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Abstract: 

Diophantine set theory has an importence role in Mathematics.In this paper,we consider 

prime number p=+53 and give some Diophantine P+53 triples. Some of the such sets are 

extended but others not. We give several of them with proofs. Also, some types of elements of 

the Diophantine P+53  m-tubles are determined. One can be work on other Diophantine P+53 - m 

tubles and discover extendibility of them. 
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Introduction and Preliminaries 

To obtain proofs of our main results we need following definitions, lemmas, theorems and 

so on... All of the following informations are found in the references [1-25]. 

 

1. Let n be an non-zero integer. A set of m positive integers 

{𝛼1, 𝛼2 , . . , 𝛼𝑚} 

such that 𝛼𝑖𝛼𝑗 + 𝑛 is a perfect square for all  1 ≤  𝑖 <  𝑗 ≤  𝑚 is called 𝛼 Diophantine m-

tuple with the property 𝐷(𝑛).  

   

2. Let p be an odd prime and let a be an integer. The Legendre symbol of a with respect 

to p is defined by  



(
𝛼

𝑝
) = {

1
−1
0

 

𝑖𝑓 𝛼 𝑖𝑠 a 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝 𝑎𝑛𝑑 𝛼 ≢ 0 (𝑚𝑜𝑑 𝑝 ) 
𝑖𝑓 𝛼 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑛𝑜𝑛 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝

𝑖𝑓 𝛼 ≡ 0 (𝑚𝑜𝑑 𝑝).
 

 

(a)  (
−1

𝑝
) = (−1)

𝑝−1

2    , so it is 1 if and only if 𝑝 ≡ 1 𝑚𝑜𝑑4. 

(b) (
2

𝑝
) = (−1)

𝑝2−1

8   for an odd prime 𝑝 , so it is 1 if and only if  𝑝 ≡ ±1 𝑚𝑜𝑑 8. 

 

 

3. Law of Quadratic Reciprocity is given by 

                                                         (
𝑝

𝑞
) (

𝑞

𝑝
) = (−1)

𝑝−1

2
 
𝑞−1

2  , 

where 𝑝 and 𝑞 are odd prime numbers, and  (
𝑝

𝑞
)  denotes the Legendre symbol. 

Note: (Extension of the law of quadratic reciprocity) If 𝑚 and 𝑛 are coprime positive 

odd integers, 

 

(
𝑚

𝑛
) (

𝑛

𝑚
) = (−1)

𝑚−1
2

 
𝑛−1

2 . 

 

 

Main Results 

 

Theorem 1. 𝑃+53 = {11, 13, 52}  Diophantine triple can not be extended to Diophantine 𝑃+53 

quadruple. 

Proof .  

Assume that d is in the set of Diophantine  𝑃+53 set. So, we obtain  following result 

from the definition of  Diophantine  𝑃+53 set.                                                                                          

{11, 13, 52, 𝑑}  →  (1) 11𝑑 + 53 = 𝑥2 

                               (2) 13𝑑 + 53 = 𝑦2                                         

                               (3)  52𝑑 + 53 = 𝑧2 . 

These (2) and (3) equations imply that  𝑧2 − 4𝑦2 = −159. Table 1 gives us integer solutions 

of the equation as follow: 

                                                     

 



                                                     Table 1.  𝑧2 − 4𝑦2 = −159                   

 

 

 

 

 

From the (1) and (2), we get,  

13𝑥2 − 11𝑦2 = 2.53 ⟹  13𝑥2 − 11𝑦2 = 106 

And also integers solutions of the 13𝑥2 − 11𝑦2 = 106 can be given as Table 2. 

 

Table 2. 13𝑥2 − 11𝑦2 = 106 

 

(𝑥, 𝑦) 

 

(𝑥, 𝑦) 

 

(𝑥, 𝑦) 

 

(𝑥, 𝑦) 

 

(𝑥, 𝑦) 

 

(±1125, ±1223) 

 

(±597, ±649) 

 

(±47, ±51) 

 

(±25, ±27) 

 

(±3,1) 

 

If we compare Table 1 and Table 2, we obtain that there is no common integer solution 

for the system of pell equations. So, {11,13,52} can not be extended to Diophantine 𝑃+53 

Quadruple. 

