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TÜRKİYE
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Düzce University,

TÜRKİYE

Hidayet Hüda kosal
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Abstract

High speed airflow into the cornea accelerates evaporation and heat transfer. Eyelid blinking

increases with increased airflow speed into the eye. Increased blinking increases corneal

temperature when drops below normal level. In cold climatic condition high speed airflow

causes rapid temperature drop. Most often, eye injuries caused by cold exposure occur in

individuals who try to force their eyes open in high speed wind and cold weather such as

two wheeler rider. The purpose of this study is to investigate the temperature changes in

two wheeler rider’s cornea, considering eyelid blinking, in his/her different speed. Thus,

in this paper, bio-heat transfer process is simulated using finite element method at rider’s

different speed in transient state cases. In still air, blinking increases corneal temperature by

2.74oC at normal ambient temperature 22.5oC than in open eye. At ambient temperature

0oC and rider’s speed 60km/hr, corneal temperature drops to 5.45oC in open eye, while

blinking increases this temperature by 6.28oC. Similarly at ambient temperature 40oC,

blinking reduces corneal temperature by 0.51oC. Corneal temperature approaches steady

state quickly at higher rider’s speed.

1. Introduction

1.1. Background of the study

Dry eye condition affects millions of people, interfering with their daily living and normal activities. Actual causes associated with dry eye

are multifactorial [1]. Certain environmental conditions such as high or low temperatures, low humidity and wind flow are known factors to

cause dry eye. Among them, the most striking change of corneal surface temperature is brought about by air movement. High speed air into

the eye causes significant decrease in lipid layer and tear stability [2]. This may destroy or make thinner the lipid layer, which increases

evaporation. Increased evaporation of tear causes dry eye.The heat transfer between air molecules and cornea increases with air velocity.

Since more air molecules would hit the corneal surface, high amount of heat is transferred by evaporation of water from precorneal tear film.

Also with airflow, the thermal boundary layer of air between cornea and environment becomes thinner. This decreases the diffusion distance

between cornea and environment, causes high heat transfer.

High air velocity causes more evaporation of water from the pre-corneal tear film and increases heat transfer by eliminating the boundary of

air adjacent to tear film than in stagnant ambient air. High speed air is associated with forced convection by which significant amount of

heat can be transported quickly and effectively [3]. The amount of heat transported by air through forced convection is proportional to the

flow speed. The forced convection by hot/cold high speed airflow increases/decreases eye temperature. As the temperature within the eye

increases/decreases, the eye will respond with more protective cooling/heating mechanism, such as more frequent blinking [4].

Blinking agitates the pre-corneal tear film secreted at body core temperature. With each blink a warm lacrimal secretion is layered across

the cornea giving heat both to environment and to the cornea. The act of blinking expels and sucks alternatively a new layer of air over

the surface of the pre-corneal film [5]. The ocular exposure to most of the cornea and lens is strongly affected by the blinking [6]. During

blinking, the eyelid closure time is much shorter than opening; however, the convected heat of perfusing blood from vascular conjunctiva
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may contribute to anterior corneal temperature[7].

Lagendijk [8]used a finite difference method to calculate the temperature distribution in human and rabbit eyes during hyperthermia treatment.

The heat transport from the sclera to the surrounding anatomy is described by a single heat transfer coefficient which includes the impact of

blood flow in choroid and sclera. Flyckt et al. [9] studied the impact of choroidal blood flow by using three methods: Lagendijk model,

bio-heat model and discrete vasculature model in the eye and the orbit. Scott [10] utilized finite element method to obtain the temperature

profile based on heat conduction using various heat transfer coefficients given by Lagendijk. He acknowledged the deficiencies were the

lack of including the effects of eyelid closure, eyelid blinking and the environmental wind flow. Shafai and vafai [11] proposed the porous

media model along with natural convection to analyze the eye thermal characteristics during exposure to thermal disturbances. Sharon et

al.[12] studied the heat exposure and damage to the eye lens, using finite volume and finite element method, when exposed to environmental

temperature fluctuations. Ng and Ooi [13] presented a 2D finite element model, simulated ocular surface temperature and compared the

results with the model developed by Scott. Ooi and Ng [14] studied the effect of aqueous humor hydrodynamics on heat transfer within

human eye. The limitation they conceded was excluding the presence of eyelid on ocular surface and thermal effects of blinking. Scott [4]

studied the effects of eyelid shielding by considering normal blinking rate without considering the effect of blood flow in eyelid.

Some models ([4], [15]) performed sensitivity analysis by varying the values of convection heat transfer coefficient between cornea and

environment. Some authors([8], [9]) studied the convection effects of blood flow in posterior eye. However, most authors neglected the

effects of eyelid blinking and forced convection due to air velocity in corneal surface, although it is significant.

1.2. Significance of blinking in forced convection

Blinking is regarded as the continuous interrupted eyelid closure or opening and its thermal effect will compromise between these two.

Infants blink at an average rate of one or two times in a minute. The mean eye blink rate in normal individuals varies from 2−25 blink per

minute. Many factors may affect blink rate, including gender (the rate is higher in women than in men), the time of day (blinking is more

frequent in the evening), the degree of concentration on visual tasks and presence of ocular discomfort or disease [16]. During a blink the act

of eyelid closure occupies 0.05 seconds, the closure is maintained for 0.15 seconds and is followed by eyelid opening taking 0.2 seconds,

thus the whole blink lasts approximately 0.4 seconds with mean inter blink time of 2.8 seconds in male and 4 seconds in female [5]. There

are four types of temperature effects of blinking on anterior corneal surface:heating/cooling due to spread of warm tears and lipids across the

surface of cornea, heating/cooling caused by the movement of the eyelid, heating/cooling via convection, radiation and tear evaporation and

heating/cooling by the formation of new layer of air over the surface of cornea [17].

The use of two wheelers in developing countries has been increasing rapidly. While driving, two wheeler rider wears helmet with visor.

Visor prevents driver’s eye from dust, smoke, foreign body, and hot/cold wind flow. In several cases, the driver used to open their visor.

Some of the cases are:

1. When the environmental temperature is very low than normal, the water vapor due to respiration covers hole area of visor’s inner part

causes poor vision

2. When raining, the rain water drops hits the visor surface continuously causes blurred vision

3. At night, the refraction of light into the visor by anti-vehicles light or street lights causes poor vision.

In the above cases, the airflow caused by riders speed directly interacts with riders’ cornea or eyelid skin surface, cause forced convection

heat transfer.

In outdoor condition, the wind accelerates the drop in temperature of the ocular surface below normal level. Most often, eye injuries caused

by cold exposure occur in individuals who try to force their eyes open in high wind or cold weather such as in the case of two-wheeler

rider. The normal human corneal temperature ranges from 32−34oC [5, 7, 18]. However, in cold conditions and high-speed wind flow the

temperature of human eyelids and the corneal surface drops well below normal level. If the ocular surface and the eyelid temperature drop

below 30oC (a distinctive possibility in cold weather, especially in combination with wind), the chances are that:

1. Meibomian gland would impede its normal delivery of meibum [19]

2. The blood flow rate in eyelid decreases due to vasoconstriction [20]

3. Uniform distribution of lipid layer is broken that causes greater evaporation [21]

4. Tear secretion increases to maintain eye temperature normal that causes excess tearing [5]

5. Blink frequency increases to maintain normal eye temperature where possible [22]

6. Eye pain, blurred vision starts

These events may limit the protective effect of lipid layer, tear layer, eyelid and meibomian gland. Thus long time exposure of eye in cold

weather in combination with wind may cause dry eye, refractive errors and severe sensitivity to light.Thus, it is worth investigating the

temperature changes and its effects in the eye during eyelid opening, closure and blinking with appropriate forced convection coefficient.

In this study eyelid is considered as heating/cooling source of anterior cornea and model as a part of ocular component. The effect of wind

flow in temperature distribution specially the temperature drop in two wheeler riders eye surface is modeled using appropriate physical and

physiological values at rider’s different speed. The purpose of this study are 1) to develop computational approach to predict temperature

distribution and 2) to demonstrate the impact of high speed wind flow on temperature, which may be regarded to cause several eye injuries.

The potential users of this model would be the visor industries, general public(two wheeler rider) and biological and medical persons.

2. Model formulation

2.1. Discretization

A schematic diagram of two dimensional human eye is presented in figure 2.1. The human eye is considered to have 8 major components:

cornea, aqueous humor, lens, vitreous humor, ciliary body, iris, retina, sclera. The diameter of eye along pupillary axis (x-axis) is 25.10mm

and along vertical axis is (y-axis) is 23mm.
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Figure 2.1: Finite element discretization of human eye tissues in two dimension.

The human eye when eyelid is opened is considered to have 11 major components: skin, orbicularis oculi, tarsal plate, cornea, aqueous humor,

lens, vitreous humor, ciliary body, iris, retina and sclera. The diameter of eye along pupillary axis(x-axis) is 29.35mm and along vertical axis is

(y-axis) is 23mm. Initially, the open eye with eyelid is divided into 635 triangular elements with 350 nodes. The skin, orbicularis oculi, tarsal

plate, cornea, aqueous humor, iris, ciliary body, lens, vitreous humor, retina, and sclera are divided into 14,51,18,26,72,20,16,32,180,110

and 96 triangular elements as shown on figure 2.2.

Figure 2.2: Two dimensional eye when eyelid is open Figure 2.3: Two dimensional eye when eyelid is closed

Similarly, the human eye when eyelid is closed is considered to have 11 major components: skin, orbicularis oculi, tarsal plate, cornea, aqueous

humor, lens, vitreous humor, ciliary body, iris, retina and sclera. The diameter of eye along pupillary axis(x-axis) is 29.35mm and along

vertical axis is (y-axis) is 23mm. The closed eye is divided into 730 triangular elements with 395 nodes. The skin, orbicularis oculi, tarsal

plate, cornea, aqueous humor, iris, ciliary body, lens, vitreous humor, retina, and sclera are divided into 44,100,34,26,72,20,16,32,180,110

and 96 triangular elements as shown on figure 2.3.

2.2. Governing equation and boundary condition

The governing differential equation representing the bio-heat transfer in the human eye can be written by the well known Pennes equation

addressing the effect of blood perfusion and metabolism [23] is given by:

ρc
∂T

∂ t
= ∇.(K∇T )+ωρbcb(Tb −T )+Qm +Q (2.1)

where, ρb= blood density (Kgm−3), cb = blood specific heat (JKg−1o
C−1), k = tissue thermal conductivity (Wm−1o

C−1), ω = volumetric

blood perfusion rate per unit volume (s−1), Tb = blood temperature (◦C), T = tissue temperature (◦C), Qm = heat generation due to metabolism

(Wm−3) and Q = heat generation due to external heat source(Wm−3).

Boundary conditions for the system can be defined as follows:

1. On the outer surface of the sclera, the heat flows run into the eye with the complicated network of ophthalmic vessels which are

located inside the choroidal layer acting as a heating source to the sclera. This heat exchange between the eye and the surrounding is

modeled using the following convection boundary condition:

Γ2 : −ks
∂T

∂η
= hb(T −Tb) (2.2)
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where η is the normal direction to the surface boundary, ks is the thermal conductivity of sclera, hb is the heat transfer coefficient

between blood and eye (Wm−2o
C−1), and Tb is blood temperature (◦C).

2. Since outer surface of the eye (cornea or skin) is exposed to the environment, the heat loss caused via convection, radiation, and

evaporation. This loss is modeled using the following boundary condition :

Γ1 : −kc
∂T

∂η
= ha(T −Ta)+σε(T 4

−T 4
a )+E (2.3)

where ha =

{

hc, When eyelid is opened

hs, When eyelid is closed
, hc represents heat transfer coefficient between environment and cornea and hs represents

heat transfer coefficient between skin and environment (Wm−2o
C−1), Ta is the ambient temperature (◦C), σ is the Stefan Boltzmann

constant (5.67×10−8Wm−2o
C−4), ε =

{

ε ′, emissivity of cornea

ε, emissivity of skin
, and

E =

{

E ′, When eyelid is opened

E, When eyelid is closed
, E ′ is evaporative heat loss (Wm−2) between cornea and environment and E is evaporative heat

loss(Wm−2) between eyelid skin surface and environment.

The inner body core temperature Tc is assumed to be 37◦C. Therefore, the initial boundary condition is

Tc = 37oC (2.4)

2.3. Forced convection

Forced convection heat transfer from cornea or eyelid skin surface results from an airstream perturbing the insulating boundary layer of

air clinging to the surface. The fundamental non-dimensional quantities describing forced convection are Nusselt number(Nu), Prandtl

number(Pr) and Reynolds number(Re). These three dimensionless groups are related together with the following equation [24]

Nu = CRenPrm (2.5)

where C, m and n are constants to be determined from experimental data. The three quantities Nu, Re, and Pr further expressed as follows

Nu =
had

k f
(2.6)

Pr =
v f

α
(2.7)

Re =
uad

v f
(2.8)

where ha is convective heat transfer coefficient(wm−2◦C−1), k f is the thermal conductivity of the air(wm−1◦C−1), d is the diameter of

cornea(m), ua is ambient air speed(ms−1), v f is kinematic viscosity(m2s−1)4 and α is thermal diffusivity(m2s−1).
The correlations of the experimental data of Hilpert for gases indicate that the average heat transfer coefficients may be calculated with the

following equation

Nu = CRenPr
1
3 (2.9)

where the constants C and n are tabulated in table 2 [25]. Properties for use with equation(2.9) are evaluated at the film temperature as

Re C n

0.4-4 0.989 0.330

4-40 0.911 0.385

40-4000 0.683 0.466

4000-40000 0.193 0.618

40000-400000 0.0266 0.805

Table 1: Constants C and n for use with equation(2.9)

indicated by the subscript f . The film temperature Tf , defined as the arithmetic mean between the eye surface(cornea or eyelid skin) and

ambient air temperature

Tf =
Ts +Ta

2
(2.10)

where Ts is the eye surface temperature and Ta air temperature. The parameter valuesk f ,v f and Pr f based on film temperature Tf for air are

tabulated in table 3. We assume that all these parameter values are linearly dependent with film temperature Tf . The calculated convective

heat transfer coefficient ha from equation (2.9) is substituted in boundary condition (2.3).
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Tf v f k f Pr

(◦C) (m2s−1) (Wm−1◦C)

27 15.69×10−6 0.02624 0.708

77 20.76×10−6 0.03003 0.697

Table 2: Properties of air[25]

2.4. Methodology

Effects of air flow in temperature distribution, specially, temperature drop in two wheeler riders eye surface is modeled using appropriate

physical and physiological values at rider’s different speed. For modeling purpose, we suppose that the effects of airflow in resting cornea

is equivalent to the effects of still air in moving cornea. Based on this assumption the riders speed in still air is assumed as airflow speed.

The two-wheeler rider’s speed in valleys and hills is assumed 20km/hr as low, 40km/hr as normal and 60km/hr as high. The normal speed

40km/hr is the mean speed which the two-wheeler companies marked as most economy and efficient speed. Hence, to investigate the effects

of air speed, the numerical calculations are carried out at speeds 0km/hr, 20km/hr, 40km/hr and 60km/hr.

The governing equation (2.1) with boundary conditions (2.3) and (2.2) are solved using different parameter values. Two dimensional

computations are carried out in steady and transient state cases. Transient thermal behavior of human eye is observed using Crank-Nicholson

scheme for 1 hour. Eyelids are considered as a heating/cooling source of anterior cornea and model as a part of ocular component. In case of

open eyelid, heat loss occurs from cornea and in closed eyelid, heat loss occurs from eyelid skin surface. Different parameter values for this

loss are used in the analysis.

Blinking is the interrupted eyelid closure and opening. Beside various functions of eyelid blinking, heating and cooling mechanism play

important role in maintaining anterior eye temperature. In transient analysis of blinking, the mesh size and the corresponding parameter

values are continuously changed on each time step, this situation is modeled accordingly. At starting time (t = 0) , the eyelids are supposed

open and temperature values are calculated in open eye with eyelids. When eye blinks, eye mesh with closed lids are used to calculate

temperature values. This mesh changing process continues until final time step.

2.5. The control parameters

Normal parameter values: ambient convection coefficient of skin(hs)= 6.28Wm−2◦C−1 [26], ambient convection coefficient of cornea(hc) =
10Wm−2◦C−1 [2], heat transfer coefficient of sclera (hb) = 65Wm−2◦C−1 [27], blood temperature (tb) = 37◦C, evaporation rate of skin

Es = 96W/m2 [3], evaporation rate of cornea Ec = 40W/m2 [2]. The parameter values for different parts of eye are presented in table ??.

There are various biological and environmental factors that affect blinking rate. Some factors increase, while other decrease blinking

Tissue Thermal Blood Metabolic Density Specific

Type Conductivity Perfusion Rate heat

K ω Qm ρ C

(Wm−1◦C−1) (s−1) (Wm−3) (Kgm−3) (JKg−1◦C−1)

Dermis 0.34[9] 0.0087[9] 1620[28] 1070[9] 3662[9]

Orbicularis 0.56[9] 0.0034[9] 480[28] 1050[9] 3639[9]

Tarsal 0.47[28] 0.0082[28] 1600[28] 1250[28] 3600[28]

Cornea 0.58[13] 0[9] 0[28] 1050[13] 4178[13]

Aqueous 0.58[13] 0[9] 0[28] 996[13] 3997[13]

Lens 0.40[13] 0[9] 0[28] 1050[13] 3000[13]

Vitreous 0.603[13] 0[9] 0[28] 1000[13] 4178[13]

Retina 0.565[29] 0.0222[9] 22000[28] 1050[29] 3680[29]

Iris 0.52[28] 0.01[28] 10000[28] 1050[28] 3600[28]

Ciliary 0.498[29] 0.008[29] 6900[29] 1050[29] 3340[29]

Sclera 1.0042[13] 0[29] 0[29] 1100[13] 3180[13]

Table 3: Thermal properties of human eye tissues

rates. In normal condition, the average rate is lowest during high level of mental activity like reading and highest during conversation[30].

Generally, the time interval between two consecutive blink is 2−10 seconds, actual rate varies by individual averaging around 10 blinks per

minute in a laboratory setting [16]. In this study 10 blinks/min is taken as normal blink rate in still air and at normal ambient temperature.

Based on many previous studies[4, 13, 15], 20−25oC is assumed as normal air temperature and the temperature below and above this range

is cold and hot. In this model, the normal ambient temperature is taken as 22.5oC (mean of the normal range 20−25oC). To simulate airflow

effects in cold and hot climatic conditions the corneal temperature values are calculated at 0oC, 10oC, 30oC and 40oC respectively.

For modeling purpose, we supposed that the effects of airflow in resting cornea is equivalent to the effects of still air in moving cornea. Based

on this assumption the two wheeler riders speed in still air is assumed as airflow speed. Hence, to simulate the effects of wind speed and its

effects, the numerical calculations are carried out at airflow speeds 0,20,40 and 60 km/hr. The rider’s speed 40 km/hr is the mean speed

which the two-wheeler companies marked as most economy and efficient speed, is assumed as normal speed.

Nakamori et al.[22] reported that high air velocity (1.4m/s) is associated with an increase (16.92.9 to 22.84.0) in blinking frequency in

normal eyes. Koh et al.[21] reported that blink frequency increased significantly by 59% in dry eye patients after airflow exposure. We

supposed that the blink frequency is increased by 50% in every increase of riders speed by 20 km/hr. Thus, the blink frequency of eyelid is

taken as 10,15,22 and 33 blinks/min with inter-blink time interval of 5.5,3.6,2.32 and 1.41 seconds respectively at riders different speed.
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The oily layer of the pre-corneal tear film retards evaporation from the eye and if it destroyed, the rate may increase by a factor of fou

r[31]. The increased airflow into the corneal surface increases evaporation. Increased airflow also increases blinking rate. Increased

blinking rate reduces eyelid opening time and with each blink a new lipid layer is spread across cornea that prevents evaporation. Hence

evaporation is assumed as constant for different airflow speed. The corneal evaporation rate 40Wm−2 is used as normal rate at normal

ambient temperature[13, 15, 11]. Evaporation rate increases/decreases with increase/decrease in ambient temperature. In this study, corneal

evaporation rates 0,15,40,100 and 150Wm−2 are used for ambient temperatures 0,10,22.5,30 and 40oC respectively. Similarly, skin

evaporation rate at normal ambient temperature is 96Wm−2[32]. Hence 0,20,96,140 and 192Wm−2 are used for eyelid evaporation rate for

ambient temperatures 0,10,22.5,30 and 40oC respectively[20].

3. Convergence study

In this section we studied the convergence pattern of temperature values by varying the mesh size in open eye without eyelids. At first, initial

triangular mesh of size 552 elements (coarse mesh) are constructed and temperature values are obtained as shown in figure 3.1. Next we

subdivide each triangle into four sub-triangles by joining the mid point of each sides of that triangle. The corresponding mesh of size 2208

elements (normal mesh) and its temperature distribution are shown in figure 3.2. The triangular mesh is again further subdivided to get fine

and extremely fine mesh of size 8832 and 35328 elements as shown in figures 3.3 and 3.4 respectively. The temperature values of cornea are

tabulated in table 4.

