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Abstract —In this study, firstly the minimum energy structure of the title compound 

was determined by a result of the scanning of the potential energy surface at 

DFT(B3LYP)/6-31 G (d, p) from -180o to -180o at 20o steps at a dihedral angle. Then, 

the ground state optimized structure and spectral results of the molecule were calcu-

lated by using DFT(B3LYP) method at 6-311++G(d,p) level of theory. Its optimized 

structure parameters (bond lengths, bond angles and torsion angles), vibrational fre-

quencies and chemical shift values were listed and, compared with the corresponding 

experimental results.  
 
Keywords: Optimization, Epicatechin, Vibrational Frequency, Chemical Shift, DFT.   

Mathematics Subject Classification: 90C26. 

1 Introduction 

To understand the properties of molecules, definitely, their experimental structural and 

spectral results should be taken in hand with together theoretical results The methods like 

ab initio Hatree-Fock (HF) and Density Functional Theory (DFT) are approach methods to 

understand the situation of systems with many particle, totally.  They are withstand to cal-

culate, numerically, ground state structure parameters (bond length and bond angle, i.e), 

energies, spectroscopic [Infrared (IR), Raman, Ultra-voile (UV), Nuclear Magnetic Reso-

nance (NMR)] results and i.e. of molecules [1,2]. 

Tea is a popular beverage around the world as black tea and green tea. Green tea is also 

common in Asian countries, especially Japan, China, Korea and India [3]. Green tea con-

tains a large amount of catechin (ECG; epigallocatechin gallate, EGC; epigallocatechin, 

EC; epicatechin). These tea catechins belong to the “flavonoid family”. In recent years, due 

to their various pharmacological activities they have attracted serious attention as example, 

anti-mutagenic (mutation reducing agent) activities [4, 5], anti-carcinogen (substance that 

mailto:fd.fatma@hotmail.com
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balances carcinogenic effects or inhibits cancer growth) effects [6], i.e. Widespread con-

troversy in the mechanism of their biological and pharmacological effects is the antioxidant 

activities of this tea catechin (oxidation-inhibiting chemical or compound) [7,8]. These 

have shown that; EGCG, ECG, EGC and EC act as low-density in-hybrids to lipoprotein 

oxidation (biochemical compounds composed of both protein and lipids) [9]. Some cate-

chins have been reported the destructive effects of free radicals; for example; DPPH radi-

cals (1,1 diphenyl-2-pycrylhydrazyl)[10], superoxide anions [11], free lipid and hydroxyl 

radicals [12]. Some authors have studied the synergistic scavenging effects of these 4 cat-

echins (EGCG, ECG, EGC and EC) in superoxide anions [13]. 

Here, in this study, after the determination of the optimized structure of the title molecule, 

its IR vibrational and NMR chemical shift analyzes were done. By comparing of the ob-

tained theoretical results with the corresponding experimental results, the precise infor-

mations about the molecule were reached. 

2 Theoretical Details 

Gaussian 03 package and Gauss-View molecular visualization program were used in all the 

calculations [14]. Firstly the minimum energy structure of the compound was determined by 

a result of the scanning of the potential energy surface at DFT(B3LYP)/6-31 G (d, p) from -

180o to -180o at 20o steps at the dihedral angle C3-C2-C11-C16. After, the optimized struc-

ture parameters (bond lengths, bond angles and torsion angles) of the compound were calcu-

lated by the density functional theory (DFT) method at the B3LYP/6-311 ++ G (d, p) basis 

set level. The vibrational frequencies and chemical shifts were also calculated at the same 

level. The calculated vibrational frequencies were scaled with the scale factor of 0,9614 [16]. 

Approximate descriptions of vibration modes were made with VEDA 4 program [17]. The 
1H and 13C NMR chemical shifts (in gas phase) were done by Gauge Including Atomic 

Orbitals (GIAO) method. In the chemical shift calculations tetramethylsilane (TMS) was 

used as a reference molecule, and the theoretical chemical shift 1H and 13C values were 

obtained by subtracting the GIAO isotropic magnetic shielding (IMS) values [18, 19]. 

3 Results and Discussion 

The optimized molecular structure of (-)-epicatechin is given in Fig.1. In the figure is also 

given PLUTO drawing with the atomic numbering scheme [20]. The optimized energy value 

of the molecule is 1031.380486 a.u. The geometric parameters (bond length, bond angle and 

dihedral angles) according to the numbered atoms in Fig.1 are given in Table 1. To compare 

the experimental values are also given in the table [20].  The correlation values (R2) between 

the theoretical and experimental values are written in the last line of the charts. From the R2 

values, we can say that the theoretical calculations are compatible with the experimental data, 

especially in the bond length. 

The experimental and theoretical IR spectra of the compound are given in Fig .2. The ex-

perimental spectrum is taken from Ref [21]. Table 2 shows the experimental and correspond-

ing theoretical vibrational frequencies. The approximate descriptions of the vibrational 

modes in the table are obtained with the Veda 4 program [17], which makes potential energy  
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Figure 1: Molecular structure of (-)-epicatechin, a) PLUTO drawing with the atomic 

numbering scheme, and b) calculated at DFT(B3LYP)/6-311++ G(d,p) level. 

 

 

 

Table 1: Calculated optimized geometrical parameters of (-)-epicatechin. 

