduces to a 1-PL IRT model. 
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Once the item and person parameters are estimated, the probability of matching correct response 
on the 𝑖th item for two test takers, person 𝑗 and person 𝑠, can be computed as 

𝑃 = 𝜋(𝑌 = 1|𝜃) × 𝜋௦(𝑌 = 1|𝜃௦). 

Similarly, the probability of matching incorrect response on the 𝑖th item for these test takers 
can be computed as 

𝑄 = ൫1 − 𝜋(𝑌 = 1|𝜃)൯ × (1 − 𝜋௦(𝑌 = 1|𝜃௦)). 

Finally, the probability of not matching on the 𝑖th item can simply be computed as 

𝑅 = 1 − (𝑃 + 𝑄). 

2.3. Nominal Response Data 

Suppose that a researcher or practitioner has a multiple-choice test data with multiple response 
alternatives available for each item. One of these response alternatives is the correct response 
(key) and the remaining response alternatives are the incorrect responses (distractors). Note that 
there are a few number of alternative models proposed in the literature for such nominal 
response data (Bock, 1972; Penfield and de la Torre, 2008; Thissen & Steinberg, 1997). One 
can choose any of these models for modeling probabilities. We consider here the original 
Nominal Response Model (NRM; Bock, 1972) as it has been used in the literature for other 
indices and there are already available existing tools in R to reliably estimate the parameters of 
NRM. In NRM, the probability of selecting the 𝑘th response alternative among 𝑚 alternatives 
of the 𝑖th item for the 𝑗th person is written as 

𝜋 =


അೖశഊೖഇೕ

∑ 
അೖశഊೖഇೕ

ೖసభ

 , 

where 𝜁 is the intercept and 𝜆 is the slope parameter for the 𝑘th response alternative of the 
𝑖th item, and 𝜃  is the person location parameter for the jth person. 

Once the item and person parameters are estimated for NRM, the probability of matching 
correct response on the 𝑖th item for two test takers, person 𝑗 and person 𝑠, can be computed as 

𝑃 =  𝜋



ୀଵ

× 𝜋௦ × 𝐼(𝑘 = 𝑟), 

where 𝑟 is the correct response alternative for the 𝑖th item and 𝐼(. ) is an indicator variable that 
equals to 1 if the statement in parentheses is true, 0 otherwise. In a similar way, the probability 
of matching incorrect response on the 𝑖th item for these two test takers can be computed as 

𝑄 =  𝜋



ୀଵ

× 𝜋௦ × 𝐼(𝑘 ≠ 𝑟). 

The probability of not matching on the 𝑖th item can be computed as shown before. 

3. R CODE FOR COMPUTING THE M4 INDEX 

3.1. Computing the generalized trinomial distribution for a given P and Q vectors 

Table 1 shows an R function to compute the joint distribution of matching correct and matching 
incorrect responses using the recursive algorithm. The function requires two vectors as input 𝐏 
and 𝐐. 𝐏 is a vector of probabilities for matching on a correct response and 𝐐 is a vector of 
probabilities for matching on an incorrect response for 𝐼 items. Both vectors have a length of 𝐼. 
The function also requires two numbers 𝑚 and 𝑛, 𝑚 representing the observed number of 
correct matches and 𝑛 is the observed number of incorrect matches between two test takers.  
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Table 1. An R function to compute the generalized trinomial distribution and its tail probability given 
the vector of probabilities for two disjoint events and specified numbers. 

gtd <- function(P,Q,m,n) { 
 
  R <- 1-(P+Q) 
  I=length(P) 
   
  rec <- vector("list",I+1) 
  rec[[1]]=matrix(0,nrow=I+1,ncol=I+1) 
  rec[[1]][1,1] <- 1 
  for(k in 2:(I+1)){ 
    rec[[k]] = R[k-1]*rec[[k-1]]+ 
               rbind(0,P[k-1]*rec[[k-1]])[-(I+2),]+ 
               cbind(0,Q[k-1]*rec[[k-1]])[,-(I+2)] 
  } 
   
  for(k in 1:(I+1)){ rec[[k]]=t(rec[[k]])} 
   
  upper <- matrix(nrow=I+1,ncol=I+1) 
  for(x in 1:(I+1)){ 
    for(y in 1:(I+1)) { 
      upper[x,y] = sum(rec[[I+1]][x:(I+1),y:(I+1)]) 
    } 
  } 
   
  prob.table <- expand.grid(0:I,0:I) 
  colnames(prob.table) <- c("IncorrectMatch","CorrectMatch") 
  prob.table <- prob.table[which(rowSums(prob.table)<=I),] 
  prob.table <- prob.table[order(prob.table[,1]),] 
  prob.table <- cbind(prob.table,0,0,0,0) 
  prob.table[,3] <- I-(rowSums(prob.table[,1:2])) 
  for(i in 1:(nrow(prob.table))){ 
    x=prob.table[i,1] 
    y=prob.table[i,2] 
    prob.table[i,4] <- upper[x+1,y+1] 
    prob.table[i,5] <- rec[[I+1]][x+1,y+1] 
  } 
   
  for(i in 1:(nrow(prob.table))){ 
    r = prob.table[i,4] 
    marked = which(prob.table[,4] <= r) 
    prob.table[i,6] <- sum(prob.table[marked,5]) 
  } 
   
  colnames(prob.table)[3:6] <- c("NonMatch","Upper", 
                                 "Probability","TailProbability") 
  p = prob.table[which(prob.table[,1]==n & prob.table[,2]==m),6] 
  list(prob.table[,-4],p) 
} 

This function returns a list with two elements. The first one is a table including the probabilities 
for the joint distribution of number of correct and incorrect matches (Probability column) and 
tail probabilities (Tail Probability column). The tail probability is the probability of observing 
the number of correct and incorrect matches or more extreme number of matches. The tail 
probability can be compared to an alpha level (e.g., .01) to make a decision about whether or 
not the observed similarity is significantly unusual under the assumption of independent 
responding. 
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Table 2. An example of use for the R function to compute the generalized trinomial distribution and its 
tail probability given the vector of probabilities for two disjoint events and specified numbers. 

P <- c(0.45,0.60,0.30,0.55,0.58,0.42,0.60,0.25)  
Q <- c(0.15,0.20,0.07,0.10,0.12,0.18,0.30,0.05) 
M4 <- gtd(P, Q, m=3,n=2) 
M4 
 [[1]] 
    IncorrectMatch CorrectMatch NonMatch   Probability TailProbability 
 1               0            0        8 0.00014817600   1.00000000000 
 10              0            1        7 0.00229866840   0.99985182400 
 19              0            2        6 0.01383419478   0.99755315560 
 28              0            3        5 0.04290090345   0.98371896082 
 37              0            4        4 0.07560196143   0.88706918856 
 46              0            5        3 0.07769363787   0.52528666715 
 55              0            6        2 0.04534833951   0.21852241329 
 64              0            7        1 0.01366565580   0.05554589926 
 73              0            8        0 0.00162785700   0.00412010397 
 2               1            0        7 0.00084360360   0.94081805737 
 11              1            1        6 0.00964994464   0.93997445377 
 20              1            2        5 0.04325532057   0.93032450913 
 29              1            3        4 0.09890315828   0.81146722713 
 38              1            4        3 0.12439288143   0.71256406885 
 47              1            5        2 0.08552521188   0.36981797220 
 56              1            6        1 0.02949871068   0.11179242607 
 65              1            7        0 0.00393499620   0.01063825410 
 3               2            0        6 0.00161592858   0.58817118742 
 12              2            1        5 0.01406754191   0.58655525884 
 21              2            2        4 0.04720104978   0.57248771693 
 30              2            3        3 0.07777505708   0.44759302928 
 39              2            4        2 0.06577034703   0.28429276032 
 48              2            5        1 0.02674781613   0.08229371539 
 57              2            6        0 0.00408353481   0.01472178891 
 4               3            0        5 0.00147975807   0.17317407378 
 13              3            1        4 0.00975200588   0.17169431571 
 22              3            2        3 0.02374799388   0.16194230983 
 31              3            3        2 0.02640188988   0.13819431595 
 40              3            4        1 0.01320810993   0.04114389883 
 49              3            5        0 0.00237669012   0.00670325790 
 5               4            0        4 0.00073634463   0.04188024346 
 14              4            1        3 0.00354190993   0.02793578890 
 23              4            2        2 0.00583529943   0.02439387897 
 32              4            3        1 0.00383679063   0.01855857954 
 41              4            4        0 0.00084883518   0.00116303490 
 6               5            0        3 0.00020646381   0.00432656778 
 15              5            1        2 0.00067335552   0.00249224697 
 24              5            2        1 0.00065585655   0.00181889145 
 33              5            3        0 0.00019058868   0.00031419972 
 7               6            0        2 0.00003170475   0.00012361104 
 16              6            1        1 0.00006111576   0.00009190629 
 25              6            2        0 0.00002628801   0.00003079053 
 8               7            0        1 0.00000239652   0.00000450252 
 17              7            1        0 0.00000203796   0.00000210600 
 9               8            0        0 0.00000006804   0.00000006804 
  
 [[2]] 
 [1] 0.4476 
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Suppose that two test takers responded to eight items and we know the probability of matching 
correct and matching incorrect responses for each item (𝐏 and 𝐐 vectors). Also, suppose that 
these two test takers have the same correct answer for three items and the same incorrect 
response for two items. How likely this outcome would be? Table 2 presents the results obtained 
from the R function provided in Table 1 for this specific scenario. 

The Table 2 indicates that observing three correct and two incorrect matches for a pair of test 
takers with the given 𝐏 and 𝐐 is 0.0778. For the same pair, observing three correct and two 
incorrect matches or more extreme similarity is 0.4476. If we use a type-I error rate of 0.01, 
then we can decide that the response similarity between these two test takers is not significantly 
unusual because the tail probability is not smaller than .01. 

3.2. Computing M4 for Dichotomous Data 

For a given dichotomous dataset, the steps to compute the M4 statistics between two test takers 
are below: 

1. Decision about the dichotomous IRT model to use. Researchers can choose a particular 
model based on their own judgement, or can fit all possible models and then empirically 
decide the best fitting model. The researchers are strongly encouraged to evaluate the 
plausibility of model assumptions such as unidimensionality and local independent 
before proceeding. 

2. Estimation of item and person parameters based on the chosen dichotomous IRT model 
in Step 1. 

3. Computation of the P and Q vectors for two test takers given their estimated person 
parameters and the estimated item parameters. 

4. Computation of the tail probability for the observed number of correct and incorrect 
matches between these two test takers using the gtd() function introduced above. 

For demonstration, I will use a dichotomous dataset that is publicly available on the following 
link https://itemanalysis.com/example-data-files/. This dataset includes binary responses to 56 
items for 6,000 test takers. Table 3 and Table 4 shows the code to import the dataset and then 
fitting the 1-, 2-, and 3-PL IRT models using the mirt package (Chalmers, 2012) to decide the 
best fitting model. Based on the model fit indices, the best fitting model is the 3-PL IRT model.  

Table 3. R code to import the dataset and display the first few rows 

setwd("Path to file")  # Here you put the path to the folder for the dataset 
 
exam1 <- read.csv("exam1_scored.txt") # Import the dataset 
 
dim(exam1)     # Ask R to show the dimensions of the dataset 
 
[1] 6000   56   # This indicates there are 6,000 rows and 56 columns 
 
 
head(exam1,3)  # Ask R to display the first three rows of the dataset 
 
   item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11 
 1     1     0     0     0     1     1     1     1     0      1      1 
 2     1     0     1     0     1     1     0     1     1      1      1 
 3     1     0     0     1     0     0     0     1     1      1      1 
   item12 item13 item14 item15 item16 item17 item18 item19 item20 item21 
 1      1      1      1      1      1      1      1      1      0      0 
 2      1      1      1      1      1      0      0      1      1      0 
 3      1      1      0      1      1      0      0      1      1      0 
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Table 3. Continued 

   item22 item23 item24 item25 item26 item27 item28 item29 item30 item31 
 1      1      0      1      1      1      0      0      1      0      0 
 2      1      1      1      0      1      0      1      0      0      1 
 3      0      1      1      0      1      0      0      0      1      0 
   item32 item33 item34 item35 item36 item37 item38 item39 item40 item41 
 1      1      1      1      1      1      0      1      1      1      1 
 2      0      1      1      0      0      1      0      0      1      0 
 3      1      1      0      0      1      0      1      0      1      1 
   item42 item43 item44 item45 item46 item47 item48 item49 item50 item51 
 1      1      1      0      1      0      0      0      0      0      1 
 2      0      1      0      0      0      0      0      0      0      1 
 3      0      1      0      0      1      1      0      1      1      1 
   item52 item53 item54 item55 item56 
 1      0      1      0      0      1 
 2      0      1      1      1      0 
 3      1      1      0      1      1 

 

Table 4. R code to fit dichotomous IRT models, to choose the best fitting model, and to estimate item 
and person parameters for the best fitting model 

 
install.packages("mirt") # Install the mirt package into your computer 
require(mirt)            # Load the library to the R session 
 
# Fit 1PL model 
 
  mod <- 'F = 1-56 
          CONSTRAIN = (1-56,a1)'  
     
    onePL <- mirt(data  = exam1, model = mod, itemtype="2PL",SE=TRUE) 
     
# Fit 2PL  model 
 
  twoPL <- mirt(data  = exam1, model = 1,itemtype="2PL",SE=TRUE) 
     
# Fit 3PL model 
   
  threePL <- mirt(data = exam1, model = 1,itemtype="3PL",SE=TRUE) 
 
# Compare the model fit 
 
  anova(onePL,twoPL)       # 1PL vs 2PL 
  anova(twoPL,threePL)     # 2PL vs 3PL 
 # 3 PL fits best.  
 
# Item parameters for the 3PL model 
 
    ipar <- coef(threePL,IRTpars=TRUE,simplify=TRUE)$items[,1:3] 
  head(ipar,3) # display the item parameters for the first 3 rows 
 
            a        b        g 
 item1 1.0503 -0.37464 0.306052 
 item2 0.6379 -0.02992 0.050127 
 item3 1.5072 -1.27318 0.064474 
# Estimate the ML theta estimates 
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Table 4. Continued 

    mle <- fscores(threePL,method="ML") # This generates a 6000 x 1 matrix 
 
    head(mle,3)       # display the ML theta estimates for the first 3 rows 
            F1 
 [1,]  0.32301 
 [2,] -0.07246 
 [3,]  0.25915 
 

Then, I save the estimated item parameters for the 3PL model into an object (ipar) and estimate 
the maximum likelihood person parameter estimates. Given these estimated item and person 
parameters based on the 3-PL model, suppose that we want to compute the M4 response 
similarity statistic for two test takers, subjects 1035 and 1567. We need to compute P and Q 
vectors. In order to compute the P and Q vectors, we have to compute the probability of correct 
response for each item for these two test takers using the estimated item parameters and their 
estimated person parameters. Table 5 shows the R code to compute the P and Q vectors for 
individuals 1035 and 1567 based on the estimated person parameters and item parameters. 