Figure 3.1: Temperature distribution of human eye tissues at triangular mesh

of size 552 elements.

Figure 3.2: Temperature distribution of human eye tissues at triangular mesh

of size 2208 elements.

Figure 3.3: Temperature distribution of human eye tissues at triangular mesh

of size 8832 elements.

Figure 3.4: Temperature distribution of human eye tissues at triangular mesh

of size 35328 elements.

Mesh type Mesh size Temperature values

Coarse 552 33.21◦C

Normal 2208 33.23◦C

Fine 8832 33.25◦C

Extremely fine 35328 33.26◦C

Table 4: Convergence study in Two dimensional temperature variation of cornea

4. Results

The temperature distribution of human eye in case of eyelid opening and closure at ambient temperature 22.5◦C and at air flow rates 20km/hr,

40km/hr and 60km/hr are shown in 4.1.

The transient temperature distributions are calculated at different air temperatures 0,10,22.5,30 and 40oC and air speeds 0km/hr,20km/hr,40km/hr
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v = 20km/hr v = 20km/hr

v = 40km/hr v = 40km/hr

v = 60km/hr v = 60km/hr

Figure 4.1: Influence of different air speeds and eyelid positions (opened and closed) temperature distribution at ambient temperature Ta = 22.5◦C.

and 60km/hr as discussed above. The transient thermal behavior of human eye is observed for 1 hour using 1−second time step size. The

temperature values for eyelid opening, eyelid closure and different blinking rates 10,15,22 and 33 blinks/min at ambient temperature 22.5oC

and in still air is presented in figure 4.2.

Figure 4.2 shows that the corneal surface temperature values obtained are 30.36,32.73,33.10,33.47,33.84 and 35.58oC at eyelid opening,

10 blinks/min, 15blink/min, 22blink/min, 33blink/min and eyelid closure respectively. The steady state corneal temperature is observed

in around 41 and 25 minutes during eyelid opening and closure respectively. When blinking rate increases from 10 to 33 the steady state

temperature is observed in around 38,35,33 and 30 minutes respectively. However, in figure4.2, the actual blinking pattern is unable to see

because blinking time (eyelid closure time) and inter-blink interval is very short. Hence to show the blinking pattern, the further graphs are

plotted by showing only one blinking pattern in a minute.

In figure 4.3, we observed the temperature distribution of cornea at different blinking rates and air speeds at 0oC ambient temperature. The

corneal temperature is dropped by 11.54,16.88 and 17.46oC during closure, blinking and opening respectively.

Figure 4.4 shows the corneal temperature distribution at different airflow speeds and at different blinking rates at ambient temperature 10oC.

The corneal temperature observed is 34.95,29.34,27.64 and 26.68oC during eyelid closure, 30.61,20.90,19.10 and 18.52oC during blinking

and 26.22,16.77,14.84 and 13.93oC during eyelid opening respectively.

The corneal temperature at 22.5oC temperature and at different blinking rates and air speeds is shown in figure 4.5. The temperature

decreases from 30.36oC to 24.50oC, 33.10oC to 26.97oC and 35.58oC to 31.34oC at eyelid opening, blinking and closure respectively.

In figure 4.6, we observed the temperature distribution of cornea at different blinking rates and air speeds at 30oC ambient temperature. The

corneal temperature is dropped by 1.84,2.57 and 2.02oC during closure, blinking and opening respectively.
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Figure 4.2: Temperature values for different blinking rates

v = 0km/hr v = 20km/hr

v = 40km/hr v = 60km/hr

Figure 4.3: Corneal temperatures at ambient temperature 0oC

Figure 4.7 shows the corneal temperature at different air speeds and blinking rates and at 40oC ambient temperature. The corneal temperature

is dropped by 0.36,1.31,1.4oC and 1.42oC at 0,20,40 and 60km/hr air speeds respectively.

5. Discussion

The corneal temperature is highest in eyelid closure, lowest in eyelid opening and in between these two values during blinking when ambient

temperature is less than physiological temperature of body(37◦C) and vice versa. In eyelid closure heat is conducted/convected from vascular

eyelid to avascular cornea, since the perfused blood flow in eyelid has temperature approaching to body core. If eye surface temperature

drops or rises beyond normal level then heat is convected in or out via blood flow through eyelid.

When blinking rate increases 1) eyelid closure time increases 2) secretion and spread of tear layer across cornea increases and 3) uniform

distribution and thickness of lipid layer increases. Uniform distribution and thick lipid layer across cornea prevents evaporation of tear

from cornea. Closure of eyelid prevents convection, radiation and tear evaporation from cornea. Hence, all these factors increase corneal

temperature for ambient temperature less than 37◦C and vice versa.

Rapid decrease in corneal temperature is observed at low atmospheric temperatures. The decreasing rate is highest in eyelid opening than

blinking and lowest in closure. High amount of heat is lost to environment via convection and radiation in low ambient temperature. In open

eye heat conducted from eye core to cornea is insufficient to maintain corneal temperature in normal level. Increased blinking rate may

help to increase corneal temperature at low ambient temperature conditions. In our case at ambient temperature 0◦C, blinking increases

eye temperature by 5.40◦C, 5.64◦C, 5.82◦C and 6.28◦C at air speeds 0km/hr, 20km/hr, 40km/hr and 60km/hr respectively. Similarly at

ambient temperature 40◦C, blinking decreases eye temperature by 0.27◦C, 0.42◦C, 0.46◦C and 0.51◦C at air speeds 0km/hr, 20km/hr,
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v = 0km/hr v = 20km/hr

v = 40km/hr v = 60km/hr

Figure 4.4: Corneal temperatures at ambient temperature 10oC

v = 0km/hr v = 20km/hr

v = 40km/hr v = 60km/hr

Figure 4.5: Corneal temperatures at ambient temperature 22.5oC

40km/hr and 60km/hr respectively.

Increase in ambient air speed decreases corneal temperature. The rapid decrease of corneal surface temperature is observed at high air speeds.

With increase in air speed, more air molecules hit the corneal surface, which may increase the rate of evaporation of water molecules from

cornea. In cold temperatures and in still air the difference in temperature between air molecules and corneal surface is very high (22.91◦C,

28.61◦C and 34.45◦C in open, blinking and closed eye respectively at 0◦C ambient temperature). This obviously increases heat transfer.

However, the cornea is continuously heated by conduction from body core to maintain steady temperature in open eye.

In addition, cornea is heated by warm conjunctiva of eyelid and tearing in eyelid closure. On the other hand, in still air there is a thick

thermal boundary layer at the surface of cornea. The increase in air speed plays a role of catalyst in heat transfer, which makes thinner the

boundary layer and decreases the diffusion distance. This phenomenon increases heat transfer between ambient air and cornea in eyelid

opening and skin surface in eyelid closure. But in hot temperature the difference is very small(3.18◦C, 3.45◦C and 3.54◦C in open , blinking
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v = 0km/hr v = 20km/hr

v = 40km/hr v = 60km/hr

Figure 4.6: Corneal temperatures at ambient temperature 30oC

v = 0km/hr v = 20km/hr

v = 40km/hr v = 60km/hr

Figure 4.7: Corneal temperatures at ambient temperature 40oC

and closed eye respectively at 40◦C air temperature). Although heat transfer increases with increase in air speed the corneal temperature is

not significantly affected by air speeds in hot climatic conditions due to this small temperature difference.

The outermost layer of the cornea (meibomian lipid layer) solidifies below 19◦C, quasi solid in the range between 20−30◦C and completely

clear liquid in the range between 30−45◦C [19]. Thus, if the corneal surface temperature drops below 30◦C, the meibomian layer may

become thicker and solid than usual, this can lead blurred vision. In our case, in still air and at 0◦C ambient temperature, corneal temperature

is found as 22.91◦C, 28.61◦C and 34.45◦C in eyelid opening, blinking and closure respectively. Similarly at air speed 60km/hr and ambient

temperature 0◦C the corneal surface temperature drops to 5.45◦C, 11.73◦C and 22.91◦C in eyelid opening, blinking and closure respectively.

This may solidify the meibomian lipid layer, which may cause blurred vision. In addition, high air speed affects the distribution of tear

film and lipid layer which protects the corneal epithelium against the evaporation of aqueous tears [33]. High air velocity causes greater

evaporation of water from the pre-corneal tear film. Exposure of tear film to high air velocity caused significant decrease in lipid layer
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stability, tear stability and tear meniscus [21]. If the lipid layer destroyed, the evaporation from the tear film increases approximately 4 times

greater than with the lipid layer [31]. This higher rate of evaporation reduces corneal temperature rapidly.

The steady state temperature is achieved earlier in higher air speeds. The corneal temperature reaches in steady state very fast at air speed

60km/hr (approximately 9 minutes, 13 minutes and 20 minutes in open, blinking, and closed eye respectively) than in still air (approximately

25 minutes, 35 minutes and 41 minutes in closed, blinking and open eye respectively). In cold temperatures, the steady state temperature

drops very well and plateau of corneal temperature is achieved faster in higher air speeds. In hot climatic conditions the steady state

temperature of cornea does not drop significantly but plateau of corneal temperature is achieved faster as in cold climatic conditions.

The flow speed equally affects the thermal boundary layer (reducing the thickness) either in hot or cold conditions. This causes increase in

heat transfer approximately at the same manner in both hot and cold climatic conditions. The value of heat transfer coefficient at air speed

60km/hr is found as 122.80Wm−2◦C−1 and 119.30Wm−2◦C−1 at ambient temperatures 0◦C and 40◦C respectively.

6. Validation studies

Gurung and Saxena [20] studied the effects of air flow in human skin temperature. They found a drop in human skin temperature of 7.45◦C

at 0◦C atmospheric temperature and at 4m/s air speed. Our result at atmospheric temperature 0◦C and air speed 5m/s shows a higher

temperature value 15.03◦C on eyelid skin surface. They modeled skin including subcutaneous tissue with increasing blood perfusion from

2mm deep to body core. In our case only 0.6mm of eyelid outer surface having no blood perfusion. Also concentration of blood vessels in

eyelid is higher than in normal skin. In such cases our results may valid compare to the results from Gurung and Saxena.

Freeman and Fatt [34] studied the effects of air velocity on human cornea temperature experimentally using thermistor probe and Thermometer

Bridge. They observed 13◦C temperature drop at 4m/s air velocity and at 0◦C ambient temperature. In our case, the corneal surface

temperature is obtained to be 9.39◦C at 5m/s air speed and at 0◦C ambient temperature. This shows that our modeling results are valid with

Freeman and Fatt’s experimental results.

7. Conclusion

We have presented finite element model of human eye and computed its steady and transient state temperature distribution during eyelid

opening, closure and blinking. The airflow forced convection effects on temperature distribution of cornea is simulated. The study focused

on the change in temperature of two wheeler rider’s cornea in hot and cold climatic conditions at different air speeds. Increased blinking rate

is found to increase corneal temperature significantly. In our case anterior corneal temperature is increased by 2.74◦C while blinking than in

open eye at normal ambient temperature and in still air.

The temperature difference at cornea during eyelid opening, blinking and closure increases as ambient temperature decreases and vice

versa. Similarly the difference increases as air speed increases. Corneal temperature plateaus very fast in high air speed than in still air

in all climatic conditions. High air speed in cold ambient temperature is hazardous for ocular surface. In this situation, thermal feedback

mechanism would require to increase local temperature. Long time exposure of cornea to cold weather and in high air speed may reduce

refractive outcomes and increase the risk of dry eye.
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Abstract

In the present paper, new analytical solutions for the space-time fractional (2+1)-dimensional

asymmetric Nizhnik-Novikov-Veselov (ANNV) equations are obtained by using the simpli-

fied tan(
φ(ξ )

2 )-expansion method (SITEM).

1. Introduction

Nonlinear model arising from the field of mathematical physics is a popular topic since it is widely applied in many natural science such as

chemistry, biology, mathematics, communication and particularly in almost all branches of physics like the fluid dynamics, plasma physics,

field theory, nonlinear optics and condensed matter physics. Exact solutions of nonlinear models have extensively been investigated by

different methods. For example, solutions of the (1 + 1)-dimensional KdV-type model by means of the modified tanh-function method with

three different ansatz has been obtained [1]. Non-linear differential-difference sine-Gordon equation has been solved by using Jacobian

elliptic function method [2]. Hierarchies of Peregrine solution and breather solution have been derived in a (2+1)-dimensional variable-

coefficient nonlinear Schrodinger equation with partial nonlocality [3]. Extended tanh-function method based on the mapping method has

been applied to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system [4].

Nizhnik-Novikov-Veselov (NNV) equations have an important place in many fields of physics including condense matter physics, optics, fluid

mechanics and plasma physics [5]-[7]. Solutions of the NNV equations have been investigated by many researchers. Extended tanh-function

method, exp-function method, generalized auxiliary equation method have been applied to (2+1)-dimensional ANNV equations [8]-[10].

Generalized Nizhnik-Novikov-Veselov (GNNV) equations have been solved by using exp-function method, the extended hyperbolic function

method, the tanh method, generalized F-expansion method and auxiliary ordinary differential equation method [11]-[15]. Combining the

generalized direct method with the classical Lie method, solutions of the GNNV equations have been investigated [16]. The generalized,

asymmetric and the modified NNV equations have been studied by using Hirota’s bilinear method [17].

Fractional NNV equations have been studied in [18]-[22]. In these works, fractional derivatives are described in modified Riemann-Liouville

sense (see, for example, [18]-[20]) and conformable sense (see, for example, [21, 22]). Generalized exp-function method has been applied to

the space-time fractional ANNV equations [18]. Solitary-wave ansatz method, the (G′/G) expansion method and sub equation method have

been used to obtain exact solutions of the space-time fractional GNNV equations [19, 20]. Exp-function method, (G′/G) expansion method

and homotopy analysis method have been applied to the time fractional GNNV [21, 22].

Recently, the improved tan(
φ(ξ )

2 )-expansion method (ITEM) has been applied by many authors [23]-[25]. In [26], ITEM has been simplified

and called simplified ITEM (SITEM). SITEM has been applied to the Kundu-Eckhaus equation and Konopelchenko- Dubrovsky equations

Email addresses and ORCID numbers: hcerdik@pau.edu.tr, https://orcid.org/0000-0002-3243-3703 (H. Çerdik Yaslan), aysegirgin20@gmail.com, http://orcid.org/0000-

0002-2972-7583 (A. Girgin)
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in [26, 27], respectively. In this paper, we obtain new analytical solutions of the space-time fractional (2+1)-dimensional ANNV equations

by using SITEM.

2. Description of the conformable fractional derivative and its properties

For a function f : (0,∞)→ R, the conformable fractional derivative of f of order 0 < α < 1 is defined as (see, for example, [28])

T α
t f (t) = lim

ε→0

f (t + εt1−α )− f (t)

ε
.

Some important properties of the the conformable fractional derivative are as given follows:

T α
t (a f +bg)(t) = aT α

t f (t)+bT α
t g(t), ∀a,b ∈ R,

T α
t (tµ ) = µtµ−α ,

T α
t ( f (g(t)) = t1−α g

′
(t) f

′
(g(t)).

3. Analytic solutions to the conformable space-time fractional ANNV equations

Conformable space-time fractional ANNV equations are given in the following form [8, 9]

T α
t u−T

β
x T

β
x T

β
x u−3T

β
x (uv) = 0, (3.1)

T
β

x u = T θ
y v, 0 < α ≤ 1, 0 < β ≤ 1, 0 < θ ≤ 1. (3.2)

Eqs.(3.1)-(3.2) were first derived by Boiti et al. [29] which may be considered as a model for an incompressible fluid.

Let us consider the following transformation

u(x,y, t) =U(ξ ), v(x,y, t) =V (ξ ), ξ = k
tα

α
+m

xβ

β
+n

yθ

θ
, (3.3)

where k, m, n are constants. Substituting (3.3) into Eqs.(3.1)-(3.2) we obtain the following differential equations

kU ′−m3U ′′′−3m(UV )′ = 0, (3.4)

mU ′ = nV ′ (3.5)

Integrating of Eqs.(3.4)-(3.5) with zero constant of integration and eliminating V , we have

kU −m3U ′′− 3m2

n
U2 = 0. (3.6)

Let us suppose that the solution of Eq.(3.6) can be expressed in the form

U(ξ ) =
N

∑
k=0

Ak

[

p+ tan
(φ(ξ )

2

)]k
+

N

∑
k=1

Bk

[

p+ tan
(φ(ξ )

2

)]−k
. (3.7)

Here φ(ξ ) satisfies the following ordinary differential equation

φ ′(ξ ) = asin(φ(ξ ))+bcos(φ(ξ ))+ c, (3.8)

a, b, c, Ak(0 ≤ k ≤ N) and Bk(1 ≤ k ≤ N) are constants to be determined. The solution of Eq. (3.8) has been given in[27].

Substituting Eq.(3.7) into Eq.(3.6) for p = 0 and then by balancing the highest order derivative term and nonlinear term in result equation,

the value of N can be determined as 2. Therefore, Eq.(3.7) reduces to

U(ξ ) = A0 +A1

[

tan
(φ(ξ )

2

)]

+A2

[

tan
(φ(ξ )

2

)]2
+B1

[

tan
(φ(ξ )

2

)]−1

+ B2

[

tan
(φ(ξ )

2

)]−2
. (3.9)

Substituting Eq.(3.9) into Eq.(3.6) and collecting all the terms with the same power of tan( φ
2 ), we can obtain a set of algebraic equations for

the unknowns A0, A1, A2, B1, B2, k, m, n:

−6A2
2m2 −3nA2b2m3 +6nA2bcm3 −3nA2c2m3 = 0,

−A1nb2m3 +2A1nbcm3 +10aA2nbm3 −A1nc2m3 −10aA2ncm3 −12A1A2m2 = 0,

−8A2na2m3 +3naA1bm3 −3naA1cm3 −6A2
1m2 +4A2nb2m3 −4A2nc2m3 −12A0A2m2 +2A2kn = 0,

2A1kn−12A0A1m2 −12A2B1m2 −2a2A1m3n+A1b2m3n−A1c2m3n−6aA2bm3n−6aA2cm3n = 0,

2A0kn−6A2
0m2 −12A1B1m2 −12A2B2m2 −A2b2m3n−A2c2m3n−b2B2m3n−B2c2m3n−aA1bm3n−aA1cm3n+abB1m3n−aB1cm3n

−2A2bcm3n+2bB2cm3n = 0,

2B1kn−12A0B1m2 −12A1B2m2 −2a2B1m3n+b2B1m3n−B1c2m3n+6abB2m3n−6aB2cm3n = 0,

−8B2na2m3 −3nabB1m3 −3naB1cm3 +4B2nb2m3 −6B2
1m2 −4B2nc2m3 −12A0B2m2 +2B2kn = 0,

−B1nb2m3 −2B1nbcm3 −10aB2nbm3 −B1nc2m3 −10aB2ncm3 −12B1B2m2 = 0,

−3nb2B2m3 −6nbB2cm3 −6B2
2m2 −3nB2c2m3 = 0.
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Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:

Case 1: A0 =
1
2 (b

2 − c2)mn,A1 = 0,A2 = 0,B1 =−amn(b+ c),B2 =− 1
2 (b+ c)2mn,k = ∆m3 :

For b = c and a = 0, we have

U1(ξ ) =−2b2mn
[

bξ + c1

]−2
.

For b = c and a 6= 0, we have

U2(ξ ) =−amn2b
[

c1 exp(aξ )− b

a

]−1
−2b2mn

[

c1 exp(aξ )− b

a

]−2
.

For ∆ > 0 and b 6= c, we obtain

U3(ξ ) =
1

2
(b2 − c2)mn

− amn(b+ c)
[ 2

b− c

c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−1

− 1

2
(b+ c)2mn

[ 2

b− c

c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−2
. (3.10)

For ∆ < 0 and b 6= c, we have

U4(ξ ) =
1

2
(b2 − c2)mn

− amn(b+ c)
[ a

b− c
+

√
−∆

b− c

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]−1

−1

2
(b+ c)2mn

[ a

b− c
+

√
−∆

b− c

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]−2
.

Case 2: A0 =
1
2 (b

2 − c2)mn,A1 = a(b− c)mn,A2 =− 1
2 (b− c)2mn,B1 = 0,B2 = 0,k = ∆m3 :

For ∆ > 0 and b 6= c, we have

U5(ξ ) =
1

2
(b2 − c2)mn+2amn

[ c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]

−2mn
[ c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]2
.

For ∆ < 0 and b 6= c, we have

U6(ξ ) =
1

2
(b2 − c2)mn

+ amn
[

a+
√
−∆

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

)]

− 1

2
mn

[

a+
√
−∆

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]2
. (3.11)

Case 3: A0 =
1
6 (−2a2mn+b2mn− c2mn),A1 = 0,A2 = 0,B1 =−amn(b+ c),B2 =− 1

2 (b+ c)2mn,k =−∆m3 :

For b = c and a = 0, we obtain

U7(ξ ) =−2b2mn
[

bξ + c1

]−2
.

For b = c and a 6= 0, we have

U8(ξ ) =−1

3
(a2mn)−amn(2b)

[

c1 exp(aξ )− b

a

]−1

− 2b2mn
[

c1 exp(aξ )− b

a

]−2
.

