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TÜRKİYE

i



Nicoleta Breaz
University Alba Iulia,
ROMANIA

Konstantin V. Zhukovsky
Moscow State University,
RUSSIAN FEDERATION
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Kyrgyz-Turkish Manas University,
KYRGYZSTAN

Carlo Cattani
University of Tuscia,

ITALY

Soley Ersoy
Sakarya University,
TURKİYE
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Abstract

The aim of this paper is to define Smarandache curves according to the Sabban frame belonging to the unit

Darboux vector of spherical indicatrix curve of the evolute curve. Also, we calculate the geodesic curvatures of

these curves. Finally, the results are expressed depending on the involute curve.
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1. Introduction and Preliminaries

In the theory of curves in the Euclidean space, one of the interesting problems is the characterization of a regular curve. It is known

that the shape and size of a regular curve can be determined by using its curvature and torsion. Another approach to the solution of the

problem is to consider the relationship between the corresponding Frenet vectors of two curves. For example, involute and evolute curves

arise from this relationship. By definition, if the position vector of a curve is composed by the Frenet frame’s vectors of another curve, then

the curve is called a Smarandache curve [6]. Special Smarandache curves studied by some authors [1, 2, 5, 6, 7, 8], and related reference

therein [9, 10, 11].

Let α : I → E3 be a unit speed curve denoted by the moving Frenet apparatus of {T,N,B,κ,τ}. The Frenet formulae is given by [3]

T ′(s) = κ(s)N(s), N′(s) =−κ(s)T (s)+ τ(s)B(s), B′(s) =−τ(s)N(s). (1.1)

The Darboux vector defined by

W = τT +κB. (1.2)

The unit Darboux vector is given by

C = sinωT + cosωB

where

sinω =
τ

‖W‖ , cosω =
κ

‖W‖ , ∠(W,B) = ω, [12]

Let α : I → E
3 be a unit speed curve and α

1
: I → E

3 be a C2− differentiable curve. If the tangent vector of the curve α is orthogonal to the

tangent vector of the α
1
, then α

1
is called evolute of the α .

If the curve α
1

is evolute of α , then we can write,

α
1
(s) = α(s)+ρ(s)N(s)−ρ(s) tan

(

ϕ(s)+ c
)

B(s)
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Figure 1.1. Evolute curve

where c ∈ R, ρ =
1

κ
and ϕ(s) =

∫ s

0
τ(s)ds. Also the relations between the Frenet vectors of evolute involute curves are given as [3]











T
1
(s) = cos(ϕ + c) N(s) − sin(ϕ + c) B(s)

N
1
(s) =−T (s)

B
1
(s) = sin(ϕ + c) N + cos(ϕ + c) B,

(1.3)

and for the curvatures we have

κ
1
(s) =

κ3 cos3(ϕ + c)

κτ sin(ϕ + c)−κ ′ cos(ϕ + c)
, τ

1
(s) =

−κ3 sin(ϕ + c)cos2(ϕ + c)

κτ sin(ϕ + c)−κ ′ cos(ϕ + c)
· (1.4)

Similarly (1.2), we can write of Darboux vector of evolut curve

W
1
= τ

1
T

1
+κ

1
B

1
.

Let γ : I → S2 be a unit speed spherical curve. We can write

γ(s) = γ(s), t(s) = γ ′(s), d(s) = γ(s)∧ t(s), [5] (1.5)

here the set {γ(s), t(s),d(s)} denotes the Sabban frame of γ on S2. It follows that we also have the equations,

γ ′(s) = t(s), t ′(s) =−γ(s)+κg(s)d(s), d′(s) =−κg(s)t(s), [5]. (1.6)

where κg is the geodesic curvature of the curve γ on S2 whose curvature is

κg(s) = 〈t ′(s),d(s)〉 [4, 5]. (1.7)

2. Smarandache curves of the evolute curve according to Sabban frame

Let C
1

be the unit Darboux vector of the evolute curve α1 and let (C
1
) be the unit speed spherical curve on S2. Then we can write

C
1
= sinω

1
T

1
+ cosω

1
B

1
, TC

1
= cosω

1
T

1
− sinω

1
B

1
, C

1
∧TC

1
= N

1
. (2.1)

where ∠(W
1
,B

1
) = ω

1
. It follows from the equation (1.6) that of (C

1
) are

C
1

′ = TC
1
, T ′

C
1
=−C

1
+

‖W
1
‖

ω
1
′ C

1
∧TC

1
, (C

1
∧TC

1
)′ =−‖W

1
‖

ω
1
′ TC

1
. (2.2)

From the equation (1.7), we have the following geodesic curvature of (C
1
)

κg = 〈T ′
C

1
,C

1
∧TC

1
〉=⇒ κg =

‖W
1
‖

ω
1
′ .

Definition 2.1. Let C
1

be a spherical curve on S2 and let C
1

, TC
1

be the unit vectors of (C
1
). In this case β1(s) can be defined by

β1(s) =
1√
2
(C

1
+TC

1
). (2.3)
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In other words, substituting the equation (2.1) into equation (2.3) we write

β1(s) =
1√
2

(

(sinω
1
+ cosω

1
)T

1
+(cosω

1
− sinω

1
)B

1

)

. (2.4)

Theorem 2.2. The geodesic curvature of β1(s)-Smarandache curve is given by

κ
β1
g =

1
(

2+ 1
η2

)
5
2

( 1

η
λ 1 −

1

η
λ 2 +2λ 3

)

where

η =
κτ2 sin(ϕ + c)−κ ′τ cos(ϕ + c)

κ3 cos2(ϕ + c)
,λ 1 =−2− 1

η2
+

1

η ′
1

η
, λ 2 =−2−3

1

η2
− 1

η4
− 1

η ′
1

η
, λ 3 = 2

1

η
+

1

η3
+

1

η ′ .

Proof: By differentiating (2.3) we can write

Tβ1
=

ω
1

′(cosω
1
− sinω

1
)

√

2ω
1
′2 +‖W

1
‖2

T
1
+

‖W
1
‖

√

2ω
1
′2 +‖W

1
‖2

N
1
− ω

1

′(cosω
1
+ sinω

1
)

√

2ω
1
′2 +‖W

1
‖2

B
1
. (2.5)

Considering the equations (2.4) and (2.5) we get

β1 ∧Tβ1
=

‖W
1
‖(cosω

1
+ sinω

1
)

√

2‖W
1
‖2 +4

(

ω
1
′)2

T
1
− ω

1

′
√

2‖W
1
‖2 +4

(

ω
1
′)2

N
1
+

‖W
1
‖(cosω

1
+ sinω

1
)

√

2‖W
1
‖2 +4

(

ω
1
′)2

B
1
. (2.6)

it follows by differentiating (2.5), with the coefficients

ℵ1 =−2−
(‖W

1
‖

ω
1
′

)2
+
(‖W

1
‖

ω
1
′

)′(‖W
1
‖

ω
1
′

)

, ℵ2 =−2−3
(‖W

1
‖

ω
1
′

)2
−
(‖W

1
‖

ω
1
′

)4
−
(‖W

1
‖

ω
1
′

)′(‖W
1
‖

ω
1
′

)

, ℵ3 = 2
(‖W

1
‖

ω
1
′

)

+
(‖W

1
‖

ω
1
′

)3
+
(‖W

1
‖

ω
1
′

)′

(2.7)

we can find out,

T ′
β1

=

(

ω
1

′)4√
2(ℵ1 sinω

1
+ℵ2 cosω

1
)

(

‖W
1
‖2 +

(

ω
1
′)2

)2
T

1
+

ℵ3

(

ω
1

′)4√
2

(

‖W
1
‖2 +

(

ω
1
′)2

)2
N

1
+

(

ω
1

′)4√
2(ℵ1 cosω

1
−ℵ2 sinω

1
)

(

‖W
1
‖2 +

(

ω
1
′)2

)2
B

1
. (2.8)

From the equation (2.6) and (2.8), geodesic curvature κ
β1
g for the evolute curve β1 is

κ
β1
g = 〈T ′

β1
,β1 ∧Tβ1

〉= 1
(

2+
( ‖W

1
‖

ω
1
′
)2
)

5
2

(‖W
1
‖

ω
1
′ ℵ1 −

‖W
1
‖

ω
1
′ ℵ2 +2ℵ3

)

.

From the equation (1.3) and (1.4) Sabban apparatus of the β1-Smarandache curve for involute curves are

β1(s) =
1√
2

(

N +B
)

, Tβ1
=

1
√

1+2η2

(

−T +η N −η B
)

,

β1 ∧Tβ1
=

1
√

2+4η2

(

−2η T −ηN +B
)

, T ′
β1

=

√
2

(

2η2 +1
)2

(

−η4λ 3 T +η4λ 2 N +η4λ 1 B
)

,

hence the proof is completed.

Definition 2.3. Let C
1

be a spherical curve on S2 and let C
1

, C
1
∧TC

1
be the unit vectors of (C

1
). In this case β2(s) can be defined by

β2(s) =
1√
2
(C

1
+C

1
∧TC

1
). (2.9)

From the equation (1.3), (1.4) and (2.1) we can write

β2 =
1√
2

(

−T + B
)

. (2.10)

Theorem 2.4. The geodesic curvature of β2(s)-Smarandache curve is given by

κ
β2
g =

1+η

η −1
.
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Proof: By differentiating (2.10), we can write

Tβ2
= N. (2.11)

Considering the equations (2.10) and (2.11) it is easily seen that

β2 ∧Tβ2
=

1√
2

(

−T − B
)

and then differentiating (2.11) we can write

T ′
β2

=

√
2

η −1

(

−T −η B
)

.

It follows that κ
β2
g geodesic curvature for β2 is

κ
β2
g =

1+η

η −1
.

Definition 2.5. Let C
1

be a spherical curve on S2 and let TC
1

, C
1
∧TC

1
be the unit vectors of (C

1
). In this case β3(s) can be defined by

β3(s) =
1√
2
(TC

1
+C

1
∧TC

1
). (2.12)

From the equations (2.1), (1.3) and (1.4) we can write

β3 =
1√
2

(

−T +N
)

. (2.13)

Theorem 2.6. The geodesic curvature of β3(s)-Smarandache curve is given by

κ
β3
g =

1
(

2+ 1
η2

)
5
2

(

2
1

η
σ1 −σ2 +σ3

)

. (2.14)

Proof: By differentiating (2.13) we have

Tβ3
=

1
√

2+η2

(

−T −N −η B
)

. (2.15)

Considering the equations (2.13) and (2.15) it is easily seen that

β3 ∧Tβ3
=

1
√

2η2 +4

(

−ηT −ηN +2B
)

.

By differentiating (2.15) with the coefficients

σ1 =
1

η
+2

1

η3
+2

1

η ′
1

η
, σ2 =−1−3

1

η2
−2

1

η4
− 1

η ′ , σ3 =− 1

η2
−2

1

η4
+

1

η ′

we get

T ′
β3

=

√
2

(

η2 +2
)2

(

−η4σ3T +η4σ2N +η4σ1B
)

.

By this way, geodesic curvature κ
β3
g for the involute curve of β3 is given by

κ
β3
g =

1
(

2+ 1
η2

)
5
2

(

2
1

η
σ1 −σ2 +σ3

)

. (2.16)

Definition 2.7. Let C
1

be a spherical curve on S2and let TC
1

, C
1
∧TC

1
be the unit vectors of (C

1
). In this case β4(s) can be defined by

β4(s) =
1√
3
(C

1
+TC

1
+C

1
∧TC

1
). (2.17)
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From the equations (1.3), (1.4) and (2.1) we can write that

β4(s) =
1√
3

(

−T +N +B
)

. (2.18)

Theorem 2.8. The geodesic curvature of β4(s)-Smarandache curve is given by

κ
β4
g =

(2 1
η −1)ψ1 +(−1− 1

η )ψ2 +(2− 1
η )ψ3

4
√

2
(

1− 1

η
+

1

η2

)
5
2

.

Proof: By differentiating (2.18), we get

Tβ4
=

1
√

2(1−η +η2)

(

−T +(η −1) N −ηB
)

. (2.19)

Considering the equations (2.18) and (2.19) it is easily seen that

β4 ∧Tβ4
=

1−2η
√

6−6η +6η2

T − η +1
√

6−6η +6η2

N +
2−η

√

6−6η +6η2

B.

By differentiating (2.19), with the coefficients

ψ1 =−2+4
1

η
−4

1

η2
+2

1

η3
+2

1

η ′
(

2
1

η
−1

)

, ψ2 =−2+2
1

η
−4

1

η2
+2

1

η3
−2

1

η4
− 1

η ′
(

1+
1

η

)

, ψ3 = 2
1

η
−4

1

η2
+4

1

η3
−2

1

η4
+

1

η ′
(

2− 1

η

)

we can write that

T ′
β4

=
1

4
(

1+η +η2
)2

(

−ψ3η4T +ψ2η4N +ψ1η4B
)

then we get geodesic curvature κ
β4
g , for the involute curve β4(sβ4

) as

κ
β4
g =

(2 1
η −1)ψ1 +(−1− 1

η )ψ2 +(2− 1
η )ψ3

4
√

2
(

1− 1

η
+

1

η2

)
5
2

.

Example. Let us consider the unit speed spherical curve

α(t) =
(2

5
sin(2 t)− 1

40
sin(8 t) ,−2

5
cos(2 t)+

1

40
cos(8 t) ,

4

15
sin(3 t)

)

and evolute of this curve,

α1(t) =
( 1

40

16 sin(2 t)sin(3 t)cos(1)− sin(8 t)sin(3 t)cos(1)+8 cos(5 t)cos(1)

sin(3 t)cos(1)
− 1

40

8 sin(1)sin(2 t)−2 sin(1)sin(8 t)

sin(3 t)cos(1)
,

− 1

40

16 cos(2 t)sin(3 t)cos(1)− cos(8 t)sin(3 t)cos(1)

sin(3 t)cos(1)
+

1

40

8 sin(5 t)cos(1)−8 sin(1)cos(2 t)−2 sin(1)cos(8 t)

sin(3 t)cos(1)
,

1

60

7 cos(1)−16 cos(1)(cos(3 t))2 +12 sin(1)sin(3 t)

sin(3 t)cos(1)

)

and Frenet vectors of the evolute curve α1,

T1 =
(64

5
cos(1)(cos(t))5 −16 cos(1)(cos(t))3 +4 cos(1)cos(t)+

128

5
sin(1)sin(t)(cos(t))7 − 192

5
sin(1)sin(t)(cos(t))5

+16 sin(1)sin(t)(cos(t))3 ,
64

5
cos(1)sin(t)(cos(t))4 − 48

5
sin(t)(cos(t))2 cos(1)+

4

5
cos(1)sin(t)+

24

5
sin(1)(cos(t))2 +

3

5
sin(1)

−128

5
sin(1)(cos(t))8 +

256

5
sin(1)(cos(t))6 −32 sin(1)(cos(t))4 ,−3

5
cos(1)− 16

5
sin(1)sin(t)(cos(t))2 +

4

5
sin(1)sin(t)

)

,

N1 =
(

− 4

5
cos(2 t)+

1

5
cos(8 t) ,−4

5
sin(2 t)+

1

5
sin(8 t) ,−4

5
cos(3 t)

)

,

B1 =
(

− 128

5
sin(t)(cos(t))7 cos(1)+

192

5
sin(t)(cos(t))5 cos(1)−16 sin(t)(cos(t))3 cos(1)+

64

5
(cos(t))5 sin(1)

−16 (cos(t))3 sin(1)+4 cos(t)sin(1)− 24

5
(cos(t))2 cos(1)−3/5 cos(1)+

128

5
(cos(t))8 cos(1)

−256

5
cos(1)(cos(t))6 +32 (cos(t))4 cos(1)+

64

5
sin(t)(cos(t))4 sin(1)

−48

5
sin(1)sin(t)(cos(t))2 +4/5 sin(1)sin(t) ,

16

5
sin(t)(cos(t))2 cos(1)−4/5 cos(1)sin(t)−3/5 sin(1)

)
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where c = 1 and t = 0 to 2π .

Figure 2.1. C
1
TC

1
-Smarandache curve (β1-curve)

β1(t) =
(

− 128

5
sin(t)(cos(t))7 +

192

5
sin(t)(cos(t))5 −16 sin(t)(cos(t))3 +

64

5
(cos(t))5 −16 (cos(t))3 +4 cos(t) ,

−24

5
(cos(t))2 − 3

5
+

128

5
(cos(t))8 − 256

5
(cos(t))6 +32 (cos(t))4 +

64

5
sin(t)(cos(t))4 − 48

5
sin(t)(cos(t))2 +

4

5
sin(t) ,

16

5
sin(t)(cos(t))2 − 4

5
sin(t)− 3

5

)

Figure 2.2. C
1
(C

1
∧TC

1
)-Smarandache curve (β2-curve)

β2(t) =
(

−8 (cos(t))2 +1+
128

5
(cos(t))8 − 256

5
(cos(t))6 +32 (cos(t))4 − 128

5
sin(t)(cos(t))7 +

192

5
sin(t)(cos(t))5 −16 sin(t)(cos(t))3 ,

−16

5
sin(t)cos(t)+

128

5
sin(t)(cos(t))7 − 192

5
sin(t)(cos(t))5 +16 sin(t)(cos(t))3 − 24

5
(cos(t))2 − 3

5
+

128

5
(cos(t))8

−256

5
(cos(t))6 +32 (cos(t))4 ,−16

5
(cos(t))3 +

12

5
cos(t)+

16

5
sin(t)(cos(t))2 − 4

5
sin(t)

)
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Figure 2.3. TC
1
(C

1
∧TC

1
)-Smarandache curve (β3-curve)

β3(t) =
(

−8 (cos(t))2 +1+
128

5
(cos(t))8 − 256

5
(cos(t))6 +32 (cos(t))4 +

64

5
(cos(t))5 −16 (cos(t))3 +4 cos(t) ,

−16

5
sin(t)cos(t)+

128

5
sin(t)(cos(t))7 − 192

5
sin(t)(cos(t))5 +16 sin(t)(cos(t))3 +

64

5
sin(t)(cos(t))4

−48

5
sin(t)(cos(t))2 +

4

5
sin(t) ,−16

5
(cos(t))3 +

12

5
cos(t)− 3

5

)

Figure 2.4. C
1
TC

1
(C

1
∧TC

1
)-Smarandache curve (β4-curve)

β4(t) =
(

− 256

15
sin(t)(cos(t))7 +

128

5
sin(t)(cos(t))5 − 32

3
sin(t)(cos(t))3 +

128

15
(cos(t))5 − 32

3
(cos(t))3 +

8

3
cos(t)− 16

3
(cos(t))2 +

2

3

+
256

15
(cos(t))8 − 512

15
(cos(t))6 +

64

3
(cos(t))4 ,−16

5
(cos(t))2 − 2

5
+

256

15
(cos(t))8 − 512

15
(cos(t))6 +

64

3
(cos(t))4

+
128

15
sin(t)(cos(t))4 − 32

5
sin(t)(cos(t))2 +

8

15
sin(t)− 32

15
sin(t)cos(t)+

256

15
sin(t)(cos(t))7 − 128

5
sin(t)(cos(t))5

+
32

3
sin(t)(cos(t))3 ,

32

15
sin(t)(cos(t))2 − 8

15
sin(t)− 2

5
− 32

15
(cos(t))3 +

8

5
cos(t)

)
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1. Preliminaries

In [6], Stuart Goff studied analytic hermitian function matrices which commute with their derivative on some real interval I, i.e,

A(t)A′(t) = A′(t)A(t) for all t ∈ I. He obtained as a main result that these matrices are functionally commutative on I, i.e.,

A(s)A(t) = A(t)A(s)

for all s, t ∈ I [[6], Theorem 3.6].

Subsequently, in [5], Jean-Claude Evard while studying the nonlinear differential equation

A(t)
dA(t))

dt
=

dA(t))

dt
A(t), t ∈ Ω,

where Ω is an open interval in R and A is a differentiable map from Ω into the C-Banach space Mn of all n×n matrices (αi, j),
with αi, j ∈ C for i, j ∈ {1, · · · ,n}, was led to consider the more general problem where Ω is an open connected subset of a

Banach space on R or C. In his paper Evard generalized Goff’s theorem in([5], Theorem 4.3) and summarizes the history and

motivations behind the problem on matrix functions commuting with their derivative from 1950 to 1982. It also suggests further

paths of investigations such as the one of interest to us, indeed our main result, Theorem 3, extends the final dimensional result

of Goff [6] to the infinite-dimensional situation of compact self-adjoint operators on a Hilbert space.

In this paper, we study analytic families of compact self-adjoint operators, on a complex Hilbert space, which commute

with their derivative on some real interval I. Our main result establishes that these operators must be functionally commutative

on I, that is,

A(s)A(t) = A(t)A(s)
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for all s, t ∈ I, extending the main result of [6] and [5] from the case of matrices to the infinite dimensional situation of operators

on a Hilbert space. Indeed, Stuart Goff studied the case of Hermitian function matrices which commute with their derivative in

[6] and Jean-Claude Evard extended Goff’s result to matrix functions defined on an open subset of a normed space in [5].

We recall that B(H ) denotes the Banach algebra of all bounded operators on the complex Hilbert space H and by

definition the spectrum of T, denoted by SpT , is the set of λ ∈ C such that T −λ I is not invertible in B(H ). In this paper

A(t) will denote an analytic family of compact self-adjoint operators on a complex Hilbert space and defined on a real

interval I = (a,b) with a < 0 < b. Let λ be an eigenvalue of A(0). In fact, more generally A(t) can be an analytic family of

bounded self-adjoint operators on H with the property that λ is an isolated point of the spectrum SpA(0), and such that the

λ−eigenspace of A(0) is finite-dimensional. Let D be a closed disk centered at λ such that SpA(0)∩D = {λ}. It follows

that, for t sufficiently small, SpA(t)∩ γ = /0 where γ = ∂D is the boundary of D. For such t, we have the orthogonal Riesz

projections

P =
1

2πi

∫
γ
(ξ I −A)−1dξ

with range H (t), depending analytically on t, such that P(0) is the orthogonal projection of H onto the λ−eigenspace of

A(0).
We have the following important result in the general setting of a Banach algebra. Let f be an analytic function from

a domain D of C into the algebra of compact operators K (X) on a Banach space X and let λ0 ∈ D, α0 ∈ Sp f (λ0) with

α0 6= 0. Suppose α0 is an eigenvalue of multiplicity one, or equivalently that the Riesz projection associated to the null space

N ( f (λ0)1−α0I) has rank one. Then there exist r, δ > 0 such that |λ −λ0| < δ implies that Sp( f (λ ))∩B(α0,r) contains

only one eigenvalue α(λ ). What can be said about α? In this particular case it is known that α is holomorphic on B(λ0,δ ). A

proof of the next theorem is given in [1], pp 59-60.

Theorem 1.1 (Holomorphic Variation of Isolated Spectral Values). Let f be an analytic function from a domain D of C into a

Banach algebra U . Suppose there exists λ0 ∈ D, α0 ∈ Sp f (λ0) and r,δ > 0 such that |λ −λ0|< δ implies that λ ∈ D and

that Sp( f (λ ))∩B(α0,r) contains only one point α(λ ). Then α is holomorphic in a neighbourhood of λ0.

