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Kırıkkale University, Türkiye

Metin Turgay
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Research Article

Hermite–Hadamard Type Inclusions for m-Polynomial
Harmonically Convex Interval-Valued Functions

EZE R. NWAEZE*

ABSTRACT. We introduce the notion of m-polynomial harmonically convex interval-valued function. A relation-
ship between a given interval-valued function and its component real-valued functions is pointed out. Moreover, some
new Hermite–Hadamard type results are established for this class of functions. In particular, we show that if a non-
negative interval-valued function F , defined on a harmonically convex set S, is m-polynomial harmonically convex
with α < β and α, β ∈ S, then

2−1 m

m+ 2−m − 1
F

(
2αβ

α+ β

)
⊇

αβ

β − α

∫ β

α

F (r)

r2
dr ⊇

F (α) + F (β)

m

m∑
p=1

p

p+ 1
,

where F is Lebesgue integrable on [α, β]. Our results complement and extend existing results in the literature. By
taking m ≥ 2, we derive loads of new and interesting inclusions. We anticipate that the idea outlined herein will
trigger further investigations in this direction.

Keywords: Hermite–Hadamard, m-polynomial harmonically convex, interval-valued function.

2010 Mathematics Subject Classification: 26D15, 26E25, 28B20.

1. INTRODUCTION

The Hermite–Hadamard inequality (HHI) stipulates that the average value of a convex func-
tion on an interval is bounded below by the value of the function at the midpoint of the interval
and above by the average value of the function at the endpoints of the interval. Whenever a
new class of function is introduced, researchers want to know if the analogue of the HHI can
be established for such class. Loads of articles, in this direction, are bound in the literature. See
for example, [3, 4, 9, 10, 12, 13, 14, 15, 22, 23, 26, 24] and the references cited therein. One of
such is the harmonically convex function: a set S ⊂ R \ {0} is called a harmonically convex set
if

xy

τx+ (1− τ)y
∈ S

for all x, y ∈ S and τ ∈ [0, 1]. In 2014, İşcan [11] proposed and defined a harmonically convex
function as follows: a real valued function f : S → R+ := (0,∞) is harmonically convex if

f

(
xy

τx+ (1− τ)y

)
≤ τf(y) + (1− τ)f(x)

for all x, y ∈ S and τ ∈ [0, 1]. In the same paper, the author established the following Hermite–
Hadamard type inequality for this class of functions:
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Theorem 1.1 ([11]). Let f : S → R be a harmonically convex function. If α, β ∈ S with α < β, and f
is Lebesgue integrable on [α, β], then the following Hermite–Hadamard type inequality holds:

f

(
2αβ

α+ β

)
≤ αβ

β − α

∫ β

α

f(r)

r2
dr ≤ f(α) + f(β)

2
.

Recently, Awan et al. [1] introduced the notion of m-polynomial harmonically convex func-
tions as a generalization of the harmonically convex functions, and then proved, among other
things, the result that follows:

Definition 1.1 ([1]). Let m ∈ N. Then, a real-valued function f : S → R+ is said to be m-polynomial
harmonically convex (concave) if

f

(
xy

τx+ (1− τ)y

)
≤ (≥)

1

m

m∑
p=1

[1− (1− τ)p] f(x) +
1

m

m∑
p=1

[1− τp] f(y)

for all x, y ∈ S and τ ∈ [0, 1]. The sets of all m-polynomial harmonically convex and m-polynomial
harmonically concave functions from S into R+ is denoted by HXPm (S,R+) and HVPm (S,R+),
respectively.

Theorem 1.2 ([1]). Let f : [α, β] → R+ be an m-polynomial harmonically convex function. If f is
Riemann integrable on [α, β], then

2−1 m

m+ 2−m − 1
f

(
2αβ

α+ β

)
≤ αβ

β − α

∫ β

α

f(r)

r2
dr ≤ f(α) + f(β)

m

m∑
p=1

p

p+ 1
.

In 1966, the late American Mathematician Ramon E. Moore initiated the theory of interval
analysis [18]: simply put, the analysis of interval-valued functions. Ever since, this field has
received great deal of attention from researchers in various areas of the mathematical sciences
(like experts in global optimization and constraint solution algorithms) and has grown steadily
in popularity over the past four decades. Interval analysis has been found to be valuable to
engineers and scientists interested in scientific computation, especially in reliability, effects of
roundoff error, and automatic verification of results, see [7, 8, 6, 5]. With the advent of interval
analysis, mathematicians, those who work in the field of mathematical inequalities, want to
know if the inequalities in the above mentioned results can be replaced with inclusions. In
some cases, the answer to the question is in the affirmative. In lieu of this, E. Sadowska (see
also [17]) established the following result for a given interval-valued function:

Theorem 1.3 ([25]). Let F be a nonnegative continuous convex set-valued function on [α, β]. Then,

(1.1) F

(
α+ β

2

)
⊃ 1

β − α

∫ β

α

F (r) dr ⊃ F (α) + F (β)

2
.

Results akin to (1.1), for different classes of set-valued convex functions, have been estab-
lished. For example, see the papers [28, 27, 21, 16, 7, 8, 6, 5, 2, 29]. Motivated by the above men-
tioned articles, it is our goal in this article to introduce a new class of interval-valued function
called the m-polynomial harmonically convex function and then obtain the interval-valued
counterpart of Theorem 1.2. Thereafter, we will establish four more results in this direction.
Our results complement and extend known results in the literature. The paper is organized
in the following manner: Section 2 contains some brief background information in the theory
of interval analysis. In Section 3, we state and prove our main results; followed by an open
problem in Section 4.
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2. PRELIMINARIES

In this section, we give a brief overview of the theory of interval analysis. For an indepth
study of this subject, we invite the interested reader to see the books [18, 19, 20]. We shall call
Kc the class of all bounded closed nonempty intervals in R, i.e.,

Kc :=
{[

α−, α+
]
| α−, α+ ∈ R and α− ≤ α+

}
.

The numbers α− and α+ are called the left and right endpoints of [α−, α+] , respectively. The
interval [α−, α+] is called degenerated if α− = α+; positive if α− > 0 and negative if α+ <
0. We denote the sets of all negative intervals and positive intervals in R by K−

c and K+
c ,

respectively. That is;
K−

c :=
{[
α−, α+

]
∈ Kc | α+ < 0

}
and

K+
c :=

{[
α−, α+

]
∈ Kc | α− > 0

}
.

Let A = [α−, α+], B = [β−, β+] ∈ Kc and γ ∈ R. We say A ⊆ B (or B ⊇ A) if and only if
β− ≤ α− and α+ ≤ β+. The following arithmetic operations are defined thus

γA =


[γα−, γα+] if γ > 0

{0} if γ = 0

[γα+, γα−] if γ < 0;

A+B =
[
α−, α+

]
+

[
β−, β+

]
:=

[
α− + β−, α+ + β+

]
;

A−B =
[
α−, α+

]
−

[
β−, β+

]
:=

[
α− − β+, α+ − β−] ;

A ·B :=
[
min

{
α−β−, α−β+, α+β−, α+β+

}
,max

{
α−β−, α−β+, α+β−, α+β+

}]
;

A

B
:=

[
min

{
α−

β− ,
α−

β+
,
α+

β− ,
α+

β+

}
,max

{
α−

β− ,
α−

β+
,
α+

β− ,
α+

β+

}]
, 0 /∈ B.

The Pompieu–Hausdorff distance dH : Kc ×Kc → R+ ∪ {0} is defined by

dH := max

{
max
α∈A

d(α,B), max
β∈B

d(β,A)

}
with d(β,A) = min

α∈A
|β − α|.

It is generally known that (Kc, dH) is a complete metric space. The concept of a convergent se-
quence of intervals (An)n∈N, An ∈ Kc is considered in the complete metric space Kc, endowed
with the dH distance. We say that lim

n→∞
An = A if and only if for any real number ϵ > 0 there

exists an Nϵ ∈ N such that
dH(An, A) < ϵ for all n > Nϵ.

Next, we turn our attention to interval-valued functions.

Definition 2.2. An interval-valued function is defined to be any F : [α, β] → Kc with F (x) =
[f−(x), f+(x)] ∈ Kc and f−(x) ≤ f+(x) for all x ∈ [α, β]. We say that F is Lebesgue integrable on
[α, β] if the real-valued functions f− and f+ are Lebesgue integrable on [α, β], and then write∫ β

α

F (r) dr =

[∫ β

α

f−(r) dr,

∫ β

α

f+(r) dr

]
.
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3. MAIN RESULTS

We start by introducing the concept of m-polynomial harmonically convex interval-valued
function in the following definition.

Definition 3.3. Let S be a harmonically convex set, F : S → K+
c an interval-valued function and

m ∈ N. We say that F is m-polynomial harmonically convex (concave) if and only if

(3.2)
1

m

m∑
p=1

[1− (1− τ)p]F (x) +
1

m

m∑
p=1

[1− τp]F (y) ⊆ (⊇)F

(
xy

τx+ (1− τ)y

)
for all x, y ∈ S and τ ∈ [0, 1]. In what follows, we shall denote the sets of all m-polynomial harmon-
ically convex and m-polynomial harmonically concave interval-valued functions from S into K+

c by
HXPm (S,K+

c ) and HVPm (S,K+
c ), respectively.

Remark 3.1. For a specific value of m, we get a corresponding set inclusion. For instance,

(1) If m = 1, then we get the definition of harmonically convex interval-valued function:

F

(
xy

τx+ (1− τ)y

)
⊇ τF (x) + (1− τ)F (y)

for all x, y ∈ S and τ ∈ [0, 1].
(2) For m = 2, we get the following inclusion for a 2-polynomial harmonically convex

interval-valued function:

F

(
xy

τx+ (1− τ)y

)
⊇ 3τ − τ2

2
F (x) +

2− τ − τ2

2
F (y)

for all x, y ∈ S and τ ∈ [0, 1].
(3) For m = 3, we deduce the succeeding relation for a 3-polynomial harmonically convex

interval-valued function:

F

(
xy

τx+ (1− τ)y

)
⊇ 6τ − 4τ2 + τ3

3
F (x) +

3− τ − τ2 − τ3

3
F (y)

for all x, y ∈ S and τ ∈ [0, 1].

The following theorem gives a relationship between a given interval-valued function F and
its component real-valued functions f− and f+.

Theorem 3.4. Let F : S → K+
c be an interval-valued function such that F (x) = [f−(x), f+(x)] ∈ Kc

and f−(x) ≤ f+(x) for all x ∈ [α, β]. Then, F ∈ HXPm (S,K+
c ) if and only if f− ∈ HXPm (S,R+)

and f+ ∈ HVPm (S,R+).

Proof. Let x, y ∈ S and τ ∈ [0, 1]. Then,

F ∈ HXPm

(
S,K+

c

)
if and only if

1

m

m∑
p=1

[1− (1− τ)p]F (x) +
1

m

m∑
p=1

[1− τp]F (y) ⊆ F

(
xy

τx+ (1− τ)y

)



264 Eze R. Nwaeze

if and only if [
1

m

m∑
p=1

[1− (1− τ)p] f−(x) +
1

m

m∑
p=1

[1− τp] f−(y),

1

m

m∑
p=1

[1− (1− τ)p] f+(x) +
1

m

m∑
p=1

[1− τp] f+(y)

]

⊆
[
f−

(
xy

τx+ (1− τ)y

)
, f+

(
xy

τx+ (1− τ)y

)]
if and only if

1

m

m∑
p=1

[1− (1− τ)p] f−(x) +
1

m

m∑
p=1

[1− τp] f−(y) ≥ f−
(

xy

τx+ (1− τ)y

)
and

1

m

m∑
p=1

[1− (1− τ)p] f+(x) +
1

m

m∑
p=1

[1− τp] f+(y) ≤ f+

(
xy

τx+ (1− τ)y

)
if and only if

f− ∈ HXPm

(
S,R+

)
and f+ ∈ HVPm

(
S,R+

)
.

That completes the proof in both directions. �

Following a similar line of argument, one can easily prove the following result.

Theorem 3.5. Let F : S → K+
c be an interval-valued function such that F (x) = [f−(x), f+(x)] ∈ Kc

and f−(x) ≤ f+(x) for all x ∈ [α, β]. Then, F ∈ HVPm (S,K+
c ) if and only if f− ∈ HVPm (S,R+)

and f+ ∈ HXPm (S,R+).

For the remaining part of this article, we shall assume that F : S → K+
c is always of the

form F (x) = [f−(x), f+(x)] ∈ Kc and f−(x) ≤ f+(x) for all x ∈ [α, β]. We are now ready
to formulate and prove some Hermite–Hadamard type results for m-polynomial harmonically
convex (concave) interval-valued functions.

Theorem 3.6. Let F : S → K+
c be an interval-valued function with α < β and α, β ∈ S, and Lebesgue

integrable on [α, β]. If F ∈ HXPm (S,K+
c ), then

(3.3)
2−1 m

m+ 2−m − 1
F

(
2αβ

α+ β

)
⊇ αβ

β − α

∫ β

α

F (r)

r2
dr ⊇ F (α) + F (β)

m

m∑
p=1

p

p+ 1
.

The inclusions are reversed if F ∈ HVPm (S,K+
c ).

Proof. Assuming F ∈ HXPm (S,K+
c ), we get from (3.2) the following relation:

F

(
xy

1
2x+ 1

2y

)
⊇ 1

m

m∑
p=1

[
1− 1

2p

]
F (x) +

1

m

m∑
p=1

[
1− 1

2p

]
F (y).

This implies that for all x, y ∈ S

(3.4)
1

m

m∑
p=1

[
1− 1

2p

](
F (x) + F (y)

)
⊆ F

(
2xy

x+ y

)
.
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Now, let x = αβ
τα+(1−τ)β and y = αβ

τβ+(1−τ)α . Then, (3.4) becomes:

(3.5)
1

m

m∑
p=1

(
1− 1

2p

){
F

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)}
⊆ F

(
2αβ

α+ β

)
.

Integrating both sides of (3.5) with respect to τ over [0, 1], we get

∫ 1

0

F

(
2αβ

α+ β

)
dτ ⊇ 1

m

m∑
p=1

(
1− 1

2p

)∫ 1

0

{
F

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)}
dτ

(3.6)

=
1

m

m∑
p=1

(
1− 1

2p

)[∫ 1

0

{
f−

(
αβ

τα+ (1− τ)β

)
+ f−

(
αβ

τβ + (1− τ)α

)}
dτ,

∫ 1

0

{
f+

(
αβ

τα+ (1− τ)β

)
+ f+

(
αβ

τβ + (1− τ)α

)}
dτ

]
=

1

m

m∑
p=1

(
1− 1

2p

)[
2αβ

β − α

∫ β

α

f−(r)

r2
dr,

2αβ

β − α

∫ β

α

f+(r)

r2
dr

]

=
2αβ

β − α

1

m

m∑
p=1

(
1− 1

2p

)[∫ β

α

f−(r)

r2
dr,

∫ β

α

f+(r)

r2
dr

]

=
2αβ

β − α

1

m

m∑
p=1

(
1− 1

2p

)∫ β

α

F (r)

r2
dr.

On the other hand,

∫ 1

0

F

(
2αβ

α+ β

)
dτ =

[∫ 1

0

f−
(

2αβ

α+ β

)
dτ,

∫ 1

0

f+

(
2αβ

α+ β

)
dτ

]
=

[
f−

(
2αβ

α+ β

)
, f+

(
2αβ

α+ β

)]
(3.7)

= F

(
2αβ

α+ β

)
.

Using (3.7) in (3.6), one gets

(3.8)
m

m+ 2−m − 1
F

(
2αβ

α+ β

)
⊇ 2αβ

α+ β

∫ β

α

F (r)

r2
dr.
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Next, we substitute x = α and y = β into (3.2) and integrate the resulting inclusion with respect
to τ over [0, 1], to obtain

αβ

β − α

∫ β

α

F (r)

r2
dr =

∫ 1

0

F

(
αβ

τα+ (1− τ)β

)
dτ

⊇
∫ 1

0

{
1

m

m∑
p=1

[1− (1− τ)p]F (α) +
1

m

m∑
p=1

[1− τp]F (β)

}
dτ

=
1

m

m∑
p=1

∫ 1

0

[1− (1− τ)p]F (α) dτ +
1

m

m∑
p=1

∫ 1

0

[1− τp]F (β) dτ

=
F (α) + F (β)

m

m∑
p=1

p

p+ 1
.

This gives

(3.9)
αβ

β − α

∫ β

α

F (r)

r2
dr ⊇ F (α) + F (β)

m

m∑
p=1

p

p+ 1
.

Combining (3.8) and (3.9), we get the desired result (3.3). If F ∈ HVPm (S,K+
c ), then we

establish the reverse inclusions in a similar manner. �

Remark 3.2. Using Theorem 3.6, we obtain the following corollaries:
(1) For m = 1, we deduce the result for 1-polynomial harmonically convex interval-valued

functions:

F

(
2αβ

α+ β

)
⊇ αβ

β − α

∫ β

α

F (r)

r2
dr ⊇ F (α) + F (β)

2
.

(2) If m = 2, then we obtain the result for 2-polynomial harmonically convex interval-
valued functions:

4

35
F

(
2αβ

α+ β

)
⊇ αβ

7(β − α)

∫ β

α

F (r)

r2
dr ⊇ F (α) + F (β)

12
.

Theorem 3.7. Let F : S → K+
c be an interval-valued function with α < β and α, β ∈ S, and Lebesgue

integrable on [α, β]. If F ∈ HXPm (S,K+
c ), then

1

4

(
m

m+ 2−m − 1

)2

F

(
2αβ

α+ β

)
⊇ Ω1 ⊇ αβ

β − α

∫ β

α

F (r)

r2
dr ⊇ Ω2(3.10)

⊇
(
F (α) + F (β)

)m2 + 2m+ 21−m − 2

2m2

m∑
p=1

p

p+ 1
,

where

Ω1 :=
1

4

m

m+ 2−m − 1

{
F

(
4αβ

α+ 3β

)
+ F

(
4αβ

β + 3α

)}
;

Ω2 :=
1

2

F (α) + F (β) + 2F
(

2αβ
α+β

)
m

 m∑
p=1

p

p+ 1
.

The inclusions are reversed if F ∈ HVPm (S,K+
c ).
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Proof. Using the fact that F ∈ HXPm (S,K+
c ) and recalling (3.4)

(3.11)
1

m

m∑
p=1

[
1− 1

2p

](
F (x) + F (y)

)
⊆ F

(
2xy

x+ y

)

for all x, y ∈ S. So, in particular for

x =
αλ

τα+ (1− τ)λ
and y =

αλ

τλ+ (1− τ)α
, where λ =

2αβ

α+ β
,

the inclusion in (3.11) becomes:

F

(
4αβ

α+ 3β

)
⊇ 1

m

m∑
p=1

(
1− 1

2p

){
F

(
αλ

τα+ (1− τ)λ

)
+ F

(
αλ

τλ+ (1− τ)α

)}
.

Integrating both sides of the above relation with respect to τ over [0, 1], one gets

F

(
4αβ

α+ 3β

)
⊇ 1

m

m∑
p=1

(
1− 1

2p

)∫ 1

0

{
F

(
αλ

τα+ (1− τ)λ

)
+ F

(
αλ

τλ+ (1− τ)α

)}
dτ

=
1

m

m∑
p=1

(
1− 1

2p

)[∫ 1

0

{
f−

(
αλ

τα+ (1− τ)λ

)
+ f−

(
αλ

τλ+ (1− τ)α

)}
dτ,

∫ 1

0

{
f+

(
αλ

τα+ (1− τ)λ

)
+ f+

(
αλ

τλ+ (1− τ)α

)}
dτ

]
=

1

m

m∑
p=1

(
1− 1

2p

)
4αβ

β − α

[∫ λ

α

f−(r)

r2
dr,

∫ λ

α

f+(r)

r2
dr

]

=
m+ 2−m − 1

m

4αβ

β − α

∫ λ

α

F (r)

r2
dr.

Thus, we have

F

(
4αβ

α+ 3β

)
⊇ m+ 2−m − 1

m

4αβ

β − α

∫ λ

α

F (r)

r2
dr.(3.12)

If we also let

x =
βλ

τλ+ (1− τ)β
and y =

βλ

τβ + (1− τ)λ

and then proceed as outlined above, we obtain

F

(
4αβ

β + 3α

)
⊇ m+ 2−m − 1

m

4αβ

β − α

∫ β

λ

F (r)

r2
dr.(3.13)

Also, by setting x = 4αβ
α+3β and y = 4αβ

β+3α into (3.11) and then using (3.12) and (3.13), we obtain
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F

(
2αβ

α+ β

)
⊇ 1

m

m∑
p=1

(
1− 1

2p

){
F

(
4αβ

α+ 3β

)
+ F

(
4αβ

β + 3α

)}

⊇ 1

m

m∑
p=1

(
1− 1

2p

){
m+ 2−m − 1

m

4αβ

β − α

∫ λ

α

F (r)

r2
dr

+
m+ 2−m − 1

m

4αβ

β − α

∫ β

λ

F (r)

r2
dr

}
(3.14)

=
1

m

m∑
p=1

(
1− 1

2p

)
m+ 2−m − 1

m

4αβ

β − α

∫ β

α

F (r)

r2
dr

= 4

(
m+ 2−m − 1

m

)2
αβ

β − α

∫ β

α

F (r)

r2
dr.

From (3.14), we get the following chain of inclusions:

1

4

(
m

m+ 2−m − 1

)2

F

(
2αβ

α+ β

)
⊇ 1

4

m

m+ 2−m − 1

{
F

(
4αβ

α+ 3β

)
+ F

(
4αβ

β + 3α

)}
(3.15)

⊇ αβ

β − α

∫ β

α

F (r)

r2
dr.

Employing the second inclusion of (3.3) from Theorem 3.6 and (3.11), we get

αβ

β − α

∫ β

α

F (r)

r2
dr =

1

2

[
2αβ

β − α

∫ 2αβ
α+β

α

F (r)

r2
dr +

2αβ

β − α

∫ β

2αβ
α+β

F (r)

r2
dr

]

⊇ 1

2

F (α) + F
(

2αβ
α+β

)
m

+
F (β) + F

(
2αβ
α+β

)
m

 m∑
p=1

p

p+ 1

=
1

2

F (α) + F (β) + 2F
(

2αβ
α+β

)
m

 m∑
p=1

p

p+ 1
(3.16)

⊇
[
F (α) + F (β)

2
+

m+ 2−m − 1

m2

(
F (α) + F (β)

)] m∑
p=1

p

p+ 1

=
(
F (α) + F (β)

)m2 + 2m+ 21−m − 2

2m2

m∑
p=1

p

p+ 1
.

We get the intended result by putting together (3.15) and (3.16). �

Theorem 3.8. Let F, G : S → K+
c be two interval-valued functions with α < β and α, β ∈ S, and

suppose FG is Lebesgue integrable on [α, β]. If F ∈ HXPm1 (S,K+
c ) and G ∈ HXPm2 (S,K+

c ), then
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αβ

β − α

∫ β

α

F (r)G(r)

r2
dr

⊇F (α)G(α)

∫ 1

0

∆1(τ) dτ + F (α)G(β)

∫ 1

0

∆2(τ) dτ(3.17)

+F (β)G(α)

∫ 1

0

∆3(τ) dτ + F (β)G(β)

∫ 1

0

∆4(τ) dτ,

where

∆1(τ) :=
1

m1

1

m2

m1∑
p=1

[1− (1− τ)p]

m2∑
p=1

[1− (1− τ)p] ;

∆2(τ) :=
1

m1

1

m2

m1∑
p=1

[1− (1− τ)p]

m2∑
p=1

[1− τp] ;

∆3(τ) :=
1

m1

1

m2

m1∑
p=1

[1− τp]

m2∑
p=1

[1− (1− τ)p] ;

∆4(τ) :=
1

m1

1

m2

m1∑
p=1

[1− τp]

m2∑
p=1

[1− τp] .

The inclusions are reversed if F ∈ HVPm1 (S,K+
c ) and G ∈ HVPm2 (S,K+

c ).

Proof. Given that F ∈ HXPm1 (S,K+
c ) and G ∈ HXPm2 (S,K+

c ), we get

(3.18)
1

m1

m1∑
p=1

[1− (1− τ)p]F (α) +
1

m1

m1∑
p=1

[1− τp]F (β) ⊆ F

(
αβ

τα+ (1− τ)β

)
and

(3.19)
1

m2

m2∑
p=1

[1− (1− τ)p]G(α) +
1

m2

m2∑
p=1

[1− τp]G(β) ⊆ G

(
αβ

τα+ (1− τ)β

)
.

This implies

F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τα+ (1− τ)β

)
⊇ 1

m1

1

m2

m1∑
p=1

[1− (1− τ)p]

m2∑
p=1

[1− (1− τ)p]F (α)G(α)

+
1

m1

1

m2

m1∑
p=1

[1− (1− τ)p]

m2∑
p=1

[1− τp]F (α)G(β)(3.20)

+
1

m1

1

m2

m1∑
p=1

[1− τp]

m2∑
p=1

[1− (1− τ)p]F (β)G(α)

+
1

m1

1

m2

m1∑
p=1

[1− τp]

m2∑
p=1

[1− τp]F (β)G(β)

:=∆1(τ)F (α)G(α) + ∆2(τ)F (α)G(β) + ∆3(τ)F (β)G(α) + ∆4(τ)F (β)G(β).



270 Eze R. Nwaeze

Now, integrating both sides of (3.20) with respect to τ over [0, 1], gives∫ 1

0

F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τα+ (1− τ)β

)
dτ

=

∫ 1

0

[
f−

(
αβ

τα+ (1− τ)β

)
g−

(
αβ

τα+ (1− τ)β

)
,

f+

(
αβ

τα+ (1− τ)β

)
g+

(
αβ

τα+ (1− τ)β

)]
dτ

=

[∫ 1

0

f−
(

αβ

τα+ (1− τ)β

)
g−

(
αβ

τα+ (1− τ)β

)
dτ,∫ 1

0

f+

(
αβ

τα+ (1− τ)β

)
g+

(
αβ

τα+ (1− τ)β

)
dτ

]
=

[
αβ

β − α

∫ β

α

f−(r)g−(r)

r2
dr,

αβ

β − α

∫ β

α

f+(r)g+(r)

r2
dr

]

=
αβ

β − α

∫ β

α

F (r)G(r)

r2
dr

⊇F (α)G(α)

∫ 1

0

∆1(τ) dτ + F (α)G(β)

∫ 1

0

∆2(τ) dτ

+F (β)G(α)

∫ 1

0

∆3(τ) dτ + F (β)G(β)

∫ 1

0

∆4(τ) dτ.

Hence that completes the proof. �
Theorem 3.9. Let F, G : S → K+

c be two interval-valued functions with α < β and α, β ∈ S,
and suppose FG is Lebesgue integrable on [α, β]. If F ∈ HXPm1 (S,K+

c ), G ∈ HXPm2 (S,K+
c ),

R(α, β) = F (α)G(α) + F (β)G(β) and Q(α, β) = F (α)G(β) + F (β)G(α), then
m1m2

(m1 + 2−m1 − 1)(m2 + 2−m2 − 1)
F

(
2αβ

α+ β

)
G

(
2αβ

α+ β

)
⊇ 2αβ

α+ β

∫ β

α

F (r)G(r)

r2
dr +R(α, β)

∫ 1

0

[
Λm1(τ)Λ̃m2(τ) + Λ̃m1(τ)Λm2(τ)

]
dτ

+Q(α, β)

∫ 1

0

[
Λm1(τ)Λm2(τ) + Λ̃m1(τ)Λ̃m2(τ)

]
dτ,

where Λm(τ) = 1
m

∑m
p=1 [1− (1− τ)p] and Λ̃m(τ) = 1

m

∑m
p=1 [1− τp]. The inclusions are reversed

if F ∈ HVPm1 (S,K+
c ) and G ∈ HVPm2 (S,K+

c ).

Proof. Let τ ∈ [0, 1]. From the definition of Λ̃m and Λm above, one observes that

Λ̃m

(
1

2

)
= Λm

(
1

2

)
:= Pm :=

m+ 2−m − 1

m
.

