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Chaos Theory and Applications: A New Trend 

Guanrong Chen ID ∗,1
∗Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.

It is amazing and also exciting to see a new journal Chaos Theory and Applications established recently. 
After chaos was coined with a precise model, the Lorenz system, more than half a century ago Lorenz (1963), 
there have already been many well-known journals on chaos Sprott (2010) such as, to name just a few 
specialized ones, Chaos, Chaos Solitons and Fractals, International Journal of Bifurcation and Chaos, Non-
linear Dynamics, and several Physical Review journals. Therefore, on the one hand, organizing a new journal on 
chaos needs a lot of courage and planning, and on the other hand, one can see that the chaos is still an ever-
young subject for scientific research today.

Manuscript received: 16 August 2020,
Accepted: 17 August 2020.

1 eegchen@cityu.edu.hk (Corresponding author)

Typically, a subject with linearity by nature would last for one or two decades of active research before it 
turns to be mature or even becomes a toolbox for efficient applications, whereas a subject of nonlinear-ity in 
essence could last for much longer time or forever. Chaos is one example. The Lorenz system has been an 
icon of the subject for study, which is simple in form as a three-dimensional, autonomous, second-order 
polynomial system with three equilibria, but has extremely complex dynamics. Notably, it never exclude other 
possible chaotic models to be developed. Rössler system Rössler (1976) was another icon that is even simpler 
with only two equilibria, followed by yet an engineering model, Chua’s circuit Matsumoto et al. (1985), which is 
a simple piecewise linear system, not to mention many others (e.g. the generalized Lorenz systems family 
Chen et al. (2020)).
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Great progress notwithstanding, all that were not the end of the chaos story. Recently, it was found that 
there are many Lorenz-like chaotic systems, namely three-dimensional autonomous second-order polyno-
mial systems, however without equilibrium, or with one stable equilibrium, or with two stable foci, or with 
infinitely many equilibria on a curve or a surface in the three-dimensional phase space Chen et al. (2020). 
They were classified to be systems with hidden chaotic attractors Wang et al. (2021); Leonov and Kuznetsov 
(2013). In these systems, the traditional bifurcation analysis is inapplicable, since even eigenvalues of Ja-
cobians at equilibria do not exist or cannot be well defined, thereby the familiar bifurcation analysis can-
not be performed to characterize chaos, or to find a route to chaos, in such unusual non-hyperbolic sys-
tems. This poses great challenges to theorists in the field of bifurcation and chaos.

It is our expectation, therefore, that the new journal Chaos Theory and Applications could contribute more to 
this new direction of chaos research, along with other traditional topics.

https://orcid.org/0000-0003-1381-7418
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A Chaos-Based Encryption Application for Wrist Vein
Images
Ömer Faruk Boyraz ID ∗,1, Murat Erhan Çimen ID ∗,2, Emre Güleryüz ID ∗,3 and Mustafa Zahid Yıldız ID ∗,4

∗Department of Electrical & Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, 54187 Serdivan, Sakarya, Turkey.

ABSTRACT In this study, the images of the wrist vein taken from the individuals were subjected to various pre-
processings and then encrypted with random numbers obtained from the chaotic system. Before encryption,
random numbers were generated using a chaotic system. The random numbers produced have successfully
passed the NIST 800-22 tests. Images encrypted with random numbers were subjected to security analysis
such as correlation, NPCR, UACI and histogram analysis. With the study carried out, it has been shown that
wrist vein patterns that can be used in authentication systems can be safely stored in the database.

KEYWORDS

Wrist vein image
Chaotic system
Random number
generator
Encryption
Security analysis

INTRODUCTION
Biometrics allows individuals to classify individuals based
on different physiological and behavioral characteristics,
such as fingerprints, iris, manner of walking, and patterns
of movement. While physiological features such as finger-
prints, palm prints, iris are linked to the form of the body,
behavioral features such as voice, handwriting signature,
and walking are linked to the model of behavior of the
person. (Lee et al. 2010). The near infrared wavelength is
absorbed by the hemoglobin in the blood, and the region
of vein near the skin are displayed darker with the infrared
camera. Identification process from the vein pattern; It can
be performed on various images such as dorsal hand vein
pattern (Yildiz and Boyraz 2019), finger vein pattern (Cho
et al. 2012), palm vein pattern (Raut et al. 2017) and wrist
vein pattern (Niyaz et al. 2017).

Among the four different types of vascular patterns, the
wrist vein pattern provides a clear view due to its close
proximity to the outer skin and its intensive presence.

Wrist vascular biometry has not been studied much in
the literature. In their study, Akhloufi and colleagues ob-
tained the vascular network structures in the forearm wrist

Manuscript received: 9 April 2020,
Revised: 31 August 2020,
Accepted: 24 September 2020.

1 oboyraz@subu.edu.tr (Corresponding Author)
2 muratcimen@subu.edu.tr
3 emre.guleryuz1@ogr.sakarya.edu.tr
4 mustafayildiz@subu.edu.tr

region through a CCD infrared camera. Anisotropic dif-
fusion process was applied to improve the contrast of the
images obtained, and then segmented the vascular network
structures using morphological processes (Akhloufi and
Bendada 2008).

Thanks to the lighting system and infrared camera plat-
form designed by Pascual et al., they collected hand-wrist
vein images and showed that these images are clear enough
to be used for identification (Pascual et al. 2010).

Wrist vein are used in the process of personal identifi-
cation. The advantage of performing touchless wrist vein
recognition processes over other pattern recognition sys-
tems (touch based fingerprint, palm, finger vein, etc.) is the
ability to conduct touchless identification and verification
operations during image acquisition. In this way, in a more
sterile setting, identification is achieved. Such advantages
make touchless wrist vein recognition technology a more
accurate and promising system that attracts increasing at-
tention in security systems, hospitals, courthouses, banks,
public institutions and industry.
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Consequently, it is a crucial issue to secure fingerprint im-
age transmission over the internet and its access in the open
network environment. Therefore, it is very important to
protect and store touchless wrist vein images by encrypting
them.

Several technologies have been developed to secure and
store various groups of images so far. Among these tech-
nologies, the chaos-based encryption method is the most
intuitive and effective way to turn images into unrecogniz-
able (Chai et al. 2017). Several image encryption algorithms
have recently been proposed that can be used to preserve
images at a high level of protection (Hua and Zhou 2017).

Dzwonkowski et al. presented an encryption scheme that
uses quaternion to protect the image of DICOM (Digital
Imaging and Communications in Medicine) (Dzwonkowski
et al. 2015). Hsiao et al. Encrypted their contact fingerprint
images using 2 different chaotic systems (Hsiao and Lee
2015). Random numbers produced using multiple chaotic
system passed NIST SP 800-22a test. Zhang et al. proposed a
medical image encryption and compression algorithm using
the compression detection and pixel permutation approach.
This algorithm will simultaneously encrypt and compress
medical images. (Zhang et al. 2015).

Yildiz et al., In their study, encrypted the hand vein im-
ages that converted into 1 bit with a new encryption algo-
rithm and stored them in the database (Yildiz et al. 2019).The
SURF matching algorithm was used in the encrypted im-
ages.

In this study, wrist vein images taken from people with
the help of infrared camera were subjected to various pre-
processes on the microcomputer and it was aimed to store
the vein images safely in the database since it is a personal
data. After the wrist vein images were pretreated, they were
encrypted by eXclusive OR (XOR) processing with random
numbers obtained using the chaotic system.

MATERIAL AND METHOD

Material
Right and left hand wrist vein images obtained from a total
of 50 volunteers from 20 females and 30 males used in the
study were collected by the device shown in Figure 1. Volun-
teers were asked to place their wrists on the hand placement
platform illuminated by infrared power leds with 850 nm
wavelength and images were taken via an infrared camera.

The obtained images were transferred to the micro-
computer environment and were subjected to image pre-
processing and encryption algorithms, respectively. The
encrypted images are securely stored in the database in the
microcomputer environment.

Method
The block diagram of encryption of wrist vein images in
microcomputer environment is shown in Figure 2. Hand-
wrist vein images taken with the help of infrared camera
were subjected to gray level conversion and contrast lim-
ited adaptive histogram equalizition processes, respectively.
These images were then encrypted using random numbers
obtained using the chaotic system.

In this research, the chaotic system used is a continuous
time, a chaotic 3-dimensional balance point system (Akgül
et al. 2020). The system consists of 3 different differential
equations as given in equation 1. There are three state vari-
ables in the system: x, y, z, and a total of four parameters:
a, b, c, d. In order for the system to be chaotic, initial condi-
tions are determined as x(0) = 0.4, y(0) = 0.1, z(0) = 0.

ẋ =ax
ẏ =− x + byz
ż =− x − cxy − dxz

(1)

For the system given in Equation 1, the parameters show a
chaotic feature when a = 1.9, b = 1.1, c = 11.5 and d = 0.7. In
Equation 2, the parameters of the chaotic system are shown.

ẋ =1.9y
ẏ =− x + 1.1yz
ż =− x − 11.5xy − 0.7xz

(2)

There are several techniques of research to understand
whether or not a system is chaotic. The analysis of the
system’s behavior (time series), phase portraits, lyapunov
exponentials, bifurcation diagrams over a certain period
of time are some of these analysis methods. As a result of
these analyzes, the system has been shown to exhibit chaotic
behavior (Akgül et al. 2020).
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(a) (b)

Figure 1 a)Block diagram of system (Boyraz and Yildiz 2016) b)Collection of hand-wrist images from volunteers

Figure 2 Block diagram of encryption of Hand-Wrist Vein images

CHAOS Theory and Applications 5



PRE-PROCESSING OF WRIST IMAGES
Contrast improvement is aimed in the pre-processing pro-
cess. The target area was removed from the wrist images
taken with the help of the infrared camera, and then the
contrast-limited adaptive histogram equalization was per-
formed to make the vascular areas more visible.

The acquired images were first converted to gray level,
and the areas of the vein were clarified by applying contrast-
limited histogram equalization (CLAHE) method (Stimper
et al. 2019). This method is used both on noise reduction
and on medical images to eliminate the edge shadow effects
in homogeneous areas. Figure 3 shows the vascular area,
which has been converted to a gray level and the contrast
has been improved with the CLAHE method. As a result of
these processes, the stage before the 8-bit level encryption
has been reached.

In Table 2 NPCR and UACI analyzes between the en-
crypted image and the 8-bit wrist image are given. Accord-
ing to the analysis, it is concluded that almost all the pixels
of the 8-bit wrist image are changed and the image that is en-
crypted using random numbers produced from the chaotic
1system is formed. UACI results express the density of the
changing pixels.

NIST 800-22 TESTS FOR RANDOMNESS
NIST-800-22 test was used to perform randomness tests of
the produced numbers. The NIST-800-22 test bit sequence
must pass all of these tests successfully to be considered
successful. The NIST-800-22 test contains 16 different statis-
tical tests which define the randomness of the bit sequences
(Akgül et al. 2019). As all the numbers passed the test, it was
concluded, according to Table 1. Randomness was obtained
by random numbers created from the last 8 bits of the x, y
and z values.

ENCRYPTION OF WRIST VEIN IMAGES
The flow chart showing the encryption of 8-bit vein images
using random numbers produced is given in Figure 4. The
wrist vein images taken are given to the system for encryp-
tion first. Then the dimensions of this image are calculated.
Pixel values in each coordinate are converted to an 8-bit
binary level. Number sequences converted into 8-bit binary
level are subjected to XOR processing with random num-
bers generated from the chaotic system. After this process,
the values formed are converted to decimal system and the
pixel values of the encrypted image are obtained.