Bond length 

(Ao) Exp.[ 20] Calculated 
Bond length 

(Ao) Exp.[ 20] Calculated 

O(1)-C(2) 1.46 1.44 C(5)-C(10)  1.40 1.41 

O(1)-C(9) 1.39 1.37 C(6)-C7)  1.36 1.39 

O(2)-C(3)  1.44 1.42 C(7)-C8)  1.39 1.39 

O(3)-C(5)  1.38 1.37 C(8)-C(9)  1.41 1.40 

O(4)-C(7)  1.37 1.37 C(9)-C(10)  1.38 1.40 

O(5)-C(14)  1.38 1.38 C(11)-C(16)  1.39 1.40 

O(6)-C(13)  1.39 1.36 C(11)-C(12)  1.41 1.40 

C(2)-C(11)  1.53 1.52 C(12)-C(13)  1.38 1.39 

C(2)-C(3)  1.53 1.55 C(13)-C(14)  1.40 1.40 

C(3)-C(4)  1.51 1.52 C(14)-C(15)  1.36 1.39 

C(4)-C(10) 1.50 1.51 C(15)-C(16)  1.37 1.40 

C(5)-C(6) 1.38 1.39 
 

R2=0.91 
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Table 1: Continued 

Bond angles (o) Exp.[ 20] Calculated Bond angle (o) Exp.[ 20] Calculated 

C(2)--O(1)--C(9 114.6 118.9 C(8)-C(9)-C(10) 122.5 121.9 

C(3)-C(2)-C(11) 112.4 115.3 O(1)-C(9)-C(10) 122.7 122.7 

O(1)-C(2)--C(3) 110.5 108.4 C(5)-C(10)-C(9) 116-5 117.1 

O(1)-C(2)-C(11) 105.3 112.5 C(4)-C(10)-C(5) 121.I 122.4 

O(2)-C(3)-C(2) 112.2 112.8 C(4)-C(10)-C(9) 122.4 120.4 

O(2)-C(3)-C(4) 112.2 108.4 C(12)-C(11)-C(16) 120.2 118.9 

C(2)-C(3)-C(4) 109.5 110.1 C(2)-C(I l)-C(16) 123.3 122.4 

C(3)-C(4)-C(10) 109.7 109.6 C(2)-C(I l)-C(12) 116.4 118.8 

C(6)-C(5)-C(10) 122.5 122.2 C(l l)-C(l 2)-C(13) 119.4 121.0 

O(3)-C(5)-C(6) 122.1 116.4 O(6)-C(13)-C(12) 122.2 119.7 

O(3)-C(5)-C(10) 115.3 121.4 C(12)-C(13)--C(14) 119.8 119.6 

C(5)-C(6)-C(7) 118.8 118.8 O(6)-C(13)-C(14) 118.0) 120.7 

C(6)-C(7)-C(8) 122.3 121.0 O(5)--C(14)-C(15) 119.0 124.7 

O(4)-C(7)-C(8) 118.3 122.0 C(13)-C(14)-C(15) 119.3 120.0 

O(4)-C(7)-C(6) 119.4 117.0 O(5)-C(14)-C(13) 121.7 115.3 

C(7)-C(8)-C(9) 117.3 118.9 C(14)-C(15)-C(16) 123.0 120.2 

O(1)-C(9)-C(8 114.7 115.3 C(I l)-C(16)-C(15 118.7 120.4 

R2=0.60 
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Table 2: Selected calculated and experimental vibrational frequencies (cm-1) and, assign-

ments. Experimental values are obtained from the IR spectrum of (-)- epicatechin [21]. 

 

Assinments Exp.[21] Calculated  

νOH(100)  3603 3690 

νOH(100)  3455 3689 

νOH(100)  3409 3647 

νCH(99)  3169 3091 

νCH(98)  3151 3090 

νCH(98)  2923 2929 

νCH(98)  2868 2920 

νCH(99)  2864 2889 

νCH(90)  2727 2885 

νCC(51)+δHCC(10) 1627 1604 

νCC(56) 1608 1597 

νCC(53) 1522 1573 

δHCC(21)+δCCC(12) 1457 1468 

νCC(15)+δHOC(15)+δHCH(11) 1444 1435 

δHOC(18)+δHCO(17)+τH-

COH(16)+τHCCC(11) 

1378 1381 

δHCO(18) +τHCCC(14)+νCC(12) 1349 1355 

νCC(16)+νOC(12) 1313 1310 

δHCC(14)+δHOC(13) 1296 1299 

δHOC(22) 1289 1287 

νOC(29)+δHCC(12)+νCC(11) 1261 1253 

νOC(18)+δHCC(15) 1225 1232 

δHOC(38) 1182 1187 

δHCC(33)+δHOC(26) 1144 1148 

δHCC(13)+ νCC(10) 1112 1115 

νOC(30)+δHOC(42)+δHCC(12) 1096 1108 

νOC(33)+δCCC(13) 1070 1068 
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Table 2: Continued 

Assinments Exp.[21] Calculated 

νCC(22)+νOC(19) 1045 1047 

νOC(33) 1017 1028 

νCC(30)+δHCC(15)+τHCCC(12) 979 973 

τHCCC(24) 875 871 

τHCCC(46)+τCCCC(14) 862 843 

τHCCC(68)+ γOCCC(22) 833 806 

δCCC(15) 808 792 

τHCCC(52) 795 778 

δOCC(15)+γOCCC(12)+δCOC(11) 627 636 

R2=0.996 

 

 

 

 

Figure 2: a) Theoretical and b) experimental IR spectrum of (-)-epicatechin 
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distribution (PED) analysis. The correlation value between the theoretical and experimental 

frequencies is written at the bottom line of the table. The correlation graph can be seen in 

Fig.3. Here, from the R2 value we can say that the experimental and theoretical frequencies 

are in a very good harmony. 

As finally in Table 3 the calculated and experimental 1H and 13C NMR isotropic chemical 

shift values for (-)-epicatechin are given as corresponding to the atom numbering schema 

given in Fig.4. The experimental values are taken from Ref. [21]. Again, the R2 values are 

written in the last line of the charts. They show a good agreement with the experimental 

data. 

4 Conclusion 

As conclusion, the ground state optimized structures of (-)- epicatechin molecule was de-

termined, and its geometric parameters, vibration frequencies and chemical shift values 

were calculated and, compared with the experimental results. It has been found a good 

harmony between the experimental and theoretical values. The results determined here for 

the title molecule having various pharmacological activities will be useful in its future stud-

ies. 

 

 

 

 

 

 

 

 

 

Figure 4: Atom numbering scheme for chemical shifts. 

 

 

 

Figure 3: Correlation graph for frequencies. 
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Table 3: Calculated and experimental 1H experimental and 13C NMR isotropic chemical 

shifts for (-)-epicatechin. 

Atoms Exp. (DMSO-d6) Calculated (Gas) 

C2 156.41 165.81 

C3 94.09 97.07 

C4 155.68 162.74 

C5 98.47    101.41 

C6 156.16 163.88 

C7 95.12 99.77 

C10 28.07 25.46 

C11 64.89 73.93 

C13 78.01 85.25 

C14 130.55 138.15 

C15 114.85 121.80 

C16 144.35 151.80 

C18 144.42   148.88 

C20 114.72 115.92 

C21 117.91 122.74 

R2=0.995 

H3 5.65 5.84 

H7 5.82 6.35 

H10A 2.60 2.28 

H10B 2.40 1.98 

H11 3.93 4.37 

H13 4.59 5.08 

H15 6.82 6.99 

H20 6.58 6.35 

H21 6.59 6.45 

R2=0.964 
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Abstract — In this paper, we suggest a conjugate gradient method, which belongs to 
the optimization methods for learning a fuzzy neural network model that is based on 
Takagi Sugeno. A new algorithm based on the Polak–Ribière–Polak (PRP) method is 
introduced to overcome the slow convergence of Polak–Ribière–Polak (PRP) and 
Liu-Storey (LS) methods. The numerical results indicate the efficiency of the devel-
oped method for classifying data as shown in the Table (2) where the new method 
outperforms above mentioned methods in terms of average training time, average 
training accuracy, average test accuracy, average training MSE, and average test 
MSE. 
 