Hence, from (3.5), one gets

Pm1

{
F

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)}
⊆ F

(
2αβ

α+ β

)
and

Pm2

{
G

(
αβ

τα+ (1− τ)β

)
+G

(
αβ

τβ + (1− τ)α

)}
⊆ G

(
2αβ

α+ β

)
.
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Now,

F

(
2αβ

α+ β

)
G

(
2αβ

α+ β

)
⊇Pm1Pm2

[
F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)
G

(
αβ

τβ + (1− τ)α

)]
+Pm1Pm2

[
F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τβ + (1− τ)α

)
+ F

(
αβ

τβ + (1− τ)α

)
G

(
αβ

τα+ (1− τ)β

)]
⊇Pm1Pm2

[
F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)
G

(
αβ

τβ + (1− τ)α

)]
+Pm1Pm2

{[
Λm1(τ)F (α) + Λ̃m1(τ)F (β)

] [
Λm2(τ)G(β) + Λ̃m2(τ)G(α)

]
+

[
Λm1(τ)F (β) + Λ̃m1(τ)F (α)

] [
Λm2(τ)G(α) + Λ̃m2(τ)G(β)

]}
(3.21)

=Pm1Pm2

[
F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)
G

(
αβ

τβ + (1− τ)α

)]
+Pm1

Pm2

{[
Λm1

(τ)Λ̃m2
(τ) + Λ̃m1

(τ)Λm2
(τ)

]
[F (α)G(α) + F (β)G(β)]

+
[
Λm1(τ)Λm2(τ) + Λ̃m1(τ)Λ̃m2(τ)

]
[F (α)G(β) + F (β)G(α)]

}
=Pm1Pm2

[
F

(
αβ

τα+ (1− τ)β

)
G

(
αβ

τα+ (1− τ)β

)
+ F

(
αβ

τβ + (1− τ)α

)
G

(
αβ

τβ + (1− τ)α

)]
+Pm1Pm2

{[
Λm1(τ)Λ̃m2(τ) + Λ̃m1(τ)Λm2(τ)

]
R(α, β)

+
[
Λm1(τ)Λm2(τ) + Λ̃m1(τ)Λ̃m2(τ)

]
Q(α, β)

}
.

Integrating with respect to τ over [0, 1], we get from (3.21) the following inclusion:

1

Pm1Pm2

F

(
2αβ

α+ β

)
G

(
2αβ

α+ β

)
⊇ 2αβ

α+ β

∫ β

α

F (r)G(r)

r2
dr +R(α, β)

∫ 1

0

[
Λm1(τ)Λ̃m2(τ) + Λ̃m1(τ)Λm2(τ)

]
dτ

+Q(α, β)

∫ 1

0

[
Λm1(τ)Λm2(τ) + Λ̃m1(τ)Λ̃m2(τ)

]
dτ.

That completes the proof. �
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4. CONCLUSION

A new class of interval-valued function has been proposed. We show that an interval-
valued function F (x) = [f−(x), f+(x)] is m-polynomial harmonically convex if and only if
its component real-valued functions f− and f+ are m-polynomial harmonically convex and
m-polynomial harmonically concave, respectively. Furthermore, some new set-inclusions of
the Hermite–Hadamard type are hereby established. We therefore pose the following open
question:

Open question 1. Let m1,m2 ∈ N. Is it possible to compare HXPm1 (S,K+
c ) and HXPm2 (S,K+

c )?

REFERENCES

[1] M. U. Awan, N. Akhtar S. Iftikhar, M. A. Noor and Y.-M. Chu: New Hermite–Hadamard type inequalities for n-
polynomial harmonically convex functions, J. Inequal Appl., 2020:125 (2020).

[2] W. W. Breckner: Continuity of generalized convex and generalized concave set-valued functions, Rev. Anal. Numér.
Théor. Approx., 22 (1993), 39–51.

[3] Y.-M. Chu, M. Adil Khan, T. U. Khan and T. Ali: Generalizations of Hermite–Hadamard type inequalities for MT -convex
functions, J. Nonlinear Sci. Appl., 9 (2016), 4305–4316.

[4] Y.-M. Chu, M. Adil Khan, T. U. Khan and J. Khan: Some new inequalities of Hermite–Hadamard type for s-convex
functions with applications, Open Math.,15 (2017), 1414–1430.

[5] Y. Chalco–Cano, A. Flores–Franulic̆ and H. Román–Flores: Ostrowski type inequalities for interval-valued functions
using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472.

[6] Y. Chalco–Cano, W. A. Lodwick and W. Condori–Equice: Ostrowski type inequalities and applications in numerical
integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300.

[7] T. M. Costa, H. Román–Flores: Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–
125.

[8] T. M. Costa: Jensens inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47.
[9] M. R. Delavar, M. De La Sen: Some generalizations of Hermite–Hadamard type inequalities, SpringerPlus, 5:1661 (2016).

[10] A. Guessab, G. Schmeisser: Sharp integral inequalities of the Hermite–Hadamard type, J. Approx. Theory, 115 (2)
(2002), 260–288.
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1. INTRODUCTION

Let p ∈ [1,∞], I = R+ or I = R and f : I → R is twice differentiable with f, f ′′ ∈ Lp (I), then
f ′ ∈ Lp (I). Moreover, there exists a constant Cp (I) > 0 independent of f , such that

(1) ‖f ′‖p,I ≤ Cp (I) ‖f‖
1
2

p,I ‖f
′′‖

1
2

p,I ,

where ‖·‖p,I is the p-norm on the interval I , see [1], [5]. The research on these inequalities
started by E. Landau [10] in 1913. For the case of p =∞, he proved that

(2) C∞ (R+) = 2 and C∞ (R) =
√

2

are the best constants in (1). In 1932, G. H. Hardy and J. E. Littlewood [7] proved (1) for p = 2,
with the best constants

(3) C2 (R+) =
√

2 and C2 (R) = 1.

In 1935, G. H. Hardy, E. Landau and J. E. Littlewood [8] showed that the best constants Cp (R+)
in (1) satisfies the estimate

(4) Cp (R+) ≤ 2 for p ∈ [1,∞),

which yields Cp (R) ≤ 2 for p ∈ [1,∞). In fact, in [6] and [9] was shown that Cp (R) ≤
√

2. We
need the following concept from abstract fractional calculus. Our integral next is of Bochner
type [11]. We need

Definition 1.1. ([4], p. 105) Let [a, b] ⊂ R, (X, ‖·‖) a Banach space, g ∈ C1 ([a, b]) and increasing,
f ∈ C ([a, b] , X), ν > 0.
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We define the right Riemann-Liouville generalized fractional Bochner integral operator

(5)
(
Jνb−;gf

)
(x) :=

1

Γ (ν)

∫ b

x

(g (z)− g (x))
ν−1

g′ (z) f (z) dz,

∀ x ∈ [a, b], where Γ is the gamma function. The last integral is of Bochner type. Since f ∈ C ([a, b] , X),
then f ∈ L∞ ([a, b] , X). By Theorem 4.11, p. 101, [4], we get that

(
Jνb−;gf

)
∈ C ([a, b] , X). Above

we set J0
b−;gf := f and see that

(
Jνb−;gf

)
(b) = 0.

We also need

Definition 1.2. ([4], p. 107) Let α > 0, dαe = n, d·e the ceiling of the number. Let f ∈ Cn ([a, b] , X),
where [a, b] ⊂ R, and (X, ‖·‖) is a Banach space. Let g ∈ C1 ([a, b]) , strictly increasing, such that
g−1 ∈ Cn ([g (a) , g (b)]) . We define the right generalized g-fractional derivative X-valued of f of order
α as follows:

(6)
(
Dα
b−;gf

)
(x) :=

(−1)
n

Γ (n− α)

∫ b

x

(g (t)− g (x))
n−α−1

g′ (t)
(
f ◦ g−1

)(n)
(g (t)) dt,

∀ x ∈ [a, b]. The last integral is of Bochner type. Ordinary vector valued derivative is as in [12], similar
to numerical one. If α /∈ N, by Theorem 4.11, p. 101, [4], we have that

(
Dα
b−;gf

)
∈ C ([a, b] , X). We

see that

(7)
(
Jn−αb;g

(
(−1)

n (
f ◦ g−1

)(n) ◦ g
))

(x) =
(
Dα
b−;gf

)
(x) , ∀ x ∈ [a, b] .

We set

(8) Dn
b−;gf (x) := (−1)

n
((
f ◦ g−1

)n ◦ g) (x) ∈ C ([a, b] , X) , n ∈ N,

D0
b−;gf (x) = f (x) , ∀ x ∈ [a, b] .

When g = id, then

(9) Dα
b−;gf = Dα

b−;idf = Dα
b−f,

the usual left X-valued Caputo fractional derivative, see [4], Chapter 2.

By convention, we suppose that

(10)
(
Dα
x0−;gf

)
(x) = 0, for x > x0

for any x, x0 ∈ [a, b] .
Denote the sequential (also called iterated) generalized left fractional derivative by

(11) Dnα
b−;g := Dα

b−;gD
α
b−;g...D

α
b−;g (n times), n ∈ N.

We need the following g-right generalized modified X-valued Taylor’s formula.

Theorem 1.1 ([4, p. 120]). Let 0 < α ≤ 1, n ∈ N, f ∈ C1 ([a, b] , X), g ∈ C1 ([a, b]) strictly
increasing, such that g−1 ∈ C1 ([g (a) , g (b)]). Let Fk := Dkα

b−;gf , k = 1, ..., n, that fulfill Fk ∈
C1 ([a, b] , X), and Fn+1 ∈ C ([a, b] , X) . Then,

f (x) =

n∑
i=0

(g (b)− g (x))
iα

Γ (iα+ 1)

(
Diα
b−;gf

)
(b)(12)

+
1

Γ ((n+ 1)α)

∫ b

x

(g (t)− g (x))
(n+1)α−1

g′ (t)
(
D

(n+1)α
b−;g f

)
(t) dt,

∀ x ∈ [a, b] .
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We make

Remark 1.1 (to Theorem 1.1). When 0 < α < 1, by (6), we get

(13)
(
Dα
b−;gf

)
(x) =

−1

Γ (1− α)

∫ b

x

(g (t)− g (x))
−α

g′ (t)
(
f ◦ g−1

)′
(g (t)) dt,

∀ x ∈ [a, b] .
Hence, ∥∥(Dα

b−;gf
)

(x)
∥∥ ≤ 1

Γ (1− α)

∫ b

x

(g (t)− g (x))
−α

g′ (t)
∥∥∥(f ◦ g−1

)′
(g (t))

∥∥∥ dt
≤

∥∥∥∥∥∥(f ◦ g−1
)′ ◦ g∥∥∥∥∥∥

∞,[a,b]

Γ (1− α)

(∫ b

x

(g (t)− g (x))
−α

g′ (t) dt

)
(14)

=

∥∥∥∥∥∥(f ◦ g−1
)′ ◦ g∥∥∥∥∥∥

∞,[a,b]

Γ (2− α)
(g (b)− g (x))

1−α
.

That is

(15)
∥∥(Dα

b−;gf
)

(x)
∥∥ ≤

∥∥∥∥∥∥(f ◦ g−1
)′ ◦ g∥∥∥∥∥∥

∞,[a,b]

Γ (2− α)
(g (b)− g (x))

1−α
<∞,

∀ x ∈ [a, b] , 0 < α < 1. Hence, it holds ∥∥(Dα
b−;gf

)
(b)
∥∥ = 0,

i.e.

(16)
(
Dα
b−;gf

)
(b) = 0,

when 0 < α < 1.

The author has already done an extensive amount of work on fractional Landau inequalities,
see [3], and on abstract fractional Landau inequalities, see [4]. However, there the proving
methods came out of applications of fractional Ostrowski inequalities ([2], [4]). Usually there
the domains, where [A,+∞) or (−∞, B], with A,B ∈ R and in one mixed case the domain was
all of R.
In this work with less assumptions, we establish uniform and Lp type right Caputo-Bochner
abstract sequential generalized fractional Landau inequalities over R−. The method of prov-
ing is based on right Caputo-Bochner sequential generalized fractional Taylor’s formula with
integral remainder, see Theorem 1.1.
We give also an application for α = 1

2 . Clearly we are also inspired by [3], [4].

2. MAIN RESULTS

We present the following abstract sequential generalized fractional Landau inequalities over
R−.

Theorem 2.2. Let g ∈ C1 (R−) strictly increasing, with g−1 ∈ C1 (g (R−)) . Let 0 < α < 1,
f ∈ C1 (R−, X) with ‖‖f‖‖∞,R−

,
∥∥∥∥∥∥(f ◦ g−1

)′ ◦ g∥∥∥∥∥∥
∞,R−

< ∞. For k = 1, 2, 3, we assume that

Dkα
b−;gf ∈ C1 ((−∞, b], X) and D4α

b−;gf ∈ C ((−∞, b], X), ∀ b ∈ R−. We further assume that

(17) Kg :=
∥∥∥∥D4α

b−;gf (t)
∥∥∥∥
∞,R2

−
<∞,
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where (b, t) ∈ R2
−. Then

(18) sup
b∈R−

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ Γ (2α+ 1)

22α−1 (2α − 1)

√
23α+1 (23α + 1) (2α + 1)

Γ (4α+ 1)
‖‖f‖‖∞,R−

Kg

and

(19) sup
b∈R−

∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ 4 4

√
2Γ (3α+ 1) (Γ (4α+ 1))

− 3
4
(
22α + 1

)(
4
√

3
)3 (√

2
)α

(2α − 1)
‖‖f‖‖

1
4

∞,R−
Kg

3
4 .

That is sup
b∈R−

∥∥∥(D2α
b−;gf

)
(b)
∥∥∥ , sup

b∈R−

∥∥∥(D3α
b−;gf

)
(b)
∥∥∥ <∞.

Proof. We notice easily again here that
(
Dα
b−;gf

)
(b) = 0, ∀ b ∈ R−. We make use of Theorem

1.1 for 0 < α < 1 and n = 3, applied for any b ∈ R− and a = −∞. Momentarily, we fix b ∈ R−.
Let x2 < x1 < b, then g (x2) < g (x1) < g (b), and

f (x1)− f (b) =
(g (b)− g (x1))

2α

Γ (2α+ 1)

(
D2α
b−;gf

)
(b) +

(g (b)− g (x1))
3α

Γ (3α+ 1)

(
D3α
b−;gf

)
(b)

+
1

Γ (4α)

∫ b

x1

(g (t)− g (x1))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt,(20)

and

f (x2)− f (b) =
(g (b)− g (x2))

2α

Γ (2α+ 1)

(
D2α
b−;gf

)
(b) +

(g (b)− g (x2))
3α

Γ (3α+ 1)

(
D3α
b−;gf

)
(b)(21)

+
1

Γ (4α)

∫ b

x2

(g (t)− g (x2))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt.

That is

(g (b)− g (x1))
2α

Γ (2α+ 1)

(
D2α
b−;gf

)
(b) +

(g (b)− g (x1))
3α

Γ (3α+ 1)

(
D3α
b−;gf

)
(b)(22)

=f (x1)− f (b)− 1

Γ (4α)

∫ b

x1

(g (t)− g (x1))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt =: A,

and

(g (b)− g (x2))
2α

Γ (2α+ 1)

(
D2α
b−;gf

)
(b) +

(g (b)− g (x2))
3α

Γ (3α+ 1)

(
D3α
b−;gf

)
(b)(23)

=f (x2)− f (b)− 1

Γ (4α)

∫ b

x2

(g (t)− g (x2))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt =: B.
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We are solving the above system of two equations with two unknowns
(
D2α
b−;gf

)
(b) ,

(
D3α
b−;gf

)
(b) .

The main determinant of system is

D : =

∣∣∣∣∣∣∣
(g(b)−g(x1))2α

Γ(2α+1)
(g(b)−g(x1))3α

Γ(3α+1)

(g(b)−g(x2))2α

Γ(2α+1)
(g(b)−g(x2))3α

Γ(3α+1)

∣∣∣∣∣∣∣
=

1

Γ (2α+ 1) Γ (3α+ 1)

×
[
(g (b)− g (x1))

2α
(g (b)− g (x2))

3α − (g (b)− g (x1))
3α

(g (b)− g (x2))
2α
]

=
(g (b)− g (x1))

2α
(g (b)− g (x2))

2α

Γ (2α+ 1) Γ (3α+ 1)
[(g (b)− g (x2))

α − (g (b)− g (x1))
α

] > 0,

i.e.

(24) D =
(g (b)− g (x1))

2α
(g (b)− g (x2))

2α

Γ (2α+ 1) Γ (3α+ 1)
[(g (b)− g (x2))

α − (g (b)− g (x1))
α

] > 0.

We obtain the unique solution

(25)

(
D2α
b−;gf

)
(b) =

∣∣∣∣∣∣∣∣∣∣
A (g(b)−g(x1))3α

Γ(3α+1)

B (g(b)−g(x2))3α

Γ(3α+1)

∣∣∣∣∣∣∣∣∣∣
D ,

(
D3α
b−;gf

)
(b) =

∣∣∣∣∣∣∣∣∣∣

(g(b)−g(x1))2α

Γ(2α+1) A

(g(b)−g(x2))2α

Γ(2α+1) B

∣∣∣∣∣∣∣∣∣∣
D .

Therefore, we have

(26)

(
D2α
b−;gf

)
(b) =

(g(b)−g(x2))3α

Γ(3α+1)
A− (g(b)−g(x1))3α

Γ(3α+1)
B

D ,

and(
D3α
b−;gf

)
(b) =

(g(b)−g(x1))2α

Γ(2α+1)
B− (g(b)−g(x2))2α

Γ(2α+1)
A

D .

We have the following

‖A‖ =

∥∥∥∥∥f (x1)− f (b)− 1

Γ (4α)

∫ b

x1

(g (t)− g (x1))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt

∥∥∥∥∥
≤ 2 ‖‖f‖‖∞,R−

+

∥∥∥∥∥∥D4α
b−;gf (t)

∥∥∥∥∥∥
∞,R2

−

Γ (4α+ 1)
(g (b)− g (x1))

4α(27)

under the assumption ‖‖f‖‖∞,R−
<∞. That is

(28) ‖A‖ ≤ 2 ‖‖f‖‖∞,R−
+

Kg

Γ (4α+ 1)
(g (b)− g (x1))

4α
,
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and similarly,

(29) ‖B‖ ≤ 2 ‖‖f‖‖∞,R−
+

Kg

Γ (4α+ 1)
(g (b)− g (x2))

4α
,

where by assumption

(30) Kg :=
∥∥∥∥D4α

b−;gf (t)
∥∥∥∥
∞,R2

−
<∞,

with (b, t) ∈ R2
−. Consequently, we have∥∥(D2α

b−;gf
)

(b)
∥∥ ≤ 1

Γ (3α+ 1)D

[
(g (b)− g (x2))

3α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
(g (b)− g (x1))

4α

)
+ (g (b)− g (x1))

3α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
(g (b)− g (x2))

4α

)]
,(31)

and∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ 1

Γ (2α+ 1)D

[
(g (b)− g (x1))

2α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
(g (b)− g (x2))

4α

)
+ (g (b)− g (x2))

2α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
(g (b)− g (x1))

4α

)]
.(32)

Set now g (x1) := g (b) − h, g (x2) := g (b) − 2h, where h > 0, so that g (b) − g (x1) = h,
g (b)− g (x2) = 2h. Hence, we get

(33) D =
22αh5α (2α − 1)

Γ (2α+ 1) Γ (3α+ 1)
> 0.

Therefore, we derive (from (26))∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ Γ (2α+ 1)

22αh5α (2α − 1)

[
23αh3α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
h4α

)
+h3α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
24αh4α

)]
(34)

=
Γ (2α+ 1)

22αh5α (2α − 1)

[
2 ‖‖f‖‖∞,R−

(
23α + 1

)
h3α +

Kg

Γ (4α+ 1)

(
23α + 24α

)
h7α

]
=

(
Γ (2α+ 1)

22α (2α − 1)

)[
2
(
23α + 1

)
‖‖f‖‖∞,R−

h2α
+

23α (2α + 1)

Γ (4α+ 1)
Kgh

2α

]
.(35)

That is ∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ ( Γ (2α+ 1)

22α (2α − 1)

)
×

[
2
(
23α + 1

)
‖‖f‖‖∞,R−

h2α
+

23α (2α + 1)

Γ (4α+ 1)
Kgh

2α

]
,(36)

∀ b ∈ R−, ∀ h > 0. I.e., it holds

sup
b∈R−

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ ( Γ (2α+ 1)

22α (2α − 1)

)

×

[
2
(
23α + 1

)
‖‖f‖‖∞,R−

h2α
+

23α (2α + 1)

Γ (4α+ 1)
Kgh

2α

]
<∞,(37)
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∀ h > 0, 0 < α < 1. By (26), we derive∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ Γ (3α+ 1)

22αh5α (2α − 1)

[
h2α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
24αh4α

)
+22αh2α

(
2 ‖‖f‖‖∞,R−

+
Kg

Γ (4α+ 1)
h4α

)]
=

Γ (3α+ 1)

22αh5α (2α − 1)

[
2 ‖‖f‖‖∞,R−

(
22α + 1

)
h2α +

Kg

Γ (4α+ 1)

(
24α + 22α

)
h6α

]
(38)

=

(
Γ (3α+ 1)

22α (2α − 1)

)[
2
(
22α + 1

)
‖‖f‖‖∞,R−

h3α
+

22α
(
22α + 1

)
Γ (4α+ 1)

Kgh
α

]

=
Γ (3α+ 1)

(
22α + 1

)
22α (2α − 1)

[
2 ‖‖f‖‖∞,R−

h3α
+

22αKg

Γ (4α+ 1)
hα

]
.

That is ∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ Γ (3α+ 1)

(
22α + 1

)
22α (2α − 1)

×

[
2 ‖‖f‖‖∞,R−

h3α
+

22αKg

Γ (4α+ 1)
hα

]
,(39)

∀ b ∈ R−, ∀ h > 0. I.e., it holds

sup
b∈R−

∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ Γ (3α+ 1)

(
22α + 1

)
22α (2α − 1)

×

[
2 ‖‖f‖‖∞,R−

h3α
+

22αKg

Γ (4α+ 1)
hα

]
<∞,(40)

∀ h > 0, 0 < α < 1. Call

µ :=2
(
23α + 1

)
‖‖f‖‖∞,R−

,(41)

θ =
23α (2α + 1)Kg

Γ (4α+ 1)
,(42)

both are greater than zero. Set also ρ := 2α; 0 < ρ < 2. We consider the function

(43) y (h) := µh−ρ + θhρ, ∀ h > 0.

We have

(44) y′ (h) = −ρµh−ρ−1 + ρθhρ−1 = 0,

then
θh2ρ = µ,

with a unique solution

(45) h0 := hcrit.no. =
(µ
θ

) 1
2ρ

.

We have that

(46) y′′ (h) = ρ (ρ+ 1)µh−ρ−2 + ρ (ρ− 1) θhρ−2.
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We see that

y′′ (h0) = y′′
((µ

θ

) 1
2ρ

)
= ρ (ρ+ 1)µ

(µ
θ

)−ρ−2
2ρ

+ ρ (ρ− 1) θ
(µ
θ

) ρ−2
2ρ

= ρ

(
θ

µ

) 1
ρ [

(ρ+ 1)
√
µθ + (ρ− 1)

√
µθ
]

= ρ

(
θ

µ

) 1
ρ (

2ρ
√
µθ
)

= 2ρ2
√
µθ

(
θ

µ

) 1
ρ

> 0.

Therefore, y has a global minimum at h0 =
(
µ
θ

) 1
2ρ , which is

y (h0) = µ
(µ
θ

)− 1
2

+ θ
(µ
θ

) 1
2

= µ

(
θ

µ

) 1
2

+
√
θµ = 2

√
θµ.

We have proved that (see (37))

sup
b∈R−

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ Γ (2α+ 1)

22α−1 (2α − 1)

×

√
23α+1 (23α + 1) (2α + 1)

Γ (4α+ 1)
‖‖f‖‖∞,R−

Kg.(47)

Call

(48)
ξ := 2 ‖‖f‖‖∞,R−

,

ψ :=
22αKg

Γ(4α+1) ,

both are greater than zero. We consider the function

(49) γ (h) := ξh−3α + ψhα, ∀ h > 0.

We have
γ′ (h) = −3αξh−3α−1 + αψhα−1 = 0,

then
ψh4α = 3ξ,

with unique solution

(50) h0 := hcrit.no. =

(
3ξ

ψ

) 1
4α

.

We have that

(51) γ′′ (h) = 3α (3α+ 1) ξh−3α−2 + α (α− 1)ψhα−2.

We see

γ′′ (h0) = 3α (3α+ 1) ξ

(
3ξ

ψ

)−3α−2
4α

+ α (α− 1)ψ

(
3ξ

ψ

)α−2
4α

= α

(
3ξ

ψ

)α−2
4α
[
3 (3α+ 1) ξ

ψ

3ξ
+ (α− 1)ψ

]
= α

(
3ξ

ψ

)α−2
4α

(4αψ) = 4α2ψ

(
3ξ

ψ

)α−2
4α

> 0.(52)
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Therefore, γ has a global minimum at h0 =
(

3ξ
ψ

) 1
4α

, which is

γ (h0) = ξ

(
3ξ

ψ

)− 3
4

+ ψ

(
3ξ

ψ

) 1
4

=

(
3ξ

ψ

) 1
4
(
ξ
ψ

3ξ
+ ψ

)
=

4

3
ψ

(
3ξ

ψ

) 1
4

.(53)

Consequently,

(54) γ (h0) =
4

3
ψ

(
3ξ

ψ

) 1
4

=
4(

4
√

3
)3ψ 3

4 ξ
1
4 .

We have proved that (see (40))

sup
b∈R−

∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ 4Γ (3α+ 1)

(
22α + 1

)(
4
√

3
)3

22α (2α − 1)

×
(

2 ‖‖f‖‖∞,R−

) 1
4

(
22αKg

Γ (4α+ 1)

) 3
4

=
4 4
√

2Γ (3α+ 1) Γ (4α+ 1)
− 3

4
(
22α + 1

)(
4
√

3
)3

2
α
2 (2α − 1)

‖‖f‖‖
1
4

∞,R−
Kg

3
4 .(55)

The theorem is proved. �

We continue with abstract Lp right sequential generalized fractional Landau inequalities over
R−.

Theorem 2.3. Let g ∈ C1 (R−) strictly increasing, with g−1 ∈ C1 (g (R−)) . Let p, q > 1 : 1
p + 1

q = 1,

0 < α < 1. Let f ∈ C1 (R−, X) with ‖‖f‖‖∞,R−
,
∥∥∥∥∥∥(f ◦ g−1

)′ ◦ g∥∥∥∥∥∥
∞,R−

<∞. For k = 1, 2, 3, we

assume that Dkα
b−;gf ∈ C1 ((−∞, b], X) and D4α

b−;gf ∈ C ((−∞, b], X), ∀ b ∈ R−. We further assume
that

(56)

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
<∞.

Then
1) under 1

2p < α < 1, we get

sup
b∈R−

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤


2αΓ (2α)

(
4α− 1

p

)
2α − 1

(4α
(
1 + 2−3α

)
2α− 1

p

)( 2α− 1
p

4α− 1
p

)

×

(
1 + 2α−

1
p

Γ (4α) (q (4α− 1) + 1)
1
q

)( 2α

4α− 1
p

) ‖‖f‖‖
(

2α− 1
p

4α− 1
p

)
∞,R−

×

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)( 2α

4α− 1
p

)
<∞.(57)
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2) under 1
p < α < 1, we get

sup
b∈R−

∥∥(D3α
b−;gf

)
(b)
∥∥ ≤


Γ (3α)

(
4α− 1

p

)
2α − 1

(6α
(
1 + 2−2α

)
α− 1

p

)( α− 1
p

4α− 1
p

)

×

(
1 + 22α− 1

p

Γ (4α) (q (4α− 1) + 1)
1
q

)( 3α

4α− 1
p

) ‖‖f‖‖
(
α− 1

p

4α− 1
p

)
∞,R−

×

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)( 3α

4α− 1
p

)
<∞.(58)

That is sup
b∈R−

∥∥∥(D2α
b−;gf

)
(b)
∥∥∥ , sup

b∈R−

∥∥∥(D3α
b−;gf

)
(b)
∥∥∥ <∞.

Proof. As in the proof of Theorem 2.2, we have that

‖A‖ (22)
=

∥∥∥∥∥f (x1)− f (b)− 1

Γ (4α)

∫ b

x1

(g (t)− g (x1))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt

∥∥∥∥∥
≤ 2 ‖‖f‖‖∞,R−

+
1

Γ (4α)

∫ b

x1

(g (t)− g (x1))
4α−1

g′ (t)
∥∥(D4α

b−;gf
)

(t)
∥∥ dt

≤ 2 ‖‖f‖‖∞,R−
+

1

Γ (4α)

(g (b)− g (x1))
(q(4α−1)+1)

q

(q (4α− 1) + 1)
1
q

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
(59)

(g(b)−g(x1)=:h>0)
= 2 ‖‖f‖‖∞,R−

+
1

Γ (4α)

h(4α− 1
p )

(q (4α− 1) + 1)
1
q

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
,

with 1
4p < α < 1. That is

(60) ‖A‖ ≤ 2 ‖‖f‖‖∞,R−
+

h4α− 1
p

Γ (4α) (q (4α− 1) + 1)
1
q

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
,

where 1
4p < α < 1. We also have

‖B‖ (23)
=

∥∥∥∥∥f (x2)− f (b)− 1

Γ (4α)

∫ b

x2

(g (t)− g (x2))
4α−1

g′ (t)
(
D4α
b−;gf

)
(t) dt

∥∥∥∥∥(2.1)

≤ 2 ‖‖f‖‖∞,R−
+

(g (b)− g (x2))
(q(4α−1)+1)

q

Γ (4α) (q (4α− 1) + 1)
1
q

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
(61)

(g(b)−g(x2)=:2h)
= 2 ‖‖f‖‖∞,R−

+
24α− 1

ph4α− 1
p

Γ (4α) (q (4α− 1) + 1)
1
q

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
.

