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ANGULAR GEOMETRIC INDICES

Mehmet Şerif Aldemir, Süleyman Ediz, Kerem Yamaç

ABSTRACT

Topological indices (TIs) are important tools for analyzing the nature of bi-

ological and chemical networks. There are five types of TIs: Degree based

TIs, distance based TIs, eigenvalue based TIs, matching based TIs and mixed

TIs. Degree based TIs are defined by using classical degree concept in graph

theory. The Zagreb and Randić TIs are the most used TIs in literature. An-

gular geometric graph, geometric degree and angle degree notions have been

defined recently in graph theory. The angles between the atoms (vertices)

and bonds (edges) are important in biology and chemistry but are not im-

portant in graph theory. In this respect, angular geometric graphs, in which

the angles within this graph are important and unalterable, represent more

realistic model for biological and chemical networks and molecular structures.

In this study, we firstly defined angular geometric Zagreb and angular geo-

metric Randić TIs by using geometric degree notion. We compare these novel

TIs with their classical degree based counterparts TIs for the prediction of

some chemical properties of octanes. It is shown that the newly defined an-

gular geometric indices do not give a higher correlation coefficients than their

classical counterparts and not suitable for QSPR researches.

1. INTRODUCTION

Chemical graph theory is considered to be the intersection of graph theory
and chemistry. Topological indices constitute a significant part of the chemical
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graph theory. A topological index is a derived numeric value of a graph. The value
of a topological index depends on how accurately model physical and chemical
properties of molecules. Topological indices (TIs) are important tools for analyzing
the nature of biological and chemical networks. There are five types of TIs: Degree
based TIs, distance based TIs, eigenvalue based TIs, matching based TIs and mixed
TIs. Degree based TIs are defined by using classical degree concept in graph theory.
The Zagreb and Randić TIs are the most used TIs in literature [1, 2, 3]. Angular
geometric graph, geometric degree and angular degree notions have been defined
recently in graph theory [4]. The author in [4] investigated the geometric degrees of
the Cartesian product of two paths and a path with a cycle. The angles between the
atoms (vertices) and bonds (edges) are important in biology and chemistry but are
not important in graph theory. In this respect, angular geometric graphs, in which
the angles within this graph are important and unalterable, represent more realistic
model for biological and chemical networks and molecular structures. In this study,
we firstly defined angular geometric Zagreb and angular geometric Randić TIs by
using geometric degree notion. We compare these novel TIs with their classical
degree based counterparts TIs for the prediction of some chemical properties of
octanes.

2. ANGULAR GEOMETRIC INDICES

We consider only connected graphs throughout this paper. For undefined
terminology, we referred to the reference [5]. Let G be a graph with the vertex
set V (G), the edge set E(G) and v ∈ V (G). The degree of a vertex v ∈ V (G),
deg(v), equals the number of edges incident to v that is the cardinality of the set
N(v) = {u|uv ∈ E(G)}. Pn and Cn showed the path and cycle, respectively.
The first Zagreb and the second Zagreb index of the graph G are defined as:

(1) M1 = M1(G) =
∑

v∈V (G)

d2
v

and

(2) M2 = M2(G) =
∑

uv∈E(G)

du dv

respectively. In 1972, the quantities M1 and M2 were found to occur within certain
approximate expressions for the total π-electron energy [2]. For details of the math-
ematical theory and chemical applications of the Zagreb indices, see the surveys
[6, 7]. Randić is defined as;

(3) R = R(G) =
∑

uv∈E(G)

1√
dudv

.

Definition 1. [4] An angular geometric graph denoted as AGG is a graph in which
given angles between vertices and edges can not be changed. If the angles are not
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given spesifically in an angular geometric graph, all the angles are considered to be
equal.

Definition 2. [4] Let AGG be an angular geometric graph and v ∈ AGG. The
sum of the sines of the all angles of the vertex v is called the angular degree of v
and denoted as ang(v).

Definition 3. [4] Let AGG be an angular geometric graph and v ∈ AGG.The sum
of the degree of the vertex v and the angular degree of the vertex v is called the
geometric degree of v and denoted as geom(v). That is geom(v) = deg(v)+ang(v).