These two test takers are matching on the correct response for 40 items and matching on the 
incorrect response for three items. Given their joint probability vectors for the correct and 
incorrect responses across all items (P and Q vectors), Table 6 shows how to use the gtd() 
function to compute the probability for the degree of the observed similarity or more extreme 
similarity between these two test takers. The tail probability is 0.557. This indicates that the 
observed similarity between these two test takers are not very unlikely. Therefore, we can 
conclude that there is no unusual degree of response similarity between the two test takers. It 
may be sometimes useful to visually present the results. Table 7 shows the R code to create a 
contour plot which was also discussed in Maynes (2017). In this contour plot, the boundary 
lines represent the likelihood of .01, .001, .0001, and .0001 for the number of correct and 
incorrect matches between two response vectors. In addition, the observed number of correct 
and incorrect matches is marked in the plot. One can easily demonstrate how likely the observed 
similarity is between two response vectors using this plot. 
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Table 5. R code to compute the P and Q vectors for individuals 1035 and 1567 based on the estimated 
person parameters and item parameters 

 # Estimated theta for Person 1035 and person 1567 
 
    th1 <- mle[1035,1] 
 
    th1 
     F1  
  1.415 
 
    th2 <- mle[1567,1] 
 
    th2 
     F1  
  1.577 
 
 # A small function to compute the probability of correct response 
 # given the item and person parameters for the 3-PL model 
 
 
     
    prob <- function(ip,th){ 
      # ip - n x 3 item parameter matrix. Columns are a, b, g respectively 
      # th - a numeric value 
       
      ip[,3]+((1-ip[,3])*(1/(1+exp(-ip[,1]*(th-ip[,2]))))) 
    } 
     
 
 # Probability of correct response across items for the two test takers 
     
    P1 <- prob(ip=ipar,th=th1)   # Test taker 1035 
 
    P1 
   item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
  0.9081 0.7296 0.9840 0.7483 0.8505 0.9322 0.7347 0.9950 0.7968 0.9924  
  item11 item12 item13 item14 item15 item16 item17 item18 item19 item20  
  0.9939 0.7983 0.9855 0.7202 0.9288 0.7388 0.6960 0.7229 0.9820 0.8225  
  item21 item22 item23 item24 item25 item26 item27 item28 item29 item30  
  0.8964 0.8104 0.7232 0.9633 0.8764 0.9615 0.3099 0.6112 0.7061 0.7084  
  item31 item32 item33 item34 item35 item36 item37 item38 item39 item40  
  0.5605 0.5130 0.9455 0.8687 0.9789 0.9653 0.8835 0.6294 0.5555 0.8618  
  item41 item42 item43 item44 item45 item46 item47 item48 item49 item50  
  0.9160 0.7597 0.8911 0.7167 0.9202 0.9097 0.8501 0.8702 0.7808 0.9943  
  item51 item52 item53 item54 item55 item56  
  0.9947 0.8833 0.8771 0.5813 0.7557 0.9771 
    P2 <- prob(ip=ipar,th=th2)   # Test taker 1567 
    P2  
   item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
  0.9208 0.7491 0.9874 0.7646 0.8650 0.9421 0.7658 0.9963 0.8196 0.9944  
  item11 item12 item13 item14 item15 item16 item17 item18 item19 item20  
  0.9955 0.8186 0.9889 0.7465 0.9420 0.7773 0.7228 0.7476 0.9874 0.8556  
  item21 item22 item23 item24 item25 item26 item27 item28 item29 item30  
  0.9173 0.8493 0.7807 0.9750 0.9040 0.9686 0.3673 0.6409 0.7358 0.7469  
  item31 item32 item33 item34 item35 item36 item37 item38 item39 item40  
  0.5960 0.5637 0.9583 0.8986 0.9857 0.9754 0.9059 0.6572 0.5921 0.8797  
  item41 item42 item43 item44 item45 item46 item47 item48 item49 item50  
  0.9302 0.7822 0.9076 0.7676 0.9413 0.9284 0.8868 0.9025 0.8103 0.9968  
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Table 5. Continued 

 
  item51 item52 item53 item54 item55 item56  
  0.9969 0.9092 0.9061 0.6091 0.7960 0.9841 
# Joint probability of correct response across items (P vector) 
 
    P <- P1*P2 
    P 
   item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
  0.8362 0.5466 0.9716 0.5722 0.7357 0.8782 0.5626 0.9914 0.6530 0.9868  
  item11 item12 item13 item14 item15 item16 item17 item18 item19 item20  
  0.9894 0.6535 0.9746 0.5376 0.8750 0.5743 0.5031 0.5405 0.9696 0.7037  
  item21 item22 item23 item24 item25 item26 item27 item28 item29 item30  
  0.8223 0.6882 0.5647 0.9392 0.7923 0.9313 0.1138 0.3918 0.5195 0.5292  
  item31 item32 item33 item34 item35 item36 item37 item38 item39 item40  
  0.3341 0.2892 0.9061 0.7806 0.9649 0.9416 0.8003 0.4137 0.3290 0.7581  
  item41 item42 item43 item44 item45 item46 item47 item48 item49 item50  
  0.8521 0.5943 0.8088 0.5501 0.8662 0.8446 0.7539 0.7854 0.6326 0.9911  
  item51 item52 item53 item54 item55 item56  
  0.9916 0.8032 0.7947 0.3541 0.6015 0.9616 
 
# Joint probability of incorrect response across items (Q vector) 
 
    Q <- (1-P1)*(1-P2) 
    Q 
       item1      item2      item3      item4      item5      item6  
  0.00727836 0.06782913 0.00020138 0.05923844 0.02017187 0.00392514  
       item7      item8      item9     item10     item11     item12  
  0.06213472 0.00001822 0.03665862 0.00004270 0.00002744 0.03658889  
      item13     item14     item15     item16     item17     item18  
  0.00016096 0.07092701 0.00412716 0.05816974 0.08425009 0.06993389  
      item19     item20     item21     item22     item23     item24  
  0.00022726 0.02563475 0.00855995 0.02857902 0.06068258 0.00091665  
      item25     item26     item27     item28     item29     item30  
  0.01186580 0.00120889 0.43662558 0.13959138 0.07765921 0.07378293  
      item31     item32     item33     item34     item35     item36  
  0.17755613 0.21249479 0.00227399 0.01332128 0.00030215 0.00085127  
      item37     item38     item39     item40     item41     item42  
  0.01096429 0.12702758 0.18128293 0.01663444 0.00586350 0.05232573  
      item43     item44     item45     item46     item47     item48  
  0.01005836 0.06584107 0.00468136 0.00646589 0.01696561 0.01265535  
      item49     item50     item51     item52     item53     item54  
  0.04159484 0.00001832 0.00001658 0.01059035 0.01153943 0.16365438  
      item55     item56  
  0.04983442 0.00036321 
 # Observed number of correct matches between the two test takers 
     
    m = sum (exam1[1035,]==1 & exam1[1567,]==1) 
    m 
  [1] 40 
 
 # Observed number of incorrect matches between the two test takers 
     
    n = sum (exam1[1035,]==0 & exam1[1567,]==0) 
    n 
  [1] 3 
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Table 6. R code to compute the M4 response similarity index between examinees 1035 and 1567 based 
on the P and Q vectors computed from dichotomous item response data 

 
  M4 <- gtd(P=P,Q=Q,m=m,n=n) 
   
  M4[[1]] # Probabilities for the trinomial distribution 
 
       IncorrectMatch CorrectMatch NonMatch Probability TailProbability 
 
  1                 0            0       56   3.278e-46       1.000e+00 
  58                0            1       55   2.769e-43       1.000e+00 
  115               0            2       54   1.070e-40       1.000e+00 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3136              0           55        1   5.728e-09       4.383e-08 
  3193              0           56        0   2.057e-10       7.333e-10 
  2                 1            0       55   2.259e-45       9.985e-01 
  59                1            1       54   1.904e-42       9.985e-01 
  116               1            2       53   7.336e-40       9.985e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3080              1           54        1   4.626e-08       3.585e-07 
  3137              1           55        0   1.814e-09       8.515e-09 
  3                 2            0       54   7.426e-45       9.685e-01 
  60                2            1       53   6.242e-42       9.685e-01 
  117               2            2       52   2.399e-39       9.685e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3024              2           53        1   1.505e-07       9.657e-07 
  3081              2           54        0   6.304e-09       3.612e-08 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  54               53            0        3  2.169e-106      6.136e-101 
  111              53            1        2  4.364e-104      6.136e-101 
  168              53            2        1  2.826e-102      6.131e-101 
  225              53            3        0  5.848e-101      5.849e-101 
  55               54            0        2  2.227e-109      1.082e-105 
  112              54            1        1  3.108e-107      1.082e-105 
  169              54            2        0  1.051e-105      1.051e-105 
  56               55            0        1  1.391e-112      1.021e-110 
  113              55            1        0  1.007e-110      1.007e-110 
  57               56            0        0  3.968e-116      3.968e-116 
 
  M4[[2]] # Tail Probability 
 
  [1] 0.5571 
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Table 7. R code to create a contour plot for a visual representation of the result provided by the M4 
index 

install.packages("lattice") 
 
library(lattice) 
 
obs <- c(40,3) 
 
contourplot(TailProbability ~ CorrectMatch + IncorrectMatch, 
            data=M4[[1]], 
            labels=FALSE, 
            xlab="Number of Correct Matches", 
            ylab="Number of Incorrect Matches", 
            panel=function(at,lty,...){ 
              panel.contourplot(at = .00001, lty = 1,...)  
              panel.contourplot(at = .0001, lty = 2,...)  
              panel.contourplot(at = .001, lty = 3,...)  
              panel.contourplot(at = .01, lty = 4,...) 
              panel.points(x=obs[1],y=obs[2], pch=15, cex=1) 
             }, 
            key=list(corner=c(1,.9),lines=list(lty=c(1,2,3)), 
            text=list(c("p=0.00001","p=0.0001","p=0.001","p=0.01"))), 
            scales=list(y=list(at=seq(0,56,4)),x=list(at=seq(0,56,4))) 
           

 

Figure 1. Contour plot for the joint probability distribution of correct and incorrect matches 
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3.3. Computing M4 for Nominal Response Data 

The steps to compute the M4 index for nominal response data are identical to the dichotomous 
dataset. In particular, we are interested in multiple-choice test data where one of the response 
options is considered as the correct response (key) and other response options are considered 
as the incorrect responses (distractors). As mentioned before, there are a few number of 
alternative models proposed in the literature for multiple-choice test data (Bock, 1972; Penfield 
and de la Torre, 2008; Thissen & Steinberg, 1997). One can choose any of these models for 
modeling probabilities. We consider here the original Nominal Response Model (NRM; Bock, 
1972). For this section, I will use the nominal version of the dichotomous dataset used before. 
We will also need a vector of correct response option for these 56 items. In order to fit NRM in 
the mirt package, we first transform these nominal A, B, C, and D response categories in the 
dataset to numbers 1, 2, 3, and 4, respectively. Then, we also need to recode data such that the 
correct response option is always assigned to the highest number possible (e.g., four in this 
case). Table 8 shows a compilation of R code to prepare the dataset for the data analysis. 

Table 8. R code to prepare nominal response data for data analysis 

# Import dataset 
 
 exam1_nom <- read.csv("exam1_nominal.txt") 
  
 dim(exam1_nom) 
 [1] 6000   56 
  
 head(exam1_nom,3) # display the first 3 rows of the dataset 
 
   item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11 
 1     A     A     D     D     C     B     C     D     D      D      C 
 2     A     B     C     C     C     B     A     D     A      D      C 
 3     A     C     D     B     D     D     D     D     A      D      C 
   item12 item13 item14 item15 item16 item17 item18 item19 item20 item21 
 1      A      D      C      A      B      D      B      A      B      B 
 2      A      D      C      A      B      A      D      A      C      B 
 3      A      D      D      A      B      A      A      A      C      B 
   item22 item23 item24 item25 item26 item27 item28 item29 item30 item31 
 1      A      D      B      C      B      A      C      A      C      A 
 2      A      C      B      D      B      C      A      D      B      C 
 3      C      C      B      B      B      B      D      D      A      A 
   item32 item33 item34 item35 item36 item37 item38 item39 item40 item41 
 1      B      B      A      B      D      C      A      D      C      D 
 2      A      B      A      D      B      D      B      C      C      A 
 3      B      B      C      C      D      B      A      C      C      D 
   item42 item43 item44 item45 item46 item47 item48 item49 item50 item51 
 1      A      B      C      C      C      D      B      D      D      D 
 2      D      B      C      A      B      A      D      A      D      D 
 3      D      B      D      A      D      B      D      C      B      D 
   item52 item53 item54 item55 item56 
 1      D      C      A      D      D 
 2      C      C      B      A      C 
 3      A      C      C      A      D 
 
# Key response vector (correct responses for 56 items) 
  
 key <- c("A","D","C","B","C","B","C","D","A","D","C","A","D","C", 
         "A","B","D","B","A","C","A","A","C","B","C","B","D","A", 
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Table 8. Continued 

         "A","A","C","B","B","A","B","D","D","A","D","C","D","A", 
         "B","B","C","D","B","C","C","B","D","A","C","B","A","D") 
 
 
# Recode A,B,C,D to 1,2,3,4 
  
 for(i in 1:ncol(exam1_nom)){ 
    
   exam1_nom[,i]=ifelse(exam1_nom[,i]=="A",1, 
                  ifelse(exam1_nom[,i]=="B",2, 
                   ifelse(exam1_nom[,i]=="C",3, 
                    ifelse(exam1_nom[,i]=="D",4,NA)))) 
 } 
  
# Recode the vector of key responses 
 
 new.key <- ifelse(key=="A",1, 
                  ifelse(key=="B",2, 
                   ifelse(key=="C",3, 
                    ifelse(key=="D",4,NA)))) 
  
# Recode the data so that the correct option is always scored as 4 
 
for(i in 1:ncol(exam1_nom)) { 
   
  hold1 <- which(exam1_nom[,i]==new.key[i]) 
  hold2 <- which(exam1_nom[,i]==4) 
   
  exam1_nom[hold1,i]= 4 
  exam1_nom[hold2,i]= new.key[i] 
} 
 
head(exam1_nom,3) # display the first 3 rows of recoded data 
 
   item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 item11 
 1     4     1     3     2     4     4     4     4     1      4      4 
 2     4     2     4     3     4     4     1     4     4      4      4 
 3     4     3     3     4     3     2     3     4     4      4      4 
   item12 item13 item14 item15 item16 item17 item18 item19 item20 item21 
 1      4      4      4      4      4      4      4      4      2      2 
 2      4      4      4      4      4      1      2      4      4      2 
 3      4      4      3      4      4      1      1      4      4      2 
   item22 item23 item24 item25 item26 item27 item28 item29 item30 item31 
 1      4      3      4      4      4      1      3      4      3      1 
 2      4      4      4      3      4      3      4      1      2      4 
 3      3      4      4      2      4      2      1      1      4      1 
   item32 item33 item34 item35 item36 item37 item38 item39 item40 item41 
 1      4      4      4      4      4      3      4      4      4      4 
 2      1      4      4      2      2      4      2      3      4      1 
 3      4      4      3      3      4      2      4      3      4      4 
   item42 item43 item44 item45 item46 item47 item48 item49 item50 item51 
 1      4      4      3      4      3      2      2      3      2      4 
 2      1      4      3      1      2      1      3      1      2      4 
 3      1      4      2      1      4      4      3      4      4      4 
   item52 item53 item54 item55 item56 
 1      1      4      1      1      4 
 2      3      4      4      4      3 
 3      4      4      3      4      4 
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Once the dataset is prepared, we fit the nominal response model using the mirt package and 
extract the item parameters. In the nominal response model, each response category has one 
slope and one intercept parameter. Table 9 shows the R code to fit the model and estimate the 
item and person parameters. As it is seen, the item parameter matrix has eight columns with the 
first four columns (labeled as a1, a2, a3, and a4) are response category slope parameters and 
the last four columns (labeled as c1, c2, c3, and c4) are response category intercept parameters. 
Once these item parameters are obtained, we also estimate a person parameter for each 
individual based on maximum likelihood estimation. 