That is

(62) ‖B‖ ≤ 2 ‖‖f‖‖∞,R−
+

24α− 1
ph4α− 1

p

Γ (4α) (q (4α− 1) + 1)
1
q

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
,
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where 1
4p < α < 1. We have assumed that

(63) Mg :=

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)
<∞.

For convenience, we call

(64) c := Γ (4α) (q (4α− 1) + 1)
1
q > 0.

So, we have

(65)
‖A‖ ≤ 2 ‖‖f‖‖∞,R−

+ h
4α− 1

p

c Mg

and

‖B‖ ≤ 2 ‖‖f‖‖∞,R−
+ 2

4α− 1
p h

4α− 1
p

c Mg,

where 1
4p < α < 1. Next, we estimate the (26)-quantities and we have

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ 1

DΓ (3α+ 1)

[
23αh3α ‖A‖+ h3α ‖B‖

]
(33)
=

h3αΓ (2α+ 1)

22αh5α (2α − 1)

[
23α ‖A‖+ ‖B‖

]
(66)

(65)
≤ Γ (2α+ 1)

22α (2α − 1)h2α

[
23α+1 ‖‖f‖‖∞,R−

+
23αh4α− 1

p

c
Mg

+ 2 ‖‖f‖‖∞,R−
+

24α− 1
ph4α− 1

p

c
Mg

]

=
Γ (2α+ 1)

22α (2α − 1)

(23α+1 + 2
)
‖‖f‖‖∞,R−

h2α
+

(
23α + 24α− 1

p

)
c

Mgh
2α− 1

p


=

2αΓ (2α+ 1)

(2α − 1)

2
(
1 + 2−3α

)
‖‖f‖‖∞,R−

h2α
+

(
1 + 2α−

1
p

)
Mg

c
h2α− 1

p

 .(67)

That is

(68)
∥∥(D2α

b−;gf
)

(b)
∥∥ ≤ (2αΓ (2α+ 1)

2α − 1

)2
(
1 + 2−3α

)
‖‖f‖‖∞,R−

h2α
+

(
1 + 2α−

1
p

)
Mg

c
h2α− 1

p

 ,
∀ b ∈ R−, ∀ h > 0. I.e., it holds

sup
b∈R−

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ (2αΓ (2α+ 1)

2α − 1

)

×

2
(
1 + 2−3α

)
‖‖f‖‖∞,R−

h2α
+

(
1 + 2α−

1
p

)
Mg

c
h2α− 1

p

 ,(69)
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∀ h > 0, under 1
4p < α < 1. Again from (26), we get∥∥(D3α

b−;gf
)

(b)
∥∥ ≤ 1

Γ (2α+ 1)D

[
h2α ‖B‖+ 22αh2α ‖A‖

]
=

h2αΓ (3α+ 1)

22αh5α (2α − 1)

[
‖B‖+ 22α ‖A‖

]
(70)

≤
(
h2αΓ (3α+ 1)

22αh5α (2α − 1)

)[
2 ‖‖f‖‖∞,R−

+
24α− 1

ph4α− 1
p

c
Mg

+ 22α+1 ‖‖f‖‖∞,R−
+

22αh4α− 1
p

c
Mg

]

=
Γ (3α+ 1)

22α (2α − 1)

(2 + 22α+1
)
‖‖f‖‖∞,R−

h3α
+

(
22α + 24α− 1

p

)
c

Mgh
α− 1

p

(71)

=
Γ (3α+ 1)

(2α − 1)

2
(
1 + 2−2α

)
‖‖f‖‖∞,R−

h3α
+

(
1 + 22α− 1

p

)
c

Mgh
α− 1

p

 .
That is

(72)
∥∥(D3α

b−;gf
)

(b)
∥∥ ≤ (Γ (3α+ 1)

2α − 1

)2
(
1 + 2−2α

)
‖‖f‖‖∞,R−

h3α
+

(
1 + 22α− 1

p

)
c

Mgh
α− 1

p

 ,
∀ b ∈ R−, ∀ h > 0. I.e., it holds

sup
b∈R−

∥∥(D3α
b−;gf

)
(b)
∥∥ ≤ (Γ (3α+ 1)

2α − 1

)

×

2
(
1 + 2−2α

)
‖‖f‖‖∞,R−

h3α
+

(
1 + 22α− 1

p

)
c

Mgh
α− 1

p

 ,(73)

∀ h > 0, 1
4p < α < 1. Call

(74)

µ := 2
(
1 + 2−3α

)
‖‖f‖‖∞,R−

,

θ :=

(
1+2

α− 1
p

)
Mg

c ,

both are greater than zero. We consider the function

(75) y (h) = µh−2α + θh2α− 1
p , ∀ h > 0.

We have

(76) y′ (h) = −2αµh−2α−1 +

(
2α− 1

p

)
θh2α− 1

p−1 = 0,

then (
2α− 1

p

)
θh2α− 1

p−1 = 2αµh−2α−1,
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i.e., (
2α− 1

p

)
θh4α− 1

p = 2αµ,

with a unique solution

(77) h0 := hcrit.no. =

 2αµ(
2α− 1

p

)
θ

 1

4α− 1
p

(assuming 1
2p < α < 1). We have that

(78) y′′ (h) = 2α (2α+ 1)µh−2α−2 +

(
2α− 1

p

)(
2α− 1

p
− 1

)
θh2α− 1

p−2.

We see that

y′′ (h0) = 2α (2α+ 1)µ

 2αµ(
2α− 1

p

)
θ


−2α−2

4α− 1
p

+

(
2α− 1

p

)(
2α− 1

p
− 1

)
θ

 2αµ(
2α− 1

p

)
θ


2α− 1

p
−2

4α− 1
p

=

 2αµ(
2α− 1

p

)
θ


−2α−2

4α− 1
p
[
2α (2α+ 1)µ+ 2αµ

(
2α− 1

p
− 1

)]
(79)

= 2αµ


(

2α− 1
p

)
θ

2αµ


(

2(α+1)

4α− 1
p

)(
4α− 1

p

)
> 0.

Therefore, y has a global minimum at

h0 =

 2αµ(
2α− 1

p

)
θ

 1

4α− 1
p

,

which is

y (h0) = µ

 2αµ(
2α− 1

p

)
θ


−2α

4α− 1
p

+ θ

 2αµ(
2α− 1

p

)
θ


2α− 1

p

4α− 1
p

(80)

=

 2αµ(
2α− 1

p

)
θ


−2α

4α− 1
p

µ+ θ
2αµ(

2α− 1
p

)
θ



= µ


(

2α− 1
p

)
θ

2αµ


(

2α

4α− 1
p

)(
1 +

2α

2α− 1
p

)
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=

(
4α− 1

p

)
(2α)

(
2α

4α− 1
p

)
(

2α− 1

p

)−2α+ 1
p

4α− 1
p
µ

(
2α− 1

p

4α− 1
p

)
θ

(
2α

4α− 1
p

)
.(81)

That is

(82) y (h0) =

(
4α− 1

p

)(
2α− 1

p

)(−2α+ 1
p

4α− 1
p

)

(2α)

(
2α

4α− 1
p

) µ

(
2α− 1

p

4α− 1
p

)
θ

(
2α

4α− 1
p

)
.

Therefore, we derive (see (69))

sup
b∈R−

∥∥(D2α
b−;gf

)
(b)
∥∥ ≤ (2αΓ (2α)

2α − 1

)(
2α

2α− 1
p

) (2α− 1
p )

(4α− 1
p )
(

4α− 1

p

)

×
(
2
(
1 + 2−3α

))( 2α− 1
p

4α− 1
p

)
(

1 + 2α−
1
p

)
Γ (4α) (q (4α− 1) + 1)

1
q


(

2α

4α− 1
p

)
‖‖f‖‖

(
2α− 1

p

4α− 1
p

)
∞,R−

×

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)( 2α

4α− 1
p

)
<∞,(83)

where 1
2p < α < 1. Call

(84)

ξ := 2
(
1 + 2−2α

)
‖‖f‖‖∞,R−

,

ψ :=

(
1+2

2α− 1
p

)
c Mg,

both are greater than zero. We consider the function

(85) γ (h) := ξh−3α + ψhα−
1
p , ∀ h > 0.

We have

γ′ (h) = −3αξh−3α−1 +

(
α− 1

p

)
ψhα−

1
p−1 = 0,

then (
α− 1

p

)
ψhα−

1
p−1 = 3αξh−3α−1

and (
α− 1

p

)
ψh4α− 1

p = 3αξ,

with unique solution

(86) h0 := hcrit.no. =

 3αξ(
α− 1

p

)
ψ

 1

4α− 1
p
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(assuming 1
p < α < 1). We have that

(87) γ′′ (h) = 3α (3α+ 1) ξh−3α−2 +

(
α− 1

p

)(
α− 1

p
− 1

)
ψhα−

1
p−2.

We observe

γ′′ (h0) = 3α (3α+ 1) ξ

 3αξ(
α− 1

p

)
ψ


(

−3α−2

4α− 1
p

)

+

(
α− 1

p

)(
α− 1

p
− 1

)
ψ

 3αξ(
α− 1

p

)
ψ


(
α− 1

p
−2

4α− 1
p

)

=

 3αξ(
α− 1

p

)
ψ


(

−3α−2

4α− 1
p

) [
3α (3α+ 1) ξ +

(
α− 1

p
− 1

)
3αξ

]
(88)

= 3αξ

 3αξ(
α− 1

p

)
ψ


(

−3α−2

4α− 1
p

)(
4α− 1

p

)
> 0.

Therefore, y has a global minimum at

h0 =

 3αξ(
α− 1

p

)
ψ

 1

4α− 1
p

,

which is

γ (h0) = ξh−3α
0 + ψh

α− 1
p

0 = h−3α
0

(
ξ + ψh

4α− 1
p

0

)
(89)

=

 3αξ(
α− 1

p

)
ψ


(

−3α

4α− 1
p

)ξ + ψ

 3αξ(
α− 1

p

)
ψ



= ξ

 3αξ(
α− 1

p

)
ψ


(

−3α

4α− 1
p

)(
4α− 1

p

α− 1
p

)
.

That is

γ (h0) = ξ

(
4α− 1

p

α− 1
p

) 3αξ(
α− 1

p

)
ψ


(

−3α

4α− 1
p

)
(90)

=

(
4α− 1

p

α− 1
p

)
ξ

(
α− 1

p

4α− 1
p

)
(
α− 1

p

)
3α


(

3α

4α− 1
p

)
ψ

 3α
4α− 1

p


.
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I.e., we have found

(91) γ (h0) =

(
4α− 1

p

)
(
α− 1

p

)( α− 1
p

4α− 1
p

)
(3α)

(
3α

4α− 1
p

) ξ
(
α− 1

p

4α− 1
p

)
ψ

 3α
4α− 1

p


.

We have proved that (see (73))

sup
b∈R−

∥∥(D3α
b−;gf

)
(b)
∥∥ ≤


(

4α− 1
p

)
Γ (3α)

2α − 1

( 3α

α− 1
p

)( α− 1
p

4α− 1
p

)(92)

×
(
2
(
1 + 2−2α

))( α− 1
p

4α− 1
p

)
(

1 + 22α− 1
p

)
Γ (4α) (q (4α− 1) + 1)

1
q


(

3α

4α− 1
p

)
‖‖f‖‖

(
α− 1

p

4α− 1
p

)
∞,R−

×

(
sup
b∈R−

∥∥∥∥D4α
b−;gf

∥∥∥∥
p,R−

)( 3α

4α− 1
p

)
<∞,

where 1
p < α < 1. The theorem is proved. �

We give an application when α = 1
2 and g (t) = et|R− .

Corollary 2.1. Let f ∈ C1 (R−, X) with ‖‖f‖‖∞,R−
,
∥∥∥∥(f ◦ ln)

′ ◦ et
∥∥∥∥
∞,R−

< ∞, where (X, ‖·‖)

is a Banach space. For k = 1, 2, 3, we assume that Dk 1
2

b−;etf ∈ C1 ((−∞, b], X) and D
4 1

2

b−;etf ∈
C ((−∞, b], X), ∀ b ∈ R−. We further assume that

(93)
∥∥∥∥∥∥D4 1

2

b−;etf (t)
∥∥∥∥∥∥
∞,R2

−

<∞,

where (b, t) ∈ R2
−. Then,

(94) sup
b∈R−

∥∥∥(D2 1
2

b−;etf
)

(b)
∥∥∥ ≤ (√12 + 6

√
2√

2− 1

)
‖‖f‖‖

1
2

∞,R−

(∥∥∥∥∥∥D4 1
2

b−;etf (t)
∥∥∥∥∥∥
∞,R2

−

) 1
2

<∞

and

sup
b∈R−

∥∥∥(D3 1
2

b−;etf
)

(b)
∥∥∥

≤

(
9
√
π(

2−
√

2
)

4
√

2
(

4
√

3
)3
)
‖‖f‖‖

1
4

∞,R−

(∥∥∥∥∥∥D4 1
2

b−;etf (t)
∥∥∥∥∥∥
∞,R2

−

) 3
4

<∞.(95)

That is sup
b∈R−

∥∥∥(D2 1
2

b−;etf
)

(b)
∥∥∥ , sup

b∈R−

∥∥∥(D3 1
2

b−;etf
)

(b)
∥∥∥ <∞.

Proof. By Theorem 2.2. �
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1. INTRODUCTION

Let the function ψ be continuous and concave by [0, 1], ψ(0) = 0 and 0 < q 6∞. Such functions
are called Φ functions. The generalized Lorentz space Lψ,q is the set of measurable functions f
on [0, 1] for which

‖f‖ψ,q :=

( 1∫
0

f∗
q

(t)ψq(t)
dt

t

)1/q

<∞,

where f∗ is the non-increasing rearrangement of the function |f | (see e.g. [36]).
For a given function ψ(t), t ∈ [0, 1], we define

αψ := limt→0

ψ(2t)

ψ(t)
, βψ := limt→0

ψ(2t)

ψ(t)
.

It is known that 1 6 αψ 6 βψ 6 2 (see e.g. [35]) .
Note that for ψ(t) = t1/p, the space Lψ,q coincides with the Lorentz space Lp,q , 0 < q, p < ∞,
which consists of all functions f such that (see e.g. [38, p. 228])

‖f‖p,q :=

 1∫
0

f∗
q

(t)t
q
p−1dt

1/q

.

Received: 05.04.2021; Accepted: 14.06.2021; Published Online: 21.06.2021
*Corresponding author: L. E. Persson; larserik6.pers@gmail.com
DOI: 10.33205/cma.910173

291



292 Gabdolla Akishev and Lars Erik Persson and Harpal Singh

In particular, for the case p = q, we have the usual Lebesgue space with the norm (quasi-norm
if 0 < q < 1)

‖f‖q :=

( 1∫
0

|f(x)|qdx
)1/q

, 0 < q <∞.

Let q, p ∈ (0,+∞) and α ∈ R = (−∞,+∞). The Lorentz-Zygmund space Lp,q(logL)α is the set
of all functions f measurable on [0, 1] for which (see e.g. [37])

‖f‖p,q,α :=


1∫

0

(f∗(t))q(1 + | log t|)αqt
q
p−1dt


1
q

< +∞.

For A,B the notation A � B means that there exits positive constants C1, C2 such that C1A 6
B 6 C2A.
We consider the orthonormal system {ϕn}n∈N ⊂ L2[0, 1] (see [22, p. 58]) satisfying the condi-
tion

‖ϕn‖r :=
(∫ 1

0

|ϕn(x)|rdx
) 1
r

6Mn, n ∈ N (1)

for some r ∈ (2,+∞]. Here, we assume that {Mn} is a non-decreasing sequence.
Let f̂(n) be the Fourier coefficients of the function f with respect to the orthonormal system
{ϕn}n∈N.
J. Marcinkiewicz and A. Zygmund [22] proved some inequalities for the sums of the Fourier
coefficients of the orthogonal system {ϕn}n∈N satisfying condition (1) and norms of the func-
tion f ∈ Lp, 1 < p < ∞. Later, many authors investigated this problem in other functional
spaces (for example, see [3], [6], [7], [8], [11], [13], [21], [30], [32], [33], [42] and bibliographic
references in them).
In particular, the following statement is known (see S.V. Bochkarev [11]):

Theorem 1.1. Let {ϕn}n∈N be an orthonormal system of complex-valued functions

‖ϕn‖∞ 6M, n = 1, 2, .... (2)

for some M <∞. Then, for any 2 < q 6∞ and n = 2, 3, ..., the following inequality holds:[ n∑
k=1

(f̂∗(k))2
] 1

2

6 CM‖f‖2,q(log n)
1
2−

1
q .

In the case q = ∞, Theorem 1.1 was previously proved by V.I. Ovchinnikov, V.D. Raspopova
and V.A. Rodin [32].
In the case when {ϕn}n∈N is a trigonometric system, in the Lorentz-Zygmund spaceL2,q,(logL)α

H. Oba , E. Sato and Y. Sato [30] stated and proved the following:

Theorem 1.2. Let 2 < q 6∞, n > 3 and α ∈ R. Then the following inequality holds:[ n∑
k=1

(f̂∗(k))2
] 1

2

6 CAn‖f‖2,q,α

for some constant C which is independent of n and f , and An is as follows:

An =


(log n)

1
2−

1
q−α, if α < 1

2 −
1
q ,

(log(log n))α, if α = 1
2 −

1
q ,

1, if α > 1
2 −

1
q .
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A generalization of this theorem for the orthonormal system {ϕn}n∈N satisfying condition (2)
was proved by L.R.Ya. Doktorski (see [13]). Moreover, N. Tleukhanova and G. Mussabaeva
[42] for the orthonormal system {ϕn}n∈N satisfying condition (2) proved the inequality

sup
n∈N

1

n1/2(log(n+ 1))
1
2−

1
q

n∑
k=1

f̂∗(k) 6 C‖f‖2,q (3)

for any function f ∈ L2,q, 2 < q 6∞.
Most results concerning Fourier inequalities are derived for bounded orthonormal systems.
However, for several applications it is also important to derive such results for unbounded
orthonormal systems like those described in our final Remark 4.11. One aim of this paper is to
further complement our recent research in this direction (see [6], [7] and [8]) and also prove and
discuss some new related Nikol’skii type inequalities of this type. Let us first mention that in
[3] for an unbounded orthonormal system {ϕn}n∈N, the following statement was proved (for
the case α = 0, see [2]).

Theorem 1.3. Let the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfy the condition (1).
Then, for any function L2,q(logL)α, 2 < q 6∞, α < 1

2 −
1
q , n ∈ N, the following inequality holds:[ n∑

k=1

|f̂(k)|2
] 1

2

6 C‖f‖2,q,α
[
ln(1 +

n∑
j=1

M2
j )
] 1

2−
1
q−α

.

For a trigonometric polynomial

Tn(x) =

n∑
k=−n

ake
ikx, n ∈ N

the following Jackson–Nikol’skii inequality is well known (see [17], [27])

‖Tn‖q 6 2n1/p‖Tn‖p (4)

for 1 6 p < q 6 ∞. This inequality is also called the inequality of different metrics for a
trigonometric polynomial.
For case 0 < p < q 6 ∞, inequality (4) was proved in [16] and [10]. Moreover, for p = 0 < q <
∞, it was proved by V.V. Arestov [10].
Nowadays, there are various generalizations of the Jackson-Nikol’skii inequality (see [5], [12],
[29] and the bibliography therein). One of the generalizations is its extension to polynomi-
als in orthonormal systems of functions. In particular, M.F. Timan [40] proved the following
statement:

Theorem 1.4. Let 1 6 p 6 2, p < q 6∞ and {ϕn}∞n=1 be a uniformly bounded sequence of orthonor-
mal systems of functions. Then for the polynomial

fn(x) =

n∑
k=1

ckϕk(x), n ∈ N,

holds the following inequality:
‖fn‖q 6 Cn1/p−1/q‖fn‖p. (5)

A multidimensional version of inequality (5) in the spaces Lp was established by R.J. Nessel
and G. Wilmes [25], [26]. The Jackson-Nikol’skii inequality for polynomials in a uniformly
bounded system of functions in some symmetric spaces was proved by V.A. Rodin [34]. More-
over, L.R.Ya. Doktorski and D.Gendler [14] proved the inequality of different metrics for poly-
nomials in a uniformly bounded orthonormal system of functions in the Lorentz–Zygmund
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space. Jackson–Nikol’skii inequality is also known for polynomials in an unbounded orthonor-
mal system of functions (see, for example, [19], [20], [23], [24]).
In this paper, we complement the results above by proving some new Fourier and Jackson-
Nikol’skii type inequalities in the generalized Lorentz space Lψ,q and in unbounded systems
satisfying (1).
In Section 2, we present and discuss our main results. The announced generalizations and
unifications of Fourier type inequalities can be found in Theorem 2.1 while the corresponding
results concerning Jackson-Nikol’skii type inequalities are given in Theorem 2.2. These detailed
proofs are presented; in Section 3 and Section 4 is reserved for some concluding remarks and
result (see Proposition 4.1).

2. THE MAIN RESULTS

We denote by SV L (slowly varing) the set of all non-negative functions on [0, 1] of ψ(t) for
which (log 2/t)εψ(t) ↑ +∞ and (log 2/t)−εψ(t) ↓ 0 for t ↓ 0 (see e.g. [8]).
First, we formulate the following generalization and unification of Theorem 1.1, Theorem 1.2
for the case α < 1

2 −
1
q , assertion 1) of Theorem 1.3 and inequality (3):

Theorem 2.1. Let ψ a function satisfying the conditions 1 < αψ = βψ = 21/2, t
1/2

ψ(t) ∈ SV L,

sup
t∈(0,1]

ψ(t)

t1/2
<∞,

and assume that the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfies the condition (1).
Then, for any function f ∈ Lψ,q, 2 < q 6∞, the following inequality holds:

[∑
k∈A

|f̂(k)|2
] 1

2

6 C‖f‖ψ,q
[
ln(1 +

∑
j∈A

M2
j )
] 1

2−
1
q

√
(1 +

∑
j∈AM

2
j )−1

ψ((1 +
∑
j∈AM

2
j )−1)

,

where A is a non-empty set in N and C is positive constant which depends only on q and r.

Corollary 2.1. Let ψ be a function satisfying the conditions of Theorem 2.1 and the orthonormal system
{ϕn}n∈N for some r ∈ (2,+∞] satisfying the condition (2). Then, for any function f ∈ Lψ,q, 2 < q 6
∞, we have the inequality[ |A|∑

k=1

(f̂∗(k))2
] 1

2

6 C‖f‖ψ,q
[
log(1 + |A|M2)

] 1
2−

1
q

√
(1 + |A|M2)−1

ψ((1 + |A|M2)−1)
,

where |A| is the number of elements in the set A ⊂ N.

Corollary 2.2. Let ψ be a function satisfying the conditions of Theorem 2.1 and let the orthonor-
mal system {ϕn}n∈N for some r ∈ (2,+∞] satisfying the condition (2). Then, for any function
f ∈ Lψ,q, 2 < q 6∞, the following inequality holds:

sup
n∈N

n−1/2
[
log(1 + nM2)

] 1
q−

1
2

( √
(1 + nM2)−1

ψ((1 + nM2)−1)

)−1 n∑
k=1

f̂∗(k) 6 C‖f‖ψ,q.

Remark 2.1. In the case ψ(t) = t1/2 from Corollary 2.1 and Corollary 2.2, we accordingly obtain the
statement of Theorem 1.1 and inequality (3).

Remark 2.2. In the case ψ(t) = t1/2(1 + | log t|)α and {ϕn} the trigonometric system from Corollary
2.2, we obtain the statement in Theorem 1.2 for α < 1

2 −
1
q .
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Remark 2.3. If ψ(t) = t1/2(1 + | log t|)α and the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞]
satisfies condition (2), then from Corollary 2.2, we obtain assertion 1) of Theorem 1.3.

Remark 2.4. In the case ψ(t) = t1/2 and A = {1, ..., n}, it was proved in [11] that the inequality
in Corollary 2.1 is exact for the multiplicative Crestenson–Levy system . This fact for a trigonometric
system in the Lorentz–Zygmund space L2,q,(logL)α was proved in [30]. By also using Theorem 2 in
[5], we obtain the following statement:

Corollary 2.3. Let ψ be a function satisfying the conditions of Theorem 2.1, 2 < q <∞ and {einx}n∈Z
be the trigonometric system. Then

sup
f 6=0

(∑2n+1
k=1 (f̂∗(k))2

)1/2

‖f‖ψ,q
�
√

(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2−

1
q

.

Next, we state a Jackson–Nikol’skii type inequality which generalizes some results for the
trigonometric system in [17] and [27], [28] (for a complementary bibliography see also [4], [5]).

Theorem 2.2. Let the function ψ satisfy the conditions 1 < αψ = βψ = 21/2, ψ(t)
t1/2 ∈ SV L,

sup
t∈(0,1]

t1/2

ψ(t)
<∞, (6)

let the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfy the condition (1) and fn(x) =∑n
k=1 ckϕk(x).

1) If 1 < q < 2, then

‖fn‖ψ,q 6 C


√(

1 +
∑n
j=1M

2
j

)−1

ψ((1 +
∑n
j=1M

2
j )−1)


−1 (

log
(

1 +

n∑
k=1

M2
k

)) 1
q−

1
2 ‖fn‖2

for some constant C depending only on q.
2) If 1 < p < 2 < q < +∞, then

‖fn‖ψ,p 6 C(p, q)‖fn‖ψ,q

(
log(1 +

n∑
k=1

M2
k )

) 1
p−

1
q

for some constant C depending only on p and q.
3) If 2 < p < q < +∞, then

‖fn‖ψ,p 6 C(p, q)‖fn‖ψ,q

(
log(1 +

n∑
k=1

M2
k )

) 1
p−

1
q

for some constant C depending only on p and q.

3. PROOFS

Proof of Theorem 2.1. Let f ∈ Lψ,q. This function can be represented as f(x) = f1(x) + f2(x),
where

f1(x) =

{
f(x), when |f(x)| 6 f∗(τ),

0, when |f(x)| > f∗(τ),

f2(x) = f(x)− f1(x), 0 < τ < 1.
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Then, by the Minkowski inequality, we have that[∑
k∈A

|f̂(k)|2
]1/2

6
[∑
k∈A

|f̂1(k)|2
]1/2

+
[∑
k∈A

|f̂2(k)|2
]1/2

. (7)

Now, we prove that each of the functions fi, i = 1, 2, satisfies the inequality

[∑
k∈A

|f̂i(k)|2
]1/2

6 C(q, r)
(

ln(1 +
∑
k∈A

M2
k )
) 1

2−
1
q

√
(1 +

∑
j∈AM

2
j )−

r
2(r−2)

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

‖f‖ψ,q. (8)

According to the Parseval equality for an orthonormal system and Hölder’s inequality for θ =
q
2 > 1, 1

θ + 1
θ′ = 1 for the function f1, we find that∑
k∈A

|f̂1(k)|2 6 ‖f1‖22 6
∫ 1

τ

f∗
2

(t)dt 6 ‖f‖2ψ,q
[∫ 1

τ

( t1/2
ψ(t)

)2θ′

t−1dt
] 1
θ′
. (9)

Since t1/2

ψ(t) ∈ SV L, then t1/2

ψ(t) logε 2/t 6 τ1/2

ψ(τ) logε 2/τ for t ∈ [τ, 1], ∀ε > 0. Therefore[∫ 1

τ

( t1/2
ψ(t)

)2θ′

t−1dt
] 1
θ′
6
( τ1/2

ψ(τ)

)2

log2ε 2/τ
[∫ 1

τ

(log 2/t)−2εθ′t−1dt
] 1
θ′
. (10)

Choose the number ε ∈ (0, 1
2 −

1
q ). Then, 1− 2εθ′ > 0 so that∫ 1

τ

(log 2/t)−2εθ′t−1dt =
1

1− 2εθ′

[
(log 2/t)1−2εθ′ − 1

]
.