(a)

(b)

(c)

Figure 3 a) Raw image b) Gray Level c) CLAHE

6 | Boyraz et al. CHAOS Theory and Applications



n Table 1 NIST-800-22 test results

Statistical Tests P-value (X_8bit) P-value (Y_8bit) P-value (Z_8bit) Results

The Frequency Test 0.3547 0.5425 0.4879 Successful

Frequency Test within a Block 0.4578 0.7421 0.6444 Successful

The Cumulative Sums Test 0.5412 0.3478 0.3789 Successful

The Runs Test 0.2879 0.3456 0.4785 Successful

Tests for the Longest-Run-of-Ones in a Block 0.6789 0.3127 0.1987 Successful

The Binary Matrix Rank Test 0.7214 0.4879 0.3414 Successful

The Discrete Fourier Transform Test 0.1754 0.1424 0.4232 Successful

The Non-overlapping Template Matching Test 0.7543 0.0425 0.1074 Successful

The Overlapping Template Matching Test 0.1987 0.7562 0.3412 Successful

Maurer’s Universal Statistical Test 0.7521 0.4017 0.3478 Successful

The Aproximate Entropy Test 0.1789 0.3485 0.6147 Successful

The Random Excursions Test (x = -4) 0.6755 0.3478 0.1977 Successful

The Random Excursions Variant Test (x = -9) 0.6478 0.3974 0.2476 Successful

The Serial Test-1 0.7213 0.3456 0.4102 Successful

The Serial Test-2 0.7620 0.4397 0.3157 Successful

The Linear Complexity Test 0.3024 0.3789 0.4987 Successful

CHAOS Theory and Applications 7



Figure 4 The Encryption Algorithm flowchart
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SECURITY ANALYSIS
In this section, encryption operations are realized with ran-
dom numbers produced from the chaotic system. The sys-
tem’s security analysis was performed using entropy, dif-
ferential attack (NPCR, UACI), correlation and histogram
methods after encryption. Figure 5 shows histogram anal-
ysis and correlation analysis of the encrypted wrist image.
As a result of encryption, the correlation and histogram dis-
tributions of the images are homogeneous, indicating that
the encryption is successful.

(a) (b)

(c) (d)

(e) (f)

Figure 5 a) Wrist vein image b) Encrypted wrist image
c) Histogram distributions of Wrist vein d) Encrypted
histogram distributions of Wrist vein e) Correlation map
of wrist vein image f) Correlation map of encrypted wrist
image

n Table 2 Security analysis for sample images

Sample Images NPCR UACI

1. Encrypted image 99.7894 29.4785

2. Encrypted image 100 28.9789

3. Encrypted image 99.8974 29.7454

CONCLUSION
In this article, the wrist vein images taken from people with
the help of infrared camera are transferred to microcom-
puter, passed through various preprocesses, encrypted as
chaos-based and security analysis are performed. Vein im-
ages vary from individual to individual, much like finger-
prints. Hiding these data is therefore very necessary for
the protection of the biometric recognition system. These
images are encrypted and stored in the database to ensure
the system’s protection. Random numbers produced from
the x, y and z phases of the chaotic system have success-
fully passed the internationally accepted NIST-800-22 tests
Rukhin et al. (2001) and have been found to provide random-
ness in all 3 phases. In the encryption part, the encryption
process was performed with random numbers generated.
The images obtained after encryption and the pretreated
vein images were analyzed by histogram, correlation, en-
tropy, NPCR and UACI analysis and the encryption was
successful.

Conflicts of interest
The authors declare that there is no conflict of interest re-
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Designing a Pseudo-Random Bit Generator Using
Generalized Cascade Fractal Function
Shafali Agarwal ID ∗,1
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ABSTRACT A cascade function is designed by combining two seed maps that resultantly has more parameters,
high complexity, randomness, and more unpredictable behavior. In the paper, a cascade fractal function,
i.e. cascade-PLMS is proposed by considering the phoenix and lambda fractal functions. The constructed
cascade-PLMS exhibits the required fractal features such as fractional dimension, self-similar structure, and
covering entire phase space by the data sequence in addition to the chaotic properties. Due to the chaotic
behavior, the proposed function is utilized to generate a pseudo-random number sequence in both integer and
binary format. This is the result of an extreme scalability feature of a fractal function that can be implemented
on a large scale. A sequence generator is designed by performing the linear function operation to the real
and imaginary part of a cascade-PLMS, cascade-PLJS separately, and the iteration number at which the
cascade-PLJS converges to the fixed point. The performance analysis results show that the given method has
a large key space, fast key generation speed, high key sensitivity, and strong randomness. Therefore, the
scheme can be efficiently used further to design a secure cryptosystem with the ability to withstand various
attacks.

KEYWORDS

Mandelbrot set
PRNG
Cascade phoenix
lambda fractal
Key security anal-
ysis
Dynamic behav-
ior

INTRODUCTION
An internet era extends the security requirement of the dig-
ital information transmitted over the unsecured network.
Cryptography is one of the most prominent ways to protect
the data from illegitimate users (SI 1998). Since the last few
years, a chaotic system has attracted researchers to utilize
it in the field of cryptography. The dynamical properties
of a non-linear chaotic system such as unpredictability, ran-
domness, sensitivity to the minute change in its initial value,
ergodicity, complex structure and deterministic dynamics
lead it to a secure cryptosystem design. The abovemen-
tioned properties encourage to construct of a chaotic system
having increased security and high complexity (Devaney
2018).

A fractal is a graphical representation of a chaotic func-
tion with complex structure and infinite scaling in each
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direction. In addition to chaotic behavior, a fractal function
possesses more features such as construction in a complex
domain, fractional dimension, self-similarity, etc. (Devaney
et al. 1989; Mandelbrot and Mandelbrot 1982). A hybrid
fractal function exhibits the characteristics of seed functions
with more controlling parameters. Recently, a composite
fractal function has been proposed by the author and dis-
cussed the suitability of the function in an image cryptosys-
tem design (Agarwal 2020). Even many hybrid chaotic maps
and their applicability in a pseudo-random generator, cryp-
tography, s-box design have been studied by the researchers
(Artuğer and Özkaynak 2020; Bai et al. 2020; Hua et al. 2018;
Lynnyk et al. 2015; Moysis et al. 2020a). Additionally, fractal
geometry is widely utilizing in user authentication (Motỳl
and Jašek 2011), medical image analysis (Dey et al. 2018), and
image hashing (Khelaifi and He 2020). Unpredictable be-
havior and extreme sensitivity towards the change in initial
values prefer a fractal function to design a pseudo-random
number sequence (PRNG).
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A pseudo word indicates a random sequence calculated
using a deterministic system. According to mathematical
theory, a deterministic system is predictable. A complex
sequence generator including the process to select a seed
value can help to enhance the security and reduce the cor-
relation in the generated sequence. A PRNG has a wide
range of applicability in various fields such as in the game
industry, artificial intelligence, cryptography, statistical sim-
ulation, and many more. On the other hand, a true random
number sequence is produced by the author by visualiz-
ing spontaneous chaotic oscillation of the current through
semiconductor superlattices (Bonilla et al. 2016).

Recently, Barnsley’s chaos game rules were utilized to
generate a pseudo-random sequence (Ayubi et al. 2020). A
complex Newton fractal function was used to generate a
secure PRNG due to the strong statistical characteristics and
a random phase space (Barani et al. 2020). An additional ad-
vantage of the map is to have a PRNG in an integer as well
as a complex form. A modified logistic map was utilized
to generate PRNG in two phases, including initial pseudo-
random sequence and normal pseudo-random sequence
using the value obtained in the previous phase (Wang and
Cheng 2019). Another modified logistic map was success-
fully applied to generate random bit sequences by perform-
ing a comparison between maps, XOR, and bit reversal (Mo-
ysis et al. 2020b). An original logistic map was coupled with
a piecewise map to implement a chaotic pseudo-random
number generator (Sahari and Boukemara 2018). To over-
come the chaotic degradation that arises due to the com-
putational accuracy, a self-perturbed hyperchaotic system
based PRN generator is proposed. The used hyperchaotic
map is derived using the classical Lorenz three-dimensional
chaotic system (Zhao et al. 2019). A similar Lorenz-like
Chen chaotic system (Chen and Ueta 1999) was utilized by
the author to generate a complex pseudo-random number
generator (Hamza 2017). Earlier a PRN generator was pro-
posed using the time series obtained from the generalized
Lorenz chaotic map (Lynnyk et al. 2015). The author pro-
posed a method in (Moysis et al. 2020a) to generate a PRNG
by extracting around 8 bits per iteration from the decimal
part of the chaotic map. The method was tested on various
one-dimensional maps including the logistic map, sine map,
Renyi map, Chebyshev map, cubic map, cubic logistic map.

In this paper, the cascading of two fractal functions is
proposed with the applicability of the function in the design
of a pseudo-random number generator. The emergence of
the chaotic characteristics of two maps provides a more com-
plex environment to produce a PRNG. The change in any
single parameter realizes to a completely new data sequence,
which is the foremost requirement of a secure PRNG. The
main contribution in the paper can be summarized as fol-
lows:

1. A cascade structure of the fractal function is imple-
mented using Phoenix and lambda fractal functions.

2. The dynamical behavior of the proposed cascade-PLMS
is thoroughly investigated by analyzing its dimension,

self-similar structure, trajectory, and cobweb diagram.

3. A method to generate a pseudo-random number se-
quence is proposed by using a combination of a cascade-
PLMS, cascade-PLJS fractal function, and a fixed-point
value resultant the execution of a particular cascade-
PLJS.

4. The randomness and security of the generated PRNG
are verified with various tests such as key space, key
sensitivity, correlation value, autocorrelation analysis,
information entropy, etc.

The rest of the paper is organized as follows. The struc-
ture of the proposed cascade-PLMS, and cascade PLJS and
their dynamical properties are studied in section 2. In sec-
tion 3, the generated fractal functions are applied to produce
a pseudo-random bit sequence. In section 4, the random-
ness and security performance of the generated PRNG are
analyzed. Finally, the paper is concluded with a discussion
of future work direction in section 5.

A CASCADE FRACTAL FUNCTION AND IT’S DY-
NAMICAL BEHAVIOR ANALYSIS
A cascade fractal function (Cascade-FF) is designed by con-
sidering two seed functions (for example F1(x) and F2(x))
connected in the series. For each iteration, the output of
F1(x) is fed into the F2(x) as input, and the output of F2(x)
is fed as an input to the F1(x). A repetitive output value
feeding to each other until the number of iteration limit gets
over (Zhou et al. 2014). Mathematically, for functions F1(x)
and F2(x), a cascade-FF is defined as follows:

xn+1 = F1(F2(xn)) (1)

where F1(x) and F2(x) two seed functions which can be
the same or different. A function is known as a cascade
with itself if the same functions are using in the cascade-FF
design. In that case, the function definition will be:

xn+1 = F1(F1(xn)) (2)

A cascade-FF has the ability to exhibit different struc-
tures while changing the order of contributed seed functions.
Such as:

xn+1 = F1(F2(xn)) (3)

and

xn+1 = F2(F1(xn)) (4)

The paper focuses on the single aspect of designing a
cascade-FF using phoenix and lambda fractal function. Let’s
recall the mathematical definition of the phoenix fractal and
lambda fractal functions respectively (Peitgen et al. 2006):

z(n+1) = za
n + zb

nc + pz(n−1)

z(n+1) = czn(1− zn)(w−1)
(5)
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where c ∈ C, and −1 < p < 1 with z0 6= 0. The fractal
images generated by executing both functions are shown in
Figure 1.

(a) (b)

Figure 1 a) Phoenix fractal b) Lambda fractal.

Cascade-PLMS and Cascade-PLJS

A cascade-PLMS function is proposed to have a more com-
plicated chaotic structure that is controlled by many pa-
rameters as compared to an individual. Too many parame-
ters give the flexibility to have a more random and unpre-
dictable output sequence by varying its value. By consider-
ing the phoenix fractal as F1(x) and lambda fractal as F2(x)),
a cascade-PLMS is defined as follows:

tempz = za
n + zb

nc + pz(n−1)

z(n+1) = c ∗ tempz(1− tempz)(w−1)
(6)

All variables have their usual meaning except tempz. It
represents an intermediate value of the phoenix function
which has fed to the lambda function as input. The cascade-
PLMS function is a set of c values for which the orbit of
starting value i.e. zn remains bounded under the function
iteration. The proposed cascade-PLMS function is utilized
to generate a pseudo-random number sequence with the
parameter values z0 = 0.09, p = −0.03, a = 2, b = 1, and
w = 3.