Keywords: Algorithm, Classification, Fuzzy neural networks, Techniques, Optimi-
zation. 
Mathematics Subject Classification: 65K10, 90C26, 68T07. 

1 Introduction 
Fuzzy modeling is to create a large number of local input and output relationships. The 

purpose of this relation is to define a rule and to make clear a nonlinear manner instead of 
the classical modeling schemes which may use different equations. [1]. Therefore, by 
using the given input-output (I-O), a process identification data would become practically 
a different equivalent problem that concentrates on the description of a fuzzy model[2]. In 
general, the description of a fuzzy logic method or fuzzy neural (neuro-fuzzy) network 
method model covers chiefly two phases: construction description and parameter descrip-
tion [3]. 

Structure identification, In general, the determination of the construction of any fuzzy 
problem requires, in each law, the number of fuzzy regulations and the membership 
functions of the premise and consequent fuzzy sets. A variety of techniques is proposed 
for structure recognition. For the sake of extracting rules from the available input-output 
dataset to construct the initial rule base, one of these approaches is to use clustering 
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algorithms. Typically, multiple clustering devices such as the K-means algorithm can be 
used to obtain the initial fuzzy rule base of a fuzzy 
logic system (FLS). [4] , (FCM) fuzzy c-means[5] [6] plus mountain clustering 
technique[7]. Furthermore, there are other methods for clustering, such as the so-called 
FPCM , PCM and PFCM in[4] [8] [9]. The fundamental view of the clustering method-
based structure identification is to collect the specified samples and position them in 
various clusters linked by one cluster to a law. The number of laws is also equivalent to 
the number of clusters. The data must be obtained in advance through of clustering me-
thod-based structure recognition. Consequently, online structure recognition is not 
sufficient. In several experiments, however, scientists stress the use of fumigated neural 
networks to dynamically model the system.[10] [11]. It is also proposed that the Bayesian 
TSK fuzzy model in[12] [13], which can classify the number of fuzzy laws without 
returning to the knowledge of the previous expert. In this paper the researchers 
concentrate on the clustering of method-based structure recognition as a tool for resolving 
problems with static regression  and classification. The "Gradient based Neuro-Fuzzy 
learning algorithm" is widely used to characterize the neuro-fuzzy system's feedback, 
similar to the Neural Network training feedback. [2] [3] [14] [15]. Inspired by the GNF 
for neuro-fuzzy structures, a GNF update, MGNF, is proposed in[16]. The error function 
type is revised by considering independent variables in the reciprocal widths of Gaussian 
membership to prevent singularity. Thus, The weight sequence update formulas are easily 
modified. This adjustment will help to evaluate the MGNF algorithm converging. In[16] 
The T-norm product, but the firing strength can be very low for the product, even for a 
moderate amount of inputs. While any atomic precedent clause can very well be fulfilled. 
One approach to this issue with other T criteria such as minimum standards [17] [18] 
[19]. Unfortunately, this is not differential; we want to use gradient-based procedures for 
T-norm differentiability. As a result, this paper uses a softer variant of the minimum, 
softmin, to calculate the value of the firing capacity. Softmin's purpose is distinguishable 
and can manage the Specimen with a wide number of features. [20] [21] [19]. The latter 
performs much better in terms of both efficiency and acceleration of convergence in ge-
neral, compared to the common gradient descent technique with conjugate gradient (CG) 
techniques [22]. The first linear conjugate gradient (CG) technique is implemented 
in[23], The linear problems can be solved with positive definite coefficient matrices, 
which can be treated as an optimization algorithm. In addition to the above, the conjugate 
gradient (CG) method shown  in [24] An effective way to solve large-scale nonlinear 
optimization problems has been found to be an effective tool. Hestenes-Stiefel and for 
(HS)[23] and Fletcher-Reeves (FR)[24], Another traditional Conjugate gradient (CG) 
technique Polak–Ribière–Polak (PRP) [25] The alternative direction of the descent is then 
suggested. Successfully, Conjugate gradient approaches can be extended to the training of 
neuro-fuzzy networks. [26] [27]. Eight methods of the conjugate gradient  (CG) are 
described in[26] As they are used to equip the fuzzy logic system type-1 to solve the 
classification issue. The results of learned simulation in [26] Explain that the techniques 
of conjugate gradient (CG) converge more rapidly than the process of gradient descent  
(GD). Also, Compared to the ones generated by the optimized fuzzy logic system (FLS) 
using the gradient descent (GD) process, the classification results derived from conjugate 
gradient (CG) based fuzzy logic system (FLS) are the best. In [27], Recently, Ahmad et 
al. [21] developed a new numerical method for solutions of coupled burgers' equations. 
Also, Ahmad et al. [28] To obtain the numerical solutions of certain nonlinear PDEs such 
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as KdV, mKdV and combined KdV-mKdV equations, a new modification of the 
variational iteration algorithm-II was proposed. 

The goal of this paper is to develop a new Polak–Ribière–Polak (PRP) based algorithm 
for learning a fuzzy-neural network model to obtain the lowest average training error. 

This paper is organized as follows: In Section 2 inference method for Zero-order 
Takagi-Sugeno is introduced. In Section 3 we present new conjugate gradient (CG) tech-
niques and show that our algorithm satisfies descent and global convergence conditions. 
Section 4 presents numerical experiments and comparisons. 

2 Inference Method for Zero-Order Takagi-Sugeno (TS) 
A fuzzy inference scheme that is used as an adaptive network is the neuro-fuzzy model. 

The neuro-fuzzy model adopted in this article is the zero-order Takagi-Sugeno inference 
method. Its topological structure can be seen in Fig.1. It is a four-layer network with 𝑚𝑚-
input nodes 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) ∈ ℝ𝑚𝑚  and one output node 𝑦𝑦. 

Let us first describe the inference method of the zero-order Takagi-Sugeno.  
The basis of the fuzzy rule is defined as follows [29] [30] [31] [14] [32] [33]. 
 