Therefore, from inequality (10), it follows that[∫ 1

τ

( t1/2
ψ(t)

)2θ′

t−1dt
] 1
θ′
6

1

1− 2εθ′

( τ1/2

ψ(τ)

)2

(log 2/t)
1
θ′ . (11)

Now by using inequalities (9) and (11), we obtain that(∑
k∈A

|f̂1(k)|2
) 1

2

6
1

1− 2εθ′
τ1/2

ψ(τ)
(log 2/τ)

1
2−

1
q ‖f‖ψ,q. (12)

In this formula, we put τ = (1 +
∑
j∈AM

2
j )−

r
r−2 . Then, for the function f1 from (12), we can

conclude that(∑
k∈A

|f̂1(k)|2
) 1

2

6C
(

ln(1 +
∑
k∈A

M2
k )
) 1

2−
1
q

√
(1 +

∑
j∈AM

2
j )−

r
2(r−2)

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

(
ln(1 +

∑
k∈A

M2
k )
) 1

2−
1
q ‖f‖ψ,q,

so (8) holds with i = 1. For the function f2 ∈ Lr′ by the definition of the coefficient expansions
and Hölder’s inequality (2 < r < +∞, r′ = r

r−1 ), we have that

|f̂2(k)| =
∣∣∣∫ 1

0

f2(x)ϕk(x)dx
∣∣∣ 6 ‖f2‖r′‖ϕk‖r 6Mk‖f‖r′ .

Hence, ∑
k∈A

|f̂2(k)|2 6 ‖f2‖2r′
∑
k∈A

M2
k =

( τ∫
0

f∗
r′

(t)dt

)2/r′∑
k∈A

M2
k . (13)
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Since the function f∗ is non-increasing and ψ is non-decreasing, then

‖f‖ψ,q >
( x∫
x/2

f∗
q

(t)ψq(t)
dt

t

)1/q

> f∗(x)ψ(x/2)

( x∫
x/2

dt

t

)1/q

= f∗(x)ψ(x/2)(ln 2)1/q, x ∈ (0, 1].

Therefore, from inequality (13), it follows that

∑
k∈A

|f̂2(k)|2 6 ‖f‖2ψ,q
( τ∫

0

ψ−r
′
(t/2)dt

)2/r′∑
k∈A

M2
k . (14)

Since t1/2

ψ(t) ∈ SV L, then( τ∫
0

ψ−r
′
(t/2)dt

)2/r′

=

( τ∫
0

( √t/2
ψ(t/2)

)r′
(t/2)−r

′/2dt

)2/r′

6
( √τ/2
ψ(τ/2)

logε
2

τ/2

)2
( τ∫

0

(log
2

t/2
)−εr

′
(t/2)−r

′/2dt

)2/r′

. (15)

If 0 < t < τ , then (log 2
t/2 )−ε < (log 2

τ/2 )−ε, for ε > 0. Therefore, by using (15), we obtain that( τ∫
0

ψ−r
′
(t/2)dt

)2/r′

6
( √τ/2
ψ(τ/2)

)2
( τ∫

0

(t/2)−r
′/2dt

)2/r′

= (
2

2− r′
)2/r′

( √τ/2
ψ(τ/2)

)2

(τ/2)
2
r′−1 = (

2

2− r′
)2/r′

( 1

ψ(τ/2)

)2

2−
2
r′ τ

2
r′ .(16)

Now, it follows from inequalities (14) and (16) that(∑
k∈A

|f̂2(k)|2
)1/2

6 C‖f‖ψ,q
1

ψ(τ)
τ

1
r′
(∑
k∈A

M2
k

)1/2

.

In this formula, we put τ = (1 +
∑
j∈AM

2
j )−

r
r−2 . Then( n∑

k=1

|f̂2(k)|2
)1‘/2

6 C‖f‖ψ,q
1

ψ((1 +
∑n
j=1M

2
j )−

r
r−2 )

(
1 +

n∑
j=1

M2
j

)− r
r′(r−2)

( n∑
k=1

M2
k

)1/2

= C
1

ψ((1 +
∑n
j=1M

2
j )−

r
r−2 )

(
1 +

n∑
j=1

M2
j

)− r
2(r−2) ‖f‖ψ,q.

Now, taking into account that 1/2− 1/q > 0, we get from here that(∑
k∈A

|f̂2(k)|2
)1‘/2

6C
1

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

(
1 +

∑
j∈A

M2
j

)− r
2(r−2)

(
log
(

1 +
∑
j∈A

M2
j

))1/2−1/q

‖f‖ψ,q,
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so (8) holds also for i = 2. From inequalities (7) and (8), it follows that(∑
k∈A

|f̂(k)|2
)1‘/2

6C
1

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

(
1 +

∑
j∈A

M2
j

)− r
2(r−2)

(
log
(

1 +
∑
j∈A

M2
j

))1/2−1/q

‖f‖ψ,q. (17)

Since t1/2

ψ(t) ∈ SV L and
(

1 +
∑
j∈AM

2
j

)− r
2(r−2)

<
(

1 +
∑
j∈AM

2
j

)−1

, then√(
1 +

∑
j∈AM

2
j

)− r
(r−2)

ψ((1 +
∑
j∈AM

2
j )−

r
r−2 )

6

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

(
log

2(
1 +

∑
j∈AM

2
j

)−1

)−ε(
log

2(
1 +

∑
j∈AM

2
j

)− r
(r−2)

)ε

6

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

(
log 2

(
1 +

∑
j∈A

M2
j

))−ε( r

r − 2
log 2

(
1 +

∑
j∈A

M2
j

))ε

=
r

r − 2

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

. (18)

It follows from inequalities (17) and (18) that

(∑
k∈A

|f̂(k)|2
)1‘/2

6
r

r − 2

√(
1 +

∑
j∈AM

2
j

)−1

ψ((1 +
∑
j∈AM

2
j )−1)

(
log
(

1 +
∑
j∈A

M2
j

))1/2−1/q

‖f‖ψ,q.

The proof is complete. �

Proof of Corollary 2.1. In view of the fact that Mj = M, j = 1, 2, ... and the property of non-
increasing rearrangement of numbers, it yields that

∑
k∈A

|f̂(k)|2 =

|A|∑
k=1

(f̂∗(k))2,

so the proof follows by just applying Theorem 2.1. �

Proof of Corollary 2.2. According to Hölder’s inequality, we have that

n∑
k=1

f̂∗(k) 6 n1/2
( n∑
k=1

(f̂∗(k))2
)1/2

.

Therefore, the assertion of Corollary 2.2 follows by applying Corollary 2.1 withA = {1, 2, ..., n}.
�
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Proof of Corollary 2.3. For the set A = {−n, ...,−1, 0, 1, ..., n} from Corollary 2.1, we get

sup
f 6=0

(∑2n+1
k=1 (f̂∗(k))2

)1/2

‖f‖ψ,q
6 C

√
(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2−

1
q

.

To prove the reversed inequality, we consider the trigonometric polynomial

fn(x) =

n∑
k=−n

ake
ikx.

Then, by using Theorem 2 in [5] for ψ1(t) = t1/2, τ1 = 2, ψ2(t) = ψ(t), τ2 = q, we have that

sup
fn 6=0

‖fn‖2
‖fn‖ψ,q

> C

√
(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2−

1
q

.

Therefore

sup
f 6=0

(∑2n+1
k=1 (f̂∗(k))2

)1/2

‖f‖ψ,q
> sup
fn 6=0

‖fn‖2
‖fn‖ψ,q

> C

√
(1 + n)−1

ψ((1 + n)−1)

[
log(1 + n)

] 1
2−

1
q

.

The proof is complete. �

Proof of Theorem 2.2. For the generalized Lorentz space Lψ,q, we have the relation (see [2])

‖f‖ψ,q � sup
‖f‖

ψ̄,q
′61

∣∣∣∣∫ 1

0

f(x)g(x)dx

∣∣∣∣ , (19)

where ψ̄(t) = t
ψ(t) , t ∈ (0, 1], 1 < q <∞, q′ = q

q−1 . Since the system {ϕn} is orthonormal, then∫ 1

0

fn(x)g(x)dx =

n∑
k=1

ckĝ(k), g ∈ Lψ̄,q′

for any n ∈ N.
Note that condition (6) implies that

sup
t∈(0,1]

ψ̄(t)

t1/2
<∞.

By applying Hölder’s inequality, Theorem 2.1, and Parseval’s equality, we obtain that∣∣∣∣∫ 1

0

fn(x)g(x)dx

∣∣∣∣ 6 ( n∑
k=1

|ck|2
)1/2( n∑

k=1

|ĝ(k)|2
)1/2

6 C

√(
1 +

∑n
j=1M

2
j

)−1

ψ̄((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +

n∑
j=1

M2
j

))1/2−1/q′

‖g‖ψ̄,q′‖fn‖2.

Therefore, in virtue of relation (19), we have that

‖fn‖ψ,q 6 C
ψ((1 +

∑n
j=1M

2
j )−1)√(

1 +
∑n
j=1M

2
j

)−1

(
log
(

1 +

n∑
j=1

M2
j

))1/q−1/2

‖fn‖2

and 1) is proved.
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We will now prove the second statement. Since 1 < p < 2, according to item 1), it yields that

‖fn‖ψ,p 6 C


√(

1 +
∑n
j=1M

2
j

)−1

ψ((1 +
∑n
j=1M

2
j )−1)


−1 (

log
(

1 +

n∑
k=1

M2
k

)) 1
p−

1
2 ‖fn‖2. (20)

Moreover, since 2 < q <∞, by Theorem 2.1 and Parseval’s equality, we find that

‖fn‖2 6

√(
1 +

∑n
j=1M

2
j

)−1

ψ((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +
n∑
j=1

M2
j

))1/2−1/q

‖f‖ψ,q. (21)

Now from inequalities (20) and (21), it follows that

‖fn‖ψ,p 6 C
(

log
(

1 +

n∑
j=1

M2
j

))1/p−1/q

‖f‖ψ,q

and 2) is proved.
Finally, let 2 < p < q < +∞. In the generalized Lorentz space Lψ,q, the following inequality
hold (see [36], p. 491):

‖g‖ψ,p 6 ‖g‖

1
τ
− 1
p

1
τ
− 1
q

ψ,q ‖g‖

1
p
− 1
q

1
τ
− 1
q

ψ,τ (22)

for 1 < τ < p < q < +∞. Choose the number τ ∈ (1, 2). Then, according to the second
statement, we have that

‖fn‖ψ,τ 6 C
(

log
(

1 +

n∑
j=1

M2
j

))1/τ−1/q

‖f‖ψ,q. (23)

Now by in equality (22) setting g = fn and taking into account (23), we obtain that

‖fn‖ψ,p 6 ‖fn‖

1
τ
− 1
p

1
τ
− 1
q

ψ,q

C(log
(

1 +

n∑
j=1

M2
j

))1/τ−1/q

‖f‖ψ,q


1
p
− 1
q

1
τ
− 1
q

= C
(

log
(

1 +

n∑
j=1

M2
j

))1/p−1/q

‖f‖ψ,q

and also 3) is proved. The proof is complete. �

4. CONCLUDING REMARKS RESULT

Remark 4.5. In the case ψ(t) = t1/p(1 + | log t|)α, 1 < p <∞, Theorem 2.2 was previously proved in
[3]. For the case α = 0 see also [2].

Remark 4.6. In the case ψ(t) = t1/p(1 + | log t|)α, 0 < p < 2, Theorem 2.2 for polynomials in a
uniformly bounded system was proved in [14], Theorem 3 i).

Remark 4.7. A similar statement as that in Theorem 2.1 was recently proved and discussed in [8].

Remark 4.8. It is well-known that each concave function ψ = ψ(t) has the quasi-monotonicity prop-
erties that ψ(t)

t is non-increasing and ψ(t) is non-decreasing. Moreover, the definition of the SV L clam
means that the functions satisfy two quasi-monotonicity conditions but now on a logarithmic scale.
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These facts opens the possibility that some of the results in this paper can be further generalized in this
direction.

From Theorem 2.1 and Theorem 2.2, we can also derive the following generalization of a result
in [5]:

Proposition 4.1. Let the functions ψ1 and ψ2 satisfy the conditions 1 < αψ1
= βψ2

= 21/2, t1/2

ψ1(t) ∈
SV L, t1/2

ψ2(t) ∈ SV L,

sup
t∈(0,1]

ψ2(t)

ψ1(t)
<∞ (24)

and assume that the orthonormal system {ϕn}n∈N for some r ∈ (2,+∞] satisfies condition (1). If
1 < p 6 2 < q <∞, then for any polynomial

fn(x) =

n∑
k=1

ckϕk(x),

the following inequality holds:

‖fn‖ψ1,p 6 C
ψ1((1 +

∑n
j=1M

2
j ))−1

ψ2((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +

n∑
k=1

M2
k

)) 1
p−

1
q ‖fn‖ψ2,q.

Proof. Since t1/2

ψ1(t) ∈ SV L and 1 < p 6 2, according to the first statement of Theorem 2.2, the
following inequality holds:

‖fn‖ψ1,p 6 C


√(

1 +
∑n
j=1M

2
j

)−1

ψ1((1 +
∑n
j=1M

2
j )−1)


−1 (

log
(

1 +

n∑
k=1

M2
k

)) 1
p−

1
2 ‖fn‖2.

Taking into account that t1/2

ψ2(t) ∈ SV L and 2 < q <∞ by Theorem 2.1, we have that

‖fn‖2 6 C


√(

1 +
∑n
j=1M

2
j

)−1

ψ2((1 +
∑n
j=1M

2
j )−1)

(log
(

1 +

n∑
k=1

M2
k

)) 1
2−

1
q ‖fn‖ψ2,q.

From these inequalities, it follows that

‖fn‖ψ1,p 6 C


√(

1 +
∑n
j=1M

2
j

)−1

ψ1((1 +
∑n
j=1M

2
j )−1)


−1 (

log
(

1 +

n∑
k=1

M2
k

)) 1
p−

1
2

×

√(
1 +

∑n
j=1M

2
j

)−1

ψ2((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +

n∑
k=1

M2
k

)) 1
2−

1
q ‖fn‖ψ2,q

=
ψ1((1 +

∑n
j=1M

2
j )−1)

ψ2((1 +
∑n
j=1M

2
j )−1)

(
log
(

1 +

n∑
k=1

M2
k

)) 1
p−

1
q ‖fn‖ψ2,q

for 1 < p 6 2 < q <∞. The proof is complete. �
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Remark 4.9. To investigate a statement as that Proposition 4.1 in the case of 1 < p < q 6 2 is
an interesting open question. This case for polynomials in the trigonometric system was investigated
in [5]. Furthermore, it seems to be possible to consider Proposition 4.1 also in the more general case
1 6 βψ2 < αψ1 6 2 .

Remark 4.10. In [4], it was proved that condition (24) implies that Lψ1,p ⊂ Lψ2,q , 1 < p < q < ∞,
in the case ψ1 = ψ2 see [36].

Remark 4.11 (Final Remark). Most results concerning Fourier and Jackson–Nikol’skii type inequal-
ities are derived for the case with bounded orthonormal systems. But since there are many important
unbounded orthonormal systems, it is of importance to develop the theory to cover such cases too. Ex-
amples of such unbounded systems are the following:
(a) {χn}–orthonormal system of Haar functions (see e.g. [9]). The functions χn(t) are defined as follows:
χ1(t) := 1 for t ∈ [0, 1] and for n = 2m + k, k = 1, . . . ,m and m = 0, 1, . . . put

χn(t) =


√

2m, t ∈ ( 2k−2
2m+1 ,

2k−1
2m+1 ),

−
√

2m, t ∈ ( 2k−1
2m+1 ,

2k
2m+1 ),

0, t∈̄
[
r
mk
, r+1
mk

]
.

The value of χn(t) in a discontinuity point t is defined as

χn(t) =
1

2
lim
ε→0

[χn(t+ ε) + χn(t− ε)].

(b) Let there be given an infinite sequence of integers {pn} such that pn > 2 (n = 1, 2, ...). We put
mn = p1...pn, n > 1. Then for any point t ∈ [0, 1] \A, there exists the unique expansion

t =

∞∑
k=1

αk(t)

mk
, αk(t) = 0, 1, ..., pk − 1,

whereA = { l
mk
}, l = 0, 1, . . . ,mk. The generalized Haar system χ{pk} := {χn(t)} on [0, 1] is defined

as follows (see [15]):
χ1(t) = 1 for t ∈ [0, 1] and if n > 2, then n = mk + r(pk+1 − 1) + s, where m0 = 1 and mk =
p1p2...pk; k = 1, ...; r = 0, 1, ...,mk − 1; s = 1, 2, ..., pk+1 − 1.
We put

χn(t) := χ
(s)
k,r(t) :=


√
mkexp

2πisαk+1(t)
pk+1

, t ∈
(

r
mk
, r+1
mk

)
∩B,

0 , t∈̄
[
r
mk
, r+1
mk

]
,

where B := [0, 1] \ A. At the remaining points of the interval (0, 1), χn(t) is equal to the half-sum of
its right-hand and left-hand limits on the set [0, 1] \ A, and at the endpoints of [0, 1], to the limits from
within the interval.
(c) Other generalizations of the Haar system were defined by A.M. Olevskii [31] and A. Kamont [18].
Jackson–Nikol’skii inequalities for polynomials in the χ{pn} system in the Lebesgue spaces Lp and
Lorentz spaces Lp,τ were proved in [1], [19], [39] and [41].

Acknowledgement: We thank two careful referees for generous advices, which have improved
the final version of this paper.
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ABSTRACT. Given a weight function τ , we introduce a new class of Banach function algebras with respect to τ ,
denoted by C0b(X, τ). We provide a complete solution to the isomorphism problem in this class. We further charac-
terize the BSE-extension and the Inoue-Doss ideal associated with it. As an application of our results, we show the
equivalence of the four statements: (i)C0b(X, τ) is of BSE, (ii)C0b(X, τ) is of BED, (iii)C0b(X, τ) is Tauberian and (iv)
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1. INTRODUCTION AND MAIN RESULTS

LetX be a locally compact Hausdorff space and Cb(X) be the Banach algebra of all bounded
complex-valued continuous functions onX with supremum norm ‖·‖∞. Define C0(X) = {f ∈
Cb(X) : f vanishes at infinity}. Let τ be a positive continuous function onX with infx∈X τ(x) ≥
1. Define

C00(X, τ) = {f ∈ C0(X) : fτ ∈ C0(X)},
C0b(X, τ) = {f ∈ C0(X) : fτ ∈ Cb(X)},
Cbb(X, τ) = {f ∈ Cb(X) : fτ ∈ Cb(X)}

and
‖f‖∞,τ = sup

x∈X
|f(x)|τ(x) (f ∈ Cb(X)).

Then both C00(X, τ) and C0b(X, τ) are subalgebras of C0(X), and Cbb(X, τ) is a subalgebra of
Cb(X). Moreover, these algebras become Banach algebras with norm ‖ · ‖∞,τ , and they have
the inclusion relation

Cc(X) ⊆ C00(X, τ) ⊆ C0b(X, τ) ⊆ Cbb(X, τ) ⊆ Cb(X),

where Cc(X) is the set of all complex-valued continuous functions on X with compact sup-
ports.

Remark 1.1. Put Cb0(X, τ) = {f ∈ Cb(X) : fτ ∈ C0(X)}. Then, it follows that C00(X, τ) =
Cb0(X, τ) holds.
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Note that τ is a C0(X)-local function on X , and hence the algebra C0(X)τ(1) is defined (see
[5, Definitions 5.1 and 5.3] for definition). Since C0(X)τ(1) = C00(X, τ), it follows from [5,
Theorem 5.4 (ii)] that C00(X, τ) is a Segal algebra in C0(X) with norm ‖ · ‖∞,τ , and hence its
Gelfand space can be identified with X (see [5, Theorem B’]). Moreover, C00(X, τ) is always a
BED-algebra of type I, but it is not a BSE-algebra if τ is unbounded (see [2, Theorem 6.2]). On
the other hand, C0b(X, τ) is generally not a Segal algebra in C0(X). However, J. Inoue et al.
have shown that C0b(X, τ) is a Banach algebra of type I but is neither Tauberian nor of BSE nor
of BED if 1/τ vanishes at infinity (see [2, Theorem 7.3]). The aim of this paper is to investigate
this algebra in greater detail. We refer the reader to [4, 5, 6, 9, 10, 11, 13] for more details on
Segal algebras, BSE-algebras, BED-algebras and type I Banach algebras.

We first give a complete solution to the isomorphism problem in C0b(X, τ). To state this, let
Y be another locally compact Hausdorff space and σ be another positive continuous function
on Y with infy∈Y σ(y) ≥ 1. Then we have:

Theorem 1.1. The following three statements are equivalent:
(i) C00(X, τ) is isomorphic to C00(Y, σ).

(ii) C0b(X, τ) is isomorphic to C0b(Y, σ).
(iii) There exists a homeomorphism η from Y ontoX such thatmσ ≤ τ ◦η ≤Mσ for some positive

constants m and M .

Next we have:

Theorem 1.2. The following two statements are equivalent:
(i) C00(X, τ) is isomorphic to C0b(Y, σ).

(ii) Both X and Y are homeomorphic and both τ and σ are bounded.

Moreover, we show that the BSE-extension and the Inoue-Doss ideal associated withC0b(X, τ)
are equal to Cbb(X, τ) and C00(X, τ), respectively. The details will be described in Section 5.

As an application of the above results, we show the following result which is a generalization
of [2, Theorem 7.3].

Theorem 1.3. The following five statements are equivalent:
(i) C0b(X, τ) is of BSE.

(ii) C0b(X, τ) is of BED.
(iii) C0b(X, τ) is Tauberian.
(iv) C0b(X, τ) has a bounded X-weak approximate identity.
(v) τ is bounded.

2. PRELIMINARIES

In what follows, let X be a locally compact Hausdorff space and τ be a positive continuous
function on X with

inf
x∈X

τ(x) ≥ 1.

Let A be a natural Banach function algebra on X . Then the natural embedding δX from X
to the Gelfand space ΦA of A is surjective, and hence δX is homeomorphic by [12, Theorem
3.2.4]. Thus we may identify ΦA with X if it will cause no confusion. Then the multiplier
algebra M(A) of A is described as {f ∈ Cb(X) : fg ∈ A (g ∈ A)}. We say that A is of type
I if M(A) = Cb(X). We denote by span(X) the linear span of X in the dual space A∗ of A.
Therefore, an arbitrary element p in span(X) has the unique expression

p =
∑
x∈X

p̂(x)x,
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where p̂ is a complex-valued function on X with finite support. A function f ∈ Cb(X) is said
to be a BSE -function associated with A if there exists a constant β > 0 such that∣∣∣∣∣∑

x∈X
p̂(x)f(x)

∣∣∣∣∣ ≤ β‖p‖A∗
for all p ∈ span(X). The BSE-norm of f , denoted by ‖f‖BSE(A), is the infimum of all such β.

Let CBSE(A)(X) be the set of all BSE-functions on X associated with A. Then it is a semisim-
ple commutative Banach algebra with the BSE-norm (see [13, Lemma 1]).

Definition 2.1. We refer to CBSE(A)(X) as the BSE-extension associated with A.

An algebra A is said to be a BSE-algebra if M(A) = CBSE(A)(X) (see [13, p.151, Definition]).
If {eλ} is a net in A satisfying the condition

lim
λ
eλ(x) = 1 (x ∈ X),

then we call it a X-weak approximate identity of A. We note that M(A) ⊆ CBSE(A)(X) if and
only if A has a bounded X-weak approximate identity (see [13, Corollary 5]). For the details
on X-weak approximation identity, refer to [3, 8].

Let K(X) be the directed set consisting of all compact subsets of X with respect to the inclu-
sion order. For f ∈ CBSE(A)(X) and K ∈ K(X), define

‖f‖BSE(A),K = sup


∣∣∣∣∣∣
∑

x∈X\K

p̂(x)f(x)

∣∣∣∣∣∣ : p ∈ span(X), ‖p‖A∗ ≤ 1

 ,

and put

C0
BSE(A)(X) =

{
f ∈ CBSE(A)(X) : lim

K∈K(X)
‖f‖BSE(A),K = 0

}
.

Then C0
BSE(A)(X) is a closed ideal of CBSE(A)(X) (see [4, Corollary 3.9]). This is an important

ideal in our argument.

Definition 2.2. We refer to C0
BSE(A)(X) as the Inoue-Doss ideal1 associated with A.

An algebra A is said to be a BED-algebra if A = C0
BSE(A)(X) (see [4, Definition 4.13]). A

Banach function algebra B on X is called a Banach ideal of C0(X) if B is an ideal of C0(X) and
‖fg‖B ≤ ‖f‖∞‖g‖B holds for all f ∈ C0(X) and g ∈ B (see [5, Definition 3.1]).

Lemma 2.1. The algebra C0b(X, τ) is a dense natural Banach ideal in C0(X).

Proof. It is clear that C0b(X, τ) is a dense Banach ideal in C0(X). Hence it suffices to show that
C0b(X, τ) is natural, that is, the natural embedding δX from X to ΦC0b(X,τ) is surjective. To do
this, let ϕ be an arbitrary element of ΦC0b(X,τ). Take h ∈ C0b(X, τ) with ϕ(h) 6= 0, and define

ϕ̃(f) = ϕ(fh)/ϕ(h) (f ∈ C0(X)).

This is well-defined because the right hand side of the above equation is independent of the
choice of h ∈ C0b(X, τ) with ϕ(h) 6= 0. By an easy calculation, we see that ϕ̃ ∈ ΦC0(X) with
ϕ̃|C0b(X,τ) = ϕ, and hence there exists x ∈ X such that δX(x) = ϕ, namely, δX is surjective, as
required. �

By Lemma 2.1, ΦC0b(X,τ) can be identified with X under the natural embedding.

1The first author personally learned this important ideal from Professor Jyunji Inoue in the old days. The ideal was
first introduced by him, but the underlying idea behind it had appeared in R. Doss [1].
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Lemma 2.2. The algebra C0b(X, τ) is of type I.

Proof. Since ΦC0b
(X, τ) can be identified with X , it follows that M(C0b(X, τ)) ⊆ Cb(X). Also,

since C0b(X, τ) is an ideal of Cb(X), it follows that Cb(X) ⊆ M(C0b(X, τ)). Thus we obtain
M(C0b(X, τ)) = Cb(X), that is, C0b(X, τ) is of type I. �

3. PROOF OF THEOREM 1.1

Let Y be another locally compact Hausdorff space and σ be another positive continuous
function on Y with infy∈Y σ(y) ≥ 1.

(i)⇒(iii) Suppose that there is an isomorphism ρ from C00(X, τ) onto C00(Y, σ). Then there
are positive constants m,M such that

(3.1) m‖ρ(f)‖∞,σ ≤ ‖f‖∞,τ ≤M‖ρ(f)‖∞,σ (f ∈ C00(X, τ)).

Let ρ∗ be the dual map of ρ from C00(Y, σ)∗ onto C00(X, τ)∗. Then we have ρ∗(ΦC00(Y,σ)) =
ΦC00(X,τ). Let δX and δY be the natural embedding from X onto ΦC00(X,τ) and the natural
embedding from Y onto ΦC00(Y,σ), respectively. Define

η = (δX)−1 ◦ ρ∗|ΦC00(Y,σ)
◦ δY .

Then η is a homeomorphism from Y onto X . We shall show that

(3.2) ρ(f) = f ◦ η (f ∈ C00(X, τ)).

In fact, let us take f ∈ C00(X, τ) arbitrarily. Then we have

ρ(f)(y) = 〈ρ(f), δY (y)〉 = 〈f, ρ∗(δY (y))〉 = 〈f, ρ∗|ΦC00(Y,σ)
(δY (y))〉

= 〈f, δX{δ−1
X (ρ∗|ΦC00(Y,σ)

(δY (y)))}〉
= 〈f, δX(η(y))〉 = f(η(y))

= (f ◦ η)(y)

for all y ∈ Y , that is, (3.2) holds as required. By (3.2), f◦η ∈ C00(Y, σ) holds for all f ∈ C00(X, τ).
It remains to show thatmσ ≤ τ◦η ≤Mσ. To show this, let us take y ∈ Y and ε > 0 arbitrarily.

Since τ is continuous, there exists a neighbourhood U of η(y) such that |τ(x) − τ(η(y))| <
ε for all x ∈ U . Also since σ is continuous, there exists a neighbourhood V of y such that
|σ(y′)−σ(y)| < ε for all y′ ∈ V . Put W = U ∩ η(V ). Then W is a neighbourhood of η(y). Take a
function f0 ∈ Cc(X) such that f0(η(y)) = 1, f0|X\W = 0 and 0 ≤ f0 ≤ 1. By (3.1) and (3.2), we
have

(3.3) m‖f0 ◦ η‖∞,σ ≤ ‖f0‖∞,τ ≤M‖f0 ◦ η‖∞,σ.