A cascade phoenix lambda Julia set (cascade-PLJS) is
nothing but a fractal image of the same function for a fixed c
value starting with a nonzero z value. The paper has shown
a cascade-PLJS image for c = (0.7444196429, 0.6863839286).
Both fractal images are plotted for the above-given param-
eter values using the UltraFractalTM and shown in Figure
2. A repetitive execution of the function with a fixed c
value makes it converge to a fixed-point attractor, depend-
ing on whether the c value lies inside the cascade-PLMS
image or outside of it. The convergence rate of the func-
tion varies for different c values. The iteration number at
which the cascade-PLJS converges will be utilized in the
pseudo-random number generation method.

(a) (b)

Figure 2 a) Cascade-PLMS b) Cascade-PLJS.

Dynamical Properties Analysis of Cascade-PLMS
Self-Similar Structure A fractal image is well-known to
have a self-similar structure at a wide range of different
scales. The beauty of a Mandelbrot set is to have infinite in-
formation on a small area of interest. As you zoom into the
set, you will get newer fascinating images. A new cascade-
PLMS is supposed to create an artistically appealing fractal
image that also exhibits new patterns upon further explo-
ration. Figure 3 shows randomly selected fractal images
obtained by zooming the cascade-PLMS function.

(a) (b)

Figure 3 (a)-(b) Zoomed version of cascade-PLMS

Fractal dimension According to Felix Hausdorff (Czyz
1994), rough and broken fractal images should have an “in-
between” dimension. This is a common way to measure the
complexity of a fractal image boundary. A non-regular two-
dimensional fractal image is supposed to have a dimension
value between one and two. Recently, the author developed
a user interface to calculate the fractal dimension using the
box-counting method (Çimen et al. 2020). If a fractal image
is superimposed by a grid of N squares to occupy the E
number of edges, the fractal dimension can be calculated as:

dim =
log N
log E

(7)

The fractal dimension for several cascade-PLMS was cal-
culated to verify the fractional structure of the proposed
system. The obtained results were able to satisfy the re-
quirement of a fractal function. The fractal dimension of the
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proposed cascade-PLMS function for the above-discussed
parameters is 1.1535.

Trajectory and Cobweb diagram A cobweb and trajectory
diagrams are used to display the successive iterations of
a function. The only difference is that a cobweb diagram
presents the function behavior of a one-dimensional map
whereas a trajectory diagram is used to show the path of
the generated number sequence of the multi-dimensional
map. The chaotic behavior of a function can be justified by
distributing the generated sequence over time in the entire
phase space. A cascade-PLMS fractal image is generated
based on the number of iterations required to bound the ini-
tial value within the image. At the same time, a sequence of
a complex number is also generated on the execution of the
function for each initial value. Therefore, the below Figure
4 shows a cobweb diagram to show the occupancy of the
space by the iteration values and also a trajectory diagram
to present the relationship between real and imaginary val-
ues. It can be stated that the produced data covers the entire
phase space in both diagrams.

(a)

(b)

Figure 4 a) Trajectory diagram b) Cobweb diagram.

APPLICATION TO PSEUDO-RANDOM BIT GEN-
ERATION
The pseudo-random number generator is implemented by
considering the above proposed cascade-PLMS and its cor-
responding cascade-PLJS functions. All randomness tests
verify the suitability of the proposed cascade functions to
generate an unpredictable number sequence. A pictorial rep-
resentation of the proposed method can be seen in Figure
5.

The process starts by executing both the functions using
the initial values set within the respective value range. Here,
the cascade-PLMS function generates a sequence by con-
sidering initial values (z0,a, b, c, p, w) as (0.09, 2, 1, 0,−0.03, 3)
while the c value is considered (0.7444196429, 0.6863839286)
in cascade-PLJS assuming other values same as in cascade-
PLMS. The detailed method of the proposed technique is
described as follows:

Step 1: Calculate zdataMS and zdataJS as a set of a com-
plex number after executing the cascade-PLMS and cascade-PLJS
using the above-mentioned initial values set respectively.

Step 2: Calculate the fixed point of the cascade-PLJS function
for a given c value and record the maximum iteration number
(Itr) at which the fixed point is obtained.

Step 3: Separate real and imaginary parts of the zdataMS
into zdataMSreal and zdataMSimg and convert it into a one-
dimensional array.

Step 4: Repeat step 3 using zdataJS and obtained
zdataJSreal and zdataJSimg in a one-dimensional vector.

Step 5: Perform the linear function operation on the real num-
ber sequence of both the functions and Itr as follows:

updatedRealSeq = zdataMSreal ∗ Itr + zdataJSreal (8)

Step 6: Perform the same linear function operation on the
imaginary number sequence of both the functions and Itr as fol-
lows:

updatedImgSeq = zdataMSimg ∗ Itr + zdataJSimg (9)

Step 7: Convert float numbers to an integer by executing
the given function separately for real sequence and imaginary
sequence as follows:

IntRealSeq = round((updatedrealSeq ∗ 214)mod256)

IntImgSeq = round((updatedImgSeq ∗ 214)mod256)
(10)

Step 8: At last, a pseudo-random sequence is computed by con-
catenating both the sequences obtained prior using the following
function:

PRNG(2j) = IntRealSeq(i)

PRNG(2j + 1) = IntImgSeq(i)
(11)
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Figure 5 Block diagram of proposed PRNG method

where i = 1, 2, . . . , 500000 and initialize j=0. As a re-
sult, an integer sequence of length 106 is obtained. After
converting it into binary form, an 8-bit binary sequence of
length 8 ∗ 106 is produced. Hence, eight different binary
random number sequences can be generated by combining
the digits column-wise. To have a more random outcome,
intermediate 500000 values of each real and imaginary data
are considered while concatenating the sequence to get a
pseudo-random number sequence.

RANDOMNESS AND SECURITY ANALYSIS

Visual Representation of PRN Sequence
A trajectory diagram is used to display the path followed
by the sequence generated upon the execution of the func-
tion for a particular set of initial values. A non-linear pixel
path distributed over the entire phase space represents the
chaotic behavior of the map. By selecting an appropriate set
of initial values set can lead to producing a random number
sequence that does not show the periodic or closed curve be-
havior. Figure 6 displays a trajectory diagram of randomly
selected 500 pixels.

Key Space
Key space is an important index to indicate a secure cryp-
tosystem. The generator uses a cascade fractal function hav-
ing a set of initial values and control parameters to generate

Figure 6 Visual path of generated number sequence

a pseudo-random sequence. As per the function require-
ment, a set of values includes (z0, a, b, c, p, w) and a previous
z value. According to the IEEE floating-point standard, a
computational precision of a double datatype number is
about 1015. Therefore, the possible key space is calculated

as
(

1015
)7

= 10105 ≈ 2320. Thus, the available key space

is large enough than the prescribed range of 2100 that is re-
quired to resist the brute-force attack (Alvarez and Li 2006).

Key Generation Speed

The proposed PRNG method is implemented on MAT-
LABTM with a MacBook Pro having system configuration
2.6 GHz 6-Core Intel Core i7, and 16 GB memory. The ap-
proximate time to produce a random key sequence of size
1000 ∗ 1000 is 0.2084 sec.
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Key Sensitivity using NBCR Analysis
A key sensitivity test analysis is done to evaluate the impact
of the slight change in the input value to its corresponding
output value. The sensitiveness of the proposed pseudo-
random number generator is tested by executing two tests:
1) visual criterion, 2) the number of bit change rate (NBCR).

To evaluate the visual impact of two sequences, a control
parameter value of the function is increased by 10−14 and
others remain constant. Figure 7 shows the reaction of both
the sequences generated through initial values and the small
perturbed data set. It can be concluded from the figure that
the generated number sequence is completely different even
by making a small change in the control parameter value.
The other test calculates the number of changed bits between
two sequences. It is calculated as follows:

NBCR =
Ham_dis(x, y)

bit_len
(12)

Figure 7 Graphical representation of key sensitivity analy-
sis of generated sequence produced using original values
and altered values

The number of the bit change rate of two different num-
ber sequences is expected to be close to 50%. NBCR result in
Table 1 indicates that the initially generated pseudo-random
sequence is different from the sequence generated after in-
creasing a control parameter value slightly. Therefore, the
generated sequences prove the key sensitiveness of the pro-
posed pseudo-random number generator.

Entropy Analysis
An information entropy concept was introduced by Shan-
non to describes the randomness and uncertainty in the
information system (Shannon 1949). It can be computed
using the given function:

H(s) = −
(2n−1)

∑
i=0

p(xi)log2[p(xi)] (13)

n Table 1 NBCR value of generated sequence produced
using original values and altered values

Changed Parameter NBCR Value

Change in initial value z (Seq1) 49.90

Change in distortion (Seq2) 49.95

Change in power ’a’ (Seq3) 50.01

Change in power ’w’ (Seq4) 50.04

where p(xi) denotes the probability of occurrence of a
symbol xi in the pseudo-random sequence. If n number
of bits are required to represent a symbol, the entropy of
the information system is supposed to be close to n. A
binary sequence requires only one bit to show the symbol,
i.e. either zero or one. Therefore, an entropy value of a
binary sequence equals to one is considered as ideal value
to exhibit the randomness of the sequence.

Correlation Analysis
A correlation coefficient is calculated to analyze the relation-
ship between the two pseudo-random number sequences.
A value close to zero depicts no relationship between the
two sequences whereas strongly related sequences have a
correlation coefficient value near to one. Due to the cas-
cading of the two functions, many parameters are involved
in the pseudo-random number generator. Therefore, the
correlation analysis is done by varying a key at a time and
keeping constant the other parameters. For two sequences
x and y, the correlation coefficient is calculated using the
given equation:

CC (x, y) =
N

N
∑

i=1
(xiyi)−

N
∑

i=1
(xi)

N
∑

i=1
(yi)√

N
N
∑

i=1
(xi)

2 −
(

n
∑

i=1
(xi)

2
)
(N

N
∑

i=1
(yi)

2 −
(

n
∑

i=1
(yi)

2
)
)

(14)
Table 2 displayed the effect of changing parameters in

terms of correlation coefficient value. Each time a new se-
quence, i.e. y is generated by adding ε = 10−14 to the pre-
vious parameter value and also keeping others as same
as before. The process is executed for every parameter in
the same way and calculated the corresponding correlation
value. The obtained values indicate the high sensitivity of
the sequence towards the minute change in the parameter
value.
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n Table 2 Correlation coefficient value of generated se-
quence produced using original values and altered val-
ues

Changed Parameter Correlation coefficient

Change in initial value z (Seq1) 0.0034

Change in distortion (Seq2) 0.0024

Change in power ’a’ (Seq3) -0.0003

Change in power ’w’ (Seq4) 0.0005

Autocorrelation Analysis
Autocorrelation analysis is carried out to measure the simi-
larity between a sequence OS and its corresponding shifted
sequence OSS. The formula to calculate autocorrelation of a
sequence with size N is given as:

AC =
M1−M2

N
(15)

where M1 and M2 refer to the number of matches and
mismatches between the OS and OSS respectively. A value
that falls in a range [−1, 1] depicts a highly random number
sequence with a small correlation with itself. A graphical
view of pixel autocorrelation can be seen in Figure 8.

Figure 8 Autocorrelation analysis of number sequence

Performance Comparison with Existing Encryption Algo-
rithms
A comparative analysis of the proposed scheme with the
other existing PRNG methods is discussed in the section.
The comparison is mainly focused on the evaluation param-
eters such as key space, entropy, number of bit change rate,
and adjacent pixels correlation. Table 3 listed the data of
various considered PRNG methods along with the proposed
scheme to show a relative view of obtained results. The per-
formance parameters considered in the table proved good
agreement of the proposed PRNG algorithm from a highly
efficient and security view.