Table 9. R code to fit the nominal response model and estimate item and person parameters 

 
# Fit the Nominal Response Model 
 
nrm <- mirt(exam1_nom, 1, 'nominal') 
 
# Item parameter estimates 
 
ipar.nrm <- coef(nrm, simplify=T, IRTpars = TRUE)$item 
 
head(ipar.nrm,3) # display the first 3 rows of item parameter matrix 
 
             a1       a2       a3     a4         c1      c2       c3     c4 
 item1  0.29203 -0.36571 -0.69963 0.7733  0.0001801 -0.7811 -0.95435 1.7352 
 item2  0.14899 -0.17617 -0.43625 0.4634 -0.3189671 -0.3362 -0.29905 0.9542 
 item3 -0.71860 -0.45263 -0.17098 1.3422 -1.3477243 -0.8299 -0.37141 2.5490 
 
# Person parameter estimates 
 
theta.ML <- fscores(nrm,method="ML") 
 
head(theta.ML,3) # display the first 3 rows of the person parameter matrix 
            F1 
 [1,]  0.21598 
 [2,] -0.32331 
 [3,] -0.05163 
 

In order to compute the P and Q vectors based on nominal response data, we first need to create 
a function to compute the probability of selecting each response category on each item for a 
person given the nominal response model item parameter and the person parameter estimates. 
The R code in Table 10 takes the nominal response model estimated item parameter matrix 
obtained from the mirt package and the person parameter estimates for an individual as inputs 
and returns a matrix of probabilities for each response option on each item for the individual. 
For instance, we can see that the model predicted probabilities of choosing response categories 
1, 2, 3, and 4 (correct response) for subject 1035 on the first item are .071, .011, .005, and .913, 
respectively. Similarly, the model probabilities of choosing response categories 1, 2, 3, and 4 
(correct response) for subject 1567 on the first item are .050, .004, .002, and .944. Once the 
probability matrix for each subject is obtained, then the P vector, joint probability of matching 
on the correct response for each item, and Q vector, joint probability of matching on an incorrect 
response for each item, are computed. For instance, the probability of matching on the response 
category 4 (correct response) for subject 1035 and subject 1567 would be equal to 0.913*0.944 
= 0.861 and the probability of matching on the response category 1, 2, or 3 would be 
(0.071*0.050 + 0.011*0.004 + 0.005*0.002) = 0.004. You can see at the end of Table 10 that 
we do this computation for each item and create the P and Q vectors. 
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After we obtain the P and Q vectors, we can now compute the M4 index for the same two test 
takers 1035 and 1567 using the nominal response data. Table 11 shows the R code to run gtd() 
function again taking the P and Q vectors, observed number of matches on correct responses 
(m), and observed number matches on incorrect responses (n) as inputs, and returns the 
generalized trinomial distribution for the number of correct and incorrect matches for every 
possible outcome. Also, the function returns the tail probability for observing more extreme 
similarity between two test takers. The tail probability is 0.9378 and can be compared to a 
conventional alpha level (e.g., 0.01) to make a decision about the degree of unusual similarity. 

4. FINAL REMARKS 
A very nice theoretical introduction and discussion of the M4 index have been provided by 
Maynes (2017); however, there has not been an accessible tool to compute the M4 index for 
other practitioners and researchers in the field of educational testing. The M4 index is a 
computationally demanding method. Its computation requires recursive algorithms that may 
not very easy to understand and implement. In this paper, I introduced an R function to compute 
the probabilities of the generalized trinomial distribution for two disjoint events, and 
demonstrated how this function can be used along with other R item response theory packages 
(e.g., mirt) to compute the M4 index under the dichotomous and nominal item response models. 
The availability of an open source computational tool will help the practitioners and the 
consumers of this index understand the nature of the M4 index better and will also help 
researchers conduct deeper investigations in the future about the properties of the M4 index 
under different conditions with real and simulated datasets. 

Table 10. R code to compute the P and Q vectors based on nominal response dataset for individuals 
1035 and 1567 based on the estimated person parameters and item parameters 

# An internal function to compute the probability of choosing each response  
# category of each item given the item parameter matrix and a person  
# parameter estimate 
 
irtprob <- function(th, item.param) { 
    

# Inputs: 
 

       # item.param - n x 4 item parameter matrix.  
         # First four columns are slopes, and the last four columns 
are  

  # intercepts  
 
# th - ability - a numeric value 

    
   n.opt = ncol(item.param)/2 
   prob <- matrix(nrow = nrow(item.param), ncol = ncol(item.param)/2) 
     for (j in 1:ncol(prob)) { 
             prob[,j] = exp((item.param[, j] * th) + item.param[,j + 
n.opt]) 
     }  
   prob <- prob/rowSums(prob) 
   prob 
  } 

 
# Estimated theta for Person 1035 and person 1567 based on nominal response  
# model 
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Table 10. Continued 

 
    th1 <- theta.ML[1035,1] 
 
    th1 
    F1  
 1.692 
 
    th2 <- theta.ML[1567,1] 
    th2 
    F1  
 2.514 
 
 # Probability matrices. These have 56 rows, each row is representing an 
item 
 # They have four columns, each column is representing a response category 
     
    P1 <- irtprob(item.param=ipar.nrm,th=th1)   # Test taker 1035 
    P1 
             [,1]      [,2]      [,3]   [,4] 
  [1,] 0.07131223 0.0107270 0.0051265 0.9128 
  [2,] 0.12456912 0.0706226 0.0472016 0.7576 
  ……………………………………………………………………………………………………………. 
 [55,] 0.15651175 0.0552107 0.0473266 0.7410 
 [56,] 0.00444109 0.0067377 0.0093141 0.9795 
    P2 <- irtprob(item.param=ipar.nrm,th=th2)   # Test taker 1567 
    P2  
              [,1]      [,2]       [,3]   [,4] 
  [1,] 0.049684924 0.0043540 0.00158164 0.9444 
  [2,] 0.104793552 0.0454847 0.02455257 0.8252 
  ……………………………………………………………………………………………………………… 
 [55,] 0.102024390 0.0296282 0.02506444 0.8433 
 [56,] 0.001038142 0.0017010 0.00266656 0.9946 
 
 # Joint probability of correct and incorrect responses across items  
 #(P and Q vector) 
     
     # Note that in this recoded dataset used to fit the model, 
     # we re-coded the correct response as 4 for all items 
     # So, 1, 2, and 3 are incorrect responses. 
     
      P <- P1[,4]*P2[,4] 
     
      Q <- rowSums(P1[,1:3]*P2[,1:3]) 
    
 # Observed number of correct matches between the two test takers 
     
    m  <- sum((exam1_nom[1035,]==exam1_nom[1567,] &  
               exam1_nom[1035,]==4)*1,na.rm=TRUE) 
     
 # Observed number of incorrect matches between the two test takers 
     
    n  <- sum((exam1_nom[1035,]==exam1_nom[1567,] &  
               exam1_nom[1035,]!=4)*1,na.rm=TRUE) 
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Table 11. R code to compute the M4 response similarity index between examinees 1035 and 1567 based 
on the P and Q vectors computed from nominal response data 

 
  M4 <- gtd(P=P,Q=Q,m=m,n=n) 
   
  M4[[1]] # Probabilities for the trinomial distribution 
 
       IncorrectMatch CorrectMatch NonMatch Probability TailProbability 
  1                 0            0       56   1.251e-50       1.000e+00 
  58                0            1       55   2.847e-47       1.000e+00 
  115               0            2       54   2.717e-44       1.000e+00 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3136              0           55        1   5.428e-08       2.222e-07 
  3193              0           56        0   1.836e-09       8.750e-09 
  2                 1            0       55   3.301e-50       9.034e-01 
  59                1            1       54   7.505e-47       9.034e-01 
  116               1            2       53   7.153e-44       9.034e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3080              1           54        1   1.661e-07       9.390e-07 
  3137              1           55        0   6.320e-09       2.739e-08 
  3                 2            0       54   4.188e-50       5.360e-01 
  60                2            1       53   9.512e-47       5.360e-01 
  117               2            2       52   9.054e-44       5.360e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  3024              2           53        1   2.111e-07       1.202e-06 
  3081              2           54        0   8.794e-09       5.272e-08 
  4                 3            0       53   3.405e-50       2.439e-01 
  61                3            1       52   7.727e-47       2.439e-01 
  118               3            2       51   7.345e-44       2.439e-01 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  2968              3           52        1   1.538e-07       7.729e-07 
  3025              3           53        0   6.912e-09       3.431e-08 
  ……………………………………………………………………………………………………………………………………………………………………………………… 
  56               55            0        1  3.362e-144      1.259e-141 
  113              55            1        0  1.256e-141      1.256e-141 
  57               56            0        0  9.791e-149      9.791e-149 
   
  M4[[2]] # Tail Probability 
  [1] 0.9378 
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Abstract: Educational data mining (EDM) has been a rapidly growing 
research field over the last decade and enabled researchers to discover 
patterns and trends in education with more sophisticated methods. EDM 
offers promising solutions to complex educational problems. Given the 
rapid increase in the availability of big data in education and software 
programs to analyze big data, the demand for user-friendly, free software 
programs to implement EDM methods also continues to increase. The R 
programming language has become a popular environment for data mining 
due to its availability and flexibility. The rattle package in R contains a set 
of functions to implement data mining with a graphical user interface. This 
study demonstrates three widely used data mining algorithms (classification 
and regression tree, random forest, and support vector machine) in EDM 
using real data from the 2015 administration of the Programme for 
International Student Assessment (PISA). First, a brief introduction to EDM 
is provided along with the description of the selected data mining 
algorithms. Then, how to perform data mining analysis using the rattle’s 
graphical user interface is demonstrated. The study concludes by comparing 
the results of the selected data mining algorithms and highlighting how 
those algorithms can be utilized in the context of educational research. 

1. INTRODUCTION 

As an interdisciplinary field, educational data mining (EDM) refers to the development and use 
of advanced statistical methods to explore and identify patterns and relationships in data derived 
from educational settings. EDM aims to implement advanced machine learning and data mining 
algorithms (1) to exploit unprocessed data from educational settings (e.g., large-scale 
assessments, records of students’ academic progress in school, and log data from e-learning 
systems), (2) to discover relations, patterns, and trends in education, and (3) to use the 
discovered information in order guide and improve the decision-making process in educational 
practices. The increasing availability and popularity of big data in education has created new 
pathways for educational researchers who are interested in applying EDM methods to find 
solutions for various problems in education – such as enhancing the quality of online learning 
environments (Ducange, Pecori, Sarti, & Vecchio, 2016), early prediction of student dropouts 
                                                           
CONTACT: Okan Bulut  bulut@ualberta.ca  Centre for Research in Applied Measurement and 
Evaluation, University of Alberta, Edmonton/Alberta, Canada 
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(Aulck, Velagapudi, Blumenstock, & West, 2016), and forecasting students’ academic 
performance and identifying students who might be at risk of academic failure (Hussain, Zhu, 
Zhang, Abidi, & Ali, 2019).  

Educational researchers who intend to use the EDM methods typically follow a deductive 
reasoning approach in which they first collect or get access to large volumes of data, explore 
the data visually and statistically, and then do further investigations in order to discover hidden 
patterns and relationships in the data. Unlike theory-driven educational research that usually 
aims to obtain evidence supporting a priori hypothesis, the primary goal of a typical EDM 
process is to find and extract new knowledge from the data without a particular priori hypothesis 
and to use the discovered information for the purpose of building new theory, if possible. In the 
context of EDM, educational researchers’ interests are mainly focused on several dimensions, 
such as learning, predictive, behavioral, and visual analytics (Aldowah, Al-Samarraie, & Fauzy, 
2019). Recent systematic review studies have also highlighted a vast and growing body of 
research on EDM and its applications in various areas of education (e.g., Aldowah et al., 2019; 
Baker, Martin, & Rossi, 2017; Dutt, Ismail, & Herawan, 2016; Peña-Ayala, 2014). The findings 
of these review studies reveal that educational researchers will continue to harness the power 
of EDM for solving complex problems in education with the availability of big data in 
education.  

From the methodological point of view, EDM methods are the same as the data mining methods 
utilized in other scientific fields (e.g., business, finance, medicine, and agriculture). The current 
data mining methods can be categorized into two main types according to the availability of a 
target (i.e., dependent) variable in the data: supervised (also known as predictive) and 
unsupervised (also known as descriptive). Supervised data mining methods are appropriate 
when the researcher wants to predict a specific target variable that is already available in the 
data. Typical examples of supervised data mining applications include regression and 
classification tasks where the researcher wants to predict either a categorical (classification) or 
continuous (regression) variable using a set of predictors (i.e., features) available in the data. 
Unsupervised data mining methods are appropriate when the goal is to find hidden structures 
or relations in the data instead of predicting a target variable. Common examples of 
unsupervised data mining applications include clustering, association rule mining, and 
dimensionality reduction. A detailed review of data mining methods commonly used in 
educational research can be found in Aldowah et al. (2019) and Peña-Ayala (2014). 

In education, researchers and practitioners are often interested in research problems in which 
the primary goal is the prediction of an outcome (i.e., dependent) variable from a set of 
predictors (Berland, Baker, & Blikstein, 2014; Sinharay, 2016). Therefore, EDM applications 
mostly involve supervised data mining methods, instead of unsupervised data mining methods. 
Previous research indicated that the supervised data mining methods often provide higher 
prediction accuracy than traditional methods, such as multiple linear and logistic regression 
(e.g., Fernández-Delgado, Cernadas, Barro, & Amorim, 2014; Koon & Petscher, 2015, 2016; 
Spikol, Ruffaldi, Dabisias, & Cukurova, 2018). This study focuses on three data mining 
algorithms that can be used for both classification and regression problems: classification and 
regression trees (CART; Breiman, Friedman, Olshen, & Stone, 1984), random forest (RF; 
Breiman, 2001), and support vector machines (SVM; Cortes & Vapnik, 1995). These 
algorithms have been widely used in previous EDM research due to their relatively lower 
complexity and ease of implementation and interpretation (e.g., Guruler, Istanbullu, & 
Karahasan, 2010; Ivancevic, Celikovic, & Lukovic, 2011; Mccuaig & Baldwin, 2012; Pardos, 
Wang, & Trivedi, 2012). 

The CART algorithm relies on stratifying a large dataset into a number of smaller subsets in 
which separate regression models can be built for either continuous or categorical outcome 
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variables. Then, the model provides a set of classification or regression rules in a decision tree 
based on the nodes generated from the utilized predictors (Agarwal, Pandey, & Tiwari, 2012). 
As a nonparametric approach, CART does not make explicit assumptions about the 
distributions of variables, and thus it can produce relatively more accurate predictions (e.g., 
Strobl, 2013). The RF algorithm is similar to the CART algorithm in terms of relying on a 
regression or classification tree model for prediction. However, unlike CART, the RF algorithm 
generates many decision trees and combines all of them for making a final prediction (Breiman, 
2001). Therefore, the RF algorithm can overcome many estimation issues (e.g., instability, high 
bias, and under-representation of classifications) in the CART algorithm because predictions 
are made based on the combination of many tree models that are generated differently using 
bootstrap samples, instead of a single decision tree model based on the entire sample (Sinharay, 
2016; Williams, 2011). Differently from the previous two algorithms, the SVM algorithm relies 
on creating a separating hyperplane in an N-dimensional prediction space where N refers to the 
number of available predictors in the data. A hyperplane can be considered as a decision 
boundary that helps separate or classify the data points. If the outcome variable is categorical, 
then the hyperplane aims to create classes having the maximum distance between each other 
(Williams, 2011). If, however, the outcome variable is continuous, then the hyperplane creates 
a regression line (or plane) that can minimize the difference between the predicted and original 
values of the outcome variable.  

Currently, there are many software programs that are capable of implementing the data mining 
algorithms mentioned above – such as RapidMiner, Weka, KEEL, KNIME, Orange, Python, 
R, and IBM SPSS Modeler (see Slater, Joksimović, Kovanovic, Baker, and Gasevic [2017] for 
a detailed review). Some of these programs (e.g., RapidMiner, Weka, and IBM SPSS Modeler) 
provide a graphical user interface (GUI) for users to easily select an algorithm along with the 
type of data mining analysis that they want to perform. Compared to these software programs, 
advanced programming languages such as Python and R (R Core Team, 2019) can provide 
users with more sophisticated tools to explore, organize, visualize, and model the data within 
the same computing environment. However, the amount of time that it takes to learn a new 
programming language and to achieve expertise in it can be very long for novice users who do 
not have any previous experience in programming. An exception in this situation is the rattle 
package (Williams, 2011) that provides a user-friendly GUI to perform data mining analysis 
within the R statistical computing environment (R Core Team, 2019). The rattle package can 
perform data mining analysis using a variety of advanced algorithms. The purpose of this study 
is to demonstrate how to use the rattle package for performing data mining analysis. Using a 
real dataset from a large-scale international assessment, the implementation of the CART, RF, 
and SVM algorithms using the rattle package is demonstrated. The steps for building and 
evaluating a predictive model in the rattle are also described in detail. 