Therefore, it follows from the first half of (3.3) that

mσ(y) = m|f0(η(y))|σ(y) ≤ m‖f0 ◦ η‖∞,σ ≤ ‖f0‖∞,τ
= sup
x∈X
|f0(x)|τ(x) = sup

x∈W
|f0(x)|τ(x) ≤ sup

x∈U
τ(x)

≤ τ(η(y)) + ε.



Isomorphism problem in a special class of Banach function algebras and its application 309

Since y ∈ Y and ε > 0 are arbitrary, we have mσ ≤ τ ◦ η. Moreover, it follows from the latter
half of (3.3) that

(τ ◦ η)(y) = τ(η(y)) = |f0(η(y))|τ(η(y)) ≤ ‖f0‖∞,τ
≤M‖f0 ◦ η‖∞,σ = M sup

y′∈Y
|f0(η(y′))|σ(y′)

= M sup
y′∈η−1(W )

|f0(η(y′))|σ(y′) ≤M sup
y′∈η−1(W )

σ(y′)

≤M sup
y′∈V

σ(y′) ≤M(σ(y) + ε).

Since y ∈ Y and ε > 0 are arbitrary, we have τ ◦ η ≤Mσ.
(iii)⇒(i) Suppose that there is a homeomorphism η from Y onto X such that mσ ≤ τ ◦ η ≤

Mσ for some positive constants m and M . Define

(η∗f)(y) = f(η(y)) (f ∈ C00(X, τ), y ∈ Y ).

In this case, we see easily that η∗ is a homomorphism from C00(X, τ) to C0(Y ). We shall show
that η∗(C00(X, τ)) = C00(Y, σ). To do this, let us take f ∈ C00(X, τ) arbitrarily. It is clear that
η∗f ∈ C0(Y ). Moreover, the inequality

(3.4) |(η∗f)(y)|σ(y) ≤ |f(η(y))|τ(η(y))/m (y ∈ Y ),

implies that (η∗f)σ ∈ C0(Y ) since fτ ∈ C0(X), and so η∗f ∈ C00(Y, σ). Namely, we obtain
η∗(C00(X, τ)) ⊆ C00(Y, σ). To show the opposite inclusion, for g ∈ C00(Y, σ), let us define

f(x) = g(η−1(x)) (x ∈ X).

It is clear that f ∈ C0(X). Moreover, the inequality

(3.5) |f(x)|τ(x) ≤ |g(η−1(x))|Mσ(η−1(x)) (x ∈ X)

implies that fτ ∈ C0(X) since gσ ∈ C0(Y ), and so f ∈ C00(X, τ). Moreover, since

(η∗f)(y) = f(η(y)) = g(η−1(η(y))) = g(y) (y ∈ Y )

holds, we have

(3.6) η∗f = g,

namely, we obtain C00(Y, σ) ⊆ η∗(C00(X, τ)). Therefore, we have the desired equality. By (3.4),
(3.5) and (3.6), we have

m‖η∗f‖∞,σ ≤ ‖f‖∞,τ ≤M‖η∗f‖∞,σ (f ∈ C00(X, τ)),

and hence η∗ is an isomorphism from C00(X, τ) onto C00(Y, σ).
(ii)⇒(iii) This can be shown in the same manner as the proof of (i)⇒(iii).
(iii)⇒(ii) This can be shown in the same manner as the proof of (iii)⇒(i).
This completes the proof of Theorem 1.1.

Corollary 3.1. The following four statements are equivalent:

(i) C0b(X, τ) is of BSE and of BED.
(ii) τ is bounded.

(iii) C0b(X, τ) = C0(X).
(iv) C0b(X, τ) is isomorphic to some commutative C*-algebra.
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Proof. (i)⇔(iv) This immediately follows from Lemma 2.2 and [2, Corollary 4.2].
(ii)⇒(iii) Obvious.
(iii)⇒(iv) Obvious.
(iv)⇒(ii) Suppose that C0b(X, τ) is isomorphic to C0(Y ) for some locally compact Hausdorff

space Y and define
1Y (y) = 1 (y ∈ Y ).

Then C0b(X, τ) is isomorphic to C0b(Y, 1Y ) since C0b(Y, 1Y ) = C0(Y ). By Theorem 1.1, we can
find a homeomorphism η from Y onto X such that m1Y ≤ τ ◦ η ≤ M1Y for some positive
constants m and M . Therefore, we have that τ(x) ≤M for all x ∈ X . �

Corollary 3.2. The following three statements are equivalent:
(i) τ is unbounded.

(ii) C0b(X, τ) has no bounded X-weak approximate identity.
(iii) C0b(X, τ) is not of BSE.

Proof. (i)⇒(ii) Suppose that τ is unbounded. If C0b(X, τ) has a bounded X-weak approximate
identity, say, {eλ}λ∈Λ bounded by β, then we can take x0 ∈ X and λ0 ∈ Λ such that τ(x0) ≥
2β + 1 and |eλ0

(x0)− 1| ≤ 1/2 since τ is unbounded. Then we have

β ≥ ‖eλ0
‖∞,τ = sup

x∈X
|eλ0

(x)|τ(x) ≥ |eλ0
(x0)|τ(x0) ≥ 2β + 1

2
= β +

1

2
,

which is a contradiction.
(ii)⇒(iii) This immediately follows from [13, Corollary 5].
(iii)⇒(i) This immediately follows from Corollary 3.1 since an arbitrary commutative C*-

algebra is of BSE (see [13, Theorem 3]). �

4. PROOF OF THEOREM 1.2

Let Y be another locally compact Hausdorff space and σ be another positive continuous
function on Y with infy∈Y σ(y) ≥ 1.

(i)⇒(ii) Suppose that there is an isomorphism ρ from C00(X, τ) onto C0b(Y, σ). Let ρ∗ be the
dual map of ρ from C0b(Y, σ)∗ onto C00(X, τ)∗, and then we have ρ∗(ΦC0b(Y,σ)) = ΦC00(X,τ).
Let δX and δY be the natural embedding of X onto ΦC00(X,τ) and the natural embedding of Y
onto ΦC0b(Y,σ), respectively. Define

η = (δX)−1 ◦ ρ∗|ΦC0b(Y,σ)
◦ δY .

Then η is a homeomorphism from Y onto X . Moreover, as observed in the proof of (i)⇒(iii)
in Theorem 1.1, the equality ρ(f) = f ◦ η holds for all f ∈ C00(X, τ) and there are positive
constants m and M such that mσ ≤ τ ◦ η ≤Mσ. Define

(η∗f)(y) = f(η(y)) (f ∈ C00(X, τ), y ∈ Y ).

Then, as observed in the proof of (iii)⇒(i) in Theorem 1.1, the equality η∗(C00(X, τ))
= C00(Y, σ) holds. However since ρ = η∗, it follows that

C0b(Y, σ) = ρ(C00(X, τ)) = η∗(C00(X, τ)) = C00(Y, σ),

and hence we have

(4.1) C00(Y, σ) = C0b(Y, σ).

Assume that σ is unbounded. Then we can find a sequence {y1, y2, · · · } in Y and a sequence
{n1, n2, · · · } in N such that

n1 < σ(y1) < n2 < σ(y2) < n3 < σ(y3) < n4 < · · · · · · ,
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where n1 = 1. In this case, limn→∞ yn = ωY holds, where ωY is the point of Y at infinity. In
fact, let K be an arbitrary compact subset of Y and put αK = max{σ(y) : y ∈ K}. Take i0 ∈ N
with αK < ni0 . Then we can easily see that yj ∈ Y \K for all j ≥ i0, that is, limn→∞ yn = ωY .

Take m ∈ N arbitrarily. Since σ is continuous on Y , we can find a compact neighbourhood
Km of ym such that Km ⊆ {y ∈ Y : nm < σ(y) < nm+1} and |σ(ym) − σ(y)| < 1 (y ∈ Km).
Then Ki ∩Kj = ∅ (i 6= j). Take a continuous positive function gm on Y such that

gm(ym) =
1

σ(ym)
, 0 ≤ gm ≤

1

σ(ym)
and supp(gm) ⊆ Km.

Since |1− σ(y)
σ(ym) | < 1/σ(ym) ≤ 1 for all y ∈ Km, it follows that

0 ≤ gm(y)σ(y) ≤ σ(y)

σ(ym)
≤ 2 (y ∈ Km).

Define

g(y) =

∞∑
m=1

gm(y) (y ∈ Y ).

Then it is clear that g is continuous on X such that 0 ≤ gσ ≤ 2, and hence gσ is bounded.
Moreover, we shall show that g ∈ C0(Y ). To do this, let ε be an arbitrary positive number. Take
j0 ∈ N with 1/nj0 < ε and put

K0 = K1 ∪K2 ∪ · · · ∪Knj0
.

Then K0 is a compact set in Y . Take y ∈ Y \K0 arbitrarily. Then we have two cases:
(a) y /∈ ∪∞i=1Ki

and
(b) y ∈ Kk0 for some k0 > nj0 .
In case (a), we have g(y) = 0 < ε. In case (b), we have

0 ≤ g(y) = gk0(y) ≤ 1/σ(yk0) < 1/nk0 ≤ 1/k0 < 1/nj0 < ε.

Then g ∈ C0(Y ) as required. Thus we get g ∈ C0b(Y, σ). Therefore, it follows from (4.1) that
g ∈ C00(Y, σ), and hence limn→∞ g(yn)σ(yn) = 0. But since g(yn)σ(yn) = gn(yn)σ(yn) = 1
holds for all n ∈ N, we arrive at a contradiction. Hence we conclude that σ is bounded. This
implies that τ is also bounded because τ ◦ η ≤Mσ.

(ii)⇒(i) Suppose that both τ and σ are bounded. Then we see that C00(X, τ) = C0(X) and
C0b(Y, σ) = C0(Y ). If X is homeomorphic to Y , then C0(X) is isomorphic to C0(Y ), and hence
C00(X, τ) must be isomorphic to C0b(Y, σ).

This completes the proof of Theorem 1.2.

Corollary 4.3. The following two statements are equivalent:
(i) C0b(X, τ) is Tauberian.

(ii) τ is bounded.

Proof. (i)⇒(ii) Suppose that C0b(X, τ) is Tauberian. Then C00(X, τ) = C0b(X, τ) holds. In fact,
take f ∈ C0b(X, τ) and ε > 0 arbitrarily. Then f ∈ C0(X). Also since C0b(X, τ) is Tauberian, it
follows that there is g ∈ Cc(X) with ‖f − g‖∞,τ < ε. Therefore, gτ ∈ Cc(X) and ‖fτ − gτ‖∞ =
‖f − g‖∞,τ < ε, and hence fτ ∈ C0(X) because ε is arbitrary. Thus we have f ∈ C00(X, τ),
namely, C00(X, τ) = C0b(X, τ) holds as required. Consequently, C00(X, τ) must be isomorphic
to C0b(X, τ), and hence τ must be bounded by Theorem 1.2.

(ii)⇒(i) Suppose that τ is bounded. Then we have C0b(X, τ) = C0(X), and hence C0b(X, τ)
must be Tauberian. �



312 S.-E. Takahasi, K. Shirayanagi, and M. Tsukada

5. BSE-EXTENSION AND INOUE-DOSS IDEAL

Let A be C00(X, τ) or C0b(X, τ). In this section, we investigate the BSE-extension associated
with A and the Inoue-Doss ideal associated with A. The obtained result is as follows:

Theorem 5.4.

(i) The BSE-extensions associated withC00(X, τ) andC0b(X, τ) are both equal toCbb(X, τ), that
is,

CBSE(C00(X,τ))(X) = CBSE(C0b(X,τ))(X) = Cbb(X, τ).

(ii) The Inoue-Doss ideals associated with C00(X, τ) and C0b(X, τ) are both equal to C00(X, τ),
that is,

C0
BSE(C00(X,τ))(X) = C0

BSE(C0b(X,τ))(X) = C00(X, τ).

Proof. Denote by A any one of the algebras C00(X, τ) and C0b(X, τ), and then A ⊆ Cc(X).
(i) We shall show CBSE(A)(X) = Cbb(X, τ). To do this, we claim that

(5.1) ‖p‖A∗ =
∑
x∈X
|p̂(x)|/τ(x) (p ∈ span(X))

holds. In fact, let us take p ∈ span(X) and 0 < ε < 1 arbitrarily. Then we can write p =∑n
k=1 akxk, where a1, · · · , an ∈ C \ {0} and x1, · · · , xn ∈ X with xi 6= xj (i 6= j). For each

1 ≤ k ≤ n, we can take a compact neighbourhood Kk of xk such that Ki ∩Kj = ∅ (i 6= j) and
(1− ε)/τ(xk) < 1/τ(x) for all x ∈ Kk because{

x ∈ X :
1− ε
τ(xk)

<
1

τ(x)

}
is an open neighbourhood of xk. Take a continuous positive function gk on X such that

gk(xk) =
1− ε
τ(xk)

, 0 ≤ gk(x) ≤ 1− ε
τ(xk)

(x ∈ Kk) and supp(gk) ⊆ Kk,

and define

g0(x) =

n∑
k=1

gk(x) (x ∈ X).

Therefore, we can easily show that g0 ∈ Cc(X), g0(xk) = (1 − ε)/τ(xk) (1 ≤ k ≤ n) and
0 ≤ g0(x) ≤ 1/τ(x) (x ∈ X). Moreover, we can find a function h0 ∈ Cc(X) such that ‖h0‖∞ = 1
and h0(xk) = |ak|/ak for all 1 ≤ k ≤ n. Put f0 = g0h0. Then we can see that f0 ∈ A,
‖f0‖∞,τ ≤ 1, |f0(xk)|τ(xk) = 1− ε and akf0(xk) > 0 for all 1 ≤ k ≤ n. Therefore, we have

‖p‖A∗ = sup

{∣∣∣∣∣
n∑
k=1

akf(xk)

∣∣∣∣∣ : f ∈ A, ‖f‖∞,τ ≤ 1

}

≥
n∑
k=1

akf0(xk) =

n∑
k=1

|ak|τ(xk)−1|f0(xk)|τ(xk)

= (1− ε)
n∑
k=1

|ak|/τ(xk) = (1− ε)
∑
x∈X
|p̂(x)|/τ(x),

and hence ‖p‖A∗ ≥
∑
x∈X |p̂(x)|/τ(x) because ε is arbitrary.
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On the other hand, we have

‖p‖A∗ = sup

{∣∣∣∣∣
n∑
k=1

akf(xk)

∣∣∣∣∣ : f ∈ A, ‖f‖∞,τ ≤ 1

}

≤ sup

{
n∑
k=1

|ak|τ(xk)−1|f(xk)|τ(xk) : f ∈ A, ‖f‖∞,τ ≤ 1

}

≤
n∑
k=1

|ak|/τ(xk) =

n∑
x∈X
|p̂(x)|/τ(x).

Consequently, we have proved (5.1).
Now, by (5.1), for all f ∈ Cbb(X, τ), we have

‖f‖BSE(A) = sup

{∣∣∣∣∣∑
x∈X

p̂(x)f(x)

∣∣∣∣∣ : p ∈ span (X), ‖p‖A∗ ≤ 1

}

≤ sup

{∑
x∈X
|p̂(x)|τ(x)−1|f(x)|τ(x) : p ∈ span (X), ‖p‖A∗ ≤ 1

}

≤ ‖f‖∞,τ sup

{∑
x∈X
|p̂(x)|/τ(x) : p ∈ span (X), ‖p‖A∗ ≤ 1

}
= ‖f‖∞,τ sup {‖p‖A∗ : p ∈ span (X), ‖p‖A∗ ≤ 1} (by (5.1))

= ‖f‖∞,τ <∞,

that is, f ∈ CBSE(A)(X). Therefore, we have Cbb(X, τ) ⊆ CBSE(A)(X). To show the opposite
inclusion, take f ∈ CBSE(A)(X) arbitrarily. Then f ∈ Cb(X). For each x ∈ X , put px = τ(x)x,
that is, px(f) = τ(x)f(x) (f ∈ A). Then we have

‖px‖A∗ = sup{|px(f)| : f ∈ A, ‖f‖∞,τ ≤ 1}
= sup{|f(x)|τ(x) : f ∈ A, ‖f‖∞,τ ≤ 1}
≤ 1

holds for all x ∈ X . Therefore, we have

|f(x)τ(x)| = |p̂x(x)f(x)| ≤ ‖f‖BSE(A)

for all x ∈ X , and hence ‖fτ‖∞ ≤ ‖f‖BSE(A) <∞, so fτ ∈ Cb(X), that is, f ∈ Cbb(X, τ). There-
fore, we haveCBSE(A)(X) ⊆ Cbb(X, τ). This completes the proof of the equalityCBSE(A)(X) =
Cbb(X, τ).

(ii) Let f ∈ Cbb(X, τ) and K ∈ K(X). Since

‖f‖BSE(A),K = sup


∣∣∣∣∣∣
∑

x∈X\K

p̂(x)f(x)

∣∣∣∣∣∣ : p ∈ span (X), ‖p‖A∗ ≤ 1


≤ sup

 ∑
x∈X\K

|p̂(x)|τ(x)−1|f(x)|τ(x) : p ∈ span (X), ‖p‖A∗ ≤ 1


≤ sup
x∈X\K

|f(x)|τ(x)× sup

 ∑
x∈X\K

|p̂(x)|/τ(x) : p ∈ span (X), ‖p‖A∗ ≤ 1
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≤ sup
x∈X\K

|f(x)|τ(x)× sup

{∑
x∈X
|p̂(x)|/τ(x) : p ∈ span (X), ‖p‖A∗ ≤ 1

}
= sup
x∈X\K

|f(x)|τ(x)× sup {‖p‖A∗ : p ∈ span (X), ‖p‖A∗ ≤ 1} (by (5.1))

= sup
x∈X\K

|f(x)|τ(x),

it follows that
‖f‖BSE(A),K ≤ sup

x∈X\K
|f(x)|τ(x).

To show the reverse of the above inequality, put px = τ(x)x for each x ∈ X . Then we have
‖px‖A∗ ≤ 1 (x ∈ X) as observed in the proof of (i). Then we have

|f(x)τ(x)| = |p̂x(x)f(x)| ≤ ‖f‖BSE(A),K (x ∈ X \K),

and hence
sup

x∈X\K
|f(x)|τ(x) ≤ ‖f‖BSE(A),K .

Therefore, we have

(5.2) ‖f‖BSE(C00(X,τ)),K = ‖f‖BSE(C0b(X,τ)),K (f ∈ Cbb(X, τ),K ∈ K(X)).

Hence it follows from (i) and (5.2) that

C0
BSE(C00(X,τ))(X) = C0

BSE(C0b(X,τ))(X).

Recall that C00(X, τ) is of BED, and hence C0
BSE(C00(X,τ))(X) = C00(X, τ) holds. �

Remark 5.2.
(i) If τ is bounded, then C00(X, τ) = C0b(X, τ) = C0(X) and Cbb(X, τ) = Cb(X), and hence

Theorem 5.4 obviously holds.
(ii) As observed in the proof of Theorem 5.4 (i),

‖f‖BSE(C00(X,τ)) = ‖f‖BSE(C0b(X,τ)) = ‖f‖∞,τ

holds for all f ∈ Cbb(X, τ).
(iii) As observed in the proof of Theorem 5.4 (ii),

‖f‖BSE(C00(X,τ)),K = ‖f‖BSE(C0b(X,τ)),K = sup
x∈X\K

|f(x)τ(x)

holds for all f ∈ Cbb(X, τ) and K ∈ K(X).

Corollary 5.4. If τ is unbounded, then C0b(X, τ) is not of BED.

Proof. Suppose that τ is unbounded. Then C00(X, τ) $ C0b(X, τ) holds. In fact, suppose on
the contrary that C00(X, τ) = C0b(X, τ) holds. Then C00(X, τ) is isomorphic to C0b(X, τ), and
hence τ must be bounded by Theorem 1.2. This is impossible because τ is unbounded by
hypothesis. Now if C0b(X, τ) is of BED, then we have from Theorem 5.4 (ii) that

C00(X, τ) = C0
BSE(C00(X,τ))(X) = C0

BSE(C0b(X,τ))(X) = C0b(X, τ)).

Thus we arrive at a contradiction. �
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6. PROOF OF THEOREM 1.3

We can see that:
(1) (v)⇔(iv)⇔(i) are derived from Corollary 3.2.
(2) (v)⇔(iii) is exactly the same as Corollary 4.3.
(3) (ii)⇔(v) is derived from Corollary 5.4.

By combining (1), (2) and (3), we have proved Theorem 1.3.

Remark 6.3. The following four statements are equivalent:
(i) τ is bounded.

(ii) C00(X, τ) is isomorphic to some commutative C*-algebra.
(iii) C0b(X, τ) is isomorphic to some commutative C*-algebra.
(iv) Cbb(X, τ) is isomorphic to some commutative C*-algebra.

In fact, since C0b(X, τ) is a closed ideal of Cbb(X, τ), it follows that (iv) implies (iii). Also
since C00(X, τ) is a closed ideal of C0b(X, τ), it follows that (iii) implies (ii). If C00(X, τ) is iso-
morphic to some commutative C*-algebra, then it must be of BSE, and hence M(C00(X, τ)) =
CBSE(C00(X,τ))(X). Moreover, we have from Theorem 5.4 (i) thatCBSE(C00(X,τ))(X) = Cbb(X, τ),
and hence M(C00(X, τ)) = Cbb(X, τ). Define 1X(x) = 1 (x ∈ X). Then 1X ∈ M(C00(X, τ)),
and hence 1X ∈ Cbb(X, τ) by the above equality. Then τ must be bounded. Consequently,
(ii) implies (i). If τ is bounded, then Cbb(X, τ) = Cb(X), and so Cbb(X, τ) is isomorphic to the
C*-algebra Cb(X). Then (i) implies (iv).

7. EXAMPLES

Let R be the space of real numbers with usual topology and Homeo(R) be the set of all
homeomorphisms from R onto itself. Let T (R) be the set of all positive continuous functions
τ on R with inf{τ(x) : x ∈ R} ≥ 1. Let τ, σ ∈ T (R). If there are m,M > 0 and h ∈ Homeo(R)
such that mτ ≤ σ ◦ h ≤Mτ , τ and σ are said to be equivalent, and written as τ ∼= σ.

(i) Take τ ∈ T (R) and h ∈ Homeo(R) arbitrarily. Then we have τ ∼= τ ◦ h because
τ = (τ ◦ h) ◦ h−1.

(ii) Define

τ1(x) =

{
(n+ 1)(|x| − 2n) + 1 (2n ≤ |x| ≤ 2n+ 1)

−(n+ 1)(|x| − 2n− 2) + 1 (2n+ 1 < |x| ≤ 2n+ 2),

where n = 0, 1, 2, · · · . Then τ1 ∈ T (R). Since τ1 is unbounded, it follows from Corol-
lary 4.3 that C0b(R, τ1) is not Tauberian. However, we can confirm this by a concrete
calculation as follows. Define

f(x) =
1

τ1(x)τ1(x− 1)
(x ∈ R).

Then we can easily see f ∈ C0b(R, τ1). Also since τ1(2n) = 1 for all n = 0,±1,±2, · · · ,
it follows that

‖f − g‖∞,τ1 = sup
x∈R

∣∣∣∣ 1

τ1(x− 1)
− g(x)τ1(x)

∣∣∣∣ ≥ 1

for all g ∈ Cc(R). In other words, C0b(R, τ1) is not Tauberian.
(iii) Define

τ0(x) = 1 + |x| (x ∈ R).

Then τ0 ∈ T (R) and we can easily see τ0 � τ1. Therefore, C0b(R, τ0) is not isomorphic
to C0b(R, τ1) by Theorem 1.1.
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(iv) Let f be a strictly increasing continuous function on [0,∞) such that f(0) = 0 and
limx→+∞ f(x) = +∞. Let g be a strictly decreasing continuous function on (−∞, 0]
such that g(0) = 0 and limx→−∞ g(x) = +∞. Define

τf,g(x) =

{
1 + f(x) (x ≥ 0)

1 + g(x) (x < 0)
.

Then we see τf,g ∈ T (R) and τ0 ∼= τf,g. In fact, it is clear that τf,g ∈ T (R). Define

h(x) =

{
f−1(x) (x ≥ 0)

g−1(−x) (x < 0)
.

Then we see h ∈ Homeo(R) and τf,g ◦ h = τ0 by an easy calculation. Therefore,
we obtain τf,g ∼= τ0 from (i), and hence C0b(R, τf,g) is isomorphic to C0b(R, τ0) by
Theorem 1.1.

8. OPEN PROBLEMS

Finally, let us list some open problems for further study.

Problem on vector-valued functions: Let X be a locally compact Hausdorff space, τ be
a positive continuous function on X with infx∈X τ(x) ≥ 1 and A be a unital commu-
tative C∗-algebra. Moreover, let C0(X,A) be the commutative Banach algebra of all
continuous A-valued functions on X vanishing at infinity and Cb(X,A) be the com-
mutative Banach algebra of all bounded continuous A-valued functions. Define

C0b(X;A, τ) = {f ∈ C0(X,A) : τf ∈ Cb(X,A)}.

Then, solve the isomorphism problem in the Banach algebra C0b(X;A, τ).
Moreover, what are the BSE-extension and the Inoue-Doss ideal associated with

C0b(X;A, τ)?
Problem on Lipschitz algebras: Let Lip1(R) and Lip0

1(R) be the Lipschitz algebras as
defined in [4, Definition 5.8] and τ be a positive continuous function on R with
infx∈X τ(x) ≥ 1. Define

Lip01(R, τ) = {f ∈ Lip0
1(R) : τf ∈ Lip1(R)}.

Then, what are the BSE-extension and the Inoue-Doss ideal associated with the Banach
algebra Lip01(R, τ)?

Problem on differentiable functions: Let Cnb (Rd) and Cn0 (Rd) be the differential alge-
bras as defined in [7, §2] and τ be a positive continuous function on R with infx∈X τ(x) ≥
1. Define

Cn01(Rd, τ) = {f ∈ Cn0 (Rd) : τf ∈ Cnb (Rd)}.
Then, what are the BSE-extension and the Inoue-Doss ideal associated with the Banach
algebra Cn01(Rd, τ)?
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ABSTRACT. The class IV2 of 2-nondegenerate constant Levi rank 1 hypersurfaces M5 ⊂ C3 is governed by Poc-
chiola’s two primary invariants W0 and J0. Their vanishing characterizes equivalence of such a hypersurface M5 to
the tube M5

LC over the real light cone in R3. When either W0 6≡ 0 or J0 6≡ 0, by normalization of certain two group
parameters c and e, an invariant coframe can be built on M5, showing that the dimension of the CR automorphism
group drops from 10 to 5.

This paper constructs an explicit {e}-structure in case W0 and J0 do not necessarily vanish. Furthermore, Pocchi-
ola’s calculations hidden on a computer now appear in details, especially the determination of a secondary invariant
R, expressed in terms of the first jet of W0. All other secondary invariants of the {e}-structure are also expressed
explicitly in terms of W0 and J0.

Keywords: Levi degenerate CR manifolds, 2-nondegeneracy, G-structures, Cartan method of equivalence, Cartan
Lemma, Pocchiola invariants.
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1. INTRODUCTION

We study the equivalence problem under biholomorphisms of real hypersurfaces M5 ⊂
C3 — hence of CR dimension 2 — whose Levi form is degenerate of constant rank 1, and
whose Freeman form is nowhere zero, or equivalently, which are 2-nondegenerate. There are
previous approaches to this problem, and we refer our readers to the the articles of Medori-
Spiro [12, 13], in which a Cartan connection was adressed.

In a recently published article [18], the authors exhibited two important primary invariants,
W0 and J0, whose existence was not previously discovered prior to Pocchiola’s prepublica-
tion [25], and which, in depth, required the help of a computer algebra system. These invari-
ants have useful applications, such as in Isaev’s study [9] of tube hypersurfaces in C3 that are
2-nondegenerate and uniformly Levi degenerate of rank 1.

Our first objective here is to reconstruct W0 and J0, by presenting fully detailed computa-
tions, only by hand, without the help of any computer. In contrast to [25, 18], the present text
has the ambition of exhibiting all calculations, without requiring any extra work from the read-
ers: ‘no pen needed, no computer needed’. Within the Cartan theory, this sounds quite like a
challenge opposite to a certain tradition of hiding a lot of computations. But we believe that
fully detailed articles can be read, checked and studied more rapidly.

As a second objective, we construct an explicit {e}-structure which characterizes equiva-
lences under biholomorphisms of these types of hypersurfaces M5 ⊂ C3. This way, we give a

Received: 26.05.2021; Accepted: 25.08.2021; Published Online: 15.09.2021
*Corresponding author: Joël Merker; joel.merker@universite-paris-saclay.fr
DOI: 10.33205/cma.943426

318



Differential {e}-structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfacesM5 ⊂ C3 319

theoretical proof which will provide a definitive confirmation of the existence of exactly 2 pri-
mary invariants, W0 and J0. Unlike the approach of [25, 18] which proceeded at each step with
systematic and explicit calculations of all torsion coefficients, we will bypass some of these steps,
thereby economizing some computations. On the way, we will closely observe the evolution of
the modified Maurer-Cartan 1-forms during the Cartan process.