For ∆ > 0 and b 6= c, we have

U9(ξ ) =
1

6
(−2a2mn+b2mn− c2mn)

− amn(b+ c)
[ 2

b− c

c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−1

− 1

2
(b+ c)2mn

[ 2

b− c

c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−2
.
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For ∆ < 0 and b 6= c, we have

U10(ξ ) =
1

6
(−2a2mn+b2mn− c2mn)

− amn(b+ c)
[ a

b− c
+

√
−∆

b− c

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]−1

− 1

2
(b+ c)2mn

[ a

b− c
+

√
−∆

b− c

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]−2
. (3.12)

Case 4: A0 =
1
6 (−2a2mn+b2mn− c2mn),A1 = a(b− c)mn,A2 =− 1

2 (b− c)2mn,B1 = 0,B2 = 0,k =−∆m3 :

For ∆ > 0 and b 6= c, we have

U11(ξ ) =
1

6
(−2a2mn+b2mn− c2mn)

+ 2amn
[ c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]

− 2mn
[ c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]2
.

For ∆ < 0 and b 6= c, we have

U12(ξ ) =
1

6
(−2a2mn+b2mn− c2mn)

+ amn
[

a+
√
−∆

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]

− 1

2
mn

[

a+
√
−∆

−c1 sin(
√
−∆
2 ξ )+ c2 cos(

√
−∆
2 ξ )

c1 cos(
√
−∆
2 ξ )+ c2 sin(

√
−∆
2 ξ )

]2
,

where ξ =−∆m3 tα

α +m xβ

β
+n

yθ

θ , ∆ = a2 +b2 − c2. From the formula V (ξ ) = m
n U(ξ ), v(x,y, t) can be computed.

The solutions u2(x,y, t), u5(x,y, t), u6(x,y, t) and u10(x,y, t) of the Eqs.(3.1)-(3.2) are simulated as traveling wave solutions for various values

of the physical parameters in Fig.3.1-Fig.3.8. Figs.3.1, 3.2 show kink waves solutions, Figs.3.3 and 3.4 show solitary waves solutions,

Figs.3.5, 3.6, 3.7 and 3.8 show periodic waves solutions of Eqs.(3.1)-(3.2). Figs.3.1 and 3.2 are 3D and 2D plots of the traveling wave

solution u2(x,1, t) and u2(x,1,1) in Eq.(3.10). 3D plot of the obtained solution u2(x,1, t) is given for parameters α = 0.5, β = 1, θ = 0.75,

m = 0.25, n = −0.5, a = 0.5, b = 0.25, c = 0.25, c1 = 1, c2 = 1 in Fig.3.1. Fig.3.2 demonstrate the same solution with 2D plot for

−40 ≤ x ≤ 40 at t = 1. Figs.3.3 and 3.4 are 3D and 2D plots of the traveling wave solution u5(x,1, t) and u5(x,1,1) in Eq.(3.11) for

α = 0.5, β = 1, θ = 0.75, m = 1, n = −0.5, a = 0.02, b = 0.2, c = 0.01, c1 = 2, c2 = 1, respectively. Figs.3.5 and 3.6 are 3D

and 2D plots of the traveling wave solution u6(x,1, t) and u6(x,1,1) in Eq.(3.11) for α = 0.5, β = 1, θ = 0.75, m = 0.1, n = −0.5,

a = 1, b = 2, c = 5, c1 = 2, c2 = 2, respectively. Figs.3.7 and 3.8 show 3D and 2D plots of the traveling wave solution u10(x,1, t) and

u10(x,1,1) in Eq.(3.12) for α = 0.75, β = 1, θ = 0.5, m = 0.25, n = 0.05, a = 1, b = 2, c = 3, c1 = 1, c2 = 1, respectively. Note that

the 3D graphs describe the behavior of u in space x and time t at fixed y = 1, which represents the change of amplitude and shape for each

obtained solitary wave solutions. 2D graphs describe the behavior of u in space x at fixed time t = 1 and fixed y = 1. All graphics in figures

are drawn by the aid of Mathematica 10.

Figure 3.1: King wave solution u2(x,1, t) of Eq.(3.10).
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Figure 3.2: King wave solution u2(x,1,1) of Eq.(3.10).

Figure 3.3: Solitary wave solution u5(x,1, t) of Eq.(3.11).
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Figure 3.4: Solitary wave solution u5(x,1,1) of Eq.(3.11).
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Figure 3.5: Periodic wave solution u6(x,1, t) of Eq.(3.11).
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Figure 3.6: Periodic wave solution u6(x,1,1) of Eq.(3.11).

Figure 3.7: Periodic wave solution u10(x,1, t) of Eq.(3.12).
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Figure 3.8: Periodic wave solution u10(x,1,1) of Eq.(3.12).

4. Conclusion

In this paper, the conformable space-time fractional ANNV equations have been solved by using the simplified tan(
φ(ξ )

2 )-expansion method

(SITEM). Simulations of the kink wave, solitary wave and periodic wave solutions of the conformable space-time fractional ANNV equations

have been obtained. Note that SITEM has been applied to the Kundu-Eckhaus equation for the parameter p = 0 in [26] and Konopelchenko-

Dubrovsky equations for the nonzero parameter p in [27]. To our knowledge, conformable fractional ANNV equations have been solved for

only time fractional case. In our work, SITEM has been applied to both space and time fractional ANNV equations.
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Abstract

In this paper, we attempt to study spatially homogeneous Bianchi types-III, V, VI0 & VIh

cosmological models in f (R,T ) theory of gravity. Here the models are obtained by assuming

forms of the function f (R,T ) as f (R,T ) = R+2 f (T ) and f (R,T ) = f1(R)+ f2(T ). The

exact solutions of Einstein’s field equations (EFEs) have been obtained for two different

types of physically viable cosmologies using a special form of Hubble parameter (HP). The

physical and geometrical properties of these models have been discussed and expressions

for the Ricci scalar R in each case are obtained.

1. Introduction

General relativity (GR) or Einstein’s theory of gravitation is the most successful theory in application to cosmology. Until recently, our mental

picture of the universe was based more on our philosophical prejudices (or religious beliefs) than on observational data [1]. Cosmology

is a study of the origin, structure evolution, and fate of the universe as a whole based on interpretations of astronomical observations at

different wave-lengths through laws of physics. Relativistic cosmological models are described as the exact solutions of the EFEs that help

in understanding the important features of our universe. Many generalizations of EFEs have been proposed in last few decades. Einstein’s

general theory of relativity (GR) is one of the most beautiful structures of theoretical physics. Among several theories of gravitation, GR has

been designated as the most successful one. In fact, GR is regarded as a geometric theory of gravitation.

Einstein’s theory of gravitation is characterized by mathematical elegance and outstanding formal beauty using tools of Riemannian geometry.

It is also realized that it leads to gravitational action. In 1917, Einstein introduced the cosmological constant Λ as the universal repulsion to

make the universe static in accordance with a generally accepted picture of that time.

Einstein’s theory is modified in several ways for better understanding. The bimetric theory, scalar-tensor theory, etc to name a few. A

modification was given in f (R,T ) theory [2, 3]. The f (R,T ) theory of gravitation is one of the most popular alternatives to Einstein’s theory

of gravitation. Harko et al. (2011) [4] proposed another extension of standard GR, called the f (R,T ) theory of gravity, by introducing

an arbitrary function of the Ricci scalar R and the trace T of the energy-momentum tensor. The field equations are derived from the

Hilbert-Einstein type variational principle [5, 6]. In f (R,T ) theory we assume that the gravitational part of the action still depends on a

generic function of the Ricci scalar R, but also presents a generic dependence on T [7]. Such a dependence on T would come from the

consideration of quantum effects [8]. In reality, f (R,T ) theory provides an alternative way to explain the current cosmic acceleration with

no need of introducing either the existence of extra spatial dimension or an exotic component like dark energy [9, 10]. In this theory, the

gravitational Lagrangian Sm is given by an arbitrary function of the Ricci scalar R and trace T . This theory can be applied to explore various

issues of current interests and may lead to some good inferences [11].

Bianchi types models have a vital role in the description and understanding of the early stages of evolution of the universe. In view of the

observation of microwave background radiation, it is found that the universe is not isotropic [3, 12, 13]. Thus, the study of Bianchi types-III,

V, VI0 & VIh cosmological models is important in the sense that these models are homogeneous and anisotropic, from which the process of

isotropization of the universe is studied through the passage of time.

Email addresses and ORCID numbers: ah hasmani@spuvvn.edu, http://orcid.org/0000-0003-4327-6106 (A. Hanunbhai Hasmani), alhaysah2010@gmail.com,

https://orcid.org/0000-0001-6357-9978 (A. Mohammed Al-Haysah)
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In this paper, an attempt has been made to investigate the exact solutions for Bianchi types-III, V, VI0 & VIh cosmological models in the

framework of two cases of f (R,T ) theory of gravity. The physical and geometrical behaviors of such models have also been discussed.

2. f(R, T) theory of gravity

The f (R,T ) theory is a modification of GR. The field equations of f (R,T ) theory are derived from a Hilbert-Einstein type variational

principle.

The action for modified f (R,T ) theory of gravity is given by

S =
1

16π

∫

f (R,T )
√
−gd4x+

∫

Sm

√
−gd4x, (2.1)

where f (R,T ) is an arbitrary smooth function of Ricci scalar R and the trace T of energy-momentum tensor. Sm is the matter Lagrangian

density. The matter energy-momentum tensor Ti j from the Lagrangian Sm is defined as [14],

Ti j =
−2√−g

∂ (
√−gSm)

∂gi j
. (2.2)

Let us assume that the dependence of matter Lagrangian density Sm is merely on the metric tensor gi j instead of its derivatives. In this case,

Equation (2.2) becomes

Ti j = gi jSm −2
∂Sm

∂gi j
. (2.3)

The variations of the metric determinant and Ricci scalar R are

∂ (
√
−g) = −1

2

√
−g gi j∂gi j, (2.4)

∂ (R) = ∂ (gi jRi j) = Ri j∂gi j +gi j∇
k∇k∂gi j −∇i∇ j∂gi j. (2.5)

The field equations of f (R,T ) theory are obtained by varying the action S in Equation (2.1) and using the properties given in Equations (2.4)

and (2.5)

∂ f (R,T )

∂R
Ri j− 1

2
f (R,T )gi j +(gi j∇

k∇k −∇i∇ j)
∂ f (R,T )

∂R
= 8πTi j −

∂ f (R,T )

∂T

(

Ti j +Θi j

)

, i, j,k = 1,2,3,4, (2.6)

where ∇i denotes the covariant derivative. We define the variation of T with respect to the metric tensor as

∂ (gklTkl)

∂gi j
= Ti j +Θi j, (2.7)

where

Θi j = gkl ∂Tkl

∂gi j
. (2.8)

It is clear from Equations (2.3) and (2.7), the tensor Θi j give in Equation (2.8) lead to

Θi j =−2Ti j +gi jSm −2gkl ∂ 2Sm

∂gi j∂gkl
. (2.9)

Note that when f (R,T ) = f (R), then Equations (2.6) reduces to the field equations of f (R) gravity. Contraction of Equation (2.6) gives the

following relation between the Ricci scalar R and the trace T of the stress-energy tensor

∂ f (R,T )

∂R
R+3∇k∇k

∂ f (R,T )

∂R
−2 f (R,T ) = 8πT − ∂ f (R,T )

∂T
T − ∂ f (R,T )

∂T
Θ, (2.10)

with Θ = gi jΘi j, Equation (2.10) gives a relation between Ricci scalar R and the trace T of energy-momentum tensor Ti j. In the other way

the matter Lagrangian Sm, can be taken as Sm =−p. Then with the use of Equation (2.9), we obtain Θi j as

Θi j =−2Ti j − pgi j. (2.11)

Using Equation (2.11) in Equation (2.6) the field equations become

∂ f (R,T )

∂R
Ri j− 1

2
f (R,T )gi j +(gi j∇

k∇k −∇i∇ j)
∂ f (R,T )

∂R
=

(

8π +
∂ f (R,T )

∂T

)

Ti j +
∂ f (R,T )

∂T
pgi j. (2.12)

Following, Harko et al. (2011) [4] to obtain some particular classes of f (R,T ) modified gravity models by specifying functional forms of

f (R,T ) as

f (R,T ) =







R+2 f (T ),
f1(R)+ f2(T ),
f1(R)+ f2(R) f3(T ).

(2.13)

In this paper, the attempt is to explore the first and the second cases of Equation (2.13) to study the exact solutions for Bianchi-III, V, VI0 &

VIh in f (R,T ) theory of gravity.
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3. The metric and the field equations

The spatially homogeneous (SH) and anisotropic Bianchi types space-times are given by,

ds2 = dt2 −A2
1dx2 − e−2xA2

2dy2 − e−2mxA2
3dz2, (3.1)

where A1,A2 and A3 are called cosmic scale factors which are functions of time t, so the equation (3.1) represents different Bianchi types as,

1. Bianchi type-III if m = 0,

2. Bianchi type-V if m = 1,

3. Bianchi type-VI0 if m = -1,

4. Bianchi type-VIh for all other m = h = -1.

The computation of Ricci tensor Ri j and its spur was done using Mathematica [15] and [16]; the non-vanishing independent components are,

R11 = 1+m2 +A1

[

Ȧ1

(

− Ȧ2

A2
− Ȧ3

A3

)

− Ä1

]

, (3.2)

R14 =
(m+1)Ȧ1

A1
− Ȧ2

A2
− mȦ3

A3
, (3.3)

R22 =
e−2xA2

[

−(m+1)A2A3 −A1

(

Ȧ2(A3Ȧ1 +A1Ȧ3)+A1A3Ä2

)]

A2
1A3

, (3.4)

R33 =
e−2mxA3

[

−A2
1Ȧ2Ȧ3 +A2

(

m(m+1)A3 −A1(Ȧ1Ȧ3 +A1Ä3)
)]

A2
1A2

, (3.5)

R44 =
Ä1

A1
+

Ä2

A2
+

Ä3

A3
, (3.6)

and

R = 2

[

Ä1

A1
+

Ä2

A2
+

Ä3

A3
+

Ȧ1Ȧ2

A1A2
+

Ȧ1Ȧ3

A1A2A3
+

Ȧ2Ȧ3

A2A3
− m2 +m+1

A2
1

]

, (3.7)

where an overhead dot denotes derivative with respect to time t. The energy-momentum tensor for a perfect fluid is given by

Ti j = (ρ + p)uiu j − pgi j, (3.8)

where ρ is the proper energy density, p is the isotropic pressure and ui = (0,0,0,1) is 4-velocity of the fluid particles which satisfies the

condition uiui = 1. The EFEs are given by

Ri j −
1

2
Rgi j =−8πTi j +Λgi j, (3.9)

where Λ is the cosmological constant. The average scale factor a(t) and spatial volume V are defined by

V = a3 =
3

∏
i=1

Ai. (3.10)

Mean HP is given by

H =
1

3

V̇

V
=

ȧ

a
=

1

3

3

∑
i=1

Hi =
1

3

(

Ȧ1

A1
+

Ȧ2

A2
+

Ȧ3

A3

)

, (3.11)

in which HPs in the directions of x,y and z-axes are obtained as

Hi =
Ȧi

Ai
, i = 1,2,3 (no sum). (3.12)

The scalar expansion θ is given by

θ =

(

Ȧ1

A1
+

Ȧ2

A2
+

Ȧ3

A3

)

= 3H.

Moreover, the shear σ2 is given by

σ2 =
1

2
σi jσ

i j =
1

2

[

3

∑
i=1

H2
i −3H2

]

,

the shear parameter is given by

Σ2 = Σ2
++Σ2

− =
σ2

3H2
=

1

6
Σi jΣ

i j, with Σi j =
σi j

H
.
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The density parameter Ω is given by

Ω = 1−Σ2 −K ≥ 0,

where the curvature parameter K is given by

K =
3R

6H2
=

1

12

(

∑
i

N2
i −2 ∑

i< j

NiN j

)

, i, j = 1,2,3, (3.13)

i.e.,

Group class Bianchi type N1 N2 N3

Class A, (a = 0) V I0 0 + -

V 0 0 0

Class B, (a 6= 0) V Ih 0 - +

III 0 + -

Table 1: Canonical Structure Constants for Different Bianchi Types

The three structure constants N1,N2 and N3 are the eigenvalue of the symmetric matrix, Ni j = diag(N1,N2,N3). In another way, we can get

the form

Ω+K +Σ2 = 1.

An important observable quantity in cosmology is deceleration parameter (DP) defined as

q =−1− Ḣ

H2
=− äa

ȧ2
. (3.14)

The evolution of H is describe by

Ḣ =−(1+q)H2.

It is worth mentioning here that “the name DP and the negative sign are historical. Initially, q was supposed to be positive but recent

observations from the supernova experiments suggest that it is negative”. To solve an integral part in the aforementioned equation, we may

refer to the power-law assumption. Many kinds of researchers have used the power-law relation. For instance, Johri and Desikan [17] in the

context of Robertson-Walker Brans-Dicke models, have already used the power-law relation between scale factor and scalar field. We use a

well-known relation [18] between the mean HP and average scale factor a, given as

H = la−n,∀n, (3.15)

where l > 0. This is an important relation because it gives the constant value of the DP. Using Equations (3.11) and (3.15), we get

ȧ = la1−n, (3.16)

and consequently, from Equation (3.14) the DP turns out to be

q = n−1,

which is obviously a constant. Integrating Equation (3.16), it follows that

a =

{

k1 elt , for n = 0,

(nlt + k2)
1
n , for n 6= 0,

(3.17)

where k1 and k2 are constants of integration, thus we obtain two values of the average scale factor a, that correspond to two different models

of the universe. In this paper, we consider the average scale factor a when n = 0 in the first case of f (R,T ) theory and n 6= 0 in the second

case of f (R,T ) theory.

4. Exact solutions for some Bianchi types

Here we first develop some important cosmological parameters and EFEs for Bianchi types III, V, VI0 & VIh space-times and then find the

exact solutions of EFEs for constant and non-constant curvature case.
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4.1. Solution for f (R,T ) = R+2λT

We consider the case in which the function f (R,T ) is given by f (R,T ) = R+2λT , where λ is a constant. Thus the field Equation (2.12)

take the form

Gi j = Ri j −
1

2
Rgi j = (8π +2λ )Ti j +λ (2p+T )gi j. (4.1)

This form looks like EFEs in GR, the term λ (2p+T ) may play the role of cosmological parameter Λ of the GR field equations, that is

Λ = Λ(T ) = λ (2p+T ),

which supports the suggestion by Poplawski [19] where the dependence of the cosmological parameter Λ on T . The researchers like Magnano

[20] have suggested that the Λ(T ) gravity is more general than the gravity in Palatini f (R) theory and could be reduced to it if the pressure

of the matter is neglected. Considering the perfect fluid case, the trace T = ρ −3p, hence Equation (4.8) becomes

Λ = λ (ρ − p).

Thus we rewrite Equation (4.1) as

Ri j −
1

2
Rgi j = (8π +2λ )Ti j +Λgi j. (4.2)

Now using Equations (4.2), and ( 3.2) to ( 3.9) we obtain a set of differential equations for Bianchi types-III, V, VI0 & VIh space-times

Ä2

A2
+

Ä3

A3
+

Ȧ2Ȧ3

A2A3
− m

A2
1

= (8π +2λ ) p−Λ,

Ä1

A1
+

Ä2

A2
+

Ȧ1Ȧ2

A1A2
− 1

A2
1

= (8π +2λ ) p−Λ,

Ä1

A1
+

Ä3

A3
+

Ȧ1Ȧ3

A1A3
− m2

A2
1

= (8π +2λ ) p−Λ,

Ȧ1Ȧ2

A1A2
+

Ȧ2Ȧ3

A2A3
+

Ȧ1Ȧ3

A1A3
− m2 +m+1

A2
1

= −Λ− (8π +2λ )ρ,

(m+1)
Ȧ1

A1
− Ȧ2

A2
− mȦ3

A3
= 0. (4.3)

Integrating Equation (4.3) and absorbing the integrating constant into A2 or A3, we get

Am+1
1 = A2Am

3 . (4.4)

Using Equation (3.10) in Equation (4.4) we get

Am+2
1 = a3Am−1

3 . (4.5)

4.1.1. Cosmological solutions

We now obtain physically factual cosmological models to describe the decelerating and accelerating phases of the universe. Setting A3 =V d ,

where d is any constant, then from Equation (4.5), we get

Am+2
1 = a3V d(m−1),

= a3(1+md−d). (4.6)

Here we will consider the value of average scale factor a for n = 0 only (see (3.17)). Using Equations (3.10), (3.17), (4.3) and (4.6) the

metric coefficients Ai(i = 1,2,3) turn out to be

Ai(t) =
(

k1 elt
)ξi

, i = 1,2,3 (no sum), (4.7)

where

ξ1 =
3(1+md −d)

m+2
, ξ2 =

3(1+m−d −2md)

m+2
, ξ3 = 3d.