Definition 4. The first and second angular geometric Zagreb indices, GM1 and
GM2, of an angular geometric graph defined as;

(4) GM1 = GM1(AAG) =
∑

v∈V (AAG)

geom(v)2

and

(5) GM2 = GM2(AAG) =
∑

uv∈E(AAG)

geom(u) geom(v)

Definition 5. Angular geometric Randić index of an angular geometric graph de-
fined as;

(6) GR = GR(AAG) =
∑

uv∈E(AAG)

1√
geom(u)geom(v)

.

3. RESULTS AND DISCUSSION

In this section we compare the novel angular geometric indices with the well-
known the classical corresponding indices by using strong correlation coefficients
acquired from the chemical graphs of octane isomers. We get the experimental
results at the www.moleculardescriptors.eu (see Table 1). The following physico-
chemical features have been modeled: Entropy (E), Acentric factor (AF), En-
thalpy of vaporization (HV), Standard enthalpy of vaporization (SEV). We select
those physicochemical properties of octane isomers for which give reasonably good
correlations. Also we find the the Zagreb and Randić indices of octane isomers val-
ues at the www.moleculardescriptors.eu (see Table 2). We also calculate and show
the novel angular geometric indices of octane isomers values in Table 2. Correlation
analysis of the indices are given in Table 4.

It can be seen from the Table 3 that the newly defined angular geometric
indices did not give a higher correlation coefficients than their classical counterparts.
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Table 1: Some physicochemical properties of octane isomers.
Molecule E AF HV SEV

n-octane 111.70 0.39790 73.19 9.915
2-methyl-heptane 109.80 0.37792 70.30 9.484
3-methyl-heptane 111.30 0.37100 71.30 9.521
4-methyl-heptane 109.30 0.37150 70.91 9.483

3-ethyl-hexane 109.40 0.36247 71.70 9.476
2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915
2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272
2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029
2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051
3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973
3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316

2-methyl-3-ethyl-pentane 106.10 0.33243 69.70 9.209
3-methyl-3-ethyl-pentane 101.50 0.30690 69.30 9.081
2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826
2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402
2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897
2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014

2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410

Table 2: Topological indices of octane isomers.
Molecule M1 M2 R GM1 GM2 GR

n-octane 26 24 3.914 56 51 2.821
2-methyl-heptane 28 26 3.770 70.338 57.990 2.666
3-methyl-heptane 28 27 3.808 70.338 63.186 2.732
4-methyl-heptane 28 27 3.808 70.338 63.186 2.732

3-ethyl-hexane 28 28 3.846 73.338 68.382 2.220
2,2-dimethyl-hexane 32 30 3.561 95 69 1.642
2,3-dimethyl-hexane 30 30 3.681 84.676 76.926 2.601
2,4-dimethyl-hexane 30 29 3.664 84.676 70.176 2.577
2,5-dimethyl-hexane 30 28 3.626 84.676 64.980 2.511
3,3-dimethyl-hexane 32 32 3.621 95 79 2.603
3,4-dimethyl-hexane 30 31 3.719 84.676 82.123 2.666

2-methyl-3-ethyl-pentane 30 31 3.719 84.676 82.123 2.666
3-methyl-3-ethyl-pentane 32 34 3.682 95 89 2.697
2,2,3-trimethyl-pentane 34 35 3.481 109.338 94.176 2.454
2,2,4-trimethyl-pentane 34 32 3.417 109.338 75.990 2.354
2,3,3-trimethyl-pentane 34 36 3.504 109.338 93.382 2.483
2,3,4-trimethyl-pentane 32 33 3.553 99.015 90.667 2.470

2,2,3,3-tetramethylbutane 38 40 3.250 134 112 2.246

4. CONCLUSIONS
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Table 3: Correlation coefficients.
Index E AF HV SEV

M1 -0.9543 -0.9731 -0.8860 -0.9361
M2 -0.9410 -0.9864 -0.7281 -0.8118
R 0.9063 0.9043 0.9359 0.9580

GM1 -0.9509 -0.9745 -0.8926 -0.9408
GM2 -0.9005 -0.9468 -0.6308 -0.7241
GR 0.4371 0.3402 0.501 0.5103

We proposed novel angular geometric indices based on geometric degree con-
cept which has been defined very recently in graph theory. It has been shown
that these novel indices can not be used as predictive means in QSAR researches.
Predictive power of these indices have been tested on by using some physicochem-
ical properties of octanes. Acquired results show that these novel indices are not
convenient to predict physico-chemical properties of octanes.
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Mehmet Şerif Aldemir
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VE-DEGREES IN SOME GRAPH PRODUCTS

Süleyman Ediz, Bünyamin Şahin

ABSTRACT

Let G be a graph and v be a vertex of G. The ve-degree of the vertex v

defined as the number of different edges incident to the vertices of the open

neighborhood of v. In this study we investigate the ve-degrees in Cartesian,

direct and strong products of two graphs.