The basic principle of Cartan’s approach is to create a collection of 1-forms (a coframe), by
absorbing as many as possible torsion terms, in order that the structure of this coframe be as
close as possible to the structure of the Maurer-Cartan coframe on the (prolongation of the)
model M5

LC ⊂ C3, the tube over the real light cone
{
x21 + x22 = x23} in R3:

M5
LC :=

{
(z1, z2, z3) ∈ C3 : (Re z1)2 + (Re z2)2 = (Re z3)2

}
whose local CR automorphism group is known to be isomorphic to SO3,2(R).

Recall that a Maurer-Cartan form ω valued in some Lie algebra g satisfies the structure equa-
tion with no curvature:

dω + 1
2

[
ω ∧ ω

]
= 0.

In practice, as in our current case, the right-hand side of the equation is not always zero, and
this constitutes the default of ω being a Maurer-Cartan form. This happens when an invariant
is written as a linear combination of torsion terms, and such a linear combination fails to follow
the structure equations, thus obstructing the absorption process.

We now give a summary of our results. Recall that if J denotes the complex structure of
TC3, then the tangent bundle TM5 has a distribution T cM5 := TM5 ∩ JTM5 ⊆ TM5 of
codimension 1 which is invariant under J at each point of M5. Let ρ be a real 1-form with
Ker ρ = T cM5. The Levi form is a bilinear map on T cM5 defined as (X,Y ) 7→ dρ(X, JY ) for
any two sections X , Y of T cM5.

Letting CTM5 := C⊗RTM
5 be the complexification of the tangent bundle ofM5, by defining

T 1,0M5 := CTM5 ∩ T 1,0C3 together with its complex conjugate T 0,1M5 := T 1,0M5, we have
the (classical) direct sum decomposition CT cM5 = T 1,0M5⊕T 0,1M5. Let {L1,L2} be two local
generators of T 1,0M5, i.e. a frame for T 1,0M5.

Section 2 provides more information, while complete background may be found in [19].
By the assumption that the Levi form is uniformly of rank 1 at each point of M , there exists

by [19] a uniquely determined slant function k : M −→ C such that the vector field:

K := kL1 + L2

generates the kernel of the Levi form, of constant rank 2 − 1 = 1. If we let T denote a vector
field with ρ(T ) ≡ 1, we may consider the coframe

{
ρ, κ0, ζ0

}
dual to

{
T ,L1,K

}
. In fact, the

conjugates κ0, ζ0 and L1, K also come into play in order to really make up a (co)frame on
CTM5, while ρ = ρ and T = T are real. A certain appropriate real 1-form ρ will be chosen, and
denoted ρ0.

Performing the Cartan process, we will make a series of changes to these 1-forms:

(ρ0, κ0, ζ0)  (ρ0, κ
′
0, ζ
′′
0 )

and after (really a lot of) computations, we will obtain a 4-dimensional G-structure whose lifted
1-forms write up as: ρκ

ζ

 :=

 cc 0 0
−i ce c 0
− i

2
cee
c e c

c

ρ0κ′0
ζ ′′0

 .
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Also, after a long process, we will construct modified Maurer-Cartan forms:

π1 := α−
(
t− i

2
ImZ2

)
ρ−

(
R1 −K6

)
κ−R2 ζ −K6 κ− 0,

π2 := β − i Z1 ρ−
(
t− i

2
ImZ2 +K1

)
κ−K2 ζ −K3 κ−K4 ζ,

with Ri, Ki, Zi being some explicit functions on M5 × G4, where t is a new real variable, and
then, after meticulous absorption work, we will obtain as is stated below in Theorem 13.1 on
p. 366, three finalized structure equations of the neat shape:

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ

+Rρ ∧ ζ + J ρ ∧ κ+W κ ∧ ζ,

in which are present Pocchiola’s two primary invariants:

W =
1

c
W0 and J =

i

c3
J0,

together with a single secondary (derived) invariant:

R = Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
.

We would like to mention that the two invariants that Pocchiola denoted W and J are now
denoted in our paper W0 and J0, with the subscript (•)0 designating functions defined on M5

alone, independently of any extra group variable.
The expression of R was discovered by Pocchiola in [25, 18] thanks to intensive computer

explorations, but no details of proof appeared in print at all. In Section 12 of this paper, a
complete, detailed, hand-done proof, will be provided, thus verifying that R is indeed a function
of the first jet of W0, hence a secondary invariant.

We will also construct a certain real 1-form Λ = dt + · · · , and in Section 14, the final {e}-
structure that we obtain will take the following form (conjugate equations are unwritten):

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ +Wκ ∧ ζ +Rρ ∧ ζ + Jρ ∧ κ,

dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ + Ω̂1,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ + Ω̂2 + hρ ∧ κ,
dΛ = Λ ∧ π1 + Λ ∧ π1 + iπ2 ∧ π2 + Φ,
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with

Ω̂1 = − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ

+ 1
2 (Rκ − Jζ)ρ ∧ κ+ 1

2Rζρ ∧ ζ +

(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ,

Ω̂2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ
−Rζ ∧ κ.

Furthermore, we will show that h and Φ can be expressed in terms of Ω̂1, of Ω̂2 and of their
first-order derivatives. Thus, this demonstrates that there are exactly 2 primary invariants.

Clearly, when W ≡ J ≡ 0, the {e}-structure collapses to:

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,
dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ,
dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ,
dΛ = Λ ∧ π1 + Λ ∧ π1 + iπ2 ∧ π2

and these constant coefficients equations correspond to the structure equations of the tubeM5
LC

over the light cone, which is the reference model for this equivalence problem.
We would like to mention that, strictly speaking, Cartan’s equivalence method of producing

homogeneous models requires to normalize any group variable which occurs in some essential
torsion term, and this is what Pocchiola did in Section 7 of [25] for c := (J0)1/3 and in Section 8
for c := W0, showing afterwards that e can also be normalized in both cases.

For this deep reason, Pocchiola then disregarded the — essentially useless — task of con-
structing a general {e}-structure, since, when J0 ≡ W0 ≡ 0, the final Section 9 of [25] shows
that one comes uniquely to the structure equations of the modelM5

LC, without any further nonzero
essential torsion appearing. And this was really a discovery, because most of the times in CR ge-
ometry, primary invariants appear after a first prolongation.

However, because there is a tradition of setting up {e}-structures, even in absence of explicit
computations, even without discovering invariants at all, and because the needs for verifiable
computations has been expressed by some experts, we decided to set up the present article.
While re-building this chapter [25] of Pocchiola’s Ph.D. (Orsay University, September 2014),
we found a few copying mistakes in some intermediate formulas of [25, 18], but no error in
either statements or final formulas, e.g. W0 and J0 are correct.

For a more informative exposition of introductory aspects, the reader should read now the
brief and complementary Introduction to the Addendum to [18].

This paper is organized as follows. In Section 2, we recall the local geometry of 2-nondegenerate
Levi rank 1 real hypersurfaces M5 in C3. In Section 3, we give a description of the G1-structure
of the biholomorphic equivalences of such real hypersurfaces. Section 4 gives a quick glimpse
of a series of normalizations of parameters, which will be detailed in Sections 5 to 10, with the
first appearance of W0 in Section 8. The explicit expression of the invariant J0 is given in Sec-
tion 11, and a complete proof of the above formula for R is detailed in Section 12. Section 13
gives a short summary of the things that have been done in the previous sections, and finally
Section 14 gives a proposed {e}-structure for the equivalence problem.
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2. LOCAL GEOMETRY OF 2-NONDEGENERATE LEVI RANK 1 HYPERSURFACES M5 ⊂ C3

This section only summarizes what has been presented and detailed in [19, 17, 18]. Let
M5 ⊂ C3 be a Cω (real-analytic) smooth, local or global, real hypersurface and let p0 ∈ M . In
any affine holomorphic coordinate system:(

z1, z2, w
)
∈ C3 with w = u+ i v,

centered at p0 = (0, 0, 0) = 0 in which ∂
∂u

∣∣
0
6∈ T0M , there is a local Cω graphing function

F = F
(
z1, z2, z1, z2, v

)
with F(0) = 0 such that M is represented, in some (possibly small) open

neighborhood of the origin 0 by

u = F
(
z1, z2, z1, z2, v

)
.

Convention 2.1. From now on, the hypersurface will be identified with its localization in some
small open neighborhood of the origin, and it will always be denoted by M .

As is known (see [19] for detailed background), the complexified tangent bundle CTM :=
C ⊗R TM inherits from CTC := C ⊗R TC3 two biholomorphically invariant complex rank 2
vector subbundles

T 1,0M := T 1,0C3 ∩ CTM and T 0,1M := T 0,1C3 ∩ CTM = T 1,0M

which are conjugate one to another. Then a check shows that the two vector fields written in
the intrinsic coordinates (z1, z2, z1, z2, v) on M :

L1 :=
∂

∂z1
+ A1 ∂

∂v
and L2 :=

∂

∂z2
+ A2 ∂

∂v
,

whose coefficients are defined by:

Ai := − i Fzi
1 + iFv

(i = 1, 2),

generate T 1,0M , locally. Hence their two conjugates L1, L2 generate the bundle T 0,1M , also of
complex rank 2.

Then visibly the differential 1-form

%0 := dv − A1 dz1 − A2 dz2 − A1
dz1 − A2

dz2

has kernel {
%0 = 0

}
= T 1,0M ⊕ T 0,1M.

There are various (equivalent) aspects of the concept of Levi form of M , but they will not be
recalled here, since several sources treat that. Here, the Levi form of M can be represented as a
function of the points

p =
(
z1, z2, z1, z2, v

)
∈ M,

valued in the space of Hermitian 2 × 2 matrices, and in terms of %0 and of the Lie brackets of
the above vector fields, it writes as

LFM (p) :=

(
%0
(
i [L1,L1]

)
%0
(
i [L2,L1]

)
%0
(
i [L1,L2]

)
%0
(
i [L2,L2]

) ) (p).

As is known, the biholomorphic invariance of the Levi form legitimates our current

Hypothesis 2.2. [Uniform Levi rank 1] At all points p ∈M , the Levi matrix (form) LFM (p) has
constant rank 1.
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After a linear change of coordinates in the (z1, z2) space, we may assume that its (1, 1)-entry
vanishes nowhere on M :

%0
(
i [L1,L1]

)
(p) 6= 0 (∀ p ∈ M).

This means that the real vector field

T := i
[
L1,L1

]
= i

(
L1

(
A1)− L1

(
A1)) ∂

∂v
=: `

∂

∂v

has nowhere vanishing real coefficient that will be abbreviated as

` := i
(

A1

z1 + A1 A1

v − A1
z1 − A1 A1

v

)
6= 0.

Furthermore, since the 2×2 Levi matrix has constant rank 1, the collection of its 1-dimensional
kernels at all points p ∈M spans a Cω smooth subdistribution K1,0M ⊂ T 1,0M which satisfies
([19], pp. 72–73): [

K1,0M, K1,0M
]
⊂ K1,0M,[

K0,1M, K0,1M
]
⊂ K0,1M,[

K1,0M, K0,1M
]
⊂ K1,0M ⊕K0,1M (K0,1M := K1,0M).

With this, a vector field generator K of K1,0M writes uniquely as

K := kL1 + L2,

where the function k — very important in the theory — is the negative of the quotient of two
entries of the Levi matrix

k := −
L2

(
A1)− L1

(
A2)

L1

(
A1)− L1

(
A1) .

Hypothesis 2.3. [2-nondegeneracy] At all points p ∈M , the Freeman form has constant (max-
imal possible) rank 1.

For a detailed presentation of this second concept of form, also biholomorphically invariant,
see [19].

Proposition 2.4. ([19]) In this formalism, M is 2-nondegenerate if and only if:

L1(k) 6= 0 (everywhere on M).

In summary, two functions will be assumed to be nowhere vanishing on M , corresponding
to the two Hypotheses 2.2 and 2.3:

`(p) 6= 0 and L1(k)(p) 6= 0 (∀ p ∈ M).

Next, along with k, introduce a second and last fundamental function

P :=
`z1 + A1 `v − `A1

v

`
.

All invariants and semi-invariants in this paper will express in terms of k and P.



324 Wei Guo Foo and Joël Merker

Next, according to [17, 25, 18], there are 10 Lie bracket identities[
T ,L1

]
= −P · T ,[

T ,K
]

= L1(k) · T + T (k) · L1,[
T ,L1

]
= −P · T ,[

T ,K
]

= L1

(
k
)
· T + T

(
k
)
· L1,[

L1,K
]

= L1(k) · L1,[
L1,L1

]
= − i T ,[

L1,K
]

= L1

(
k
)
· L1,[

K,L1

]
= −L1(k) · L1,[

K,K
]

= 0,[
L1,K

]
= L1

(
k
)
· L1.

Lemma 2.5. ([19, 17]) The following 3 functional identities hold identically on M .

K
(
k
)
≡ 0,

K(P) ≡ −PL1(k)− L1

(
L1(k)

)
,

K
(
P
)
≡ −PL1(k)− L1

(
L1(k)

)
− i T (k). �

Then the coframe {
ρ0, κ0, ζ0, κ0, ζ0

}
dual to the frame {

T , L1, K, L1, K
}
,

i.e. which satisfies by definition

ρ0(T ) = 1, ρ0(L1) = 0, ρ0(K) = 0, ρ0(L1) = 0, ρ0(K) = 0,
κ0(T ) = 0, κ0(L1) = 1, κ0(K) = 0, κ0(L1) = 0, κ0(K) = 0,
ζ0(T ) = 0, ζ0(L1) = 0, ζ0(K) = 1, ζ0(L1) = 0, ζ0(K) = 0,
κ0(T ) = 0, κ0(L1) = 0, κ0(K) = 0, κ0(L1) = 1, κ0(K) = 0,

ζ0(T ) = 0, ζ0(L1) = 0, ζ0(K) = 0, ζ0(L1) = 0, ζ0(K) = 1,

has its 5 component 1-forms given explicitly by

ρ0 =
dv − A1dz1 − A2dz2 − A1

dz1 − A2
dz2

`
,

κ0 = dz1 − k dz2,
ζ0 = dz2,

κ0 = dz1 − k dz2,
ζ0 = dz2.

Notice that a different notation ρ0 6= %0 has been employed just now. Hence using a classical
formula which goes back at least to Lie ([11, Chap. 5]) which holds for two arbitrary vector
fields X and Y and for any differential 1-form ω

dω(X,Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω

([
X,Y

])
,
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by representing the 10 Lie brackets in some appropriate array

T L1 K L1 K

dρ0 dκ0 dζ0 dκ0 dζ0[
T , L1

]
= −P · T + 0 + 0 + 0 + 0 ρ0 ∧ κ0[

T , K
]

= L1(k) · T + T (k) · L1 + 0 + 0 + 0 ρ0 ∧ ζ0[
T , L1

]
= −P · T + 0 + 0 + 0 + 0 ρ0 ∧ κ0[

T , K
]

= L1
(
k
)
· T + 0 + 0 + T

(
k
)
· L1 + 0 ρ0 ∧ ζ0[

L1, K
]

= 0 + L1(k) · L1 + 0 + 0 + 0 κ0 ∧ ζ0[
L1, L1

]
= − i · T + 0 + 0 + 0 + 0 κ0 ∧ κ0[

L1, K
]

= 0 + 0 + 0 + L1(k) · L1 + 0 κ0 ∧ ζ0[
K, L1

]
= 0 + −L1(k) · L1 + 0 + 0 + 0 ζ0 ∧ κ0[

K, K
]

= 0 + 0 + 0 + 0 + 0 ζ0 ∧ ζ0[
L1, K

]
= 0 + 0 · L1 + 0 + L1

(
k
)

+ 0 κ0 ∧ ζ0

and by reading this array vertically, we obtain the initial Darboux-Cartan structure:

dρ0 = P · ρ0 ∧ κ0 − L1(k) · ρ0 ∧ ζ0 + P · ρ0 ∧ κ0 − L1

(
k
)
· ρ0 ∧ ζ0 + i κ0 ∧ κ0,

dκ0 = −T (k) · ρ0 ∧ ζ0 − L1(k) · κ0 ∧ ζ0 + L1(k) · ζ0 ∧ κ0,
dζ0 = 0,

dκ0 = −T
(
k
)
· ρ0 ∧ ζ0 − L1

(
k
)
· κ0 ∧ ζ0 − L1

(
k
)
· κ0 ∧ ζ0,

dζ0 = 0.

The fact that the frame
{
T ,L1,K,L1,K

}
is dual to the coframe

{
ρ0, κ0, ζ0, κ0, ζ0

}
yields a

formula that shall be used several times later.

Lemma 2.6. The exterior differential of any function G = G
(
z1, z2, z1, z2, v

)
on M expresses as

dG = T
(
G
)
ρ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0.

Proof. Indeed, starting from the definition

dG =
∂G
∂v

dv +
∂G
∂z1

dz1 +
∂G
∂z2

dz2 +
∂G
∂z1

dz1 +
∂G
∂z2

dz2,

and inverting the above coframe

dz2 = ζ0,

dz1 = κ0 + k ζ0,

dv = ` ρ0 + A1 (κ0 + k ζ0
)

+ A2 ζ0 + A1 (
κ0 + k ζ0

)
+ A2

ζ0

= ` ρ0 + A1 κ0 +
(
A2 + k A1) ζ0 + conjugates

we can replace, reorganize — unwritting the redundant conjugates — and reach the formula

dG ≡ ∂G
∂v

(
` ρ0 + A1 κ0 +

(
A2 + k A1

)
ζ0
)
+
∂G
∂z1

(
κ0 + k ζ0

)
+
∂G
∂z2

ζ0

≡
(
`
∂

∂v

)(
G
)
· ρ0 +

(
∂

∂z1
+ A1 ∂

∂v

)(
G
)
· κ0 +

(
∂

∂z1
+ A2 ∂

∂v
+ k ∂

∂z2
+ k A1 ∂

∂v

)(
G
)
· ζ0. �
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For later much deeper computations, we need strong notational conventions. The order
succession for our five 1-forms which we will constantly use{

ρ0, κ0, ζ0, κ0, ζ0,
}
,

induces an order succession for the ten generated 2-forms on the 5-dimensional CR manifold
M

ρ0 ∧ κ0
1

ρ0 ∧ ζ0
2

ρ0 ∧ κ0
3

ρ0 ∧ ζ0
4

κ0 ∧ ζ0
5

κ0 ∧ κ0
6

κ0 ∧ ζ0
7

ζ0 ∧ κ0
8

ζ0 ∧ ζ0
9

κ0 ∧ ζ0
10

.

With such a numbering, we can abreviate the structure equations as — dropping their conju-
gates —

dρ0 = R1
0 ρ0 ∧ κ0 + R2

0 ρ0 ∧ ζ0 + R3
0 ρ0 ∧ κ0 + R4

0 ρ0 ∧ ζ0 + i κ0 ∧ κ0,

dκ0 = K2
0 ρ0 ∧ ζ0 + K5

0 κ0 ∧ ζ0 + K8
0 ζ0 ∧ κ0,

dζ0 = 0.

Convention 2.7. All functions of p = (z1, z2, z1, z2, v) ∈ M will be denoted with a lower index
(•)0, always employing the special auxiliary font characters A,B,C, . . . .

After some transformations in the next sections, this initial coframe will change and become
more complicated (unwriting the conjugates){

ρ0, κ0, ζ0
}

 
{
ρ0, κ0, ζ

′
0

}
 

{
ρ0, κ

′
0, ζ
′
0

}
 

{
ρ0, κ

′
0, ζ
′′
0

}
,

and new structure function Ri′
0 , Ki′

0 , Zi′0 , . . . will appear.
We end up this section by stating some technical commutation relations that shall be con-

stantly necessary to normalize incoming (complicated) expressions in order to avoid ambigu-
ities. In fact, we can take advantage of K(k) = 0 from Lemma 2.5, to make K ‘jump’ above
iterated derivatives like e.g. in

K
��(

L1(k)
)
, K

��(
L1

(
L1(k))

)
.

Precisely, the last, 10 th Lie bracket relation preceding Lemma 2.5

−L1

(
k
)
· L1(•) =

[
K,L1

]
(•),(2.8)

when applied to the function • := k yields

−L1

(
k
)
L1(k) =

[
K,L1

]
(k) = K

(
L1(k)

)
− L1

(
K(k)

◦

)
= K

(
L1(k)

)
.

Lemma 2.9. One has the 3 relations

K
(
L1(k)

)
= −L1

(
k
)
L1(k),(1)

K
(
L1

(
L1(k)

))
= − 2L1

(
k
)
L1

(
L1(k)

)
− L1

(
L1

(
k
))
L1(k),(2)

K
(
L1

(
L1

(
L1(k)

)))
= − 3L1

(
k
)
L1

(
L1

(
L1(k)

))
(3)

− 3L1

(
L1

(
k
))
L1

(
L1(k)

)
− L1

(
L1

(
L1(k)

))
L1(k).
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Proof. As (1) is done, we can apply L1(•) to it, reversing sides

−L1

(
L1

(
k
))
L1(k)− L1

(
k
)
L1

(
L1(k)

)
= L1

(
K
(
L1(k)

))
.

Similarly, we apply (2.8) to • := L1(k) and we reach (2) after a replacement

−L1

(
k
)
L1

(
L1(k)

)
=
[
K,L1

](
L1(k)

)
= K

(
L1

(
L1(k)

))
− L1

(
K
(
L1(k)

))︸ ︷︷ ︸
replace

.

Now, as (2) is done, we can apply L1(•) to it, and get after reorganization

L1

(
K
(
L1

(
L1(k)

)))
= − 2L1

(
k
)
L1

(
L1

(
L1(k)

))
− 3L1

(
L1

(
k
))
L1

(
L1(k)

)
− L1

(
L1

(
L1

(
k
)))
L1(k).

Lastly, we apply (2.8) to • := L1

(
L1(k)

)
and we reach (3) after a replacement

−L1

(
k
)
L1

(
L1

(
L1(k)

))
=
[
K,L1

](
L1

(
L1(k)

))
= K

(
L1

(
L1

(
L1(k)

)))
− L1

(
K
(
L1

(
L1(k)

)))︸ ︷︷ ︸
replace

. �

3. INITIAL G1-STRUCTURE FOR LOCAL BIHOLOMORPHIC EQUIVALENCES h : M
∼−→M ′

Now, let h : U
∼−→ U ′ ⊂ C3 be a (local) biholomorphism from an open set U ⊂ C3 containing

U 3 0 the origin onto its image

h(U) =: U ′ 3 0′ = h(0),

which is also an open set U ′ ⊂ C′3 containing the origin 0′ in another target complex Euclidean
space C′3 having the same dimension.

M

h
M ′

C3
C′3

0′

U ′U

0

As in Cartan’s equivalence theory, assume that h
(
M ∩ U

)
⊂ M ′ is contained in another real

hypersurface M ′ ⊂ C′3, also passing through the origin 0′ ∈ M ′, represented in holomorphic
coordinates

(
z′1, z

′
2, w

′ = u′ + i v′
)

by a similar Cω graphed equation

u′ = F′
(
z′1, z

′
2, z
′
1, z
′
2, v
′).

We now make the convention of not mentioning the open sets that must sometimes be shrunk,
so that we think of h : M

∼−→ M ′ as being a CR equivalence between hypersurfaces M ⊂ C3

and M ′ ⊂ C′3.
In the target space, introduce similar generators L′1, L′2 for T 1,0M ′. Since h is holomorphic, its
differential h∗ : CTC3 −→ CTC′3 stabilizes holomorphic (1, 0) and holomorphic (0, 1) vector
fields

h∗
(
T 1,0C3

)
= T 1,0C′3 and h∗

(
T 0,1M

)
= T 0,1M ′.

Furthermore, by invariancy of the Freeman form, h respects the Levi-kernel distributions

h∗
(
K1,0M

)
= K1,0M ′.
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Consequently, there exist functions f ′, c′, e′ on M ′ such that

h∗(K) = f ′K′,
h∗
(
L1

)
= c′ L′1 + e′K′,

whence by conjugation
h∗
(
K
)

= f
′K′,

h∗
(
L1

)
= c′ L′1 + e′K′.

On the other hand, there is a priori no special condition that shall be satisfied by h∗(T ), except
that it be a real vector field, because T is real. Thus, there are a real-valued function a′ and two
complex-valued b′ and d′ on M ′ such that

h∗(T ) = a′ T ′ + b′ L′1 + d′K′ + b
′ L′1 + d

′K′.
In fact, the function a′ is determined, because

h∗(T ) = h∗
(
i
[
L1,L1

])
= i

[
h∗
(
L1

)
, h∗

(
L1

)]
= i

[
c′L′1 + e′K′, c′L′1 + e′K′

]
≡ c′c′ i

[
L′1, L

′
1

]
mod

(
T 1,0M ′ ⊕ T 0,1M ′

)
,

whence necessarily
a′ = c′c′.

Summarizing, we have the following matrix relations

h∗


T
L1

K
L1

K

 =


c′c′ b′ d′ b

′
d
′

0 c′ e′ 0 0
0 0 f ′ 0 0
0 0 0 c′ e′

0 0 0 0 f
′



T ′
L′1
K′

L′1
K′

 .

As h∗ is invertible, the function f ′, and then the function c′ too, must be nowhere vanish-
ing. The relation between the coframe

{
ρ0, κ0, ζ0, κ0, ζ0

}
in the source space and the coframe{

ρ′0, κ
′
0, ζ
′
0, κ
′
0, ζ
′
0

}
in the target space is therefore given by a plain transposition

h∗


ρ′0
κ′0
ζ ′0
κ′0
ζ
′
0

 =


c′c′ 0 0 0 0
b′ c′ 0 0 0
d′ e′ f ′ 0 0

b
′

0 0 c′ 0

d
′

0 0 e′ f
′



ρ0
κ0
ζ0
κ0
ζ0

 .

These preliminaries, also explained in [16, 25, 18], justify that the initial G-structure for such
equivalences of CR manifolds is the matrix ambiguity group G1 is constituted of 5× 5 matrices
of the form 

cc 0 0 0 0
b c 0 0 0
d e f 0 0

b 0 0 c 0

d 0 0 e f


with free variable complex entries

c, f ∈ C\{0} and b, d, e ∈ C,
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namely 
ρ
κ
ζ
κ

ζ

 :=


cc 0 0 0 0
b c 0 0 0
d e f 0 0

b 0 0 c 0

d 0 0 e f



ρ0
κ0
ζ0
κ0
ζ0

 .

Eliminating the conjugate 1-forms κ, ζ for which the structure equations are redundant, this
can be abbreviated as  ρ

κ
ζ

 :=

 cc 0 0
b c 0
d e f

  ρ0
κ0
ζ0

 .

4. A LABYRINTHMAP TO POCCHIOLA’S CALCULATIONS

The successive reductions of this G1 structure will look as

g :=

 cc 0 0
b c 0
d e f

  g :=

 cc 0 0
b c 0
d e c

c

  g :=

 cc 0 0
−i ce c 0
d e c

c


 g :=

 cc 0 0
−i ce c 0

− i
2

ce2

c e c
c

 ,

thanks to successive normalization of some group parameters (offered by some essential tor-
sion coefficients yielding invariants that are deeper than Levi and Freeman forms)

f :=
c

c
L1(k), b := − i c e +

i

3
cB0, d := − i

2

c e e

c
+ i

c

c
H0,

in terms of the following two function on M

B0 :=
L1

(
L1(k)

)
L1(k)

− P,

H0 := −1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
P

L1(k)
+

1

6
L1

(
P
)
− 1

9
P2
.

This function H0 coincides with Pocchiola’s function H .
The next sections will present in details these successive reductions ofG-structures, by these

normalizations of the group parameters f, b, d. Contrary to [18, 25], all computations will be
progressive, simple, detailed, readable, clear, without needing any help of either a computer or
a pen. A great care will be devoted to readability.

5. FIRST LOOP: REDUCTION OF THE GROUP PARAMETER f

We recall that the initial Darboux-Cartan structure of the coframe
{
ρ0, κ0, ζ0, κ0, ζ0

}
is, with-

out writing conjugate equations — remind ρ0 = ρ0 —

dρ0 = P ρ0 ∧ κ0 − L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ0 − L1

(
k
)
ρ0 ∧ ζ0 + i κ0 ∧ κ0,

dκ0 = −T (k) ρ0 ∧ ζ0 − L1(k)κ0 ∧ ζ0 + L1(k) ζ0 ∧ κ0,(5.1)
dζ0 = 0.
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With the first G-structure exhibited above, introduce the lifted differential forms, defined by ρ
κ
ζ

 :=

 cc 0 0
b c 0
d e f

 ρ0
κ0
ζ0

 ,

id est

ρ := cc ρ0,

κ := b ρ0 + cκ0,

ζ := d ρ0 + eκ0 + f ζ0.