Using these in (3.1), we get the following form of the metric (3.1) as

ds2 = dt2 −
(

k1 elt
)ξ1

dx2 − e−2x(
(

k1 elt
)ξ2

dy2 − e−2mx
(

k1 elt
)ξ3

dz2.
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4.1.2. Physical and geometrical properties of the solution

In this subsection, we will compute the relevant physical and geometrical properties of the space-time. The necessary computations were

done using Mathematica, necessary programming was done by us. The spatial volume and the average scale factor a(t) are

V =
(

k1 elt
)3

= a3.

Mean HP and DP are

H = l, q =
−ä

aH2
=−1,

from Equation (3.12), the HPs in the directions of x,y and z-axes are

Hi =
Ȧi

Ai
= l ξi, i = 1,2,3 (no sum).

The scalar expansion is

θ = 3l = 3H.

The shear scalar is

σ2 =
l2

2

[

ξ 2
1 +ξ 2

2 +ξ 2
3 −3

]

,

=
l2

(m+2)2

[

3(1−3d)2(m2 +m+1)
]

.

The shear parameter is given by

Σ2 =
1

6

[

ξ 2
1 +ξ 2

2 +ξ 2
3 −3

]

,

=
1

3(m+2)2

[

3(1−3d)2(m2 +m+1)
]

.

In this subsection, we take λ = 0.1, l = 5, m = 0,±1, n = 0.5, d = 0.1 and k1 = 1, for all graphs . The energy density ρ in the model is

obtained as

ρ =
1

8(8π2 +6λπ +λ 2)

[9l2λ

(

−3dm(1+m)+(1+m)2 +3d2(1+m+m2)

)

(m+2)2

−
9l2(8π +3λ )

(

1+m−d(−2+3d)(1+m+m2)

)

(m+2)2
− λm− (8π +3λ )(m2 +m+1)

(

k1 elt
)

6(1+md−d)
(m+2)

]

.

Figure 4.1: The Evolution of Energy Density ρ Versus Cosmic Time t

Figure 4.1, shows ρ as a decreasing function for 0 ≤ t < 1 and constant for t ≥ 1. The expressions for isotropic pressure p in the model is

given by

p =
1

8(8π2 +6λπ +λ 2)

[9l2(8π +3λ )

(

−3dm(1+m)+(1+m)2 +3d2(1+m+m2)

)

(m+2)2

−
9l2λ

(

1+m−d(−2+3d)(1+m+m2)

)

(m+2)2
− m(8π +3λ )− (m2 +1)λ

(

k1 elt
)

6(1+md−d)
(m+2)

]

.
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Figure 4.2: The Evolution of Pressure p Versus Cosmic Time t

From Figure 4.2, we observe that the pressure is an increasing function for 0 ≤ t < 1 and constant for t ≥ 1. The cosmological parameter Λ is

Λ =
λ

8(8π2 +6λπ +λ 2)

[−9l2(8π +2λ )

(

6d2 +6md2 +6m2d2 +m+m2 −5m2d −5md −2d

)

(m+2)2

− (8π +3λ )(m2 +2m+1)−λ (m2 +m+1)
(

k1 elt
)

6(1+md−d)
(m+2)

]

.

Figure 4.3: The Evolution of Cosmological Constant Λ Versus Cosmic Time t

From Figure 4.3, we observe that the cosmological term Λ is an increasing function for 0 ≤ t < 1 and constant for t ≥ 1. The density

parameter Ω is given by

Ω = 1− 1

3(m+2)2

[

3(1−3d)2(m2 +m+1)
]

−K ≥ 0,

where K is the curvature parameter, as defined in Equation (3.13). The Ricci scalar R for Bianchi types-III, V, VI0 & VIh cosmological

models are given by Equations (3.7) and (4.7), it follows that

R =
2l2

(m+2)2

[

(27−18d −18md +27m+27d2 +27md2)+m2(9−18d +27d2)
]

−2(m2 +m+1)
(

k1 elt
)

−6(1+md−d)
(m+2)

.
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Figure 4.4: The Evolution of Ricci Scalar R Versus Cosmic Time t

From Figure 4.4, we observe that the Ricci scalar R is an increasing function for 0 ≤ t < 1 and constant for t ≥ 1. The function f (R,T ) of

Ricci scalar R and the trace T , can be found as

f (R,T ) = R+2λ (ρ −3p).

Figure 4.5: The Evolution of f (R,T ) Versus Cosmic Time t

Figure 4.5, shows that the f (R,T ) is an increasing function for 0 ≤ t < 1 and constant for t ≥ 1.

4.2. Solution for f (R,T ) = λ (R+T )

We consider the case in which the function f (R,T ) is given by f (R,T ) = λ (R+T ), where λ is an arbitrary parameter. Thus the field

equation (2.12) take the form

λRi j− 1

2
λ (R+T )gi j +(gi j∇

k∇k −∇i∇ j)λ = (8π +λ )Ti j +

(

p+
1

2
T

)

λgi j,

setting (gi j∇
k∇k −∇i∇ j)λ = 0, we get

λRi j− 1

2
λRgi j = (8π +λ )Ti j +

(

p+
1

2
T

)

λgi j. (4.8)

The Einstein tensor Gi j is defined by

Gi j = Ri j− 1

2
Rgi j.
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Equation (4.8) becomes

λGi j = (8π +λ )Ti j +

(

p+
1

2
T

)

λgi j. (4.9)

This form looks like EFEs in GR, we choose a negative small value for the arbitrary λ so that we have the same sign of the RHS of Equation

(4.9) we keep this choice of λ throughout the discussion. The term
(

p+ 1
2 T
)

can now be regarded as a cosmological parameter Λ. Hence

Λ = p+
1

2
T,

so Equation (4.9) becomes

Gi j = Ri j− 1

2
Rgi j =

(8π +λ )

λ
Ti j +Λgi j, (4.10)

which supports the suggestion by Poplawski [19] where the dependence of the cosmological parameter Λ on T . The researchers like Magnano

[20] have suggested that the Λ gravity is more general than the gravity in Palatini f (R) theory and could be reduced to it if the pressure of

matter is neglected. Considering the perfect fluid case, the trace T = ρ −3p, hence

Λ =
1

2
(ρ − p).

The field equations, in this case, are similar to those written earlier (4.3) to (4.3) with only change due to rights side of (4.10), thus the

coefficient (8π +2λ ) is replaced by ( 8π+2λ
λ

). The field equation for G14 is same as Equation (4.3). Also following same procedure we get

relations (4.4) and (4.5).

4.2.1. Cosmological solutions

We now obtain physically factual cosmological models to describe the decelerating and accelerating phases of the universe. Setting A3 =V d ,

where d is any constant, then from Equation (4.5), we get

Am+2
1 = a3V d(m−1)

= a3(1+md−d). (4.11)

Here we will consider the value of average scale factor a for n 6= 0 only. Using Equations (3.10), (3.17), (4.3) and (4.11) the metric

coefficients Ai (i = 1,2,3) turn out to be

Ai(t) = (nlt + k2)
ξi
n , i = 1,2,3 (no sum), (4.12)

where

ξ1 =
3(1+md −d)

m+2
, ξ2 =

3(1+m−d −2md)

m+2
, ξ3 = 3d.

Using these in (3.1), we get the following form of the metric (3.1)

ds2 = dt2 − (nlt + k2)
ξ1
n dx2 − e−2x(nlt + k2)

ξ2
n dy2 − e−2mx(nlt + k2)

ξ3
n dz2.

4.2.2. Physical and geometrical properties of the solution

In this subsection, we will compute the relevant physical and geometrical properties of the space-time. The necessary computations were

done using Mathematica, necessary programming was done by us. The spatial volume and the average scale factor a(t) are

V = (nlt + k2)
3
n = a3.

In this subsection, we take λ = 0.1, l = 5, m = 0,±1, n = 0.5, d = 0.1 and k2 = 1 for all graphs.

Figure 4.6: The Evolution of Volume V Versus Cosmic Time t
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Figure 4.6, shows that volume V is an increasing function of time t. Mean HP and DP are

H =
l

nlt + k2
, q =

−ä

aH2
= n−1,

in which HPs in the directions of x,y and z-axes are

Hi =
Ȧi

Ai
=

ξil

nlt + k2
, i = 1,2,3 (no sum).

The scalar expansion becomes

θ =
3l

nlt + k1
.

The shear scalar is

σ2 =
l2

2(nlt + k2)2

[

ξ 2
1 +ξ 2

2 +ξ 2
3 −3

]

=
l2

(m+2)2(nlt + k2)2

[

3(1−3d)2(m2 +m+1)
]

.

Figure 4.7: The Evolution of Shear Scalar σ2 Versus Cosmic Time t

Figure 4.7, shows σ2 as a decreasing function of time t. The shear parameter is given by

Σ2 =
1

6

[

ξ 2
1 +ξ 2

2 +ξ 2
3 −3

]

,

=
1

3(m+2)2

[

3(1−3d)2(m2 +m+1)
]

.

The energy density ρ in the model is obtained as

ρ =−9λ l2(1+m−d(−2+3d)(1+m+m2))

2(4π +λ )(m+2)2(nlt + k2)2
− λ 2

6(4π +λ )2





3l2(3−n)

(nlt + k2)2
− 2(m2 +m+1)

(nlt + k2)
6(1+md−d)

n(m+2)



+
λ (m2 +m+1)

2(4π +λ )(nlt + k2)
6(1+md−d)

n(m+2)

.

Figure 4.8: The Evolution of Energy Density ρ Versus Cosmic Time t
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Figure 4.8, shows that energy density ρ is a decreasing function of time t. The expressions for isotropic pressure p in the model is given by

p =−9λ l2(1+m−d(−2+3d)(1+m+m2))

2(4π +λ )(m+2)2(nlt + k2)2
+

λ (16π +3λ )

6(4π +λ )2





3l2(3−n)

(nlt + k2)2
− 2(m2 +m+1)

(nlt + k2)
6(1+md−d)

n(m+2)



+
λ (m2 +m+1)

2(4π +λ )(nlt + k2)
6(1+md−d)

n(m+2)

.

Figure 4.9: The Evolution of Pressure p Versus Cosmic Time t

Figure 4.9, shows that the pressure is a decreasing function of time. The cosmological parameter Λ is

Λ =
1

2
(ρ − p) =

λ

6(4π +λ )





3l2(3−n)

(nlt + k2)2
− 2(m2 +m+1)

(nlt + k2)
6(1+md−d)

n(m+2)



 .

Figure 4.10: The Evolution of Cosmological Constant Λ Versus Cosmic Time t

Figure 4.10, shows that the cosmological term Λ is a decreasing function of time t. The density parameter Ω, is given by

Ω = 1− 1

3(m+2)2

[

3(1−3d)2(m2 +m+1)
]

−K ≥ 0,

where K is the curvature parameter, as defined in Equation (3.13). The Ricci scalar R for Bianchi types-III, V, VI0 & VIh cosmological

models are given by Equations (3.7) and (4.12) it follows that

R = − 2l2

(nlt + k2)2

[

ξ 2
1 +ξ 2

2 +ξ 2
3 −n(ξ1 +ξ2 +ξ3)+(ξ1ξ2 +ξ1ξ3 +ξ2ξ3)

]

−2(m2 +m+1)(nlt + k2)
−2ξ1

n ,

=
2l2

(m+2)2(nlt + k2)2

[

(m+1)(27−18d +27d2 −12n)+m2(9−18d +27d2 −3n)
]

−2(m2 +m+1)(nlt + k2)
− 6(1+md−d)

n(m+2) .
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Figure 4.11: The Evolution of Ricci Scalar R Versus Cosmic Time t

Figure 4.11, shows that the curvature is positive through the whole evolution of the universe. The function f (R,T ) of Ricci scalar R and the

trace T can be found as

f (R,T ) = λ1R+λ2(ρ −3p).

Figure 4.12: The Evolution of f (R,T ) Versus Cosmic Time t

Figure 4.12, shows that the f (R,T ) is an increasing function when m = 0,1 and decreasing function when m =−1 of time t.

5. Conclusion

In this paper, we have extended the study of exact solutions of EFEs for Bianchi types-III, V, VI0 & VIh space-times in f (R,T ) theory and

obtained the exact solutions corresponding to singularity point n 6= 0, and regular point n = 0. The exact solutions to the corresponding

field equations are obtained in quadrature form. The behaviors of the cosmological parameter Λ have been discussed in each case. We have

also examined the well-known physical and geometrical properties of our models in two different viable cosmologies. It is shown that our

models represent expanding, shearing, non-rotating and accelerating universe in each case. In the first case of f (R,T ) theory, when n = 0

with a = k1 elt , the model has no singularity point. The volume V is finite and blows to infinite at t → ∞. The generalized HP H is constant

and accordingly, expansion scalar θ is constant. The HPs Hi, i = 1,2,3 are finite for all finite values of t. The shear scalar σ2 and shear

parameter Σ2 are constant as t → ∞. The energy density ρ (Figure 4.1) is constant as t → ∞ and the Figure 4.1, shows that ρ is negative, its

physical interpretation may be debatable however this is mathematically consistent. The isotropic pressure p (Figure 4.2), density parameter

Ω and Ricci scalar R (Figure 4.4) are constant as t → ∞. The function f (R,T ) of the Ricci scalar R and trace T is finite (Figure 4.5) at

non-singularity.

In the second case of f (R,T ) theory, when n 6= 0 with a = (nlt + k2)
1
n , the model has singularity point taken as, t = −k2

nl , it is observed that

the spatial volume V → ∞ as t → ∞ (Figure 4.6), and the volume scaler factor vanishes at the singularity point. The generalized HP is zero

at the singularity. The expansion scalar θ → 0 as t → ∞, as well as it is observed that θ starts with infinite value at t = 0 and then rapidly

becomes constant after some finite time. The direction HPs Hi, i = 1,2,3 are zero at the singularity point. The shear scalar σ2 (Figure 4.7)

and shear parameter Σ2 are zero as t → ∞. The isotropic pressure p (Figure 4.9), energy density ρ (Figure 4.8) are constant at t → ∞. The

Ricci scalar R is infinite t → ∞ (Figure 4.11). The density parameter Ω is constant as t → ∞. The function f (R,T ) of the Ricci scalar R and

trace T is infinite (Figure 4.12) at the singularity.
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Abstract

The exact solutions of most difference equations cannot be obtained sometimes. This can

be attributed to the fact that there is no a specific approach from which one can find the

exact solution. Therefore, many researchers tend to study the qualitative behaviours of

these equations. In this paper, we will investigate some qualitative properties such as local

stability, global stability, periodicity and solutions of the following eighth order recursive

equation

xn+1 = c1xn−3 −
c2xn−3

c3xn−3 − c4xn−7
, n = 0,1, ...,

where the coefficients ci, for all i = 1, ...,4, are assumed to be positive real numbers and

the initial conditions xi for all i =−7,−6, ...,0, are arbitrary non-zero real numbers.

1. Introduction

Nowadays, a huge number of researchers put a lot of effort to investigate the qualitative behaviours of some fractional recursive equations.

Researchers examine some properties such as local stability, global stability, boundedness, periodicity and theoretical and numerical solutions

to predict the future pattern of these equations. This development can be obviously seen in most recent studies. Take, for instance the

following ones. Almatrafi et al. [1] discovered the stability, periodicity, boundedness and solutions of the following fourth order fractional

difference equations

xn+1 =
αxnxn−3

±βxn−3 ± γxn−2
.

Cinar [2] obtained the solution of the second order recursive equation

xn+1 =
axn−1

1+bxnxn−1
.

Elabbasy et al. [3] examined the qualitative behaviours of the recursive equation

xn+1 = axn −
bxn

cxn −dxn−1
.

Garić-Demirović et al. [4] investigated the periodicity of the solution and the stability of the equilibrium point of the difference equation

xn+1 =
Ax2

n +Bxnxn−1 +Cx2
n−1

ax2
n +bxnxn−1 + cx2

n−1

.
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In [5], the authors concerned with presenting the qualitative behaviour of the sixth order difference equation

xn+1 =
Cxn−5

A+Bxn−2xn−5
.

Khyat et al. [6] analysed the properties of the following second order recursive equation

xn+1 =
xn

Cx2
n−1 +Dxn +F

.

The investigation in [7] concentrates on showing the periodic character, semi-cycle character and global stability of the difference equation

xn+1 =
α +βxn + γxn−k

Bxn +Cxn−k

.

Simsek et al [8] obtained the expressions of the solutions of the fourth order difference equation

xn+1 =
xn−3

1+ xn−1
.

More results on the qualitative behaviours of some fractional difference equations can be obtained on refs. [9]-[19].

Our principal aim in this work is to discuss some mathematical properties such as local stability, global attractivity, periodic character and

solutions of the eighth order difference equation

xn+1 = c1xn−3 −
c2xn−3

c3xn−3 − c4xn−7
, n = 0,1, ..., (1.1)

where the coefficients ci, for all i = 1, ...,4, are assumed to be positive real numbers and the initial conditions are required to be arbitrarily

real numbers. Moreover, theoretical and numerical solutions to a special case of Eq.(1.1) will be shown in this paper.

2. Local stability of the equilibrium point

The main duty in this section is to analyse the behaviour of the solutions in the neighbourhood of the equilibrium point. The equilibrium

point of Eq.(1.1) is given by

x = c1x−
c2x

c3x− c4x
.

Hence,

x =
c2

(1− c1)(c4 − c3)
, c1 6= 1,c3 6= c4.

Next, we assume that a function h : (0,∞)2 −→ (0,∞) is defined by the form

h(y,z) = c1y−
c2y

c3y− c4z
. (2.1)

Then,

∂h(y,z)

∂y
= c1 −

c2(c3y− c4z)− c2c3y

(c3y− c4z)2
= c1 +

c2c4z

(c3y− c4z)2
, (2.2)

∂h(y,z)

∂ z
= −

c2c4y

(c3y− c4z)2
. (2.3)

We now calculate Eq.(2.2) and Eq.(2.3) at x̄ as follows:

∂h(x̄, x̄)

∂y
= c1 +

c2c4x̄

(c3x̄− c4x̄)2
= c1 +

c4(1− c1)

c4 − c3
:=−p1,

∂h(x̄, x̄)

∂ z
= −

c2c4x̄

(c3x̄− c4x̄)2
=−

c4(1− c1)

c4 − c3
:=−p2.

Thus, the linearised equation of Eq. (1.1) around x̄ is given by the form:

un+1 + p1un−3 + p2un−7 = 0.

Theorem 2.1. Let

|c4 − c1c3|+ c4 |1− c1|< |c4 − c3| .

Then, the equilibrium point of Eq.(1.1) is locally asymptotically stable.
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Proof. Theorem A in [12] guarantees that the equilibrium point of Eq.(1.1) is locally asymptotically stable if

|p1|+ |p2|< 1,

which leads to
∣

∣

∣

∣

∣

−

(

c1 +
c4(1− c1)

c4 − c3

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

c4(1− c1)

c4 − c3

∣

∣

∣

∣

< 1.

Therefore,

|c1(c4 − c3)+ c4(1− c1)|+ c4 |1− c1|< |c4 − c3| .

Or,

|c4 − c1c3|+ c4 |1− c1|< |c4 − c3| .

The proof is complete.

3. Global stability of the equilibrium point

In this section, we will present a specific condition under which the equilibrium point is a global stable.

Theorem 3.1. The equilibrium point of Eq.(1.1) is a global attractor if c1 < 1.

Proof. Assume that a, b ∈ R and let h : [a,b]2 −→ [a,b] be a function defined by Eq.(2.1). Then, the function h is increasing in y and

decreasing in z. Next, we suppose that (φ ,ψ) is a solution to the following system:

φ = h(φ ,ψ), ψ = h(ψ,φ).

Thus,

φ = h(φ ,ψ) = c1φ − c2φ
c3φ−c4ψ ,

ψ = h(ψ,φ) = c1ψ − c2ψ
c3ψ−c4φ .

Simplifying this gives us

c3φ 2 − c4φψ = c1c3φ 2 − c1c4φψ − c2φ (3.1)

c3ψ2 − c4φψ = c1c3ψ2 − c1c4φψ − c2ψ (3.2)

Subtracting Eq.(3.2) from Eq.(3.1) yields

c3(φ
2 −ψ2) = c1c3(φ

2 −ψ2)+ c2(ψ −φ).

Therefore,

(φ −ψ)
[

c3(1− c1)(φ +ψ)+ c2

]

= 0.

Hence, if c1 < 1, then φ = ψ. As a result, Theorem B in [20] assures that the equilibrium point is a global attractor.

4. Periodicity of the solutions

This section is devoted to study the periodicity of the solution of Eq.(1.1).

Theorem 4.1. Eq.(1.1) has no prime period two solutions.

Proof. Suppose that Eq.(1.1) has prime period two solutions on the form:

..., t, τ, t, τ, ...,

where t 6= τ. Then, Eq.(1.1) leads to

t = c1t −
c2t

c3t − c4t
,

τ = c1τ −
c2τ

c3τ − c4τ
.

Therefore,

(1− c1)t = −
c2

c3 − c4
,

(1− c1)τ = −
c2

c3 − c4
.