A more general discussion about the behaviour of isolated parts of the spectrum is dealt with in [2], Chapter 10. Another

source of interest on this topic is [8], Chapter XII, where a proof of the analyticity of discrete eigenvalues in the nondegenerate

case for analytic families of operators is given. We recall that a point λ ∈ Sp(A) is called discrete if λ is isolated and its

associated Riesz projection Pλ is finite-dimensional; if Pλ is one-dimensional, we say that λ is a nondegenerate eigenvalue.These

results are contained in the Kato-Rellich theorem ([8], Chapter III, p.15). If A(z) is an operator depending analytically on a

complex parameter z near z = 0 and σ0 is a component of Sp(A(0)), then the Riesz projection P(z) will still be defined for

sufficiently small z, and will represent an idempotent depending analytically on z. Our main result will be based essentially on

the possibility of decomposing an operator like A(z) into a sum ∑ µkPk(z), where the Pk(z) are mutually orthogonal analytic

projections, i.e. (Pk(z)Pl(z) = 0 for k 6= l), such that A(z)Pk(z) = Pk(z)A(z). It is a spectral decomposition with the added

condition of analyticity. For a more complete and comprehensive modern reference for spectral theory we refer the reader to

[3], Chapter VIII.

2. Self-Adjoint Compact Operators on a Hilbert Space

It is well known that self-adjoint n× n matrices can be diagonalized, i.e. can be written as ∑
k
α=1 λα Pα where the Pα are

self-adjoint orthogonal projections and the λα are real numbers. This result can be extended to self-adjoint compact operators

on a Hilbert space. A proof of the next theorem is given in [1], pp 25-26.

Theorem 2.1 (Spectral Theorem for Self-Adjoint Compact Operators on a Hilbert Space). Let H be a Hilbert space and let T

be a self-adjoint compact operator on H . Let {λk}k≥1 be the discrete set of nonzero eigenvalues of T. Also let E0 = N (T )
and Ek = N (T −λkI), for k ≥ 1. Then we have the following properties:

(i) for k ≥ 0 the closed subspaces Ek are orthogonal and their Hilbertian direct sum is H . Moreover, if Pk denotes the

self-adjoint projection on Ek we have T Pk = PkT for all k,

(ii) the series ∑k≥1 λkPk converges in norm in B(H ) and we have

T = ∑
k≥1

λkPk.
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3. Analytic self-adjoint compact operators on a Hilbert space

The proof of the following lemma is suggested by the argument used in the proof of Theorem 3.5 of [5]. Here z ∈ I where I is

an interval in R. As in [5], we say that A(t) commutes with its derivative on a real interval I if it satisfies the commutation

equation

A(t)
dA(t)

dt
=

dA(t)

dt
A(t), t ∈ I,

that we write simply as

A(t)A′(t) = A′(t)A(t), t ∈ I.

Lemma 3.1. Let A(t) be an analytic family of self-adjoint compact operators on a Hilbert space H which commute with its

derivative. Then the projections associated to the eigenvalues of A(t) commute with their derivative.

Proof. Let t ∈ I such that A′(t)A(t) = A(t)A′(t) and

SpA(t)⊂
∞⋃

n=1

(C−Γi),

where Γi is a simple contour which does not meet SpA(t). Then as in the proof of Theorem 3.5 of [5],

Pk(t) =
1

2πi

∫
Γk

(z−A(t))−1dz,

commutes with its derivative

P′
k(t)) =

1

2πi

∫
Γk

(z−A(t))−1(−A′(t))(z−A(t))−1)dz,

because

A(t)A′(t) = A′(t)A(t)

and Γk is compact (so differentiation inside the integral sign is justified).

Evard proved in [4] that if P(t) commute with its derivative, its range ran(P(t)) is not only invariant under their derivative,

but also constant. Indeed he proved in Theorem 6 of the same paper that the family P(t) itself is constant.

Lemma 3.2. If a family of projections P(t) commutes with its derivative on an interval I ∈ R, then P(t) is constant.

Proof. Since P2(t) = P(t), it follows by differentiation of the two sides that

P′(t)P(t)+P(t)P′(t) = P′(t).

Now by hypothesis

P′(t)P(t) = P(t)P′(t)

so we get

2P′(t)P(t) = P′(t),

which by multiplication by P(t) yields

2P′(t)P(t) = P′(t)P(t).

Hence, P′(t)P(t) = 0. Going back to the relation

2P′(t)P(t) = P′(t),

we conclude that P′(t) = 0, which means P(t) is constant.
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Using the previous results, we establish our main result in the next theorem.

Theorem 3.3. Let A(t) be an analytic family of compact self-adjoint operators on a Hilbert space H. Suppose that A(t)
commutes with its derivative for all t ∈ I ⊂ R. Then A(t) is functionally commutative, i.e. A(s)A(t) = A(t)A(s) for all s, t ∈ I.

Proof. By Theorem 2, any compact self-adjoint operator on a Hilbert space admits a spectral decomposition, so we can write,

A(t) =
∞

∑
k=1

λk(t)P(t)

where {λk} ⊂ SpA(t) and P2(t) = P(t). Moreover by Lemma 2, the projections P(t) commute with their derivative, and by

Lemma 3 they are constant. Hence,

A(t) =
∞

∑
i=1

λi(t)Pi

where P2
i = Pi are constant projections. Consequently we get,

A(s) =
∞

∑
i=1

µi(t)Pi

and

A(s)A(t) = A(t)A(s) for alls, t ∈ I.

Note. If T is a compact operator, then its point spectrum is nonempty and countable, which may not hold for noncompact

(normal) operators. But this is not the main role played by compact operators in the Spectral Theorem - we can deal with an

uncountable weighted sum of projections. What is actually special with a compact operator is that a compact normal operator

not only has a nonempty point spectrum but it has enough eigenspaces to span H. That makes the difference, since normal

(noncompact) operators may have an empty point spectrum or it may have eigenspaces but not enough to span the whole space

H. However, the Spectral Theorem survives the lack of compactness if the point spectrum is replaced with the whole spectrum

(which is never empty). Such an approach for the general case of the Spectral Theorem (i.e. for normal, not necessarily compact

operators) requires measure theory. This is a work that we intend to undertake in a future investigation.
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1. Introduction and Preliminary results

Let C be the complex plane. The set D= {z ∈ C : |z|< 1}, is called the (open) unit disc. Let dA denote the area measure on D,
and for α ∈ R, α >−1, we define a positive Borel measure dmα on D by dmα(z) = (1−|z|2)α dA(z). On the other hand, the

set U= {ω ∈ C : ℑ(ω)> 0} denotes the upper half of the complex plane C, and where ℑ(ω) stands for the imaginary part

of ω . Also, ℜ(ω) shall denote the real part of the complex number ω . For α >−1, we define a weighted measure on U by

dµα(ω) = (ℑ(ω))α dA(ω). The Cayley transform ψ(z) := i(1+z)
1−z

maps the unit disc D conformally onto the upper half-plane

U with inverse ψ−1(ω) = ω−i
ω+i

mapping U conformally onto D.

For an open subset Ω of C, let H (Ω) denote the Fréchet space of analytic functions f : Ω → C endowed with the topology of

uniform convergence on compact subsets of Ω. Let Aut(Ω)⊂ H (Ω) denote the group of biholomorphic maps f : Ω → Ω. For

1 ≤ p < ∞, the Hardy spaces of the upper half plane, H p(U), are defined as

H p(U) :=

{

f ∈ H (U) : ‖ f‖H p(U) := sup
y>0

(

∫ ∞

−∞

| f (x+ iy)|pdx

)1/p

< ∞

}

,

while the Hardy spaces of the unit disc, H p(D), by

H p(D) :=

{

f ∈ H (D) : ‖ f‖p

H p(D)
:= sup

0<r<1

1

2π

∫ π

−π
| f (reiθ )|p dθ < ∞

}

.

We note that every function f ∈ H p(U) (or H p(D)) has non-tangential boundary values almost everywhere on ∂U (or ∂D). In

particular, H p-functions my be identified with their boundary values and with this convention,

‖ f‖H p(U) =

(

∫ ∞

−∞

| f (x)|p dx

) 1
p

,
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and respectively,

‖ f‖H p(D) =

(

∫ 2π

0
| f (eiθ )|p dθ

)
1
p

.

On the other hand, for 1 ≤ p < ∞, α >−1, the weighted Bergman spaces of the upper half plane, L
p
a(U,µα), are defined by

Lp
a(U,µα) :=

{

f ∈ H (U) : ‖ f‖L
p
a (U,µα )

=

(

∫

U

| f (z)|p dµα(z)

) 1
p

< ∞

}

,

while the corresponding spaces of the disc, L
p
a(D,mα), by

Lp
a(D,mα) :=

{

f ∈ H (D) : ‖ f‖L
p
a (D,mα )

=

(

∫

D

| f (z)|p dmα(z)

) 1
p

< ∞

}

.

In particular, L
p
a(U,µα) = Lp(U,µα)∩H (U) and L

p
a(D,mα) = Lp(D,mα)∩H (D), where Lp(U,µα) or simply Lp(µα)

(Lp(D,mα) or simply Lp(mα)) denotes the classical Lebesgue spaces associated with the weighted measure µα , and respectively

mα . It is important to note that the case α = 0 yields the (unweighted) Bergman spaces.

As noted in [1] in the case of the disc, the Hardy space H p(U) behaves in many ways as the limiting case of L
p
a(U,µα) as

α →−1+. Therefore, we shall let X denote either the Hardy space H p(U) or the weighted Bergman space L
p
a(U,µα), and

we associate with each X , a parameter γ = α+2
p

, where α =−1 in the case that X = H p(U). Also, we shall let X(D) denote

the corresponding spaces of analytic functions of the unit disc D. Therefore, we formulate the growth conditions for Hardy

and Bergman spaces simultaneously in the next results; while known, we provide much simpler proofs. But first we give the

following result which gives the isometries between the spaces X and X(D).

Proposition 1.1. Let f ∈ X, and define Sψ f = (ψ ′)γ f ◦ ψ . Then Sψ : X → X(D) is continuous with inverse Sψ−1g =
(

(ψ−1)′
)γ

g ◦ ψ−1. In fact, if X = H p(U), then Sψ is an isometry, and, in the case X = L
p
a(U,µα), ‖Sψ f‖L

p
a (D,mα )

=

2α/p‖ f‖L
p
a (U,µα )

.

Moreover, Sψ−1 is an isometry on H p(D), and if X(D) = L
p
a(D,mα), then

‖Sψ−1g‖L
p
a (U,µα )

= 2−α/p‖g‖L
p
a (D,mα )

.

In particular, S−1
ψ = Sψ−1 in the setting of Bergman spaces as well as Hardy spaces.

Proof. First, we suppose that X = L
p
a(U,µα). Let f ∈ L

p
a(U,µα), then change of variables yields

‖ f‖L
p
a (µα )

=
∫

U

| f (ω)|p(ℑ(ω))α dA(ω)

=
∫

D

| f (ψ(z))|p (ℑ(ψ(z)))α |ψ ′(z)|2 dA(z),

and ℑ(ψ(z)) = (1−|z|2)
2

|ψ ′(z)|. Thus ‖ f‖p

L
p
a (µα )

= 2−α‖Sψ f‖p

L
p
a (mα )

.

For the case X = H p(U), we may identify f ∈ X with its boundary values. Then change of variables yields

‖ f‖p

H p(U)
=
∫

R

| f (x)|p dx =
∫

∂D
| f (ψ(z))|p|ψ ′(z)|dm(z)

=
∫

∂D
|(ψ ′(z))γ( f ◦ψ)(z)|p dm(z),

where dm(eiθ ) = dθ denotes arc-length measure on ∂D. Thus ‖Sψ f‖H p(D) = ‖ f‖H p(U).

Similarly, if g ∈ L
p
a(D,mα), then again by change of variables, we obtain

‖g‖p

L
p
a (mα )

=
∫

D

|g(z)|p(1−|z|2)α dA(z)

=
∫

U

|g(ψ−1(ω))|(1−|ψ−1(ω)|2)α |(ψ−1)′|2 dA(ω),
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where (1−|ψ−1(ω)|2)) = 2|(ψ−1)′(ω)|ℑ(ω). Thus

‖g‖p

L
p
a (mα )

= 2α
∫

U

|(ψ−1)′|α+2|g◦ψ−1|p(ℑ(ω))α dA(ω) = 2α‖Sψ−1 g‖p

L
p
a (µα )

.

If g ∈ H p(D), then

‖gp‖H p(D) =
∫

∂D
|g(z)|p dm(z) =

∫

R

|g(ψ−1(x))|p|(ψ−1)′|dx

= ‖Sψ−1g‖p

H p(R)
.

Lemma 1.2. Let X(D) denote either H p(D) or L
p
a(D,mα), 1 ≤ p < ∞ and α > −1. Let γ = α+2

p
(α = −1 in case X(D) =

H p(D)). Then there exists a constant C =CX(D) such that for every f ∈ X(D) and z ∈ D,

| f (z)| ≤
C‖ f‖X(D)

(1−|z|2)γ
. (1.1)

Proof. We begin by showing that | f (0)| ≤C‖ f‖. Let f ∈ H p(D). Then ∀r, 0 < r < 1, the mean value property implies that

f (0) = 1
2π

∫ 2π
0 f (reiθ )dθ . Thus | f (0)| ≤ 1

2π

∫ 2π
0 | f (reiθ )|dθ and Jensen’s inequality implies

| f (0)|p ≤
1

2π

∫ 2π

0
| f (reiθ )|p dθ ≤ ‖ f‖p

H p(D)
.

Similarly, if f ∈ L
p
a(mα), then ∀r, 0 < r < 1, | f (0)|p ≤ 1

2π

∫ 2π
0 | f (reiθ )|p dθ . Thus

| f (0)|p
∫ 1

0
(1− r2)α 2r dr ≤

∫ 1

0
(1− r2)α 2r dr

1

2π

∫ 2π

0
| f (reiθ )|p dθ = ‖ f‖L

p
a (mα )

.

If a ∈ D, let φa(z) =
a−z

1−āz
∈ Aut(D), where Aut(D) denotes the group of automorphisms of D. Then Sφa f := (φ ′

a)
γ f ◦φa is an

isometry on X(D).
Indeed, in the Hardy space case,

‖Sφa f‖p

H p(D)
=
∫ 2π

0
| f (φa(e

iθ ))|p|φ ′
a(e

iθ )ieiθ |dθ =
∫ 2π

0
| f (eit)|p dt.

In the Bergman space case, we note that, by the Schwarz-Pick Lemma [2, Lemma I.1.2], (1−|z|2)|φ ′
a(z)|= 1−|φa(z)|

2 ∀z ∈D,

and therefore a change of variables argument implies

‖Sφa f‖p

L
p
a (mα )

=
∫

D

| f (φa(z))|
p
(

(1−|z|2)|φ ′
a|
)α

|φ ′
a|dA(z)

=
∫

D

| f (ω)|p(1−|ω|2)α dA(ω) = ‖ f‖p

L
p
a (mα )

.

Thus if a ∈ D, |φ ′
a(0)|

γ | f (a)|= |Sφa f (0)| ≤C‖ f‖ or | f (a)| ≤ C‖ f‖
(1−|a|)γ , as claimed.

The following is an immediate consequence of the above Lemmas,

Corollary 1.3. Let X denote either H p(U) or L
p
a(µα), 1 ≤ p < ∞ and α > −1. Let γ = α+2

p
(α = −1 in case X = H p(U)).

Then there exists a constant C =CX such that for every f ∈ X and z ∈ U,

| f (z)| ≤
C‖ f‖X

(ℑ(z))γ
. (1.2)

Proof. Let g = Sψ f . Then by Proposition 1.1 above, ‖g‖H p = ‖ f‖H p and ‖g‖L
p
a (mα )

= 2
− α

p ‖ f‖L
p
a (µα )

. Now, if a = ψ−1(z),

then (1−|a|2)|ψ ′(a)|= 2ℑ(z) and

|ψ ′(a)|γ | f (z)| ≤ |g(a)| ≤
C‖ f‖

(1−|a|2)γ
,

implying that | f (z)| ≤ C‖ f‖
(2ℑ(z))γ .
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As consequence of the growth conditions given by equations (1.1) and (1.2), both Hardy and Bergman spaces (X and X(D))
are Banach spaces. In fact, if p = 2, it turns out that these spaces are Hilbert spaces, and moreover, the Bergman space L

p
a(·) is

a closed subspace of the classical Lebesgue space Lp(·). For a detailed theory of Hardy spaces, we refer to [2, 3, 4], while for

Bergman spaces, see [4, 5, 6, 7, 8].

The reproducing kernels for Hardy and Bergman spaces of the unit disk D are well known in literature. See for instance [3] for

Hardy spaces, and [4, 8] for Bergman spaces. The corresponding reproducing kernels for the Hardy and Bergman spaces of the

upper half plane U is not well captured in literature. In general, the theory of analytic spaces of the upper half plane is much

less complete compared to the unit disk setting. In this paper, we determine explicitly the reproducing kernels on U for the two

spaces. As a result, we also give the corresponding projections and consequently, establish some known duality properties of

these spaces. These results are part of my Ph.D. dissertation [9].

2. Reproducing Kernels on the upper half plane

Let H denote a Hilbert space of functions defined on an open set Ω ⊂ C. We call a reproducing kernel for H , a complex

function K : Ω×Ω → C such that, if we put Kω(z) := K(z,ω), then the following two properties hold:

1. for every ω ∈ Ω, the function Kω belongs to H , and

2. for all f ∈ H and ω ∈ Ω, we have

f (ω) = 〈 f ,Kω〉.

It is clear that the above two properties imply that such a kernel K satisfies the identity K(z,ω) = K(ω,z) for all z,ω ∈ Ω.
Indeed

K(z,ω) = Kω(z) = 〈Kω ,Kz〉

= 〈Kz,Kω〉= Kz(ω) = K(ω ,z).

The growth condition estimates ( for X and X(D)) given by equations (1.1) and (1.2) and the Riesz representation theorem for

H ∗, imply that H2(·) and L2
a(·) are reproducing kernel Hilbert spaces.

2.1 Bergman spaces of the upper half plane

For the Bergman spaces (weighted), the reproducing kernel is also called the Bergman kernel (weighted). In particular, for the

weighted Bergman spaces, we denote the weighted Bergman kernels by Kα,D and Kα,U on D and U, respectively. If the setting

D or U is understood, we simply write Kα .

For Bergman spaces of the unit disc, L
p
a(D,mα), α >−1, the weighted Bergman kernel has been computed in [8] and is given

by

Kα,D(z,ω) =
1

(1− zω)2+α
. (2.1)

The function Kα on the unit disc D has been exhaustively studied in literature and some of its properties, for example,

boundedness have far reaching consequences in the theory of analytic functions in L
p
a(D,mα). For a comprehensive theory of

Bergman kernels and hence projections on D, see for instance [4] or [8], and references therein.

In this section, we shall present the corresponding theory of the Bergman kernels and projections on the upper half-plane U. In

the next result, we compute explicitly the weighted Bergman kernel on the upper half-plane U, which we denote by Kα = Kα,U,

and is acting on the Hilbert space L2
a(U,µα).

Theorem 2.1. If α >−1, then the weighted Bergman kernel of L2
a(U,µα) is given by

Kα(z,ω) =
2α

[−i(z−ω)]2+α
. (2.2)

Proof. Let Kα,U, Kα,D be the weighted Bergman kernels of L2
a(U,µα) and L2

a(D,mα) respectively. Then Kα,D is given by

equation (2.1). We need to compute Kα,U. The Cayley transform ψ(z) = i(1+z)
1−z

maps U conformally onto D with inverse,

ψ−1(ω) = ω−i
ω+i

. It follows from Proposition 1.1 that T f (ξ ) := 2−
α
2 (ψ ′(ξ ))1+ α

2 f (ψ(ξ )) is an isometric surjective isomorphism
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of L2
a(U,µα) onto L2

a(D,mα). Since L2
a(·) is a Hilbert space, it then follows that T is unitary, that is, T ∗ = T−1.

For every ξ ∈ D, and by writing Kα,D,ξ = Kα,D(·,ξ ) simply as KD,ξ , we have using the definition of Kα ,

T f (ξ ) = 2−
α
2 (ψ ′(ξ ))1+ α

2 f (ψ(ξ )) = 2−
α
2

(2i)1+ α
2

(1−ξ )2+α
f (ψ(ξ )),

= 〈T f ,KD,ξ 〉L2
a(D,mα )

= 〈 f ,T−1KD,ξ 〉L2
a(U,µα )

.

We now compute T−1KD,ξ . For z ∈ U, we have

(

T−1KD,ξ

)

(z) = 2
α
2
(

(ψ−1(z))′
)1+ α

2 KD,ξ

(

ψ−1(z)
)

.

But by equation (2.1),

KD,ξ

(

ψ−1(z)
)

=
1

(

1− z−i
z+i

ξ̄
)2+α

=
(z+ i)2+α

(1− ξ̄ )2+α [z−ψ(ξ )]
.

Therefore,

2−
α
2 (ψ ′(ξ ))1+ α

2 f (ψ(ξ )) = T f (ξ ) =
〈

f ,T−1KD,ξ

〉

L2
a(U,µα )

= 2
α
2
(−2i)1+ α

2

(1− ξ̄ )2+α

〈

f ,
1

(z−ψ(ξ ))2+α

〉

,

which implies that f (ψ(ξ )) = 2α
〈

f , 1

[−i(z−ψ(ξ ))]2+α

〉

, and thus,

f (ω) =

〈

f ,
2α

[−i(z−ω)]2+α

〉

, ω ∈ U.

In particular, if we write ψ(ξ ) = ω , then

KU,ω(z) =
2α

[−i(z−ω)]2+α
, as desired.

It is important to note that a similar formula has been obtained through the use of Paley-Weiener theorem which in itself

involves Fourier transform, see [5]. We consider the method applied in this paper to be more direct and simple. Since L2
a(U,µα)

is a closed subspace of the Hilbert space L2(U,µα), there exists an orthogonal projection Pα : L2(U,µα)→ L2
a(U,µα) which

we shall call the weighted Bergman projection on L2(U,µα).

Proposition 2.2. The weighted Bergman projection Pα from L2(U,µα) onto the subspace L2
a(U,µα) is given explicitly by

Pα f (z) =
∫

U

Kα(z,ω) f (ω)dµα(ω), (2.3)

where Kα is the weighted Bergman kernel on the half plane given by equation (2.2).

Proof. Indeed, by the reproducing property of Kα(z,ω) and the self - adjointness of Pα on L2(U,µα), we have

Pα f (z) = 〈Pα f ,Kα(.,z)〉L2
a(µα )

= 〈 f ,Pα Kα(.,z)〉L2
a(µα )

= 〈 f ,Kα(.,z)〉L2
a(µα )

=
∫

U

Kα(z,ω) f (ω) dµα(ω), as claimed.

At this point, it is natural to ask whether the Bergman projection Pα extends in some meaningful way to L
p
a(U,µα) for the case

p 6= 2, and in that case, whether the reproducing property of Kα(z,ω), (that is, Pα F = F) holds in L
p
a(U,µα). These questions

were posed in [5]. In this section, we address these questions but first we prove some elementary results that will be useful in

the sequel.
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Proposition 2.3. Let X = H p(U) or L
p
a(U,µα), 1 ≤ p < ∞. Let a > 0, b ∈ R and define T f (z) = f (az+b) for every f ∈ X,

then ‖T‖ ≤ a−γ .

Proof. If f ∈ L
p
a(U,µα), then

‖T f‖p
p =

∫

U

| f (az+b)|p
(ℑ(az+b))α

aα+2
|a|2 dA(z)

=
∫

aU
| f (ω)|p(ℑ(ω))α dA(ω)a−(α+2),

and if f ∈ H p(U), then

‖T f‖p
p = sup

y>0

∫ ∞

−∞

| f (ax+ iay+b)|p dx = sup
t>0

∫ ∞

−∞

| f (ax+b+ it)|p dx

=
1

a
sup
t>0

∫ ∞

−∞

| f (s+ it)|p ds =
1

a
‖ f‖p

p.