Here, c, f ∈ C∗ and b, e, d ∈ C. Mind that conjugate equations giving κ and ζ are not written,
but will be used.
An inversion yields

ρ0 =
1

cc
ρ,

κ0 =
1

c
κ− b

ccc
ρ,(5.2)

ζ0 =
be− cd

cccf
ρ− e

cf
κ+

1

f
ζ.

With the above 3×3 matrix g representing the general element of a 10-dimensional (real) group
G10 ⊂ GL3(C), the Maurer-Cartan matrix is

dg · g−1 =

 c dc + cdc 0 0
db dc 0
dd de df

 1
cc 0 0
− b

ccc
1
c 0

be−cd
cccf − e

cf
1
f


=:

 α+ α 0 0
β α 0
γ δ ε


in terms of the group-invariant 1-forms

α :=
dc

c
,

β :=
db

cc
− bc dc

cc
,

γ :=
dd

cc
− b de

ccc
+

be− cd

cccf
df,

δ :=
de

c
− e df

cf
,

ε :=
df

f
.

As is known, after painful computations whose outcomes are presented extensively in [25, 18],
one can re-express, using (5.1) and (5.2), the exterior differentials of the 3 lifted 1-forms ρ, ζ, κ
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as
dρ = α ∧ ρ+ α ∧ ρ

+R1 ρ ∧ κ+R2 ρ ∧ ζ +R3 ρ ∧ κ+R4 ρ ∧ ζ + i κ ∧ κ,
dκ = β ∧ ρ+ α ∧ κ

+K1 ρ ∧ κ+K2 ρ ∧ ζ +K3 ρ ∧ κ+K4 ρ ∧ ζ

+K5 κ ∧ ζ +K5 κ ∧ κ+ K8 ζ ∧ κ,
dζ = γ ∧ ρ+ δ ∧ κ+ ε ∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ
+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z8 ζ ∧ κ

in terms of certain complicated functionsRi,Ki, Zi of the horizontal variables and of the group
parameters as well (

z1, z2, z1, z2, v
)
×
(
c, c, f, f, b, b, d, d, e, e

)
∈ M5 ×G10,

but we shall not need the expressions of all these functions, and focus only on the boxed one,
K8, since it will bring an interesting normalization for the diagonal group parameter f.

Notation 5.3. Given a differential 2-form Ω ∈ Γ(M,Λ2T ∗M) on an n-dimensional manifold M
equipped with a coframe

{
ω1, . . . , ωn

}
for its cotangent bundle T ∗M , which is expanded as

Ω =
∑

16i<j6n

Ai,j ω
i ∧ ωj ,

with uniquely determined coefficients-functions A•,•, for fixed i < j, the coefficient Ai,j of
ωi ∧ ωj will be denoted by [

ωi ∧ ωj
]{

Ω
}

:= Ai,j .

To capture K8 without pain, the computation
/

re-expression of dκ starts from κ = b ρ0 + cκ0
as follows to see how Maurer-Cartan forms enter the play

dκ = db ∧ ρ0 + dc ∧ κ0 + b dρ0 + c dκ0

= db ∧
(

1
cc ρ
)

+ dc ∧
(
1
c κ−

b
ccc ρ

)
+ Torsion

=
(
db− b dc

ccc

)
∧ ρ+

(
dc
c

)
∧ κ+ Torsion

= β ∧ ρ+ α ∧ κ+ Torsion.

Certainly, K8 belongs to the torsion remainder, and we want to determine only

K8 :=
[
ζ ∧ κ

]{
dκ
}

=
[
ζ ∧ κ

]{
b dρ0 + c dκ0

}
.

For the first term b dρ0, we look at (5.1) in which we replace visually ρ0, ζ0, κ0 by ρ, ζ, κwatching
simultaneously (5.2) — no pen needed! computers shut down! — and we get

b
[
ζ ∧ κ

]{
dρ0
}

= 0 + 0 + 0 + 0 + 0 = 0.

Proceeding similarly, just with eyes

c
[
ζ ∧ κ

]{
dκ0
}

= 0 + 0 + cL1(k)
[
ζ ∧ κ

]{(be− bd

cccf
ρ− e

cf
κ+

1

f
ζ
)
∧
(
− b

ccc
ρ+

1

c
κ
)

= cL1(k)
(
1
f

) (
1
c

)
,

whence adding
K8 =

c

cf
L1(k).
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Furthermore, without computation, we see thatK8 is not absorbable in the Maurer-Cartan part
β ∧ ρ+ α ∧ κ by means of any replacement

α = α′ + a1 ρ+ a2 κ+ a3 ζ + a4 κ+ a5 ζ,

β = β′ + b1 ρ+ b2 κ+ b3 ζ + b4 κ+ b5 ζ,

because the result will always be

something ∧ ρ+ something ∧ κ,

whereas K8 ζ ∧ κ is not ∧-divisible by either ∧ρ or ∧κ.
Consequently, K8 is an essential torsion coefficient, and by general Cartan theory, K8 may

bring a group parameter normalization.
In fact, since the diagonal coefficients c 6= 0 6= f of the invertible triangular matrix must be

nonvanishing, and sinceL1(k) 6= 0 is nowhere vanishing by our assumption of 2-nondegeneracy,
it is natural, then, to normalize K8 to be constant nonzero, e.g. K8 := 1, and this yields a re-
duction of the G10-structure to an eight-dimensional G8-structure by setting

f :=
c

c
L1(k).

Inserting this in the lifted coframe ρ
κ
ζ

 :=

 cc 0 0
b c 0
d e c

c L1(k)

 ρ0
κ0
ζ0

 ,

we are conducted to change the initial coframe by introducing the new horizontal — i.e. de-
fined on M — 1-form

ζ ′0 := L1(k) ζ0.(5.4)

As anticipated in a summary supra, we are thus changing of horizontal coframe{
ρ0, κ0, ζ0, κ0, ζ0

}
 

{
ρ0, κ0, ζ

′
0, κ0, ζ

′
0

}
,

and unavoidably, we have to set up its Darboux-Cartan structure.
Thanks to Lemma 2.6, we can compute

dζ ′0 = d
(
L1(k)

)
∧ ζ0 + L1(k) ∧ dζ0◦

= T
(
L1(k)

)
ρ0 ∧ ζ0 + L1

(
L1(k)

)
κ0 ∧ ζ0 +K

(
L1(k)

)
ζ0 ∧ ζ0◦ + L1

(
L1(k)

)
κ0 ∧ ζ0

+K
(
L1(k)

)
ζ0 ∧ ζ0 + 0,

and next, replacing everywhere ζ0 =
ζ′0
L1(k)

, reorganizing, and transforming the last term above
in application of Lemma 2.9 (1), we obtain the structure equations enjoyed by this new initial
base coframe

dρ0 = P ρ0 ∧ κ0 −
L1(k)

L1(k)
ρ0 ∧ ζ ′0 + P ρ0 ∧ κ0 −

L1(k)

L1(k)
ρ0 ∧ ζ

′
0 + i κ0 ∧ κ0,

dκ0 = − T (k)

L1(k)
ρ0 ∧ ζ ′0 −

L1(k)

L1(k)
κ0 ∧ ζ ′0 + ζ ′0 ∧ κ0,

(5.5)

dζ ′0 =
T
(
L1(k)

)
L1(k)

ρ0 ∧ ζ ′0 +
L1

(
L1(k)

)
L1(k)

κ0 ∧ ζ ′0 −
L1

(
L1(k)

)
L1(k)

ζ ′0 ∧ κ0 +
L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0.
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Sometimes, it can be useful to abbreviate these formulas as

dρ0 = R1
0 ρ0 ∧ κ0 + R2

0 ρ0 ∧ ζ ′0 + R1

0 ρ0 ∧ κ0 + R0

2 ρ0 ∧ ζ
′
0 + i κ0 ∧ κ0,

dκ0 = K2
0 ρ0 ∧ ζ ′0 + K5

0 κ0 ∧ ζ ′0 + ζ ′0 ∧ κ0,

dζ ′0 = Z2
0 ρ0 ∧ ζ ′0 + Z5

0 κ0 ∧ ζ ′0 + Z8
0 ζ
′
0 ∧ κ0 + Z9

0 ζ
′
0 ∧ ζ

′
0,

and no primes will be appended to these coefficients-functions, for the reason that exactly two
further changes of initial base coframes{

ρ0, κ0, ζ
′
0, κ0, ζ

′
0

}
 

{
ρ0, κ

′
0, ζ
′
0, κ

′
0, ζ
′
0

}
 

{
ρ0, κ

′
0, ζ
′′
0 , κ

′
0, ζ
′′
0

}
will force us to introduce e.g. Zi′0 and Zi′′0 , so that we will avoid to use primes trice.

6. SECOND LOOP: REDUCTION OF THE GROUP PARAMETER b

With this new reduced (real) eight-dimensional group G8, the lifted coframe, in which for
simplicity, we use the same letters ρ, κ, ζ as before, becomes ρ

κ
ζ

 :=

 cc 0 0
b c 0
d e c

c

 ρ0
κ0
ζ ′0

 ⇐⇒


ρ := cc ρ0,

κ := b ρ0 + cκ0,

ζ := d ρ0 + eκ0 +
c

c
ζ ′0,

and inverse formulas are

ρ0 =
1

cc
ρ,

κ0 = − b

ccc
ρ+

1

c
κ,(6.1)

ζ ′0 =
be− cd

ccc
ρ− ce

cc
κ+

c

c
ζ.

The Maurer-Cartan matrix becomes

dg · g−1 =

 c dc + cdc 0 0
db dc 0
dd de dc

c −
c dc
cc

 1
cc 0 0
− b

ccc
1
c 0

be−cd
ccc − ce

cc
c
c


=:

 α+ α 0 0
β α 0
γ δ α− α

 ,

in terms of the group-invariant 1-forms

α :=
dc

c
,

β :=
db

cc
− b dc

ccc
,

γ :=
dd

cc
− b de

ccc
+

be− cd

cccc
dc− be− cd

cccc
dc,

δ :=
de

c
− e dc

cc
+

e dc

cc
.

Now, let us exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates (

z1, z2, z1, z2, v
)
×
(
c, c, b, b, d, d, e, e

)
∈ M5 ×G8.
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The computation starts as

dρ =
(
c dc + c dc

)
∧ ρ0 + cc dρ0,

dκ = db ∧ ρ0 + dc ∧ κ0 + b dρ0 + c dκ0,(6.2)

dζ = dd ∧ ρ0 + de ∧ κ0 +
(dc
c
− c dc

cc

)
∧ ζ ′0 + d dρ0 + e dκ0 +

c

c
dζ ′0.

As is known, one must replace in second lines dρ0, dκ0, dζ ′0 by the structure equations (5.5),
and after, replace everywhere ρ0, κ0, ζ ′0, using the inversion formulas (6.1).

However, contrary to Pocchiola’s systematic approach, we will not perform these calcula-
tions completely, but select only meaningful terms.

At least, at the level of Maurer-Cartan forms, after replacements of ρ0, κ0, ζ ′0 in the first lines
of (6.2) above using (6.1), we have as usual

dρ =
(
α+ α

)
∧ ρ+ Torsion,

dκ = β ∧ ρ+ α ∧ κ+ Torsion,

dζ = γ ∧ ρ+ δ ∧ κ+
(
α− α

)
∧ ζ + Torsion.

Question 6.3. Without computing everything, what are the shapes of the three Torsion remain-
ders?

Consider for instance what happens of the last term c
c dζ

′
0 in dζ, when performing the re-

quired replacements, and restrict attention even to the last term of c
c dζ

′
0 in (5.5), which becomes

c

c

L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0 =

c

c

L1(k)

L1(k)

(
be− cd

ccc
ρ− ce

cc
κ+

c

c
ζ

)
∧
(
be− cd

cc
ρ− ce

cc
κ+

c

c
ζ

)
.

After expansion, we see that are present the eight 2-forms

(•) ρ ∧ κ, (•) ρ ∧ ζ, (•) ρ ∧ κ, (•) ρ ∧ ζ,
(•)κ ∧ κ, (•)κ ∧ ζ, (•) ζ ∧ κ, (•) ζ ∧ ζ.

Doing the same for all torsion terms, we may realize — although it is not necessary to check
this for what follows — with almost no computation that the nonexplicit shape of the structure
equations of the lifted coframe is

dρ =
(
α+ α

)
∧ ρ+R1 ρ ∧ κ+R2 ρ ∧ ζ + R

1
ρ ∧ κ+R

2
ρ ∧ ζ + i κ ∧ κ,

dκ = β ∧ ρ+ α ∧ κ+K1 ρ ∧ κ+K2 ρ ∧ ζ +K3 ρ ∧ κ+K4 ρ ∧ ζ

+K5 κ ∧ ζ + K6 κ ∧ κ+ 1 · ζ ∧ κ,
dζ = γ ∧ ρ+ δ ∧ κ+

(
α− α

)
∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ

+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z7 κ ∧ ζ + Z8 ζ ∧ κ+ Z9 ζ ∧ ζ.

Of course, the preceding normalization f := c
c L1(k) forces

1 =
[
ζ ∧ κ

]{
dκ
}
,

a fact that can also be confirmed by a direct computation of this torsion coefficient (exercise).
So we do not compute all torsion coefficients like Pocchiola did, but we determine before

some essential torsions, so that we may focus on just the useful torsion terms. In advance, we
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have boxed above the 3 useful ones, shown by Pocchiola. The subtle thing is that all three
structure equations are needed.

Lemma 6.4. Here is an essential linear combination of torsion terms

R
1 − 2K6 + Z8.

Proof. In order to ’absorb’ as many torsion coefficients as possible, let us substitute

α =: α′ + a1 ρ+ a2 κ+ a3 ζ + a4 κ+ a5 ζ,

β =: β′ + b1 ρ+ b2 κ+ b3 ζ + b4 κ+ b5 ζ,

γ =: γ′ + c1 ρ+ c2 κ+ c3 ζ + c4 κ+ c5 ζ,

δ =: δ′ + d1 ρ+ d2 κ+ d3 ζ + d4 κ+ d5 ζ.

At first, we have to transform the structure equations after such a substitution, the task is easy,
and we write out the details so that the reader needs no pen and no computer.

Substituting, the Maurer-Cartan part of dρ becomes(
α+ α

)
∧ ρ =

(
α′ + α′

)
∧ ρ+ 0 + a2 κ ∧ ρ+ a3 ζ ∧ ρ+ a4 κ ∧ ρ+ a5 ζ ∧ ρ

+ 0 + a2 κ ∧ ρ+ a3 ζ ∧ ρ+ a4 κ ∧ ρ+ a5 ζ ∧ ρ,

hence adding and reorganizing visually, we get

dρ =
(
α′ + α′

)
∧ ρ

+ ρ ∧ κ
(
R1 − a2 − a4

)
+ ρ ∧ ζ

(
R2 − a3 − a5

)
+ ρ ∧ κ

(
R

1 − a4 − a2
)

+ ρ ∧ ζ
(
R

2 − a5 − a3
)

+ i κ ∧ κ.

Next

β ∧ ρ+ α ∧ κ = β′ ∧ ρ+ 0 + b2 κ ∧ ρ+ b3 ζ ∧ ρ+ b4 κ ∧ ρ+ b5 ζ ∧ ρ
+ α′ ∧ κ+ a1 ρ ∧ κ+ 0 + a3 ζ ∧ κ+ a4 κ ∧ κ+ a5 ζ ∧ κ,

hence

dκ = β′ ∧ ρ+ α′ ∧ κ

+ ρ ∧ κ
(
K1 + a1 − b2

)
+ ρ ∧ ζ

(
K2 − b3

)
+ ρ ∧ κ

(
K3 − b4

)
+ ρ ∧ ζ

(
K4 − b5

)
+ κ ∧ ζ

(
K5 − a3

)
+ κ ∧ κ

(
K6 − a4

)
+ κ ∧ ζ

(
− a5

)
+ ζ ∧ κ.

Lastly

γ ∧ ρ+ δ ∧ κ+
(
α− α

)
∧ ζ = γ′ ∧ ρ+ 0 + c2 κ ∧ ρ+ c3 ζ ∧ ρ+ c4 κ ∧ ρ+ c5 ζ ∧ ρ

+ δ′ ∧ κ+ d1 ρ ∧ κ+ 0 + d3 ζ ∧ κ+ d4 κ ∧ κ+ d5 ζ ∧ κ
+ α′ ∧ ζ + a1 ρ ∧ ζ + a2 κ ∧ ζ + 0 + a4 κ ∧ ζ + a5 ζ ∧ ζ
− α′ ∧ ζ − a1 ρ ∧ ζ − a2 κ ∧ ζ − a3 ζ ∧ ζ − a4 κ ∧ ζ − 0,
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hence

dζ = γ′ ∧ ρ+ δ′ ∧ κ+
(
α′ − α′

)
∧ ζ

+ ρ ∧ κ
(
Z1 − c2 + d1

)
+ ρ ∧ ζ

(
Z2 − c3 + a1 − a1

)
+ ρ ∧ κ

(
Z3 − c4

)
+ ρ ∧ ζ

(
Z4 − c5

)
+ κ ∧ ζ

(
Z5 − d3 + a2 − a4

)
+ κ ∧ κ

(
Z6 − d4

)
+ κ ∧ ζ

(
Z7 − d5

)
+ ζ ∧ κ

(
Z8 − a4 + a2

)
+ ζ ∧ ζ

(
Z9 − a5 + a3

)
.

Extracting the boxed three new torsion coefficients

R
1′

= R
1 − a4 − a2,

K6′ = K6 − a4,
Z8′ = Z8 − a4 + a2,

we see well the announced essentiality
/

invariancy of this torsion combination

R
1′ − 2K6′ + Z8′ = R

1 − 2K6 + Z8. �

Consequently, we may restrict ourselves to computing only these three torsion coefficients.

Lemma 6.5. Their explicit expressions are

R
1

=
P
c

+
ce

cc

L1(k)

L1(k)
− i b

cc
,

K6 = i
b

cc
− e

c
,

Z8 =
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
.

Proof. We proceed by chasing coefficients. Let us treat R
1
. From (6.2), replacing in (5.5) by

means of (6.1), we reach its expression

R
1

=
[
ρ ∧ κ

]{
cc dρ0

}
= 0 + 0 +

[
ρ ∧ κ

]{
ccP

( 1

cc
ρ
)
∧
(
− b

ccc
ρ+

1

c
κ
)

− cc
L1(k)

L1(k)

( 1

cc
ρ
)
∧
(be− cd

ccc
ρ− ce

cc
κ+

c

c
ζ
)

+ cc i
(
− b

ccc
ρ+

1

c
κ
)
∧
(
− b

ccc
ρ+

1

c
κ
)}

= cc◦ P 1

cc◦

1

c
+ cc◦

L1(k)

L1(k)

1

cc◦

ce

cc
− i cc◦

b

ccc◦

1

c
.

Next, from (6.2), let us treat

K6 =
[
κ ∧ κ

]{
b dρ0 + c dκ0

}
.
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In b dρ0, the first four terms in (5.5) have zero contribution, since they are multiples of ρ0, hence
of ρ, whence [

κ ∧ κ
]{
b dρ0

}
= 0 + 0 + 0 + 0 +

[
κ ∧ κ

]{
b i κ0 ∧ κ0

}
=
[
κ ∧ κ

]{
i b
(
− b

ccc
ρ+

1

c
κ
)
∧
(
− b

ccc
ρ+

1

c
κ
)}

= i
b

cc
.

Also, in c dκ0, the first two terms contribute 0, and it remains[
κ ∧ κ

]{
c dκ0

}
= 0 + 0 +

[
κ ∧ κ

]{
c ζ ′0 ∧ κ0

}
=
[
κ ∧ κ

]{
c
(
− ce

cc
κ
)
∧
(1

c
κ
)}

= − e

c
.

Lastly

Z8 =
[
ζ ∧ κ

]{
d dρ0 + e dκ0 +

c

c
dζ ′0

}
.

Here, d dρ0 contributes 0. Next, the first two terms in e dκ0 contribute 0, and it remains[
ζ ∧ κ

]{
e dκ0

}
=
[
ζ ∧ κ

]{
e ζ ′0 ∧ κ0

}
=
[
ζ ∧ κ

]{
e
(c
c
ζ
)
∧
(1

c
κ
)}

=
e

c
.

Also, in c
c dζ

′
0, the first two terms contribute 0, and the last two terms are[

ζ ∧ κ
]{c

c
dζ ′0

}
= − c

c

L1

(
L1(k)

)
L1(k)

[
ζ ∧ κ

]{(c
c
ζ
)
∧
(1

c
κ
)}

+
c

c

L1(k)

L1(k)

[
ζ ∧ κ

]{(c
c
ζ
)
∧
(
− ce

cc
κ
)}

= − 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)

Adding, we get Z8. �

Observing that necessarily −a5 = 0 from
[
κ ∧ ζ

]{
dκ
}

, we realize that some other invariant
relations between torsion coefficients appear

R2′ −K5′ = R2 −K5,

R
2′

+ Z9′ = R
2

+ Z9,

that could potentially bring normalizations of some group parameters, but will not, as it will
come out that they are identically satisfied. However, knowing them will be very useful later,
hence we state a supplementary:

Assertion 6.6. Three other torsion coefficients have the common explicit expression

R2 = K5 = −Z9
= − c

c

L1(k)

L1(k)
.
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Proof. Our technique gives

R2 =
[
ρ ∧ ζ

]{
cc dρ0

}
= 0− cc

L1(k)

L1(k)

1

cc

c

c
+ 0 + 0 + 0.

Next
K5 =

[
ζ ∧ κ

]{
b dρ0 + c dκ0

}
= 0 +

[
ζ ∧ κ

]{
c dκ0

}
= 0− L1(k)

L1(k)
c

1

c

c

c
+ 0.

Lastly

Z9 =
[
κ ∧ ζ

]{
d dρ0 + e dκ0 +

c

c
dζ ′0

}
= 0 + 0 +

[
κ ∧ ζ

]{c
c
dζ ′0

}
= 0 + 0 + 0 +

c

c

L1(k)

L1(k)

c

c

c

c
. �

Coming back to Lemma 6.5, we can now compute in details, emphasizing one annihilation,
the expression of the interesting invariant torsion combination

R
1 − 2K6 + Z8 =

P
c

+
ce

cc

L1(k)

L1(k)
◦

− i b

cc

− 2 i
b

cc
+ 2

e

c

+
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
◦

= − 3 i
b

cc
+ 3

e

c
− 1

c

(
L1

(
L1(k)

)
L1(k)

− P
)
.

Since the group parameter b ∈ C is not on the diagonal, there is no restriction for it to be
nonzero, hence we can normalize it by requiring that

0 = R
1 − 2K6 + Z8,

and this produces the announced normalization

b := − i ce +
i

3
c

(
L1

(
L1(k)

)
L1(k)

− P
)
.(6.7)

For convenience, let us abbreviate

B0 :=
L1

(
L1(k)

)
L1(k)

− P,

which is function on M , as its lower index 0 points out, so that

b := − i ce +
i

3
cB0.
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After this normalization, the lifted coframe becomes ρ
κ
ζ

 :=

 cc 0 0
−i ce + i

3 cB0 c 0
d e c

c

 ρ0
κ0
ζ ′0

 .

Consequently, we can transform
/

rewrite in a natural way

κ =
(
− i ce +

i

3
cB0

)
ρ0 + cκ0

=
(
− i ce

)
ρ0 + c

(
κ0 +

i

3
B0 ρ0︸ ︷︷ ︸

=: κ′0

)
,

and this conducts us to change of initial coframe on M{
ρ0, κ0, ζ

′
0, κ0, ζ

′
0

}
 

{
ρ0, κ

′
0, ζ
′
0, κ

′
0, ζ
′
0

}
,

by introducing

κ′0 := κ0 +
i

3
B0 ρ0.(6.8)

It follows that
ζ = d ρ0 + eκ0 +

c

c
ζ ′0 = d ρ0 + e

(
κ′0 −

i

3
B0 ρ0

)
+

c

c
ζ ′0

=
(
d− i

3
eB0︸ ︷︷ ︸

=: d′

)
ρ0 + eκ′0 +

c

c
ζ ′0.

Before, d ∈ C was a parameter representing some unknown function. Introducing the new
unknown

/
parameter

d′ := d− i

3
e,

we come to a new G-structure of real dimension 6 parametrized by c, e ∈ C∗ and d′ ∈ C whose
lifted coframe writes  ρ

κ
ζ

 :=

 cc 0 0
−i ce c 0
d′ e c

c

 ρ0
κ′0
ζ ′0

 .

We will write again d instead of d′.

7. DARBOUX-CARTAN STRUCTURE OF THE COFRAME
{
ρ0, κ

′
0, ζ
′
0, κ
′
0, ζ
′
0

}
Before continuing, we must compute the Darboux-Cartan structure of this new initial coframe{
ρ0, κ

′
0, ζ
′
0, κ
′
0, ζ
′
0

}
, for which absolutely no details were provided in [25, 18]. Here, we offer

complete explanations.
Abstractly, the structure in question will have the shape

dρ0 = R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ ′0 + R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ
′
0 + i κ′0 ∧ κ′0,

dκ′0 = K1′
0 ρ0 ∧ κ′0 + K2′

0 ρ0 ∧ ζ ′0 + K3′
0 ρ0 ∧ κ′0(7.1)

+ K5′
0 κ
′
0 ∧ ζ ′0 + K6′

0 κ
′
0 ∧ κ′0 + ζ ′0 ∧ κ′0,

dζ ′0 = Z2′
0 ρ0 ∧ ζ ′0 + Z5′

0 κ
′
0 ∧ ζ ′0 + Z8′

0 ζ
′
0 ∧ κ′0 + Z9′

0 ζ
′
0 ∧ ζ

′
0.

Our goal is to compute explicitly all these coefficients, and the answer is stated as follows:
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Proposition 7.2. The Darboux-Cartan structure for the initial coframe
{
ρ0, κ

′
0, ζ
′
0, κ
′
0, ζ
′
0

}
expands as

dρ0 =

(
1

3

L1

(
L1(k)

)
L1(k)

+
2

3
P
)
ρ0 ∧ κ′0 −

L1(k)

L1(k)
ρ0 ∧ ζ ′0

+

(
1

3

L1

(
L1(k)

)
L1(k)

+
2

3
P
)
ρ0 ∧ κ′0 −

L1(k)

L1(k)
ρ0 ∧ ζ

′
0 + i κ′0 ∧ κ′0,

dκ′0 =

(
− i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
i

9

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k) L1(k)

+
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− i

9

L1

(
L1(k)

)
L1(k)

P

+
2 i

9

L1

(
L1(k)

)
L1(k)

P +
i

3
L1

(
P
)
− 2 i

9
P P
)
ρ0 ∧ κ′0

+

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i
3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)

)
ρ0 ∧ ζ ′0

+

(
− i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
4 i

9

L1

(
L1(k)

)2
L1(k)2

+
i

9

L1

(
L1(k)

)
L1(k)

P +
i

3
L1

(
P
)
− 2 i

9
P P
)
ρ0 ∧ κ′0 + 0 ρ0 ∧ ζ

′
0

− L1(k)

L1(k)
κ′0 ∧ ζ ′0 +

(
−1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)
κ′0 ∧ κ′0 + ζ ′0 ∧ κ′0,

dζ ′0 =

(
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k) L1(k)

− i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− i

3

L1

(
L1(k)

)
L1(k)

P +
i

3

L1

(
L1(k)

)
L1(k)

P +
T
(
L1(k)

)
L1(k)

)
ρ0 ∧ ζ ′0

+
L1

(
L1(k)

)
L1(k)

κ′0 ∧ ζ ′0 −
L1

(
L1(k)

)
L1(k)

ζ ′0 ∧ κ′0 +
L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0.

Observe from these explicit expressions that

2 K6′
0 = R1′

0 + Z8′
0 and R2′

0 = K5′
0 .