CONCLUSION
A cascade fractal function can be designed by combining
any two existing fractals. The paper analyzed the dynamical
behavior of cascade-PLMS function by considering phoenix
and lambda fractals. The benefit of combining two non-
linear functions is to have a more complex structure that
is further utilized to propose a pseudo-random number
generator. A linear function operation was applied to the
cascade-PLMS, cascade-PLJS, and the number of iterations
got as a result of obtaining a fixed point of the cascade-PLJS.
It is of interest to generate a PRNG which is an integer and
is convertible to the 8-bit binary sequence. By considering
the arrangement of the column-wise bit of the data, eight
simultaneous binary number sequences can be utilized in
further application. Aiming at the security of the generated
PRNG, a slight change in any system parameter leads to a
completely new pseudo-random number sequence.

The proposed concept of a new cascade fractal function
opens the door for the researchers to analyze the feasibil-
ity of the model using the other existing fractal functions.
The choice of fractal surely affects the complexity outcome
based on the corresponding function combination. Further,
the obtained PRNG can be applied to the cryptographic
application including creating watermarks, casinos, encod-
ing digital contents, and many more. It’s also aiming to
study how fast a bitstream can be generated so that it can
be utilized in the hardware implementation.
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n Table 3 Performance comparison of the proposed PRNG method with the existing methods

Encryption Algorithm Key Space Entropy NBCR Correlation Coefficient

Proposed 2320 7.9864 49.97 0.0016

Ref. (Zhao et al. 2019) 270 7.9896 49.74 -

Ref. (Barani et al. 2020) 2588 7.9937 50.13 0.0003

Ref. (Ayubi et al. 2020) 2232 - - 0.0586

Ref. (Wang and Cheng 2019) variable 7.9692 51.92 -

Ref. (Agarwal 2018) 2145 - - 0.0041
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ABSTRACT Despite the fact that chaotic systems do not have very complex circuit structures, interest in
chaotic systems has increased considerably in recent years due to their interesting dynamic properties. Thanks
to the noise-like properties of chaotic oscillators and the ability to mask information signals, great efforts have
been made in recent years to develop chaos-based TRNG structures. In this study, a new chaos-based Dual
Entropy Core (DEC) TRNG with high operating frequency and high bit generation rate was realized using
3D Pehlivan-Wei Chaotic Oscillator (PWCO) structure designed utilizing RK5-Butcher numerical algorithm
on FPGA and ring oscillator structure. In the FPGA-based TRNG model of the system, 32-bit IQ-Math
fixed-point number standard is used. The developed model is coded using VHDL. The designed TRNG unit
was synthesized for Virtex-7 XC7VX485T-2FFG1761 chip produced by Xilinx. Then, the statistics of the
parameters of FPGA chip resource usage and unit clock speed were examined. The data processing time of
the TRNG unit was achieved by using the Xilinx ISE Design Tools 14.2 simulation program, with a high bit
production rate of 437.043 Mbit/s. In addition, number sequences obtained from FPGA-based TRNG were
subjected to the internationally valid statistical NIST 800-22 Test Suite and all the randomness tests of NIST
800-22 Test Suite were successful.

KEYWORDS

Chaotic systems
Ring oscillator
RK5-Butcher
Dual core TRNG
FPGA

INTRODUCTION
The term chaos is used to describe the dynamic behavior
of simple dynamical systems, which appears to be complex
and very different from what was predicted (Akgul et al.
2016b; Tuna and Fidan 2018). The behavior of these systems
has a non-periodic property and can easily be confused with
random behavior (Akkaya et al. 2018; Rivera-Blas et al. 2019).
Chaotic systems are sensitive to initial conditions, complex
and irregular in appearance, and occur in deterministic non-
linear time-dependent systems (Dursun and Kaşifoğlu 2018;
Tuna et al. 2019a; Bonny and Elwakil 2018). Although chaotic
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systems do not have very complex circuit structures, since
they have interesting dynamical properties, the interest in
chaotic systems has been increased in recent years (Alçın
et al. 2016; Koyuncu et al. 2019; Öztürk and Kiliç 2014). The
basic structure to be used in chaos-based engineering ap-
plications is a chaos generator that produces the necessary
chaotic signal (Adiyaman et al. 2020; Akgul et al. 2016a; Li
et al. 2005). Thus, secure communication, cryptographic and
random number generators, in which chaotic signals are
used as entropy sources, have been proposed (Taskiran and
Sedef 2020; Akgul et al. 2019; Benkouider et al. 2020; Bonny
et al. 2019).

Ring oscillators are the oscillators consisting of an odd
number of NOT gates connected cascade (Koyuncu et al.
2020). The output of each gate is connected to the input of
the next gate, and the output of the last gate is connected to
the input of the first gate. Ring oscillators generate a square
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wave having a frequency depending on the delay of the ring
(Koyuncu et al. 2020; Tuncer 2016). Therefore, the frequency
of the obtained square wave varies according to the static
and dynamic factors in the elements forming the ring. That
is, the frequencies of the signals produced by two equally
arranged oscillators will not be the same. This shows that
ring oscillators can be used to generate random bits that
differ in the frequencies of the signals they produce (Tuna
et al. 2019b). Most of the integrated circuit (I.C.) applica-
tions and Field Programmable Gate Array (FPGA) based
True Random Number Generators (TRNG) use the ring os-
cillator structures as the source of randomness (Kaya 2020;
Buchovecka et al. 2017; Garipcan and Erdem 2019; Yoo et al.
2010; Avaroglu and Tuncer 2020; Bonny and Nasir 2019).

Systems that do not have autocorrelation at their output
using hardware or software methods and produce numbers
that are statistically independent from each other are called
Random Number Generators (RNG) (Coskun et al. 2019;
Gupta et al. 2019; Prakash et al. 2020). These generators are
structures that can generate outputs at the level of random-
ness, where the next data cannot be predicted with the help
of previous data. Because of these features, RNG is used in
many different areas. TRNG is a device that produces a se-
quence of numbers such that they cannot be predicted. The
random numbers produced by TRNG is a safe method since
it is difficult to generate the same numbers. For this reason,
considerable efforts are being made in the field of develop-
ing hardware-based random number generation structures
with FPGA and general purpose microprocessors (Koyuncu
and Özcerit 2017; Öztürk and Kılıç 2019). FPGA is a pro-
grammable integrated circuit (IC) whose internal structure
can be changed any number of time with respect to desired
function (Koyuncu and Özcerit 2017; Alcin 2020). So, FPGA
is used for rapid prototype development. FPGA is com-
monly used nowadays because it presents great flexibility
in the design stage, and it has parallel processing capabil-
ity. The advantages of faster implementation and having
higher density, make FPGAs possible to implement complex
systems including numerical calculations. Programmable
FPGA chips have an important potential to improve infor-
mation security capacity in applications such as cryptology
and secure communication, which require high performance
and processing power, due to their high speed and capac-
ity (Hagras and Saber 2020; Alcin et al. 2019; Koyuncu and
Şeker 2019).

In the second part of the study, two and three dimensional
phase portraits obtained from the modeling of the 3D PWCO
system, one of the chaotic oscillators presented to the litera-
ture, using Runge-Kutta-Butcher algorithm (RK5-Butcher)
are presented. In the third chapter, Dual Entropy Core (DEC)
TRNG design using Ring and RK5-Butcher based PWCO on
FPGA and the results obtained from the design are given.
In the last part, the results obtained from the study are dis-
cussed.

THE 3D PWCO SYSTEM
Chaotic systems are expressed using differential equations.
The differential equation for the continuous-time 3D PWCO
system is given in Eq. (1) (Koyuncu et al. 2014).

ẋ = y(1 − z)

ẏ = y(1 + z)− αx

ż = α − xy − y2

(1)

Here α is the system parameter for PWCO. The change
of this value greatly changes the dynamic behavior of the
system. In this study, α has been set to 2.1 for the PWCO
modeled using the RK5-Butcher algorithm. Initial condi-
tions are needed for the system to work. In this study, the
initial conditions for PWCO modeled by using the RK5-
Butcher algorithm are taken as x(0) = −3.9, y(0) = 0.90,
and z(0) = −4.1. Two-dimensional x − y, x − z, y − z and
three-dimensional x − y − z phase portraits for the PWCO
oscillator modeled using the RK5-Butcher algorithm are
presented in Figure 1.

(a) (b)

(c) (d)

Figure 1 2D a) x-y, b) x-z, c) y-z and d) x-y-z phase por-
traits of RK5-Butcher based 3D PWCO

PWCO AND RING BASED DEC TRNG ON FPGA
In this section, the DEC TRNG design, which is imple-
mented utilizing PWCO oscillator that created using Fifth
Order Runge-Kutta Butcher Algorithm (RK5-B) numerical
algorithm and Ring oscillator on FPGA, has been imple-
mented. The discretized mathematical model of PWCO
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using the RK5-Butcher algorithm is given in Eq. 2. Here, the
expansion of variables κ1 . . . κ6, λ1 . . . λ1 and ξ1 . . . ξ1 is
given in Eq. 3. Although the RK5-B has a similar structure
with the RK4 (Fourth Order Runge-Kutta Algorithm) algo-
rithm, this algorithm also produces more precise solutions
than the RK4 and Euler algorithms since it has fifth and
sixth order terms (Tlelo-Cuautle et al. 2015; Pano-Azucena
et al. 2018; Sambas et al. 2020).

x(k + 1) = x(k) + 1
90 ∆h [7κ1(k) + 32κ3(k) + 12κ4(k) + 32κ5(k) + 7κ6(k)]

y(k + 1) = y(k) + 1
90 ∆h [7λ1(k) + 32λ3(k) + 12λ4(k) + 32λ5(k) + 7λ6(k)]

z(k + 1) = z(k) + 1
90 ∆h [7ζ1(k) + 32ζ3(k) + 12ζ4(k) + 32ζ5(k) + 7ζ6(k)]

(2)

κ1 = f (x(k), y(k), z(k))

λ1 = g(x(k), y(k), z(k))

ξ1 = δ(x(k), y(k), z(k))

κ2 = f (x(k) + 1
4 ∆hκ1, y(k) + 1

4 ∆hλ1, z(k) + 1
4 ∆hξ1)

λ2 = g(x(k) + 1
4 ∆hκ1, y(k) + 1

4 ∆hλ1, z(k) + 1
4 ∆hξ1)

ξ2 = δ(x(k) + 1
4 ∆hκ1, y(k) + 1

4 ∆hλ1, z(k) + 1
4 ∆hξ1)

κ3 = f (x(k) + 1
8 (∆h(κ1 + κ2), y(k) + 1

8 (∆h(λ1 + λ2), z(k) + 1
8 (∆h(ξ1 + ξ2))

λ3 = g(x(k) + 1
8 (∆h(κ1 + κ2), y(k) + 1

8 (∆h(λ1 + λ2), z(k) + 1
8 (∆h(ξ1 + ξ2))

ξ3 = δ(x(k) + 1
8 (∆h(κ1 + κ2), y(k) + 1

8 (∆h(λ1 + λ2), z(k) + 1
8 (∆h(ξ1 + ξ2))

κ4 = f (x(k)− 1
2 ∆hκ2 + ∆hκ3, y(k)− 1

2 ∆hλ2 + ∆hλ3, z(k)− 1
2 ∆hξ2 + ∆hξ3)

λ4 = g(x(k)− 1
2 ∆hκ2 + ∆hκ3, y(k)− 1

2 ∆hλ2 + ∆hλ3, z(k)− 1
2 ∆hξ2 + ∆hξ3)

ξ4 = δ(x(k)− 1
2 ∆hκ2 + ∆hκ3, y(k)− 1

2 ∆hλ2 + ∆hλ3, z(k)− 1
2 ∆hξ2 + ∆hξ3)

κ5 = f (x(k) + 3
16 ∆hκ1 +

9
16 ∆hκ4, y(k) + 3

16 ∆hλ1 +
9

16 ∆hλ4, z(k) + 3
16 ∆hξ1 +

9
16 ∆hξ4)

λ5 = g(x(k) + 3
16 ∆hκ1 +

9
16 ∆hκ4, y(k) + 3

16 ∆hλ1 +
9

16 ∆hλ4, z(k) + 3
16 ∆hξ1 +

9
16 ∆hξ4)