Rule 𝑖𝑖: IF 𝑥𝑥1  is 𝐴𝐴1𝑖𝑖  and 𝑥𝑥2  is 𝐴𝐴2𝑖𝑖  and … and 𝑥𝑥𝑚𝑚  is 𝐴𝐴𝑚𝑚𝑖𝑖THEN 𝑦𝑦 is 𝑦𝑦𝑖𝑖 , (1) 

 
where 𝑖𝑖 (𝑖𝑖 =  1,2, . . . ,𝑛𝑛) Matches with the 𝑖𝑖𝑖𝑖ℎ fuzzy rule, 𝑛𝑛 is the number of the fuzzy 
rules, 𝑦𝑦𝑖𝑖 is a real number, 𝐴𝐴𝑙𝑙𝑖𝑖 is a fuzzy subset of 𝑥𝑥𝑙𝑙, and 𝐴𝐴𝑙𝑙𝑖𝑖(𝑥𝑥𝑙𝑙) It means the role of 
Gaussian membership of the fuzzy judgment ‘‘𝑥𝑥𝑙𝑙 𝑖𝑖𝑖𝑖 𝐴𝐴𝑙𝑙𝑖𝑖” defined by  

𝐴𝐴𝑙𝑙𝑖𝑖 =
exp(−(𝑥𝑥𝑙𝑙 − 𝑎𝑎𝑙𝑙𝑖𝑖)2

𝜎𝜎𝑙𝑙𝑖𝑖2
 (2) 

where 𝑎𝑎𝑙𝑙𝑖𝑖 is the center of 𝐴𝐴𝑙𝑙𝑖𝑖(𝑥𝑥𝑙𝑙), and 𝑟𝑟𝑙𝑙𝑖𝑖 is the width of 𝐴𝐴𝑙𝑙𝑖𝑖(𝑥𝑥𝑙𝑙). 

 
Figure 1: Topological structure of the zero-order takagi–sugeno inference system 
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For a stated observation 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 ) the functions of the nodes in this model are 
as follows, according to the zero-order Takagi-Sugeno inference method:  
Layer1: (input layer): In this layer, each neuron represents one input variable and the 
input variables are directly passed to the next layer. 
Layer2: (membership layer): Each node in this layer represents the membership function 
of a linguistic variable and serves as a memory unit. Here, the Gaussian functions(2) are 
adopted as membership functions for the nodes. The weights connecting Layer1 and 
Layer2 can be interpreted as the Gaussian membership function's centers and widths, 
respectively. 
Layer3: (rule layer): Nodes are referred to as rule nodes in this layer, and each of them 
denotes a term with a rule. For 𝑖𝑖 = 1,2, . . . ,𝑛𝑛, Agreement on the  𝑖𝑖𝑖𝑖ℎ Previous section is 
estimated by 

ℎ𝑖𝑖 = ℎ𝑖𝑖(𝑥𝑥) = 𝐴𝐴1𝑖𝑖(𝑥𝑥1)𝐴𝐴2𝑖𝑖(𝑥𝑥2) …𝐴𝐴𝑚𝑚𝑖𝑖 (𝑥𝑥𝑚𝑚) = �𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑙𝑙)
𝑚𝑚

𝑙𝑙=1

 (3) 

The connecting weights of layers 2 and 3 are set as constant 1. 
Layer4: (output layer): This layer performs the summed-weight defuzzification process. 
The final product of this layer is 𝑦𝑦, which is a linear combination of the implications of 
Layer3: 

𝑦𝑦 = �ℎ𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (4) 

The 𝑦𝑦𝑖𝑖 relation weights of the output layer are often referred to as conclusion parameters. 
Remark 1. In original neuro-fuzzy models [29] [34] [32] [35], the final consequence y is 
calculated by using the gravity method as follows: 

𝑦𝑦 =
∑ ℎ𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1

 (5) 

A popular method is to achieve the fuzzy effect without measuring the center of gravity 
for ease of learning. Hence, the denominator in (5) is omitted [30] [31] [14] [33]. A fur-
ther advantage of this operation is the rapid deployment of hardware. [36]. We therefore 
take the form of (4) in our discussions. 

We then take the form of (4) in our debates. 
The error function is defined as  

𝐸𝐸(𝐖𝐖) =
1
2
�(𝑦𝑦𝑗𝑗 − 𝑂𝑂𝑗𝑗 )2

𝐽𝐽

𝑗𝑗=1

 

where 𝑂𝑂𝑗𝑗  is the desired output for the 𝑗𝑗𝑖𝑖ℎ training pattern 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗   is the corresponding 
fuzzy reasoning result, 𝐽𝐽 is the number of training patterns. 
The purpose of network learning is to find 𝑊𝑊∗ such that 𝐸𝐸(𝐖𝐖∗) = 𝑚𝑚𝑖𝑖𝑛𝑛𝐸𝐸(𝐖𝐖) 
To solve this optimization problem, the gradient descent approach is sometimes used [37] 
[38] [39]. 

3 New Conjugate Gradient (CG) Techniques 
Development of new optimization algorithm Based on algorithm Polak–Ribière–Polak 

(PRP) for learning fuzzy neural networks in the field of data classification and 
comparison with other optimization algorithms 
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𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 ,   𝑘𝑘 ≥ 1, (6) 
where 𝛼𝛼𝑘𝑘  is step-size obtained by a line search and 𝑑𝑑𝑘𝑘  is the direction of search specified 
by  

𝑑𝑑𝑘𝑘+1 = �−𝑔𝑔1,                             𝑘𝑘 = 1
−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 ,          𝑘𝑘 ≥ 1

�, (7) 

where 𝛽𝛽𝑘𝑘  is a parameter. 𝛽𝛽𝐿𝐿𝐿𝐿 = −𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

,  see [40] and 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
∥𝑔𝑔𝑘𝑘∥2 , see [25] where 

𝑔𝑔𝑘𝑘 = ∇𝐸𝐸(𝑤𝑤𝑘𝑘), denotes the gradient of the function of error 𝐸𝐸(𝑤𝑤) in 
regard to 𝑤𝑤, 𝑘𝑘 the number of iterations denotes the, and let 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘 . 
Now we suggest a new conjugate gradient algorithm for classifying data depend basically 
on  Polak–Ribière–Polak (PRP) algorithm so we get a new formula: 

−𝜃𝜃𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 = −𝛾𝛾𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑘𝑘  
−𝜃𝜃𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = −𝛾𝛾𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘  

𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 = �
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑖𝑖𝑖𝑖    𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 ≠ 0

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,                                          𝑖𝑖𝑖𝑖   𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = 0 

� 

where 𝜃𝜃 < 𝛾𝛾 and 𝜃𝜃, 𝛾𝛾 ∈ [0,1]. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + (
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
)𝑑𝑑𝑘𝑘  (8) 

3.1 The Descent Property of a Conjugate Gradient (CG) Technique 
 

Below we have to demonstrate the descending property for our proposed new conjugate 
gradient scheme, denoted by 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 . In the following part 

 
Theorem 1. The search direction 𝑑𝑑𝑘𝑘+1 and 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊  given in equation 
𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊𝑑𝑑𝑘𝑘  

𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 = �
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑖𝑖𝑖𝑖    𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 ≠ 0

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,                                          𝑖𝑖𝑖𝑖   𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = 0 

� 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + ((𝜃𝜃−𝛾𝛾)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝑦𝑦𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

)𝑑𝑑𝑘𝑘  ,                                            

where 𝜃𝜃 < 𝛾𝛾 and 𝜃𝜃, 𝛾𝛾 ∈ [0,1]. It will hold for all 𝑘𝑘 ≥ 1. 
  