1. INTRODUCTION

We consider only connected and simple graphs throughout this paper. Let
G be a graph with the vertex set V (G), the edge set E(G) and v ∈ V (G). The
degree of a vertex v ∈ V (G), deg(v), equals the number of edges incident to v that
is the cardinality of the set N(v) = {u|uv ∈ E(G)}. This set is named as ”the open
neighborhood of v”. For the vertex v, nv denotes the number of triangles which
contain the vertex v. Let A and B be two non-empty sets. Then the Cartesian
product of these sets is the set A�B = {(a, b)|a ∈ A and b ∈ B}. The Cartesian,
direct and strong products of two graphs G and H have the vertex set V (G)�V (H).
The edge set of the Cartesian product of G and H is E(G�H)= {(a, b)(c, d)|a = c
and bd ∈ E(H) or b = d and ac ∈ E(G)}. The edge set of the direct product
of G and H is E(G × H) = {(a, b)(c, d)|ac ∈ E(G) and bd ∈ E(H)}. And the
edge set of the strong product of G and H is E(GH)= {(a, b)(c, d)|a = c and
bd ∈ E(H) or b = d and ac ∈ E(G) or ac ∈ E(G) and bd ∈ E(H)}. Note that
E(GH) = E(G�H) ∪ E(G × H) and E(G�H) ∩ E(G × H) = ∅. The following
Lemma 1 gives the degrees in above mentioned graph products.

2010 Mathematics Subject Classification: 05C07, 05C76.
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Lemma 1. Let G and H be two graphs. Then;
(a) degG�H(a, b) = deg(a) + deg(b),
(b) degG×H(a, b) = deg(a)deg(b),
(c) degGH(a, b) = deg(a) + deg(b) + deg(a)deg(b).

Very recently Chellali et al have published very seminal study about the novel
two degree concepts: ve-degrees and ev-degrees in graph theory [1]. The authors
defined these novel degree concepts in relation to the vertex-edge domination and
the edge-vertex domination parameters[2, 3, 4]. And also, the authors defined the
ve-regularity, the ev-regularity and investigated basic mathematical properties of
ev and ve regularities of graphs [1]. The ev-degree and ve-degree topological indices
have been defined and their basic mathematical properties have been investigated
in [5, 6]. In this paper we investigate the ve-degrees in Cartesian, direct and strong
product of two graphs.

2. THE V E-DEGREES IN GRAPH PRODUCTS

We firstly give some basic facts related to ve-degrees.

Definition 2. [1] Let G be a connected graph and v ∈ V (G). The ve-degree of the
vertex v, degve(v), equals the number of different edges that incident to any vertex
from the closed (or open) neighborhood of v.

Definition 3. [1] Let G be a connected graph and e = uv ∈ E(G). The ev-degree
of the edge e, degev(e), equals the number of vertices of the union of the closed (or
open) neighborhoods of u and v.

Lemma 4. [5] Let G be a connected graph and v ∈ V (G), then;

degve(v) =
∑

u∈N(v)

deg(u)− nv

where nv denotes the number of triangles contain the vertex v.

And now, we begin to compute the ve-degrees in Cartesian product of two
graphs.

Lemma 5. Let G and H be two graphs. Then both G and H contain no triangle
if and only if G�H contains no triangle

Proof. Let accept that G and H be two triangle-free graphs and G�H contains a
triangle, say (a, u)(b, u)(c, u). Then absolutely abc must be a triangle in G. This is
a contradiction. The same argument holds for the supposition that (v, a)(v, b)(v, c)
a triangle in G�H. The other part of the proof comes from the fact that if G�H
contains a triangle then either G or H must be contain a triangle.
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Lemma 6. Let G and H be two connected graphs and (a, b) ∈ G�H. Then;

n(a,b) = na + nb

Proof. Let auv be one of the triangle which contains the vertex a in G. Then
(a, b)(u, b)(v, b) must be a triangle in G�H from the definition of Cartesian product
of graphs. Similarly let brt be one of the triangle which contains the vertex b in H.
Then (a, b)(a, r)(a, t) must be a triangle in G�H. The same argument holds for the
all triangles which contain the vertex a and the vertex b in G and H, respectively.
From the Lemma 5 the desired result acquired.