2. METHOD 

2.1. Study Group   

The sample of this study comes from the 2015 administration of the Organisation for Economic 
Co-operation and Development’s (OECD) Programme for International Student Assessment 
(PISA). PISA is a large-scale, international assessment program that assesses the extent to 
which 15-year-old students have acquired adequate competency in various subject areas such 
as reading, mathematics, and science (OECD, 2018). The 2015 administration of PISA involved 
approximately 540,000 15-year-old students from 72 participating countries and economies. 
The sample of this study consists of 5896 students (49.83 % female) who participated in PISA 
2015 from Turkey. This study uses the PISA dataset for the demonstration of the rattle package 
because the dataset is publicly available through the OECD website 
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(http://www.oecd.org/pisa/) and it consists of many categorical and continuous variables from 
students and schools – which creates a large-size database suitable for an EDM research study.  

2.2. Measures 

2.2.1. Scientific Literacy Test in PISA 2015 

The primary focus of PISA 2015 was to assess students’ scientific literacy as well as their 
attitudes and preferences regarding learning experiences in science. The results of PISA 2015 
suggest that there is a large variation in students’ competency levels in science and that this 
variation can be explained by many factors, such as demographic variables, socioeconomic 
status, students’ participation in science-related activities, and the opportunity to learn science 
at school (Mostafa, Echazarra & Guillou, 2018; OECD, 2018). In this study, students’ 
performance levels in scientific literacy were obtained from the PISA 2015 Scientific Literacy 
Test. The scientific literacy test was designed to assess three major competencies: explaining 
phenomena scientifically, evaluating and designing scientific inquiry, and interpreting data and 
evidence scientifically (OECD, 2017). Moreover, 36% of the items in the test were in physical, 
36% in living, 28% in earth and space context. Students’ scores obtained from the test were 
scaled with a mean of 500 and a standard deviation of 100. The average scientific literacy score 
in PISA 2015 was 493 across all participating countries. Using this score as a cutoff value, a 
categorical variable (science_perf) was created. For students whose scores were equal or higher 
than 493, science_perf was labeled as “High”. If, however, students’ scores were less than 493, 
then the label of “Low” was assigned to science_perf. The resulting categorical variable was 
used as the outcome variable in the data mining analysis.  

2.2.2. The student questionnaire 

The other variables regarding students (i.e., predictors) were obtained from the student 
questionnaire of PISA 2015. Table 1 shows the complete list of the variables used in this study. 

Table 1. The list of the variables used in this study 

Variable Data type Description 
gender Categorical Female=1, Male=0 
computer Categorical Owning a computer at home; Yes=1, No=0 
software Categorical Owning software at home; Yes=1, No=0 
internet Categorical Owning internet at home; Yes=1, No=0 
desk Categorical Owning a desk at home; Yes=1, No=0 
own.room Categorical Owning a room at home; Yes=1, No=0 
quiet.study Categorical Owning a quiet study area at home; Yes=1, No=0 
ANXTEST Numeric Test anxiety 
COOPERATE Numeric Enjoying cooperation 
EMOSUPS Numeric Parents emotional support 
PARED Numeric Highest education of parents in years 
TMINS Numeric Learning time in total 
ESCS Numeric Index of economic, social and cultural status  
TEACHSUP Numeric Teacher support in a science class 
TDTEACH Numeric Teacher-directed science instruction 
IBTEACH Numeric Inquiry-based science teaching and learning practices 
SCIEEFF Numeric Science self-efficacy 
science_perf Categorical If science scores >= 493, High; Low otherwise 
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2.3. Procedure 

To use the rattle package, readers first need to download and install the R software program 
into their computers. Readers who have no experience regarding downloading, installing, and 
using R are recommended to check the program manual on the CRAN website (https://cran.r-
project.org/doc/manuals/r-release/R-intro.pdf) prepared by Venables, Smith, and the R Core 
Team (2019). The rattle package contains a set of functions to implement data mining with a 
GUI. The latest installation instructions can be found at http://rattle.togaware.com. In this study, 
Rattle version 5.2.0 was used for data mining analysis. To download and install the rattle 
(Williams, 2011) and its required extension RGtk2 (Lawrence & Lang, 2010), the following 
codes must be executed in the R console (note that this step requires Internet connection): 

 

#Installing the packages 

install.packages("rattle") 

install.packages("RGtk2") 

 

Once the packages have been installed successfully, both packages must be activated using the 
library command in R: 

#Activating the packages 

library("rattle") 

library("RGtk2") 

 

The next step is to the rattle command, which will open the rattle GUI as demonstrated in 
Figure 1. 

#Opening the rattle GUI 

rattle() 

 
 

The rattle GUI can read several data formats, such as text files with .txt, .dat, or .csv extensions, 
RData files, and Open Database Connectivity (ODBC) files. This study uses “pisa_turkey.csv”, 
which consists of the variables listed in Table 1. To open the pisa_turkey.csv in the rattle, the 
first step is to click “Filename” under the “Data” tab and look for the data file in the computer. 
Once the data file is found, the “Open” and “Execute” buttons should be clicked, respectively. 
This process will open the pisa_turkey.csv file in the rattle and load the dataset into the program 
(see Figure 2). For other types of data formats, the same procedure can be followed by selecting 
a specific file format available under “Source”. Once a dataset is properly read and loaded into 
the rattle, a summary screen of the dataset becomes available (see Figure 3). The summary 
menu shows all the variables in the dataset, types of variables (numeric or categorical), and the 
role of the variables (e.g., input, target, and identity). Furthermore, the “Comment” column in 
the summary screen can help users identify potential issues in the variables (e.g., extreme 
missingness). Using the summary menu, users can change the default preferences regarding the 
variables. For example, the outcome variable must be labeled as “Target” so that this variable 
can be used as the outcome variable in the modeling stage. If the user wants to exclude some 
variables from the dataset, these variables should be labeled as “Ignore”. Note that changes 
made on the summary screen will be saved only after the user clicks the “Execute” button. 
Otherwise, changes made on the variables will be lost.  
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Figure 1. The graphical user interface (GUI) of the rattle 

 

 

Figure 2. Loading the data 
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Figure 3. The view of the “pisa_turkey.csv” dataset 

3. RESULTS/FINDINGS 

This section demonstrates how to implement the CART, RF, and SVM algorithms for the 
prediction of students’ proficiency status in the scientific literacy test. For each algorithm, the 
rattle will require users to download and install the required packages for the first-time 
implementation. Therefore, users should accept and install the suggested packages if the rattle 
shows any warning messages about downloading and installing such packages. By default, the 
rattle should be able to recognize “science_perf” as the target variable. However, if this is not 
the case, it must be specified as “Target” under the Data option before running the subsequent 
analyses (see Figure 3). Once the “Partition” option is checked, the rattle splits the dataset into 
three parts: training dataset (70% of the dataset), test dataset (15% of the dataset), and the 
validation dataset (the remaining 15% of the dataset). These partitions are created using random 
sampling based on the seed value (default = 42) under the Data tab. Using the same seed ensures 
that the user can get the same randomly drawn training, test, and validation datasets every time 
the rattle is used for the same dataset. The training dataset is used for model building and the 
other two datasets are used for evaluating the accuracy of predictions made from the model. 
Alternatively, two datasets (e.g., training with 70% and validation with 30%) can be created by 
typing 70/30 inside the “Partition” box. 
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3.1. Classification and regression trees (CART) 

The first two steps to build a decision tree using the CART approach are to switch to the 
“Model” tab in the rattle and to select the “Tree” option (see Figure 4). Then, the third step is 
to set the model parameters. “Min Split” is the minimum number of observations that must exist 
in a node (default = 20); “Min Bucket” is the minimum number of observations in any terminal 
node (default is Min Split/3); “Max Depth” is the maximum depth of any node of the final tree 
(default = 3); and “Complexity” is the complexity parameter to prune the subtrees that do not 
improve the overall model fit (default = 0.01). If this parameter is set to zero, then the CART 
algorithm keeps all the estimated nodes and typically creates a highly complex model that might 
be hard to interpret. However, a large value for the complexity parameter might also be 
detrimental to the model because it would remove many useful nodes from the model and leave 
a simple model with a very low predictive accuracy. Therefore, users are recommended to build 
several models by tuning the model parameters based on resulting model evaluation indices 
(e.g., accuracy, sensitivity, and recall). The fourth step is to click on the “Execute” button – 
which runs the CART algorithm based on the requested settings. The CART algorithm uses all 
the variables selected as “input” under the Data tab to predict the target variable (science_perf). 
Once the estimation is complete, the results can be printed on the screen by clicking on the 
“Rules” button. Furthermore, visualizations can be drawn for the final decision tree model by 
clicking the “Draw” button. Figure 4 illustrates the steps to be followed to implement the CART 
approach and the output returned from the rattle. 

 

 

Figure 4. Building a predictive model with the CART algorithm 
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The output returned from the CART model shows the rules that were used to create the nodes 
in the decision tree. The output shows the decision nodes and the terminal nodes that were 
specified with *. For example, a decision node was created based on ESCS (index of economic, 
social and cultural status) at the beginning of the tree. Based on whether students’ ESCS index 
values were equal or larger than -0.5027, two branches were created in the decision tree model. 
Then, the group of students who meet the ESCS condition is split into two additional branches 
depending on whether their total learning time (TMINS) is less than 1660 minutes. The 
remaining nodes can be interpreted in a similar manner. A relatively easier way to see all the 
nodes in the model is to draw a decision tree plot. The “Draw” option under the Model tab 
generates a decision tree plot based on the nodes summarized in the output. Figure 5 shows the 
decision tree plot returned from the rattle for the prediction of the proficiency status in scientific 
literacy (i.e., science_perf). 

 

Figure 5. The decision tree plot for the prediction of science_perf 

 

In Figure 5, the categories of science_perf are color-coded where the blue color boxes represent 
the “Low” category and the green color boxes represent the “High” category. Within each box, 
the two values in the middle represent the probabilities of the first and second categories. For 
example, the first terminal node on the right-hand side of the plot shows that students who have 
ESCS index values smaller than -0.5 have the probabilities of 14% of being in the “Low” 
category and 86% of being in the “High” category. The number at the bottom of each box 
represents the percentage of observations in the node. Focusing on the same blue box from the 
previous example, 77% of the students in the training dataset fall into the node where ESCS is 
smaller than -0.5. Figure 5 also shows that only four of the input variables (ESCS, IBTEACH, 
TDTEACH, and TMINS) were used as the predictors. This is because the CART algorithm 
keeps the predictors that can significantly contribute to the prediction, depending on the selected 
model parameters (e.g., complexity, min split, and max depth). 
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3.2. Random forest (RF) 

To implement the RF algorithm for the same classification task (i.e., predicting science_perf) 
in the rattle, the “Forest” option must be selected under the “Model” tab. Then, the model 
parameters need to be determined. “Trees” refer to the numbers of decision (or regression) trees 
to be built (default = 500); “Variables” is the number of predictors randomly sampled as 
candidates at each split (default = square root of the number of predictors for classification and 
the number of predictors / 3 for regression); and “Sample Size” is the sizes of sample to draw 
(default = 0.632 * the number of observations in the training dataset). Once the model 
parameters are determined, the next step is to click on the “Execute” button to perform the 
analysis. Like the CART algorithm, the RF algorithm also uses all of the input variables to 
predict the target variable (science_perf). Once the estimation is complete, the results can be 
printed on the screen by clicking the “Rules” and “Importance” buttons. Figure 6 shows the 
steps to be followed to implement the RF algorithm and to view the output in the rattle. 

 

 

Figure 6. Building a predictive model with the RF algorithm 
 

The output returned from the RF algorithm shows the number of observations used for building 
the model, the formula used to build the predictive model, and the selected model parameters. 
The output also shows additional information, such as the out-of-bag (OOB) estimate of the 
error rate and the confusion matrix. OBB is a method of measuring the prediction error of a 
predictive model estimated with the RF algorithm. In this example, the OOB estimate of error 
rate is 16.67 %, suggesting that 83.33 % of the predictions made for science_perf is correct 
within the training dataset. Additionally, the visual output returned from the “Importance” and 
“Errors” indicates the importance of the predictors in the prediction process (Figure 7) and error 
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rates across all of the decision trees built for the model (Figure 8). Based on the variable 
importance measures shown in Figure 7, ESCS, IBTEACH, TMINS, and computer appear to 
be the strongest predictors in the estimated model since they have higher importance values, 
compared to the other variables. Although there is no particular cut-off value to determine 
which predictors are more important, the predictive power of these variables appears to be 
relatively higher than the other variables (see the “High” category of the top-left corner of 
Figure 7). The findings also suggest that the model error rates did not change after 100 trees. 
That is, the same model could be estimated with only 100 trees to obtain the final model more 
efficiently.  

 

 
Figure 7. A plot of variable importance for the RF algorithm 
 

 
Figure 8. A plot of error rates for the RF algorithm 
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3.3. Support vector machine (SVM) 

To implement the SVM algorithm for predicting science_perf, the “SVM” option must be 
selected under the “Model” tab. Unlike the CART and RF algorithms, there are not many model 
parameters to choose for the SVM algorithm. Instead, the most important decision that users 
must make is the selection of a kernel function. The default kernel function in the rattle is 
“rbfdot”, which refers to the Gaussian radial basis function. The “rbfdot” function is a general-
purpose kernel suitable for cases where there is no prior knowledge about the data. There are 
also other popular kernel functions available for the SVM algorithm, such as “polydot” for the 
polynomial kernel function and “vanilladot” for the linear kernel function. Non-linear kernels 
often provide a better model-data fit than linear kernels at the expense of high computational 
complexity and estimation time. Once a kernel is selected, the next step is to click on the 
“Execute” button to perform the analysis. Like the previous algorithms, the SVM algorithm 
also utilizes all of the selected input variables to predict the target variable (science_perf). Once 
the estimation is complete, the results are printed on the screen. Figure 9 shows the steps to be 
followed to implement the SVM algorithm in the rattle. 

 

 

Figure 9. Building the support vector machine classification model 
 

The output returned from the SVM algorithm shows the default settings used in the estimation 
process (the cost parameter of C as 1 and the hyperparameter of sigma as 0.0408). In addition, 
the output shows the number of support vectors created in the model (1651). An important 
section of the output is “Training error”. The results show that the overall prediction error in 
the training dataset was around 20.53%. That is, roughly 80% of the predictions made for 
science_perf in the training dataset are accurate. It should be noted that although the output 
resulted from the SVM algorithm is quite concise in the rattle compared to those from the 
CART and RF algorithms, it is often much more difficult to interpret the content of this output 
given the complex hyperparameters used in the SVM algorithm. 
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3.4. Evaluating models 

Unlike traditional statistical methods, the data mining methods require researchers to build 
several models, evaluate outcomes from each model, adjust the models accordingly, and 
continue to tune the models until an acceptable level of accuracy is reached. As demonstrated 
in this tutorial, several algorithms can also be used for the same classification or regression task. 
Therefore, researchers must not only tune their models but also select the most suitable 
algorithm based on the model evaluation measures. In the rattle, model evaluation can be 
performed using the options under the “Evaluate” tab. For model evaluation, either validation 
or test datasets should be used because these datasets consist of the observations that the 
algorithms have not seen when building the prediction model. Figure 10 shows the steps to view 
the error matrix from the SVM algorithm, although the same steps can be followed to see the 
same output for other algorithms as well. This tutorial focused on the prediction of a binary 
outcome variable (science_perf), and thus the error matrix returns a two-by-two matrix of 
predicted and actual values and proportions of the two categories (i.e., “High” and “Low” 
proficiency in scientific literacy). The overall prediction error for the SVM-based model is 21% 
and the average classes (i.e., category) error is 49.4%. The error matrix shows that the prediction 
accuracy of the “Low” category was precise, whereas the prediction accuracy of the “High” 
category was quite poor. 