Proof. The proof is by using inducement mathematical  
1- If 𝑘𝑘 = 1 then 𝑔𝑔1

𝑇𝑇𝑑𝑑1 < 0, 𝑑𝑑1 = −𝑔𝑔1 →< 0. 
2- Let the relation 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 < 0 for all 𝑘𝑘. 
3- We are going to prove that the relationship is true when 𝑘𝑘 = 𝑘𝑘 + 1  by multiplying the 
equation (8) in 𝑔𝑔𝑘𝑘+1 we obtain 

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + (
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑑𝑑𝑘𝑘  

Let 𝜏𝜏 = (𝜃𝜃−𝛾𝛾)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

, 𝑣𝑣 = 𝑦𝑦𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

 

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + (𝜏𝜏 + 𝑣𝑣)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘  

Let  𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1 > 0 and 𝜏𝜏 > 𝑣𝑣 the 𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≥ 0. 
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3.2. Global Convergence  

 
We will display that conjugate gradient (CG) method with 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊  convergences 

globally. For the convergence of the proposed new algorithm, we need a certain 
assumption. 

 
Assumption 1. [41][42] 

1- Assume 𝐸𝐸  in the level set is bound below 𝐿𝐿 = {𝑤𝑤 ∈ 𝑃𝑃𝑛𝑛 :𝐸𝐸(𝑤𝑤) ≤ 𝐸𝐸(𝑤𝑤0)};  In 
some  Initial point.  

2- 𝐸𝐸 is continuously differentiable and its gradient is Lipchitz continuous, there exist  
𝐿𝐿 > 0 such that[43]: 

∥ 𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑦𝑦) ∥≤ 𝐿𝐿𝑥𝑥 − 𝑦𝑦 ∥ ∀𝑥𝑥,𝑦𝑦 ∈ 𝑁𝑁 (9) 
On the other hand, under Assumption(1), it is clear that there exist positive constants B 
such  

‖𝑤𝑤‖ ≤ 𝐵𝐵,∀𝑤𝑤 ∈ 𝐿𝐿 (10) 
∥ 𝛻𝛻𝐸𝐸(𝑤𝑤) ∥≤ 𝛾𝛾,∀𝑥𝑥 ∈ 𝐿𝐿 (11) 

Lemma 1. Assume that Assumption (1) and equation (10) hold. take into consideration 
any conjugate gradient method in from (6) and (7), where 𝑑𝑑𝑘𝑘  is a decent direction and 𝛼𝛼𝑘𝑘   
is obtained by the S.W.L.S. If 

�
1

∥ 𝑑𝑑𝑘𝑘+1 ∥2
𝑘𝑘>1

= ∞ 

then we have 
𝑙𝑙𝑖𝑖𝑚𝑚
𝑘𝑘→∞

𝑖𝑖𝑛𝑛𝑖𝑖 ∥ 𝑔𝑔𝑘𝑘 ∥= 0 
more details can be found in [44][45][46].  

 
Theorem 2. Assume that Assumption (1) and equation (6) and the descent condition hold. 
Consider a conjugate gradient scheme in the form 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊𝑑𝑑𝑘𝑘 , 
 where 𝛼𝛼𝑘𝑘  is computed from strong Wolfe line search condition for more details see [47] 
[48] [49] [50] , If the objective function is uniformly on set 𝐿𝐿, then 

𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞(𝑖𝑖𝑛𝑛𝑖𝑖 ∥ 𝑔𝑔𝑘𝑘 ∥) = 0 . 
Proof. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊1𝑑𝑑𝑘𝑘  

𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 = �
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑖𝑖𝑖𝑖    𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 ≠ 0

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,                                          𝑖𝑖𝑖𝑖   𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = 0 

� 

∥ 𝑑𝑑𝑘𝑘+1 ∥=∥ −𝑔𝑔𝑘𝑘+1 + (
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
)𝑑𝑑𝑘𝑘 ∥ 

∥ 𝑑𝑑𝑘𝑘+1 ∥≤∥ 𝑔𝑔𝑘𝑘+1 ∥ +∥
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
) ∥ 𝑑𝑑𝑘𝑘 ∥ 

∥ 𝑑𝑑𝑘𝑘+1 ∥≤∥ 𝑔𝑔𝑘𝑘+1 ∥ +∥
(𝜃𝜃 − 𝛾𝛾) ∥ 𝑔𝑔𝑘𝑘+1 ∥2

∥ 𝑑𝑑𝑘𝑘 ∥∥ 𝑔𝑔𝑘𝑘+1 ∥
+
∥ 𝑦𝑦𝑘𝑘𝑇𝑇 ∥∥ 𝑔𝑔𝑘𝑘+1 ∥

∥ 𝑔𝑔𝑘𝑘 ∥2 ∥∥ 𝑑𝑑𝑘𝑘 ∥ 
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∥ 𝑑𝑑𝑘𝑘+1 ∥≤ (1+∥
(𝜃𝜃 − 𝛾𝛾) ∥ 𝑑𝑑𝑘𝑘 ∥

∥ 𝑑𝑑𝑘𝑘 ∥
+
∥ 𝑑𝑑𝑘𝑘 ∥∥ 𝑦𝑦𝑘𝑘𝑇𝑇 ∥
∥ 𝑔𝑔𝑘𝑘 ∥2 ) ∥ 𝑔𝑔𝑘𝑘+1 ∥ 

𝜓𝜓 =∥
(𝜃𝜃 − 𝛾𝛾) ∥ 𝑑𝑑𝑘𝑘 ∥

∥ 𝑑𝑑𝑘𝑘 ∥
+
∥ 𝑑𝑑𝑘𝑘 ∥∥ 𝑦𝑦𝑘𝑘𝑇𝑇 ∥
∥ 𝑔𝑔𝑘𝑘 ∥2 ∥ 

∥ 𝑑𝑑𝑘𝑘+1 ∥≤ (1 + 𝜓𝜓) ∥ 𝑔𝑔𝑘𝑘+1 ∥ 

�
1

∥ 𝑑𝑑𝑘𝑘+1 ∥2

𝑘𝑘≥1

≥ (
1

(1 + 𝜓𝜓)2)
1
𝛾𝛾2 ∑1 = ∞. 