This exactly implies that t = τ, which contradicts our assumption.
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5. Special case of Eq.(1.1)

We now turn to solve the following difference equation theoretically.

xn+1 = xn−3 −
xn−3

xn−3 − xn−7
, n = 0,1, ... (5.1)

Theorem 5.1. Let {xn}
∞

n=−7 be a solution to Eq.(5.1) and assume that x−7 = α, x−6 = β , x−5 = γ, x−4 = δ , x−3 = κ, x−2 = λ , x−1 =
µ, x0 = ρ. Then, for n = 0,1,2, ..., the solution of Eq.(5.1) is given by the following formulas:

x8n−7 = −
[(n−1)α −nκ] [α −κ +n]

α −κ
, x8n−6 =−

[(n−1)β −nλ ] [β −λ +n]

β −λ
,

x8n−5 = −
[(n−1)γ −nµ] [γ −µ +n]

γ −µ
, x8n−4 =−

[(n−1)δ −nρ] [δ −ρ +n]

δ −ρ
,

x8n−3 = −
[nα − (n+1)κ] [α −κ +n]

α −κ
, x8n−2 =−

[nβ − (n+1)λ ] [β −λ +n]

β −λ
,

x8n−1 = −
[nγ − (n+1)µ] [γ −µ +n]

γ −µ
, x8n =−

[nδ − (n+1)ρ] [δ −ρ +n]

δ −ρ
.

Proof. It can be easily seen that the solution is true at n = 0. Now, we suppose that n > 0 and assume that the relations are satisfied at n−1

as follows:

x8n−15 = −
[(n−2)α − (n−1)κ] [α −κ +n−1]

α −κ
, x8n−14 =−

[(n−2)β − (n−1)λ ] [β −λ +n−1]

β −λ
,

x8n−13 = −
[(n−2)γ − (n−1)µ] [γ −µ +n−1]

γ −µ
, x8n−12 =−

[(n−2)δ − (n−1)ρ] [δ −ρ +n−1]

δ −ρ
,

x8n−11 = −
[(n−1)α −nκ] [α −κ +n−1]

α −κ
, x8n−10 =−

[(n−1)β −nλ ] [β −λ +n−1]

β −λ
,

x8n−9 = −
[(n−1)γ −nµ] [γ −µ +n−1]

γ −µ
, x8n−8 =−

[(n−1)δ −nρ] [δ −ρ +n−1]

δ −ρ
.

Next, it can be obviously observed from Eq.(5.1) that

x8n−7 = x8n−11 −
x8n−11

x8n−11 − x8n−15

= −
[(n−1)α −nκ] [α −κ +n−1]

α −κ
−

−
[(n−1)α−nκ][α−κ+n−1]

α−κ

−
[(n−1)α−nκ][α−κ+n−1]

α−κ +
[(n−2)α−(n−1)κ][α−κ+n−1]

α−κ

= −
[(n−1)α −nκ] [α −κ +n−1]

α −κ
+

[(n−1)α −nκ]

κ −α

= −
[(n−1)α −nκ] [α −κ +n]

α −κ
.

x8n−6 = x8n−10 −
x8n−10

x8n−10 − x8n−14

= −
[(n−1)β −nλ ] [β −λ +n−1]

β −λ
−

−
[(n−1)β−nλ ][β−λ+n−1]

β−λ

−
[(n−1)β−nλ ][β−λ+n−1]

β−λ
+

[(n−2)β−(n−1)λ ][β−λ+n−1]
β−λ

= −
[(n−1)β −nλ ] [β −λ +n−1]

β −λ
+

[(n−1)β −nλ ]

λ −β

= −
[(n−1)β −nλ ] [β −λ +n]

β −λ
.

Other formulas can be proved in a similar way. Thus, the remaining proofs will be omitted.

6. Numerical examples

In order to confirm our theoretical work, we will illustrate some figures that show the behaviour of the solutions according to the previous

conditions.
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Example 6.1. The local stability of the equilibrium point is depicted in this example under the values c1 = 0.3, c2 = 0.1, c3 = 8, c4 =
1, x−7 = 0.001, x−6 =−0.02, x−5 =−0.03, x−4 = 0.02, x−3 =−0.04, x−2 = 0.021, x−1 =−0.01, x0 =−0.02. See Figure 6.1.
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Local stability of the equlibrium point

Figure 6.1: Local Stability of The Equilibrium Point.

Example 6.2. The global stability of the equilibrium point is given in Figure 6.2 according to the following data. c1 = 0.4, c2 = 0.2, c3 =
8, c4 = 1, x−7 = 0.1, x−6 =−0.2, x−5 = 6, x−4 =−5, x−3 = 3, x−2 =−1, x−1 = 1, x0 =−0.2.
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Figure 6.2: Global Stability of The Equilibrium Point.
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Example 6.3. In Figure 6.3, we plot another behaviour of the solutions of Eq.(1.1). Here, we assume that c1 = 0.6, c2 = 0.2, c3 = 4, c4 =
0.2, x−7 =−1, x−6 =−0.2, x−5 = 0.2, x−4 = 1, x−3 = 0.1, x−2 =−0.5, x−1 = 0.25, x0 =−0.3.
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The behaviour of the solution

Figure 6.3: Solution of Eq.(1.1).

Example 6.4. Figure 6.4 shows the solution of the special case equation when we take x−7 =−0.8, x−6 = 0.2, x−5 = 0.7, x−4 = 1.5, x−3 =
−0.1, x−2 = 0.5, x−1 = 0.12, x0 =−1.
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The behaviour of the solution of the special case equation

Figure 6.4: Solution of the Special Case Equation.

7. Conclusion

In this work, we have explored the stability and periodicity of Eq.(1.1) and analysed the solutions of Eq.(5.1). Section 2 highlighted a

condition under which the equilibrium point of Eq.(1.1) is locally asymptotically stable. Following this, we have shown that the equilibrium

point is a global stable if c1 < 1, as pictured in Figure 6.2. In Section 4, it has been proved that Eq.(1.1) has no prime period two solutions.

Finally, the analytical and numerical solutions of Eq.(5.1) has been provided in Theorem 5.1 and Section 6, respectively.
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Abstract

A new discrete two-parameter bathtub hazard distribution is proposed by Sarhan [1]. This

paper uses Bayes method to estimate the two unknown parameters and the reliability

measures of this distribution. The joint posterior distribution of the model parameters

cannot be obtained in a convenient form. Therefore, numerical techniques are needed.

We apply four Bayesian numerical methods to get random draws from the joint posterior

distribution to be used to estimate the model parameters and its reliability measures without

deriving the actual joint posterior distribution. It is assumed here that the two model

parameters are priori independent random variables with beta and gamma distributions.

Two scenarios for the hyperparameters are applied to compare their contributions on the

Bayesian inferences. Two real data sets are re-analyzed using the Bayesian techniques

applied here. A simulation study is performed to investigate the properties of the methods

applied.

1. Introduction

It is very common that the researchers in the fields of reliability analysis and life testing experiments use continues lifetime distributions

to study the reliability of a system, see for example Gnedenko and Ushakov [2], Lawless [3], Sinha [4], and Kapur and Lamberson [5].

Sometimes, in practice, it is impossible to test the underlying system on a continuous scale. For example, the lifetime of the switch in the

case of an on/off-switching unit, the number of cycles prior to failure of an equipment which operates in cycles, the lifetime (in days/weeks)

of systems that are placed on the life test. In such situations, discrete lifetime distributions might be more appropriate.

Recently, Sarhan [1] proposed a discrete two-parameter distribution that displays bathtub shaped hazard function in addition to the increasing

and decreasing shapes. The bathtub hazard shape property allows this model to fit a number of real datasets in reliability analysis. Sarhan

[1] used DTPBT(q,β ) to denote this distribution, where q and β are the model parameters. He discussed some statistical properties of

the DTPBT(q,β ) and used some frequentest techniques such as quantile, least squares and maximum likelihood method to do inference

on the two unknown parameters of the proposed model. Also, he used the model to analyze two real datasets and compared the proposed

model with the discrete Weibull, (Nakagaw and Osaki [6]), discrete modified Weibull DMW (Nooghabi et al. [7]), discrete additive Weibull

DAddW (Bebbington et al. [8]) and discrete reduced modified Weibull DRMW (Almalki and Nadarajah [9]). He concluded that the DTPBT

model performed better fit than all of these above mentioned models.

The main goal of this current paper is to use Bayesian method to do inference on the DTPBT model. We use Bayesian method to estimate

the model parameters (in point and interval). Also, we use Bayesian method to report on the reliability measures of the model. It is assumed

here that the two parameters q and β are independent variables, where q follows beta priori distribution with hyperparameters (a1,a2) and β

follows a gamma priori distribution with hyperparameters (b1,b2). Two scenarios for the hyperparameters (a1,a2) and (b1,b2) are proposed

and a comparison between them is discussed. The posterior distribution of the vector of the two unknown parameters θ = (q,β ), given the

available data, cannot be derived in a convenient form. Therefore, numerical approaches for Bayesian analysis are needed. In this paper, we

will apply: (1) the accept-reject (AR) technique, (2) the sampling importance resampling (SIR) method, and (3) two versions of Monte Carlo

Markov chain (MCMC) algorithm to get random draws from the joint posterior distribution. Once the random draws from the joint posterior

distribution are obtained, we can perform any Bayesian analysis we wish for the model parameters or any of the model reliability measures.

Email addresses and ORCID numbers: ammar.sarhan@dal.ca, https://orcid.org/0000-0001-6277-0092 (A. M. Sarhan)
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One of the advantages of the Bayesian methods applied here is that they do not require the posterior distribution of (q,β ) to be in an explicit

form.

The rest of the paper is organized as follows. In Section 2 we give a brief description of the DTPBT. In Section 3, we present the joint

posterior distribution of θ = (q,β ) and discuss the Bayes analysis. Three main numerical methods to draw random samples from the joint

posterior distribution are discussed in Section 4. In Section 5, two real data sets are analyzed using the proposed methods. A simulation

study is carried out in section 6. Finally, section 7 concludes the paper and discusses some future work.

2. The DTPBT(q,β ) distribution

The discrete random variable X is said to have a discrete two-parameter bathtub hazard distribution, with parameters q and β , if its probability

mass function takes the following form, Sarhan [1],

p(x;q,β ) =
1

q

[

qe(x−1)β

−qexβ
]

, x = 1,2, · · · , 0 < q < 1, β > 0.

The survival function (sf) of X is

S(x;q,β ) = qexβ
−1, x = 1,2, · · · , 0 < q < 1, β > 0.

The cumulative distribution function (cdf) of X is

F(x;q,β ) = 1−qexβ
−1, x = 1,2, · · · , 0 < q < 1, β > 0.

The hazard rate function (hrf) of X is

h(x;q,β ) = 1−qexβ
−e(x−1)β

, x = 1,2, · · · , 0 < q < 1, β > 0.

Sarhan [1] shows that the hazard function can be increasing/decreasing or bathtub shaped based on the values of the model parameters.

Example of the different shapes of the hazard rate function are provided in Figure 2.1 when (q,β ) is (0.9,0.2) increasing , (0.9,0.3) bathtub

and (0.9,0.9) decreasing. The variety of the shape of hazard function, specifically the bathtub shaped, allows the DTPBT distribution to fit

various number of discrete real datasets.
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Figure 2.1: The hazard rate function of the DTPBT distribution when (q,β ) is [from the left to right] (0.9,0.2), (0.9,0.3) and (0.9,0.9).

3. Bayes analysis

Let X1,X2, · · · ,Xn be a simple random sample from DTPBT(q,β ). The likelihood function of this sample is

L(x;q,β ) =
1

qn

n

∏
i=1

[

qe(xi−1)β

−qe
x
β
i

]

, (3.1)

where x represents the observations of the simple random sample. Let us assume that q and β be independent random variables with priori

beta(a1,a2) and gamma(b1,b2) distributions, respectively. That is, the joint prior density of (q,β ), up to a constant, is

g(q,β ) ∝ qa1−1(1−q)a2−1 β b1−1e−b2 β , 0 < q < 1; β > 0. (3.2)

The hyperparameters a j,b j > 0, j = 1,2, will be subjectively selected based on the priori information on q and β when it is available.

Applying Bayes’ theorem using the likelihood function (3.1) and the joint prior density function (3.2), we get the joint posterior density

function of (q,β ), given the data, up to a constant, as

g(q,β |x) ∝ q−n+a1−1(1−q)a2−1 β b1−1e−b2 β
n

∏
i=1

[

qe(xi−1)β

−qe
x
β
i

]

, 0 < q < 1; β > 0 . (3.3)

Under the squared error loss, which is adopted here,
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1. The Bayes estimates of q and β are the posterior means given by

q̂ =
∫ 1

0
qgq(q|x)dq and β̂ =

∫ ∞

0
β gβ (β |x)dβ , (3.4)

where gq(q|x) and gβ (β |x) are the marginal posterior density functions of q and β , respectively.

2. The Bayes estimate of a real-valued function of the ϑ = (q,β ), say w(q,β ), is the posterior mean of w(q,β ), that is

ŵ(q,β ) =
∫ ∞

0

∫ 1

0
w(q,β )g(q,β |x)dqdβ . (3.5)

The joint posterior distribution (3.3) is in an inconvenient form as well as the normalized constant can not be derived theoretically. Therefore,

the marginal posterior densities gq(q|x) and gβ (β |x) cannot be derived explicitly, and so the integrals in (3.4) and (3.5) cannot be calculated

analytically. Accordingly, we will use numerical approaches to perform Bayes analysis for the model parameters and its reliability measures.

For the numerical techniques applied in this paper, it is more convenient to reparametrize the two parameters q ∈ (0,1) and β > 0 to be both

real-valued by using the expressions θ1 = log
(

q
1−q

)

and θ2 = log(β ). The joint posterior density function of θ = (θ1,θ2), given data, is

gθ (θ1,θ2|x) = g

(

1

1+ e−θ1
,eθ2 |x

)

eθ2−θ1

(

1+ e−θ1

)2
, −∞ < θ1,θ2 < ∞.

Also, for the numerical approaches which will be applied here, it is helpful to use the natural logarithm of the joint posterior density of θ ,

which is given by

loggθ (θ1,θ2|x) = logg

(

1

1+ e−θ1
,eθ2 |x

)

+θ2 −θ1 −2log
(

1+ e−θ1

)

. (3.6)

4. Bayesian numerical techniques

In this section we discuss how to use four Bayesian numerical approaches that will help us to overcome the main difficulties in Bayes

analysis. These techniques allow us to get random draws from the joint posterior distribution without deriving its explicit form. These

techniques require only to write the posterior density function up to a constant as given in (3.3). For simplicity, in the rest of the paper, we

use ϑ to denote the vector of the two unknown parameters, namely ϑ = (q,β ).

Accept-Reject method (AR): The AR method is a general technique that can be used to generate independent random draws from

probability distributions. It is one of the most useful techniques for simulating random draws from a variety of probability distributions. For

more information on the AR method, we refer to Givens and Hoeting [10], Monahan [11], and Robert and Casella [12].

The main goal of using the AR method is to generate independent random draws from the posterior probability density (3.3). The basic idea

in the AR method is to find a proposal, say p(ϑ), that satisfies: (1) easy to simulate from, (2) mimics the posterior distribution, and (3) there

exits a positive constant M such that
g(ϑ |data)

p(ϑ)
≤ M for all ϑ . The following steps summarizes the AR algorithm:

1. Specify the size of desired random draws m.

2. Simulate ϑ from the proposal p(ϑ).

3. Calculate the ratio R =
g(ϑ |data)

Mp(ϑ)
.

4. Generate a random value U from uniform distribution on the unit interval.

5. If U ≤ R accept ϑ as a random draw from g(ϑ |data); otherwise reject it.

6. Repeat steps 2-5 until m draws are accepted.

We will use the bivariate t distribution with a small degrees of freedom as a proposal since smaller degrees of freedom provide a heavy tailed

proposal and therefore it would be more likely to find the upper bound constant M.

The location and variance-covariance matrix of the proposal distribution can be found as those we obtain by using normal approximation to

the logarithm of the joint posterior distribution of the real-valued vector θ , given in (3.6). Let κ(θ) = loggθ (θ |data) and θ̃ be its mode. The

second-order Taylor series expansion of κ(θ) about θ̃ is

κ(θ)≈ κ(θ̃)+
1

2

(

θ − θ̃
)T

κ
′′

(θ̃)
(

θ − θ̃
)

,

where κ
′′
(θ̃) is the Hessian of κ(θ) evaluated at θ̃ . The above expansion of κ(θ) can be approximated by multivariate normal distribution

with mean µ = θ̃ and variance-covariance matrix Σ =
(

−κ
′′
(θ̃)

)−1
. To apply this normal approximation, we need the mode θ̃ , that can be

estimated by using Newton’s method. Newton’s method starts with a guess mode θ (0), then estimates the mode at the ith iteration by

θ (i) = θ (i−1)−
(

κ
′′
(

θ (i−1)
))−1

κ
′
(

θ (i−1)
)

,

where κ
′
(

θ (i−1)
)

and κ
′′
(

θ (i−1)
)

are the gradient and Hessian of κ(θ) at the iteration i−1. These iterations are repeated until convergence.

The constant M can be found by maximizing D(θ) = κ(θ)− log p(θ) with respect to θ . Again, Newton’s method can be used to obtain

logM as the mode of D(θ), then calculate M.
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Sampling Importance Resampling Method (SIR): Sampling importance resampling (SIR) method is an alternative general method for

simulating independent random draws from a general posterior distribution. As in the AR method, SIR requires a proposal that mimics the

target posterior distribution but it does not require the bound constant M. We will use the same proposal as in the AR method. The SIR

method can be implemented by applying the following algorithm:

1. Simulated m draws from the proposal density p(ϑ), say ϑ (1), · · · , ϑ (m)

2. Compute the weights for the draws w j =
g(ϑ (i)|data)

p(ϑ ( j))
, i = 1, · · · ,m

3. Convert the weights to probabilities w∗
i =

wi

∑
M
j=1 w j

, i = 1, · · · ,m

4. Simulate m random draws with replacement from the discrete distribution
{

ϑ (i),w∗
i

}m

i=1
, say ϑ∗1, · · · , ϑ∗m.

Then the set of random draws
{

ϑ∗1, · · · ,ϑ∗m
}

is approximately distributed according to the actual posterior distribution g(ϑ |data).

Markov Chain Monte Carlo method (MCMC): Markov Chain Monte Carlo (MCMC) methods have been extensively used to become

one of the most useful computational tools in the modern Bayesian data analysis. MCMC is very general and flexible technique to simulate

a sequence of nonindependent draws from a probability distribution. MCMC method begins with an initial value ϑ (0) and a mechanism

for drawing the i-th value in the sequence ϑ (i) given the (i− 1)st value ϑ (i−1). This mechanism consists of: (1) a proposal probability

distribution p(ϑ∗|ϑ) that produces a candidate value ϑ∗ given a current ϑ , and (2) calculate an acceptance probability P of accepting the

candidate ϑ∗ as the next value in the sequence. A general reference for the MCMC is Gelman et al. [13].

The following steps can be followed to implement the Metropolis-Hastings algorithm:

1. Specify the sequence size m > 1.

2. Choose an initial value ϑ (0) =
(

ϑ
(0)
1 ,ϑ

(0)
2

)′
.

3. For i = 1, · · · , m repeat the following steps

i. Set ϑ (i) = ϑ (i−1).

ii. Generate a candidate value ϑ∗ from a proposal distribution p(ϑ∗|ϑ (i)).

iii. Calculate the ratio ri =
g(ϑ∗|data)/p(ϑ∗|ϑ (i))

g(θ (i)|data)/p(ϑ |ϑ∗)
.

iv. Set ϑ (i) = ϑ∗ with probability Pi = min{1,ri}; otherwise keep ϑ (i) as is.

Metropolis-Hastings algorithm (MHA) uses different proposals. However, we will use two different chains: (1) independence chain (IND),

in which the acceptance ratio is ri =
g(ϑ ∗|data) p(ϑ (i))

g(ϑ (i)|data) p(ϑ ∗)
, and (2) random walk chain (RWC), in which the acceptance ratio is ri =

g(ϑ ∗|data)
g(ϑ (i)|data)

.

The MHA generates random draws from the target distribution regardless of the proposal p(ϑ∗|ϑ). However, the choice of the proposal is

important since a poor choice considerably delays the convergence towards the target distribution. We will use the same proposal as that we

use in the AR.

5. Data analysis

We use the four previously discussed Bayesian numerical methods to analyze the same two real datasets that were analyzed by Sarhan [1].

5.1. Electronic devices data:

In this dataset, 18 electronic devices were put on a life test and their lifetimes (in days) were observed as 5, 11, 21, 31, 46, 75, 98, 122,

145, 165, 196, 224, 245, 293, 321, 330, 350, 420. Wang [14] showed that this data have a bathtub hazard shape and used the additive Burr

XII distribution to analyze it. Sarhan [1] applied different frequentest methods to re-analyze this dataset using the DTPBT distribution. In

this section, we apply Bayes methods discussed here to analyze this dataset using the DTPBT distribution. Also, we estimate the model

reliability measures.