The next two Lemmas give examples of analytic functions and the conditions they must satisfy to belong to the spaces X

and X(D).

Lemma 2.4. Let X(D) denote one of the spaces H p(D) or L
p
a(D,mα), 1 ≤ p < ∞ and α > −1 (α = −1 if X(D) = H p(D)),

and let γ = (α +2)/p. Then for η ∈ C,

(eiθ − z)η ∈ X(D) if and only if ℜη > −γ.

Proof. We first consider the Bergman space case, that is X(D) = L
p
a(D,mα).

Recall (eiθ − z)η ∈ L
p
a(D,mα)⇔

∫

D
|(eiθ − z)η |p dmα(z) < ∞. Now,

∫

D

|(eiθ − z)η |p dmα(z) =
∫

D

|(eiθ − z)η |p(1−|z|2)α dA(z)

=
∫

D

|1− ze−iθ |pℜ(η)(1−|z|2)α dA(z)

=
∫

D

(1−|z|2)α

|1− ze−iθ |−pℜ(η)
dA(z). (2.4)

It then follows immediately from [8, Lemma 3.10] that equation (2.4) is bounded if and only if −pℜ(η)−α −2 < 0, that is,

ℜ(η) > −α+2
p

, as desired.

For X(D) = H p(D), we use the fact that functions in H p(D) can be identified with their boundary values. Fix θ ∈ R and let

f (z) = (eiθ − z)η . Then f has boundary values f (eit) = (eiθ − eit)η and f ∈ H p(D) is equivalent to

∫ π

−π
| f (eit)|p dt =

∫ θ+π

θ−π

∣

∣

∣(1− ei(t−θ))η
∣

∣

∣

p

dt

=
∫ π

−π
2pℜ(η) |sin(t/2)|pℜ(η)

dt < ∞. (2.5)

But the equation (2.5) holds if and only if pℜ(η)>−1, as claimed.

Lemma 2.5. Let X denote one of the spaces H p(U) or L
p
a(U,µα), 1 ≤ p < ∞ and α >−1 (α =−1 if X = H p(U)), and let

γ = (α +2)/p. If c ∈ R and λ , ν ∈ C, then

1. f (ω) = (ω − c)λ (ω + i)ν ∈ X if and only if ℜ(λ +ν)<−γ < ℜ(λ ). In particular, (ω − c)λ 6∈ X for any λ ∈ C, and

(ω + i)ν ∈ X if and only if ℜν <−γ .

2. f (ω) = eiω/ωc ∈ X if and only if 1/p < c < γ . In particular, eiω/ωc 6∈ H p(U) for any c ∈ R.

Proof. See [10, Lemma 3.2].

We now give the following proposition,
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Proposition 2.6. Let X = H p(U) or L
p
a(U,µα). If v > 0, then

(ω + iv)ν ∈ X if and only if ν > −γ.

Proof. If f (ω) = (ω + iv)ν , then

f (ω) = vν

(

1

v
ω + i

)ν

= vν T g(ω),

where T h(z) = h
(

1
v
z
)

and g(ω) = (ω + i)ν . Now Proposition 2.3 and Lemma 2.5 immediately yield the desired result.

To begin addressing the questions mentioned earlier in this section concerning the extension of the Bergman kernel Kα to

the cases p 6= 2, we give the following direct consequence of the above proposition.

Corollary 2.7. For fixed ω ∈ U, the Bergman projection Pα belongs to L
q
a(U,µα) if and only if 1 < q ≤ ∞.

Proof. If Kα(z,ω) = 2α

(−i(z−ω))α+2 , (z,ω ∈ U), then for fixed ω ∈ U,

Kα(z,ω) = 2α iα+2 ((z−ℜ(ω))+ iℑ(ω))−(α+2) .

Therefore by Proposition 2.6, Kα(·,ω) ∈ L
q
a(U,µα) if and only if −(α + 2) < −(α + 2)/q, which is equivalent to q > 1.

Moreover, if z = x+ iy, y > 0, we have

|Kα(z,ω)| ≤
2α

(ℑ(ω))α+2
,

implying that Kα(·,ω) ∈ L∞
a (U,µα).

We can now prove the following result;

Proposition 2.8. Let 1 ≤ p < ∞, then for each f ∈ L
p
a(U,µα),

f (z) =
∫

U

f (ω)Kα(z,ω)dµα(ω).

Proof. If f ∈ L
p
a(U,µα), 1 ≤ p < ∞, then by Corollary 2.7, Kα(·,z) ∈ L

p
a(µα),

1
p
+ 1

q
= 1 and so Hölder’s inequality implies

that

f 7−→
∫

U

f (ω)Kα(z,ω)dµα(ω) = 〈 f ,Kα(ω,z)〉

is continuous; moreover, by the reproducing property,

f (z) =
∫

U

f (ω)Kα(z,ω)dµα(ω) for all f ∈ Lp
a(µα)∩L2

a(µα).

Since L
p
a(µα)∩L2

a(µα) is dense in L
p
a(µα), we’re done.

The following theorem characterizes when Pα is a bounded projection from Lp(U,µα) onto L
p
a(U,µα), see D. Békollé,

et.al. [5] for the details.

Theorem 2.9. The Bergman projection

Pα f (z) :=
∫

U

f (ω)Kα(z,ω)dµα(ω), α >−1,

is a bounded projection from Lp(U,µα) onto L
p
a(U,µα) if and only if 1 < p < ∞.

An immediate consequence of the boundedness of the Bergman projection Pα on L
p
a(U,µα) is the duality of Bergman spaces

L
p
a(U,µα) which we give in the following result,
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Corollary 2.10. Let 1 < p < ∞ and q be conjugate to p in the sense that 1
p
+ 1

q
= 1. Let (Lp

a(U,µα))
∗ be the dual space of

L
p
a(U,µα), then

(Lp
a(U,µα))

∗ ≈ Lq
a(U,µα), α >−1, (2.6)

under the sesquilinear pairing

〈 f ,g〉=
∫

U

f (ω)g(ω)dµα ( f ∈ Lp
a(µα), g ∈ Lq

a(µα)). (2.7)

Proof. The classical duality between Lp- spaces gives

(Lp(U,µα))
∗ ≈ Lq(U,µα).

By Hahn-Banach extension theorem and the boundedness of the Bergman projection Pα for 1 < p < ∞, (Theorem 2.9), we have

(Lp
a(U,µα))

∗ = Pα(L
p(U,µα))

∗ ≈ Pα Lq(U,µα) = Lq
a(U,µα), as desired.

It is important to take note that under the above duality pairing, see equation (2.7), the adjoint operator is conjugate linear.

Moreover, L
p
a(µα) spaces for 1 < p < ∞ are reflexive and thus;

(Lq
a(µα))

∗ ≈ (Lp
a(µα))

∗∗ ≈ Lp
a(µα).

2.2 Hardy spaces of the upper half plane

The reproducing kernel for Hardy spaces is also called the Cauchy - Szegö kernel or simply the Szegö kernel, with the

corresponding projection called the Cauchy - Szegö projection or simply the Szegö projection. We refer to [6] or [11, Chapter

8] for a good account of the theory of the Szegö kernel and projection on Hardy spaces. Recall that functions in H p(D) have

boundary values almost everywhere in L
p
a(∂D) and that if 1 ≤ p < ∞, then H p(D) = clLp(∂D)C[z], where C[z] denotes analytic

polynomials in z, and clLp(∂D) is the Lp(∂D)-closure. In fact the Hilbert space H2(D) has orthonormal basis (zn)n≥0.

As noted in [6, Chapter 2], Cauchy’s theorem implies that the reproducing kernel for H1(D) is given by

SD(z,ω) =
1

1− zω̄
(z ∈ ∂D, ω ∈ D). (2.8)

Therefore, the Cauchy-Szegö projection PD is given by

PDϕ(z) = 〈ϕ,S(ω,z)〉=
∫

∂D
ϕ(ω)SD(ω,z)dm(ω)

=
1

2π

∫ 2π

0

ϕ(eit)

1− e−itz
dt,

and satisfies PD f = f for all f ∈ H1(D). The following theorem whose details can be found in [6, Chapter 2] characterizes the

boundedness of the Szegö projection for the case when p 6= 1.

Theorem 2.11. If 1 < p < ∞, then PD : Lp(∂D) → H p(D) is bounded and surjective.

In the next theorem, we establish the corresponding Cauchy-Szegö kernel on the upper half plane.

Theorem 2.12. The Cauchy - Szegö kernel for H2(U) is given by

SU(z,ξ ) =
i

z− ξ̄
. (2.9)

Proof. Let T : H p(U)→ H p(D) be given by T f (z) = (ψ ′(z))1/p f (ψ(z)). Then by Proposition 1.1, T is surjective isometry. In

particular, T : H2(U)→ H2(D) is unitary with T ∗ = T−1, and T−1g(ω) =
(

(ψ−1)′(ω)
)1/2

g(ψ−1(ω)), where ψ is the Cayley

transform. We wish to compute the corresponding Szegö kernel on the upper half-plane, U: Let ξ ∈ U, z = ψ−1(ξ ) ∈ D. Also,

let f ∈ H2(U) and g = T f . Then

g(z) =
∫

∂D
g(ω)SD(z,ω)dm(ω) = 〈g,S(·,z)〉∂D = 〈T f ,SD,z〉∂D

= 〈 f ,T ∗SD,z〉R.
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But we have

g(z) = g(ψ−1(ξ )) = T f (ψ−1(ξ )) =
(

ψ ′(ψ−1(ξ ))
)1/2

f (ξ ) =
ξ + i

(2i)1/2
f (ξ ),

and

(

T ∗SD,z
)

(ω) =
(

(ψ−1)′(ω)
)1/2

SD
(

ψ−1(ω),ψ−1(ξ )
)

=
(2i)1/2

(ω + i)





1

1−
(

ω−1
ω+i

)

(

ξ̄+i

ξ̄−i

)





=
(2i)1/2(ξ̄ − i)

−2i(ω − ξ̄ )
.

Thus

f (ξ ) =
(2i)1/2

(ξ + i)

∫

R

f (x)

(

(2i)1/2(ξ̄ − i)

2(−i)(x− ξ̄ )

)

dx

=
∫

R

f (x)

(

(2i)1/2(−2i)1/2

2(−i)(x− ξ̄ )

)

dx.

Therefore, for every f ∈ H2(U), ξ ∈ U,

f (ξ ) =
∫

R

f (x)

(

i

x− ξ̄

)

dx.

Thus the Szegö kernel for H2(U) is given by

SU(z,ξ ) =
i

z− ξ̄
.

Corollary 2.13. The Cauchy - Szegö projection P from L2(R) onto H2(U) is given explicitly by

Pϕ(ξ ) =
∫

R

ϕ(x)SU(ξ ,x)dx,

where SU is the Cauchy - Szegö kernel given by equation (2.9).

Proof. Adopting the above notation, we have

Pϕ(ξ ) =
∫

R

ϕ(x)SU(x,ξ )dx

=
∫

R

ϕ(x)

(

−i

x−ξ

)

dx

=
∫

R

ϕ(x)
i

ξ − x
dx

=
∫

R

ϕ(x)SU(ξ ,x)dx.

Therefore, the upper half-plane analogue of Theorem 2.11 is the following,
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Theorem 2.14. If f ∈ H p(U), 1 ≤ p < ∞, then for every ξ ∈ U,

f (ξ ) =
∫

R

f (x)SU(ξ ,x)dx,

and if p > 1, then the Szegö projection P : Lp(R)→ H p(U) given by

Pϕ(ξ ) =
∫

R

ϕ(x)SU(ξ ,x)dx

is bounded and surjective.

The boundedness of the Szegö projection P on Lp(R) given by Theorem 2.14 immediately yields the following duality of

Hardy spaces H p(U), for 1 < p < ∞.

Corollary 2.15. Let 1 < p < ∞ and q be such that 1
p
+ 1

q
= 1. Let (H p(U))∗ be the dual space of H p(U). Then

(H p(U))∗ ≈ Hq(U), (2.10)

via the sequilinear pairing

〈 f ,g〉=
∫

R

f (x)g(x)dx ( f ∈ H p(U), g ∈ Hq(U)). (2.11)

Proof. It is well known that

(Lp(R))∗ ≈ Lq(R).

Now, the Hahn-Banach extension theorem together with the boundedness of the Szegö projection P for 1 < p < ∞ will yield,

(H p(U))∗ ≈ (H p(R))∗ = P(Lp(R))∗ ≈ PLq(R) = Hq(R)≈ Hq(U).

Again, we take note that under the pairing in equation (2.11), the adjoint operator from L (X) to L (X∗) is also conjugate

linear. Since the Hardy spaces H p(U), 1 < p < ∞, are reflexive Banach spaces, it follows that

(Hq(U))∗ ≈ (H p(U))∗∗ ≈ H p(U).
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1. Introduction

A dynamical system is algebraic completely integrable in the sense of Adler-van Moerbeke [3, 6] if it can be linearized on a

complex algebraic torus (Abelian variety). The invariants (often called first integrals or constants) of the motion are polynomials

and the phase space coordinates, or some algebraic functions of these, restricted to a complex invariant variety defined by

putting these invariants equals to generic constants are meromorphic functions on an Abelian variety. These manifolds are

described explicitly as being affine part of complex algebraic tori and the flows (run with complex time) generated by the

constants of the motion can be solved by quadrature, that is to say their solutions can be expressed in terms of Abelian integrals.

Consider the group SO(n) and its Lie algebra so(n) paired with itself, via the customary inner product

〈X ,Y 〉=−1

2
tr(X .Y ), X ,Y ∈ so(n).

A left invariant metric on SO(n) is defined by a non-singular symmetric linear map

Λ : so(n)−→ so(n), X 7−→ Λ.X ,
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and by the following inner product; given two vectors gX and gY in the tangent space SO(n) at the point g ∈ SO(n),

〈gX ,gY 〉=
〈
X ,Λ−1.Y

〉
.

The question of classifying the metrics for which geodesic flow on SO(n) is algebraically completely integrable is difficult. For

SO(3), we know that the Euler rigid body motion [11] can be regarded as geodesic flow on SO(3) and this problem is always

algebraically completely integrable. For SO(4), Adler and van Moerbeke [4] have shown that the geodesic flow on SO(4) for

the metric defined by the above quadratic form is algebraically completely integrable in the three cases described in the section

5 and these are the only ones that exist. In addition, these three cases come up: two are linearly equivalent to cases of rigid body

motion in a perfect fluid studied there is a long time, respectively by Clebsch and Lyapunov-Steklov, an there is a third new

case namely the Kostant-Kirillov Hamiltonian flow on the dual of so(4). For n ≥ 5, as was shown by Haine [14], Manakov’s

metrics are the only left invariant diagonal metrics on SO(n) for which the geodesic flow is algebraically completely integrable.

The paper is organized as follows. In Section 2, we explain the notion of algebraically completely integrable systems.

Section 3 deals with geodesic flow on SO(3) and Euler rigid body motion. In this section, we show that the Euler rigid body

motion is always algebraically completely integrable which can be regarded as geodesic flow on SO(3), and the integration

of the equations is done by means of elliptic Jacobi functions. In section 4, we briefly recall some results concerning the

Clebsch and Lyapunov-Steklov cases of a solid in an ideal fluid. Section 5 deals with the Adler-van Moerbeke classification

of algebraic integrable geodesic flow on the group SO(4). This classification concerns Manakov geodesic flow on the group

SO(4) which is linearly equivalent to Clebsch rigid body motion in a perfect fluid, geodesic flow on the group SO(4) which

is linearly equivalent to Lyapunov-Steklov rigid body motion in a perfect fluid and geodesic flow on SO(4) with a quartic

invariant. Section 6 deals with the algebraic complete integrability of geodesic flow on SO(n) for n ≥ 5.

2. Algebraic complete integrability

The definition of the algebraic complete integrability of a Hamiltonian system varies according to the literature and is usually

found (with some minor variants) in any modern text on integrable systems. The integrable systems that we will deal with here

are complex integrable systems on an affine space C
m, the algebra that we consider is just that of the polynomial functions and

we focus on algebraic complete integrability in the sense of Adler-van Moerbeke. We will work with complexes instead of real

ones. Concepts such as: Liouville integrability, involution, commutativity of vector fields and so on, can be defined as in the

real case. On the other hand difficulties arise : we know that there are no compact holomorphic submanifolds in the complex

space C
m (maximum principle), therefore the complex tori that we can get in Arnold Liouville’s theorem are not compact.

The difficult problem of the compactification of invariant varieties therefore arises. In addition, the solutions of the system in

question are not uniform (single-valued). First, we will recall some results, define and explain the concept of algebraic complete

integrability of Hamiltonian systems in general (although for the problems studied in this paper, we will be concerned by the

affine space C
m).

Consider a Hamiltonian completely integrable system

XH : ż = J
∂H

∂ z
≡ f (z), z ∈ R

m, m = 2n+ k, J(z) polynomial in z, (2.1)

with n+ k functionally independent invariants H1, ...,Hn+k of which k invariants (Casimir functions) lead to zero vector fields

J
∂Hn+ j

∂ z
(z) = 0, 1 ≤ j ≤ k,

the n = (m−k)/2 remaining ones are in involution (i.e.,
{

Hi,H j

}
= 0),which give rise to n commuting vector fields. According

to the Arnold-Liouville theorem [7], if the invariant manifolds

n+k⋂

i=1

{z ∈ R
m : Hi(z) = ci} ,

are compact, then for most values of ci ∈ R, their connected components are diffeomorphic to real tori Rn/Lattice and the

flows g
X1
t (x),...,gXn

t (x) defined by the vector fields XH1
,...,XHn , are straight-line motions on these tori.

Consider now z ∈ C
m and t ∈ C. Let ∆ ⊂ C

m be a non-empty Zariski open set. By the functional independence of the first

integrals, the map (momentum mapping)

ϕ ≡ (H1, ...,Hn+k) : Cm −→ C
n+k,
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is a generic submersion (i.e., dH1(z), ...,dHn+k(z) are linearly independent) on ∆. Let

Ω =
{

c = (ci) ∈ C
n+k : ∃z ∈ ϕ−1(c) with dH1(z)∧ ...∧dHn+k(z) = 0

}
,

be the set of critical values of the map ϕ , i.e., Ω = ϕ (Cm\∆) and denote by Ω the Zariski closure of Ω in C
n+k.

Proposition 2.1. The set defined by

Γ =
{

z ∈ C
m : ϕ(z) ∈ C

n+k\Ω

}
,

is everywhere dense in C
m for the usual topology.

Proof. Indeed, it suffices to show that the set Γ = ϕ−1
(
C

n+k\Ω
)
, is a non-empty Zariski open set in C

m. Since a polynomial

mapping between affine algebraic sets is continuous for the Zariski topology, then the above set is indeed a Zariski open set in

C
m and it is nonempty. Suppose this one is empty, that is ϕ(Cm)⊂ Ω. Since the map ϕ is submersive on a non-empty open set

of Zariski ∆ ⊂ C
m, then ϕ(∆) is open in C

n+k. By Sard’s theorem for varieties [33], Cn+k\Ω is a non-empty Zariski open set

and therefore everywhere dense for the usual topology in C
n+k. So ϕ(∆)∩ (Cn+k\Ω) 6= /0, which is absurd. This completes the

proof. �

Let Mc be the complex affine variety defined by

Mc ≡ ϕ−1(c) =
n+k⋂

i=1

{z ∈ C
m : Hi(z) = ci} , (2.2)

for all c ≡ (c1, ...,cn+k) ∈ C
n+k\Ω, the fiber Mc is smooth.

Definition 2.2. The system (2.1) is algebraic complete integrable (a.c.i.) in the sense of Adler-van Moerbeke with Abelian

functions zi [3, 6, 26] when, for every c ∈C
n+k\Ω, the fiber Mc (2.2) is the affine part of an Abelian variety (complex algebraic

torus)

M̃c = T n ≃ C
n/Lc, (Lc a lattice in C

n)

and moreover, the flows gt
Xi
(z), z ∈ Mc, t ∈ C, defined by the vector fields XHi

, 1 ≤ i ≤ n, are straight line on T n, i.e.,

[
gt

Xi
(z)
]

j
= f j

(
p+ t(ki

1, ...,k
i
n)
)
,

where f j (t1, ..., tn) are Abelian functions on T n, f j(p) = z j, 1 ≤ j ≤ m.

We will be concerned with a.c.i. systems that are irreducible i.e., when the generic Abelian variety is irreducible (that is, it

does not contain a subtorus). The following remark is intended to present interrelated definitions, all involving a.c.i. systems.

For comments on definitions, see [38].

Remark 2.3. 1) [34] Let H be a smooth function on a 2n-dimensional symplectic manifold (M,ω). The Hamiltonian system

defined by the vector field XH is a.c.i., if there exists a smooth algebraic variety M , a co-symplectic structure ω̃ which restricts

to ω along M, i.e., ω̃ ∈ Λ2TM and a morphism h : M −→ U where U is a Zariski open subset of Cn, all defined over the real

field such that:

(i) h is a proper submersive whose components are in involution; that is,

{Xioh,X joh} ≡ ω̃(d(Xioh),d(X joh)) = 0,

Xi being coordinates on R
n.

(ii) M is a component of MR, the ω̃ on M is the ω̃ on M along M, and H is a C∞-function of X j.oh|M .

2) [6] Let (M,{., .},ϕ) be a complex integrable system where M is a non-singular affine variety and ϕ = (H1, ...,Hs) is

given by regular algebraic functions Hi. We say that this system is an a.c.i. system if for generic c ∈C
s the fiber of ϕ−1(c) is an

affine part of an Abelian variety and if the Hamiltonian vector fields XHi
, are translation invariant, when restricted to these

fibers.

3) [9] Let (M,{., .}) be a smooth Poisson variety. An a.c.i. Hamiltonian system consists of a proper flat morphism

H : M −→ B where B is a smooth variety such that, over the complement B\∆ of some proper closed subvariety Λ ⊂ B, the

morphism H is a Lagrangian fibration whose fibers are isomorphic to Abelian varieties.
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4) [18] Let M be a 2n-dimensional complex manifold with a holomorphic symplectic structure ω , a holomorphic function

H : M −→ C and n holomorphic functions which pairwise are in involution and also with H, i.e.,

{Hi,H j}= {Hi,H}= 0, 1 ≤ i, j ≤ n.

Let B be an open dense subset of Cn and

F : F−1(B)⊂ M −→ B,

a submersive map. The Hamiltonian system defined by the vector field XH is an a.c.i. system if there exists a bundle π : A −→ B

of Abelian varieties, a divisor D ⊂ A, an isomorphism σ : F−1(B)−→ A\D, and a vector field Y on A\D which restricts to a

linear vector field on the fibers of π , so that the diagram :

F−1(B) −→
σ

A\D

F ց ւ π
B

is commutative and such that the vector field XH is σ -related to Y .

5) Hitchin [15] gave a large class of interesting integrable systems that are almost by construction algebraic completely

integrable and showed that the cotangent bundle of moduli spaces of stable vector bundles on Riemann surfaces carry the

structure of integrable systems and are indeed a.c.i.

It will be interesting to insist a little more on the interpretation of the algebraic complete integrability of a Hamiltonian

system, especially in the sense of Adler-van Moerbeke.