ξ5 = δ(x(k) + 3
16 ∆hκ1 +

9
16 ∆hκ4, y(k) + 3

16 ∆hλ1 +
9

16 ∆hλ4, z(k) + 3
16 ∆hξ1 +

9
16 ∆hξ4)

κ6 = f (x(k)− 3
7 ∆hκ1 +

2
7 ∆hκ2 +

12
7 ∆hκ3 − 12

7 ∆hκ4 +
8
7 ∆hκ5, y(k) +− 3

7 ∆hλ1 +
2
7 ∆hλ2+

12
7 ∆hλ3 − 12

7 ∆hλ4 +
8
7 ∆hλ5, z(k)− 3

7 ∆hξ1 +
2
7 ∆hξ2 +

12
7 ∆hξ3 − 12

7 ∆hξ4 +
8
7 ∆hξ5)

λ6 = g(x(k)− 3
7 ∆hκ1 +

2
7 ∆hκ2 +

12
7 ∆hκ3 − 12

7 ∆hκ4 +
8
7 ∆hκ5, y(k) +− 3

7 ∆hλ1 +
2
7 ∆hλ2+

12
7 ∆hλ3 − 12

7 ∆hλ4 +
8
7 ∆hλ5, z(k)− 3

7 ∆hξ1 +
2
7 ∆hξ2 +

12
7 ∆hξ3 − 12

7 ∆hξ4 +
8
7 ∆hξ5)

ξ6 = δ(x(k)− 3
7 ∆hκ1 +

2
7 ∆hκ2 +

12
7 ∆hκ3 − 12

7 ∆hκ4 +
8
7 ∆hκ5, y(k) +− 3

7 ∆hλ1 +
2
7 ∆hλ2+

12
7 ∆hλ3 − 12

7 ∆hλ4 +
8
7 ∆hλ5, z(k)− 3

7 ∆hξ1 +
2
7 ∆hξ2 +

12
7 ∆hξ3 − 12

7 ∆hξ4 +
8
7 ∆hξ5)

(3)
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The top level block diagram of the designed structure is
given in Figure 2. Random number sequences with high
throughput and high operating frequency obtained from
the proposed structure; they can be used in cryptography
and secure communication areas that require fast, secure
and intensive processing. The designed chaotic DEC TRNG
unit was synthesized for the Virtex-7 VC707 chip produced
by Xilinx, and the statistics of the parameters of FPGA chip
resource usage and the clock speeds of the units were an-
alyzed. The data processing time of TRNG units was ob-
tained using Xilinx ISE Design Tools 14.2 simulation pro-
gram.

Figure 2 The top-level block diagram of the FPGA-based
DEC TRNG design using Ring and RK5-Butcher based on
PWCO.

Figure 3 shows the block diagram of the proposed FPGA-
based DEC TRNG unit. RK5-Butcher-based TRNG unit
designed on FPGA consists of 5 parts: x3mux, PWKSRK5
oscillator, Quantization unit, Ring oscillator and Art unit. In
the design, the x3mux unit is basically a multiplexer (MUX)
structure developed for the control of the start signals re-
quired by the PWKSRK5 unit, which has 3 dependent vari-
ables.

Quantization process was realized by taking the last 23
bits of the fractional part of each 32-bit number in the fixed
point number standard produced by the fixed point number
based chaotic oscillator unit. The RN signals obtained from
the output of this unit are the signals that carry random
numbers. The sh signal indicates that random signals are
received from the unit output. These two signals are trans-
mitted to the ART unit. Post processing is applied for the
signals obtained here.

In the presented study, XOR process was applied as the
post process and the results obtained were sent to the out-
put of the system. The random numbers produced by the
ring oscillator and the random numbers produced by the
RK5-Butcher algorithm based PWCO-based TRNG unit are
subjected to XOR processing in the ART − PROCESSING
unit.

In TRNG structures subjected to XOR process presented
in the literature, as a result of the XOR process, the bit pro-
duction rate is reduced by half. However, unlike the studies
presented in the literature, in the XOR process presented in
this study, since random numbers are generated from two
different sources and subjected to the XOR process, there
is no decrease in the bit production rate in the high speed
DEC TRNG using Ring and RK5-Butcher algorithm based
3D PWCO on FPGA design.

In Fig. 4, the third level block diagram of high speed
DEC TRNG using Ring and RK5-Butcher based on PWCO
on FPGA is presented.

Here, the structure of the PWKSRK5 unit is given in more
detail. The PWKSRK5 oscillator generates the chaotic sig-
nals that TRNG needs and transfers these values to 32-bit
xout, yout and zout signals. When the chaotic oscillator pro-
duces an output, the 1-bit RNGReady signal becomes ”1”
and sends the values produced by the 3D PWCO to the
Quantization unit. All units used in these designs such as
multiplier, adder, and subtractor were created using the IP
Core generator developed with Xilinx ISE Design Tools.

FPGA-based DEC TRNG Design using Ring and RK5-
Butcher based on PWCO unit is synthesized and tested for
Xilinx Virtex-7 XC7VX485T-2FFG1761 FPGA chip. Figure
5. presents the test bench results for the FPGA-based DEC
TRNG design using Ring and RK5-Butcher based on PWCO
unit, whose code was written in VHDL.

FPGA-based DEC TRNG design using Ring and RK5-
Butcher based on PWCO unit has been synthesized and
then after the Place-Route processes, XC7VX330T-2-FFG-
1157 FPGA chip statistics have been obtained. As can be
observed from the chip statistics in the Table 1, the maxi-
mum clock frequency of the FPGA-based DEC TRNG design
using Ring and RK5-Butcher based on PWCO unit reaches
437.043 MHz.

As can be observed from the literature, it is necessary to
examine and to test the randomness and statistical proper-
ties of the random numbers produced by random number
generators (Rezk et al. 2019; Murillo-Escobar et al. 2017). For
this purpose, various statistical tests developed in the liter-
ature are used. At this stage, the new chaotic DEC TRNG
developed on FPGA has been subjected to the NIST 800-22
statistical tests in order to be used safely in cryptographic
applications (Etem and Kaya 2020). This test itself consists
of 16 separate subtests. In order for the tested bit stream to
be accepted as successful, it must pass all tests successfully.
The orders in which the 16 tests in the NIST 800-22 test are
run is completely optional. However, the Frequency Test
is recommended to be applied first as it gives basic clues
about the existence of nonrandom regions in a sequence. If
this test fails, it is likely that other tests will also fail. The
most complex test in terms of time criteria is the Linear
Complexity test.
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Figure 3 The second level block diagram of the FPGA-based DEC TRNG design using Ring and RK5-Butcher based on
PWCO.

n Table 1 The area utilization report of FPGA-based DEC TRNG design using Ring and RK5-Butcher based on PWCO
unit on Virtex-7.

Utilization for 7VX485TFFG1761-2 Device Used Available Utilization %

Number of Slice Registers 85.763 607.200 14

Number of Slice LUTs 85.294 303.600 28

Number of fully used LUT-Flip Flop Pairs 69.011 102.046 67

Number of Inputs/Outputs 4 700 1

Number of BUFG/BUFGCTRLs 1 32 3

Latency (ns) 702 - -

Min. clock period (ns) 2.288 - -
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Figure 4 The third level block diagram of FPGA-based DEC TRNG design using Ring and RK5-Butcher based on PWCO.
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Figure 5 The operation timing diagram of FPGA-based DEC TRNG design using Ring and RK5-Butcher based on PWCO
unit obtained from Xilinx ISE Simulator.

n Table 2 TThe NIST test results of FPGA-based DEC TRNG design using Ring and RK5-Butcher based on PWCO unit.

NIST 800-22 Statistical Tests P-value Result

Frequency Test 0.80568 Successful

Block Frequency Test 0.33645 Successful

Runs Test 0.75218 Successful

Longest Runs of One’s Test 0.834183 Successful

Binary Matrix Rank Test 0.73924 Successful

Discrete Fourier Transform (FFT) Test 0.48553 Successful

Non-Overlapping Template Matching Test 0.47564 Successful

Overlapping Template Matching Test 0.26366 Successful

Maurer’s “Universal Statistical” Test 0.67244 Successful

Linear Complexity Test 0.21416 Successful

Serial Test 1 0.33020 Successful

Serial Test 2 0.68817 Successful

Approximate Entropy Test 0.40933 Successful

Cumulative Sums (Forward) Test 0.87979 Successful

Random Excursions Test (for x=-3) 0.33195 Successful

Random Excursions Variant Test (for x= 3) 0.28495 Successful
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1 million bits of data were collected and saved in a file for
the system designed for testing. Then the bit file was sub-
jected to 16 tests in the NIST Test Suite and all the sequences
obtained were successful in all the randomness tests. In
this test, some parameters of the random bit stream to be
tested can be determined externally. P-value, which is one
of the most important parameters in these tests, is accepted
as a measure of the randomness of the random sequences
subjected to the test. If a P-value for a test is determined
to be equal to 1, then the sequence appears to have perfect
randomness. A P-value of zero indicates that the sequence
appears to be completely non-random. A significance level
(α) can be chosen for the tests. Typically, the, α is chosen
in the range [0.001, 0.01]. For this study, α parameter has
been choosen as 0.01. As can be seen from the test results
in Table 2, since the P-value ≥ 0.01, the obtained sequences
are accepted randomly.

CONCLUSION
This paper presents a novel FPGA based Dual Core TRNG
unit implemented in discrete time. In this direction, in the
first stage, 3D PWCO has been modeled with RK5-Butcher
numerical method and chaos analyses were performed by
examining the dynamic behavior of the systems. Then, the
PWCO was modeled on FPGA using the hardware descrip-
tion language as VHDL in accordance with the 32 bit IQ-
Math fixed point number standard. RK5-Butcher numerical
method was used in the modeling phase. The ring oscillator
and PWCO designs were harvested in the post processing
unit and the proposed TRNG design was implemented on
FPGA. The proposed TRNG is capable of producing a high
throughput of 437.043 Mbit/s after post-processing. Apart
from the studies presented in the literature, post- processing
has been performed without the decrease in the bit produc-
tion rate. In the last part, number streams acquired from
the presented TRNG unit have been applied to NIST 800-22
Test Suite. The test results have shown that the proposed
TRNG unit can be used in the cryptographic systems. In
addition, when this study is compared with other studies
and methods presented in the literature, it offers very suc-
cessful results in terms of both operating frequency and
throughput.
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ABSTRACT This paper reports on the synchronization proprieties in bidirectional coupled current modulated
vertical cavity surface-emitting lasers (CMVCSELs) based on the combined model of Danckaert et al..
Regular pulse packages and chaotic behaviors are found in CMVCSEL during the numerical results. The
suitable coupling strength leading to high quality of synchronization is determined by numerical analysis. The
consequence of the parameter mismatch and the duration of the synchronization process are also highlighted.
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INTRODUCTION
Many researchers have proved that in certain conditions,
current modulated vertical cavity surface-emitting lasers
(VCSELs) are able to exhibit not only periodic and chaotic
behaviors (Masoller et al. 2007; Valle et al. 2007; Mbé et al.
2010; Kingni et al. 2012). but also pulse packages (Mbé et al.
2010; Kingni et al. 2012; Tabaka et al. 2006). The compact light
sources of chaotic VCSELs are desirable and can be used in
chaos-based secure communications (Colet and Roy 1994).
The fact of hiding a message carrying information in a noise
and exploiting the synchronization of the both (receiver with
the output) to recover the information signal constituting
the idea of chaotic secure communications. Work on chaos
synchronization has been demonstrated in several lasers,
notably Nd: YAG (Roy and Thornburg Jr 1994), CO2 (Sug-
awara et al. 1994), fiber laser (Vanwiggeren and Roy 1998)
and semiconductor edge-emitting lasers (Goedgebuer et al.
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1998; Bindu and Nandakumaran 2000; Kouomou and Woafo
2003; Argyris et al. 2005; Kingni et al. 2020).