 

 

Figure 10. The view of the “Evaluate” tab in rattle 

 
The “Evaluate” tab offers many useful measures for model evaluation. For example, the 
sensitivity, specificity, precision, and recall plots can be created using the “Sensitivity” and 
“Precision” options under the “Evaluate” tab. Users must select one of these evaluation options 
and click “Execute” to draw the plots. Table 2 shows the calculation of the evaluation measures 
available in the rattle. 
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Table 2. Evaluation measures for the classification of “Low” and “High” groups in science_perf 

Predicted Classification 
Actual Classification 

Low proficiency in science High proficiency in science 

Low proficiency in science True Positive (TP) False Positive (FP) 

High proficiency in science False Negative (FN) True Negative (TN) 

Note: Sensitivity = TP/TP+FN; Specificity = TN/TN+FP; Precision = TP/(TP+FP); Recall = TP/(TP+FN) 

 

To compare the results from different data mining algorithms, the models must be estimated 
with each algorithm first so that the evaluation measures under the “Evaluation” tab can draw 
the plots by including the results from all algorithms. Figures 11 and 12 show the plots of 
sensitivity/specificity and precision/recall across the three data mining algorithms (i.e., CART, 
RF, and SVM). Figure 11 shows that there is a significant trade-off between sensitivity and 
specificity for all the algorithms. As the specificity level (i.e., detecting “High”) increases, the 
sensitivity level (i.e., detecting “Low”) decreases. Among the three algorithms, the performance 
of the RF algorithm appears to be the best in terms of balancing sensitivity and specificity. 
Figure 12 shows the precision and recall levels across the three algorithms. The results suggest 
that all the algorithms indicate high precision and recall values in predicting the “High” and 
“Low” values of science_perf. Given the similar precision and recall values across the three 
algorithms, sensitivity and specificity can be more decisive evaluation measures for the 
example presented in this study. 

 
Figure 11. The sensitivity and specificity plots of the three data mining algorithms (Note: rpart refers 
to CART, rf refers to RF, and ksvm refers to SVM). 
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Figure 12. The precision and recall plots of the three data mining algorithms (Note: rpart refers to 
CART, rf refers to RF, and ksvm refers to SVM). 

4. DISCUSSION and CONCLUSION 

The purpose of this study was to demonstrate the implementation of the three data mining 
algorithms (i.e., CART, RF, and SVM) using the rattle package (Williams, 2011) in R (R Core 
Team, 2019). The selected algorithms are widely used methods in EDM research for both 
classification and regression tasks. The example used in this study demonstrated how to build 
classification models using the CART, RF, and SVM algorithms for predicting students’ 
proficiency levels (low or high) in the scientific literacy test of PISA 2015. In addition, the 
model evaluation stages were also described.  

Based on the results of this study, the RF algorithm appeared to be the best performing 
algorithm for predicting students’ proficiency levels in the scientific literacy test of PISA 2015. 
This is not a surprising finding because the RF algorithm often provides accurate prediction 
results in datasets that contain both numerical and categorical predictors (i.e., features). These 
findings tie well with a previous study wherein Fernández-Delgado et al. (2014) compared the 
performances of 179 classification algorithms using 121 real datasets. The researchers found 
that the RF algorithm was the best algorithm for most real world classification problems, 
followed by the SVM algorithm. A similar pattern of results was obtained in the current study.  

The results from the three algorithms were somewhat different in this study mainly because 
each algorithm handles different types of variables and their relationships in the pisa_turkey 
dataset. For example, the CART algorithm yielded sensitivity and specificity values similar to 
those from the other two algorithms, but it used fewer predictors in the estimation. Depending 
on what complexity parameter has been selected, the decision tree model can either retain or 
eliminate the subtrees created based on relatively less important predictors in the dataset. 
Furthermore, when some predictors are highly correlated, the CART algorithm may choose 
only one of those predictors and ignore the others. Therefore, researchers are recommended to 
choose an algorithm and tune its parameters after careful consideration and review of their data. 

As a free software program, the rattle uses many powerful packages available within the R 
computing environment for conducting data mining analysis. Unlike the R software program 
that requires users to type and execute their codes, the rattle provides a user-friendly GUI that 
enables users to import their data files easily, select an algorithm from a variety of options, and 
evaluate the results using model evaluation measures. The output returned from the rattle 
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involves both statistical and visual outcomes to facilitate users’ evaluation and fine-tuning of 
their models. Although it is not demonstrated in this study, the rattle is also capable of providing 
users with the opportunity to explore their datasets descriptively and to transform variables 
(e.g., rescaling, recoding, and normalizing) before performing further analysis. In addition, the 
rattle is capable of performing unsupervised data mining, including clustering with k-means 
and hierarchical clustering methods and association rule analysis. For advanced R users who 
might prefer to keep the R codes for their analysis, the rattle provides a script that presents the 
underlying R codes for all analyses conducted in the program under the “Log” tab. For a 
comprehensive review of the rattle, readers are recommended to check out Data Mining with 
Rattle and R by Williams (2011) who is also the author of the rattle.  
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Abstract: The purpose of this study was to write programs to define 
sampling sizes and observation units by probability sampling methods and 
to provide an idea for software developers. The algorithms of the programs 
were written in Python 3. The programs may be run by double-clicking on 
the Windows operating system or by the command prompt of the DOS 
operating system. Each exe file has a memory space of 5 megabits on 
average. In this respect, the application files are very useful in terms of 
sharing by email and mobility by USB memory sticks. 

1. INTRODUCTION 

The purpose of science is to make explanations about "an object of research or its properties". 
The "method" is one of the principal issues in both creating scientific explanations that do not 
contract reason and logic and verifying or falsifying the existing explanations. Method is a kind 
of program for the things to do (Thomas, 2009). In this respect, acquisition of object(s), the 
number of objects observed, the representativeness of the objects selected, and whether objects 
are selected impartially are as critical as a scientific researcher's purpose, theory and 
hypotheses.   

Since science has a language and a method, not all analyses, studies or observations are 
considered scientific, because the quality of being scientific implies a set of activities that do 
not rest on mere judgments but on proofs and methods. Both accuracy and ethics of the 
conclusions made in a study point to the soundness of the method of research. Therefore, a 
sound and strong method of scientific research rests on the knowledge of the researchers and 
their sensitivity of following the procedure and principles.  

Testing/observing how many units/objects does it take to conduct a valid and sound research? 
Contrary to popular belief, the answer to this question is not related to a study being qualitative 
or quantitative. At this point, the object and subject matter of science or a scientific study takes 
priority. Science is what can be known by information. In other words, science is an effort to 
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explain/study a part of reality. Therefore, this effort to explain is possible by induction or 
deduction. Based on the principles of reasoning (deduction or induction) that must be employed 
in the effort to explain a part of reality, categorization of scientific studies as qualitative or 
quantitative research and association of certain sampling methods with the categorized types of 
research contradicts the nature of science. Just as the object of information in physics is not the 
same as that of anthropology, the nature of an object of information of a study cannot be 
associated with a researcher being qualitative or quantitative. The quality of being qualitative 
or quantitative is about the measurement and its result.  Therefore, the answers to the question 
of "testing/observing how many units/objects does it take to conduct a valid and sound 
research?" are not about qualitative or quantitative research type.  

One of the most essential elements to be distinguished in a scientific study that attempts to 
explain reality is to decide whether the sampling or a sample of the properties of the object of 
study should be analyzed. Sampling is a selection process. On the other hand, a sample is a 
specimen, a part of the whole. The question of "testing/observing how many units/objects does 
it take to conduct a valid and sound research?" will be inadequate when this difference is 
ignored. An initial principle will be necessary for a selection from defined 
units/objects/elements. The said initial principle may have several different sampling methods. 
In this case, sampling methods should inevitably have strengths and weaknesses compared to 
each other.  

The method of sampling should not be considered merely a process of defining a number of 
units/objects/elements. The method of sampling is one of the premises of making a logical 
explanation about the subject matter of the object of research. For instance, it is not reasonable 
to take soil samples from every square meter of land using simple random sampling or 
purposeful sampling for the soil analysis of a field of 5 dunams since it is not compulsory to 
ensure that the sample is representative of the whole in such a study. On the other hand, for a 
research on reading comprehension of students in Turkey, it is essential for the students to be 
representative of the whole.  Therefore, it is necessary to grasp the distinctive properties of all 
sampling methods.  In the literature, sampling methods are principally classified in two 
categories, namely, probability sampling and non-probability sampling (Rubin & Babbie, 
2010). Those sampling methods are summarized in Table 1. 

In the probability sampling method, units/elements/items are selected from a defined universe 
based on a statistical probability. However, in the non-probability sampling method, the number 
of units/elements/items is not determined and units/elements/items are not selected based on a 
probability and sampling size. Defining a sampling size from the universe using non-probability 
sampling is accompanied by the selection of the observation units to be included in sampling. 
This selection process may be tedious for a researcher for studies with a broad universe in 
particular. Ways to save time and effort bring computer technologies to the mind. Computer 
technologies makes positive contributions to the research process particularly for the 
probability sampling methods. Software that is used to define the sample size and observation 
units is written by different programming languages including PHP, Java, C, C++, R, and 
Python.  
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Table 1. Sampling methods and descriptive properties 

 Descriptive properties 

A Probability 
Sampling 

A.1. Simple Random 
Sampling 

The probability of all units/elements/items being selected 
is equal and independent of one another. 
 

A.2. Systematic 
Sampling 

The initial unit/element/item is selected randomly. 
Nevertheless, selection of other units/elements/items 
depends on the selection coefficient. 
 

A.3. Stratified Sampling The universe is made up of sub-strata (i.e. universes) that 
are heterogeneous among each other but each 
homogeneous in itself. Units/elements/items are selected 
randomly, taking into consideration the strata's rate of 
representation of the universe. 
 

B. Non-
probability 
Sampling 

B.1. Convenience 
Sampling  

Units/elements/items that are easier to reach based with the 
prevailing conditions are studied. 
 

B.2.Purposive Sampling Units/elements/items are studied based on defined and 
restricted properties. 
 

B.3. Quota Sampling The universe is made up of sub-strata (i.e. universes) that 
are heterogeneous among each other but each 
homogeneous in itself. Units/elements/items are selected 
based on a quota.  
 

B.4. Panel Sampling Units/elements/items that make the whole are 
homogeneous in their properties, regardless of the size of 
the universe. Therefore, the sample is taken from the whole. 

 
1.1. Aim of the Study 

The purpose of this study was to write programs to define sampling sizes and observation units 
by probability sampling methods. Also it was to provide an idea for software developers. 

2. METHOD 

The algorithms of the programs were written in Python 3. Python is an object-oriented, 
interpretive, modular, interactive, high-level programming language that is fast and easy to 
learn (Sahoo& Sahoo, 2016). Codes of the programs written were shared as open source, and 
user's guides were prepared for the application files. The py code and MIT licenses of the 
programs can be accessed via Github. 

2.1 Determination of the Sampling Size and Observation Units by Simple Random 
Sampling 

Sampling size for simple random sampling is calculated at two stages using the equation below 
(Royse, Thyer&Padgett, 2010). 
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N= Universe size 

Z = Standard Z value for the level of reliability (e.g. ±1.96) 

c = Acceptable amount of error (e.g. ±5) 

P= Estimated rate of the sampling of interest in the universe (e.g. 50%) 

 
The algorithm written in Python based on this calculation formula is available at 
https://github.com/totbicer/Simple-Random-Sampling. The application Random_sampling.exe 
is available at https://parantezanaliz.com/programs/Random_sampling.zip. Once the 
Random_sampling.exe is run, data is input in four steps as seen in Figure 1.  
 

 
Figure 1. Screenshot of the simple random sampling program 

Step 1: A numerical value is input with the defined and restricted size of the universe being a 
number. Assume that there are 500 units in the universe. 

Step 2: A numerical value is input with the sampling error being an natural number between 1 
and 100. Assume that the sampling error is 5. 

Step 3: The confidence level is input. A numerical value of 95 or 99 is input. Assume that the 
confidence level is 95%. 

Step 4: A numerical value is input with the probability or observation frequency of an event or 
fact of interest being a natural number. If no information is available as to the probability of 
happening or being observed, the value should be 50. Thus, the probability of happening or 
being for each of the observations is equal. For instance, 50 is input for a probability of 50%, 
30 is input for a probability of 30%. 

 

 
Figure 2. Result of the simple random sampling program 
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When the operation is continued, a simple random sampling is made to show the computed 
sampling size as shown in Figure 2. Based on the assumption that units in the universe are 
represented by ordinal numbers, ordinal numbers of the units randomly selected are listed on 
the screen. 

2.2 Determination of Observation Units by Systematic Sampling 

Based on the simple random sampling method or a sampling size determined hypothetically, 
the unit selection process is performed by the following equation (Babbie, 2008).  

k = N / n   and    Ssn= It is determined randomly between 1 and k value. 

Where: 

N= Universe size 

n= Sampling size 

k= Selection coefficient 

Ssn= Starting sequence number 
 
The algorithm written in Python based on this calculation formula is available at 
https://github.com/totbicer/Systematic-Sampling. The application Systematic_sampling.exe is 
available at https://parantezanaliz.com/programs/Systematic_sampling.zip. Once the 
Systematic_sampling.exe is run, data is input in two steps as seen in Figure 3. 

Step 1: A numerical value is input with the defined and restricted size of the universe being a 
number. Assume that there are 500 units in the universe. 

Step 2: A numerical value is input with the sampling size being a natural number. Assume that 
sampling size is 50. 

 

 
Figure 3. Screenshot of the systematic sampling program 

As can be seen in Figure 3, the selection coefficient and the randomly selected initial number 
are shown on the screen. Based on the assumption that units in the universe are represented by 
ordinal numbers, ordinal numbers of the units selected by the systematic sampling method are 
listed on the same screen.  

2.3 Determination of the Sizes of the Strata with Stratified Sampling 

In the stratified sampling method, if a sampling size is not available, the sampling size is 
determined firstly by the simple random sampling method.  Based on a known or determined 
sampling size and the number of strata, observation units are selected by the equations below 
(Kalton, 1983).  

Wh = Nh / N         and         Fh = Wh*Ss 
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Where: 

h= Number of stratum 

Nh= h. sampling size of stratum 

N= Universe size,  ∑𝑁 

Wh = Representation rate of the stratum of the universe,  ∑𝑊 = 1 

Ss= Sampling size 

Fh= h. sampling size for the stratum 
 
The algorithm written in Python based on this calculation formula is available at 
https://github.com/totbicer/Stratified-Sampling. The application Stratified_sampling.exe is 
available at https://parantezanaliz.com/programs/Stratified_sampling.zip. Once the 
Stratified_sampling.exe is run, data is input in four steps as seen in Figure 4.  

Step 1: A numerical value is input with the defined and restricted size of the universe being a 
number. Assume that there are 500 units in the universe. 

Step 2: A numerical value is input with the sampling size being a natural number. Assume that 
sampling size is 217. 

Step 3: A numerical value is input with the number of strata being a natural number. For 
instance, assume that there are 3 strata in the universe. 

Step 4: A numerical value is input with the number of units/observations for each stratum being 
a natural number. For instance, assume that there are 150, 50 and 300 observations for each 
stratum. 
 

 
Figure 4. Screenshot of the stratified sampling program. 

The rate of representation of each stratum of the universe and the number of units to be sampled 
for the strata are output on the screen. The process of selecting observation units of a specified 
number for the strata may also be performed randomly or systematically.  

3. CONCLUSION 

Execution files in exe format written in Python 3 were prepared to determine the sampling size 
and observation units for the probability sampling methods. Each program was shared as as 
open source in trial version for a year. Updates were made during the trial period to ensure that 
the language and the expressions were clear and comprehensible. No software error was 
reported during the trial period.  
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The programs may be run by double-clicking on the Windows operating system or by the 
command prompt of the DOS operating system. Each exe file has a memory space of 5 megabits 
on average. In this respect, the application files are very useful in terms of sharing by email and 
mobility by USB memory sticks. 
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Abstract: Computer adaptive testing is an important research field in 
educational measurement, and simulation studies play a critically important 
role in CAT development and evaluation. Both Monte Carlo and Post Hoc 
simulations are frequently used in CAT studies in order to investigate the 
effects of different factors on test efficiency and to compare different test 
designs. Although there are several softwares for CAT simulations, R is 
preferred since it includes many free packages and gives researchers 
opportunity to write their own functions according to their own 
requirements besides being free. The purpose of this study is to make an 
introduction and demonstration of how to use catR package in CAT 
simulations. Different examples were provided in the context of this study 
and R codes were presented with explanations. Then, the output files were 
briefly explained. It is thought that this paper is helpful for the researchers 
who are interested in CAT simulations. 