Remark 2.4. a) The complete algebraic integrability in the sense of Adler-van Moerbeke in the case where M = C
m means

that :

(i) the system (2.1) with polynomial right hand possesses n+ k independent polynomial invariants H1 ≡ H,H2, ...,Hn+k of

which k invariants lead to zero vector fields, the n = (m−k)/2 remaining ones are in involution, which give rise to n commuting

vector fields. For generic ci, the invariant manifolds

n+k⋂

i=1

{z ∈ R
m : Hi = ci} ,

are assumed compact, connected and therefore real tori by the Arnold-Liouville theorem.

(ii) the invariant manifolds, thought of as affine varieties in C
m (non-compact), can be completed into complex algebraic

tori, i.e.,

n+k⋂

i=1

{z ∈ C
m : Hi(z) = ci}= T n\

{
D ≡

(
one or several codimension

one subvarieties

)}
,

where the tori T n = C
n/Lattice = complex algebraic torus (Abelian variety), depend on the c’s. In the natural coordinates

(t1, ..., tn) of these tori, the Hamiltonian flows (run with complex time) defined by the vector fields generated by the constants of

the motion are straight-line motions and the coordinates zi = zi(t1, ..., tn) are meromorphic in (t1, ..., tn).
b) It must be realized that the existence of polynomial first integrals (invariants) for a Hamiltonian system does not

necessarily imply the complete integrability of this system. For example, the Hamiltonian system where

H(x,y) =
x2

2
+P(y), (P(y) being a polynomial in y),

will be algebraically completely integrable with Abelian (here elliptic) functions if and only if P(y) is a polynomial of degree

3 or 4. Following Mumford [34], the commuting vector fields XH1
, ...,XHn define on the real torus Mc ⊂ R

2n defined by the

intersection of the constants of the motion H1 = c1, ...,Hn = cn, an addition law

⊕ : Mc ×Mc −→ Mc, (x,y) 7−→ x⊕ y = gt+s(p), p ∈ Mc,

with x = gt(p), y = gs(p), gt(p) = g
X1
t1
...gXn

tn (p), where g
Xi
ti
(p) denote the flows generated by XHi

. Algebraic complete integra-

bility means that this addition law is rational, that is:

(x⊕ y) j = R j (xi,yi,c) ,
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where R j (xi,yi,c) is a rational function of all coordinates xi, yi, 1 ≤ i ≤ n. Putting x = p, y = g
Xi
t (p), in this formula, we notice

that on the real torus Tc, the flows g
Xi
t (p) depend rationally on the initial condition p. Moreover, a Weierstrass theorem on

functions admitting an addition theorem states that the coordinates xi are restricted to the real torus:

R
n/Lattice −→ Mc, (t1, ..., tn) 7−→ xi (t1, ..., tn) ,

are Abelian functions. Geometrically, this means that the real torus Mc ≃ R
n/Lattice is the affine part of an algebraic complex

torus (Abelian variety) Cn/Lattice and that the real functions xi (t1, ..., tn), (ti ∈ R), are the restrictions on this real torus of the

meromorphic functions xi (t1, ..., tn), (ti ∈ C), of n complex variables, with 2n periods (n periods + n imaginary periods). In

degenerate situations, some of these periods may be infinite, as for example in the case of a harmonic oscillator.

c) If the Hamiltonian flow (2.1) is a.c.i., it means that the variables zi are meromorphic on the torus T n and by compactness

they must blow up along a codimension one subvariety (a divisor) D ⊂ T n. By the a.c.i. definition, the flow (2.1) is a straight

line motion in T n and thus it must hit the divisor D in at least one place. Moreover through every point of D , there is a straight

line motion and therefore a Laurent expansion around that point of intersection. Hence the differential equations must admit

Laurent expansions which depend on the n−1 parameters defining D and the n+ k constants ci defining the torus T n, the total

count is therefore m−1 = dim(phase space)−1 parameters. The fait that a.c.i. systems possess (m−1)-dimensional families

of Laurent solutions, was implicitly used by Kowalewski [21] in her classification of integrable rigid body motions (see also the

Painlevé analysis for ordinary differential equations [35]). Such a necessary condition (see [5]) for a.c.i. can be formulated as

in the theorem below.

Theorem 2.5. If the Hamiltonian system (2.1) (with invariant tori not containing elliptic curves) is a.c.i., then each zi blows up

after a finite (complex) time, and for every zi, there is a family of solutions

zi =
∞

∑
j=0

z
( j)
i t j−si , si ∈ Z, some si > 0, (2.3)

depending on dim(phase space)− 1 = m− 1, free parameters. Moreover, the system (2.1) possesses families of Laurent

solutions depending on m− 2,m− 3, ...,m− n free parameters. The coefficients of each one of these solutions are rational

functions on affine algebraic varieties of dimensions m−1,m−2,m−3, ...,m−n.

The question raised several years ago is whether this criterion is also sufficient. The main problem will be to complete

the affine variety Mc (2.2) into an Abelian variety. A naive guess would be to take the natural compactification Mc of Mc by

projectivizing the equations. Indeed, this can never work for a general reason: an Abelian variety M̃c of dimension bigger or

equal than two is never a complete intersection, that is it can never be described in some projective space P
n by n-dim M̃c

global polynomial homogeneous equations. In other words, if Mc is to be the affine part of an Abelian variety, Mc must have a

singularity somewhere along the locus at infinity. The trajectories of the vector fields (2.1) hit every point of the singular locus

at infinity and ignore the smooth locus at infinity. In fact, the existence of meromorphic solutions to the differential equations

(2.1) depending on some free parameters can be used to manufacture the tori, without ever going through the delicate procedure

of blowing up and down. Information about the tori can then be gathered from the divisor. More precisely, around the points

of hitting, the system of differential equations (2.1) admit a Laurent expansion solution depending on m−1, free parameters

and in order to regularize the flow at infinity, we use these parameters to blowing up the variety Mc along the singular locus

at infinity. The new complex variety obtained in this fashion is compact, smooth and has commuting vector fields on it; it is

therefore an Abelian variety.

The system (2.1) with k+n polynomial invariants has a coherent tree of Laurent solutions, when it has families of Laurent

solutions in t, depending on n−1, n−2,...,m−n free parameters. Adler and van Moerbeke [5] have shown that if the system

possesses several families of (n−1)-dimensional Laurent solutions (principal Painlevé solutions) they must fit together in a

coherent way and as we mentioned above, the system must possess (n−2)-, (n−3)-,... dimensional Laurent solutions (lower

Painlevé solutions), which are the gluing agents of the (n−1)-dimensional family. The gluing occurs via a rational change of

coordinates in which the lower parameter solutions are seen to be genuine limits of the higher parameter solutions an which in

turn appears due to a remarkable propriety of a.c.i. systems; they can be put into quadratic form both in the original variables

and in their ratios (to see further). As a whole, the full set of Painlevé solutions glue together to form a fiber bundle with

singular base. A partial converse to the above theorem can be formulated as follows [5]:

Theorem 2.6. If the Hamiltonian system (2.1) satisfies the condition a)(i) in the remark 2.2 of a.c.i. and if it possesses a

coherent tree of Laurent solutions, then the system is a.c.i. and there are no other m−1-dimensional Laurent solutions but

those provided by the coherent set.
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We assume that the divisor is very ample and in addition projectively normal (see [12, 27] for definitions when needed).

Consider a point p ∈ D , a chart U j around p on the torus and a function y j in L (D) having a pole of maximal order at p. Then

the vector (1/y j,y1/y j, . . . ,yN/y j) provides a good system of coordinates in U j. Then taking the derivative with regard to one

of the flows
(

yi

y j

)
˙=

ẏiy j − yiẏ j

y2
j

, 1 ≤ j ≤ N,

are finite on U j as well. Therefore, since y2
j has a double pole along D , the numerator must also have a double pole (at worst),

i.e., ẏiy j − yiẏ j ∈ L (2D). Hence, when D is projectively normal, we have that

(
yi

y j

)
˙= ∑

k,l

ak,l

(
yk

y j

)(
yl

y j

)
,

i.e., the ratios yi/y j form a closed system of coordinates under differentiation. At the bad points, the concept of projective

normality play an important role: this enables one to show that yi/y j is a bona fide Taylor series starting from every point in a

neighborhood of the point in question. Moreover, the Laurent solutions provide an effective tool for find the constants of the

motion. For that, just search polynomials Hi of z, having the property that evaluated along all the Laurent solutions z(t) they

have no polar part. Indeed, since an invariant function of the flow does not blow up along a Laurent solution, the series obtained

by substituting the formal solutions (2.3) into the invariants should, in particular, have no polar part. The polynomial functions

Hi(z(t)) being holomorphic and bounded in every direction of a compact space, (i.e., bounded along all principle solutions), are

thus constant by a Liouville type of argument. It thus an important ingredient in this argument to use all the generic solutions.

To make these informal arguments rigorous is an outstanding question of the subject.

Assume Hamiltonian flows to be weight-homogeneous with a weight si ∈ N, going with each variable zi, i.e.,

fi (α
s1z1, ...,α

smzm) = αsi+1 fi (z1, ...,zm) , ∀α ∈ C.

Observe that then the constants of the motion H can be chosen to be weight-homogeneous:

H (αs1z1, ...,α
smzm) = αkH (z1, ...,zm) , k ∈ Z.

The study of the a.c.i. of Hamiltonian systems, includes several passages to prove rigorously. Here we mention the main

passages, leaving the detail when studying the different problems in the following sections. We saw that if the flow is

algebraically completely integrable, the differential equations (2.1) must admits Laurent series solutions (2.3) depending on

m−1 free parameters. We must have ki = si and coefficients in the series must satisfy at the 0thstep non-linear equations,

fi

(
z
(0)
1 , ...,z

(0)
m

)
+giz

(0)
i = 0,1 ≤ i ≤ m, (2.4)

and at the kthstep, linear systems of equations :

(L− kI)z(k) =

{
0 for k = 1

some polynomial in z(1), ...,z(k−1) for k > 1,
(2.5)

where

L = Jacobian map of (2.4) =
∂ f

∂ z
+gI |

z=z(0)
.

If m−1 free parameters are to appear in the Laurent series, they must either come from the non-linear equations (2.4) or from

the eigenvalue problem (2.5), i.e., L must have at least m−1 integer eigenvalues. These are much less conditions than expected,

because of the fact that the homogeneity k of the constant H must be an eigenvalue of L. Moreover the formal series solutions

are convergent as a consequence of the majorant method [6, 24]. Thus, the first step is to show the existence of the Laurent

solutions, which requires an argument precisely every time k is an integer eigenvalue of L and therefore L− kI is not invertible.

One shows the existence of the remaining constants of the motion in involution so as to reach the number n+ k. Then you have

to prove that for given c1, ...,cm, the set

D ≡
{

zi(t) = t−νi

(
z
(0)
i + z

(1)
i t + z

(2)
i t2 + · · ·

)
,1 ≤ i ≤ m

Laurent solutions such that : H j (zi(t)) = c j +Taylor part

}
,
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defines one or several n−1 dimensional algebraic varieties (”Painlevé” divisor) having the property that Mc ∪D , is a smooth

compact, connected variety with n commuting vector fields independent at every point, i.e., a complex algebraic torus

C
n/Lattice. The flows J

∂Hk+i

∂ z
, ...,J

∂Hk+n

∂ z
are straight line motions on this torus. Let’s point out and we’ll see all this in more

detail later, that having computed the space of functions L (D) with simple poles at worst along the expansions, it is often

important to compute the space of functions L (kD) of functions having k-fold poles at worst along the expansions. These

functions play a crucial role in the study of the procedure for embedding the invariant tori into projective space.

The idea of the Adler-van Moerbeke’s proof [3] we shall give here is closely related to the geometric spirit of the Arnold-

Liouville theorem [7]. Namely, a compact complex n-dimensional variety on which there exist n holomorphic commuting

vector fields which are independent at every point is analytically isomorphic to a n-dimensional complex torus Cn/Lattice and

the complex flows generated by the vector fields are straight lines on this complex torus.

Theorem 2.7. Let

A =
⋂

i

{Z = (Z0,Z1, ...,Zn) ∈ P
N(C) : Pi(Z) = 0},

be an irreducible variety defined by an intersection involving a large number of homogeneous polynomials Pi with smooth and

irreducible affine part A = A ∩{Z0 6= 0}. Put A ≡ A ∪D , i.e., D = A ∩{Z0 = 0} and consider the map

f : A −→ P
N(C), Z 7−→ f (Z).

Let

Ã = f (A ) = f (A ), D =
r⋃

i=1

Di, S ≡ f (D) =
r⋃

i=1

f (Di)≡
r⋃

i=1

Si.

where Di are codimension 1 subvarieties. Assume that:

(i) f maps A smoothly and 1-1 onto f (A ).
(ii) There exist n holomorphic vector fields X1, ...,Xn on A which commute and are independent at every point. One vector

field, say Xk (where 1 ≤ k ≤ n), extends holomorphically to a neighborhood of Sk in the projective space P
N(C).

(iii) For all p ∈ Sk, the integral curve f (t) ∈ P
N(C) of the vector field Xk through f (0) = p ∈ Sk has the property that

{ f (t) : 0 <| t |< ε, t ∈ C} ⊂ f (A ).

This condition means that the orbits of Xk through Sk go immediately into the affine part and in particular, the vector field Xk

does not vanish on any point of Sk.

Then

a) M̃ is compact, connected and admits an embedding into P
N(C).

b) Ã is diffeomorphic to a n-dimensional complex torus. The vector fields X1, ...,Xn extend holomorphically and remain

independent on Ã .

c) Ã is a Kähler variety.

d) M̃ is a Hodge variety. In particular, A is the affine part of an Abelian variety Ã .

Proof. a) A crucial step is to show that the orbits running through Sk form a smooth variety Σp, p ∈ Sk such that

Σp\Sk ⊆ A . Let p ∈ Sk, ε > 0 small enough, gt
Xk

the flow generated by Xk on A and {gt
Xk

: t ∈ C,0 <| t |< ε}, the orbit

going through the point p. The vector field Xk is holomorphic in the neighborhood of any point p ∈ Sk and non-vanishing,

by (ii) and (iii). Then the flow gt
Xk

can be straightened out after a holomorphic change of coordinates. Let H ⊂ P
N(C) be a

hyperplane transversal to the direction of the flow at p and let Σp be the surface element formed by the divisor Sk and the

orbits going through p. Consider the segment of S ′ ≡ H ∩Σp and so locally, we have Σp = S ′×C. We shall show that Σp

is smooth. Note that S ′ is smooth. Indeed, suppose that S ′ is singular at 0, then Σp would be singular along the trajectory

(t-axis) which go immediately into the affine f (A ), by condition (iii). Hence, the affine part would be singular which is

impossible by condition (i). So, S′ is smooth and by the implicit function theorem, Σp is smooth too. Consider now the map

A ⊂ P
m(C)−→ P

N(C), Z 7−→ f (Z),

where Z = (Z0,Z1, ...,Zn) ∈ P
m(C) and Ã = f (A ) = f (A ). Recall that the flow exists in a full neighborhood of p in P

N(C)

and it has been straightened out. Therefore, near p ∈ Sk, we have Σp = Ã and Σp\Sk ⊆ A . Otherwise, there would exist an

element Σ′
p ⊂ Ã such that

{gt
Xk

: t ∈ C,0 <| t |< ε}= (Σp ∩Σ′
p)\p ⊂ A ,
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by condition (iii). In other words, Σp ∩Σ′
p = t-axis and hence A would be singular along the t-axis which is impossible. Since

the variety A is irreducible and since the generic hyperplane section Hgen. of Ã is also irreducible, all hyperplane sections are

connected and hence D is also connected. Now consider the graph G f ⊂ P
m(C)×P

N(C) of the map f , which is irreducible

together with Ã . It follows from the irreducibility of G f that a generic hyperplane section G f ∩ (Hgen.×P
N(C)) is irreducible,

hence the special hyperplane section G f ∩ ({Z0 = 0}×P
N(C)) is connected and therefore the projection map

Pro jPN(C)[G f ∩ ({Z0 = 0}×P
N(C))] = f (D)≡ S ,

is connected. Hence, the variety

Ã = A ∪ (∪p∈Sk
Σp) = A ∪Sk ⊆ P

N(C),

is compact, connected and embeds smoothly into P
N(C) via f .

b) Let gti be the flow generated by Xi on A and let p1 ∈ Ã \A . For ε > 0 and for all t1 ∈ C such that 0 < |t1|< ε , note

that q ≡ gt1(p1) is well defined and gt1(p1) ∈ f (A ), using condition (iii). Let U(q)⊆ A be a neighborhood of q and let

gt2(p2) = g−t1 ◦gt2 ◦gt1(p2), ∀p2 ∈U(p1)≡ g−t1 (U(q)) ,

which is well defined since by commutativity one can see that the right hand side is independent of t1:

g−(t1+ε) ◦gt2 ◦gt1+ε(p2) = g−(t1+ε) ◦gt2 ◦gt1 ◦gε(p2) = g−(t1+ε) ◦gε ◦gt2 ◦gt1(p2) = g−t1 ◦gt2 ◦gt1(p2).

Notice that gt2(p2) is a holomorphic function of p2 and t2, because in U(p1) the function gt1 is holomorphic and its image is

away from S , i.e., in the affine, gt2 is holomorphic. The same argument applies to gt3(p3), ...,g
tn(pn) where

gtn(pn) = g−tn−1 ◦gtn ◦gtn−1(pn), ∀pn ∈U(pn−1)≡ g−tn−1(U(q)).

Thus X1, ...,Xn have been holomorphically extended, remain independent and commuting on Ã . Therefore, we can show along

the same lines as in the Arnold-Liouville theorem [7] that Ã is a complex torus Cn/lattice. And that will done, by considering

the local diffeomorphism

C
n −→ Ã , t = (t1, ..., tn) 7−→ gt p = gt1 ◦ . . .◦gtn(p),

for a fixed origin p ∈ f (A ). The additive subgroup L = {t ∈ C
n : gt p = p}, is a lattice of Cn (spanned by 2n vectors in C

n,

independent over R), hence C
n/L −→ Ã is a biholomorphic diffeomorphism.

c) Let

ds2 =
n

∑
k=1

dtk ⊗dtk,

be a hermitian metric on the complex variety Ã and let ω its fundamental (1,1)-form. We have

ω =−1

2
Imds2 =

√
−1

2

n

∑
k=1

dtk ∧dtk.

So we see that ω is closed and the metric ds2 is kähler and consequently Ã is a Kähler variety.

d) On the Kähler variety Ã are defined periods of ω . If these periods are integers (possibly after multiplication by a

number), we obtain a variety of Hodge. More specifically, integrals
∫

γk
ω of the form ω (where γk are cycles in H2(Ã ,Z))

determine the periods ω . As they are integers, then Ã is a Hodge variety. The variety Ã is equipped with n holomorphic

vectors fields, independent and commuting. From a) and b) the variety Ã is both a projective variety and a complex torus and

hence an Abelian variety as a consequence of Chow theorem [12, 27]. Another proof is to use the result that we just show since

every Hodge torus is Abelian, the converse is also true. Note also that by Moishezon’s theorem [30], a compact complex kähler

variety having as many independent meromorphic functions as its dimension is an Abelian variety. �
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3. Geodesic flow on the group SO(3) and Euler rigid body motion

The Euler rigid body motion [11] (also called Euler-Poinsot [36] motion of the solid) can be regarded as geodesic flow on

SO(3). This problem expresses the free motion of a rigid body around a fixed point and the motion of the body is governed by

the following equation

Ṁ = [M,ΛM] , (3.1)

with

M = (Mi j)1≤i, j≤3
≡

3

∑
i=1

miei ≡




0 −m3 m2

m3 0 −m1

−m2 m1 0


 ∈ so(3),

and

ΛM =
3

∑
i=1

λimiei ≡




0 −λ3m3 λ2m2

λ3m3 0 −λ1m1

−λ2m2 λ1m1 0


 ∈ so(3), λi ≡

1

Ii

,

where (m1,m2,m3) is the angular momentum, and I1, I2, I3, the principal moments of inertia about the principal axes of inertia.

Equation (3.1) is written explicitly in the form

ṁ1 = (λ3 −λ2)m2m3,

ṁ2 = (λ1 −λ3)m1m3, (3.2)

ṁ3 = (λ2 −λ1)m1m2,

and can also be written as a Hamiltonian vector field

ẋ = J
∂H

∂x
, x = (m1,m2,m3)

⊺ ,

with the Hamiltonian

H =
1

2

(
λ1m2

1 +λ2m2
2 +λ3m2

3

)
,

and

J =




0 −m3 m2

m3 0 −m1

−m2 m1 0


 ∈ so(3).

The system (3.2) has beside the energy H1 = H, a trivial invariant H2, i.e., such that : J
∂H2

∂x
= 0, implying

H2 =
1

2

(
m2

1 +m2
2 +m2

3

)
.

The system evolves on the intersection of the sphere H1 = c1 and the ellipsoid H2 = c2. In R
3, this intersection will be

isomorphic to two circles
(

with
c2
λ3

< c1 <
c2
λ1

)
. The system (3.2) is completely integrable and the vector J

∂H

∂x
gives a flow on

a variety

Mc =
2⋂

i=1

{
x ∈ R

3 : Hi(x) = ci

}
, (c = (c1,c2) is not a critical value),

diffeomorphic to a real torus of dimension 1, that is to say a circle.

From the first integrals H1 and H2, we express m1 and m3 as a function of m2. These expressions are then introduced into

the second equation of the system (3.2) to obtain a differential equation in m2 and
dm2

dt
only. In more detail, the following

relationships are easily obtained from equations H1 = c1 and H2 = c2:

m2
1 =

2c1 − r2λ3 − (λ2 −λ3)m2
2

λ1 −λ3
, (3.3)
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m2
3 =

2c2λ1 −2c1 − (λ1 −λ2)m2
2

λ1 −λ3
. (3.4)

By substituting these expressions in the second equation of the system (3.2), we obtain

ṁ2 =
√(

2c1 −2c2λ3 − (λ2 −λ3)m2
2

)(
2c2λ1 −2c1 − (λ1 −λ2)m2

2

)
.

By integrating this equation, we obtain a function t(m2) in the form of an elliptic integral. To reduce this to the standard form,

we can assume that 2c2 >
2c1
λ2

(otherwise, it is enough to invert the indices 1 and 3 in all the previous formulas). We rewrite the

previous equation, in the form

dm2√
(2c1 −2c2λ3)(2c2λ1 −2c1)dt

=

√(
1− (λ2 −λ3)m2

2

2c1 −2c2λ3

)(
1− (λ1 −λ2)m2

2

2c2λ1 −2c1

)
.

By setting

τ = t
√
(λ2 −λ3)(2c2λ1 −2c1), s = m2

√
λ2 −λ3

2c1 −2c2λ3
,

we obtain

ds

dτ
=

√
(1− s2)

(
1− (λ1 −λ2)(2c1 −2c2λ3)

(λ2 −λ3)(2c2λ1 −2c1)
s2

)
,

which suggests choosing elliptic functions as a module

k2 =
(λ1 −λ2)(2c1 −2c2λ3)

(λ2 −λ3)(2c2λ1 −2c1)
.

Inequalities λ1 > λ2 > λ3,
2c1
λ1

< 2c2 <
2c1
λ3

and r2 > 2c1
λ2

show that 0 < k2 < 1. So we get

ds

dτ
=
√
(1− s2)(1− k2s2).

This equation admits the solution (we choose the origin of the times such that m2 = 0 for t = 0):

τ =
∫ s

0

ds√
(1− s2)(1− k2s2)

.