 

3 Numerical Examples 
The conjugate gradient algorithm developed to teach the fuzzy neural networks 

described in Part Two is evaluated by comparing it with related algorithms such as LS 
and PRP to classify the data given by the following classification problems (Iris, Thyroid, 
Glass, Wine, Breast Cancer and Sonar) [51],  The developed algorithm NEW showed 
high efficiency in data classification compared to LS and PRP algorithms as shown in the 
following table and graphs, The simulation was carried out using Matlab 2018b, running 
on a Windows 8 HP machine with an Intel Core i5 processor, 4 GB of RAM and 500 GB 
of hard disk drive. 

 
Table 1: Problems in Real-World Classification [51] 

 Classification dataset Data size No. of training samples No. of testing samples 
1 Iris 150 90 60 
2 Thyroid 215 129 86 
3 Glass 214 107 107 
4 Wine 178 89 89 
5 Breast Cancer 253 127 126 
6 Sonar 208 104 104 
 

 

 
Figure 2: The average training accuracy for 

Iris 

 
Figure 3: The average training error results 

for Iris 
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Table 2: Average Performance Comparison for Classification Problems for NEW 

Datasets Algorithms 
No. of 
training 
iteration 

Average 
training 
time 

Average 
training 
accuracy 

Average 
test 
accuracy 

Average 
training 
MSE 

Average 
test 
MSE 

Iris 
LS 
PRP 
NEW 

100 
100 
100 

0.2883 
0.4328 
0.6028 

0.9600 
0.9600 
0.9644 

0.9367 
0.9367 
0.9500 

0.1392 
0.1391 
0.0932 

0.1541 
0.1541 
0.1110 

Thyroid 
LS 
PRP 
NEW 

100 
100 
100 

0.1702 
0.1703 
0.1686 

0.6930 
0.8961 
0.9271 

0.7070 
0.9000 
0.9163 

0.3899 
0.1627 
0.1356 

0.3874 
0.1632 
0.1370 

Glass 
LS 
PRP 
NEW 

100 
100 
100 

0.6123 
0.6059 
0.6565 

0.3121 
0.3121 
0.5664 

0.2617 
0.2673 
0.4636 

0.7841 
0.7807 
0.5828 

0.7944 
0.7990 
0.6414 

Wine 
LS 
PRP 
NEW 

100 
100 
100 

0.4195 
0.4147 
0.4230 

0.4854 
0.9528 
0.9730 

0.4427 
0.9258 
0.9348 

0.6324 
0.1340 
0.1131 

0.6568 
0.1827 
0.1597 

Breast 
Cancer 

LS 
PRP 
NEW 

100 
100 
100 

1.7727 
1.7482 
1.8412 

0.4677 
0.4646 
0.6630 

0.4619 
0.4619 
0.6349 

0.9235 
0.9142 
0.6235 

0.9347 
0.9257 
0.6727 

Sonar 
LS 
PRP 
NEW 

100 
100 
100 

2.1704 
2.1506 
2.1819 

0.5442 
0.5115 
0.6558 

0.5288 
0.5000 
0.5942 

0.6071 
0.6063 
0.4296 

0.6078 
0.6071 
0.4873 

 

 
Figure 4: The average training accuracy for 
Thyroid 

 
Figure 5: The average training error results 
for Thyroid 
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Figure 6: The average training accuracy for 
Glass 

 

 
Figure 7: The average training error results for 
Glass 

 
Figure 8: The average training accuracy for Wi-
ne 

 
Figure 9: The average training error results for 
Wine  

 
Figure 10: The average training accuracy for 
Breast Cancer 

 
Figure 11: The average training error results for 
Breast Cancer 
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Figure 12: The average training accuracy 
for Sonar 
 

 
Figure 13: The average training error 
results for Sonar 

 

4 Conclusion 
Our Conjugate gradient technique is a good option to a gradient descent method for its 

faster convergence speed via looking for a conjugate descent path with adaptive learning 
coefficients. An updated conjugate gradient approach has been proposed in this paper to 
train the fuzzy neural network system of the 0-th order Takagi-Sugeno (TS). Numerical 
simulations shown that new algorithm has a better generalization efficiency than its 
current counterparts. Also, the simulations observed endorse the converging behavior of 
the suggested algorithm is very well. We also conclude that the proposed technique can 
solve the optimization functions and can be used in training artificial neural networks. 
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Abstract — In this study, we consider nonlinear inequality constrained optimiza-
tion problems. We introduce l1 exact penalty function approach with a new smoothing
function based on Bezier curve. Then, we propose a new algorithm by using the dif-
ferentiation based methods to solve for solving l1 exact penalty functions. Finally,
we apply our algorithm to test problems to demonstrate the effectiveness of the algo-
rithm.

Keywords: l1 penalty function, Smoothing, Non-smooth optimization.
Mathematics Subject Classification: 90C30, 65D10, 90C26.

1 Introduction
In this study, we deal with the constrained optimization problem as follows

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, 2, ...,m.
(1)

where f, gi : Rn → R, i ∈ I = {1, 2, ...,m} are continuously differentiable functions.
The set of feasible solution is defined as G0 := {x ∈ Rn|gi(x) ≤ 0, i = 1, 2, ...m}) and it
is assumed that G0 is not empty.

The penalty function is used in order to transform a constrained problem to an uncon-
strained one. The following problem is one of the well-known penalty form of problem
1:

min
x∈Rn

F2(x, ρ) = f(x) + ρ
m∑
i=1

(
g+i (x)

)2
, (2)
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where ρ > 0 is a penalty parameter and g+i (x) = max{0, gi(x)}, i ∈ I . Clearly, F2(x, ρ)
is continuously differentiable exact penalty function. According to Zangwill [1], an exact
penalty function has been defined by

min
x∈Rn

F1(x, ρ) = f(x) + ρ

m∑
i=1

g+i (x). (3)

The obvious difficulty in minimization of F1 is the non-differentiability of F1 which orig-
inates from the presence of “max” operator (when the power of max is equal 1). The
exact l1 penalty function has been studied by many interesting studies [2, 3]. The penalty
approach is used many areas such as academic problems: image processing problems [4],
min-max problems [5], PDE constrained control optimization problems [6] and also many
engineering problems [7].