1. INTRODUCTION 

Over recent decades, advances in computer technology have made computer based tests (CBT) 
a popular alternative to linear tests. Especially computer adaptive test (CAT) which is a kind of 
CBT, have become popular since they provide more efficient and more precise measurement 
of test takers’ performance than those that linear tests provide (Wainer & Mislevy, 2000; Weiss 
& Kingsbury, 1984; Yan, Lewis & von Davier, 2014). In computer adaptive tests, each new 
item that examinee faces with is selected from the item pool according to examinees’ 
performance on all previous items. Since examinees only face with items appropriate for their 
ability levels, they do not have to spend time for easier or more difficult questions for 
themselves. As a result, the test results in a shorter length (Hendrickson, 2007; Wainer, 2000). 

Adaptive testing is a well-established procedure and an active research field in educational and 
psychological assessment (Magis & Raiche, 2011; Magis, Yan & von Davier, 2017). However, 
while developing an adaptive test, there are lots of factors to be determined such as the 
properties of item bank, test length, test design, content balancing, item exposure etc. 
Researchers try to find an answer for the question ‘In what conditions, does the test perform 
best?’ or ‘How does test performance change under different conditions?’. Collecting empirical 
data is not always possible or costly while manipulating different conditions. Therefore, 
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simulation studies can be a useful way to investigate those questions (Bulut & Sünbül, 2017; 
Lee, Choi & Cohen, 2018; Magis, Yan & von Davier, 2017). Similarly, Han & Kosinski (2014) 
stated that simulation techniques have critically important roles for CAT development and 
evaluation. 

There are several softwares for CAT simulations such as SimulCAT (Han, 2012), CATSim 
(Weiss & Guyer, 2010) or Firestar (Choi, 2009). In the context of this study, the demonstration 
of how to use R programming language (R Core Team, 2017) for CAT simulations through the 
usage of ‘catR’ package on RStudio 1.1.463 was aimed. As Magis, Yan & von Davier (2017) 
stated, R gives researchers the chance of adding their own functions according to their 
requirements and additional free packages can be installed easily.  This is the reason why it was 
preferred in this study. In the context of the present study, firstly computer adaptive testing was 
explained with basic concepts and terms and the demonstration of CAT simulations with catR 
package was given afterwards. 

2. COMPUTER ADAPTIVE TESTING 

Embretson and Reise (2000) stated that the main purpose of CAT is to provide maximally 
efficient and informative items for each test taker. For this purpose, different items are 
administered to different examinees according to their proficiency levels. The ability level of 
test takers are estimated and updated after the administration of each item and the next item is 
chosen based on that updated level then. That process continues until stopping criterion is met. 
The schematic representation of testing process is given in Figure 1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of CAT process 

 
Weiss and Kingsburry (1984) stated that there are six main components of computer adaptive 
test procedure. Those are (a) Item response model, (b) Item pool, (c) Starting rule, (d) Item 
selection rule, (e) Scoring rule and a (f) Termination criterion.  

Item response model: In adaptive testing, different sets of items are administered to the 
examinees since each examinee takes items according to his/her proficiency level. Thus, their 
abilities are estimated independently of the particular selection of test items. IRT models are 
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important since they give the opportunity to make the ability estimation independently of item 
selection. Thus, examinees taking different item sets can be compared (Lord, 1984; Magis, 
Duanli & von Davier, 2017).  

Item pool: An item pool of large number of items including a wide range of item parameters is 
necessary. Since every test taker takes the item suitable for her/his ability, there should be items 
providing efficient measurement through all ability levels.  

Starting rule: In that step, first items to start the test are defined. If the initial theta of examinee 
is known, test starts with the item/s suitable for that examinee’s ability level. However, when 
that initial value is not known, researchers should assign an initial theta value in order to choose 
the first item/s. The most common way of that assignment is to assign the average ability level 
of population as initial theta (Thompson, 2007). 

Item selection rule: After initial item/s are administered and the ability value is estimated, an 
item selection rule is required in order to choose the next item. There are lots of item selection 
methods but the most common ones are Maximum Fisher Information (MFI) and Bayesian 
methods (Wang, 2017; Weiss &Kingsbury, 1984).  

Scoring rule: Ability estimation method should be specified in this step. Although different 
methods are used for ability estimation purposes, the most preferred ones are Maximum 
Likelihood Estimation (MLE) and Bayesian methods (EAP and MAP). 

Termination criteria: As the last step, a criterion should be specified on where to stop the testing 
process. The possible criteria are test length or a value of standard error. If the length is 
specified, the testing process stops when the specified length is met. On the other hand, test 
continue until the desired measurement precision level is satisfied with ‘standard error’ criteria. 
Therefore, test takers may take different number of items on that criterion since different people 
can reach the criterion with different number of items (Thissen and Mislevy, 2000; Wang, 
2017). 

After that brief introduction on computer adaptive tests and its main components, demonstration 
of how to use R in CAT simulations was made with example R codes. 

3. USING R IN CAT SIMULATIONS 

In CAT simulations catR 3.16 version was used for demonstration purposes. The main functions 
for CAT simulations in catR are randomCAT() and simulateRespondents() functions. While 
simulateRespondents() function allows the multiple generation of CAT response patterns, 
randomCAT() results in generation of only one single response pattern. Since we are interested 
in the multiple generations at the same time in the context of this study, simulateRespondents() 
functions are explained and exemplified below.  

Input arguments in simulateRespondents() function are summarized by Magis, Yan and von 
Davier (2017) and given in Figure 2. Detailed information is provided for the related arguments 
inside the function. 

In thetas argument, true ability levels of all examinees are provided in a vector form. 

itemBank argument should be a matrix including the item parameters and include as many rows 
as item numbers. The column number of matrix differs according to the used IRT model. 

model argument is NULL if the IRT model is dichotomous. 

responsesMatrix includes item responses. If it is not specified, that matrix is randomly 
generated by using given item parameters. If the researcher is interested in Post-Hoc simulation, 
responses of each examinee to all questions should be provided in a matrix. 
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Figure 2. Input arguments in simulateRespondents() function (Magis, Yan &von Davier, 2017) 

Start function allows you to define the starting rule on the CAT process. In the start list,  

fixItems: either researcher selects the items to be administered as the first items with that 
command or items are selected by another function and, in this case, that command is 
useless. 

nrItems helps researchers to define number of starting items to be chosen randomly. Default 
is 1. 

startSelect helps researchers to choose the item selection method.  

randomesque is about item exposure issue. The number of specified items are picked up 
optimally before one single item is selected randomly.  

theta a vector of the initial ability levels for selecting the first items 

In the test list; details about ability estimators, the item selection rule and the item exposure 
issue are specified. Most commonly used arguments in the test list are given and explained 
below: 

method: the ability estimation method is specified with method argument. There are four 
possible ability estimators; "BM", "ML", "EAP", "ROB". If the selected method is BM or 
EAP, priorDist and PriorPAr arguments are necessary.  

itemSelect: Item selection rule during the process is chosen with itemSelect argument. 
Possible choices are "MFI", "bOpt", "thOpt", "MLWI", "MPWI", "MEPV", "MEI", "KL", 
"KLP", "progressive", "proportional" and "random".  

randomesque: As in the start list, this argument is related to the item exposure issue. 
Specified number of items are chosen with the item selection rule and next item to be 
administered is pickep up among those randomly. Default value is 1. 

The stop list consists of termination rule components. Most commonly used arguments are;  
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rule: This argument is necessary to specify how to stop the test. Possible choices are 
"length", "precision", "classification" and "minInfo". If we want to stop the test after the 
specified item number, "length" argument; to stop the test according to pre-specified 
precision level, "precision" argument is used.  

thr: thr specifies the threshold related to the specified stopping rule. When the rule is 
length, thr indicates the maximal number of items to be used in the test. 

rmax argument indicates the maximum exposure rate of an item. For instance, if it is set to 0.8, 
it means that an item in the pool can be administered to maximum 800 examinee out of 1000. 

Output options will be explained by the examples. 

3.1. Example 1 

In the first example, a Monte Carlo simulation with 2000 examinees on an item pool of 300 
items was presented step by step. 

Since there was no item pool or theta values, those two were generated firstly. 

Item Pool and Theta Generation 

In order to generate item parameters genDichoMatrix() function can be used. The number of 
items, IRT model and parameter distributions are specified in that function. Although 
dichotomous IRT models were used for illustration in this study, catR package included 
polytomous models as well for those interested.  

Dichotomous IRT model options: "1PL", "2PL", "3PL" or "4PL" 

Distribution options: Normal distribution with c("norm",mean, sd) 
             Log-normal distribution with c("lnorm", mean, sd) 
             Uniform distribution with c("unif", min, max) 
             Beta distribution with c("beta", alpha, beta) 

- aPrior may have normal (default), log-normal or uniform  
- bPrior may have normal (default), or uniform 
- cPrior and dPrior may have uniform or Beta distributions. 

An item pool of 300 items was generated according to three-parameter logistic model. R codes 
are presented in Table 1. 

Table 1. R codes used in item parameters and theta generation 

#Firstly install package catR 
install.packages("catR") 
 
#Activate installed package 
library("catR") 
 
#The function genDichoMatrix creates a matrix of item parameters for dichotomous IRT models. 
#Item pool is generated with 3PL. So a,b,c parameters should be specified. 
itPar<-genDichoMatrix(items=300, model = "3PL", aPrior = c("unif", 0.5, 2),  
                      bPrior = c("norm", 0, 1), cPrior = c("beta", 4, 16),  
                      seed = 1) 
 
#theta values were generated by using the standard normal distribution and stored in theta o
bject. 
theta<-rnorm(2000,0,1) 

Standard normal distribution for difficulty parameters, uniform distribution for discrimination 
parameters with min: 0.5 and max: 2.0 values and beta distribution for guessing parameters 
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β(4,16) was used. seed function was used to get reproducible results. If random numbers are 
generated without seed function, different results are obtained in each attempt. If researchers 
want to get the same results in each trial, they should use the seed function.  
As a result of running those codes, item parameters of 300 items generated according to 3 PL 
with specified parameters were obtained and those parameters were stored in ‘itPar’ object. 
Besides, theta values of 2000 people generated with standard normal distribution were stored 
in ‘theta’ object. Parameters of the first 6 items in the pool were obtained with head() function 
and given in Figure 3. 

 

Figure 3. Generated item parameters of first six items 

We have generated theta values and item parameters before and stored the data in ‘theta’ and 
‘itPar’ objects respectively. Now, by using them, a CAT simulation was started with the codes 
below (Table 2). That simulation is about 45 item CAT application on 2000 examinees on an 
item pool of 300 items.  

Table 2. R codes for CAT simulation 

start <- list(nrItems=1, theta = 0, startSelect="MFI", randomesque = 10) 
test <- list(method = "EAP", itemSelect = "MFI",  priorDist = "norm",   
             priorPar = c(0, 1), randomesque = 10) 
stop <- list(rule ="length", thr = 45)  
final <- list(method = "EAP",  priorDist = "norm", priorPar = c(0, 1)) 
 
catResults1<- simulateRespondents(thetas = theta, itemBank = itPar,  
                    rmax = 0.2, start = start, test = test, stop = stop, 
                    final = final, save.output = TRUE,  
                    output = c("","catR","txt")) 

In this simulation; start, test, stop and final rules were specified first. Examinees started with 
one randomly chosen item among the 10 most informative items at the starting ability level zero 
since Maximum Fisher Information was used. In the test list, EAP and MFI were selected as 
ability estimation and item selection methods respectively. Again, 10 most optimal items were 
chosen and one of them was randomly chosen to be administered. As a stopping rule, length 
was specified and it was defined that test should be stopped when 45 items were reached. Lastly, 
the final ability was estimated with the EAP method again. Inside simulateRespondents() 
function, previously generated ‘theta’ and ‘itPar’ objects were used for theta and itemBank 
arguments. The maximum exposure rate was restricted to 0.2 which means that an item could 
be administered to 400 out of 2000 examinees. save.output argument was chosen TRUE since 
I wanted to save the output file and details were specified in output argument. output is a vector 
of three components and the first one is to define either the file path or "" (default). Second one 
is either the initial part of the output file name or "catR" and the third one is the file type which 
will be saved (either "txt" or "csv" (default)). Saving process results in three different files: 
“main”, “responses”, and “tables”. “tables” and “responses” files include more detailed 
knowledge than “main” file. “responses” file indicates administered items, response pattern and 
estimated thetas after each item for each of 2000 examinees. “tables” file shows the true theta, 
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estimated theta, final standard error and total number of administered items for each examinee. 
Lastly, “main” file includes general information about the process which is given in Figure 4. 
In case you don’t use the save option, that is the same output come up in ‘Console’ in RStudio 
when simulation have been finished. Besides, simulation results were stored in ‘catResults1’ 
object. 

 

Figure 4. Main output come up after the simulation process in Example 1 

This output includes summary statistics on average test length, correlation, RMSE and bias 
values and item exposure issues. The simulation process took 11.046 minutes on a computer 
with IntelCore i7-6700HQ processor. The mean test length was 45 since the test was specified 
as the fixed test length with 45 items. Correlation, bias and RMSE values were computed 
through all test takers and computed as 0.957, 0.005 and 0.302 respectively. Those values can 
be used in order to get information about test efficiency. Besides, different combinations for 
test designs for instance the effect of changing the item selection method and/or stopping 
criteria can be compared with the help of those values in terms of test efficiency. 135 out of 
300 items in the pool had maximum exposure rate of 0.2 which meant that 135 items 
administered on 400 examinees and the usage of these items was restricted after that point. On 
the other hand, three items which had minimum exposure rate were not administered to anyone. 
In the conditional results part, examinees are divided into 10 equal intervals according to their 
ability levels; then mean theta, RMSE, bias, test length, standard error values were provided. 
As displayed in Figure 4, examinees were divided into ten subgroups of 200 people and detailed 
information on each interval was provided. 

Another feature provided by catR package is graphical demonstration. Graphics related to the 
simulation results ‘catResults1’ can be obtained with the following code given in Table 3; 
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Table 3. R codes for simulation graphs 

#There are different graph types. If type="all" is used, six different graphs come up. In c
ase only one specific graph is demanded, type should be changed. 
plot(catResults1, type = "all") 

The result of that command is given in Figure 5. 

 
Figure 5. The graphical representation of simulation 

Those are graphs which can be plotted for fixed test length. Some other graph types can also 
show up if stopping rule is changed. Graph types in Figure 5 are briefly explained below.  

- Accuracy: In that plot, the scatter plot of true versus estimated abilities is presented. As can 
be seen in Figure 5, there is a strong positive relationship between true and estimated abilities. 

- Conditional bias:  True theta values’ deciles are taken as x axis values and the graph is plotted 
as a function of bias and those deciles. As can be seen in the graph, bias value decreases with 
the increase of theta. 

- Conditional RMSE: As in conditional bias graph, true theta deciles are in the x axis and the 
graph is plotted by using RMSE and the deciles. While RMSE had the lowest value at the left 
end of the true theta axis, it decreased with the increase of theta. After value of 0, it followed 
a waved way towards the right end of true thetas. 

- Exposure rates: This graph indicates that the first 200 items in the item bank had maximum 
item exposure rate which was set as 0.20. After the first 200 items, the mentioned rate started 
to fall and it was zero finally, which means that last items were not used in the process. 

- Cumulative exposure rates: As indicated in Figure 5, most of the required items were chosen 
through the first 200 items and the remaining ones were chosen from the last 100 items in the 
bank. 

- Exposure and a parameter: That graph provided information on how discrimination values of 
the items in the bank affected the item exposure rate. As it can be seen, the items with low 
discrimination index have generally the lowest item exposure rate. High discriminating items 
were preferred more. It can be said that the higher item discrimination index, the higher item 
exposure rate. 
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In this example, a brief explanation of how to use R codes for a Monte Carlo simulation in 
computer adaptive testing was presented and related outputs were briefly mentioned. Response 
pattern was generated during CAT simulation by using the given item parameters and theta 
values. Next, another example the response pattern of which was not generated during the 
process and given by the researcher, was presented. 

3.2. Example 2 

Another example is presented here in order to illustrate how to use catR with a specific existing 
response pattern matrix that the researcher had. Besides, the termination rule was changed in 
order to see the different aspect other than those in Example 1. Since we didn’t have a real 
response pattern matrix, a matrix was generated as an example in the first step. 

Response Pattern Generation 

After the generation of item parameters, item responses can be generated with genPattern() 
function as long as ability values are available. Theta values and item parameters are specified 
inside that function. By using ‘theta’ and ‘itPar’ objects generated in Example 1, the response 
patterns of 2000 people were generated and stored in data object. Related codes are presented 
in Table 4.  