It is the integral of a holomorphic differential on an elliptic curve

E : w2 = (1− s2)(1− k2s2). (3.5)

The inverse function s(τ) is one of Jacobi’s elliptic functions [27] : s = snτ , which also determines m2 as a function of time,

that is,

m2 =

√
2H1 − r2λ3

λ2 −λ3
· snτ.

According to the equalities (3.3) and (3.4), we know that the functions m1 and m3 are expressed algebraically as a function of

m2, so

m1 =

√
2H1 − r2λ3

λ1 −λ3
·
√

1− sn2τ,

m3 =

√
r2λ1 −2H1

λ1 −λ3
·
√

1− k2sn2τ.



Classifying the Metrics for Which Geodesic Flow on the Group SO(n) is Algebraically Completely Integrable — 34/52

Given the definition of the other two elliptical functions [27] :

cnτ =
√

1− sn2τ, dnτ =
√

1− k2sn2τ,

and the fact that τ = t
√

(λ2 −λ3)(2c2λ1 −2c1), we finally get the following explicit formulas :

m1 =

√
2c1 −2c2λ3

λ1 −λ3
cn(t

√
(λ2 −λ3)(2c2λ1 −2H1)),

m2 =

√
2c1 −2c2λ3

λ2 −λ3
sn(t

√
(λ2 −λ3)(2c2λ1 −2c1)),

m3 =

√
2c2λ1 −2c1

λ1 −λ3
dn(t

√
(λ2 −λ3)(2c2λ1 −2c1)).

In other words, the integration of the Euler equations is done by means of elliptic Jacobi functions. In fact, the Euler rigid body

motion is always algebraically completely integrable. The two circles of the intersection Mc, (with
c1
λ3

< c2 <
c1
λ1

, otherwise it is

empty) forms the real part of a complex torus of dimension 1, defined by the elliptic curve E (3.5). The complex intersection(
⊂ C

3
)

is the affine part of an elliptic curve

Mc =
{

X ∈ P
3(C) : H1(X) = c1X2

0

}
∩
{

X ∈ P
3(C) : H2(X) = c2X2

0

}
.

We show that Mc is isomorphic to the elliptic curve E . In addition, the circle defined by {H1 = c1}∩{H2 = c2} extends to

the complex torus C/lattice and the flow linearizes on this torus. If p(t) = (m1(t),m2(t),m3(t)), is a solution of the system

(3.2), the law connecting p(t1 + t2) to p(t1) and p(t2) is the the addition law on the elliptic curve E . From equations (3.2), the

unique holomorphic differential on Mc is given by

ω =
dm1

(λ3 −λ2)m2m3
=

dm2

(λ1 −λ3)m1m3
=

dm3

(λ2 −λ1)m1m2
,

so t =
∫ p(t)

p(0)
ω , p(0) ∈ Mc. The system (3.2) is invariant by the transformations t → α−1t, m1 → αm1, m2 → αm2, m3 → αm3.

We seek solutions of the system (3.2) or of equation (3.1) in the form of Laurent series

M(t) = t−1
(

M(0)+M(1)t +M(2)t2 + · · ·
)
=

∞

∑
j=0

M( j)t j−1, (3.6)

depending on dim(phase space)−1 = 2 free parameters. Substituting (3.6) into equation (3.1), one obtains

∞

∑
j=0

( j−1)M( j)t j−2 =
∞

∑
j=0

(
j

∑
i=0

[
M(i),ΛM( j−i)

])
t j−2.

Therefore,

( j− i)M( j) =
j

∑
i=0

[
M(i),ΛM( j−i)

]
,

and we see that the coefficients M(0),M(1), ..., satisfy the equations

M(0)+
[
M(0),ΛM(0)

]
= 0, (3.7)

(L− kI)M(k) =−
k−1

∑
i=1

[
M(i),ΛC(k−i)

]
k ≥ 1,

where L Is the linear operator L : so(3)−→ so(3) defined by

L(Y ) = Y +
[
M(0),ΛY

]
+
[
Y,ΛM0

]
= Jacobian of (3.7).
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The matrix M(0) appearing in L is a solution of the nonlinear equation (3.7). A simple calculation shows that the matrix (L−kI)
is always invertible except for k = 2 and therefore its rank is equal to 1. This shows that the coefficient M(2) contains two free

parameters and can be assimilated to c1 and c2. In a detailed and explicit way, let us look for the solutions of the system (3.2) in

the form of Laurent’s series

m1 =
1

t

(
m
(0)
1 +m

(1)
1 t +m

(2)
1 t2 + · · ·

)
,

m2 =
1

t

(
m
(0)
2 +m

(1)
2 t +m

(2)
2 t2 + · · ·

)
,

m3 =
1

t

(
m
(0)
3 +m

(1)
3 t +m

(2)
3 t2 + · · ·

)
,

depending on dim(phase space)−1 = 2 free parameters. Substituting these equations into the system (3.2), we see that

1) the coefficients m
(0)
1 , m

(0)
2 , m

(0)
3 , satisfy the equations

m
(0)
1 +(λ3 −λ2)m

(0)
2 m

(0)
3 = 0,

m
(0)
2 +(λ1 −λ3)m

(0)
1 m

(0)
3 = 0,

m
(0)
3 +(λ2 −λ1)m

(0)
1 m

(0)
2 = 0,

whose solutions are

1st case :

m
(0)
1 = −1√

(λ2−λ1)(λ1−λ3)
, m

(0)
2 = 1√

(λ2−λ1)(λ3−λ2)
, m

(0)
3 = 1√

(λ1−λ3)(λ3−λ2)
.

2nd case :

m
(0)
1 = 1√

(λ2−λ1)(λ1−λ3)
, m

(0)
2 = 1√

(λ2−λ1)(λ3−λ2)
, m

(0)
3 = −1√

(λ1−λ3)(λ3−λ2)
.

3rd case :

m
(0)
1 = 1√

(λ2−λ1)(λ1−λ3)
, m

(0)
2 = −1√

(λ2−λ1)(λ3−λ2)
, m

(0)
3 = 1√

(λ1−λ3)(λ3−λ2)
.

4th case :

m
(0)
1 = −1√

(λ2−λ1)(λ1−λ3)
, m

(0)
2 = −1√

(λ2−λ1)(λ3−λ2)
, m

(0)
3 = −1√

(λ1−λ3)(λ3−λ2)
.

2) the coefficients m
(1)
1 , m

(1)
2 , m

(1)
3 , satisfy equations

(λ3 −λ2)m
(0)
2 m

(1)
3 +(λ3 −λ2)m

(1)
2 m

(0)
3 = 0,

(λ1 −λ3)m
(0)
1 m

(1)
3 +(λ1 −λ3)m

(1)
1 m

(0)
3 = 0,

(λ2 −λ1)m
(0)
1 m

(1)
2 +(λ2 −λ1)m

(1)
1 m

(0)
2 = 0,

the solutions of which are in all cases : m
(1)
1 = m

(1)
2 = m

(1)
3 = 0.

3) the coefficients m
(2)
1 , m

(2)
2 , m

(2)
3 , satisfy equations

m
(2)
1 −λ3m

(0)
2 m

(2)
3 −λ3m

(1)
2 m

(1)
3 −λ3m

(2)
2 m

(0)
3

+λ2m
(0)
2 m

(2)
3 +λ2m

(1)
2 m

(1)
3 +λ2m

(2)
2 m

(0)
3 = 0,

m
(2)
2 −λ1m

(0)
1 m

(2)
3 −λ1m

(1)
1 m

(1)
3 −λ1a2m

(0)
3

+λ3m
(0)
1 m

(2)
3 +λ3m

(1)
1 m

(1)
3 +λ3m

(2)
1 m

(0)
3 = 0,

m
(2)
3 −λ2m

(0)
1 b2 −λ2m

(1)
1 m

(1)
2 −λ2m

(2)
1 m

(0)
2

+λ1m
(0)
1 m

(2)
2 +λ1m

(1)
1 m

(1)
2 +λ1m

(2)
1 m

(0)
2 = 0,

whose solutions corresponding to the different cases are respectively,

1st case : m
(2)
1 =

√
(λ3−λ2)√
(λ1−λ3)

m
(2)
2 +

√
(λ3−λ2)√
(λ2−λ1)

m
(2)
3 .

2nd case : m
(2)
1 =−

√
λ3−λ2√
λ1−λ3

m
(2)
2 +

√
λ3−λ2√
λ2−λ1

m
(2)
3 .

3rd case : m
(2)
1 =

√
λ3−λ2√
λ1−λ3

m
(2)
2 −

√
λ3−λ2√
λ2−λ1

m
(2)
3 .
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4th case : m
(2)
1 =−

√
λ3−λ2√
λ1−λ3

m
(2)
2 −

√
λ3−λ2√
λ2−λ1

m
(2)
3 .

where m
(2)
2 et m

(2)
3 are two free parameters.

Therefore, for the first case, we have

m1 =
−1

t
√

(λ2−λ1)(λ1−λ3)
+

(√
(λ3−λ2)√
(λ1−λ3)

m
(2)
2 +

√
(λ3−λ2)√
(λ2−λ1)

m
(2)
3

)
t + · · · ,

m2 =
1

t
√

(λ2−λ1)(λ3−λ2)
+m

(2)
2 t + · · · ,

m3 =
1

t
√

(λ1−λ3)(λ3−λ2)
+m

(2)
3 t + · · · .

Substituting these developments into the first integrals H1 and H2, we get

H1 = 2

√
λ3−λ2√
λ2−λ1

(
1

λ3−λ2
− 1

λ1−λ3

)
m
(2)
2 +2

√
λ3−λ2√
λ1−λ3

(
1

λ3−λ2
− 1

λ2−λ1

)
m
(2)
3 ,

H2 = 2

√
λ3−λ2√
λ2−λ1

(
λ2

λ3−λ2
− λ1

λ1−λ3

)
m
(2)
2 +2

√
λ3−λ2√
λ1−λ3

(
λ3

λ3−λ2
− λ1

λ2−λ1

)
m
(2)
3 ,

and we deduce the relations :

m
(2)
3 = 1

6
√

(λ1−λ3)(λ3−λ2)
((λ3 −λ2)(λ1H1 −H2)− (λ1 −λ3)(λ2H1 −H2)),

m
(2)
2 = 1

6
√

(λ2−λ1)(λ3−λ2)
((λ2 −λ1)(λ3H1 −H2)− (λ3 −λ2)(λ1H1 −H2)) .

Obviously, similar expressions are obtained for the other cases.

We deduce from what precedes the following result:

Theorem 3.1. The Euler rigid body motion is always algebraically completely integrable and can be regarded as geodesic

flow on SO(3). In addition, the integration of the equations is done by means of elliptic Jacobi functions.

4. Clebsch and Lyapunov-Steklov cases of a solid in an ideal fluid

The equations of motion of a solid in an ideal fluid have the form (Kirchhoff’s equations [17]) :

ṗ1 = p2
∂H

∂ l3
− p3

∂H

∂ l2
,

ṗ2 = p3
∂H

∂ l1
− p1

∂H

∂ l3
,

ṗ3 = p1
∂H

∂ l2
− p2

∂H

∂ l1
, (4.1)

l̇1 = p2
∂H

∂ p3
− p3

∂H

∂ p2
+ l2

∂H

∂ l3
− l3

∂H

∂ l2
,

l̇2 = p3
∂H

∂ p1
− p1

∂H

∂ p3
+ l3

∂H

∂ l1
− l1

∂H

∂ l3
,

l̇3 = p1
∂H

∂ p2
− p2

∂H

∂ p1
+ l1

∂H

∂ l2
− l2

∂H

∂ l1
,

where (p1, p2, p3) is the velocity of a point fixed relatively to the solid, (l1, l2, l3) the angular velocity of the body expressed

with regard to a frame of reference also fixed relatively to the solid and H is the Hamiltonian. Equations (4.1) can be regarded

as the equations of the geodesics of the right-invariant metric on the group E(3) = SO(3)×R
3 of motions of 3-dimensional

Euclidean space R
3, generated by rotations and translations.

Equations (4.1) have the trivial first integrals (or invariants):

H1 = H, H2 =
3

∑
k=1

p2
k , H3 =

3

∑
k=1

pklk. (4.2)

We distinguish two integrable cases: the case of Clebsch [8] and the case of Lyapunov-Steklov [28, 37].
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4.1 Clebsch’s case
In Clebsch’s case, we have

H1 = H =
1

2

3

∑
k=1

(
ak p2

k +bkl2
k

)
, (4.3)

with

a2 −a3

b1
+

a3 −a1

b2
+

a1 −a2

b3
= 0.

An additional integral is

H4 =
1

2

3

∑
k=1

(
bk p2

k +ρl2
k

)
, (4.4)

where the constant ρ satisfies the conditions

ρ =
b1 (b2 −b3)

a2 −a3
=

b2 (b3 −b1)

a3 −a1
=

b3 (b1 −b2)

a1 −a2
.

We shall study briefly Kötter’s solution [19] by quadratures of the equations (4.1), in terms of genus 2 hyperelliptic integrals. In

fact, the transformation to the separating coordinates s1 and s2 which leads to the quadratures in terms of hyperelliptic integrals

is quite involved. Finding this transformation require a great deal of luck and ingenuity. After the substitution bk → ρbk,

1 ≤ k ≤ 3, and after an appropriate linear combination of H1 and H2, the equations (4.2), (4.3), (4.4) can be written in the form

p2
1 + p2

2 + p2
3 = A,

b1 p2
1 +b2 p2

2 +b3 p2
3 + l2

1 + l2
2 + l2

3 = B,

b1l2
1 +b2l2

2 +b3l2
3 −b2b3 p2

1 −b1b3 p2
2 −b1b2 p2

3 =C,

p1l1 + p2l2 + p3l3 = D,

where A,B,C,D are constants. Following [19, 10, 23], we introduce coordinates ϕk, ψk, 1 ≤ k ≤ 3 by setting

ϕk = pk




√
∏

3
j=1 (z1 −b j)

√
z1 −bk

√
∂R/∂ z1

+
√
−1

√
∏

3
j=1 (z2 −b j)

√
z2 −bk

√
∂R/∂ z2


+ lk

( √
z1 −bk√
∂R/∂ z1

+
√
−1

√
z2 −bk√
∂R/∂ z2

)
,

ψk = pk




√
∏

3
j=1 (z1 −b j)

√
z1 −bk

√
∂R/∂ z1

−
√
−1

√
∏

3
j=1 (z2 −b j)

√
z2 −bk

√
∂R/∂ z2


+ lk

( √
z1 −bk√
∂R/∂ z1

−
√
−1

√
z2 −bk√
∂R/∂ z2

)
,

where

R(z) =
4

∏
i=1

(z− zi) ,

and z1,z2,z3,z4 are the roots of the equation

A2

(
z2 − z

3

∑
k=1

bk

)
+Bz−C+2D

√
3

∏
k=1

(z−bk) = 0.

Let s1 and s2 be the roots of the equation

ψ2
1

ν2
1 − s

+
ψ2

2

ν2
2 − s

+
ψ2

3

ν2
3 − s

= 0,

where

νk =

√
z3−bk√

∂R/∂ z3

+
√
−1

√
z4−bk√

∂R/∂ z4√
z1−bk√

∂R/∂ z1

+
√
−1

√
z2−bk√

∂R/∂ z2

, 1 ≤ k ≤ 3.
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An expression of the original variables p1, p2, p3, l1, l2, l3 in terms of s1 and s2 can be found in [19]. After some algebraic

manipulations, we obtain the following equations for s1 and s2:

ds1

dt
=

(as1 +b)
√

P5 (s1)

s2 − s1
,

ds2

dt
=

(as2 +b)
√

P5 (s2)

s1 − s2
,

where a, b are constants and P5 (s) is a polynomial of degree 5 of the form

P5 (s) = s(s−ν2
1 )(s−ν2

2 )(s−ν2
3 )(s−ν2

1 ν2
2 ν2

3 ).

These equations can be integrated by the Abelian mapping

H → Jac(H ) = C
2/Λ, P 7−→

(∫ P

P0

θ1,
∫ P

P0

θ2

)
,

where the hyperelliptic curve H of genus 2 is given by the equation w2 = P5(s), Λ is the lattice generated by the vectors

n1 +Mn2,(n1,n2) ∈ Z
2,M is the matrix of period of the curve H , (θ1,θ2) is a canonical basis of holomorphic differentials on

H , i.e.,

θ1 =
ds√
P5(s)

,θ2 =
sds√
P5(s)

,

and P0 is a fixed point. Consequently, we have

Theorem 4.1. The system of differential equations (4.1) in the Clebsch’s case can be integrated in terms of genus 2 hyperelliptic

functions of time.

4.2 Lyapunov-Steklov’s case
In Lyapunov-Steklov’case, we have

H1 = H =
1

2

3

∑
k=1

(
ak p2

k +bkl2
k

)
+

3

∑
k=1

ck pklk,

with

a1 = A2b1 (b2 −b3)
2 +B, a2 = A2b2 (b3 −b1)

2 +B, a3 = A2b3 (b1 −b2)
2 +B,

c1 = Ab2b3 +C, c2 = Ab1b3 +C, c3 = Ab1b2 +C,

where A, B, C are constants. A fourth first integral is given by

H4 =
1

2

3

∑
k=1

(
dk p2

k + l2
k

)
−A

3

∑
k=1

bk pklk,

where

d1 = A2 (b2 −b3)
2 , d2 = A2 (b3 −b1)

2 , d3 = A2 (b1 −b2)
2 .

A long and delicate calculation [20] shows that in this case too, the integration is done using hyperelliptic functions of genus

two.

5. The classification of algebraic integrable geodesic flow on SO(4)

In several problems, , when studying the geodesic flow on SO(4), it is more convenient to use the coordinates u = (x1,x2,x3)
and v = (x4,x5,x6), they correspond to the decomposition u⊕ v ∈ so(4)≃ so(3)⊕ so(3). In these coordinates, the geodesic

flow on the group SO(4) can be written as

XH : u̇ = u∧ ∂H

∂u
, v̇ = v∧ ∂H

∂v
,
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for invariant metric defined by the quadratic form

H =
1

24

3

∑
i=1

(
3(3ci +di)x

2
i +(ci +3di)x

2
i+3 +6(di − ci)xixi+3

)
, (5.1)

with coefficients

ci =
bi

ai

,di =
b j −bk

a j −ak

,
3

∑
i=1

ai = 0,
3

∑
i=1

bi = 0,

and i jk permutations of 123. This geodesic flow has three quadratic invariants, namely, the Casimir functions ‖u‖2 and

‖v‖2, and the metric above, and one quartic invariant. The invariants ‖u‖2 and ‖v‖2 define the 4-dimensional non degenerate

symplectic leaves of Hamiltonian structure, which therefore are parameterized by the values of ‖u‖2 and ‖v‖2. More precisely,

in the classification [4, 6] of algebraic integrable geodesic flow on SO(4), three cases come up; two are linearly equivalent to

cases of rigid body motion in a perfect fluid studied last century, respectively by Clebsch and Lyapunov-Steklov, and there is a

third new case namely the Kostant-Kirillov Hamiltonian flow on the dual of so(4). The metric H is obviously written in the

quadratic form

H =
1

2

6

∑
j=1

λ jx
2
j +

3

∑
j=1

µ jx jx j+3,

where λ1, ...,λ6,µ1,µ2,µ3 ∈ C and λ12λ23λ31λ45λ56λ64µ1µ2µ3 6= 0 with λ jk ≡ λ j −λk. Explicitly, the equations above are

written

dx1

dt
= λ32x2x3 +µ3x2x6 −µ2x3x5,

dx2

dt
= λ13x3x1 +µ1x3x4 −µ3x1x5,

dx3

dt
= λ21x1x2 +µ2x1x5 −µ1x2x4,

dx4

dt
= λ65x5x6 +µ3x3x5 −µ2x2x6,

dx5

dt
= λ46x6x4 +µ1x1x6 −µ3x3x4,

dx6

dt
= λ54x4x5 +µ2x2x4 −µ1x1x5.

The equations have besides the energy H1 = H, two trivial constants of the motion

H2 = x2
1 + x2

2 + x2
3,H3 = x2

4 + x2
5 + x2

6.

Adler and van Moerbeke [4, 6] have shown that the geodesic flow on SO(4) for the metric defined by the above quadratic

form is algebraically completely integrable in the three cases described in the following subsections and these are the only ones

that exist.

5.1 Manakov geodesic flow on the group SO(4) and Clebsch rigid body motion in a perfect fluid

The geodesic flow for this metric takes the following commutator form (Euler-Arnold equations) :

Ẋ = [X ,Λ.X ] , . ≡ d

dt
(5.2)

where

X = (Xi j)1≤i, j≤4
=

6

∑
i=1

xiei =




0 −x3 x2 −x4

x3 0 −x1 −x5

−x2 x1 0 −x6

x4 x5 x6 0


 ∈ so(4),
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and

Λ.X = (λi jXi j)1≤i, j≤4
=

6

∑
i=1

λixiei =




0 −λ3x3 λ2x2 −λ4x4

λ3x3 0 −λ1x1 −λ5x5

−λ2x2 λ1x1 0 −λ6x6

λ4x4 λ5x5 λ6x6 0


 ∈ so(4).

In view of the isomorphism between
(
R

6,∧
)

and (so(4), [, ]) we write the system (5.2) as

ẋ1 = (λ3 −λ2)x2x3 +(λ6 −λ5)x5x6,

ẋ2 = (λ1 −λ3)x1x3 +(λ4 −λ4)x4x6,

ẋ3 = (λ2 −λ1)x1x2 +(λ5 −λ4)x4x5, (5.3)

ẋ4 = (λ3 −λ5)x3x5 +(λ6 −λ2)x2x6,

ẋ5 = (λ4 −λ3)x3x4 +(λ1 −λ6)x1x6,

ẋ6 = (λ2 −λ4)x2x4 +(λ5 −λ1)x1x5.

The quadratic form H is diagonal with regard to the customary so(4) coordinates (Manakov metric [29]), i.e.,

2H =
4

∑
j,k=1

j<k

Λ jkX2
jk, (X jk)1≤ j,k≤4) ∈ so(4),

with

Λ jk =
β j −βk

α j −αk

, (α j,β j ∈ C,1 ≤ j ≤ 4),

all Λ jk distinct. The extra invariant H4 is quadratic and we’ll see how this was done independently by Haine [13] and Mumford

(appendix in[2]) that the flow evolves on Abelian surfaces C2/lattice ⊆ P
7(C), having period matrix

(
2 0 a c

0 4 c b

)
, Im

(
a c

c b

)
> 0, (a,b,c ∈ C),

and also the linearization takes place on a Prym variety (For the definition and properties of Prym varieties, see for example

[13, 25]). The periods of this Prym variety provide the exact periods of the motion in terms of Abelian integrals. The problem

of the solid body in a fluid in the case of Clebsch is a particular case of this metric (see subsection 4.1).

Let’s see in more detail the linearization of this problem [13, 6, 22]. Let x ∈ C
6, t ∈ C and Z ⊂ C

6 a non-empty Zariski

open set. The momentum map

g : (H1, ...,H4) : C6 −→ C
4,

is submersive on Z, i.e., dH1(x), ...,dH4(x) are linearly independent on Z. Let

I = g
(
C

6\Z
)
=
{

c = (ci) ∈ C
4 : ∃x ∈ g−1(c) with dH1(x)∧ ...∧dH4(x) = 0

}
,

be the set of critical values of g and I the Zariski closure of I in C
4. The non-empty Zariski open set Z can be chosen as the set

Z =
{

x ∈ C
6 : g(x) ∈ C

4\I
}
.