 

 

Theorem 2. Diophantine 𝑃+53 = {4,119,169} Triple can not be extended to 𝑃+53 Quadruple. 

Proof: Let us consider Diophantine 𝑃+53 = {4,119,169}. If d is an element of the such 

property set, then  it is written by Diophantine   {4,119,169, 𝑑} 4- tuples. Then we obtain 

following results 

(1) 4𝑑 + 53 = 𝐴2

(2) 119 + 53 = 𝐵2

(3) 169𝑑 + 53 = 𝐶2

} 

From (1) and (3), it is obtained that   

169   4𝑑⁄ + 53 = 𝐴2

−4  ∕ 169𝑑 + 53 = 𝐶2 

                                                         ⇒ 169𝐴2 − 4𝐶2 = 165.53 

 

(𝑧, 𝑦) 
 

 

(𝑧, 𝑦) 

 

(±40, ±79) 

 

(±14, ±25) 



                                                         ⟹ 169𝐴2 − 4𝐶2 = 8745                                            (4) 

Also, from (1) and (2), we get; 

                                  119𝐴2 − 4𝐵2 = 115.53  ⟹ 119𝐴2 − 4𝐵2 = 6095                       (5) 

For (4) and (5) , we have Table 3  and Table 4 include integer solutions. 

                                                      Tablo 3. 169𝐴2 − 4𝐶2 = 8745 

 

(𝐴, 𝐶) 

 

(𝐴, 𝐶) 

 

(±31, ±196) 

 

(±23, ±142) 

 

                                                     Tablo 4. 119𝐴2 − 4𝐵2 = 6095                        

 

(𝐴, 𝐵) 

 

(𝐴, 𝐵) 

 

(𝐴, 𝐵) 

 

(𝐴, 𝐵) 

 

(𝐴, 𝐵) 

 

(±1389, ±7576) 

 

(±531, ±2896) 

 

(±37, ±198) 

 

(±27, ±142) 

 

(±19, ±96) 

 

From Tablo 3 and Tablo 4, we can not get common integer solutions for (3) and (4). 

So, {4,119,169} can not be extended. 

 

Theorem 3.  𝑃+53 = {4,169,227} can not be extendable to Diophantine 𝑃+53 quadruple. 

Proof. It is proven like previous proofs of the theorems. 

 

Theorem 4. There is no elements in the set of Diophantine 𝑃+53 m- tuples if they are written 

by  three fold or  five fold or thirtyone fold or  fortyone fold or thirtynine fold,  so on… 

Proof.  

(a) Assume that 3k (𝑘 ∈ 𝑍+) is in the set of Diophantine 𝑃+53 m- tuples.So, following 

equation have solution ; 

3𝑘. 𝑠 + 53 = 𝑥2 

for 𝑠 ∈ 𝑃+53 m- tuples. It implies that 

𝑥2 = 2 (𝑚𝑜𝑑 3). 

This congruents can solvable  if  (
2

3
) = +1 but (

2

3
) = (−1)

9−1

8 = (−1).    

This implies that 3 ∉  Diophantine 𝑃+53 m- tuples. 



(b) Suppose that 31𝑟 (𝑟 ∈ 𝑍+) is an element of the Diophantine 𝑃+53 m- tuples.Then, we 

obtain following equation from the definition of the Diophantine 𝑃+53 m- tuples. 

31𝑟. 𝑢 + 53 = 𝐴2     ∋     𝑢 ∈  Diophantine 𝑃+53 m −  tuples. 

It implies that  

𝐴2 ≡ 22 (𝑚𝑜𝑑 31)  solvable ⟺  (
22

31
) = 1   (?) 

 (
22

31
) = (

2

31
) . (

11

31
)   and  from Quadratic reciprocity; 

(
11

31
) . (

31

11
) = (−1)(

11−1
2

).(
31−1

2
)

⟹     (
11

31
) = −1 

(
2

31
) = (−1)

312−1

8 = (−1)120 = +1  then 31𝑟 ∉ Diophantine 𝑃+53 m- tuples. 
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