Proposition 7. Let (a, b) ∈ V (G�H). Then;∑
(c,d)∈N((a,b))

deg(c, d) = 2deg(a)deg(b) + degvea + degveb + na + nb.

Proof. Let N(a) = {v1, v2, ..., vn} and N(b) = {u1, u2, ..., um}. From the definition
of the Cartesian product of graphs, we can write that;∑

(c,d)∈N((a,b))

deg(c, d) =
∑

(a=c),d∈N(b)

deg(a, d) +
∑

(b=d),c∈N(a)

deg(c, b)

= deg(a, u1) + deg(a, u2) + ...+ deg(a, um) + deg(b, v1) + deg(b, v2) + ...+ deg(b, vn)
= deg(a)deg(b) +

∑
d∈N(b) deg(d) + deg(b)deg(a) +

∑
c∈N(a) deg(c).

From the Lemma 4 we know that
∑

u∈N(v) deg(u) = degve(v)+nv. Therefore, from
the last equality we get that;
= 2deg(a)deg(b) + degvea + degveb + na + nb.

Corollary 8. Let (a, b) ∈ V (G�H). Then;

degve(a, b) = degvea + degveb + 2deg(a)deg(b).

Proof. The proof comes from the Lemma 4, Lemma 6 and Proposition 7.

And now we can investigate the ve-degrees in direct(tensor, kronocker) prod-
uct of two arbitrary graphs. We know that the direct product of two graphs is
connected as far as at least one of the two graphs contains an odd cycle. But here,
we focus degree not connectivity.

Lemma 9. Let G and H be two connected simple graphs. If both G and H contain
triangles then G×H contains triangles.

Proof. Clearly if both G and H contain no triangle then G×H must not contain
no triangle. Let accept that G contain a triangle and H contain no triangle. Then
we can said from the definition of the direct product of graphs that G×H contains
no triangle. Let accept that both G and H contain exactly one triangle, say uvw
and brt respectively. Then (ub)(vr)(wt) and (ub)(vt)(wr) are the corresponding
triangles in G×H.
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Lemma 10. Let G and H be two connected graphs and (a, b) ∈ G×H. Then;

n(a,b) = 2nanb

Proof. Let na = k and nb = l for the positive natural numbers k, l > 0. And let
u1v1w1, u2v2w2, ..., ukvkwk be the triangles in G and b1r1t1, b2r2t2, ..., blrltl be the
triangles in H. Then the pairs of triangles (u1b1)(v1r1)(w1t1) and (u1b1)(v1t1)(w1r1),
(u1b2)(v1r2)(w1t2) and (u1b2)(v1t2)(w1r2),..., (u1bl)(v1rl)(w1tl) and (u1bl)(v1tl)(w1rl)
are corresponding triangles of the triangle u1v1w1. That is exactly there are 2l tri-
angles in G × H for the the triangle u1v1w1. The same argument holds for the
other triangles of G. Therefore, there are exactly 2kl triangles in G×H.

Proposition 11. Let (a, b) ∈ V (G×H). Then;∑
(c,d)∈N((a,b))

deg(c, d) = (degvea + na)(degveb + nb)

Proof. Let N(a) = {v1, v2, ..., vn} and N(b) = {u1, u2, ..., um}. From the definition
of the direct product of graphs, we can write that;∑

(c,d)∈N((a,b))

deg(c, d) =
∑

(c,d)∈N((a,b))

deg(c)deg(d)

= (deg(v1) + deg(v2) + ... + deg(vn))(deg(u1) + deg(u2) + ... + deg(um))
From the Lemma 4 we know that

∑
u∈N(v) deg(u) = degve(v)+nv. Therefore, from

the last equality we get that;
= (degve(a) + na)(degveb + nb).

Corollary 12. Let (a, b) ∈ V (G×H). Then;

degve(a, b) = (degvea + na)(degveb + nb)− 2nanb

Proof. The proof comes from the Lemma 4, Lemma 10 and Proposition 11.

We begin to investigate ve-degrees in strong product of two graphs.