By contrast, it should be noted that studies remain scarce
concerning VCSELs coupled with the synchronization of
chaos (Takougang Kingni et al. 2012; Li et al. 2007; Sciamanna
et al. 2007; Zhong et al. 2008; Xie et al. 2016; Wang et al. 2020;
Roy et al. 2019). Many researches on the synchronization
of chaos in coupled VCSELs found in the literature have
been done using a complex mathematical model of VCSELs,
mostly the Spin-Flip Model (SFM) (Li et al. 2007; Sciamanna
et al. 2007; Zhong et al. 2008). According to the knowledge of
the authors, the synchronization of chaos in coupled CMVC-
SELs based on the combined model of Danckaert et al. is
scare (Takougang Kingni et al. 2012). In (Takougang Kingni
et al. 2012), synchronization properties and communications
of unidirectional coupled VCSELs based on the combined
model of Danckaert et al. (Danckaert et al. 2002) and driven
by chaotic oscillators with wide spectral frequency band-
width has been studied numerically. The results showed
that best quality synchronization was achieved and message
transmission by using the chaos shift keying technique has
been demonstrated.

The purpose of this article is to analyze the chaos syn-
chronization in bidirectional coupled CMVCSELs described
by the combined model of Danckaert et al. (Danckaert et al.
2002). The bidirectional coupling is used to achieve synchro-
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nization between chaotic coupled CMVCSELs due to the
fact that it leads to high quality of synchronization and it is
robust to the parameter mismatch. The paper is subdivided
in three sections. Section 2 discusses the examination of
chaos synchronization in two CMVCSELs by bidirectional
coupling. Conclusion is given in section 3.

CHAOS SYNCHRONIZATION OF BIDIRECTIONAL
COUPLED CMVCSELS
The system of two bidirectional coupled CMVCSELs based
on the combined model of Danckaert et al. (Danckaert et al.
2002) is described by the following equations:

dPx,j

dt
=
(
ηj − εxxPx,j − εxyPy,j

)
Px,j +

Rsp

2
(1a)

dPy,j
dt =

{
ηj + G [j (t)]− εyyPy,j − εyxPx,j

}
Py,j

+
Rsp
2 + k

(
Py,i 6=j − Py,j

)
H (t− T0) ,

(1b)

dηj
dt = ρ−1 [gj (t)− 1− Px,j − Py,j

]
− ηj

−
(
ηj − εxxPx,j − εxyPy,j

)
Px,j

−
(
ηj − εyyPy,j − εyxPx,j

)
Py,j

(1c)

where t, Px, Py and η are the time, the photon density
in x and y polarization modes (PMs) and the carrier den-
sity, respectively. The parameters εxx = 4 and εyy = 4
are the self-gain saturation coefficients while the parame-
ters εxyx = 8 and εyx = 8 are the cross-gain saturation
coefficients. The parameter Rsp = 0.001 is the mean of
the spontaneous emission above threshold and the param-
eter ρ = 0.001 is the ratio of photon lifetime τp = 1 ps
to carrier lifetime τc = 1 ns. The modulation current is
j(t) = jdc + jm sin(2π fmτc t), jdc is the dc bias current,jm
is the modulation amplitude and fm is the modulation fre-
quency. The parameter G [j(t)] = g

[
1− j (t)

/
jsw
]

is the
relative gain difference between the two modes, the param-
eter jsw = 0.15 is the switching current and the parameter
g = 10 is a positive coefficient. The index i and j repre-
sent the VCSEL number (i, j ∈ {1, 2}). The parameter K is
the coupling strength; the parameter T0 is the onset of syn-
chronization time process and the the Heaviside function
H (t− T0) is defined as:

H (t− T0) =

 0 f or t ≺ T0

1 f or t ≥ T0

. (2)

The uncoupled CMVCSEL can exhibit regular pulse pack-
ages and chaotic attractors as shown in Fig. 1.

Figure 1 Pulse packages and chaotic attractors for given
values of parameters jdc, jm, fm: (a) jdc = 0.1, jm = 0.005,
fm = 100 MHz and (b) jdc = 0.12, jm = 0.065, fm =
3.2 GHz . The initial conditions are (Px (0) , Py (0) , η (0)) =
(0.01, 0.001, 0.1) .

The photon densities display regular pulse packages in
Fig. 1 (a) while in Fig. 1 (b) they exhibit chaotic attractors.

It is firstly assumed the case where the two cou-
pled VCSELs are identical but with different initial con-
ditions: (Px1 (0) , Py1 (0) , η1 (0)) = (0.01, 0.001, 0.1) and
(Px2 (0) , Py2 (0) , η2 (0)) = (0.011, 0.001, 0.1). This means
that the two VCSELs have the same threshold current, out-
put power and relaxation oscillation frequency. In Figure 2,
the higher synchronization error of both PMs as a function
of coupling strength K in the chaotic regime are displayed.

In Fig. 2, when the maximal synchronization error of
the absolute value of

(
Px1,y1 − Px2,y2

)
becomes equal to zero,

this means that the two VCSELs are in a chaotic synchro-
nization. This appears for K ≥ 1.33 as shown in Fig. 2.
The synchronization diagrams of photon densities of two
coupled VCSELs are depicted in Fig. 3 in order to further
emphasize the different synchronization properties found
in Fig. 2.

For the coupling strength K = 1 , there is no chaos syn-
chronization between chaotic coupled CMVCSELs as seen
in Fig. 3 (a) whereas in Fig. 3 (b) for K = 1.4 , it is clear that
CMVCSELs are well synchronized.

However, the high quality of synchronization mentioned
here can only be achieved for the ideal condition. Regarding
applications, parameters such as mismatch of device pa-
rameters, noise, coupling asymmetry, different bias current,
etc. Moreover in a physical system, the parameters cannot
remain constant in the course of its utilization. It may fluc-
tuate due to the internal instabilities of the system or due
to the perturbations from the environment. Fluctuations in-
troduce parametric mismatches in coupled systems. Hence,

30 | Saeed et al. CHAOS Theory and Applications



Figure 2 Variation of the maximal synchronization error of x-PM (a) and y-PM (b) versus the coupling strength K for
jdc = 0.12, jm = 0.065, and fm = 3.2 GHz .

Figure 3 Synchronization diagrams for some values of
the coupling strength : (a) K = 1 (b) K = 1.4 The initial
conditions are (Px1 (0) , Py1 (0) , η1 (0)) = (0.01, 0.001, 0.1)
and (Px2 (0) , Py2 (0) , η2 (0)) = (0.011, 0.001, 0.1).

it is relevant to check the robustness of synchronization in
an environment where the parameters fluctuate. To analyze
the influence of parameter mismatch, it is assumed that the
parameters of VCSEL 2 are varied following the general
rule:

a2 = a1 [α % (2ξ − 1) + 1] , (3)

where ξ is a random number, a1 is the parameter of the
VCSEL 1 which in this case coincides with those used in
Fig. 2, a2 corresponds to the parameters of the VCSEL 2
and α % is the percentage of parameter mismatch. By using
this variation, the maximal synchronization error versus the
coupling strength K for different percentages of parameter
mismatch is plotted in Fig. 4.

Figure 4 shows that the maximal synchronization error of
both PMs effectively increases with the parameter mismatch.
Chaos synchronization is lost for a parameter mismatch of
1%. A severe degradation of synchronization is noticed in
x-PM above 1% (see Fig. 4 (a) than in y-PM (see Fig. 4 (b)).

The synchronization time is the duration from the launch-
ing of the synchronization process to the time where the
synchronization is attained. In secure communication tech-
nologies, the synchronization time plays a central role since
the range of time during which the chaotic VCSELs are not
synchronized corresponds to the range of time during which
the coded message can unfortunately not be recovered or
sent. This loss of information can prove to be damaging in
some circumstances. Hence, it clearly appears that Tsyn has
to be minimized, so that the chaotic VCSELs synchronize
as fast as possible. The synchronization time is given as
(Woafo and Kraenkel 2002):

Tsyn = tsyn − T0, (4)

where tsyn is the time instant at which the trajectories of
VCSEL 1 and VCSEL 2 are close enough to be considered as
synchronized. Here, synchronization is achieved when the
deviation [ε1 obeys the following synchronization criterion:

ε1 =
∣∣Px1,y1 − Px2,y2

∣∣ ≺ h , ∀ t � tsyn, (5)
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Figure 4 Variation of the maximal synchronization error of x-PM (a) and y-PM (b) versus the coupling strength K for
different percentages of parameter mismatch.

where h is the synchronization precision or tolerance. The
parameter Tsyn is plotted versus the parameter K in Fig. 5.

Figure 5 Synchronization time (Tsyn) versus the coupling
strength K in coupled CMVCSELs in the chaotic regime
for synchronization precision h = 10−6 and T0 = 100.

It is noticed that for Tsyn very close to the synchronization
boundaries, its value is very large, however the coupling
strength K approaches the limits, then Tsyn decreases and
for large K, it reaches a limit value of approximately about
4.0. Fig. 5 also shows that very large K values are not
necessary to ensure the synchronization with approximately
the minimum Tsyn.

CONCLUSION
In this paper, the synchronization of two chaotic current
modulated vertical cavity surface-emitting lasers based on
the combined model of Danckaert et al. was carried out
through a bidirectional coupling. A robust and quasi-perfect

synchronization were found for a specific range of coupling
strength. The quality of synchronization was influenced by
parameter mismatch and it was found a severe degrada-
tion of synchronization for a parameter mismatch equal and
above 1%. An asymptotic minimal value of the synchroniza-
tion time was reached.
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ABSTRACT In the last few decades, the dynamics of one-dimensional chaotic maps have gained the
tremendous attention of scientists and scholars due to their remarkable properties such as period-doubling,
chaotic evolution, Lyapunov exponent, etc. The term hyperbolicity, another important property of chaotic
maps is used to examine the regular and irregular behavior of the dynamical systems. In this article, we deal
with the hyperbolicity and stabilization of fixed states using a superior two-step feedback system. Due to the
superiority in the chaotic evolution of one-dimensional maps in the superior system we are encouraged to
examine the hyperbolicity and stabilization in chaotic maps. The hyperbolic notion, hyperbolicity in periodic
states of prime order, stabilization, and the hyperbolic set of the chaotic maps are studied. The numerical, as
well as experimental simulations, are carried out, followed by theorems, examples, remarks, functional plots,
and bifurcation diagrams.
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INTRODUCTION
Hyperbolicity, in short, is an effective and efficient tool that
examines the regular and irregular behavior in nonlinear dy-
namical systems. In fact, it induces an invariant set for differ-
ent parameter values which are responsible for the chaotic
phenomena of a dynamical system. It was Poincare (1899)
who first introduced the hypothesis of chaotic phenomena
which is considered as an essential factor in the study of
hyperbolicity and stabilization. Surprisingly, the standard
chaotic map νp(1− p), a model of population growth has a
significant role in the simulation of hyperbolicity, invariant
sets, and stability in chaos theory.

P. F. Verhlust (1845 and 1847) first established the chaotic
map νp(1− p) as a model of population growth, where the
parameter ν varies in a certain range. But the dynamical
appearance in any chaotic system leads to 2n periodic cycles
through a bifurcation plot. Finally, the bifurcation plot leads
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to a chaotic domain which gives a set of invariant measures
and is known as a hyperbolic set. Further, for a detailed
study on hyperbolicity and on its stability one may refer
to, Robinson (1995), Holmgren (1994), Devaney (1948), De-
vaney (1992), Alligood et al. (1996), Martelli (1999), Chugh
et al. (2012), etc..

In the last few decades, the hyperbolicity and the sta-
bilization in fixed and periodic states have been studied
by various academicians using standard chaotic systems.
In 2001, Glendinning (2001) examined the hyperbolicity in
the standard chaotic system νp(1− p), for the parameter
range 4 < ν ≤ 2 +

√
5 and also established a good estima-

tion of the expansion rate on invariant sets. In 2003, Kraft
(1999) studied some analytical results on the hyperbolicity
of chaotic maps for ν > 4 using Schwarzian derivative and
shown that it is negative except for its critical states.