Figure 5.1 [left panel] displays the contour plots for the log-posterior density function of (q,β ), which shows that the posterior distribution is

right skewed and therefore normal approximation to the log-posterior distribution is not appropriate. This is one of the reasons to transform

the two parameters q from (0,1) interval to the real valued interval using θ1 = log

(

q

1−q

)

and β from (0,∞) domain to real valued domain

using θ2 = logβ . Using this transformation, the log-posterior density function becomes more symmetric as shown in Figure 5.1 [right panel]

and therefore normal approximation for loggθ (θ |data) is appropriate. This will allow us to use the mode and variance covariance matrix

for the normal approximation as the location and scale parameters for a symmetric proposal distribution. In this study, we use bivariate t

distribution with 4 degrees of freedom as a proposal in all four Bayesian numerical methods.

We used beta and gamma prior distributions for the two unknown parameters q and β , respectively, under two scenarios: (1) Poor/weak

prior information, in which we assume that all hyperparameters are equal and equal to 0.001, this indicates that prior mean of q is 0.5 and

standard deviation of 0.4995, while β has a prior mean of 1 and variance of 1000; (2) Good prior information: we use the posterior mean and

posterior variance, that are obtained by using scenario 1, as prior mean and variance for each parameter then get a new set of hyperparameters

a1 = 168.594,a2 = 1.419,b1 = 141.829 and b2 = 472.326. As a quick diagnostic test for the effect of the prior information, we provided

the contour plots for the log-likelihood function and the log-posterior density function of (q,β ) using each scenario along with the contour

plots for the log-prior density function of (q,β ) using each scenario as displayed in Figure 5.2. Despite of scenario 1 provides a very skewed

prior distribution, it slightly improves the skewness of the likelihood function. Scenario 2 is more symmetric and less distributed which leads

to a less skewness in the joint posterior distribution of (q,β ) with more precision in the sense of having narrower contour.

Using scenario 1, the acceptance rates for the accept-reject (AR), random walk (RW) and independent chain (IND) Markov Chain Monte

Carlo are 10.81%, 46.67% and 67.46%, respectively. The AR methods has the lowest acceptance rate, then the RW and the INC has the
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Figure 5.1: The contour plots for the log-posterior of (q,β ) [left panel] and for
(

log
(

q
1−q

)

, logβ
)

[right panel], using non informative priors (scenario 1) of

the hyperparameters.
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Figure 5.2: The contour plots [left panel] for the log-likelihood and for the log-posterior functions of (q,β ) using non informative priors (scenario 1) and
informative priors (scenario 2); and the contour plots for the log-prior density using scenario 1 [bottom-right] and scenario 2 [top-right].

largest acceptance rate. The accept reject method is the slowest method comparing to the other three techniques applied here. The fastest

one is the SIR method. The posterior mean, mode and 95% credible interval for the two parameters q and β using the four techniques are

displayed in Table 1. The four techniques provide very similar results. However the INC provides more precise credible interval but the SIR

is more faster and provides independent draws. Therefore, we would recommend SIR algorithm, for the underling distribution, over all other

techniques discussed here.

Using scenario 2, the acceptance rates for AR, RW and IND algorithms are respectively 52.3%, 50.8% and 78.12%, which are generally

higher than those for scenario 1. The acceptance rate corresponding to AR is increased by more than 40% using scenario 2. Furthermore, as

expected, scenario 2 provides better Bayesian inferences for q and β than scenario 1 in the sense of providing narrower credible intervals.

However, all Bayesian point estimates are very similar.

The four numerical techniques are performed using prior scenario 1 to get 10,000 draws from the posterior distribution of the transformed

parameters θ = (θ1, θ2). Figure 5.3 shows the posterior contours along with the draws obtained using the four methods. Using the inverse

transformations of θ1 and θ2, q = (1+ e−θ1)−1 and β = eθ2 , we get random draws from the marginal posterior distributions of q and β ,

given data, respectively. Figure 5.4 shows the marginal posterior densities of q and β using the four techniques. To see how good the draws

that are obtained from the MCMC, RW and IND chains, we provide some diagnostic tests; the trace plots and autocorrelation plots for θ1

and θ2 using the whole chains and the last 70% of the chains. From these plots, we can see that there is a good mix of the draws and the Lag
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declines rapidly in addition to the high acceptance rates of both two chains. The trace plots show that the early 27% of the chain were not

plausible values from the posterior distribution. That is why we discarded the early 30% of the chain and used the last 70% as draws from

the actual posterior distribution. Also, the ACF plots show high correlation in the chain over the early 30% (burn-in period), then declines

rapidly in the last 70%.

Parameter Method Mean Median 2.5th 97.5th Width

Scenario 1

q SIR 0.991305 0.993312 0.972841 0.998798 0.025956

AR 0.991379 0.993427 0.972511 0.998784 0.026273

RW 0.991258 0.993529 0.970904 0.998572 0.027668

IND 0.991850 0.993608 0.974821 0.998804 0.023983

β SIR 0.298777 0.299823 0.246841 0.345158 0.098318

AR 0.299521 0.300323 0.247899 0.346341 0.098442

RW 0.299066 0.300799 0.245420 0.342906 0.097486

IND 0.300765 0.300979 0.252553 0.346116 0.093563

Scenario 2

q SIR 0.992372 0.992988 0.983703 0.997554 0.013852

AR 0.992372 0.993072 0.983525 0.997504 0.013978

RW 0.992154 0.993034 0.981538 0.998019 0.025692

IND 0.992357 0.993032 0.983500 0.997490 0.013990

β SIR 0.298861 0.298871 0.269706 0.328245 0.058540

AR 0.299227 0.299151 0.269963 0.328406 0.058443

RW 0.285673 0.298209 0.001915 0.330015 0.082522

IND 0.298920 0.299080 0.269414 0.328720 0.059306

Table 1: The posterior mean, median, 2.5th, 97.5th percentiles (the bounds of the 95% credible interval) and the credible intervals’ widths of q and β , using
scenarios 1 and 2.

Figure 5.3: The contour plots for the log-posterior of
(

log
(

q
1−q

)

, logβ
)

along with the draws obtained from the joint posterior distribution using SIR, AR,

MCMC-RW and MCMC-IND methods using scenario 1 [top row] and scenario 2 [bottm row].

We can use the draws that were simulated from the joint posterior distribution of (q,β ), by following the adopted technique, to get random

draws from the posterior distribution of any reliability measure we wish without deriving the actual posterior distribution of that measure. As

examples, we calculate the basic Bayes analysis for the probability mass function and the reliability function of the model at a given value

x0, e.g., the sample mean, using each adopted technique in this paper using the two scenarios of the hyperparameters. Table 2 shows the

posterior mean, median, the limits of a 95% credible interval of each measure.

Figure 5.6 displays the Bayes estimate of the posterior probability density function of P(X = x0), when x0 = 172 ’the sample mean’, using

the four techniques applied here and the two scenarios of the hyperparameters. As expected, the posterior distribution of p(172) using prior

scenario 1 has more spread than that obtained using prior scenario 2.

Both the two prior scenarios provide similar results for the probability mass and survival functions that shows the robustness of the Bayesian

analysis.
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Figure 5.4: The approximated marginal posterior density functions of q and β using SIR (top left), AR (top right), RW (bottom left) and IND (bottom right)
methods, using scenario 1 of the hyperparameters.

Figure 5.5: The trace and autocorrelation plots for the transformed parameters using RW [top two rows] and IND [bottom two rows]

5.2. Aarset data:

Aarset data [15] consist of the failure times (in weeks) of 50 devices put on a life test. The TTT-Transform plot for this dataset shows that

it has a bathtub-shape. Nooghabi et al. [7] used the DMW distribution, Xie and Lai [16] used DAddW, and Almalki and Nadarajah [9]

used DRMW to analyze this data set and reported that all of these distributions fit the data well. Sarhan [1] used the DTPBT distribution to

analyze this dataset and compared it with those models mentioned above and reported that the DTPBT was better.

In the first dataset, all Bayesian point estimates were very similar using both scenarios of the hyperparameters. Therefore, in this dataset,

we implement all the Bayesian techniques adopted here using only scenario 1 of the hyperparameters. Table 3 presents the posterior

mean, median and the limits of the 95% credible interval along with its width of the model parameters and the probability mass function and

survival function of a random selected device evaluated at 46 weeks (the sample mean). As in the first dataset, all the Bayesian methods, we

applied here, give similar results.
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Figure 5.6: The approximated posterior density function of p(172) = P(X = 172) using the four techniques SIR, AR, RW, IND by applying scenario 1 [top
row] and scenario 2 [bottom row].

Figure 5.7: The approximated posterior density function of S(172) using the four techniques SIR, AR, RW, IND [from left to right] using scenario 1 [top
row] and scenario 2 [bottom row].

6. Simulation results

In order to compare the performance of the four numerical methods applied here, a simulation study is implemented according to the

following scheme:

1. Specify the actual value of the vector of model parameters ϑ = (q,β )
2. Specify the sample size n

3. Generate a random sample with size n from the DTPBT(q,β )
4. For the random sample obtained in step 3,

(a) generate m random draws from the joint posterior distribution by applying each of the four simulation techniques described in

this article (AR, SIR, RW and IND)

(b) use the random draws obtained in (a), using every technique, to calculate the Bayes estimate and 95% Bayesian probability

interval ’BPI’ for q and β

(c) for every parameter, calculate: (i) the bias ’exact - estimate’ and (ii) an indicator C = 1 if the BPI captures the actual value and 0,

otherwise.

5. Repeat Steps 3 and 4, N times, then calculate the mean squared errors ’MSE’ and the coverage probability ’CP’ for every parameter,
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Measure Method Mean Median 2.5th 97.5th Width

Scenario 1

p(172) SIR 0.00282 0.00281 0.00187 0th.00380 0.00193

AR 0.00282 0.00282 0.00190 0.00379 0.00190

RW 0.00280 0.00280 0.00186 0.00379 0.00193

IND 0.00280 0.00281 0.00183 0.00381 0.00198

S(172) SIR 0.49126 0.49213 0.29913 0.68191 0.38278

AR 0.49275 0.49159 0.30592 0.68669 0.38077

RW 0.49433 0.49505 0.30318 0.68154 0.37836

IND 0.49251 0.49329 0.30049 0.68598 0.38549

Scenario 2

p(172) SIR 0.00282 0.00281 0.00215 0.00357 0.00142

AR 0.00283 0.00282 0.00214 0.00357 0.00143

RW 0.00283 0.00282 0.00216 0.00359 0.00143

IND 0.00283 0.00284 0.00212 0.00357 0.00145

S(172) SIR 0.48475 0.48378 0.32239 0.65225 0.32986

AR 0.48338 0.48283 0.32064 0.64691 0.32627

RW 0.48597 0.48429 0.32773 0.65650 0.32877

IND 0.48487 0.48356 0.32330 0.64864 0.32534

Table 2: Posterior mean, median, 2.5th, 97.5th percentiles (the bounds of the credible interval) and the credible intervals’ widths of p(172) and S(172) using
prior scenarios 1 and 2.

Parameter Method Mean Median 2.5th 97.5th Width

q SIR 0.97704 0.97872 0.95273 0.99130 0.03857

AR 0.97703 0.97875 0.95344 0.99124 0.03780

RW 0.97647 0.97809 0.95143 0.99112 0.03969

IND 0.97684 0.97849 0.95263 0.99082 0.03819

β SIR 0.34020 0.34047 0.29433 0.38290 0.08857

AR 0.34059 0.34093 0.29685 0.38268 0.08582

RW 0.33885 0.33872 0.29409 0.38228 0.08819

IND 0.33976 0.34042 0.29456 0.38087 0.08631

p(46) SIR 0.01012 0.01008 0.00759 0.01279 0.00520

AR 0.01013 0.01011 0.00769 0.01275 0.00505

RW 0.01004 0.00998 0.00750 0.01266 0.00516

IND 0.01010 0.01009 0.00758 0.01269 0.00511

S(46) SIR 0.43495 0.43291 0.32432 0.55333 0.22901

AR 0.43374 0.43318 0.31956 0.55621 0.23665

RW 0.43293 0.43273 0.31709 0.54725 0.23016

IND 0.43276 0.43372 0.31980 0.54828 0.22847

Table 3: The posterior mean, median, 2.5th, 97.5th percentiles and the credible intervals’ widths of q, β and p(46) and S(46) using prior scenarios 1.

using each technique, according to

MSE =
∑

N
i=1(Exact−Estimatedi)

2

N
, CP =

∑
N
i=1 Ci

N

here Estimatedi and Ci are the estimated value and the value of the indicator C obtained in the i-th iteration.

We implemented the above algorithm using scenario 1 of hyperparameters with N = 10000, m = 10000, for different sample size n =
25,50,75, and 100, and different sets of parameters’ values ϑ = (0.9,0.2),(0.9,0.3) and (0.9,0.9). The choice of the parameters’ value was

to reflect different shapes of the hazard function (decreasing, bathtub and increasing) of the DTPBT model. Table 4 summarizes the obtained

results, from which we can conclude that: (1) the MSE decreases with the sample size for every parameter using all four numerical methods

applied in this paper, (2) the MSE corresponding to each parameter is almost the same for each method, (3) the CP corresponding to each

parameter using all four methods gets closer to the nominated confidence level when the samlpe size gets bigger.

7. Conclusion

Bayesian inferences of the two parameters of the discrete tow-parameter bathtub distribution and its reliability measures are discussed in

this paper. The joint posterior distribution of the two parameters has no explicit form. To overcome this problem, four numerical Bayesian

computation techniques (accept-reject, sampling-importance resampling and two versions of Markov chain Monte Carlo) are adopted.

The two parameters are assumed to be independent and beta and gamma priori distributed with known hyperparameters. Two scenarios of

the hyperparameters are discussed and we showed that the Bayes analysis is robust for the choice of the hyperparameters. We re-analyzed

two real datasets using the four Bayesian numerical techniques applied here. Finally, we performed a simulation study to investigate the

properties of the four Bayesian methods.
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As a future work, the methods discussed in this paper can be used under different types of data sets with different testing scenarios such as

progressively censored data, competing risks data and/or masked data.

Parameter Case 1: (q,β ) = (0.9,0.2)

n MSE CP

AR SIR RW IND AR SIR RW IND

q 15 0.00196 0.00197 0.00198 0.00186 0.891 0.894 0.895 0.869

20 0.00145 0.00144 0.00145 0.00137 0.927 0.929 0.921 0.911

25 0.00108 0.00107 0.00108 0.00107 0.932 0.933 0.929 0.927

50 0.00057 0.00056 0.00056 0.00056 0.932 0.930 0.932 0.926

75 0.00040 0.00041 0.00041 0.00040 0.922 0.928 0.924 0.931

100 0.00031 0.00031 0.00031 0.00031 0.925 0.937 0.925 0.930

β 15 0.00125 0.00125 0.00125 0.00100 0.902 0.903 0.907 0.858

20 0.00078 0.00077 0.00077 0.00065 0.929 0.928 0.924 0.900

25 0.00049 0.00049 0.00049 0.00047 0.940 0.941 0.941 0.922

50 0.00025 0.00025 0.00025 0.00024 0.930 0.932 0.934 0.931

75 0.00017 0.00017 0.00017 0.00016 0.919 0.921 0.920 0.921

100 0.00012 0.00012 0.00012 0.00012 0.928 0.929 0.929 0.928

Case 2: (q,β ) = (0.9,0.3)
q 15 0.00201 0.00201 0.00202 0.00193 0.894 0.908 0.901 0.869

20 0.00143 0.00142 0.00142 0.00138 0.911 0.913 0.917 0.894

25 0.00118 0.00117 0.00116 0.00115 0.921 0.922 0.916 0.909

50 0.00059 0.00059 0.00059 0.00059 0.930 0.932 0.930 0.932

75 0.00038 0.00038 0.00038 0.00038 0.938 0.941 0.937 0.938

100 0.00031 0.00031 0.00031 0.00031 0.923 0.927 0.930 0.924

β 15 0.00260 0.00261 0.00259 0.00204 0.930 0.925 0.922 0.874

20 0.00172 0.00172 0.00169 0.00153 0.917 0.918 0.917 0.898

25 0.00813 0.00814 0.00812 0.00742 0.914 0.912 0.916 0.905

50 0.00325 0.00325 0.00326 0.00325 0.942 0.939 0.935 0.931

75 0.00191 0.00190 0.00190 0.00189 0.941 0.944 0.941 0.944

100 0.00152 0.00151 0.00152 0.00152 0.933 0.929 0.933 0.920

Case 3: (q,β ) = (0.9,0.9)
q 15 0.00253 0.00254 0.00255 0.00252 0.886 0.882 0.882 0.862

20 0.00164 0.00164 0.00165 0.00160 0.897 0.895 0.890 0.877

25 0.00128 0.00127 0.00127 0.00125 0.903 0.896 0.901 0.895

50 0.00057 0.00056 0.00057 0.00057 0.936 0.932 0.936 0.929

75 0.00041 0.00041 0.00041 0.00041 0.925 0.931 0.925 0.935

100 0.00029 0.00030 0.00029 0.00029 0.942 0.937 0.939 0.943

β 15 0.03212 0.03213 0.03208 0.03164 0.873 0.873 0.870 0.856

20 0.02818 0.02818 0.02801 0.02464 0.895 0.895 0.882 0.869

25 0.01787 0.01795 0.01757 0.01643 0.906 0.908 0.900 0.889

50 0.00622 0.00622 0.00621 0.00616 0.929 0.928 0.935 0.931

75 0.00415 0.00413 0.00413 0.00411 0.923 0.936 0.918 0.925

100 0.00277 0.00278 0.00276 0.00277 0.931 0.931 0.930 0.935

Table 4: The MSE associated with the Bayes point estimate of the model parameters using each Bayesian simulation method and the coverage probability
corresponding to the 95% credible intervals
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Abstract

In this work, we introduce the notion of 2-absorbing semiprimary fuzzy ideal which is a

generalization of semiprimary fuzzy ideal. Let R be a ring. Then the nonconstant fuzzy

ideal µ is called a 2-absorbing semiprimary fuzzy ideal if
√

µ is a 2-absorbing fuzzy ideal

of R. Furthermore, we give some fundamental results concerning these notions.

1. Introduction

Zadeh in 1965 introduced the fundamental concept of fuzzy set [1]. Focusing on the structure of ring, the paper of Liu [2], defining fuzzy

ideals, initiated the investigation of rings by means of expanding the class of ideals with these fuzzy objects. Mukherjee and Sen have

continued the study of fuzzy ideals by introducing the notion of prime fuzzy ideals [3]. Nowadays, fuzzy algebraic structures were developed

and many interesting results were obtained. The concept of 2-absorbing ideals, which is a generalization of prime ideals [4] and 2-absorbing

primary ideals, which is a generalization of primary ideals [5] were introduced. Although the prime fuzzy ideals and primary fuzzy ideals

have been investigated [3, 6], the concept of 2-absorbing semiprimary fuzzy ideals have not been studied yet. In this study, we characterize

the 2-absorbing semiprimary fuzzy ideals, some generalizations of 2-absorbing semiprimary fuzzy ideals and described some their properties.

Recall from [4, 5] that a proper ideal I of R is called a 2-absorbing ideal if whenever a,b,c ∈ R and abc ∈ I then either ab ∈ I or ac ∈ I or

bc ∈ I and a proper ideal I of R is called a 2-absorbing primary ideal if whenever a,b,c ∈ R and abc ∈ I then either ab ∈ I or ac ∈
√

I or

bc ∈
√

I. Recall also from [7] that a nonconstant fuzzy ideal µ of R is called a 2-absorbing fuzzy ideal of R if for any fuzzy points xr,ys,zt of

R, xryszt ∈ µ implies that either xrys ∈ µ or xrzt ∈ µ or yszt ∈ µ and a nonconstant fuzzy ideal µ of R is called a 2-absorbing primary fuzzy

ideal of R if for any fuzzy points xr,ys,zt of R, xryszt ∈ µ implies that either xrys ∈ µ or xrzt ∈
√

µ or yszt ∈
√

µ . Based on these definitions,

a nonconstant fuzzy ideal µ is called a 2-absorbing semiprimary fuzzy ideal if
√

µ is a 2-absorbing fuzzy ideal of R.

2. Preliminaries

We assume throughout that all rings are commutative with 1 6= 0. Unless stated otherwise L = [0,1] stands for a complete lattice. Z denotes

the ring of integers, L(R) denotes the set of fuzzy sets of R and LI(R) denotes the set of fuzzy ideals of R. For µ,ξ ∈ L(R) , we say µ ⊆ ξ if

and only if µ(x)≤ ξ (x) for all x ∈ R. When r ∈ L, x,y ∈ R we define xr ∈ L(R) as follows :

xr(y) =

{

x i f x = y,
0 otherwise,

and xr is referred to as fuzzy point of R. Let I be an ideal of R. Then

λI =

{

1 i f x ∈ I,
0 otherwise,

Definition 2.1. [2] A fuzzy subset µ of a ring R is called a fuzzy ideal of R if for all x,y ∈ R the following conditions are satisfied :

Email addresses and ORCID numbers: dnzguel@hotmail.com, https://orcid.org/0000-0002-7574-4245 (D. Sönmez), gyesilot@yildiz.edu.tr, https://orcid.org/0000-0002-

5205-5842 (G. Yeşilot),serkan10ar@gmail.com, https://orcid.org/0000-0003-3084-7694 (S. Onar),ersoya@gmail.com, https://orcid.org/0000-0002-8307-9644 (B. A. Er-

soy)
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• µ(x− y)≥ µ(x)∧µ(y), ∀x,y ∈ R

• µ(xy)≥ µ(x)∨µ(y), ∀x,y ∈ R

Let µ be any fuzzy ideal of R; x,y ∈ R , and 0 be the additive identity of R. Then it is easy to verify the following:

(i) µ(0)≥ µ(x), µ(x) = µ(−x) and µt ⊂ µs where s, t ∈ Im(µ) and t > s.