One of the most popular way of solving these kind of non-smooth problems is smooth-
ing techniques. The idea of behind the smoothing techniques is based on the approx-
imation to the non-smooth objective function by smooth functions. The degree of ap-
proximation is controlled by parameters. The first studies are on smoothing techniques
[8, 9, 10, 11, 12]. In order to improve the smoothing approaches, different types of valu-
able techniques and algorithms are developed [13, 14, 16, 15, 17]. Smoothing techniques
are widely used for solving exact penalty functions. The first study is given in [18] and
many new studies has been arisen with different smoothing techniques [19, 20, 21, 22, 24,
25, 26]. The smoothing exact penalty functions has been an active research area in recent
years [27, 28, 29]

In this paper, we first present a new smoothing function based on Bezier curve. Then,
we apply smoothing approach with exact penalty functions and construct the smoothing l1
exact penalty functions. Finally, we develop a new algorithm by using the differentiation
based methods and the implementation of our algorithm to test problems is demonstrated.

2 Preliminaries
Throughout the paper, xk is denoted as local minimizer and x∗ is denoted as the global
minimizer. R+ denote the non-negative real numbers and ‖ ·‖ denote the Euclidean norm.

The smoothing function of non-smooth functions is defined by the following definition:

Definition 1. [30] Suppose that f : Rn → R is a continuous function and ε > 0. The
function f̃ : Rn×R+ → R is called a smoothing function of f(x), if f̃(·, ε) is continuously
differentiable in Rn for any fixed ε, and for any x ∈ Rn,

lim
z→x,ε→0

f̃(z, ε) = f(x).

The Bezier curve is successfully used for smoothing of the min operator in [31] to
obtain filled function for global optimization. We plan to construct a new smoothing
function for penalty problem by the help of Bezier curve. A Bezier curve is defined as
follows:

Definition 2. [32] A Bezier curve of degree n is a parametric curve with control points
P0, P1, ..., Pn, and it is expressed in terms of Bernstein polynomials given by

Bn
i (t) =

(
n
i

)
(1− t)n−i ti
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where the binomial coefficients are(
n
i

)
=

{
n!

i!(n−i)! if 0 ≤ i ≤ n

0 else

Therefore, a Bezier curve of degree n is explicitly defined by

β (t) =
n∑

i=0

Bn
i (t)Pi, t ∈ [0, 1] .

In general, finding exact solution is quite hard task for the complicated constrained
optimization problems. Therefore, the approximate solution is useful for these types of
problems.The ε−feasible solution for inequality constrained optimization problems is de-
fined as follows:

Definition 3. [20] Assume ε > 0, a point xε is called ε−feasible solution of problem (1),
if

gi(x) ≤ ε, i = 1, 2, . . . ,m.

3 A New Smoothing Approach Based on Bezier Curve for Exact Penalty
Functions

Let us define the h : R→ R such that h(t) = max{t, 0}. It easy to see that, the function
h(t) is re-written as

h(t) = tχA(t), (4)

where A = {t ∈ R : t > 0} and χA : R→ R is indicator function of a set A defined as

χA(t) =

{
1 , t ∈ A,
0 , t 6∈ A.

Considering the Eqn. (4), if anyone smooth out the function χA(t), then smoothing func-
tion of h(t) is obtained. Therefore, we plan to construct a new smoothing function by the
help of Bezier curves. The smoothing function is obtained as follows:

h̃(t, ε) = tχ̃A(t, ε),

where χ̃A(x, ε) is the smoothing function of indicator function χA(t) and

χ̃A(t, ε) =


0 , t ≤ −ε/2
(t+ 0.5ε)2

ε3
(3ε− 2 (t+ 0.5ε)) ,−ε/2 ≤ t < ε/2

1 , t ≥ ε/2

It can easily verify that the function h̃(t, ε) is continuously differentiable on R.

Lemma 1. Assume that ε > 0 then

0 ≤ h(t)− h̃(t, ε) ≤ ε

4
(5)

for any t ∈ R.
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Proof. Since χA(t) = χ̃A(t, ε) when t 6∈ [− ε
2
, ε
2
], it is enough to show that the inequality

(5) holds for any t ∈ [− ε
2
, ε
2
]. For ε > 0 we have

0 ≤ h(t)− h̃(t, ε) = tχA(t)− tχ̃A(t, ε)

≤ ε

4
.

It completes the proof.

It can be concluded from the Lemma 1 that h̃(t, ε)→ h(t) as ε→ 0.
By the help of the smoothing and penalty formulation we can construct the following

problem
min
x∈Rn

F̃1 (x, ε, ρ) (6)

instead of the problem given in (3). Here the function F̃1(x, ρ, ε) is defined as

F̃1(x, ε, ρ) := f(x) + ρ

m∑
i=1

h̃(gi(x), ε).

Now, we are ready to give the following theoretical results.

Theorem 3.1. Let x ∈ Rn and ε > 0 then,

0 ≤ F1(x, ρ)− F̃1(x, ε, ρ) ≤ m

4
ρε. (7)

Proof. From Lemma 1 we obtain

F1(x, ρ)− F̃1(x, ε, ρ) = ρ
m∑
i=1

h(gi(x))− ρ
m∑
i=1

h̃(gi(x), ε)

= ρ
m∑
i=1

(
h(gi(x))− h̃(gi(x), ε)

)
≤ m

4
ρε.

Theorem 3.2. Suppose that {εj} → 0 and xj is a solution of (6) for any ρ > 0. Assume
that x is an accumulation point of {xj}. Then x is an optimal solution for (3).

Proof. The proof is obtained from the Theorem 3.1.

Theorem 3.3. Let x∗ be an optimal solution for the problem (3) and x be an optimal
solution for the problem (6). Then we have the following:

0 ≤ F1(x
∗, ρ)− F̃1(x, ε, ρ) ≤ mρε

4
. (8)
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Proof. From the Theorem 3.1 we have the following:

F1(x
∗, ρ)− F̃1(x

∗, ρ, ε) ≤ F1(x
∗, ρ)− F̃1(x̄, ε, ρ)

≤ F1(x̄, ρ)− F̃1(x̄, ε, ρ)

≤ mρε

4
.

Theorem 3.4. Let x∗ be an optimal solution for (3), x be an optimal solution for (6) and
let x∗ be a feasible solution for (P ) and x be an ε− feasible solution for (P ), then we
have

0 ≤ f(x∗)− f(x̄) ≤ mρε

2
. (9)

Proof. From the Theorem 3.3, we have

F1(x
∗, ρ)− F̃1(x̄, ε, ρ) = f(x∗) + ρ

m∑
i=1

h(gi(x
∗))−

(
f(x̄) + ρ

m∑
i=1

h̃ (gi(x̄), ε)

)
≤ mρε

4

and since
∑m

i=1 h(gi(x
∗)) = 0, we obtain

ρ
m∑
i=1

h̃ (gi(x̄), ε) ≤ f(x̄)− f(x∗) ≤ ρ
m∑
i=1

h̃ (gi(x̄), ε) +
mρε

4
.