Robinson (1995) and Newhouse (1981) proved the re-
pelling hyperbolicity on invariant sets using Schwarz
Lemma for complex functions. Further, Guckenheimer
(1979), Melo (1993) and Misiurewicz (1976) also de-
scribed some analytical results using kneading theory and
Schwarzian derivative. In 2003, Aulbach et al. (2004) using
elementary calculus established that the invariant set Λν is
hyperbolic for ν > 4 and also proved that for ν > 4, the
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system is chaotic with the capacity of Bernoulli shift defined
on [0, 1].

In the twenty first century, the chaotic maps have played
a crucial role in every branch of science such as in traffic
control system (Ashish et al. 2018, 2019b), cryptography,
(Wang 2017; Akgul 2013), secure communication (Baptista
et al. 1998), etc. Further, for a detailed study one may refer
to Adiyaman (2020), Andrecut (1998), Ausloos et al. (2006),
Jonassen (2002), Saha (2009), Saha (2010), Sharkovsky et al.
(1993), Kumar (2020), Volos (2018), etc.

Recently, in 2021, Ashish et al. (2021) introduced a modu-
lated logistic system and reported superior chaos through
period-doubling, period-three orbit, and Lyapunov expo-
nent. Also, they examined the elementary properties for
chaotic maps in Ashish et al. (2019a), controlling chaos with
applications in the traffic control system in Ashish et al.
(2019b) and irregularity in Ashish et al. (2018) using two-
step feedback approach.

The article is arranged into five major sections. Section
1 accommodates essential literature review and Section 2
consists of elementary results. The results on hyperbolicity
and stability of periodic states of prime order are described
in Section 3. An experimental simulation for hyperbolic sets
in the two-step superior system is described in Section 4.
Finally, all the results are summarized in Section 5.

PRELIMINARIES

This section deals with some basic entities in chaos theory
that are used in further sections to determine the hyperbol-
icity of the chaotic maps in a superior two-step feedback
system.

Definition 1. (Hyperbolicity). Let p̃ be a periodic point of
order n ∈ N, then p̃ is said to be hyperbolic for the map f if
it satisfy | ( f (n))′( p̃) |6= 1 (Devaney 1948).

Definition 2. (Periodic state). Let p̃ ∈ X be a point and f be
a map defined on X. Then, p̃ is periodic of prime order n if
f (n)( p̃) = p̃ but f (m)( p̃) 6= p̃ for 1 ≤ m < n (Devaney 1992).

Definition 3. (Sink and stretch states). A point p̃ ∈ X for
a map f is said to be sink if | f ′(p)| < 1 and is said to be
stretch if | f ′(p)| > 1 (Devaney 1992).

Definition 4. (Superior two-step feedback system). For
an initiator p ∈ X, the iterative sequence {pn} defined by
pn+1 = pn − αn(pn − f (pn)), where 0 ≤ αn ≤ 1 is said to be
superior iterative orbit and the complete process is known
as superior two-step feedback system (Mann 1953).

Definition 5. (Hyperbolic set). Let Λ be an invariant set
for the map f defined on X, that is, f (Λ) = Λ. Then,
the invariant set Λ is said to be hyperbolic, if it satisfy
| ( f (n))′(p) |≥ Kθn, for p ∈ Λ, n ≥ 1, θ > 1 and constant
K > 0 (Devaney 1948).

HYPERBOLICITY AND STABILIZATION ANALY-
SIS
Throughout this section, we deal with the analytical as well
as numerical simulations for hyperbolicity and stabilization
of fixed and periodic states of chaotic maps in a superior
two-step feedback system. The hyperbolicity and stabiliza-
tion in fixed and periodic states is described, followed by
some theorems, examples and remarks. Therefore, let us
consider fµ be a chaotic map defined on X. Then, from Defi-
nition 4, for the superior two-step feedback system, we can
write

pn+1 = pn − α(pn − fν(pn)) = Sα,ν(p). (say) (1)

Then, for an initiator p0 ∈ X and using (1) we obtain the
following iterative sequence,

SO+(p0) = {p0, p1, p2, ...} (2)

and is said to be forward iterative sequence for an initiator
p0. Similarly, we get the relation

SO−(p0) = {p0, p−1, p−2, ...} (3)

and is said to be backward iterative sequence for an initiator
p0. Then, from (2) and (3), we obtain the following complete
iterative sequence

SO(p0) = {p0, p−1, p−2, ...}
⋃
{p0, p1, p2, ...},

= {..., p−2, p−1, p0, p1, p2, ...},
= {pn : n ∈ Z}.

Also, for the nth iterate of the chaotic map fν using (1) we
obtain

pn+1 = (1− α)pn + α f ( f n−1
ν (p0))n∈N = S(n)

α,ν (p). (4)

Thus, it is noticed that in a casual dynamical system the
forward iterative sequence (2) is named as the superior orbit
for an initiator p0 ∈ X. Therefore, using the relation (4), first
we introduce the definition of hyperbolicity followed by a
few examples and then prove the stability results using a
superior two-step feedback system.

Hyperbolicity
Hyperbolicity, another eminent property of chaotic maps
is illustrated to examine the regular and irregular move-
ments in nonlinear systems. Therefore, this subsection deals
with the hyperbolicity in fixed and periodic states using a
superior two-step feedback system.

Definition 6. Let Sα,ν(p) be the superior two-step system
and fν be a chaotic map defined on X. Then, the point p̃ ∈ X
of prime order n is said to be superior hyperbolic of order-n
if it satisfy | (S(n)

α,ν )
′( p̃) |6= 1, where α ∈ (0, 1), n ∈ N and

ν > 0.
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Example 1. Let us consider Sα,ν(p) = p− α(p− fν(p)) be the
superior two-step system and fν(p) = νp(1− p) be the chaotic
map, where ν ∈ [0, 4.22]. Then, determine the domain of parame-
ter ν for which the fixed-point p̃ ∈ [0, 1] admits hyperbolicity.

Solution. Since Sα,ν(p) = p− α(p− fν(p)) and fν(p) =
νp(1− p), where ν ∈ [0, 4.22]. Then, from Definition 1 for
superior hyperbolicity, we can say

| (Sα,ν)
′(p) | =| 1− α + α f ′ν(p) |,

=| 1− α + α(ν− 2νp) | . (5)

Also, the point p̃ = 0 and p̃ = 1− 1
ν are the two fixed

points of prime order one of the system Sα,ν(p). Therefore,
substituting p̃ one by one in (5), we obtain

| (Sα,ν)
′(0) |=| 1− α + αν | (6)

and | (Sα,ν)
′(1− 1

ν

)
| =| 1− α + α(ν− 2ν

(
1− 1

ν

)
|,

=| 1− α + α(2 + ν− 2ν) |,
=| 1 + α− αν) | . (7)

Since the growth-rate parameter ν ∈ [0, 4.22] and α ∈
(0, 1), therefore, it is clear from (6) and (7) that both the
fixed states are hyperbolic when ν 6= 1, that is, ν ∈
(0, 1)

⋃
(1, 4.22]. Figure 1, shows the hyperbolic behavior

of the fixed states at ν = 1. To understand more about the
hyperbolicity of fixed and periodic states, the graphical plot
of the trajectories for the functions Sα,ν(p) and S2

α,ν(p) is
drawn in Figures 1-4. It is interesting to see that all the fixed
and periodic states shown in Figures 1-4 are satisfied by
Definition 1 of hyperbolicity. Figure 1 shows the functional
plot using the superior system Sα,ν(p) for ν = 1, ν > 1 and
ν < 1. For ν = 1, the diagram shows that the fixed point 0
is completely hyperbolic, that is, | (Sα,1)

′(0) |6= 1. While the
bifurcation plot in Figure 2 shows that at ν = 1 the trajectory
approaches to the fixed point 1− 1

ν and then again at ν = 3.2
the fixed point 1− 1

ν bifurcates into the hyperbolic periodic
point of order 2. Further, Figure 3 shows the hyperbolicity of
periodic points of order 2 for the system S2

α,ν(p). For ν = 3.2,
ν < 3.2 and ν > 3.2 it admits completely hyperbolic state,
hyperbolic repelling state and hyperbolic attracting state,
respectively. Moreover, the magnified Figure 4 represents
the hyperbolicity in higher order periodic points.

Example 2. Let us consider Sα,ν(p) = p − α(p − fν(p)) be
the superior two-step system and fν(p) = νp(1− p)m, where
m > 1 and ν > 0 be a chaotic map. Then, determine the do-
main of parameter ν for which the fixed point p̃ ∈ [0, 1] admits
hyperbolicity.

Solution. Since Sα,ν(p) = p− α(p− fν(p)) and fν(p) =
νp(1− p)m. Then, from the above definition of hyperbolicity,
we have

| (Sα,ν)
′(p) | =| 1− α + α f ′ν(p) |,

=| 1− α + α(ν(1− p)m − νpm(1− p)m−1) | .

(8)
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Figure 1 Functional plot for νp(1− p) in Sα,ν(p)
for ν > 1, ν < 1 and ν = 1
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Figure 2 Bifurcation plot for νp(1− p) in Sα,ν(p)
for 0 ≤ ν ≤ 4.22

Also, the point p̃ = 0 and p̃ = 1− 1
m√ν

are the two fixed
point of prime order one for the system Sα,ν(p). Therefore,
substituting p̃ one by one in (8), we obtain

| (Sα,ν)
′(0) | =| 1− α + αν | (9)

| (Sα,ν)
′(1− 1

m
√

ν

)
| =| 1− α + α− ναm

(
1− 1

m
√

ν

)( 1
m
√

ν

)m−1
) |,

=| 1− ναm
(
1− 1

m
√

ν

)( 1
m
√

ν
)m−1) |,

=| 1− αm(ν1/m − 1) | .
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Figure 4 Hyperbolic periodic plot for νp(1− p)
in Sα,ν(p) for 3 ≤ ν ≤ 4.22

Since the growth-rate parameter ν ∈ (0, νmax] and
α ∈ (0, 1), thus, it is clear from (8) and (9) that both
the fixed point are hyperbolic when ν 6= 1, that is,
ν ∈ (0, 1)

⋃
(1, νmax]. In particular, for m = 2 and ν ∈

(0, 1)
⋃
(1, 7.2], Figure 5 and 6, shows the hyperbolic fixed

and periodic states. Figure 5 represents the functional
plot for the quadratic map νp(1− p)2 using superior sys-
tem Sα,ν(p) for ν = 1, ν > 1 and ν < 1. For ν = 1 it
shows that the fixed state 0 is completely hyperbolic, that
is, | (Sα,1)

′(0) |6= 1 for each α ∈ (0, 1). While the Figure 6
shows that the at the hyperbolic state ν = 1 the trajectory ap-
proaches to the fixed state 1− 1

2√ν
and then again at ν = 4.4

the fixed state 1− 1
2√ν

bifurcates into the hyperbolic periodic
fixed states of order 2. Further, as ν approaches through 4.4
the hyperbolic states for higher order periodic states also
exists as shown in Figure 6.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x∈[0, 1]

x
∈

[0
, 

1
]

Hyperbolicity for
fixed points for m = 2

ν > 1

ν = 1

ν < 1

1−1/(ν)
1/2

Figure 5 Functional plot for νp(1− p)2 in Sα,ν(p)
for ν > 1, ν < 1 and ν = 1

0 1 2 3 4 5 6 7
−0.2

0

0.2

0.4

0.6

0.8

ν∈[0, 7.2]

x
n
∈

[0
, 

1
]

Hyperbolicity
for higher

order

For m = 2

Hyperbolicity

for ν = 4.4

Hyperbolicity

for ν = 1

Figure 6 Hyperbolic periodic plot for νp(1− p)2

in Sα,ν(p) for 0 < ν ≤ 7.2

Stabilization
In this subsection, we deal with the stabilization of hyper-
bolic fixed and periodic states for chaotic maps using a
superior two-step feedback system. The main results are
followed by corollaries and remarks:

Theorem 1. Let Sα,ν(p) be a superior recursive system and fν

be a chaotic map defined on X. Also, let p̃ be a hyperbolic fixed
state for fν such that | (Sα,ν)′( p̃) |< 1. Then, for p̃ ∈ X, there
exists a neighbourhood Y such that for each p ∈ Y, we obtain

Sn
α,ν(p)→ p̃ as n→ ∞,

or lim
n→∞

Sn
α,ν(p) = p̃.