(ii) If µ(0) = µ(x− y), then µ(x) = µ(y), µ(x) = s iff x ∈ µs and x /∈ µt ,∀t > s.

Definition 2.2. [8] Let µ be any fuzzy ideal of R. The ideals µt , (µ(0)≥ t) are called level ideals of µ .

Definition 2.3. [3] A fuzzy ideal µ of R is called prime fuzzy ideal if for any two fuzzy points xr,ys of R , xrys ∈ µ implies either xr ∈ µ or

ys ∈ µ .

Definition 2.4. [6] Let µ be a fuzzy ideal of R. Then
√

µ , called the radical of µ , is defined by
√

µ(x) = ∨
n≥1

µ(xn).

Definition 2.5. [6] A fuzzy ideal µ of R is called primary fuzzy ideal if for any two fuzzy points xr,ys of R , xrys ∈ µ implies either xr ∈ µ or

ys ∈
√

µ .

Theorem 2.6. [6] Let µ be fuzzy ideal of a ring R. Then
√

µ is a fuzzy ideal of R.

Definition 2.7. [3] Let R be a ring. Then a nonconstant fuzzy ideal µ is said to be weakly completely prime fuzzy ideal iff for x,y ∈ R,

µ(xy) = max{µ(x),µ(y)}.

Theorem 2.8. [9] Let f : R → S be a ring homomorphism and let µ be a fuzzy ideal of R such that µ is constant on Ker f and ξ be a fuzzy

ideal of S. Then ,

•
√

f (µ) = f (
√

µ),

•
√

f−1(ξ ) = f−1(
√

ξ ).

Definition 2.9. [4] A nonzero proper ideal I of a commutative ring R with 1 6= 0 is called a 2-absorbing ideal if whenever a,b,c ∈ R with

abc ∈ I, then either ab ∈ I or ac ∈ I or bc ∈ I.

Definition 2.10. [5] A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever a,b,c ∈ R with abc ∈ I, then either ab ∈ I

or ac ∈
√

I or bc ∈
√

I.

Definition 2.11. [10] A proper ideal I of R is called a 2-absorbing quasi primary ideal of R if whenever a,b,c ∈ R with abc ∈ I, then either

ab ∈
√

I or ac ∈
√

I or bc ∈
√

I.

Theorem 2.12. [5] If I is a 2-absorbing primary ideal of R, then
√

I is a 2-absorbing ideal of R.

Definition 2.13. [11] An element 1 > α ∈ L is called a 2-absorbing element if for any x,y,z ∈ L, x∧ y∧ z < α implies either x∧ y < α or

x∧ z < α or y∧ z < α .

Lemma 2.14. [9] Let µ be a fuzzy ideal of R. Then for any positive integer n,
√

µn =
√

µ .

Lemma 2.15. [9] Let µ and λ be fuzzy ideals of R. If µ ⊆ λ then
√

µ ⊆
√

λ .

Theorem 2.16. [9] If µ and ξ are two fuzzy ideals of R, then
√

µ ∩ξ =
√

µ ∩
√

ξ =
√

µξ

Theorem 2.17. [7] f : R → S be a ring homomorphism . If ξ is a 2-absorbing fuzzy ideal of S then f−1(ξ ) is a 2-absorbing fuzzy ideal of R.

Theorem 2.18. [7] Let f : R → S be a surjective ring homomorphism. If µ is a 2-absorbing fuzzy ideal of R which is constant on Ker f then

f (µ) is a 2-absorbing fuzzy ideal of S.

3. 2-absorbing semiprimary fuzzy ideals

Before we investigate 2-absorbing semiprimary fuzzy ideals, we will give the characterization of cartesian product of some fuzzy ideals

which will be used in next parts.

Definition 3.1. Let µ and α be two fuzzy ideals of R. The cartesian product of µ and α is defined by µ ×α such that (µ ×α)(x,y) =
µ(x)∧α(y) [12]. In addition to this definition, if (xr,ys) ∈ µ ×α for any fuzzy points xr,ys of R then xr ∈ µ and ys ∈ α so r ∧ s ≤
µ ×α(x,y) = µ(x)∧α(y).

Recall that if µ and α are fuzzy ideals of R then µ ×α is a fuzzy ideal of R×R.

Lemma 3.2. Let µ and α be two fuzzy ideals of R. Then
√

µ ×α =
√

µ ×√
α

Proof.
√

µ ×α(x,y) =
∨

n≥1

{(µ ×α)(xn,yn)}= ∨

n≥1

{µ(xn)∧α(yn)}

=
∨

n≥1

{µ(xn)}∧ ∨

n≥1

{α(yn)}=√
µ(x)∧√

α(y) =
√

µ ×√
α(x,y)

Lemma 3.3. Let R = R1 ×R2, where R1 and R2 are rings and µ be a nonconstant fuzzy ideal of R. If µ is a prime fuzzy ideal then either

µ = µ1 ×λR2
for some prime fuzzy ideal µ1 of R1 or µ = λR1

×µ2 for some prime fuzzy ideal µ2 of R2 .

Proof. Assume that µ be a prime fuzzy ideal of R. Then there exist α and β fuzzy ideals of R1,R2 respectively such that µ = α ×β . Then

for any fuzzy points xr,ys of R (xr,ys) = (xr,11)(11,ys) ∈ µ = α ×β . So (xr,11) ∈ α ×β or (11,ys) ∈ α ×β since µ is a prime fuzzy ideal.

Thus we conclude that β = λR2
and α is a prime fuzzy ideal or α = λR1

and β is a prime fuzzy ideal.
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Theorem 3.4. Let R = R1 ×R2, where R1 and R2 are commutative rings with nonzero identity. Let µ be a nonconstant fuzzy ideal of R.

Then the following statements are equivalent:

(1) µ is a semiprimary fuzzy ideal of R.

(2) Either µ = µ1 ×λR2
for some semiprimary fuzzy ideal µ1 of R1 or

µ = λR1
×µ2 for some semiprimary fuzzy ideal µ2 of R2 .

Proof. (1)⇒ (2) Assume that µ is a semiprimary fuzzy ideal of R. Then µ = µ1×µ2 for some fuzzy ideal µ1 of R1 and some fuzzy ideal µ2

of R2. Since
√

µ =
√

µ1 ×
√

µ2 is a prime fuzzy ideal then by the previous lemma either
√

µ1 = λR1
so µ1 = λR1

and
√

µ2 is a prime fuzzy

ideal or
√

µ2 = λR2
so µ2 = λR2

and
√

µ1 is a prime fuzzy ideal. Hence µ = µ1 ×λR2
for some semiprimary fuzzy ideal µ1 or µ = λR1

×µ2

for some semiprimary fuzzy ideal µ2.

(2)⇒ (1) It is clear that since
√

µ =
√

µ1 ×λR2
=
√

µ1 ×λR2
is a prime fuzzy ideal of R if µ1 is any semiprimary fuzzy ideal of R1.

Theorem 3.5. Let µ be a fuzzy ideal of R. If µ is a 2-absorbing then µ ×λR (λR ×µ) is a 2-absorbing fuzzy ideal of R×R.

Proof. Assume that (xr,ak)(ys,bp)(zt ,ch)∈ µ×λR for any fuzzy points xr,ys,zt ,ak,bp,ch of R. Then (xryszt ,akbpch)∈ µ×λR so xryszt ∈ µ
and akbpch ∈ λR. Since µ is a 2-absorbing fuzzy ideal then xrys ∈ µ or xrzt ∈ µ or yszt ∈ µ . Thus we get that (xr,ak)(ys,bp) ∈ µ ×λR or

(xr,ak)(zt ,ch) ∈ µ ×λR or (ys,bp)(zt ,ch) ∈ µ ×λR. Hence µ ×λR is a 2-absorbing fuzzy ideal.

By the similar way it can be seen that λR ×µ is a 2-absorbing fuzzy ideal of R×R.

Definition 3.6. Let R be a ring. Then the nonconstant fuzzy ideal µ is said to be a 2-absorbing semiprimary fuzzy ideal if
√

µ is a

2-absorbing fuzzy ideal of R.

Example 3.7. (1) Every prime fuzzy ideal is a 2-absorbing semiprimary fuzzy ideal.

(2) Every primary fuzzy ideal is a 2-absorbing semiprimary fuzzy ideal.

(3) Every semiprimary fuzzy ideal is a 2-absorbing semiprimary fuzzy ideal.

Proposition 3.8. Let µ be a nonconstant fuzzy ideal of R . Then the following assertions are equivalent.

(i) µ is a 2-absorbing semiprimary fuzzy ideal.

(ii) If xryszt ∈ µ for any fuzzy points xr,ys,zt of R then xrys ∈
√

µ or xrzt ∈
√

µ or yszt ∈
√

µ .

Corollary 3.9. If µ is 2-absorbing primary fuzzy ideal then µ is 2-absorbing semiprimary fuzzy ideal.

But, as indicated in the following example, the converse of Corollary 3.9 is not true.

Example 3.10. Let R = Z, the ring of integers. Define the fuzzy ideal µ of Z by

µ(x) =







1 x ∈ 36Z,
1/2 x ∈ 6Z −36Z,
0 otherwise.

Since 2131 /∈ µ , 211 1
2
/∈√

µ and 311 1
2
/∈√

µ while 21311 1
2
∈ µ , then µ is not 2-absorbing primary fuzzy ideal. However, it is easy to see

that µ is 2-absorbing semiprimary fuzzy ideal, since
√

µ = λ6Z where it is a 2-absorbing fuzzy ideal of Z.

Remark 3.11. In Example 2.7 [5], it is proved that a 2-absorbing semiprimary ideal is not necessarily a 2-absorbing primary ideal. In the

following theorem we show under what conditions a 2-absorbing semiprimary (fuzzy) ideal is a 2-absorbing primary (fuzzy) ideal. Note that

if µ is a semiprime fuzzy ideal of R, then we have
√

µ = µ .

Theorem 3.12. Let R be a ring. Then the following statements hold:

(1) Let µ be a semiprime fuzzy ideal of R. Then µ is a 2-absorbing primary fuzzy ideal if and only if it is 2-absorbing semiprimary fuzzy

ideal.

(2) Let I be a semiprime ideal of R. Then I is a 2-absorbing primary ideal if and only if it is 2-absorbing semiprimary ideal.

Proof. (1) We show that only sufficient conditions. Let µ be semiprime fuzzy ideal. If µ is 2-absorbing semiprimary fuzzy ideal and

xryszt ∈ µ for any xr,ys,zt fuzzy points of R, then xrys ∈
√

µ or xrzt ∈
√

µ or yszt ∈
√

µ . Since µ is semiprime fuzzy ideal then
√

µ = µ so

xrys ∈ µ =
√

µ or xrzt ∈
√

µ or yszt ∈
√

µ . Hence we get that µ is a 2-absorbing primary fuzzy ideal of R.

(2) We omit the proof since it is clear by (1).

Theorem 3.13. Let µ be a fuzzy ideal of R. If µ is a 2-absorbing semiprimary then µt is a 2-absorbing semiprimary ideal of R for any

t ∈ [0,µ(0)].

Proof. If µ is a 2-absorbing semiprimary then
√

µ is a 2-absorbing fuzzy ideal of R. By [7, Lemma 3.3],
√

µ
t
=
√

µt is also 2-absorbing

ideal. Hence µt is 2-absorbing semiprimary ideal of R.

Theorem 3.14. Let µ1 be ξ1-semiprimary fuzzy ideal of R and µ2 be ξ2-semiprimary fuzzy ideal of R. Then the following statements hold.

(i) µ1µ2 is a 2-absorbing semiprimary fuzzy ideal of R.

(ii) µ1 ∩µ2 is a 2-absorbing semiprimary fuzzy ideal of R.

Proof. Since
√

µ1 = ξ1 and
√

µ2 = ξ2 are prime fuzzy ideals then
√

µ1µ2 =
√

µ1 ∩µ2 =
√

µ1∩
√

µ2 is 2-absorbing fuzzy ideal of R. Hence

µ1 ∩µ2 and µ1µ2 are 2-absorbing semiprimary fuzzy ideal.

Theorem 3.15. Let µ be a nonconstant fuzzy ideal. If µ∗ = {x ∈ R : µ(x)> 0} is a 2-absorbing semiprimary ideal of R where µ(0) = 1 and

|Imµ|= 2 then µ is a 2-absorbing semiprimary fuzzy ideal of R.
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Proof. Assume that µ(0) = 1, Imµ = {1,α} and µ∗ is a 2-absorbing semiprimary ideal.

Let xryszt ∈ µ but xrys /∈
√

µ , yszt /∈
√

µ and xrzt /∈
√

µ . Then r∧s∧ t ≤ µ(xyz) and r∧ s >
√

µ(xy), s∧ t >
√

µ(yz) , r∧ t >
√

µ(xz). Thus

for all n ∈ Z
+, r∧ s > µ(xnyn), s∧ t > µ(ynzn) and r∧ t > µ(xnzn). By our assumption we get that µ(xnyn) = µ(ynzn) = µ(xnzn) = α so

xy,yz,xz /∈ µ∗. However, α < r∧ s∧ t ≤ µ(xyz) = 1 so xy,yz,xz /∈√
µ∗ and xyz ∈ µ∗. But this contradict that µ∗ is 2-absorbing semiprimary

ideal. Hence µ is a 2-absorbing semiprimary fuzzy ideal.

Theorem 3.16. Let I be a 2-absorbing quasi primary ideal of R and α ∈ [0,1) be any arbitrary. If µ is the fuzzy ideal of R defined by

µ(x) =

{

1 x ∈ I,
α x /∈ I,

for all x ∈ R, then µ is a 2-absorbing semiprimary fuzzy ideal of R.

Proof. Let I be a 2-absorbing primary ideal of R. Assume that xryszt ∈ µ but xrys /∈ √
µ and xrzt /∈

√
µ and yszt /∈

√
µ for any x,y,z ∈ R.

Then µ((xy)n)≤√
µ(xy)< r∧ s and µ((yz)n)≤√

µ(yz)< s∧ t and µ((xz)n)≤√
µ(xz)< r∧ t for all n ≥ 1. In this case µ((xy)n) = α and

(xy)n /∈ I so xy /∈
√

I , µ((yz)n) = α and (yz)n /∈ I so yz /∈
√

I, µ((xz)n) = α and (xz)n /∈ I so xz /∈
√

I. Since I is 2-absorbing semiprimary

ideal of R then we get xyz /∈ I and so µ(xyz) = α . By our assumption we get (xyz)r∧s∧t = xryszt ∈ µ and r∧ s∧ t ≤ µ(xyz) = α . Thus

α < r∧ s, α < s∧ t and α < r∧ t so α < r∧ s∧ t, which is a contradiction. Hence µ is a 2-absorbing semiprimary fuzzy ideal of R.

Theorem 3.17. Let f : R → S be a ring homomorphism . If ξ is a 2-absorbing semiprimary fuzzy ideal of S then f−1(ξ ) is a 2-absorbing

semiprimary fuzzy ideal of R.

Proof. Let ξ be a 2-absorbing semiprimary fuzzy ideal of S. We show that
√

f−1(ξ ) is a 2-absorbing fuzzy ideal of R. Since
√

f−1(ξ ) =

f−1(
√

ξ ) and
√

ξ is a 2-absorbing fuzzy ideal then the inverse image of
√

ξ is also 2-absorbing fuzzy ideal by [7, Theorem 31]. Hence

f−1(ξ ) is a 2-absorbing semiprimary fuzzy ideal of R.

Theorem 3.18. Let f : R → S be a surjective ring homomorphism. If µ is a 2-absorbing semiprimary fuzzy ideal of R which is constant on

Ker f then f (µ) is a 2-absorbing semiprimary fuzzy ideal of S.

Proof. Assume that µ is a 2-absorbing semiprimary fuzzy ideal of R which is constant on Ker f . Then
√

µ is a 2-absorbing fuzzy ideal of R

such that
√

µ is also constant on Ker f . By [7, Theorem 32], f (
√

µ) =
√

f (µ) is a 2-absorbing fuzzy ideal of S.

Theorem 3.19. If f is a homomorphism from a ring R onto a ring S, then the mapping µ → f (µ) defines a one-to-one correspondence

between the set of all 2-absorbing semiprimary fuzzy ideals of R which is constant on Ker f and the set of all 2-absorbing semiprimary fuzzy

ideals of S.

Definition 3.20. Let µ be a 2-absorbing semiprimary fuzzy ideal of R. Then γ =
√

µ is a 2-absorbing fuzzy ideal. We say that µ is a

γ-2-absorbing semiprimary fuzzy ideal of R.

Theorem 3.21. Let µ1,µ2, ...,µn be γ-2-absorbing semiprimary fuzzy ideals of R for some 2-absorbing fuzzy ideal γ of R. Then µ =
n
⋂

i=1

µi

is a γ-2-absorbing semiprimary fuzzy ideal of R.

Proof. Let µi, i ∈ {1,2, ...,n} be γ-2-absorbing semiprimary fuzzy ideals of R. Then

√

n
⋂

i=1

µi =
n
⋂

i=1

√
µi = γ =

√
µ is a 2-absorbing fuzzy

ideal. Hence µ is a γ-2-absorbing primary fuzzy ideal of R.

Theorem 3.22. Let R1 and R2 be commutative rings with nonzero identity and µ be a nonconstant fuzzy ideal of R1 (of R2). If µ is a

2-absorbing semiprimary fuzzy ideal of R1 (of R2) then µ ×λR2
(λR1

×µ) is a 2-absorbing semiprimary fuzzy ideal of R1 ×R2.

Proof. Assume that µ is a 2-absorbing semiprimary fuzzy ideal. Since
√

µ is a 2-absorbing fuzzy ideal then
√

µ ×λR2
=

√
µ ×λR2

is a

2-absorbing fuzzy ideal of R1 ×R2. Hence we get µ ×λR2
is a 2-absorbing semiprimary fuzzy ideal of R1 ×R2.

Corollary 3.23. Let R = R1 ×R2 where R1 and R2 be two rings and µ be a nonconstant fuzzy ideal of R. Then the following statements are

equivalent: (1) µ is a 2-absorbing semiprimary fuzzy ideal of R. (2) Either µ = µ1 ×λR2
for some 2-absorbing semiprimary fuzzy ideal

µ1 of R1, or µ = λR1
×µ2 for some 2-absorbing semiprimary fuzzy ideal µ2 of R2, or µ = µ1 ×µ2 for some 2-absorbing semiprimary fuzzy

ideal of R2.

4. Conclusion

In this paper, we have characterized 2-absorbing semiprimary fuzzy ideals of a ring. Also the notions of 2-absorbing and 2-absorbing primary

fuzzy ideals and their properties are proposed. Furthermore, the relationship between 2-absorbing semiprimary fuzzy ideals and 2-absorbing

semiprimary ideals. Finally, we have examined that the properties of cartesian product of 2-absorbing semiprimary fuzzy ideals. To extend

this study, one could study other algebraic structures and do some further study on the properties them.
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Abstract

In this paper, we introduce the concepts of αβ−statistical convergence and strong

αβ−summability of double sequences and investigate the relation between these two

new concepts. Moreover, statistical convergence and αβ−statistical convergence of double

sequences are compared under some certain assumptions. Finally, as an application, we

prove Korovkin type approximation theorem for a function of two variables by using the

notion of αβ−statistical convergence.

1. Introduction

The idea of statistical convergence for sequences of real and complex numbers was introduced by Fast [1] and Steinhaus [2] independently in

the same year 1951 as follows. Let K ⊆ N, the set of natural numbers and Kn = {k ≤ n : k ∈ K}. Then the natural density of K is defined by

δ (K) = limnn−1 |Kn| if the limit exists, where |Kn| denotes the cardinality of Kn. A sequence x = (xk) is said to be statistically convergent to

L if for every ε > 0, the set Kε := {k ∈ N : |xk −L| ≥ ε} has natural density zero, i.e., for each ε > 0,

lim
n

1

n
|{k ≤ n : |xk −L| ≥ ε}|= 0,

which is denoted by st − limx = L. Over the years, generalizations and applications of this notion have been investigated by various

researchers [3]-[14].

Aktuglu [14] introduced αβ−statistical convergence as follows. Let α (n) and β (n) be two sequences of positive numbers satisfying the

following conditions:

P1 : α and β are both non−decreasing,

P2 : β (n)≥ α (n) ,
P3 : β (n)−α (n)→ ∞ as n → ∞.

Let Λ denote the set of pairs (α,β ) satisfying P1, P2 and P3.