The invariant variety defined by

Mc = g−1(c) =
4⋂

i=1

{
x ∈ C

6 : Hi(x) = ci

}
,

is the fibre of a morphism from C
6 to C

4, thus Mc is a smooth affine surface for generic c = (c1, ...,c4) ∈ C
4 and the main

problem will be to complete Mc into an Abelian surface. Now, how does one find the compactification of Mc into an Abelian

surface? This compactification is not trivial and the simplest one obtained as a closure :

Mc =
4⋂

i=1

{
Hi(x) = cix

2
0

}
⊂ P

6(C),
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i.e.,

x1x4 + x2x5 + x3x6 = c1x2
0,

x2
1 + x2

2 + · · ·+ x2
6 = c2x2

0,

λ1x2
1 +λ2x2

2 + · · ·+λ6x2
6 = c3x2

0,

µ1x2
1 +µ2x2

2 + · · ·+µ6x2
6 = c4x2

0,

where [x0 : x1 : ... : x6] are homogeneous coordinates on P
6(C), does not lead to this result (in the following we will not

distinguish between x1 as a homogeneous coordinates [x0 : x1] and as an affine coordinate x1/x0). Indeed, an Abelian surface is

not simply-connected and therefore cannot be projective complete intersection. In other words, if Mc is to be the affine part of

an Abelian surface, Mc must have a singularity somewhere along the locus at infinity C = Mc

⋂{x0 = 0}. A direct calculation

shows that C is an ordinary double curve of Mc except at 16 ordinary pinch points of Mc; the variety Mc has a local analytic

equation x2 = yz2. The reduced curve Cr is a smooth elliptic curve. Now , it’s only after blowing up Mc along the curve Cr that

one gets the desired Abelian surface.

Theorem 5.1. a) The divisor of poles of the functions x1,x2, ...,x6 is a Riemann surface D of genus 9. For generic constants,

the surface Mc is the affine part of an Abelian surface M̃c obtained by gluing to Mc the divisor D .

b) The flow (5.3) evolves on an Abelian surface M̃c
∼= C

2/lattice of polarization

(
2 0 a c

0 4 c b

)
, Im

(
a c

c b

)
> 0.

c) The Abelian surface M̃c which completes the affine surface Mc is the Prym variety Prymα(Γ) of the genus 3 Riemann

surface Γ:

Γ :

{
w2 =−c1

(
x0

5x0
6

)2 − c2

(
x0

6

)2
z− c3

(
x0

5

)2
z+ c4y

y2 = z
(
α2z−1

)
(β 2z+1)

for the involution

σ : Γ −→ Γ, (w,y,z) 7−→ (−w,y,z),

interchanging the two sheets of the double covering

Γ 7−→ Γ0, (w,y,z) 7−→ (y,z),

where Γ0 is the elliptic curve defined by

Γ0 : y2 = z
(
α2z−1

)
(β 2z+1).

Proof. a) Consider points at infinity which are limit points of trajectories of the flow. There is a Laurent decomposition of

such asymptotic solutions,

X(t) = t−1
(

X (0)+X (1)t +X (2)t2 + · · ·
)

(5.4)

which depend on dim(phase space)−1 = 5 free parameters. Putting (5.4) into (5.2), solving inductively for the X (k), one finds

at the 0th step a non-linear equation,

X (0)+
[
X (0),Λ.X (0)

]
= 0, (5.5)

and at the kth step, a linear system of equations

(L− kI)
(

X (k)
)
=

{
0 for k = 1

quadratic polynomial in X (1), ...,X (k−1) for k ≥ 2
(5.6)

where L denotes the linear map

L(Y ) =
[
Y,Λ.X (0)

]
+
[
X (0),Λ.Y

]
+Y = Jacobian map of (5.5).
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One parameter appear at the 0th step, i.e., in the resolution of (5.5) and the 4 remaining ones at the kth step, k = 1, ...,4. Taking

into account only solutions trajectories lying on the surface Mc, we obtain one-parameter families which are parameterized by a

Riemann surface. To be precise we search for the set D of Laurent solutions (5.4) restricted to the affine invariant surface Mc,

i.e.,

D = closure of the continuous components of

{Laurent solutions X(t) such that Hi (X(t)) = ci, 1 ≤ i ≤ 4} ,

=
4⋂

i=1

{
t0 − coefficient of Hi (X(t)) = ci

}
,

= a Riemann surface (algebraic curve) whose affine equation is



w2 + c1

(
x
(0)
5 x

(0)
6

)2

+ c2

(
x
(0)
4 x

(0)
6

)2

+ c3

(
x
(0)
4 x

(0)
5

)2

+ c4x
(0)
4 x

(0)
5 x

(0)
6 ,

≡ w2 +F
(

x
(0)
4 ,x

(0)
5 ,x

(0)
6

)
= 0

(5.7)

where w is an arbitrary parameter and where x
(0)
4 ,x

(0)
5 ,x

(0)
6 parameterizes the elliptic curve

E :





(
x
(0)
4

)2

+
(

x
(0)
5

)2

+
(

x
(0)
6

)2

= 0(
βx

(0)
5 +αx

(0)
6

)(
βx

(0)
5 −αx

(0)
6

)
= 1

(5.8)

with (α,β ) such that : α2 +β 2 +1 = 0. The Riemann surface D is a two-sheeted ramified covering of the elliptic curve E and

it easy to check that the elliptic curve E is exactly the reduced curve Cr. The branch points are defined by the 16 zeroes of

F
(

x
(0)
4 ,x

(0)
5 ,x

(0)
6

)
on E . The Riemann surface D is unramified at infinity and by Riemann-Hurwitz’s formula,

2g(D)−2 = N (2g(E )−2)+R,

where N is the number of sheets and R the ramification index, the genus g(D) of D is 9. To show that Mc is the affine part of

an Abelian surface M̃c with M̃c\Mc = D , we can use the method of Laurent’s developments (see Haine [13]) or theorem 2.3.

Here, by following Mumford (see appendix to [2]), we give an abstract algebro-geometrical proof that the four quadrics in this

problem intersect in the affine part of an Abelian surface using Enriques classification of algebraic surfaces. For this, we will

compute the invariants of M̃c and use Enriques classification of algebraic surfaces (see [12], p.590). We denote as usual by K
M̃c

the canonical bundle, χ(O
M̃c
) the Euler characteristic and q(M̃c) the irregularity of M̃c. Now if

φ : M̃c −→ Mc ⊂ P
6(C)

is the normalization of Mc, then the pullback map on sections

φ ∗ : H0
(
Mc,OMc

)
−→ H0

(
M̃c,OM̃c

)
,

is an isomorphism and

K
M̃c

= K̃Mc
−D , K̃Mc

= φ ∗ (KMc

)

and so for H a hyperplane in P
6(C),

K
M̃c

= φ ∗
(

Mc.KP6(C)+(
4

∑
i=1

deg Hi).H

)
−D = 0.

Also

χ
(
O

M̃c

)
= χ

(
φ∗OM̃c

/OMc

)
+χ

(
OMc

)
= χ (φ∗OD/OE )+χ

(
O

A

)
.

Recall that the Riemann surface D (5.7) of genus 9, is a double cover ramified over 16 points of the elliptic curve E (5.8).

We shall use the Koszul complex to compute χ
(
OMc

)
. In the local ring at each point of P6(C) the localizations of the 4

homogeneous polynomials Hi give a regular sequence, and the Koszul complex gives a canonical resolution

0 → O
P6(C)(−8)→ O

P6(C)(−6)4 → O
P6(C)(−4)6 → O

P6(C)(−2)4 → O
P6(C) → O −

Mc

→ 0
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Thus χ
(
OMc

)
= 8, hence χ

(
O

M̃c

)
= 0 and q

(
M̃c

)
= 2. By Enriques-Kodaira’s classification theorem, it follows that M̃c is an

Abelian surface.

b) Let

L ≡
{

f : f meromorphic on M̃c,( f )+D ≥ 0
}

be the set of meromorphic functions on M̃c with at worst a simple pole along D and let

χ(D) = dimH0
(

M̃c,O(D)
)
−dimH1

(
M̃c,O(D)

)
,

be the Euler characteristic of D . The adjunction formula and the Riemann-Roch theorem for divisors on Abelian surfaces imply

that

g(D) =
K

M̃c
.D +D .D

2
+1,

and

χ(D) = pa

(
M̃c

)
+1+

1

2

(
D .(D −K

M̃c
)
)
,

where g(D) is the geometric genus of D and pa

(
M̃c

)
is the arithmetic genus of M̃c. Since M̃c is an Abelian surface

(
K

M̃c
= 0, pa

(
M̃c

)
=−1

)
,

g(D)−1 =
D .D

2
= χ(D).

Using Kodaira-Serre duality [12, 27], Kodaira-Nakano vanishing theorem [12, 27] and a theorem on theta-functions [12, 27], it

easy to see that

g(D)−1 = dimL(D)
(
≡ h0(L)

)
= δ1δ2, (5.9)

where δ1,δ2 ∈N, are the elementary divisors of the polarization c1(L) of M̃c. Note that the natural reflection about the origin of

C
2, is given by

σ ≡−id : (x0,x1, . . . ,x6) 7−→ (−x0,x1, . . . ,x6) ,

and has 16 fixed points on M̃c, given by the 16 branch points on D covering the 16 roots of the polynomial F(x0
4,x

0
5,x

0
6) (5.7).

Since L is symmetric (σ∗L ≃ L), σ can be lifted to L as an involution σ̃ in two ways differing in sign and for each section

(theta-function) s ∈ H0(L), we therefore have σ̃s =±s. Recall that a section s ∈ H0(L) is called even (resp. odd) if σ̃s =+s

(resp.σ̃s =−s). Under σ̃ the vector space H0(L) splits into an even and odd subspace H0(L) = H0(L)even ⊕H0(L)odd with

H0(L)even containing all the even sections and H0(L)odd all odd ones. Using the inverse formula [12, 27], we see after a small

computation that

dimH0 (L )even =
δ1δ2

2
+2−1+♯ even δk ,k = 1,2 (5.10)

dimH0 (L )odd =
δ1δ2

2
−2−1+♯ even δk ,k = 1,2

Notice that c1(L) = φ ∗(H) and (c1(L)
2) = 16 (since the degree of Mc is 16). By the classification theory of ample line bundles

on Abelian varieties, M̃c ≃ C
2/LΩ with period lattice given by the columns of the matrix

Ω =

(
δ1 0 a c

0 δ2 c b

)
, Im

(
a c

c b

)
> 0,

according to (5.9), with

δ1δ2 = h0(L) = g(D)−1 = 8, δ1|δ2, δi ∈ N
∗.



Classifying the Metrics for Which Geodesic Flow on the Group SO(n) is Algebraically Completely Integrable — 44/52

Hence we have two possibilities : (i) δ1 = 1, δ2 = 8 and (ii) δ1 = 2, δ2 = 4. From formula (5.10), the corresponding line

bundle L has in case (i), 5 even sections, 3 odd ones and in case (ii), 6 even sections, 2 odd ones. Now x1, . . . ,x6 are 6 even

sections, showing that case (ii) is the only alternative and the period matrix has the form

(
2 0 a c

0 4 c b

)
, Im

(
a c

c b

)
> 0.

c) After substitution z ≡
(
x0

4

)2
, the Riemann surface D can also be seen as a four-sheeted unramified covering of another

Riemann surface Γ, determined by the equation

Γ : G(w,z)≡
(

w2 + c1

(
x0

5x0
6

)2
+ c2

(
x0

6

)2
z+ c3

(
x0

5

)2
z
)2

− c2
4

(
x0

5x0
6

)2
z = 0.

It is straightforward to verify that the equations (5.8) are equivalent to
(
x0

5

)2
= β 2z+1 and

(
x0

6

)2
= α2z−1. To compute the

genus of Γ, we observe that the Riemann surface Γ is invariant under an involution

σ : Γ −→ Γ, (w,z) 7−→ (−w,z). (5.11)

Consider a map

ρ : Γ −→ Γ0 ≡ Γ/σ , (w,y,z) 7−→ (y,z),

of the Riemann surface Γ onto an elliptic curve Γ0 ≡ Γ/σ , that is given by the equation

Γ0 : y2 = z
(
α2z−1

)
(β 2z+1). (5.12)

The genus of the Riemann surface

Γ :

{
w2 =−c1

(
x0

5x0
6

)2 − c2

(
x0

6

)2
z− c3

(
x0

5

)2
z+ c4y

y2 = z
(
α2z−1

)
(β 2z+1)

(5.13)

is calculated by means of the map ρ . The latter is two-sheeted ramified covering of the elliptic curve Γ0 with 4 branch points.

Using the Riemann-Hurwitz formula, we obtain g(Γ) = 3.

I now will proceed to show that the Abelian surface M̃c can be identified as Prym variety Prymσ (Γ). Let (a1,a2,a3,b1,b2,b3)
be a basis of cycles in the Riemann surface Γ with the intersection indices aioa j = biob j = 0, aiob j = δi j, such that

σ (a1) = a3, σ (b1) = b3, σ (a2) =−a2, σ (b2) =−b2

for the involution σ (5.11). By the Poincaré residue formula, the 3 holomorphic 1-forms ω0,ω1,ω2 in Γ are the differentials

P(w,z)
dz

(∂G/∂w)(w,z)

∣∣∣∣
G(w,z)=0

= P(w,z)
dz

4wy
,

for P a polynomial of degree ≤ degG−3 = 1. Therefore

ω0 =
dz

y
,ω1 =

zdz

wy
,ω2 =

dz

wy
,

form a basis of holomorphic differentials on Γ and obviously

σ∗ (ω0) = ω0,σ
∗ (ωk) =−ωk, (k = 1,2),

for the involution σ (5.11). It is well known that the period matrix Ω of Prymσ (Γ) can be written as follows

Ω =

(
2
∫

a1
ω1

∫
a2

ω1 2
∫

b1
ω1

∫
b2

ω1

2
∫

a1
ω2

∫
a2

ω2 2
∫

b1
ω2

∫
b2

ω2

)
,

Let (dt1,dt2) be a basis of holomorphic 1-forms on M̃c such that dt j

∣∣
D
= ω j, ( j = 1,2),

LΩ′ =

{
2

∑
k=1

mk

∫

a′
k

(
dt1

dt2

)
+nk

∫

b′
k

(
dt1

dt2

)
: mk,nk ∈ Z

}
,
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the lattice associated to the period matrix

Ω′ =

( ∫
a′1

dt1
∫

a′2
dt1

∫
b′1

dt1
∫

b′2
dt1∫

a′1
dt2

∫
a′2

dt2
∫

b′1
dt2

∫
b′2

dt2

)
,

where (a′1,a
′
2,b

′
1,b

′
2) is a basis of H1(M̃c,Z) and let

M̃c −→ C
2/LΩ′ : p 7−→

∫ p

p0

(
dt1

dt2

)
,

be the uniformizing map. By the Lefschetz theorem on hyperplane section [12, 27], the map H1(D ,Z)−→ H1(M̃c,Z) induced

by the inclusion D →֒ M̃c is surjective and consequently we can find 4 cycles a′1,a
′
2,b

′
1,b

′
2 on the Riemann surface D such that

Ω′ =

( ∫
a′1

ω1

∫
a′2

ω1

∫
b′3

ω1

∫
b′4

ω1∫
a′1

ω2

∫
a′2

ω2

∫
b′3

ω2

∫
b′4

ω2

)
,

and

LΩ′ =

{
2

∑
k=1

mk

∫

a′
k

(
ω1

ω2

)
+nk

∫

b′
k

(
ω1

ω2

)
: mk,nk ∈ Z

}
.

Recalling that F(x0
4,x

0
5,x

0
6) (5.7) has 4 zeroes on Γ0 (5.12) and 16 zeroes on E (5.8), it follows that the 4 cycles a′1,a

′
2,b

′
1,b

′
2 on

D which we look for are 2a1,a2,2b1,b2 and they form a basis of H1(M̃c,Z) such that

Ω′ =

(
2
∫

a1
ω1

∫
a2

ω1 2
∫

b1
ω1

∫
b2

ω1

2
∫

a1
ω2

∫
a2

ω2 2
∫

b1
ω2

∫
b2

ω2

)
= Ω,

is a Riemann matrix. Thus, M̃c and Prymσ (Γ) are two Abelian varieties analytically isomorphic to the same complex torus

C
2/LΩ. By Chow’s theorem [12, 27], M̃c and Prymσ (Γ) are then algebraically isomorphic. This completes the proof of the

theorem. �

Remark 5.2. It is well known that this problem has been solved via the Lax spectral curve technique by Adler and van

Moerbeke [1]. Strange as it may seem, the use of the spectral curve method may not give the tori correctly, but perhaps with

period doubling, in contrast with the statement that the correct tori would be obtained by the Kowalewski-Painlevé analysis.

This indicated a need for caution in interpretation of the result for tori calculated from the Lax spectral curve technique.

A striking example of this phenomenon appears in the problem studied in this subsection. We know from [1, 22], that the

linearization of the Euler-Arnold equations obtained using the isospectral deformation method (Lax technique) takes place on

the Prym variety Prymσ (C ) of a genus 3 Riemann surface C ; the latter is a double ramified cover of an elliptic curve C0. Also,

we have just seen from the asymptotic analysis of the Euler-Arnold equations, the affine variety Mc completes into an Abelian

surface M̃c upon adding a Riemann surface D of genus 9, which is a 4-fold unramified cover of another Riemann surface Γ of

genus 3; the latter is a double ramified cover of an elliptic curve Γ0. The Abelian surface M̃c can also be identified as the Prym

variety Prymσ (Γ) and the problem linearizes on Prymσ (Γ). From the fundamental exponential sequence

0 → Z→ O
M̃c

exp .→ O
∗
M̃c

→ 0,

we get the map

· · · → H1
(

M̃c,O
∗
M̃c

)
→ H2

(
M̃c,Z

)
→ ·· ·

i.e., the first Chern class of a line bundle on M̃c. Recall that any line bundle with Chern class zero can be realized by constant

multipliers. Therefore the group Pico
(

M̃c

)
of holomorphic line bundles on M̃c with Chern class zero is given by

Pico
(

M̃c

)
= H1

(
M̃c,OM̃c

)
/H1

(
M̃c,Z

)
,

and is naturally isomorphic to the dual Abelian surface M̃c

∨
of M̃c (∨ means the dual Abelian surface). The relationship

between M̃c and M̃c

∨
is symmetric like the relationship between two vectors spaces set up a bilinear pairing. It is interesting
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to observe that the Abelian surfaces M̃c = Prymσ (Γ) obtained from the asymptotic analysis of the differential equations and

Prymσ (C ) obtained from the orbits in the Kac-Moody Lie algebra are not identical but only isogenous, i.e., one can be obtained

from the other by doubling some periods and leaving other unchanged. The precise relation between these two Abelian surfaces

is M̃c = (Prymσ (C ))∨, i.e., they are dual of each other. The functions x1, ...,x6 are themselves meromorphic on M̃c, while only

their squares are on Prymσ (C ). The relationship between the Riemann surfaces Γ and C is quite intricate. As usual we let Θ

the theta divisor on Jac(Γ), we have

Prymσ (C )\Π = Θ∩Prymσ (C ) = Γ,

with Π a Zariski open set of Prymσ (C ). Also

Θ∩ M̃c = C ,

where Θ is a translate of the theta divisor of Jac(C ) invariant under the involution σ . Moser [31] was aware of a similar

situation in the context of the Jacobi’s geodesic flow problem on ellipsoids.

5.2 Manakov geodesic flow on the group SO(4) and Lyapunov-Steklov rigid body motion in a perfect fluid
The quadratic form H satisfies the conditions

(
µ2

1 ,µ
2
2 ,µ

2
3

)
=

λ12λ23λ31λ45λ56λ64

(λ46λ32 −λ65λ13)
2

(
(λ23 −λ56)

2

λ23λ56

,
(λ31 −λ64)

2

λ31λ64

,
(λ12 −λ45)

2

λ12λ45

)
,

with the product µ1µ2µ3 being rational in λ1, ...,λ6 and with the following sign specification

µ1µ2µ3 =
λ12λ23λ31λ45λ56λ64

(λ46λ32 −λ65λ13)
3
(λ12 −λ45)(λ23 −λ56)(λ31 −λ64).

The problem of the solid body in a fluid in the case of Lyapunov-Steklov is a particular case of this metric (see subsection 4.2).

The extra invariant H4 is quadratic and the flow linearizes on 2-dimensional hyperelliptic Jacobians. More precisely

4⋂

j=1

{
x ∈ C

6 : Q j(x) = c j

}
= Jac (hyperelliptic curve C of genus 2)\D ,

where D is a divisor of genus 17, which contains 4 translates of the Θ-divisor in Jac(C ), each of which is isomorphic to C .

The hyperelliptic curve C is a double cover of the curve C0 (isomorphic to P
1(C)) defined as

{t1 : t2 : t3 : t4] ∈ P
3(C) such that ∑ t jQ j has rank 3}.

The periods of the motion are given by the periods of the hyperelliptic curve C . When studying the differential systems in this

case as well as the invariants via Kowalewski-Painlevé’s analysis, it is advantageous to rewrite them in a simpler form in order

to reduce the notations and thus avoid too much calculation, since it requires less variables (see [6] for more detail). We show

that this geodesic flow X1 and a commuting flow X2 can be written respectively in the form

ẋ1 = x2x6,

ẋ2 =
1

2
x3(x1 + x4),

ẋ3 =
1

2
x2(x1 + x4),

ẋ4 = x3x5,

ẋ5 = x3x4,

ẋ6 = x1x2,

and

ẋ1 = x5x6,

ẋ2 = x3x4,

ẋ3 = x2x4,

ẋ4 = x5(2x3 − x6),

ẋ5 = x4(2x3 − x6),

ẋ6 = x1x5.
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The Hamiltonian structure being determined by the Poisson bracket :

{H,F}=
〈

∂H

∂x
,J

∂F

∂x

〉
= ∑

i, j

Ji j

∂H

∂xi

∂F

∂x j

,

where

J =




0 x3 x2 0 0 2x2 − x5

−x3 0 0 0 0 0

−x2 0 0 0 0 0

0 0 0 0 0 x5

0 0 0 0 0 x4

−2x2 + x5 0 0 −x5 −x4 0



.

The problem is to show, among other things, that the geodesic flow on SO(4) for a left invariant in the case of the second metric

is a weight homogeneous algebraic complete integrable system. Using the asymptotic expansion method as in the previous case

(Kowalewski-Painlevé’s analysis), we obtain the following results [6] :

Theorem 5.3. This geodesic flow has four quadric invariants :

H1 = −x2
4 + x2

5 = c1,

H2 = −x2
1 + x2

6 = c2,

H3 = −x2
2 − x2

3 =
c3

4
,

H4 = −(x1 − x4)
2 +2(x2 − x5)

2 +2(x3 − x6)
2 = 4c4,

(with generic (c1,c2,c3,c4) ∈ C
4), and it evolues on some hyperelliptic Jacobians. The hyperelliptic curve is a double cover of

the curve of rank four quadrics (isomorphic to P
1) :

{
t ∈ P

3 such that t1(H1 − c1x2
0)+ t2(H2 − c2x2

0)+ t3(H3 −
c3

4
x2

0)+ t4(H4 −4c4x2
0) has rank 4

}
,

ramified at the six points where the rank drops to 3. The system in question possesses Laurent solutions depending on 5 free

parameters and the affine surface defined by the constants of motion can be completed into a torus T by adjoining a singular

divisor D . The latter consists of four copies H1,...,H4 of the genus two hyperelliptic curves. Analyze the points of intersection

of these curves. All these curves are translates of the Θ-divisor by 1
2
-periods and three of these curves form a very ample and

projectively normal divisor which results in the embedding of the Jacobian in P
8 and the functions having poles there form a

closed system of quadratic equations under differentiations as well as their ratios. The line bundle [D ] defines a polarization of

type (4,4) on T and leads to an embedding in P
15. The three flows X1, X2 and 2X1 −X2 are doubly tangent to each of the four

curves H1,...,H4 at four points P1,...,P4 and the sixteen half-periods on the torus are given by the total set of branch points of

these hyperelliptic curves. The values of the constants of motion c1/c4, c2/c4, c3/c4 provide the three moduli for the full family

of 2-dimensional hyperelliptic Jacobians.