Table 4. R codes used in response pattern generation 

#Before data generation, a 'data' object was defined in order to save generated patterns in
to it. Data matrix should have as many row as the length of theta and as many columns as th
e number of items. 
data<-matrix(NA, length(theta), nrow(itPar)) 
for (i in 1:length(theta)){ 
  data[i,]<-genPattern(th = theta[i], itPar)} 

genPattern function generates only one pattern according to the given item parameters and the 
specified theta in it. In order to generate 2000 examinees’ response patterns "for" loop was 
used. A brief information on for loops and how they can be used are presented here. 

for loops: 

A loop is a way of automating a multi-step process that need to be repeated. It gives the chance 
of automate parts of the code. There are several ways of this automatization. Since for loops 
were used in the context of this study, an example of it was presented (Table 5). 

Table 5. R codes for for loops 

for (i in c(1:10)) print(i^2) #run 

#output is like: 

[1] 1 
[1] 4 
[1] 9 
[1] 16 
[1] 25 
[1] 36 
[1] 49 
[1] 64 
[1] 81 
[1] 100 
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In the example above, the square of the integers from 1 to 10 was calculated in one command. 
There is no need to write separate ten codes for all of the integers.  

When we go back to our own example, data generation process was replicated 2000 times (the 
number of examinee) and the generated patterns were stored in data object. Now, data object 
has a matrix of 2000 rows (the number of examinees) and 300 columns (the number of items). 
Each row represents the response pattern of an examinee on 300 items.  

There was no responseMatrix argument in Example 1 since it was generated during the process. 
However, in Example 2, it was thought that researcher had the test takers’ responses to full item 
bank and tested the performance of CAT on these responses. So responseMatrix should be 
defined as indicating each row represents the response of an examinee. Missing responses are 
not accepted. The generated response pattern matrix ‘data’ was defined as responsesMatrix.  

In order to see a different aspect, stopping rule was updated and rather than that everything 
was same such as ability estimation rule, item selection rule, item exposure issues etc. The 
code for the simulation process is given below in Table 6. The results were given in the output 
in Figure 6 below. 

Table 6. R codes for the simulation 

start <- list(nrItems=1, theta = 0, startSelect="MFI", randomesque = 10) 
test <- list(method = "EAP", itemSelect = "MFI",  priorDist = "norm",  
             priorPar = c(0, 1), randomesque = 10) 
 
#The test stops either when the standard error reaches 0.3 or when 45 item is administered. 
It is terminated on when one of the criterion is met. 
stop <- list(rule =c("precision", "length"), thr = c(0.3, 45))  
final <- list(method = "EAP",  priorDist = "norm", priorPar = c(0, 1)) 
 
# Maximum exposure rate was restricted to 0.2 
catResults2<-simulateRespondents(thetas = theta, itemBank = itPar,  
                                responsesMatrix=data, rmax = 0.2,  
                                start = start, test = test, stop = stop,  
                                final = final) 

 
As displayed in Figure 6, the mean test length was 29.067 items. Since both precision and length 
criteria were specified for the termination rule, the test was stopped when one of those criteria 
was met. Not all of the test takers needed to take 45 items and this decreased the average test 
length. The correlation between assigned thetas and the estimated thetas are 0.972 which 
indicates a strong positive relationship. 63 items had the maximum exposure rate and 34 of the 
items in the bank were never used. Plots of this simulation were obtained by using the plot() 
function as in the previous example and were given in Figure 7. 
Since “precision” was added as a termination rule, four different graph types that could not be 
obtained for “length” rule were also obtained: “Stop rule satisfied”, “Test length”, “Conditional 
test length” and “Conditional standard error”.  
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Figure 6. Main output come up after the simulation process in Example 2 

 
Figure 7. The graphical representation of simulation results 

- Stop rule satisfied: That graph gives information about the proportion of test takers that the 
stopping rule is satisfied for. Since the length rule was included with the precision criteria, 
that proportion was 1 through all thetas. 
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- Test length: It indicates that how many percent of examinees took how many items.  
- Conditional test length: Theta deciles are in the x axis and the graph is plotted by using average 

test length and the deciles. The maximum test length was obtained on the theta value interval 
less than -1.5. On the other hand, minimum test length was around the point of theta=0.5  

- Conditional standard error: It provides information on average conditional standard error. As 
it can be seen in the graph, the average standard error was highest in the left end of theta 
continuum and the lowest one was around 0.5 value. 

3.3. Example 3 

Lastly, an example R code for replication purposes was illustrated. Let’s think that we want to 
make 10 replications on the first example of which codes are given in Table 2. Everything is 
same with that code; however random generation of the item responses should be fixed with 
genSeed argument since the purpose was replication. By the way, several different functions 
can be used for replication purposes but the replication was made by using for loop in this 
example.  

As illustrated in Table 7; start, test, stop and final functions were same as the first example. The 
difference appeared in the simulateRespondents function. The function was written in a for loop; 
and then genSeed argument was added in order to get the same item responses for each 
replication. genSeed should have the same length as thetas. Outputs were saved for each 
replication separately with output function.  For instance, the output files of the first replication 
were saved as “cat-1.main”, “cat-1.tables” and “cat-1.responses”. Thus, results of each 
replication can be examined with those files.  

Table 7. R codes for replication purposes 

start <- list(nrItems=1, theta = 0, startSelect="MFI", randomesque = 10) 
test <- list(method = "EAP", itemSelect = "MFI",  priorDist = "norm",   
             priorPar = c(0, 1), randomesque = 10) 
stop <- list(rule ="length", thr = 45)  
final <- list(method = "EAP",  priorDist = "norm", priorPar = c(0, 1)) 

# r indicates the number of replication 
# Different results for each replication is saved in different files with output command.  
for (r in 1:10) { 
  catResults3<-simulateRespondents(thetas=theta, itemBank=itPar,  
                                  start = start, test = test, stop=stop,  
                                  final = final, genSeed=1:length(theta), 
                                  rmax=0.20, save.output = T, 
                                  output=c("cat",-r,"catR","dat"))} 

4. DISCUSSION and CONCLUSION 
With its growing popularity, computer adaptive testing has an important place on educational 
measurement and psychometry. Since it provides a greater measurement precision with shorter 
test length in comparison to the linear tests, it attracts the attention of researchers and 
practitioners much. Besides, it is difficult to work with the real data by manipulating different 
conditions to find the best conditions. So, simulation studies have an important place in both 
CAT development and evaluation. In this study, some examples on how to use catR package in 
CAT simulations have been demonstrated. Given examples included how to make a simulation 
without having a response pattern, with an existing response pattern and how to make 
replication studies. Mainly used functions and the way how they were used were explained and 
the outputs were interpreted briefly. It is thought that this paper will help researchers interested 
in CAT simulations. 
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Abstract: The aim of this paper is to introduce a software that is 

appropriate for the generalizability theory for not only balanced but 

also unbalanced data sets. Because it is possible to have unbalanced 

data sets while conducting a study, the researchers have devised an 

easy solution, other than deleting data, to balance the design to cope 

with this situation. Thus, the software G String V will be introduced. 

First, the generalizability theory will be reviewed, followed by a 

description of the unbalanced synthetic data that was used to conduct 

the analysis using the software. Explanations are provided for 

installing the software, preparation of the data, and the step-by-step 

data analysis. Moreover, the interpretation of the data is also 

explained. Finally, the limitations of the software are shared. 

1. INTRODUCTION 

Generalizability (G) theory, which was developed by Cronbach, Gleser, Nanda and Rajaratnam 

(1972) as an alternative to the classical test theory (CTT), is a statistical theory for evaluating 

the dependability or reliability of behavioral measurements (Brennan, 2001a; Shavelson and 

Webb, 1991). Conceptually, the G theory can be regarded as a multifaceted extension of the 

CTT and can be seen as a combination of the CTT and variance analysis (Brennan, 2000; Suen 

& Lei, 2007). Reliability, which is defined in the CTT as the consistency of the scores obtained 

through measurements, can vary according to the source to which the error is connected. For 

example, (i) when designing a reliability study to produce two sets of observations, one might 

give the same test two times, separated by two weeks: test-retest reliability; (ii) designing a 

reliability study to create two parallel forms of the test, as Form 1 and Form 2, and give the two 

forms of the test on the same day: parallel forms reliability; or (iii) calculating the reliability of 

a single form of a test on a single occasion: split-half reliability. Although there are multiple 

sources of error for these three examples, the CTT takes only one error source as time, forms, 

and items, respectively. In other words, the errors in the measurement results are considered as 

the errors coming from only one source of variability, and this emerges as a restriction of the 

CTT. Because the G theory can consider several sources of error simultaneously, estimations 

can be made more accurately than the ones in the CTT. 
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G theory is structured around different sources of variation, called facets. There are two main 

types of facets, which are facet of differentiation and facet of instrumentation, according to 

Brennan’s (2001) classification. In G theory, a behavioral measurement is conceived of as a 

sample from a universe of admissible observations, which consists of all possible observations 

on an object of measurement that a decision maker considers to be acceptable substitutes for 

the observation in hand. The object of measurement is also referred to as the facet of 

differentiation. You can easily determine the object of measurement of your research by 

answering the question: “What are you trying to attach the measurement to?” The answer can 

be students, items, etc. For instance, if you want your friends (n=10) to rate a number of dark 

chocolates (n=3) on five three-point scales, the object of measurement is dark chocolate. If you 

want to get patients’ satisfaction with their experiences on a hospital’s inpatient ward, the object 

of measurement is ward. Alternatively, as a more familiar example, if you want to evaluate the 

students’ performances in a classroom activity, then the object of measurement is student. 

Whatever the object of measurement is, there is only one per analysis.  

Although there are some researchers who use Brennan’s classification of facets (Cardinet, 

Johnson & Pini, 2010: Cardinet, Tourneur & Allal, 1981), the facet of instrumentation is also 

referred to as the facet of generalization in some sources (Bloch & Norman, 2015; Bloch & 

Norman, 2012; Cardinet, Tourneur & Allal, 1976). This is acceptable and is also used in G 

String terminology. Every observation of object of measurement is subject to error, derived 

from various sources (Bloch & Norman, 2015). These sources are also called facets of 

instrumentation and address the following question: “To what extent can I generalize a 

measurement from one situation to another with a different level of the facet of 

instrumentation?” There are two types of instrumentation facets, called fixed and random. 

Typically, a random facet is created by randomly sampling levels of a facet. Meanwhile, when 

the levels of a facet have not been sampled randomly from the universe of admissible 

observations, and the intended universe of generalization is infinitely large, the concept of 

exchangeability may be invoked to consider the facet as random (Shavelson & Webb, 1981). A 

fixed facet arises in three conditions: (a) purposely selecting certain conditions and not 

interested in generalizing beyond them, (b) finding it unreasonable to generalize beyond the 

levels observed, or (c) when the entire universe of levels is small and all levels are included in 

the measurement design (Shavelson & Webb, 2006). G theory is essentially a random effects 

theory. Therefore, there should be at least one random facet in the data set.  

According to Brennan (2001, p.108) the rules and equations of G theory assume that the objects 

of measurement are not nested within some other facet. However, G theory can treat such 

nested, or stratified, objects of measurement, but requires special consideration to do so. Objects 

of measurement are stratified with respect to some other variable, and an investigator may be 

interested in variability within levels of the stratification variable, as well as the variability 

across levels (Brennan, 2001, p.153). For instance, assume that there are 100 people in each of 

four regions (east, west, south, and north). Here, people are the object of measurement, and they 

are nested in regions. According to Brennan (2001) it is quite complex to cope such designs. 

Moreover, it is stated that if the design is unbalanced the procedures discussed do not apply, 

and appropriate procedures are much more complicated. Bloch and Norman (2018) defined this 

situation by using another term. According to them, when the facet of differentiation (object of 

measurement) is nested within another facet, this facet is referred to as a facet of stratification. 

For instance, there are students who are at different educational levels (senior vs. junior 

students). Commonly the difference between the two groups is viewed as a test of construct 

validity. However, in terms of reliability, the person variance should be computed within 

educational levels (we want to see if we can differentiate among individuals at the same level). 

Here, the educational level is a stratification facet (Bloch and Norman (2018). Although the 

term “stratification facet” in not in Brennan’s (2001a) Generalizability Theory book, which can 
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be defined as the bible of the G theory, it is important to explain the stratification facet because 

G String V also uses this terminology.  

There is also specific terminology associated with the design: crossed design and nested design. 

Assume all students (s) respond to all the items (i) in a test so that students are crossed with 

items. We denote this design as s x i. However, if each student responds to a different set of 

items then it is expressed as items nested within students. We denote this design as i : s. A 

crossed design is usually preferred in studies conducted using G Theory. The reason for this is 

that all sources of error, associated with all probable facets and the interactions between those 

facets, can be estimated in crossed-designed studies. 

The importance of G theory lies in its applications to educational measurement. There are two 

major functions of G theory. One of them is to evaluate the quality of measurement procedures 

and the other is to make projections about how one can improve the quality of measurement 

procedures (Chiu, 2001). The former function can be done through the generalizability (G) 

study and it is possible to attain the second function via a decision (D) study. In other words, to 

evaluate the dependability of behavioral measurements, a G study is designed to isolate and 

estimate variation due to the object of measurement while examining as many facets of 

measurement error as possible. A D study uses the information provided by the G study to 

design the best possible application of the measurement for a particular purpose (Webb, 

Shavelson & Haertel, 2006) and answers the question “What if…?” by designing variations in 

measurement via optimization (Brennan, 2001). While planning the D study, the researcher 

defines a universe of generalization, the set of facets and their levels to which he or she wants 

to generalize, and specifies the proposed interpretation of the measurement. The decision maker 

uses the information from the G study to evaluate the effectiveness of alternative designs for 

minimum error and maximum reliability (Webb, Shavelson & Haertel, 2006). 

Although there are wide applications of the theory, it has limitations in its capability of handling 

unbalanced designs of the data. The number of observations in balanced designs is equal at each 

level for the source of variability (Brennan, 2001a). By contrast, an unbalanced design has 

unequal numbers of observations in its sub-classifications. For instance, there can be differing 

numbers of items nested within testlets, pupils nested within differently sized classrooms, or 

observers nested within occasions with an unequal number of observers present at each 

occasion. These three examples are defined as unbalanced because the nested designs may be 

purposely unbalanced, dictated by the context itself or created by unforeseen circumstances, 

respectively. One other reason for unbalanced situations can be missing observations from 

crossed and nested designs (Webb, Shavelson & Haertel, 2006). As sample sizes tend to be 

small in the G theory analyses (Rios, Li & Faulkner-Bond, 2012; Taşdelen Teker & Güler, 

2019), missing data becomes an important topic. Researchers normally prefer listwise deleting, 

inputing missing observations, or employing unbalanced designs to deal with missing data. 

Shavelson and Webb (1991) encouraged deleting data to create a balanced design to circumvent 

estimation challenges. Shavelson, Webb and Rowley (1989) found little effect in the estimated 

variance components when data was deleted to create balance. However, it can be problematic 

for very small sample sizes, such as less than 20. Rios, Li and Faulkner-Bond (2012) conducted 

a systematic review of the most recently published literature to understand the current 

methodological trends in the G theory better. Unbalanced design was used in 19 of 58 studies 

reviewed. Taşdelen Teker and Güler (2019) conducted a thematic content analysis of studies 

using the G theory in the field of education in Turkey and found that 6 of 60 studies were 

conducted with unbalanced design. According to the results of the above-mentioned review 

studies of Rios, Li and Faulkner-Bond (2012), and Taşdelen Teker and Güler (2019), the ratio 

of unbalanced designs is high enough to make coping with them indispensable. 
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Estimating variance components in unbalanced designs was challenging. Some or all methods 

had problems of computational complexity, distributional assumptions, and biased estimation, 

requiring decisions that could not be justified in the context of the G theory, or produced results 

that were inconclusive (Brennan, 2001). However, now it is possible to run G and D studies to 

estimate variance components and reliability coefficients by using the software G String V. The 

main purpose of this study was to introduce a computer program that was appropriate for G 

theory for balanced, and even more important, unbalanced data sets. According to the manual 

of G String V (Bloch & Norman, 2018), because the software is based on variance component 

estimates from urGENOVA, which was written by R. L. Brennan (2001a), the mathematical 

formulation declared by Brennan (2001a) will be given before introducing the software. 