For each pair (α,β ) ∈ Λ, 0 < γ ≤ 1 and K ⊂ N, we define

δ α,β (K,γ) = lim
n→∞

∣

∣

∣
K ∩P

α,β
n

∣

∣

∣

(β (n)−α (n)+1)γ

where P
α,β
n is the closed interval [α (n) ,β (n)] and |S| represents the cardinality of S.

Email addresses and ORCID numbers: scaylan@sakarya.edu.tr, https://orcid.org/0000-0002-5893-9868 (S. Altundag), bayramsozbir@gmail.com, https://orcid.org/0000-

0002-9475-7180 (B. Sozbir)
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Definition 1.1. [14] A sequence x = (xk) is said to be αβ−statistically convergent of order γ to L, if for every ε > 0

δ α,β ({k : |xk −L| ≥ ε} ,γ) = lim
n→∞

∣

∣

∣

{

k ∈ P
α ,β
n : |xk −L| ≥ ε

}∣

∣

∣

(β (n)−α (n)+1)γ = 0

which is denoted by st
γ
αβ

− limx = L. For γ = 1, we say that x is αβ−statistically convergent to L, and this is denoted by stαβ − limx = L.

Definition 1.2. [15] A sequence x = (xk) is said to be [Nγ ,αβ ]q−summable to a number L, 0 < q < ∞, if

lim
n→∞

1

(β (n)−α (n)+1)γ ∑
k∈P

α,β
n

|xk −L|q = 0,

which is denoted by xk → L[Nγ ,αβ ]q. Similarly, for γ = 1 the sequence x = (xk) is said to be [N,αβ ]q−summable to L.

By the convergence of a double sequence we mean the convergence in the Pringsheim sense, that is, a double sequence x =
(

x jk

)

is said to

be convergent to L in the Pringsheim sense, if for every ε > 0 there exists N ∈ N such that
∣

∣x jk −L
∣

∣< ε whenever j,k > N. In this case we

write P− limx = L [16].

A double sequence x =
(

x jk

)

is bounded if there exists positive number M such that
∣

∣x jk

∣

∣ < M for all j,k ∈ N. We denote the set of all

bounded double sequence by l2
∞.

Let K ⊆ N×N and K (m,n) = {( j,k) : j ≤ m,k ≤ n}. The double natural density of K is defined by

δ2 (K) = P− lim
m,n

|K (m,n)| ,

if the limit exists.

A double sequence x=
(

x jk

)

is said to be statistically convergent to a number L, if for every ε > 0 the set
{

( j,k) , j ≤ m and k ≤ n :
∣

∣x jk −L
∣

∣≥ ε
}

has double natural density zero, i.e. for every ε > 0,

P− lim
m,n

1

mn

∣

∣

{

( j,k) , j ≤ m and k ≤ n :
∣

∣x jk −L
∣

∣≥ ε
}∣

∣= 0,

which is denoted by st2 − lim
j,k

x jk = L [17]. We denote the set of all statistically convergent double sequences by st2. Note that if x =
(

x jk

)

is

P−convergent then it is statisically convergent, but not conversely. Also a statistically convergent double sequence need not be bounded. For

this, consider a sequence x =
(

x jk

)

defined by

x jk =

{

jk, if j and k are square,

1, otherwise.

Then, st2 − limx = 1. But x is neither P−convergent nor bounded.

Our purpose is to extend the concepts of αβ−statistical convergence and strong αβ−summability from ordinary (i.e. single) sequences

to double sequences. This paper organized as follows: In section 2, we introduce the concepts of αβ−statistical convergence and strong

αβ−summability of double sequences, and also establish the some relations these new concepts. Moreover, statistical convergence and

αβ−statistical convergence of double sequences are compared under some certain assumptions. In section 3, we prove Korovkin type

approximation theorem through αβ−statistical convergence for functions of two variables.

2. Main results

We now begin defining the our new concepts of αβ−statistical convergence and strong αβ−summability for double sequences. Throughout

the paper, let (α1,β1) ∈ Λ and (α2,β2) ∈ Λ.

Definition 2.1. A double sequence x =
(

x jk

)

is said to be αβ−statistically convergent to a number L, if for every ε > 0

lim
m,n→∞

1
∣

∣

∣
P

α1,β1
m

∣

∣

∣

∣

∣

∣
P

α2,β2
n

∣

∣

∣

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣
= 0,

which is denoted by st2 (αβ )− limx jk = L, where P
α1,β1
m and P

α2,β2
n are the closed intervals [α1 (m) ,β1 (m)] and [α2 (n) ,β2 (n)], respectively,

also |Pα1,β1
m |= β1(m)−α1(m)+1 and |Pα2,β2

n |= β2(n)−α2(n)+1.

This definition also includes the following special cases:

i) If we take α1 (m) = 1, β1 (m) = m for all m ∈ N and α2 (n) = 1, β2 (n) = n for all n ∈ N, then αβ−statistical convergence of double

sequence is reduced to statistical convergence of double sequences introduced in [17].

ii) Let λ = (λm) and µ = µ (n) be two non-decreasing sequences of positive numbers tending to ∞ such that

λm+1 ≤ λm +1, λ1 = 1,

and

µn+1 ≤ µn +1, µ1 = 1.

Then in the case of α1 (m) = m− λm + 1, β1 (m) = m for all m ∈ N and α2 (n) = n− µn + 1, β2 (n) = n for all n ∈ N, αβ−statistical

convergence of double sequence is reduced to (λ ,µ)−statistical convergence of double sequence introduced in [18].

iii) Recall that a double lacunary sequence θr,s = {(kr, ls)}, which means there exist two increasing of integers such that

k0 = 0, hr = kr − kr−1 → ∞ as r → ∞,

and
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l0 = 0, h̄s = ls − ls−1 → ∞ as s → ∞.

If we take α1 (m) = km−1 +1, β1 (m) = km for all m ∈ N and α2 (n) = ln−1 +1, β2 (n) = ln for all n ∈ N, then αβ−statistical convergence

of double sequence is reduced to lacunary statistical convergence of double sequence introduced in [19].

Definition 2.2. A double sequence x =
(

x jk

)

is said to be strongly αβ−summable or briefly [N2,αβ ]−summable to a number L, if

lim
m,n→∞

1
∣

∣

∣
P

α1,β1
m

∣

∣

∣

∣

∣

∣
P

α2,β2
n

∣

∣

∣

∑
j∈P

α1 ,β1
m

∑
k∈P

α2 ,β2
n

∣

∣x jk −L
∣

∣= 0,

and we denote it by x jk → L [N2,αβ ].

We shall denote the set of all αβ−statistically convergent double sequences by st2 (αβ ), and the set of all [N2,αβ ]−summable double

sequences by [N2,αβ ].

Then, we get the following results.

Theorem 2.3. If a double sequence x =
(

x jk

)

is [N2,αβ ]−summable to L, then it is αβ−statistically convergent to L, that is, [N2,αβ ]⊆
st2 (αβ ) and also the inclusion is strict.

Proof. Let x jk → L [N2,αβ ] and given ε > 0. Then, we have

1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

∣

∣x jk −L
∣

∣= 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

|x jk−L|≥ε

∣

∣x jk −L
∣

∣+ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

|x jk−L|<ε

∣

∣x jk −L
∣

∣

≥ ε 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣
,

which means that st2 (αβ )− limx jk = L.

To show that the inclusion is strict, we consider the following example: Let α1 (m)≤ 1 ≤ β1 (m) and α2 (n)≤ 1 ≤ β2 (n) for all m,n ∈ N,

and the sequence x =
(

x jk

)

be defined by

x jk =

{

jk, 1 ≤ j ≤
[

√

β1 (m)−α1 (m)+1
]

and 1 ≤ j ≤
[

√

β2 (n)−α2 (n)+1
]

,

0, otherwise.

Then, we have
1

∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣

=

[√
β1(m)−α1(m)+1

][√
β2(n)−α2(n)+1

]

(β1(m)−α1(m)+1)(β2(n)−α2(n)+1)
→ 0 as m,n → ∞.

That is, st2 (αβ )− limx jk = 0. But

1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

∣

∣x jk −0
∣

∣

=

[√
β1(m)−α1(m)+1

]([√
β1(m)−α1(m)+1

]

+1
)[√

β2(n)−α2(n)+1
]([√

β2(n)−α2(n)+1
]

+1
)

4(β1(m)−α1(m)+1)(β2(n)−α2(n)+1)
→ 1

4

which means x jk 6→ 0 [N2,αβ ].

Theorem 2.4. If a double sequence x =
(

x jk

)

bounded and αβ−statistically convergent to L, then x jk → L [N2,αβ ].

Proof. Assume that x =
(

x jk

)

is bounded and αβ−statistically convergent to L. Since x =
(

x jk

)

is bounded, there exists M > 0 such that
∣

∣x jk −L
∣

∣≤ M for j,k ∈ N. Then we can see that

1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

∣

∣x jk −L
∣

∣= 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

|x jk−L|≥ε

∣

∣x jk −L
∣

∣+ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∑

j∈P
α1 ,β1
m

∑

k∈P
α2 ,β2
n

|x jk−L|<ε

∣

∣x jk −L
∣

∣

≤ M
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣
+ ε.

Taking limit as m,n → ∞ on the both sides of last inequality and also using the hypothesis, we obtain that

lim
m,n

1
∣

∣

∣
P

α1,β1
m

∣

∣

∣

∣

∣

∣
P

α2,β2
n

∣

∣

∣

∑
j∈P

α1 ,β1
m

∑
k∈P

α2 ,β2
n

∣

∣x jk −L
∣

∣= 0,

which completes the proof.
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Theorem 2.5. If liminf
m

β1(m)
α1(m)

> 1 and liminf
n

β2(n)
α2(n)

> 1, then st2 − limx jk = L implies st2 (αβ )− limx jk = L.

Proof. Suppose that liminf
m

β1(m)
α1(m)

> 1 and liminf
n

β2(n)
α2(n)

> 1. Then, there exists δ > 0 such that
β1(m)
α1(m)

≥ 1+δ and
β2(n)
α2(n)

≥ 1+δ , hence we

obtain that
β1(m)−α1(m)+1

β1(m)
≥ δ

1+δ
and

β2(n)−α2(n)+1

β2(n)
≥ δ

1+δ
. Now let st2 − limx jk = L. Then, for a given ε > 0, we may write that

1
β1(m)β2(n)

∣

∣

{

( j,k) , j ≤ β1 (m) and k ≤ β2 (n) :
∣

∣x jk −L
∣

∣≥ ε
}∣

∣

≥ 1
β1(m)β2(n)

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣

=
(β1(m)−α1(m)+1)(β2(n)−α2(n)+1)

β1(m)β2(n)

∣

∣

∣

{

( j,k), j∈P
α1 ,β1
m and k∈P

α2 ,β2
n :|x jk−L|≥ε

}∣

∣

∣

(β1(m)−α1(m)+1)(β2(n)−α2(n)+1)

≥
(

δ
1+δ

)2
∣

∣

∣

{

( j,k), j∈P
α1 ,β1
m and k∈P

α2 ,β2
n :|x jk−L|≥ε

}∣

∣

∣

(β1(m)−α1(m)+1)(β2(n)−α2(n)+1)
.

Since st2 − limx jk = L, the left hand side of the last inequality tends to zero as m,n → ∞, which yields that

lim
m,n→∞

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣

(β1 (m)−α1 (m)+1)(β2 (n)−α2 (n)+1)
= 0.

This completes the proof of the theorem.

Theorem 2.6. If lim
m,n→∞

α1(m)α2(n)
β1(m)β2(n)

= 0, α1 (m)≥ 1 and α2 (n)≥ 1 for all m,n ∈ N, then st2 (αβ )− limx jk = L implies st2 − limx jk = L.

Proof. Suppose that lim
m,n→∞

α1(m)α2(n)
β1(m)β2(n)

= 0, α1 (m)≥ 1 and α2 (n)≥ 1 for all m,n ∈ N. Then, for a given ε > 0, we can write

1
β1(m)β2(n)

∣

∣

{

( j,k) , j ≤ β1 (m) and k ≤ β2 (n) :
∣

∣x jk −L
∣

∣≥ ε
}∣

∣

= 1
β1(m)β2(n)

∣

∣

{

( j,k) , j < α1 (m) and k < α2 (n) :
∣

∣x jk −L
∣

∣≥ ε
}∣

∣

+ 1
β1(m)β2(n)

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣

≤ α1(m)α2(n)
β1(m)β2(n)

+ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∣

∣x jk −L
∣

∣≥ ε
}∣

∣

∣
.

Taking limit as m,n → ∞ on the both sides of last inequality, since st2 (αβ )− limx jk = L, we obtain that

1

β1 (m)β2 (n)

∣

∣

{

( j,k) , j ≤ β1 (m) and k ≤ β2 (n) :
∣

∣x jk −L
∣

∣≥ ε
}∣

∣= 0,

which completes the proof.

3. Application to Korovkin type approximation theorem

Let C [a,b] be the linear space of all real valued continuous functions f on [a,b]. It is well known that C [a,b] is a Banach space with the norm

‖ f‖∞ = sup
x∈[a,b]

| f (x)| , f ∈C [a,b] .

Suppose that T be a linear operator from C [a,b] into C [a,b]. We write Tn ( f ,x) for Tn ( f (t) ,x) and we say that T is a positive linear operator

if T ( f ,x)≥ 0 for all f (x)≥ 0. The classical Korovkin theorem states as follows [20]:

Suppose that (Tn) be a sequence of positive linear operators from C [a,b] into C [a,b]. Then

lim
n
‖Tn ( f ,x)− f (x)‖∞ = 0, for all f ∈C [a,b] ,

if and only if

lim
n
‖Tn ( fi,x)− fi (x)‖∞ = 0, for i = 0,1,2,

where f0 (x) = 1, f1 (x) = x and f2 (x) = x2.

Recently, Korovkin type approximation theorem have been studied for functions of one or two variables by using different summability

methods, see for instance [21]-[33] and etc.

By C (K), we denote the space of all continuous real valued functions on any compact subset of the real two-dimensional space. This space

is equipped with the supremum norm

‖ f‖C(K) = sup
(x,y)∈K

| f (x,y)| , f ∈C (K) .

Before proceeding further, we recall here the classical Korovkin type approximation theorem for a function of two variables in Pringsheim

sense given in [21].
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Theorem 3.1. [21] Let
(

Tjk

)

be a double sequence of positive linear operators from C (K) into C (K). Then for all f ∈C (K),

P− lim
∥

∥Tjk f − f
∥

∥

C(K)
= 0

if and only if

P− lim
∥

∥Tjk fi − fi
∥

∥

C(K)
= 0, (i = 0,1,2,3)

where f0 (x,y) = 1, f1 (x,y) = x, f2 (x,y) = y and f3 (x,y) = x2 + y2.

Now, we give the main result of this section.

Theorem 3.2. Let
(

Tjk

)

be a double sequence of positive linear operators from C (K) into C (K). Then for all f ∈C (K),

st2 (αβ )− lim
∥

∥Tjk f − f
∥

∥

C(K)
= 0 (3.1)

if and only if

st2 (αβ )− lim
∥

∥Tjk fi − fi
∥

∥

C(K)
= 0, (i = 0,1,2,3) (3.2)

where f0 (x,y) = 1, f1 (x,y) = x, f2 (x,y) = y and f3 (x,y) = x2 + y2.

Proof. Since each fi ∈C (K) for (i = 0,1,2,3), condition (3.2) follows immediately from (3.1). Suppose now that the condition (3.2) holds

and f ∈C (K). By the continuity of f on compact set K, we can write | f (x,y)| ≤ M where M := ‖ f‖C(K). Also, since f is continuous on K,

for every ε > 0, there exists a number δ > 0 such that | f (u,v)− f (x,y)|< ε for all (u,v) ∈ K satisfying |u− x|< δ and |v− y|< δ . Hence,

we get

| f (u,v)− f (x,y)|< ε +
2M

δ 2

{

(u− x)2 +(v− y)2
}

(3.3)

Since Tjk is linear and positive, from (3.3), we obtain that
∣

∣Tjk ( f ;x,y)− f (x,y)
∣

∣

=
∣

∣Tjk ( f (u,v)− f (x,y) ;x,y)− f (x,y)
(

Tjk ( f0;x,y)− f0 (x,y)
)∣

∣

≤ Tjk (| f (u,v)− f (x,y)| ;x,y)+M
∣

∣Tjk ( f0;x,y)− f0 (x,y)
∣

∣

≤
∣

∣

∣
Tjk

(

ε + 2M
δ 2

{

(u− x)2 +(v− y)2
}

;x,y
)∣

∣

∣
+M

∣

∣Tjk ( f0;x,y)− f0 (x,y)
∣

∣

≤
(

ε +M+ 2M
δ 2

(

A2 +B2
)

)

∣

∣Tjk ( f0;x,y)− f0 (x,y)
∣

∣

+ 4M
δ 2 A

∣

∣Tjk ( f1;x,y)− f1 (x,y)
∣

∣+ 4M
δ 2 B

∣

∣Tjk ( f2;x,y)− f2 (x,y)
∣

∣

+ 2M
δ 2

∣

∣Tjk ( f3;x,y)− f3 (x,y)
∣

∣+ ε,

where A := max |x| and B := max |y|. Taking supremum over (x,y) ∈ K, we get

∥

∥Tjk f − f
∥

∥

C(K)
≤ R

{

∥

∥Tjk f0 − f0
∥

∥

C(K)
+
∥

∥Tjk f1 − f1
∥

∥

C(K)
+
∥

∥Tjk f2 − f2
∥

∥

C(K)
+
∥

∥Tjk f3 − f3
∥

∥

C(K)

}

+ ε,

where R = max
{

ε +M+ 2M
δ 2

(

A2 +B2
)

,
4M
δ 2 A, 4M

δ 2 B, 2M
δ 2

}

.

Now, for a given r > 0, choose ε ′ > 0 such that ε ′ < r. Define the following sets

D =
{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk f − f
∥

∥

C(K)
≥ r

}

,

Di =
{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk fi − fi
∥

∥

C(K)
≥ r−ε ′

4R

}

,

for i = 0,1,2,3. Then, D ⊂ 3∪
i=0

Di and so we also get

1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk f − f
∥

∥

C(K)
≥ r

}

≤ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk f0 − f0
∥

∥

C(K)
≥ r−ε ′

4R

}

+ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk f1 − f1
∥

∥

C(K)
≥ r−ε ′

4R

}

+ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk f2 − f2
∥

∥

C(K)
≥ r−ε ′

4R

}

+ 1
∣

∣

∣
P

α1 ,β1
m

∣

∣

∣

∣

∣

∣
P

α2 ,β2
n

∣

∣

∣

{

( j,k) , j ∈ P
α1,β1
m and k ∈ P

α2,β2
n :

∥

∥Tjk f3 − f3
∥

∥

C(K)
≥ r−ε ′

4R

}

.
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Hence, using condition (3.2), we obtain

st2 (αβ )− lim
∥

∥Tjk f − f
∥

∥

C(K)
= 0.

This completes the proof of theorem.

Remark 3.3. We now construct an example of sequence of positive linear operators of two variables satisfying the conditions of Theorem 3.2,

but does not satisfy the conditions of the Korovkin theorem given in Theorem 3.1. For this, we consider the following Bernstein operators

given by

Bmn ( f ;x,y) =
m

∑
k=0

n

∑
j=0

f

(

k

m
,

j

n

)

Ck
mxk(1− x)m−k

C
j
ny j(1− y)n− j

,

where (x,y) ∈ K = [0,1]× [0,1]; f ∈C (K). Also, observe that

Bmn ( f0;x,y) = 1,

Bmn ( f1;x,y) = x,

Bmn ( f2;x,y) = y,

Bmn ( f3;x,y) = x2 + y2 + x−x2

m + y−y2

n ,

where f0 (x,y) = 1, f1 (x,y) = x, f2 (x,y) = y and f3 (x,y) = x2 + y2. Then, by Theorem 3.1, we know that, for any f ∈C (K),

P− lim‖Bmn f − f‖C(K) = 0.

Now, we define the sequence of linear operators as Tmn : C (K)→C (K) with Tmn ( f ;x,y) = (1+ xmn)Bmn ( f ;x,y), where x = (xmn) is defined

in Theorem 2.3. Note that the sequence x = (xmn) is αβ−statistically convergent to zero, but not P− convergent. Then the double sequence

Tmn satisfies condition (3.2) for i = 0,1,2,3, hence, by Theorem 3.2, we get

st2 (αβ )− lim‖Tmn f − f‖C(K) = 0.

On the other hand, we have Tmn ( f ;0,0) = (1+ xmn) f (0,0) since Bmn ( f ;0,0) = f (0,0), and hence we obtain

‖Tmn ( f ;x,y)− ( f ;x,y)‖C(K) ≥ |Tmn ( f ;0,0)− ( f ;0,0)| ≥ xmn |( f ;0,0)| .

One can see that (Tmn) does not satisfy the Korovkin theorem for positive linear operators of two variables in the Pringsheim’s sense, since

P− limxmn does not exists. That is, Theorem 3.1 does not work for our operators Tmn. Hence, our Theorem 3.2 is stronger than Theorem 3.1.

This proves our claim.

Acknowledgements

The second author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports

during his doctorate studies.

References

[1] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
[2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73-74.
[3] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
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