Lemma 13. Let G and H be two connected graphs and (a, b) ∈ GH. Then;

n(a,b) = na(1 + |E(H)|) + nb(1 + |E(G)|) + 2nanb + 2deg(a)deg(b)

Proof. The triangles belong to G�H and G×H are in the GH. There are new two
kind of triangles in GH. The first group consists of two Cartesian (product) edges
and one direct (product) edge. And the second group consists of one Cartesian
(product) edge and two direct (product) edges.
(a) 2 Cartesian 1 direct triangles: Let (a, b) ∈ GH, N(a) = {v1, v2, ..., vn} and
N(b) = {u1, u2, ..., um}. There are m four cycles such as; ab, au1, v1b, v1u1, ab, au2

, v1b, v1u2,..., ab, aum, v1b, v1um for the Cartesian product of the edges av1 and bui

for the 1 ≤ i ≤ m. And the same argument holds for Cartesian product of all the
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edges avi and buj . Therefore, there are nm = deg(a)deg(b) four cycles in G�H
including the vertex (a, b). Note that every four cycle consists of only the Cartesian
product edges in GH has two triangles with two cartesian edges and one direct
edges. For example there are two triangles, namely ab, v1u1, v1b and ab, au1, v1b
in the four cycle ab, au1, v1b, v1u1 in GH. Thus, there are 2deg(a)deg(b) = 2nm
triangles with two Cartesian edges and one direct edge in GH including the vertex
(a, b).
(b) 1 Cartesian 2 direct triangles: Let (a, b) ∈ GH. If na = nb = 0 then there is
no any triangle with two direct edge and one Cartesian edge in GH. Let accept
that na = 1, av1v2 be triangle in G and bu1 be an edge of H. Note that the
triangle ab, v1u1, v2u1 is the only triangle, which consists of two direct edge and
one Cartesian edge in GH, contains the vertex (a, b). Therefore, there are |E(H)|
triangle, which consists of two direct edge and one Cartesian edge in GH, contains
the vertex (a, b). Clearly if na = k ≥ 1 then there are k|E(H)| triangle, which
consists of two direct edge and one Cartesian edge in GH, contain the vertex (a, b).
The same argument of the vertex a holds for the vertex b. Thus, the proof is
completed from these facts and Lemma 6 and Lemma 10.

Proposition 14. Let (a, b) ∈ V (GH). Then;∑
(c,d)∈N((a,b)) deg(c, d) = 2deg(a)deg(b)+degvea+degveb+(degvea+na)(degveb+

nb) + na + nb

Proof. We know that E(GH) = E(G�H)∪E(G×H). From this and Propositions
7 and 11, we get the desired result.

Corollary 15. Let (a, b) ∈ V (GH). Then;
degve(a, b) = degvea + degveb + (degvea + na)(degveb + nb) − 2nanb − na|E(H)| −
nb|E(G)|

Proof. The proof comes from the Lemma 4, Lemma 13 and Proposition 14.

3. CONCLUSION

There are many open problems related to ve-degrees for further studies. It
can be interesting to compute the exact values of ve-degrees in some other graph
operations.
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DEGREE BASED TOPOLOGICAL INDICES OF

SANIDIC POLYAMIDES

Aysun YURTTAS

ABSTRACT

Sanidic polyamides are special polymers with many applications in

textile and clothing industries. In this paper, we calculate several

degree based topological graph indices of the sanidic polyamides as

these values helps to determine several chemical and physicochem-

ical properties of these polyamides.

1. INTRODUCTION

Polyamides are polymers containing repeating amides in the form of ”-CO-
NH-” linkages. The names of the types of polyamides are derived according to
the number of carbon atoms in their molecule structures. Some of the naturally
occurring polyamides are silk, wool and proteins. Polyamides are classified into
two categories. Aliphatic polyamides, known as nylons, and aromatic polyamides,
known as aramids.

Polyamides find applications in several fields ranging from the textile to the
automotive industry. They are used in making medical instruments and clothing,
electrical appliances, and in many more areas. Polyamide fibers are used in a wide
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range of applications due to their excellent mechanical properties and good adhesion
property to other materials like rubber. These fibers are used in women’s hosiery
and in all the stretch fabrics such as blouses, lingerie, and swimwear. They are
also used in several house furnishings such as upholstery and curtains. This type of
fibers has mostly been used in some technical textile derivatives like vehicle tires,
parachutes, nets and tents. The main factors for preferring polyamide fibers for
a wide range of military applications are high strength, elasticity, toughness, and
abrasion resistance of them compared with other equivalent materials. In general,
polyester has gained considerable significant market share compared to polyamides
because of its easy-care characteristics, [7].