5.3 Geodesic flow on SO(4) with a quartic invariant
The form H satisfies

(
µ4

1 ,µ
4
2 ,µ

4
3

)
= λ13λ46λ21λ54λ32λ65

(
1

λ32λ65

,
1

λ13λ46

,
1

λ21λ54

)
.

The quantities ζ , ξ and η defined by

ζ 2 ≡ λ46

λ13
, ξ 2 ≡ λ54

λ21
, η2 ≡ λ65

λ32
,

satisfy the quadratic relations

ζ ξ +ξ η +ηζ +1 = 0, 3ξ η +η −ξ +1 = 0.

The geodesic flow has a quartic invariant, evolves on Abelian surfaces Ã ⊆ P
23(C) having period matrix

(
2 0 a c

0 12 c b

)
, Im

(
a c

c b

)
> 0, (a,b,c ∈ C) ,
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and it will be expressed in terms of Abelian integrals. See for details [3, 6]. After the following linear change of coordinates,

which is meaningful insofar a 6= 0,−1,1,−1/3,1/3,
(

x1

x4

)
=

√
−1

(
a−1 −1

3a+1 1

)(
(a−1)z1

(3a−1)(a+1)z4

)
,

(
x2

x5

)
= −

√
−1

(
a+1 −1

3a−1 1

)(
(a+1)z2

(3a+1)(a−1)z5

)
,

(
x3

x6

)
=

√
−1

(
a−1 a+1

3a+1 3a−1

)(
(a−1)z3

(a+1)z6

)
,

the geodesic flow takes (after rescaling time) on the simple form :

ż1 = z3z5,

ż2 = z4z6,

ż3 =
1−a

2
z4z5 + z1z5 +

1+a

2
z1z2, (5.14)

ż4 =
2a

3a−1
z5z6 +

a−1

3a−1
z2z3,

ż5 =
2a

3a+1
z5z6 +

a+1

3a+1
z2z3,

ż6 =
1+a

2
z4z5 + z2z4 +

1−a

2
z1z2,

with three quadratic invariants (in z) :

H1 ≡ aF2 +
1−a

3a+1
F7 = A1,

H2 ≡ −aF1 −
a+1

3a−1
= A2,

H3 ≡ 2F6

(3a−1)(3a+1)
− F1

3a+1
+

F2

3a−1
= A3,

and a quartics invariant (in z) :

H4 ≡ − 1−a

3a+1

(
F2

1 +F2
4

)
+

1+a

3a−1

(
F2

2 +F2
5

)
+

3(1−a2)

(3a−1)(3a+1)

(
2F1F2 −F2

3

)

+
4(1+a)

(3a−1)(3a+1)
F2(F6 +F8)+

4(1−a)

(3a−1)(3a+1)
F1(F6 +F7) = A4, (5.15)

where

F1 = z2
4 − z2z5,F2 = z2

5 − z1z4,F3 = z1z2 − z4z5,F4 =
2

3a−1
(z2z3 − z5z6),

F5 =
−2

3a+1
(z1z6 − z3z4),F6 = z1z4 + z2z5 − z3z6,F7 = z2

1 − z2
3 + z1z4,F8 = z2

2 − z2
6 + z2z5.

The geodesic flow in question admits one family of Laurent solutions,

z =
ζ

t

(
1+UY 1t +

1

γZ2 +δ

(
U2Y 2

0 +
3

∑
i=1

AiY
2
i

)
t2 +o(t3)

)
,

where 1 = (1,1, ...,1)⊤, Y 1,Y 2
0 ,Y

2
i are appropriate vectors depending on Y,Z and a only, γ ≡ 4a, δ ≡ (a−1)(3a+1) and

ζ = diag

(
Y 2

Z
,

Z2

Y
,−Y

Z
,Z,Y,−Z

Y

)
,

with Y,Z ∈ C such that Y 2 +Z2 = 1. The 5-dimensional family of Laurent solutions depend on the parameters Z,U,A1,A2

and A3. The vectors Y 2
i can be chosen such that Hi(z(t)) = Ai for i = 1,2,3. Confining the 5-dimensional family of Laurent

solutions to the invariant manifold

Mc =
4⋂

i=1

{z : Hi(z) = Ai},
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yields a relation between the free parameters, defining a curve

D :

{
(U,V,Y,Z) such hat Z2 =V,Y 2 = 1−V and

P(U,V ) =
(
U2(1−V )V (αV +β )

)2 −2U2(1−V )V P(V )+Q(V ) = 0,

where

α = 16a3,β = (a−1)3(3a+1),

and

P(V ) = (αV +β )
[
((3a2 +1)A3 −A1 −A2)(V −1)+A1V −A2(V −1)

]

−2V (V −1)
[
A1(1−a)3(1+3a)+A2(1+a3(1−3a)−A3(1−a2)(1−9a2)

]
,

Q(V ) =
[
((3a2 +1)A3 −A1 −A2)V (V −1)−A1V +A2(V −1)

]2

+V (V −1)
[
(4aV +(a−1)(3a+1))A4 +4A1A2 − (a−1)(3a+1)(a+1)(3a−1)A2

3

]
.

Note that

P2(V )− (αV +β )2Q(V ) =V (1−V )R(V ), (5.16)

with R(V ) being a cubic polynomial. The curve D is an unramified 4−1 cover of the curve

C : P(U,V ) = 0.

In view of (5.16), the curve C itself is a double cover of the hyperelliptic curve

H : W 2 =V (1−V )R(V ),

of genus 2, ramified over four points where Q(V ) = 0. Therefore C has genus 5 and D has genus 17. The curve D must be

thought of as being a very ample divisor on some Abelian surface M̃c, to be constructed according to the method described in

the theorem 2.3. The curve D , wrapped around M̃c intersects itself transversally in 8 points, adding 8 to the genus 17. Therefore

the torus M̃c ≃C
2/LΩ on which the geodesic flow linearizes, is defined by a period lattice Ω given by the columns of the matrix

Ω =

(
δ1 0 a c

0 δ2 c b

)
, Im

(
a c

c b

)
> 0,

with

δ1δ2 = g(D)−1 = 24, δ1|δ2, δi ∈ N
∗.

So we have the following two possibilities : (i) δ1 = 1, δ2 = 24 and (ii) δ1 = 2, δ2 = 12. The line bundle

L(D) = {1,z1, ...,z6, f1, ..., f5,g1, ...,g8,h1, ...,h4},

is specified as follows

g1 =−2az2 f2 − (1−a)z4 f3, g2 =−2az1 f1 − (1+a)z5 f3, g3 = (1−a)z5 f4 +(1+a)z4 f5,

g4 = (1+a)z5 f5 +(1−a)z1 f4, g5 = (1−a)z4 f4 +(1+a)z2 f5 g6 =−(1−a)z3 f1 − (1+a)z6 f2,

g7 = 2az5 f2 − (1−a)z1 f3, g8 =−2az4 f1 − (1+a)z2 f3, h1 = 4a2 f1 f2 +(1−a2) f3,

h2 = 2a2 f1 f5 − (1−a) f3 f4, h3 =−2a2 f2 f4 − (1+a) f3 f5, h4 = 2a2 f4 f5 + f3((1+a) f2 − (1−a) f1).

Now the reflection about the origin on the Abelian surface amounts to flipping the time for each linear flow on it, but since the

flow
dz

dt1
given by (5.14) is quadratic and since the other flow

dz

dt2
(commuting with the first) is quartic (as it derives from the

quartic Hamiltonian (5.15), flipping the signs of t1 and t2 for each of the flows amounts to the flip (z1, ...,z6) 7−→ (−z1, ...,−z6).
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From formula (5.10), the above line bundle L(D) has in case (i), 11 even sections, 13 odd ones and in case (ii), 10 even

sections, 14 odd ones, showing that case (ii) is the only alternative and the period matrix has the form

(
2 0 a c

0 12 c b

)
, Im

(
a c

c b

)
> 0.

Differentiating
1

z1
and

z2

z1
with respect to t1 (corresponding to the flow (5.14)) and t2 (corresponding to the quartic flow

generated by H4 (5.15)), yield two differentials ω1 and ω2 defined on the curve C :

ω1 =
ϕ(V )dV

U
√

V (1−V )R(V )
ω2 =

dV

U
√

V (1−V )R(V )
,

where ϕ(V ) is a rational function in V having the form

ϕ(V ) =
4aV +(a−1)(3a+1)

V (1−V )

[
(αV +β )U2V (1−V )+(A3(3a2 +1)−A1 −A2)(1−V )V −A1V −A2(1−V )

)
].

The restriction of the differentials dt1 and dt2 to the curve D are

ω1 = dt1|D = ϕ(Z2)ω2,ω2 = dt2|D =
dZ

UY
√

R
.

Recall that C is a double ramified cover of a hyperelliptic curve H of genus 2, whose sheets are interchanged by the involution

(V,U) 7−→ (V,−U). Hence

Jac(C ) = Prym(C /H )⊕ Jac(H ).

Since ω1 and ω2 are both odd differentials for that involution, the flows evolve on the 3-dimensional Prym(C /H ) and therefore

M̃c ⊂ Prym(C /H ). This shows that Prym(C /H ) splits further, up to isogenies, into an elliptic curve E and the 2-dimensional

invariant torus M̃c :

M̃c ⊕E = Prym(C /H ).

In summary, we have

Theorem 5.4. The affine invariant surface Mc for the Adler-van Moerbeke geodesic flow completes into a generic Abelian

surface M̃c of polarization (1,6), i.e., defined by a period matrix of the form

(
1 0 a c

0 6 c b

)
, Im

(
a c

c b

)
> 0,

by adjoining at infinity a curve of genus 25, with 8 normal crossings and smooth version D . There exists an elliptic curve E

such that M̃c satisfies M̃c ⊕E = Prym(C /H ). More precisely

4⋂

j=1

{
x ∈ C

6 : H j(x) = c j

}
= M̃c\{a curve of genus 25 with 8 singular points}.

Put in a more geometrical language, the tori M̃c contain a very ample and projectively normal curve of geometric genus 25,

with 8 normal crossings whose smooth version D is a 4− 1 unramified cover of a curve C of genus 5. The curve C itself

is a double cover ramified over 4 points of a genus 2 hyperelliptic curve H . Moreover, the linearization takes place on a

2-dimensional subtorus of the 3-dimensional Prym variety Prym(C /H ) with

Prym(C /H ) = Ã⊕E ,

where E is an elliptic curve.

This situation provides a full description of the moduli for the Abelian surfaces of polarization (1,6). For more information,

see [6].
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6. The algebraic complete integrability of geodesic flow on SO(n), n ≥ 5

We have seen previously that if a system is algebraically completely integrable, then it must admit a family of meromorphic

Laurent series depending on ”dim(phase space)−1” free parameters. Now, trying to generalize the result to the geodesic flow

on SO(n) for n ≥ 5 using the same method leads to insurmountable calculations even with the help of a computer. Therefore, to

answer the question concerning the classification of the metrics for which the geodesic flow on SO(n) while taking into account

these difficulties, it was necessary to resonate differently.

The geodesic flow for this problem takes the following commutator form (Euler-Arnold equations) :

Ẋ = [X ,Λ.X ] , (6.1)

where

X = (xi j)≡ ∑
i< j

xi jei j ∈ so(n),

and Λ.X = (λi jXi j), λi j = λ ji. The quadratic form H is diagonal with regard to the customary so(n) coordinates (Manakov

metric [29]), with

Λ jk =
β j −βk

α j −αk

⇐⇒ [X ,β ]+ [α ,Λ.X ] = 0,∀X ∈ so(n), (6.2)

with

α = diag(α1, ...,αn), β = diag(β1, ...,βn), ∏
i< j

(αi −β j) 6= 0,

all Λ jk distinct. Note that it turns out that the geodesic flow on SO(n) admits a lot of invariant manifolds on which they reduce

to geodesic flow on SO(3) and the solutions of the differential equation with initial conditions on these manifolds are elliptic

functions and this without any condition on the metric. Haine [14] has shown that looking at solutions near these special a priori

known solutions and imposing these solutions to be single-valued functions of t ∈ C, suffices to single out the left invariant

diagonal metrics for which the geodesic flow is algebraically completely integrable. Under the non-degeneracy assumption on

the diagonal metric Λ that all Λi j be distinct, the system (6.1) is algebraically completely integrable with Abelian functions xi j

if and only if the metric Λ satisfies (6.2) (Manakov’s conditions).

Theorem 6.1. For n ≥ 5, Manakov’s metrics are the only left invariant diagonal metrics on SO(n) for which the geodesic flow

is algebraically completely integrable.

This criterion was first used, without proof by Lyapunov [28] (the proof is due to Haine [14])), who showed that the only

integrable tops whose solutions have analytic properties belong to the classical known cases : Euler top, Lagrange top and

Kowalewski top.

References
[1] M. Adler, P. van Moerbeke, Linearization of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in

Math., 38 (1980), 318-379.

[2] M. Adler, P. van Moerbeke, The algebraic complete integrability of geodesic flow on SO(4), Invent. Math., 67 (1982),

297-331, with an appendix by D. Mumford.

[3] M. Adler, P. van Moerbeke, Algebraic completely integrable systems : a systematic approach, I, II, III, Séminaire de
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[36] L. Poinsot, Théorie nouvelle de la rotation des corps, Journal de Liouville, Volume 16, (1851).
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1. Introduction

In this paper, we deal with the lower bounds of the blow up time of solutions of the following hyperbolic type equations






























utt −div
(

ρ
(

|∇u|2
)

∇u
)

−∆utt + |ut |
m−1

ut = f1 (u,v) , (x, t) ∈ Ω× (0,T ) ,

vtt −div
(

ρ
(

|∇v|2
)

∇v
)

−∆vtt + |vt |
r−1

vt = f2 (u,v) , (x, t) ∈ Ω× (0,T ) ,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ Ω,

v(x,0) = v0 (x) , vt (x,0) = v1 (x) , x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ Rn (n = 1,2,3) is a bounded domain with a sufficiently smooth boundary ∂Ω; m,r ≥ 1 are constants, and

fi (u,v) : R2 → R (i = 1,2) are functions which will be specified later. Also,

ρ(s) = b1 +b2sq
, q,b1,b2 ≥ 0.

In the absence of the dispersion terms (∆utt and ∆vtt ), eq. (1.1) reduces to the following system






utt −div
(

ρ
(

|∇u|2
)

∇u
)

−∆utt + |ut |
m−1

ut = f1 (u,v) ,

vtt −div
(

ρ
(

|∇v|2
)

∇v
)

−∆vtt + |vt |
r−1

vt = f2 (u,v) .
(1.2)

In [1], Wu et al. considered the global existence and the blow up of the solution of the problem (1.2). Later, Fei and Hongjun

[2] improved the blow up result in [1]. Finally, in [3], Pişkin and Polat studied the existence, the decay and the blow up of the

solutions for the problem (1.2).
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The aim of this paper note is to derive a lower bound for the blow up time occurs. Before stating our main theorem, we give

some notations, lemmas and theorems.

2. Preliminaries

In this paper, we denote ‖.‖= ‖.‖L2(Ω) and ‖.‖p = ‖.‖Lp(Ω). Moreover, ci (i = 1,2, ...) are arbitrary constants.

Let

f1 (u,v) = (p+1)
[

a |u+ v|p−1 (u+ v)+b |uv|
p−1

2 v
]

,

and

f2 (u,v) = (p+1)
[

a |u+ v|p−1 (u+ v)+b |uv|
p−1

2 u
]

,

where a,b > 0 are constant and p satisfies

{

1 < p if n ≤ 2,

1 < p ≤ n
n−2

if n > 2.
(2.1)

By a simple calculation, we have

u f1 (u,v)+ v f2 (u,v) = (p+1)F (u,v) , (u,v) ∈ R2
, (2.2)

where

F (u,v) =
[

a |u+ v|p+1 +2b |uv|
p+1

2

]

. (2.3)

We define

J (t) =
1

2

[

b1

(

‖∇u‖2 +‖∇v‖2
)]

+
1

2q+2

[

b2

(

‖∇u‖2q+2
2q+2 +‖∇v‖2q+2

2q+2

)]

−
∫

Ω

F (u,v)dx, (2.4)

and

I(t) =
[

b1

(

‖∇u‖2 +‖∇v‖2
)]

+
[

b2

(

‖∇u‖2q+2
2q+2 +‖∇v‖2q+2

2q+2

)]

− (p+1)
∫

Ω

F (u,v)dx. (2.5)

We also define the energy functional as follows

E(t) =
1

2

(

‖ut‖
2 +‖vt‖

2
)

+
1

2

[

b1

(

‖∇u‖2 +‖∇v‖2
)]

+
1

2q+2

[

b2

(

‖∇u‖2q+2
2q+2 +‖∇v‖2q+2

2q+2

)]

+
1

2

(

‖∇ut‖
2 +‖∇vt‖

2
)

−
∫

Ω

F (u,v)dx. (2.6)

We also define

W− =
{

(u,v) : (u,v) ∈W
1,2q+2
0 (Ω)×W

1,2q+2
0 (Ω) , I (u,v)< 0

}

. (2.7)

The next lemma shows that our energy functional (2.6) is a nonincreasing function along the solution of (1.1).

Lemma 2.1. Energy functional is a nonincreasing function for t ≥ 0 and

E
′
(t) =−

(

‖ut‖
m+1
m+1 +‖vt‖

r+1
r+1

)

≤ 0. (2.8)

Proof. Multiplying the first equation in (1.1) by ut and the second equation by vt , integrating over Ω. Then integrating by parts,

we get

E (t)−E (0) =−
∫ t

0

(

‖uτ‖
m+1
m+1 +‖vτ‖

r+1
r+1

)

dτ for t ≥ 0 (2.9)
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Lemma 2.2. (Sobolev-Poincare inequality) [4]. Let

{

2 ≤ p < ∞; n = 1,2,

2 ≤ p ≤ 2n
n−2

; n ≥ 3

then there is a constant C∗ =C∗ (Ω, p) such that

‖u‖p ≤C∗ ‖∇u‖ , ∀u ∈ H1
0 (Ω) .

Lemma 2.3. [5, 6] There exist two positive constants c1 and c2 such that

∫

Ω

| f1 (u,v)|
2

dx ≤ c1

(

‖∇u‖2 +‖∇v‖2
)p

and
∫

Ω

| f2 (u,v)|
2

dx ≤ c2

(

‖∇u‖2 +‖∇v‖2
)p

are satisfied.

The local existence theorem which can be established combining the arguments of [3].

Theorem 2.4. (Existence-uniqueness). Assume that (2.1) holds. Then further that u0,v0 ∈ W
1,2q+2
0 (Ω)∩ Lp+1 (Ω) and

u1,v1 ∈ L2 (Ω) .Then the system (1.1) has a unique local solution

u,v ∈C
(

[0,T ) ;W
1,2q+2
0 (Ω)∩Lp+1 (Ω)

)

.

Theorem 2.5. [7]. Suppose that r > max{p,q} and E (0)< 0 hold. Then the solution u of the system blows up in finite time

T ∗.

3. Lower bound for blow up time

In this section, our aim is to determine a lower bound for blow up time of the system (1.1).

Theorem 3.1. Let u0,v0 ∈W
1,2q+2
0 (Ω)∩Lp+1 (Ω) , u1,v1 ∈ L2 (Ω) , (u0,v0) ∈W−, and 1 < p,q < r. Assume that (2.1) holds.

Then the solutions u of the problem (1.1) become unbounded at finite time T ∗. Also, the lower bounds for the blow up time is

given by

∫

∞

ψ(0)

dψ(z)

ψ (τ)+E (0)+ c1+c2
2

(p+1)p ψ p (τ)
≤ T ∗

.

Proof. We define

ψ (t) =
∫

Ω

F (u,v)dx (3.1)

By taking a derivative of (3.1), we get

ψ ′ (t) =
∫

Ω

(utFu + vtFv)dx (3.2)

Thanks to Young’s inequality, we have

ψ ′ (t)≤
1

2

∫

Ω

(

u2
t + v2

t

)

dx+
1

2

∫

Ω

(

F2
u +F2

v

)

dx.

By the Lemma 3, we get

ψ ′ (t)≤
1

2

∫

Ω

(

u2
t + v2

t

)

dx+
c1 + c2

2

(

‖∇u‖2 +‖∇v‖2
)p

(3.3)
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Since I (t)< 0, we have

b1

(

‖∇u‖2 +‖∇v‖2
)

+b2

(

‖∇u‖2q+2
2q+2 +‖∇v‖2q+2

2q+2

)

≤ (p+1)
∫

Ω

F (u,v)dx. (3.4)

Inserting (3.4) into (3.3), we have

ψ ′ (t) ≤
1

2

∫

Ω

(

u2
t + v2

t

)

dx+
c1 + c2

2

(

(p+1)
∫

Ω

F (u,v)dx

)p

=
1

2

∫

Ω

(

u2
t + v2

t

)

dx+
c1 + c2

2
(p+1)p

(

∫

Ω

F (u,v)dx

)p

=
1

2

∫

Ω

(

u2
t + v2

t

)

dx+
c1 + c2

2
(p+1)p ψ p (t) (3.5)

By the definition E (t) , we get

(q+1)
(

‖ut‖
2 +‖vt‖

2
)

+(q+1)b1

(

‖∇u‖2 +‖∇v‖2
)

+b2

(

‖∇u‖2q+2
2q+2 +‖∇v‖2q+2

2q+2

)

+(q+1)
(

‖∇ut‖
2 +‖∇vt‖

2
)

= (2q+2)E (t)+(2q+2)
∫

Ω

F (u,v)dx

≤ (2q+2)E (0)+(2q+2)ψ (t) (3.6)

Combining (3.5) and (3.6), we have

ψ ′ (t)≤ ψ (t)+E (0)+
c1 + c2

2
(p+1)p ψ p (t) . (3.7)

Applying Theorem 5, we have

lim
t→T ∗

∫

Ω

F (u,v)dx = ∞ (3.8)

According to (3.7), (3.8), we have

∫

∞

ψ(0)

dψ(z)

ψ (τ)+E (0)+ c1+c2
2

(p+1)p ψ p (τ)
≤ T ∗

.

This completes the proof.
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definition of a semi-invariant submanifold of an almost α-cosymplectic f -manifold.
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1. Introduction

Contact geometry has been seen to underly many physical phenomena and be related to many other mathematical structures.

Contact structures first appeared in the work of Sophus Lie [1] on partial differential equations. They reappeared in Gibbs’

work on thermodynamics, Huygens’ work on geometric optics and in Hamiltonian dynamics. ([2], [3], [4]).