Since x̄ is ε−feasible then we have

ρ
m∑
i=1

h̃ (gi(x̄), ε) ≤ mρε

4
.

Therefore, we obtain
0 ≤ f(x∗)− f(x̄) ≤ mρε

2
.

4 Algorithm and Numerical Examples
In this section, we first propose an algorithm to solve (6) as follows:

Penalty Function Algorithm (PFA)

Step 1 Choose the initial point x0. Determine ε0 > 0, ρ0 > 0, 0 < δ < 1, and M > 1, let
k = 0 and go to Step 2.

Step 2 Use xk as an initial point to solve (6). Let xk+1 be the solution.

Step 3 If xk+1 is ε−feasible for (1), then stop and xk+1 is the optimal solution. If not,
determine ρk+1 = Mρk, εk+1 = δεk and k = k + 1, then go to Step 2.
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In order to guaranteed that the algorithm is worked straightly, we have to prove the
following theorem.

Theorem 4.1. Assume that the set

argmin
x∈Rn

F̃1(x, ε, ρ) (10)

is not empty for ρ ∈ [ρ0,∞) and ε ∈ (0, ε0]. Further assume that xk is generated by PFA
when δM < 1. If {xk} has a limit point, then the limit point of xk is the solution for the
problem (1).

Proof. Assume x is a limit point of {xk}. Then there exists set K ⊂ N, such that xk → x
for k ∈ K. We have to show that x is the optimal solution for (1). Thus, it is sufficient to
show (i) x ∈ G0 and (ii) f(x) ≤ infx∈G0 f(x).

i. Let us consider the contrary that x 6∈ G0, i.e. for sufficiently large k ∈ K, there
exist τ0 > 0 and i0 ∈ {1, 2, . . . ,m} such that

gi0(x
k) ≥ τ0 > 0.

Since xj is the global minimum according k−th values of the parameters ρk, εk, for
any x ∈ G0 we have

F1(x
k, εk, ρk) = f(xk) + ρk(τ0 +

εk
2

) +
(m− 1)

2
ρkεk

= f(xk) + ρkτ0 +
m

2
ρkεk

≤ f(x) +
m

2
ρkεk.

If k →∞ then, ρ→∞, ρkεk → 0 and ρkτ0 →∞. Thus, f(x) takes infinite values
on G0 and it contradicts with the boundedness of f on G0.

ii. By considering the Step 2 in PFA and for any x ∈ G0,

F̃1(x
k, εk, ρk) ≤ F̃1(x, εk, ρk) = f(x) +

1

4
mρkεk

When k →∞, we have f(x) ≤ f(x).

Now we are ready to apply PFA to numerical examples. The PFA is programmed in
Matlab R2016A. For these tables we use some symbols in order to abbreviate the expres-
sions. The symbols are described as follows:

Iter : The total number of iterations.
Obj : The value of solution minimum point x∗.

C.val : The maximum value of error value for constraints.
Time : The total time in seconds.

We consider the 4 different test problems which are given in details [26].
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Problem 1. Let us consider the Example in [19]

min f(x) = x21 + x22 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x22 − 1.62 ≤ 0,

g2(x) = x21 + (x2 − 3)2 − 2.72 ≤ 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

The global minimum is obtained at a point x∗ = (0.7254, 0.3993) with the corresponding
value 1.8376.

Problem 2. Let us consider the example in [21],

min f(x) = 1000− x21 − 2x22 − x23 − x1x2 − x1x3
s.t. x21 + x22 + x23 − 25 = 0,

(x1 − 5)2 + x22 + x23 − 25 = 0

(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0

The global minimum is obtained at a points x∗ = (2.5000, 4.2196, 0.9721) and the value
of the point is 944.2157.

Problem 3. The Rosen-Suzuki problem in [19]

min f(x) = x21 + x22 + 2x3 + x24 − 5x1 − 21x3 + 7x4

s.t. 2x21 + x22 + x23 + 2x1 + x2 + x4 − 5 ≤ 0,

x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8 ≤ 0,

x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10 ≤ 0.

In the paper [19], the obtained global value is obtained as −44.23040.

Problem 4. Let us consider the Example in [21, 18]

min f(x) = 10x2 + 2x3 + x4 + 3x3 + 4x6

s.t. x1 + x2 − 10 = 0,

−x1 + x3 + x4 + x5 = 0,

−x2 − x3 + x5 + x6 = 0,

10x1 − 2x3 + 3x4 − 2x5 − 16 ≤ 0,

x1 + 4x3 + x5 − 10 ≤ 0,

0 ≤ x1 ≤ 12, 0 ≤ x2 ≤ 18,

0 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 12,

0 ≤ x5 ≤ 1, 0 ≤ x6 ≤ 16,

In the paper [21], the obtained global minimum value is obtained as 117.000004.
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The PFA is applied to test problems and the detailed result is presented in Table 1. In
Table 1, the total number of function iterations, the value of the objective function at
the optimal point, the maximum error values of constraints at the optimal point and the
total spending time obtained from our algorithm and competing algorithms have been
reported. The numerical results show that our algorithm is present better results among
the all algorithms.

Table 1: The numerical results
PFA Algorithm I Algorithm II

Problem No Iter Obj C.val Time Iter Obj C.val Time Iter Obj C.val Time
1 3 1.8376 −0.0000 0.446089 3 1.8376 −0.0000 0.458735 3 1.8376 −0.0000 0.482673
2 2 944.2156 0.0000 0.345145 4 944.2157 0.0000 0.486354 3 944.2157 0.0000 0.448798
3 3 −44.2338 −0.0000 0.444549 3 −44.2338 −0.0000 0.519692 4 −44.2322 −0.0000 0.552898
4 4 117.0100 0.0000 0.474952 3 117.0182 0.0000 0.795644 3 117.0071 0.0000 0.884352

5 Conclusion
In this study, we propose new smoothing technique based on Bezier Curve for l1 exact
penalty function. We design a new algorithm to solve smoothing penalty expression of
the problem (1). We perform some numerical experiments on test problems and obtain
satisfactorily results.

Our new smoothing technique needs to tune just one parameter. Thus, it is easy to
set the best parameter value in the process of the algorithm. It can be conclude that our
approach provide good approximations to this kind of penalty functions. The algorithm
is user friendly and effective. It has fast convergence properties in comparing with the
other penalty algorithms. Moreover, the numerical results consolidate the efficiency of
the algorithm.
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