In this work, we study on the sanidic polyamide which is one of the aromatic
polyamides briefly called aramids, see Fig. 1. In [2], a series of fully aromatic
polyesters, polyamides and polyimides having n-alkoxy side chains for 2 ≤ n ≤ 18
have been investigated for their applications in optical microscopy, X-ray analysis
and DSC. All members of these series have a rigid backbone and exhibit a decreasing
melting range with increasing length of the side chains. This characteristic is very
similar to the Wiener index which helps to determine the boiling temperatures
of the isomers of alkanes where the longer chains have lower boiling temperature.
The polyester with short side chains (2 ≤ n ≤ 6) form nematic melts. Some of
aramid applications include the hot-air filtration fabrics, optical-fiber cables, jet-
engine enclosures, heat-protective clothings, helmets, loudspeaker diaphragms, and
reinforced-thermoplastic pipes all having a lot of areas of application. Although the
aramids are non-conductive, they are sensitive to UV. They provide good resistance
to organic solvents and abrasion which is the main reason to study with them.

Figure 1: Sanidic Polyamide where R = C8H17.
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Topological graph indices are defined and used in many areas to study sev-
eral properties of different objects such as atoms and molecules. A large number of
topological graph indices have been defined and studied by many mathematicians
and chemists as most graphs are generated from molecules by replacing atoms with
vertices and bonds with edges. They are defined as topological graph invariants
measuring several physical, chemical, pharmacological, pharmaceutical, biological
etc. properties of graphs which are modelling real life situations. They can mainly
be grouped into three classes according to the way they are defined: by vertex
degrees, by matrices or by distances.

Let G = (V,E) be a simple graph with | V (G) |= n vertices and | E(G) |= m
edges. That is, no loops nor multiple edges are allowed. For a vertex v ∈ V (G), we
denote the degree of v by dG(v) or dv.

Two of the most important topological graph indices are called the first and
second Zagreb indices denoted by M1(G) and M2(G), respectively:

(1) M1(G) =
∑

u∈V (G)

d2
G(u) and M2(G) =

∑
uv∈E(G)

dG(u)dG(v).

They were defined in 1972 by Gutman and Trinajstic, [8], and are referred to due
to their uses in QSAR and QSPR studies in chemical studies. In [3], some results
on the first Zagreb index together with some other indices are given. For some
graph operations, these indices are calculated in [4].

The F -index, also called as forgotten index, of a graph G is denoted by F (G)
or M3(G) and is defined as the sum of the cubes of the degrees of the vertices of
the graph. The total π-electron energy depends on the degree based sums M1(G)
and F (G) =

∑
u∈V (G) d

3
G(u). They were first appeared in the study of structure-

dependency of total π-electron energy in 1972, [8]. The first index was later named
as the first Zagreb index and the second sum has never been further studied until
the last few years. As a result, recently, this sum was named as the forgotten index
or the F -index briefly by Furtula and Gutman, [6], and it was shown to have an
exceptional applicative potential.

The hyper-Zagreb index was defined as a variety of the classical Zagreb indices
as

HM(G) =
∑

(uv∈E

(du + dv)2,

see e.g. [6].

Inspired by the study of heat formation for heptanes and octanes in [5],
Furtula et. al. proposed an index, called the augmented Zagreb index, which gives
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a better prediction power. It is defined by

AZI(G) =
∑

uv∈E(G)

dudv
du + dv − 2

.

The harmonic index was introduced by Zhang [11]. It is shown that it cor-
relates well with Π-electron energy of benzenoid hydrocarbons and defined as

H(G) =
∑

uv∈E(G)

2

du + dv
.

Reformulated first, second and third Zagreb indices for a graph G are defined
by

ReZG1(G) =
∑

uv∈E(G)

du + dv
du · dv

,

ReZG2(G) =
∑

uv∈E(G)

du · dv
du + dv

,

ReZG3(G) =
∑

uv∈E(G)

(du · dv)(du + dv).

Milicevic et. al., [10], reformulated the Zagreb indices in terms of the edge
degrees instead of the vertex-degrees as

RM1(G) =
∑

uv∈E(G)

d(e)2,

RM2(G) =
∑

e,e′∈E(G)

d(e)d(e′)

where e, e′ are pairs of adjacent edges of the graph G.

Aram and Dehgardi, [1], introduced the concept of reformulated F -index as

RF (G) =
∑

uv∈E(G)

d(uv)3.