On the other hand, the notion of CR-submanifold of a Kaehler manifold was introduced by Bejancu [5]. Later, semi-invariant

(or contact CR-) submanifolds of a Sasakian manifold was studied by Shahid, Sharfuddin and Husain [6], Kobayashi [7],

Matsumoto [8] and many others. Submanifolds of cosymplectic manifold have been studied by Ludden [9], A. Cabras, A.Ianus

and G.H. Pitis [10].

Later, the subject was considered for Riemannian manifolds with an almost contact structure. In this sense A. Bejancu and

N. Papaghiuc study semi-invariant submanifolds of a Sasakian manifold or Sasakian space form ( [11],[12], [13], [14] ) and

C.L. Bejan, A., et.al. study them on cosymplectic manifolds in ([15], [16]). B. B. Sinha and R. N. Yadav studied the integrable

conditions of distributions and the geometry of leaves on a semi-invariant submanifolds in a Kenmotsu manifold [17].

In 2014, Öztürk et.al. introduced and studied almost α-cosymplectic f -manifold [18] defined for any real number α which

is defined a metric f -manifold with f -structure (ϕ,ξi,η
i,g) satisfying the condition dη i = 0, dΩ = 2αη ∧Ω.

In this paper, we introduce properties of semi-invariant submanifolds of an almost α-cosymplectic f -manifold. In Section

2, we review basic formulas and definitions for almost α-cosymplectic f -manifolds. In Section 3, we define semi-invariant

submanifolds of an almost α-cosymplectic f -manifold. We also present a way to build these submanifolds and give an example.

In Section 4, we obtain some basic results for semi-invariant submanifolds of an almost α-cosymplectic f -manifold. In Section

5, we investigate the integrability of the distributions involved in the definition of a semi-invariant submanifold. In last section

we focus mixed totally geodesic of semi-invariant submanifolds of an almost α-cosymplectic f -manifold.
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2. Preliminaries

Let M̃ be a real (2n+s)-dimensional framed metric manifold [19] with a framed (ϕ,ξi,η
i,g), i ∈ {1, ...,s}, that is, ϕ is a

non-vanishing tensor field of type (1,1) on M̃ which satisfies ϕ3 +ϕ = 0 and has constant rank r = 2n; ξ1, ...ξs are s vector

fields; η1, ...,ηs are 1-forms and g is a Riemannian metric on M̃ such that

ϕ2 =−I +
s

∑
i=1

η i ⊗ξi (2.1)

η i(ξ j) = δ i
j, ϕ(ξi) = 0, η ioϕ = 0, (2.2)

η i(X) = g(X ,ξi), (2.3)

g(X ,ϕY )+g(ϕX ,Y ) = 0, (2.4)

g(ϕX ,ϕY ) = g(X ,Y )−
s

∑
i=1

η i(X)η i(Y ) (2.5)

for all X ,Y ∈ Γ(T M̃) and i, j ∈ {1, ...,s}. In above case, we say that M̃ is a metric f -manifold and its associated structure will

be denoted by M̃(ϕ,ξi,η
i,g) [19].

A 2-form Ω is defined by Ω(X ,Y ) = g(X ,ϕY ), for any X ,Y ∈ Γ(T M̃), is called the fundamental 2-form. A framed metric

structure is called normal [19] if

[ϕ,ϕ]+2dη i ⊗ξi = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ . Throughout this paper we denote by η = η1 +η2 + ...+ηs,

ξ = ξ1 +ξ2 + ...+ξs and δ
j

i = δ 1
i +δ 2

i + ...+δ s
i .

Definition 2.1. Let M̃(ϕ,ξi,η
i,g) be a (2n+s)-dimensional a metric f -manifold for each η i,(1 ≤ i ≤ s) 1-forms and each

2-form Ω, if dη i = 0 and dΩ = 2αη ∧Ω satisfy, then M̃ is called almost α-cosymplectic f -manifold [18].

Let M̃ be an almost α-cosypmlectic f -manifold. Since the distribution D is integrable, we have Lξi
η j = 0, [ξi,ξ j] ∈ D and

[X ,ξ j] ∈ D for any X ∈ Γ(D). Then the Levi-Civita connection is given by [18]:

2g((∇̃X ϕ)Y,Z) = 2αg

(
s

∑
i=1

(g(ϕX ,Y )ξi −η i(Y )ϕX),Z

)
(2.6)

+g(N(Y,Z),ϕX)

for any X ,Y ∈ Γ(T M̃). Putting X = ξi we obtain ∇̃ξi
ϕ = 0 which implies ∇̃ξi

ξ j ∈ D⊥ and then ∇̃ξi
ξ j = ∇̃ξ j

ξi, since [ξi,ξ j] = 0.

We put AiX =−∇̃X ξi and hi =
1
2
(Lξi

ϕ), where L denotes the Lie derivative operator. If M̃ is almost α-cosymplectic f -manifold

with Kaehlerian leaves [20], we have

(∇̃X ϕ)Y =
s

∑
i=1

[
−g(ϕAiX ,Y )ξi +η i(Y )ϕAiX

]

or

(∇̃X ϕ)Y =
s

∑
i=1

[
α
(
g(ϕX ,Y )ξi −η i(Y )ϕX

)
+g(hiX ,Y )ξi −η i(Y )hiX

]
. (2.7)

Proposition 2.2. ([18]) For any i ∈ {1, ...,s} the tensor field Ai is a symmetric operator such that
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(i) Ai(ξ j) = 0, for any j ∈ {1, ...,s}

(ii) Aioϕ +ϕoAi =−2αϕ

(iii) tr(Ai) =−2αn

(iv) ∇̃X ξi =−αϕ2X −ϕhiX .

Proposition 2.3. ([21]) For any i ∈ {1, ...,s} the tensor field hi is a symmetric operator and satisfies

(i) hi(ξ j) = 0, for any j ∈ {1, ...,s}

(ii) hioϕ +ϕohi = 0

(iii) trhi = 0

(iv) tr(ϕhi) = 0.

Let M̃ be an almost α-cosymplectic f -manifold with respect to the curvature tensor field R̃ of ∇̃, the following formulas are

proved in [18], for all X ,Y ∈ Γ(T M̃), i, j ∈ {1, ...,s}.

R̃(X ,Y )ξi = α2
s

∑
k=1

(ηk(Y )ϕ2X −ηk(X)ϕ2Y ) (2.8)

− α
s

∑
k=1

(ηk(X)ϕhkY −ηk(Y )ϕhkX)

+ (∇̃Y ϕhi)X − (∇̃X ϕhi)Y,

R̃(X ,ξ j)ξi =
s

∑
k=1

δ k
j (α

2ϕ2X +αϕhkX) (2.9)

+ αϕhiX −hih jX +ϕ(∇̃ξ j
hi)X

R̃(ξ j,X)ξi −ϕR̃(ξ j,ϕX)ξi = 2(−α2ϕ2X +hih jX). (2.10)

Moreover, by using the above formulas, in [18] it is obtained that

S̃(X ,ξi) =−2nα2
s

∑
k=1

ηk(X)− (divϕhi)X (2.11)

S̃(ξi,ξ j) =−2nα2 − tr(h jhi) (2.12)

for all X ,Y ∈ Γ(T M̃), i, j ∈ {1, ...,s}, where S̃ denote, the Ricci tensor field of the Riemannian connection.

From [18], we have the following result.

Proposition 2.4. Let M̃ be an almost α-cosymplectic f -manifold and M be an integral manifold of D. Then

(i) when α = 0, M is totally geodesic if and only if all the operators hi vanish;

(ii) when α 6= 0, M is totally umbilic if and only if all the operators hi vanish.

3. Semi-Invariant Submanifolds of Almost α-Cosymplectic f -Manifolds

The submanifold M of the almost α-cosymplectic f -manifold M̃ is said to be semi-invariant [22] if it is endowed with two pair

of ortogonal distribution D,D⊥ satisfying the conditions

(i) T M = D⊕D⊥⊕{ξ1,ξ2, ...,ξs}
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(ii) the distribution D is invariant under ϕ , that is

ϕDx = Dx, f or each x ∈ M,

(iii) the distribution D⊥ is anti-invariant under ϕ, that is

ϕD⊥
x ⊂ TxM⊥ f or each x ∈ M.

The distribution D (resp.D⊥) is called the horizantal (resp. vertical) distribution. A semi-invariant submanifold M is said

to be invariant (resp. anti-invariant) submanifold if we have (D⊥
x = 0) respectively (Dx = 0) for each x ∈ M. We say that

M is proper semi-invariant submanifold if it is a semi-invariant submanifold which is neither an invariant nor anti-invariant

submanifold [22].

We denote by same symbol g both metrices on M̃ and M. The projection morphism of T M to D and D⊥ are denoted by P

and Q respectively. For any X ∈ Γ(T M) and N ∈ Γ(T M⊥) we have

X = PX +QX +
s

∑
i=1

η i(X)ξi (3.1)

ϕN =CN +DN (3.2)

and

hiX = tiX + fiX (3.3)

where CN and tiX(resp.DN and fiX) denotes the tangential (resp. normal) of ϕN and hiX , respectively.

∇̃XY = ∇XY +B(X ,Y ) (3.4)

∇̃X N =−ANX +∇⊥
X N (3.5)

for any X ,Y ∈ Γ(T M) and N ∈ T M⊥, where ∇ is the Levi-civita connection on M, ∇⊥ is the linear connection induced by ∇̃ on

the normal bundle T M⊥, B is the second fundamental form of M and AN is the fundamental tensor of Weingarten with respect

to the normal section N. Also we have

g(B(X ,Y ),N) = g(ANX ,Y ) (3.6)

for any X ,Y ∈ Γ(T M),N ∈ Γ(T M⊥) [19].

We now give an example of semi-invariant submanifold of an almost α-cosymplectic f -manifold.

Example 3.1. Let us denote the standart coordinates of R2n+s (x1, ...,xn,y1, ...,yn,z1, ...,zs) and take (2n+ s)-dimensional

manifold M̃ ⊂ R2n+s defined by

M̃ = {(x1, ...,xn,y1, ...,yn,z1, ...,zs)|z1, ...,zs 6= 0}.

Consider following vector fields as a global basis of M̃ :

Xi = e∑
n
i=1 zi

∂

∂xi

, Yi =
∂

∂yi

, ξ j =
∂

∂ z j

, i = 1, ...,n j = 1, ...,s.

The brackets of these vector fields are

[ξ j,Xi] = e∑
n
i=1 zi

∂

∂xi

, [ξ j,Yi] = [Xk,Xi] = [Xi,Yk] = [Yi,Yk] = 0

for any i,k ∈ {1, ...,n} and j ∈ {1, ...,s}. One may easily verify that putting

η j = dz j, g =
n

∑
i=1

[e−2(z1+...+zs)dx2
i +dy2

i ]+
s

∑
j=1

dz2
j ,
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ϕ(ξ j) = 0, ϕ(
∂

∂xi

) = e−(z1+...+zs)
∂

∂yi
, ϕ(

∂

∂yi

) =−e(z1+...+zs)
∂

∂xi

,

(ϕ,ξi,η
i,g) is an almost contact metric f - structure on M̃. We şhall check that (M̃,ϕ,ξi,η

i,g) is an almost α-cosymplectic f -

manifold. Obviously, η j = dz j ⇒ dη j = d2z j = 0 from poincare metric we get dη j = 0. To verify the condition dΦ = 2αη̄ ∧Φ,

considering that all Φi j’ s are zero except for Φii = g( ∂
∂xi

,ϕ ∂
∂yi

) =−e−(z1+...+zs) and hence

Φ =−
1

e(z1+...+zs)

n

∑
i=1

dxi ∧dyi

holds. As a result, the exterior derivative dΦ is given by

dΦ =−e−(z1+...+zs)
n

∑
i=1

dxi ∧dyi ∧ (dz1 + ...+dzs)

dΦ = e−(z1+...+zs)e(z1+...+zs)Φ∧ (η1 + ...+ηs)

dΦ = η̄ ∧Φ = 2(
1

2
)η̄ ∧Φ.

Since the Nijenhuis torsion of ϕ is not zero, the manifold is an almost ( 1
2
)-cosymplectic f -manifold.

Now, we definite the distributions

D = sp{X1,Y1,X2,Y2, ...,Xm,Ym}

and

D⊥ = sp{Xm+1,Xm+2, ...,Xm+p}(m < n).

It is clear that T M = D⊕D⊥⊕{ξ1, ...,ξs}, dimM = 2m+ p+ s. Let

T M⊥ = {Ym+1,Ym+2, ...,Ym+p,Ym+p+1, ...,Yn,Xm+p+1, ...,Xn}

then we have ϕD = D and ϕD⊥ ⊂ T M⊥. Consequently, M is a semi-invariant submanifold of an almost 1
2
-cosymplectic

f -manifold.

4. Basic Lemmas

For any X ,Y ∈ Γ(T M), we put

u(X ,Y ) = ∇X ϕPY −AϕQY X . (4.1)

We start with proving the following lemma.

Lemma 4.1. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then

we have

P(u(X ,Y )) = ϕP∇XY −
s

∑
i=1

[αη i(Y )ϕPX +η i(Y )PtiX ] (4.2)

Q(u(X ,Y )) = QCB(X ,Y )−
s

∑
i=1

η i(Y )QtiX (4.3)

B(X ,ϕPY )+∇⊥
X ϕQY = ϕQ∇XY +DB(X ,Y )

−
s

∑
i=1

[αη i(Y )ϕQX −η i(Y ) fiX ] (4.4)

η i(u(X ,Y ))ξi =
s

∑
i=1

[αg(ϕPX ,Y )ξi +g(hiX ,Y )ξi]

−
s

∑
i, j=1

η i(Y )η j(tiX)ξi. (4.5)
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Proof. For X ,Y ∈ Γ(T M), putting (3.1), (3.2) and (3.3) in the equation (2.7) we get

(∇̃X ϕ)Y =
s

∑
i=1

[α(g(ϕPX ,Y )ξi −η i(Y )ϕPX −η i(Y )ϕQX)

+ g(hiX ,Y )ξi −η i(Y )hiX ]

=
s

∑
i=1

[α(g(ϕPX ,Y )ξi −η i(Y )ϕPX −η i(Y )ϕQX)+g(hiX ,Y )ξi

− η i(Y )PtiX −η i(Y )QtiX −η i(Y )
s

∑
j=1

η j(tiX)ξ j −η i(Y ) fiX .

On the other hand, by using (3.1), (3.2), (3.4) and (3.5) we have

(∇̃X ϕ)Y = ∇̃X ϕY −ϕ∇̃XY

= ∇̃X ϕPY + ∇̃X ϕQY −ϕ(∇XY +B(X ,Y ))

= ∇X ϕPY +B(X ,ϕPY )−AϕQY X +∇⊥
X ϕQY

−ϕP∇XY −ϕQ∇XY −CB(X ,Y )−DB(X ,Y )

(∇̃X ϕ)Y = P∇X ϕPY +Q∇X ϕPY +
s

∑
i=1

η i(∇X ϕPY )ξi +B(X ,ϕPY )

−PAϕQY X −QAϕQY X +∇⊥
X ϕQY −

s

∑
i=1

η i(AϕQY X)ξi

−ϕP∇XY −ϕQ∇XY −CB(X ,Y )−DB(X ,Y ).

Taking the components of D, ξi, D⊥ and T M⊥ in above equations, we have our assertion.

Lemma 4.2. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then

we have

ϕP(ANX)+P(∇XCN) = P(ADNX) (4.6)

Q((C∇⊥
X N)+ADNX −∇XCN) = 0 (4.7)

η(ADNX −∇XCN) = αg(X ,CN)+g(hiX ,N)ξi (4.8)

B(X ,CN)+ϕQ(ANX)+∇⊥
X DN = D∇⊥

X N (4.9)

for any X ∈ Γ(T M) and N ∈ Γ(T M⊥)

Proof. By using the decompositions (3.1), (3.2) and the equations of Gauss and Weingarten in (2.7) we have

(∇̃X ϕ)N = ∇̃X ϕN −ϕ∇̃X N =
s

∑
i=1

[αg(ϕX ,N)ξi +g(hiX ,N)ξi]

∇XCN +B(X ,CN)−ADNX +∇⊥
X DN +ϕANX −ϕ∇⊥

X N =
s

∑
i=1

[αg(ϕX ,N)ξi +g(hiX ,N)ξi]

= P∇XCN +Q∇XCN +
s

∑
i=1

η i(∇XCN)ξi +B(X ,CN)−PADNX −QADNX −
s

∑
i=1

(ADNX)ξi

+∇⊥
X DN +ϕPANX +ϕQANX −C∇⊥

X N −D∇⊥
X N

=−
s

∑
i=1

[αg(X ,CN)ξi +g(hiX ,N)ξi]

Then (4.6)- (4.9) follows by taking the components on each of the vector bundle D, D⊥, ξi and respectively T M⊥.
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Lemma 4.3. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then we have

∇X ξi = αX −ϕtiX −C fiX ∀X ∈ Γ(D) (4.10)

∇X ξi = αX −ϕtiX −C fiX ∀X ∈ Γ(D⊥) (4.11)

∇ξi
ξ j = 0, B(X ,ξi) =−D fiX . (4.12)

Proof. For X ∈ Γ(T M), using (3.2), (3.3) and (3.4) we obtain

∇̃X ξi = ∇X ξi +B(X ,ξi) =−αϕ2X −ϕhiX

= αX −α
s

∑
i=1

η i(X)ξi −ϕhiX

= αX −α
s

∑
i=1

η i(X)ξi −ϕtiX −ϕ fiX

= αX −α
s

∑
i=1

η i(X)ξi −ϕtiX −C fiX −D fiX . (4.13)

Thus (4.10)-(4.12) follows from (4.13).

Lemma 4.4. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then

we have

AϕXY = AϕY X (4.14)

for all X ,Y ∈ Γ(D⊥).

Proof. For all X ,Y ∈ Γ(D⊥) and Z ∈ Γ(T M), by using (3.4) and (3.6), we get

g(AϕXY,Z) = g(B(Y,Z),ϕX) = g(∇̃ZY,ϕX)

=−g(ϕ∇̃ZY,X) =−g(∇̃ZϕY − (∇̃Zϕ)Y,X)

=−g(∇̃ZϕY,X) = g(ϕY, ∇̃ZX)

= g(ϕY,B(Z,X)) = g(AϕY X ,Z),

which proves (4.14).

Lemma 4.5. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then we have,

∇ξi
U ∈ Γ(D), (4.15)

∇ξi
V ∈ Γ(D⊥), (4.16)

[U,ξi] ∈ Γ(D), (4.17)

[V,ξi] ∈ Γ(D⊥) (4.18)

for any i ∈ {1,2, ...,s}, U ∈ Γ(D) and V ∈ Γ(D⊥).

Proof. For U ∈ Γ(D) and V ∈ Γ(D⊥),

g(∇ξi
U,ξ j) = ξig(U,ξ j)−g(U,∇ξi

ξ j) = 0

and

g(∇ξi
U,V ) = ξig(U,V )−g(U,∇ξi

V ) = g(ϕ2U,∇ξi
V ) =−g(ϕU,ϕ∇ξi

V ) =−g(ϕU,∇ξi
ϕV ) = g(∇ξi

ϕU,ϕV ) = 0,

so ∇ξi
U ∈ Γ(D). In a similary way is deduced (4.16). On the other hand, using (4.10) and (4.11), we have

g([U,ξi],ξ j) = g(∇U ξi,−∇ξi
U,ξ j) = 0

and

g([U,ξi],V ) = g(∇U ξi,V )−g(∇ξi
U,V ) = 0.

Thus completes the proof.
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Lemma 4.6. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then we have

g(X , tiY ) = g(tiX ,Y ), (4.19)

ϕtiX + tiϕX +C fiX = 0, (4.20)

D fiX + fiϕX = 0 (4.21)

for any X ,Y ∈ Γ(M).

Proof. Since hi is symmetric, we get

g(X ,hiY ) = g(hiX ,Y )

g(X , tiY + fiY ) = g(tiX ,Y )+g( fiX ,Y )

g(X , tiY )+g(X , fiY ) = g(tiX ,Y )+g( fiX ,Y ).

From above equation we get (4.19). By making use of proposotion 2.3 and using (3.2), (3.3), we get

ϕtiX + tiϕX +C fiX +D fiX + fiϕX = 0. (4.22)

Comparing the tangential and normal part of (4.22), we get (4.20) and (4.21), respectively.

5. Integrability of distribution on a semi-invariant submanifold in an almost α-
cosymplectic f - manifold

Theorem 5.1. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then the distribution D is

never integrable.

Proof. For all X ,Y ∈ Γ(D), we have

g([X ,Y ],ξi) = g(∇XY,ξi)−g(∇Y X ,ξi)

=−g(Y,∇X ξi)+g(X ,∇Y ξi)

=−g(Y,αX −ϕtiX −C fiX)+g(X ,αY −ϕtiY −C fiY )

= g(Y,ϕtiX)+g(Y,C fiX)−g(X ,ϕtiY )−g(X ,C fiY )

= g(Y,ϕtiX +C fiX)−g(X ,ϕtiY +C fiY )

=−g(Y, tiϕX)+g(X , tiϕY )

=−g(tiY,ϕX)+g(tiX ,ϕY )

=−g(Y, tiϕX)−g(ϕtiX ,Y )

=−g(Y, tiϕX +ϕtiX)

= g(Y,C fiX) 6= 0.

This follows the non-integrability of D.

Corollary 5.2. The distribution D⊕D⊥ never involutive.

Theorem 5.3. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. The

distribution D⊕{ξ1, ...,ξs} is integrable if and only if

B(X ,ϕY ) = B(ϕX ,Y ) (5.1)

is satisfied.

Proof. From (4.4), the distribution D⊕{ξ1, ...,ξs} is integrable if and only if

B(X ,ϕY )−B(Y,ϕX) = ϕQ[X ,Y ] = 0

is satisfied so, B(X ,ϕY ) = B(Y,ϕX).

Theorem 5.4. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold with Kaehlerian leaves M̃. Then

the distribution D⊥ is integrable.
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Proof. From (4.1), we have for X ,Y ∈ Γ(D⊥)

U(X ,Y ) =−AϕQY X

operating ϕ in (4.2) we get

P∇XY = ϕP(AϕY X) (5.2)

for any X ,Y ∈ Γ(D⊥). By virtue of Lemma 4.4, (5.2) reduce to

P([X ,Y ]) = 0

which is prove that [X ,Y ] ∈ Γ(D⊥).

6. Mixed totally geodesic semi-invariant submanifolds

Definition 6.1. A semi-invariant submanifold M of an almost α- cosymplectic f - manifold M̃ is called mixed totally geodesic

if the second fundamental form satisfies B(X ,Y ) = 0 for any X ∈ D and Y ∈ D⊥[5].

Theorem 6.2. Let M be a semi-invariant submanifold of almost α- cosymplectic f - manifold M̃. Then M is mixed totally

geodesic submanifold of almost α- cosymplectic f - manifold M̃ if and only if

AV X ∈ Γ(D) (∀X ∈ Γ(D), V ∈ Γ(T M)⊥) (6.1)

and

AV X ∈ Γ(D)⊥ (∀X ∈ Γ(D)⊥, V ∈ Γ(T M)⊥). (6.2)

Proof. Consider AV X , let X ∈ Γ(D) and V ∈ Γ(T M)⊥ and Y ∈ Γ(D⊥), then we have

g(B(X ,Y ),V ) = g(AV X ,Y )

= 0 ⇔ AV X ∈ Γ(D).

On the other hand, if AV X ∈ Γ(D), we get

g(AV X ,V ) = g(B(X ,Y ),V )

= 0 ⇔ B(X ,Y ) = 0.

In a similar way is deduced (6.2).
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