Moreover, synthetic data taken from Brennan (2001a, p.224) will be provided to clarify the 

notations. Lastly, the software will be introduced step by step by using the same synthetic data 

shown in Table 1.  

1.1. Synthetic Data and Mathematical Computations 

Assume that eight students (s) take an 8-item test that is composed of three testlets (h) 

containing 2, 4, and 2 items (i), respectively. Because the number of items per testlet is not 

equal, the design is defined as unbalanced. It is a random facet nested design, symbolized as 

sx(i:h). The data entry is shown in Table 1. 

Table 1.  sx(i:h) Unbalanced Design 

Student 
 Testlet 1  Testlet 2  Testlet 3 

 Item 1 Item 2  Item 1 Item 2 Item 3 Item 4  Item 1 Item 2 

1  4 5  3 3 5 4  5 7 

2  2 1  2 3 1 4  4 6 

3  2 4  4 7 6 5  8 7 

4  1 3  5 4 5 5  4 5 

5  3 3  6 7 5 7  8 9 

6  1 2  5 6 4 4  5 6 

7  3 5  6 8 6 7  7 8 

8  0 1  1 2 0 4  7 8 

As seen in Table 1, there is no missing data. It is strongly advised to cope with the missing data 

by using standard statistical approaches before using G String V. However, if the researcher 

forgets to deal with the missing data, then G String V will replace the missing values by the 

grand mean and warn the user when this occurs.  

The estimation of variance components in terms of mean squares are given in Table 2. The ni+ 

notation, given under the degrees of freedom (df) column of Table 2, is the total number of 

levels of i over all levels of h; that is, 𝑛𝑖+ = ∑ 𝑛𝑖:ℎℎ . Moreover, ri and ti, which are used for the 

estimation of variance components in terms of mean squares, are computed by using the 

following equations: 𝑟𝑖 = ∑
𝑛𝑖:ℎ

2

𝑛𝑖+
ℎ  and 𝑡𝑖 =

𝑛𝑖+−𝑟𝑖

𝑛ℎ−1
. 

Table 2.  sx(i:h) Unbalanced Design  

Source of 

Variance 
df 

Mean 

Squares 

Estimators of the variance components in terms of 

mean squares 

s ns-1 MSs σ2
s= [MS(s)-riMS(sh)/ti+(ri-ti)MS(si:h)/ti]/ni+ 

h nh-1 MSh σ2
h= [MS(h)-MS(i:h)-MS(sh)+MS(si:h)]/nsti 

i:h ni+ - nh MSi:h σ2
i:h= [MS(i:h)-MS(si:h)]/ns 

sh (ns-1)(nh-1) MSsh σ2
sh= [MS(sh)-MS(si:h)]/ti 

si:h (ns-1)( ni+ -nh) MSsi:h,e σ2
si:h,e= MS(si:h,e) 
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By using the variance components obtained from the G study, it is possible to estimate relative 

and absolute error variances. After that, the error variances are used to estimate the 

generalizability and dependability coefficients. The equations used for the estimations of 

relative/absolute error variances and generalizability/dependability coefficients are given 

below. Equation 1 is used to estimate the relative error variance (𝜎2(𝛿)) and Equations 2 and 

3 are used to compute generalizability coefficients (𝐸𝜌2) for unbalanced sx(i:h) design. 

Equation 4 is used for the estimation of absolute error variance. Then Equations 2 and 5 are 

used for the estimation of index of dependability (ϕ). The �̆�ℎ term used for the estimation of 

relative and absolute error variances is equal to �̆�ℎ =
𝑛𝑖+

2

∑ 𝑛𝑖:ℎ
2

ℎ
. 

𝜎2(𝛿) =
𝜎𝑠ℎ

2

�̆�ℎ
+

𝜎𝑠𝑖:ℎ
2

𝑛𝑖+
 [1] 

𝜎2(𝜏) = 𝜎2(𝑠) [2] 

𝐸𝜌2 =
𝜎2(𝜏)

𝜎2(𝜏) + 𝜎2(𝛿)
 [3] 

𝜎2(∆) =
𝜎ℎ

2

�̆�ℎ
+

𝜎𝑖:ℎ
2

𝑛𝑖+
+

𝜎𝑠ℎ
2

�̆�ℎ
+

𝜎𝑠𝑖:ℎ
2

𝑛𝑖+
 [4] 

𝜙 =
𝜎2(𝜏)

𝜎2(𝜏) + 𝜎2(∆)
 [5] 

2. THE SOFTWARE: G STRING V 

G String V (Bloch & Norman, 2018) is a software that functions on the basis of urGENOVA 

(Brennan, 2001b) and is used in G theory analyses. Because urGENOVA is a traditional 

command line program that does not have a graphical user interface, users must specify their 

parameters, which makes it difficult to work with. Moreover, although urGENOVA provides 

the variance components for the individual effects, it does not calculate variance coefficients 

under different conditions. However, G String V does this as well (Bloch & Norman, 2018). G 

String V was designed and coded by Ralph Bloch as part of a project commissioned by The 

Medical Council of Canada and was subsequently further developed. It is written in Java on the 

Linux platform. The most recent version of the program runs under the Windows operating 

system (Bloch & Norman, 2015) and Macintosh and Linux operating systems (Bloch & 

Norman, 2018). The G-String V has a more user-friendly interface and therefore, is much easier 

to use compared to urGENOVA. 

2.1. Installing the Software 

G String V can be downloaded for free from the Web. Researchers may install the latest version 

of the G String V software, released in July 2018 from https://healthsci.mcmaster.ca/merit/res

earch/g_string_v. The program is contained in a software package called “G_String_V.jar”.  

Before downloading the software, install Java Runtime JRE 8 on your computer if it is not 

already installed. Then create a new folder called “G_String_V” in a suitable location of your 

file system. After selecting your computer’s operating system (Windows, Mac-OS or Linux), 

download the software package and copy it from the Downloads folder into the G_String_V 

folder. Next, create a new sub-folder within the G_String_V folder called “work.” Then double 

click on G_String_V. jar. As shown in Figure 1, set the “work” sub-folder as your working 

directory by clicking the Setup and Set Working Directory buttons. 

 

https://healthsci.mcmaster.ca/merit/research/g_string_v
https://healthsci.mcmaster.ca/merit/research/g_string_v
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Figure 1. G String V Software Working Directory Setup Screen 

2.2. Software Interface 

The main interface of the G String V software is shown in Figure 2. This interface consists of 

the main menu that includes File, Action, Setup, and Help. To start the analysis, click on Action. 

There are three sub-menus under Action as seen in Figure 2. To start a new analysis click on 

Action→ Start New and create a new G String V run. If you want to do multiple runs on a pre-

used data base then click on Use Existing. For the G String V to automatically count the number 

of levels of each facet, which can be helpful for unbalanced nested designs, select Auto Index.  

 

Figure 2. G String V Software Main Screen 

2.3. Data Analysis using G String V 

If starting with a new data set click on Start New as seen in Figure 2. From this point on, 

analyzing with the G String V will be explained step by step. As seen in Table 1, Brennan's 

example (2001, p. 224) will be used to better illustrate the steps. There are three testlets (h) 

containing 2, 4, and 2 items (i), respectively; and answers to all of the questions for the eight 

students (s). Because the items are nested within testlets and students answer all of the items, 

the design can be symbolized as sx(i:h). Moreover, because the number of items per testlet is 

not the same, the design is unbalanced, as previously stated. 

2.3.1. Preparing Data for Analysis 

While urGENOVA requires the data to be in ASCII text files (.dat or .txt), G String V is set up 

to handle tab-delimited or fixed format text files. ASCII files can be easily generated from a 

spreadsheet, such as Excel, by simply saving as a “Text - tab delimited (*.txt)” file (Bloch & 

Norman, 2018). Like all previous versions of G String V and other software used for G theory 

analysis (SPSS and EduG), G String V requires that the data be ordered, so that all records 

related to a particular level of a facet are together. After entering the data in an Excel 

spreadsheet, and saving as Text - tab delimited (*.txt) it can be used to run G theory analysis 

via G String V. 
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Steps 1 and 2: Title and details of the conducted research 

As seen in Figure 3, you can provide a unique name for your research in Step 1 and add more 

comments to describe the details of the analysis in Step 2. Comments provide an explanation 

of the study to the reader of the output. The information written here does not affect the 

computations of the software, so if you do not want to enter any information omit this step by 

clicking the Next Step button. To exemplify how it would appear in the output file, a title and 

brief description of the data was entered.  

  
Figure 3. G String V Software: (a) Step 1 and (b) Step 2 

Steps 3 and 4: Defining object of measurement and facets  

As seen in Figure 4(a), the object of measurement is specified in Step 3 by providing a 

descriptive name and a corresponding one-character lowercase abbreviation for the object of 

measurement. Although the object of measurement is usually crossed with other facets, it may 

also be nested within another facet. For instance, as given in Brennan’s example (2001, p.154), 

people can be nested within regions. Because of this, the nesting situation of the object of 

measurement also should be specified. For the example discussed here, “crossed” should be 

selected. Then specify the number of facets. For the example used here, there are two, testlet 

and item. Each facet should be given a descriptive name and a one-character abbreviation in 

Step 4, as seen in Figure 4(b). Moreover, the nested facets are specified by changing the default 

“crossed” to “nested.” In our example, because the items are nested within testlets, the nesting 

conditions of items have “nested” selected. The nesting condition of testlets remains “crossed” 

by default.  

The order of the facets is also important. They must be listed in the order they are encountered 

in the data file, from slowest-moving to fastest-moving (Bloch & Norman, 2018). In other 

words, the first facet to be declared is the one whose levels change least rapidly and the last 

facet to be declared would be the one whose levels change the fastest (Cardinet, Johnson & 

Pini, 2010). In our example, the first facet is testlet as it changes more slowly than items. More 

clearly, if the data have one record per student, with all data for each testlet, then the responses 

on each item of testlet, the order of facets would be: Testlet, Item.  

  

Figure 4. G String V Software: (a) Step 3 and (b) Step 4 
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Steps 5 and 6: Setting order of facets and arrange nesting of the facets  

In Step 5, the order of facets should be specified as they appear in the data set. For instance, 

because each student’s answers to eight items are listed in one row, the asterisk is beside student 

as seen in Figure 5(a). In Step 6, drag and drop the nested facets from the left side to the right 

side. By doing so, the nested facets are located under the facet in which they are nested nested 

as seen in Figure 5(b). Because items are nested within testlets in our example, the item facet 

is dragged and dropped under the testlet facet and appears as i:h. 

  

Figure 5. G String V Software:  (a) Step 5 and (b) Step 6 

Step 7: Locating data file  

As seen in Figure 6(a), the exact location of the data file is selected. The data must be in an 

ASCII text file. To do so, you can enter your data in Excel and save it as “Text (Tab delimited) 

(*.txt).” After selecting the location of the data, you will see it on the screen. As seen in Figure 

6(b), there are nine columns in the data file. The first column contains the student ID, which 

means the actual data begins in the second column. To indicate how many columns are to be 

skipped, enter the information in the “Skip” field. As you can see from the second screenshot 

of Figure 6, “1” is in the “Skip” area, so the first column of the data becomes colorless, which 

means it will not be analyzed. You can only skip fields at the beginning of the data, never in 

the middle.    

 
 

Figure 6. G String V Software Step 7: (a) Data location and (b) Data view 
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Step 8: Specifying the sample sizes of object of measurement and facets  

In Step 8, G String V asks for the sample size of the object of measurement and then the facets’ 

sample sizes. For nested variables, specify the number of levels at each level of the nesting 

variable. For the object of measurement, this will be 8; for the testlet facet, this will be 3; and 

for the item facet, this will be the number of items per testlet; 2, 4, and 2, as seen in Figure 7.  

 

 

 

Figure 7. G String V Software Step 8 

Step 9: Saving the Control File and obtaining variance components 

After completing the specification by running the previous eight steps, a control file called 

“gControl.txt” was also generated. It was stored in the working directory by default. In Step 9, 

you can change both its name and folder as seen in Figure 8(a). After saving the proper control 

file path, urGENOVA is executed automatically to calculate the variance components and the 

coefficients (Bloch & Norman, 2018) as seen in Figure 8(b). Step 9 shows the variance 

components as part of a G study of G theory. 

  

Figure 8. G String V Software Step 9: (a) Saving control card and (b) urGENOVA output 
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Step 10: Calculating G Coefficients and Running D Studies 

In Step 10, G String V calculates the G coefficients as seen in Figure 9(a). The first coefficient 

is called the G coefficient and is symbolized as Eρ2, which is used for relative decisions. The 

second coefficient is called the index of dependability (Brennan & Kane, 1977) and symbolized 

as ϕ, which is used for absolute decisions. Furthermore, by changing levels and types of facets, 

you can calculate different coefficients to answer the question “What if…?” as part of a D study 

of the G theory. As seen in Figure 9(b), the level of testlet changed from 3 to 4, but the type of 

facets was left as random. After this change, the Eρ2 and ϕ coefficients were also changed from 

.73 to .79 and .45 to .53, respectively. After completing all the intended D studies, by changing 

the levels of facets and clicking Next Step to obtain the results, close the software by clicking 

File→Close from the menu bar. 

   

Figure 9. G String V Software Step 10: (a) G study results and (b) D study results 

2.4. Evaluation of the Results 

After closing the software, the output file will be in your working directory, named as 

“example1.txt.lis”. This file can be opened by Word. As seen in Figure 10(a), there is a control 

card at the beginning of the output file. It contains the information entered in Step 1 (Example 

1) and Step 2 (Brennan, 2001a, p.224). The names and levels of facets and the design of the 

study are also on the control card. Figure 10(b) shows the ANOVA table created by 

urGENOVA. The variance components used in the calculations of the 𝐸𝜌2and ϕ coefficients 

are shown to the right of the table. It is possible to estimate variance components as negative 

because of erroneous measurement models or sampling errors (Güler, Kaya Uyanık & Taşdelen 

Teker, 2012). There are two different approaches to handle this situation. Cronbach et al., 

(1972) initially said that the negative variance should be replaced with zero, and that zero should 

be used to calculate other variance components. Brennan (2001a), however, argued that this 

suggestion could cause biased calculations of variance components. Cronbach responded by 

saying that although the negative variance should be replaced by zero, the negative value itself 

should be used to calculate other variance components (Atılgan, 2004). Negative variances are 

set to zero when computing coefficients by using G String V.  
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Figure 10. Output file: (a) Control card and (b) ANOVA Table 

Calculations of 𝐸𝜌2and ϕ coefficients are shown in the output below the ANOVA table. In 

Figure 11(a), the estimated 𝐸𝜌2and ϕ coefficients are seen at the bottom of the figure and the 

results of the D studies are shown in Figure 11(b). When the level of testlet changed from 3 to 

4, there is an increase in Eρ2 and ϕ coefficients. More clearly, if the researcher increases the 

number of testlets, for instance to cover content area better, the results will be more reliable. 

Moreover, only the level of facets was changed and there was no change on the type of the facet 

from random to fixed. The reason of remaining the testlet facet as random was that since the 

entire universe of testlet levels was quite large and all levels were impossible to be included, 

the researcher was interested in generalizing beyond 3 or 4 testlets. 

 

 

Figure 11. Coefficient estimation based on (a) G study and (b) D Studies 

3. LIMITATIONS OF G STRING V 

The first limitation of G String V is related to the sample size of the data. The maximum number 

of the facet of differentiation, which is the object of measurement, is 1500. If your sample size 

is above this limit, it is stated on the G String V manual that you can write to the developers of 

the software and they can furnish a modified version of it. The other limitation of the software 

is related to the number of stratification facets of the study. For practical reasons, it cannot 

handle more than four stratification facets. According to the results of two review studies 

conducted by Rios, Li and Faulkner-Bond (2012) and Taşdelen Teker and Güler (2019), there 

is no study that has more than one stratification facet. Meanwhile, when a researcher has more 

than four stratification facets it has been suggested to collapse the facets that are unlikely to 

contribute to error variance. 
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