Kulli, [9], introduced the first and second Banhatti indices with the intention
of taking into account the contributions of pairs of incident elements, not only the
vertices or edges. They are defined as

B1(G) =
∑
u,e

[dG(u) + d(e)],

B2(G) =
∑
u,e

dG(u)d(e).
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2. TOPOLOGICAL INDICES OF SANIDIC POLYAMIDES

Now we will determine some well-known topological indices of sanidic polyamides
G∗.

Lemma 1. The first and second Zagreb indices of G∗ are M1(G∗) = 1016n and
M2(G∗) = 1318n.

Proof. We partition the set of edges of G∗ into edges according to their types
E(du,dv) where uv is an edge. In G∗, we get edges of type E(1,3), E(1,4), E(2,3),
E(2,4), E(3,3), E(3,4) and E(4,4). The number of edges of these types are 4, 102, 6,
2, 14, 4 and 42, respectively.

We know that M1(G) =
∑

uv∈E(G)(du + dv), i.e.,

M1(G∗) = | E(1,3) | (1 + 3)+ | E(1,4) | (1 + 4)+ | E(2,3) | (2 + 3)

+ | E(2,4) | (2 + 4)+ | E(3,3) | (3 + 3+ | E(3,4) | (3 + 4))

+ | E(4,4) | (4 + 4)

= 4(1 + 3) + 102(1 + 4) + 6(2 + 3) + 2(2 + 4) + 14(3 + 3)

+ 4(3 + 4) + 42(4 + 4)

= 1016.

For n unit, we have the general result as M1(G∗) = 1016n by the additivity prop-
erty.

As M2(G) =
∑

uv∈E(G) dudv, we get the result for M2(G∗) by similar calcu-

lations to M1(G∗).

Lemma 2. The third Zagreb index (forgotten index) of G∗ is F (G∗) = 3588n.

Proof. We know that F (G) =
∑

u∈V (G) du
3, i.e.,

F (G∗) =
∑

u∈V (G∗)

du
3 = 13 · 106 + 23 · 4 + 33 · 14 + 43 · 48

= 3588.

For n unit, we get F (G∗) = 3588n.

Lemma 3. The hyper Zagreb index of G∗ is HM(G∗) = 6220n.
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Proof. We know that HM(G) =
∑

uv∈E(G)(du + dv)2, i.e.,

HM(G∗) = | E(1,3) | (1 + 3)2+ | E(1,4) | (1 + 4)2+ | E(2,3) | (2 + 3)2

+ | E(2,4) | (2 + 4)2+ | E(3,3) | (3 + 3)2+ | E(3,4) | (3 + 43)2

+ | E(4,4) | (4 + 4)2

= 4(1 + 3)2 + 102(1 + 4)2 + 6(2 + 3)2

+ 2(2 + 4)2 + 14(3 + 3)2 + 4(3 + 4)2 + 42(4 + 4)2

= 6220.

For n unit, we similarly get HM(G∗) = 6220n.

Lemma 4. The augmented Zagreb index of G∗ is AZI(G∗) = 2462, 07 · n.

Proof. We know that AZI(G) =
∑

uv∈E(G)(
du·dv

du+dv−2 )3, i.e.,

AZI(G∗) = | E(1,3) | (
1 · 3

1 + 3− 2
)3+ | E(1,4) | (

1 · 4
1 + 4− 2

)3+ | E(2,3) | (
2 · 3

2 + 3− 2
)3

+ | E(2,4) | (
2 · 4

2 + 4− 2
)3+ | E(3,3) | (

3 · 3
3 + 3− 2

)3

+ | E(3,4) | (
3 · 4

3 + 4− 2
)3+ | E(4,4) | (

4 · 4
4 + 4− 2

)3

= 4(
3

8
) + 102(

64

27
) + 48 + 16 + 14 · (721

64
) + 4 · (1728

125
) + 42 · (512

27
)

= 2462, 07

giving the result for n unit.

The following results can similarly be obtained by counting the edges and
using the formulae of the given indices:

Lemma 5. The harmonic index of G∗ is H(G∗) = 62, 177 · n.

Proof. We know that H(G) =
∑

uv∈E(G)
2

du+dv
, i.e.,

H(G∗) = | E(1,3) |
2

1 + 3
+ | E(1,4) |

2

1 + 4
+ | E(2,3) |

2

2 + 3

+ + | E(2,4) |
2

2 + 4
+ | E(3,3) |

2

3 + 3
+ | E(3,4) |

2

3 + 4
+ | E(4,4) |

2

4 + 4
= 36, 177.