Proof. Let fν be a chaotic map defined on X with a hyper-
bolic fixed state p̃ ∈ X. Then, there exists a number κ > 0,
however small, such that

| (Sα,ν)
′(p) |< 1, for p ∈ [ p̃− κ, p̃ + κ], that is,

| (Sα,ν)
′(p) |< P < 1, for p ∈ [ p̃− κ, p̃ + κ]. (10)

Then, from the statement of Mean Value Theorem and
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using Definition 2 of periodic state, we can write

| Sα,ν(p)− p̃ | =| Sα,ν(p)− Sα,ν( p̃) |,
=| (Sα,µ)

′(s) || p− p̃ |, s ∈ [p, p̃]

< P | p− p̃ |,
≤| p− p̃ |, (∵ P < 1)
≤ κ, (∵| p− p̃ |< κ)

that is, | Sα,ν(p)− p̃ | ≤ κ. (11)

Thus, Sα,ν(p) ∈ [ p̃− κ, p̃ + κ], for each p ∈ [ p̃− κ, p̃ + κ].
Inductively, it is also clear that for each p ∈ [ p̃− κ, p̃ + κ],
we can say

Sn
α,ν(p) ∈ [ p̃− κ, p̃ + κ], for each n ∈ N. (12)

Then, again using the statement of Mean Value Theorem
for the nth iterate of the system Sα,ν(p), we obtain

| Sn
α,ν(p)− p̃ | =| Sn

α,ν(p)− Sn
α,ν( p̃) |,

=| (S(n)
α,ν )
′(s) || p− p̃ |, for s ∈ [p, p̃].

(13)

Now, from Devaney’s (Devaney 1992) Definition for
Chain rule of product along a cycle, we can write

| (S(n)
α,ν )
′(p) |=

n−1

∏
i=0

S′α,ν(S
i
α,ν(p)), (14)

for p ∈ [ p̃− κ, p̃ + κ] and n ∈ N. Then, from (10) and (14),
we get

| (S(n)
α,ν )
′(p) | =

n−1

∏
i=0

S′α,ν(S
i
α,ν(p)) < 1,

that is, | (S(n)
α,ν )
′(p) | < Pn < 1. (15)

Then, from the relation (13) and (15), we find

| Sn
α,ν(p)− p̃ | < Pn | p− p̃ |< κ. (16)

Thus, Sn
α,ν(p) ∈ [ p̃− κ, p̃ + κ], for each p ∈ [ p̃− κ, p̃ + κ].

Hence taking n→ ∞ in (16), we get the required result

| Sn
α,ν(p)− p̃ |< Pn | p− p̃ |→ 0,

that is, lim
n→∞

Sn
α,ν(p) = p̃.

Hence proved.

Theorem 2. Let Sα,ν(p) be a superior recursive system and fν

be a chaotic map defined on X. Let p̃ be a hyperbolic state of order
n satisfying | (S(n)

α,ν )
′( p̃) |< 1. Then, for p̃ ∈ X, there exists a

neighbourhood Y such that for each p ∈ Y, we have

S(nk)
α,ν (p)→ p̃ as k→ ∞.

or lim
k→∞

S(nk)
α,ν (p) = p̃.

Proof. Since Sα,ν(p) is a superior system and p̃ is a periodic
state of fν, then, there exists a number κ > 0, however small,
such that

| (S(n)
α,ν )
′(p) | < 1, for p ∈ [ p̃− κ, p̃ + κ], that is,

| (S(n)
α,ν )
′(p) | < Pn < 1, for p ∈ [ p̃− κ, p̃ + κ]. (17)

Similarly for an arbitrary k ∈ N, we can say

| (S(nk)
α,ν )′(p) | < P(nk) < 1. (18)

Then, using Mean Value Theorem, for the system
(S(nk)

α,ν )′(p), we obtain

| S(nk)
α,ν (p)− p̃ | =| S(nk)

α,ν (p)− S(nk)
α,ν ( p̃) |,

=| (S(nk)
α,ν )′(s) || p− p̃ |, for s ∈ [p, p̃],

< Pnk | p− p̃ |,

that is, | S(nk)
α,ν (p)− p̃ | < κ. (19)

Thus, S(nk)
α,ν (p) ∈ [ p̃− κ, p̃ + κ], for each p ∈ [ p̃− κ, p̃ + κ].

Hence taking as k→ ∞ in (19), we obtain

| S(nk)
α,ν (p)− p̃ |< Pnk | p− p̃ |→ 0,

that is, lim
k→∞

S(nk)
α,ν (p) = p̃.

Hence proved.

Corollary 1. Let Sα,ν(p) be a superior recursive system and fν

be a chaotic map defined on X. Also, let p̃ be a hyperbolic state for
the map fν such that | (Sα,ν)′( p̃) |< 1. Then, for p̃ ∈ X, there
exists a neighbourhood Y such that for each p ∈ Y, we have

S(−nk)
α,ν (p)→ p̃ as k→ ∞

or lim
k→∞

S(−nk)
α,ν (p) = p̃.

Proof. The proof may be illustrated by using Theorem 1 and
2.

Remark 1. Let Sα,ν(p) be the superior recursive system and
p̃ be a hyperbolic periodic state for the map fν satisfying
| (S(n)

α,ν )
′(p) |< 1. Then, p̃ ∈ X is said to be hyperbolic stable

of order-n. For 0 < ν < 1, the fixed point p̃ = 0 is hyperbolic
stable and for 0 < ν < 3.2, the periodic state p̃ is hyperbolic
stable as shown in Fig. 1 and 3.

Remark 2. Let Sα,ν(p) be the superior recursive system and p̃
be a hyperbolic periodic fixed point for the map fν satisfying
| (S(n)

α,ν )
′(p) |> 1. Then, p̃ is said to be hyperbolic unstable

of order-n.
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HYPERBOLIC SET
In the earlier sections, the hyperbolicity of fixed states and
their stability is described in chaotic maps using the superior
two-step system. But this section deals with the hyperbolic
sets in chaotic maps using the superior two-step system.
Therefore, let us start with the chaotic map νp(1− p) and
the system Sα,ν(p). Figure 7 shows the functional plot of
the system Sα,ν(p) which gives a parabola and intercept at
(0, 0) and (1, 0). For p = 1

2 the system Sα,ν(p) approaches a
maximum ν

4.22 > 1 if and only if ν > 4.22. In 1992, Devaney
(1992) introduced that quadratic map νp(1− p) for ν > 4
admits the following Cantor set representation

Λν =
∞⋂

n=1

Ii0i1....in , (20)

where Ii0 ⊃ Ii0i1 ⊃ .... ⊃ Ii0i1....in is a nested sequence of
closed intervals. Afterward, Kraft (1999) and Aulbach et al.
(2004) also examined that for ν > 4, the set Λν is hyperbolic,
since it satisfies | f ′ν(p) |> 1 for ν > 4. Therefore, looking
into the potential of superior system in dynamical systems,
the future work of hyperbolic set is studied in this section.
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Figure 7 Functional plot for the system Sα,ν(p)
for 0 < ν ≤ 4.22 and ν > 4.22

Now, to examine hyperbolicity in Sα,ν(p), let us take the
quadratic map νp(1− p), where ν > 4.22. Figure 7 shows
the functional plot for the system Sα,ν(p) for ν = 1, 2, 3, 4.22
and 4.5 in different color radiations. It is observed that as
the value of the growth-rate parameter ν lies in the closed
interval (0, 4.22] the parameter p ∈ [0, 1]. But as the value
of ν approaches through 4.22, the functional plot also ap-
proaches beyond the closed interval [0, 1]. That means, a
Cantor set representation Λα,ν admits a nested sequence of
closed intervals which is hyperbolic for ν > 4.22. Moreover,
it is examined that at ν = 4.22 all the higher order iterations
of the system Sα,ν(p) lies in [0, 1] as shown in Figure 8 for
Sα,ν(p), S2

α,ν(p) and S3
α,ν(p). But as ν approaches beyond

4.22, all the higher order iterations goes to ±∞ as shown
in Figure 9. Also, from the Figure 10 it is analyzed that
the bifurcation characteristic stops when ν = 4.22 and the
hyperbolic set Λα,ν exists for ν > 4.22.
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Remark 3. From the above analysis it is noticed that as ν ∈
[0, 4.22], Sn

α,ν(p) ⊂ [0, 1] and for ν > 4.22, Sn
α,ν(p) ⊃ [0, 1].

For a particular value ν = 4.5, Sn
α,ν(p)→ ∞ as n→ ∞.

Remark 4. For ν > 4.22 the quadratic map νp(1 − p) in
Sα,ν(p) admits a compact invariant set Λα,ν for ν > 4.22,
which is hyperbolic for the system Sα,ν(p).
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Figure 11 Functional plot for the system Sα,ν(p)
for ν ≤ 7.2 and ν > 7.2

Similarly, we consider an another cubic map fν(p) =
νp(1− p)2, where ν ∈ [0, 7.2] and p ∈ [0, 1]. Figure 11 shows
the functional plot for the different parameter values of ν.
Taking ν = 1, 3, 5 and 7.2 the orbit of iteration pn ∈ [0, 1].
But as the value of parameter ν is approached through 7.2
the functional plot of the map approaches outside the closed
interval [0, 1] as shown in Figure 11. Further, the Figure 12
shows that the functional plot of the higher order iterations
such as S3(p), S2(p) and S(p) also lies in [0, 1] for each
ν ∈ [0, 7.2]. But as ν approaches beyond 7.2 the functional
plot of higher order tends to ±∞ as n → ∞ as shown in
Figure 13. Moreover, from the bifurcation plot, Figure 14 it
is clear that for ν > 7.2 we obtain a compact invariant set
Λα,ν in which the function iteration approaches beyond the
closed interval [0, 1], that is, Sn

α,ν([0, 1]) ⊃ [0, 1]. Hence Λα,ν
is hyperbolic set for ν > 7.2.

Remark 5. It is observed that for ν ∈ [0, 7.2] the functional
iteration Sn

α,ν([0, 1]) ⊂ [0, 1] and for ν > 7.2, Sn
α,ν([0, 1]) ⊃

[0, 1]. Further, for ν > 7.2, it is also determined that the
interval of recursive sequence Sn

α,ν(p) is not same as the
interval of an initiator p ∈ [0, 1] as shown in Figures 11-14.
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CONCLUSION
In this article, a two-step superior feedback approach is es-
tablished to examine the hyperbolicity and the stabilization
for one-dimensional chaotic maps. Throughout the study, a
few mathematical results are derived and experimental sim-
ulations are carried out. Thus, we conclude the following
results:

• In Section 3 the superior hyperbolic notions for the
chaotic maps are derived using superior system. Def-
inition 1, for the hyperbolic fixed and periodic states
is introduced followed by the Example 1 and 2 for the
chaotic maps. Further, the numerical simulations are
also presented in each case.

• The hyperbolic control results for fixed and periodic
state are described. Theorem 1, presents the stability in
hyperbolic fixed states and Theorem 2 determines the
stability in periodic states.

• In Section 4, the property of hyperbolic set is described
using experimental analysis of the quadratic and cubic
type maps in superior system. Moreover, it is studied
that for the chaotic map νp(1− p) the invariant sets
Λα,ν is hyperbolic for ν > 4.22 and for the cubic map
νp(1− p)2 is hyperbolic for ν > 7.2.

Further, it is emphasized that the hyperbolic property in
superior system may lead to a strong interest in nonlinear
systems. In the next article, we will present some applica-
tions on hyperbolicity.

Acknowledgments
This work was jointly supported by Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, Saudi
Arabia under Grant no. FP-108-42.

Conflicts of interest
The authors declare that there is no conflict of interest re-
garding the publication of this paper.

LITERATURE CITED
Adiyaman, Y., S. Emiroglu, M. Ucar and M. Yildiz, 2020

Dynamical analysis, electronic circuit design and control
application of a different chaotic system, Chaos Theory
and Applications 02: 10-16.
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