For n unit, we conclude that H(G∗) = (62, 177)n.

Lemma 6. The Re-defined version of Zagreb indices of G∗ are ReZG1(G∗) =
171, 99 · n, ReZG2(G∗) = 206, 327 · n, ReZG3(G∗) = 8832n.
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Proof. We know that ReZG1(G) =
∑

uv∈E(G)
du+dv

du·dv
, i.e.,

ReZG1(G∗) = | E(1,3) |
1 + 3

1 · 3
+ | E(1,4) |

1 + 4

1 · 4
+ | E(2,3) |

2 + 3

2 · 3

+ | E2,4) |
2 + 4

2 · 4
+ | E(3,3) |

3 + 3

3 · 3
+ | E(3,4) |

3 + 4

3 · 4
+ | E(4,4) |

4 + 4

4 · 4
= 171, 99.

For n unit, we find that ReZG1(G∗) = 171, 99 · n.

AsReZG2(G) =
∑

uv∈E(G)
du·dv

du+dv
andReZG3(G) =

∑
uv∈E(G)(du · dv)(du + dv),

by using the similar methods we get the results for G∗.

Lemma 7. The Reformulated Zagreb indices of G∗ are RM1(G∗) = 2856n, RM2(G∗) =
5856n.

Proof. In G∗ the degrees of the edges d(uv) where uv is an edge are 2, 3, 4, 5 and
6. The number of these edge degrees of G∗ are | d(uv) = 2 |= 4, | d(uv) = 3 |=
108, | d(uv) = 4 |= 16, | d(uv) = 5 |= 4 and | d(uv) = 6 |= 42.

We know that RM1(G) =
∑

uv∈E(G) d(uv)2, i.e.,

RM1(G∗) = | d(uv) = 2 | ·22+ | d(uv) = 3 | ·32+ | d(uv) = 4 | ·42

+ | d(uv) = 5 | ·52+ | d(uv) = 6 | ·62

= 4 · 22 + 108 · 32 + 16 · 42 + 4 · 52 + 42 · 62 = 2856.

For n unit, RM1(G∗) = 2856n.

For calculating RM2(G∗), we partition the incident edges of G∗ according to
product of their edge degrees d(e) · d(e′) where e, e′ ∈ E and e e′. In G∗, we get
d(2) · d(4), d(3) · d(3), d(3) · d(4), d(3) · d(5), d(3) · d(6), d(4) · d(4), d(4) · d(5), d(4) ·
d(6), d(4) · d(6) and d(6) · d(6). The number of these type of products are 7, 64, 9,
8, 174, 15, 8, 2, 4 and 36, respectively.

We know that RM2(G) =
∑

e,e′∈E(G) d(e)d(e′), i.e.,

RM2(G∗) = | d(2) · d(4) | ·2 · 4+ | d(3) · d(3) | ·3 · 3+ | d(3) · d(4) | ·3 · 4
+ | d(3) · d(5) | ·3 · 5+ | d(3) · d(6) | ·3 · 6+ | d(4) · d(4) | ·4 · 4
+ | d(4) · d(5) | ·4 · 5+ | d(4) · d(6) | ·4 · 6+ | d(5) · d(6) | ·5 · 6
+ | d(6) · d(6) | ·6 · 6
= 5856.

For n unit, RM2(G∗) = 5856n.
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Lemma 8. The reformulated F-index of G∗ is RF (G∗) = 16616n.

Proof. Appyling the formula RF (G) =
∑

uv∈E(G) d(uv)3 to the proof of RM1(G∗),
we get the result.

Lemma 9. The Banhatti indices of G∗ are B1(G∗) = 2352n, B2(G∗) = 4192n.

Proof. We know that B1(G) =
∑

u,e dG(u) + d(e), i.e.,

B1(G∗) = 4[(2 + 1) + (2 + 3)] + 102[(3 + 1) + (3 + 4)] + 6[(3 + 2) + (3 + 3)]

+ 16[(4 + 3) + (4 + 3)] + 4[(5 + 3) + (5 + 4)] + 42[(6 + 4) + (6 + 4)]

= 2352.

For n unit, B1(G∗) = 2352n.

We know that B2(G) =
∑

u,e dG(u) · d(e), so by similar methods to the proof
of B1(G∗), we get the desired result.
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