Proof. We treat first dρ0 and dζ ′0, which are easier than dκ′0. Observing from (6.8), that

ρ0 ∧ κ0 = ρ0 ∧ κ′0 and ρ0 ∧ κ0 = ρ0 ∧ κ′0,
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it comes by replacement in (5.5)

dρ0 = P ρ0 ∧ κ′0 −
L1(k)

L1(k)
ρ0 ∧ ζ ′0 + P ρ0 ∧ κ0 −

L1(k)

L1(k)
ρ0 ∧ ζ

′
0

+ i

(
κ′0 −

i

3

(L1

(
L1(k)

)
L1(k)

− P
)
ρ0

)
∧

(
κ′0 +

i

3

(L1

(
L1(k)

)
L1(k)

)
ρ0

)
and a plain expansion yields the stated expression of dρ0. Next, again from (6.8), it comes by
replacement in (5.5)

dζ ′0 =
T
(
L1(k)

)
L1(k)

ρ0 ∧ ζ ′0 +
L1

(
L1(k)

)
L1(k)

(
κ′0 −

i

3

(L1

(
L1(k)

)
L1(k)

− P
)
ρ0

)
∧ ζ ′0

−
L1

(
L1(k)

)
L1(k)

ζ ′0 ∧

(
κ′0 +

i

3

(L1

(
L1(k)

)
L1(k)

− P
)
ρ0

)
+
L1(k)

L1(k)
ζ ′0 ∧ ζ

′
0

and visually — no pen needed —, we obtain the stated result. To treat dκ′0, we start from

κ′0 = κ0 +
i

3
B0 ρ0

and we exterior differentiate

dκ′0 = dκ0 +
i

3
dB0 ∧ ρ0 +

i

3
B0 dρ0.(7.3)

As a preliminary, we need to know dB0. Let us recall that

B0 =
L1

(
L1(k)

)
L1(k)

− P whence B0 =
L1

(
L1(k)

)
L1(k)

− P.

A plain application of Lemma 2.6 provides this exterior differential

d

(L1

(
L1(k)

)
L1(k)

− P
)

=

(
T
(
L1

(
L1(k)

))
L1(k)

−
T
(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− T
(
P
))

ρ0

+

(
L1

(
L1

(
L1(k)

))
L1(k)

−
L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

− L1

(
P
))

κ0

+

(
K
(
L1

(
L1(k)

))
L1(k)

−
K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

−K
(
P
))

ζ0

+

(
L1

(
L1

(
L1(k)

))
L1(k)

−
L1

(
L1(k)

)2
L1(k)2

− L1

(
P
))

κ0

+

(
K
(
L1

(
L1(k)

))
L1(k)

−
K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

−K
(
P
))

ζ0,

an expression that we will abbreviate as

dB0 = U0 ρ0 + V0 κ0 + W0 ζ0 + X0 κ0 + Y0 ζ0.

Assertion 7.4. After simplifications

Y0 = −
L1(k) L1

(
L1(k)

)
L1(k)

+ L1(k) P.
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Proof. In the first two terms of Y0, we replace from Lemma 2.9

K
(
L1

(
L1(k)

))
= − 2L1

(
k
)
L1

(
L1(k)

)
− L1

(
L1

(
k
))
L1(k),

K
(
L1(k)

)
= −L1

(
k
)
L1(k)

and in the third term of Y0, we replace from Lemma 2.5

K
(
P
)

= −PL1

(
k
)
− L1

(
L1

(
k
))
,

which yields the result after one (underlined) pair cancellation

Y0 = −
2L1(k) L1

(
L1(k)

)
L1(k)

− L1

(
L1(k)

)
◦

+
L1(k) L1

(
L1(k)

)
L1(k)

+ PL1

(
k
)

+ L1

(
L1(k)

)
◦
. �

Temporarily, let us work with the abbreviations U0, V0, W0, X0, Y0. So, using the previous
structure formulas (5.5) in which, directly we replace

ζ0 =
ζ ′0
L1(k)

,

let us add line-by-line all three terms of (7.3)

dκ′0 = − T (k)

L1(k)
ρ0 ∧ ζ ′0 −

L1(k)

L1(k)
κ0 ∧ ζ ′0 + ζ ′0 ∧ κ′0

+
i

3
U0 ρ0 ∧ ρ0◦ +

i

3
V0 κ0 ∧ ρ0 +

i

3
W0

ζ ′0
L1(k)

∧ ρ0 +
i

3
X0 κ0 ∧ ρ0 +

i

3
Y0

ζ
′
0

L1(k)
∧ ρ0

+
i

3
B0 P ρ0 ∧ κ0 −

i

3
B0
L1(k)

L1(k)
ρ0 ∧ ζ ′0 +

i

3
B0 P ρ0 ∧ κ0 −

i

3
B0
L1(k)

L1(k)
ρ0 ∧ ζ

′
0 −

1

3
B0 κ0 ∧ κ0,

hence after collecting coefficients of basic 2-forms, we get

dκ′0 = ρ0 ∧ ζ′0
[
− T (k)

L1(k)
− i

3

W0

L1(k)
− i

3
B0
L1(k)

L1(k)

]
+ ρ0 ∧ κ0

[
− i

3
V0 +

i

3
B0 P

]
+ ρ0 ∧ κ0

[
− i

3
X0 +

i

3
B0 P

]
+ ρ0 ∧ ζ

′
0

[
− i

3

Y0

L1(k)
− i

3
B0
L1(k)

L1(k)

]

+ κ0 ∧ ζ′0
[
− L1(k)

L1(k)

]
+ κ0 ∧ κ0

[
− 1

3
B0

]
+ ζ′0 ∧ κ0.

Next, replace everywhere

κ0 = κ′0 −
i

3
B0 ρ0.

Then using again κ0 ∧ ρ0 = κ′0 ∧ ρ0, only the last line changes, as it becomes(
κ′0 −

i

3
B0 ρ0

)
∧ ζ′0

[
− L1(k)

L1(k)

]
+
(
κ′0 −

i

3
B0 ρ0

)
∧
(
κ′0 +

i

3
B0 ρ0

) [
− 1

3
B0

]
+ ζ′0 ∧

(
κ′0 +

i

3
B0 ρ0

)
.
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Expanding and collecting visually — no pen needed —, we get

dκ′0 = ρ0 ∧ ζ ′0

[
− T (k)

L1(k)
− i

3

W0

L1(k)
− i

3
B0
L1(k)

L1(k)
◦

+
i

3
B0
L1(k)

L1(k)
◦

− i

3
B0

]

+ ρ0 ∧ κ′0
[
− i

3
V0 +

i

3
B0 P +

i

9
B0 B0

]
+ ρ0 ∧ κ′0

[
− i

3
X0 +

i

3
B0 P +

i

9
B0 B0

]
+ ρ0 ∧ ζ

′
0

[
− i

3

Y0

L1(k)
− i

3
B0
L1(k)

L1(k)
◦

]

+ κ′0 ∧ ζ ′0
[
− L1(k)

L1(k)

]
+ κ′0 ∧ κ′0

[
− 1

3
B0

]
+ ζ ′0 ∧ κ′0.

To finish, we must yet replace V0, W0, X0, Y0 by their complete values, and we will realize, as
indicated by anticipation above, that the coefficient of ρ0 ∧ ζ

′
0 vanishes identically.

Firstly, a replacement followed by a visual expansion finalizes[
ρ0 ∧ κ′0

]{
dκ′0
}

= − i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
i

3

L1

(
L1(k)

)
L1

(
L1(k)

)
L1(k)2

+
i

3
L1

(
P
)

+
i

3

L1

(
L1(k)

)
L1

P− i

3
P P +

i

9

(
L1

(
L1(k)

)
L1(k)

− P
)(
L1

(
L1(k)

)
L1(k)

− P
)
.

Secondly [
ρ0 ∧ ζ ′0

]{
dκ′0
}

= − T (k)

L1(k)
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

+
i

3

K(P)

L1(k)
− i

3

L1

(
L1(k)

)
L1(k)

+
i

3
P,

but here, we must still replace the boxed term using Lemma 2.5[
ρ0 ∧ ζ ′0

]{
dκ′0
}

= − T (k)

L1(k)
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i

3
P
◦
− i

3

L1

(
L1(k)

)
L1(k)

+
1

3

T (k)

L1(k)
− i

3

L1

(
L1(k)

)
L1(k)

+
i

3
P
◦
.

A pair cancellation makes the obtained expression match precisely with what Proposition 7.2
stated, after some permutation of terms.

The third replacement conducts directly to the stated result

[
ρ0 ∧ κ′0

]{
dκ′0
}

= − i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
i

3

L1

(
L1(k)

)2
L1(k)2

+
i

3
L1

(
P
)

+
i

3

L1

(
L1(k)

)
L1(k)

P− i

3
P P

+
i

9

L1

(
L1(k)

)2
L1(k)2

− 2 i

9

L1

(
L1(k)

)
L1(k)

P +
i

9
P P,
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while the fourth (last) brings an identically zero result

[
ρ0 ∧ ζ

′
0

]{
dκ′0
}

=
i

3

L1(k) L1

(
L1(k)

)
L1(k) L1(k)

◦

− i

3

L1(k)

L1(k)
P
◦◦

− i

3

L1

(
L1(k)

)
L1(k)

L1(k)

L1(k)
◦

(7.5)

+
i

3
P L1(k)

L1(k)
◦◦

. �

8. THIRD LOOP: REDUCTION OF THE GROUP PARAMETER d

After normalization of the group parameter b from (6.7), we have a new reduced group G6

of real dimension 6, and the lifted coframe is

 ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0
d e c

c

 ρ0
κ′0
ζ ′0

 ⇐⇒


ρ := cc ρ0,

κ := − i ce ρ0 + cκ′0,

ζ := d ρ0 + eκ′0 +
c

c
ζ ′0,

(8.1)

with inverse formulas

ρ0 =
1

cc
ρ,

κ′0 = i
e

cc
ρ+

1

c
κ,(8.2)

ζ ′0 =
(
− i

cee

ccc
− d

cc

)
ρ− ce

cc
κ+

c

c
ζ.

The Maurer-Cartan matrix becomes

dg · g−1 =

 c dc + cdc 0 0
−i edc− i cde dc 0

dd de dc
c −

c dc
cc

 1
cc 0 0
i e
cc

1
c 0

−i cee
ccc −

d
cc − ce

cc
c
c


=:

 α+ α 0 0
β α 0
γ i β α− α

 ,

in terms of the group-invariant 1-forms

α :=
dc

c
,

β := i
e dc

cc
− i e dc

cc
− i de

c
,

γ :=
(cd + i cee

ccc

)(
− dc

c
+
dc

c

)
+
dd

cc
+ i

e de

cc
.

Now, if we exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates (

z1, z2, z1, z2, v
)
×
(
c, c, d, d, e, e

)
∈ M5 ×G6,
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after some computations, we may come to structure equations of the abstract shape

dρ =
(
α+ α

)
∧ ρ

+R1 ρ ∧ κ+R2 ρ ∧ ζ +R
1
ρ ∧ κ+R

2
ρ ∧ ζ + i κ ∧ κ,

dκ = β ∧ ρ+ α ∧ κ

+K1 ρ ∧ κ+K2 ρ ∧ ζ + K3 ρ ∧ κ+K4 ρ ∧ ζ
+K5 κ ∧ ζ +K6 κ ∧ κ+ ζ ∧ κ,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ

+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z7 κ ∧ ζ + Z8 ζ ∧ κ+ Z9 ζ ∧ ζ.

Before really computing explicitly some of these torsion coefficients, let us examine what are
the absorption equations. For this, we replace

α =: α′ + a1 ρ+ a2 κ+ a3 ζ + a4 κ+ a5 ζ,

β =: β′ + b1 ρ+ b2 κ+ b3 ζ + b4 κ+ b5 ζ,

γ =: γ′ + c1 ρ+ c2 κ+ c3 ζ + c4 κ+ c5 ζ.

A moment of reflection convinces that the result for dρ is the same as in the proof of Lemma 6.4:

dρ =
(
α′ + α′

)
∧ ρ

+ ρ ∧ κ
(
R1 − a2 − a4

)
+ ρ ∧ ζ

(
R2 − a3 − a5

)
+ ρ ∧ κ

(
R

1 − a4 − a2
)

+ ρ ∧ ζ
(
R

2 − a5 − a3
)

+ i κ ∧ κ.

Similarly, dκ is unchanged

dκ = β′ ∧ ρ+ α′ ∧ κ

+ ρ ∧ κ
(
K1 + a1 − b2

)
+ ρ ∧ ζ

(
K2 − b3

)
+ ρ ∧ κ

(
K3 − b4

)
+ ρ ∧ ζ

(
K4 − b5

)
+ κ ∧ ζ

(
K5 − a3

)
+ κ ∧ κ

(
K6 − a4

)
+ κ ∧ ζ

(
− a5

)
+ ζ ∧ κ.

However, for dζ, we have to compute

γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ = γ′ ∧ ρ+ 0 + c2 κ ∧ ρ+ c3 ζ ∧ ρ+ c4 κ ∧ ρ+ c5 ζ ∧ ρ

+ i β′ ∧ κ+ i b1 ρ ∧ κ+ 0 + i b3 ζ ∧ κ+ i b4 κ ∧ κ+ i b5 ζ ∧ κ
+ α′ ∧ ζ + a1 ρ ∧ ζ + a2 κ ∧ ζ + 0 + a4 κ ∧ ζ + a5 ζ ∧ ζ
− α′ ∧ ζ − a1 ρ ∧ ζ − a2 κ ∧ ζ − a3 ζ ∧ ζ − a4 κ ∧ ζ − 0

and we get

dζ = γ′ ∧ ρ+ i β′ ∧ κ+
(
α′ − α′

)
∧ ζ

+ ρ ∧ κ
(
Z1 + i b1 − c2

)
+ ρ ∧ ζ

(
Z2 − c3 + a1 − a1

)
+ ρ ∧ κ

(
Z3 − c4

)
+ ρ ∧ ζ

(
Z4 − c5

)
+ κ ∧ ζ

(
Z5 − i b3 + a2 − a4

)
+ κ ∧ κ

(
Z6 − i b4

)
+ κ ∧ ζ

(
Z7 − i b5

)
+ ζ ∧ κ

(
Z8 − a4 + a2

)
+ ζ ∧ ζ

(
Z9 − a5 + a3

)
.
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Lemma 8.3. Here is an essential linear combination of torsion terms

iK3 − Z6.

Proof. Indeed,
K3′ = K3 − b4,
Z6′ = Z6 − i b4,

whence
iK3′ − Z6′ = iK3 − Z6. �

Proposition 8.4. Their explicit expressions are

K3 = − d

cc
+

e

cc

(
−2i
L1

(
L1(k)

)
L1(k)

− i

3
P
)
− i ee

cc

L1(k)

L1(k)

+
1

cc

(
− i

3

L1

(
L1

(
L1(k)

))
L1(k)

+
4 i

9

L1

(
L1(k)

)2
L1(k)2

+
i

9

L1

(
L1(k)

)
L1(k)

P +
i

3
L1

(
P
)
− 2 i

9
P P
)
,

Z6 = i
d

cc
− ee

cc
+

e

cc

(
1

3
P +

2

3

L1

(
L1(k)

)
L1(k)

)
+

ee

cc

L1(k)

L1(k)
.

Proof. We start by differentiating (8.1), finalizing directly the Maurer-Cartan part, thanks to the
Maurer-Cartan matrix shown above, and setting aside dρ for the moment

dκ = β ∧ ρ+ α ∧ κ
− i ce dρ0 + c dκ′0,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ

+ d dρ0 + e dκ′0 +
c

c
dζ ′0.

So we have to compute first

K3 =
[
ρ ∧ κ

]{
dκ
}

= − i ce
[
ρ ∧ κ

]{
dρ0
}

+ c
[
ρ ∧ κ

]{
dκ′0
}
.

The first term is, by (7.1), using the inversion formulas (8.2)[
ρ ∧ κ

]{
dρ0
}

=
[
ρ ∧ κ

]{
0 + 0 + R1′

0

( 1

cc

)
∧
(1

c
κ
)

+ R2′
0

( 1

cc

)
∧
(
− ce

cc
κ
)

+ i
(
i
e

cc
ρ
)
∧
(1

c
κ
)}

=
1

ccc
R1′

0 −
e

ccc
R2′

0 −
e

ccc
.

Similarly[
ρ ∧ κ

]{
dκ′0
}

=
[
ρ ∧ κ

]{
0 + 0 + K3′

0

( 1

cc
ρ
)
∧
(1

c
κ
)

+ 0 + K6′
0

(
i
e

cc
ρ
)
∧
(1

c
κ
)

+

((
− i cee

ccc
− d

cc

)
ρ

)
∧
(1

c
κ
)}

=
1

ccc
K3′

0 + i
e

ccc
K6′

0 − i
ee

ccc
− d

ccc
.
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Hence

K3′
0 = − i e

cc
R1′

0 + i
ee

cc
R2′

0 + i
ee

cc◦
+

1

cc
K3′

0 + i
e

cc
K6′

0 − i
ee

cc◦
− d

cc

= − d

cc
+

e

cc

(
− i

3

L1

(
L1

(
k)
)

L1(k)
− 2 i

3
P− i

3
L1

(
L1(k)

)
+
i

3
p
)
− i ee

cc

L1(k)

L1(k)
+

1

cc
K3′

0 .

Replacing this last term K3′
0 by its value from Proposition 7.2, we reach the stated explicit ex-

pression of K3. Next

Z6 =
[
κ ∧ κ

]{
dζ
}

= d
[
κ ∧ κ

]{
dρ0
}

+ e
[
κ ∧ κ

]{
dκ′0
}

+
c

c

[
κ ∧ κ

]{
dζ ′0
}
.

Separately [
κ ∧ κ

]{
d dρ0

}
= 0 + 0 + 0 + 0 + d i

1

cc
= i

d

cc
,[

κ ∧ κ
]{
e dκ′0

}
= 0 + 0 + 0 + 0 + eK6′

0

1

cc
+ e

(
− ce

cc

) 1

c
=

e

cc
K6′

0 −
ee

cc
,[

κ ∧ κ
]{c

c
dζ ′0

}
= 0 + 0 +

c

c
Z8′
0

(
− ce

cc

)(1

c

)
+

c

c
Z9′
0

(
− ce

cc

)(
− ce

cc

)
= − e

cc
Z8′
0 +

ee

cc
Z9′
0 ,

hence summing and inserting the explicit expressions from Proposition 7.2, we conclude

Z6 = i
d

cc
+

e

cc
K6′

0 −
ee

cc
− e

cc
Z8′
0 +

ee

cc
Z9′
0

= i
d

cc
− ee

cc
+

e

cc

(
1

3
P +

2

3

L1

(
L1(k)

)
L1(k)

)
+

ee

cc

L1(k)

L1(k)
. �

Once we have reached the explicit expressions of both K3 and Z6, when we perform the
essential combination iK3−Z6, we see that both the coefficients of e

cc and of ee
cc disappear, and

it remains

iK3 − Z6 = − 2i
d

cc
+

ee

cc
+ i

1

cc
K3′

0

= − 2i
d

cc
+

ee

cc

+
1

cc

(
1

3

L1

(
L1

(
L1(k)

))
L1(k)

− 4

9

L1

(
L1(k)

)2
L1(k)2

− 1

9

L1

(
L1(k)

)
L1(k)

P− 1

3
L1

(
P
)

+
2

9
P P︸ ︷︷ ︸

=: − 2 H0

)
.

We introduce, as is underbraced

H0 := − 1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
L1(k)

P +
1

6
L1

(
P
)
− 1

9
P P,

a function which coincides with Pocchiola’s function H . Then by means of the invariant con-
dition

0 = iK3 − Z6,
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we reach a convenient normalization of the group parameter

d := − i

2

cee

c
+ i

c

c
H0

= − i

2

cee

c
+ i

c

c

(
− 1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
L1(k)

P +
1

6
L1

(
P
)
− 1

9
P P
)
.

Before we really perform this normalization of the group parameter d, let us point out that
some other invariant relations between torsion coefficients appear. In fact, we see above that:

iK4′ = iK4 − i b5,
Z7′ = Z7 − i b5,

whence
iK4′ − Z7′ = iK4 − Z7.

However, the next lemma shows that no group parameter can be normalized so.

Lemma 8.5. Their explicit expressions are

iK4 = Z7 = − e

c

L1(k)

L1(k)
.

Proof. Indeed, by (7.1), replacing R2′
0 from Proposition 7.2, we can compute using (8.2)

K4 =
[
ρ ∧ ζ

]{
− i ce dρ0 + c dκ′0

}
= − i ce

[
ρ ∧ ζ

]{
dρ0
}

+ c
[
ρ ∧ ζ

]{
dκ′0
}

= − i ce
(

0 + 0 + 0 + R2′
0

( 1

cc

)(c
c

))
+ c · 0

= − i e
c

(
− L1(k)

L1(k)

)
,

and similarly

Z7 =
[
κ ∧ ζ

]{
d dρ0 + e dκ′0 +

c

c
dζ ′0

}
= d

[
κ ∧ ζ

]{
dρ0
}

+ e
[
κ ∧ ζ

]{
dκ′0
}

+
c

c

[
κ ∧ ζ

]{
dζ ′0
}

= 0 + 0 +
c

c

(
0 + 0 + 0 + Z9′

0

(
− ce

cc

)(c
c

))
= − e

c

L1(k)

L1(k)
. �

Another invariant torsion combination is the following.

Lemma 8.6. Here is an essential linear combination of torsion terms

− iK2 + Z5 − Z8
.

Proof. A glance at what precedes shows

K2′ = K2 − b3,
Z5′ = Z5 − i b3 + a2 − a4,
Z8′ = Z8 − a4 + a2,
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whence indeed
− iK2′ + Z5′ − Z8′

= − iK2 + Z5 − Z8
. �

Lemma 8.7. Their explicit expressions are:

K2 = i
e

c
+

1

c

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i
3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)

)
,

Z5 =
1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
,

Z8 =
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
.

Proof. Recall
dρ =

(
α+ α

)
∧ ρ+ cc dρ0,

dκ = β ∧ ρ+ α ∧ κ− i ce dρ0 + c dκ′0,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ρ+ d dρ0 + e dκ′0 +

c

c
dζ ′0,

hence
K2 =

[
ρ ∧ ζ

]{
− i ce dρ0 + c dκ′0

}
.

Visually [
ρ ∧ ζ

]{
dρ0
}

= R2′
0

( 1

cc

)(c
c

)
=

1

cc
R2′

0 ,[
ρ ∧ ζ

]{
dκ′0
}

= K2′
0

( 1

cc

)(c
c

)
+ K5′

0

(
i
e

cc

)(c
c

)
−
(c
c

)(
− i e

cc

)
=

1

cc
K2′

0 + i
ce

ccc
K5′

0 + i
e

cc
,

hence

K2 = − i ce
cc

R2′
0 +

1

c
K2′

0 + i
ce

cc
K5′

0 + i
e

c

= i
e

c
+

1

c

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i

3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)

)
.

Next, treat

Z5 =
[
κ ∧ ζ

]{
d dρ0 + e dκ′0 +

c

c
dζ ′0

}
,

using [
κ ∧ ζ

]{
dρ0
}

= 0,[
κ ∧ ζ

]{
dκ′0
}

= K5′
0

(1

c

)(c
c

)
=

c

cc
K5′

0 ,[
κ ∧ ζ

]{
dζ ′0
}

= Z5′
0

(1

c

)(c
c

)
=

c

cc
Z5′
0 ,



350 Wei Guo Foo and Joël Merker

so

Z5 =
ce

cc

(
− L1(k)

L1(k)

)
+

1

c

(
L1

(
L1(k)

)
L1(k)

)
.

Lastly treat

Z8 =
[
ζ ∧ κ

]{
d dρ0 + e dκ′0 +

c

c
dζ ′0

}
,

using [
ζ ∧ κ

]{
dρ0
}

= 0,[
ζ ∧ κ

]{
dκ′0
}

=
c

c

1

c
=

1

c
,[

ζ ∧ κ
]{
dζ ′0
}

= Z8′
0

c

c

1

c
+ Z9′

0

c

c

(
− ce

cc

)
=

1

c
Z8′
0 −

e

c
Z9′
0 ,

which concludes

Z8 =
e

c
+

1

c
Z8′
0 −

ce

cc
Z9′
0

=
e

c
− 1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
. �

Thanks to these explicit expressions, we can compute the essential linear combination of
torsion terms, emphasizing two important annihilations by pairs

− iK2 + Z5 − Z8
=

e

c◦
+

1

c

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

−1

3

L1

(
L1(k)

)
L1(k)

− 1

3

L1

(
L1(k)

)
L1(k)

+
2 i

3

T (k)

L1(k)

)

+
1

c

L1

(
L1(k)

)
L1(k)

− ce

cc

L1(k)

L1(k)
◦◦

− e

c◦
+

1

c

L1

(
L1(k)

)
L1(k)

+
ce

cc

L1(k)

L1(k)
◦◦

.

Also, in order to match exactly with Pocchiola’s function W introduced in [25, 18], we decom-
pose the last term of the second line as

2 i

3

T (k)

L1(k)
= − 1

3

L1

(
L1(k)

)
L1(k)

+
1

3

L1

(
L1(k)

)
L1(k)

+
i

3

T (k)

L1(k)
,

so that a third pair of terms disappears, and after reorganization — no pen needed —, the
result is

− iK2 + Z5 − Z8
=

1

c

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L1(k)

)
L1(k)

+
i

3

T (k)

L1(k)

)

=:
1

c
W0,

and this defines a new horizontal function W0, equal to Pocchiola’s function W .
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For now, we will not use the potential normalization c = W0 on the open subset of M5 ⊂ C3

on which
0 6= W0

(
z1, z2, z1, z2, v

)
,

if nonempty — a hypothesis must be set up —, but we will deal with this discussion later. In
fact, before proceeding, we state a technical differential relation useful later, whose proof can
be skipped in a first reading.

Lemma 8.8. One has
K
(
H0

)
= − 2L1

(
k
)

H0.

Proof. Apply the derivation K to H0

K
(
H0

)
= − 1

6

K
(
L1

(
L1

(
L1(k)

)))
L1(k)

+
1

6

K
(
L1(k)

)
L1

(
L1

(
L1(k)

))
L1(k)2

+
4

9

K
(
L1

(
L1(k)

))
L1

(
L1(k)

)
L1(k)2

− 4

9

K
(
L1(k)

)
L1

(
L1(k)

)2
L1(k)3

+
1

18

K
(
L1

(
L1(k)

))
L1(k)

P +
1

18

L1

(
L1(k)

)
K
(
P
)

L1(k)

− 1

18

K
(
L1(k)

)
L1

(
L1(k)

)
P

L1(k)2
+

1

6
K
(
L1

(
P
))
− 2

9
PK

(
P
)

perform replacements using Lemmas 2.9 and 2.5

K
(
H0

)
=

1

2

L1(k) L1
(
L1

(
L1(k)

))
L1(k)

+
1

2

L1
(
L1(k)

)
L1

(
L1(k)

)
L1(k) ◦

+
1

6
L1

(
L1

(
L1

(
k
)))
−

1

6

L1(k) L1
(
L1

(
L1(k)

))
L1(k)

−
8

9

L1
(
L1(k)

)2 L1(k)
L1(k)2

−
4

9

L1
(
L1(k)

)
L1

(
L1(k)

)
L1(k) ◦

+
4

9

L1(k) L1
(
L1(k)

)2
L1(k)2

−
1

9

L1
(
L1(k)

)
L1(k) P

L1(k)
−

1

18
L1

(
L1

(
k
))

P− 1

18

L1
(
L1(k)

)
L1(k) P

L1(k) ◦◦

−
1

18

L1
(
L1(k)

)
L1

(
L1(k)

)
L1(k) ◦

+
1

18

L1(k) L1
(
L1(k)

)
P

L1(k) ◦◦

+
1

6
K
(
L1

(
P
))

+
2

9
P PL1

(
k
)
+

2

9
PL1

(
L1

(
k
))

and observe some (underlined) cancellations to get an expression in which the last three terms
must yet be transformed

K
(
H0

)
=

1

3

L1(k) L1

(
L1

(
L1(k)

))
L1(k)

− 4

9

L1(k) L1

(
L1(k)

)2
L1(k)2

− 1

9

L1(k) L1

(
L1(k)

)
P

L1(k)

+
2

9
P PL1(k) +

1

6
L1

(
L1

(
L1

(
k
)))

+
1

6
L1

(
L1(k)

)
P +

1

6
K
(
L1

(
P
))
.

Lemma 8.9. One has

L1

(
L1

(
L1

(
k
)))

+ L1

(
L1(k)

)
P +K

(
L1

(
P
))

= − 2L1

(
k
)
L1

(
P
)
.

Proof. Apply the vector field L1 to Lemma 2.5

L1

(
K
(
P
))

= −L1

(
P
)
L1

(
k
)
− PL1

(
L1

(
k
))
− L1

(
L1

(
L1

(
k
)))

.

On the other hand, apply the Lie bracket
[
L1,K

]
(•) to the function P, using the concerned

known commutation relation shown in Section 2

L1

(
K
(
P
))
−K

(
L1

(
P
))

=
[
L1,K

](
P
)

= L1

(
k
)
L1

(
P
)
,
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and replace the first term L1

(
K
(
P
))

by its value above to get the result. �

Consequently, after this transformation, we see that K
(
H0

)
is a multiple of L1(k) in which

we recognize −2 H0 as stated

K
(
H0

)
= L1

(
k
)(1

3

L1

(
L1

(
L1(k)

))
L1(k)

− 4

9

L1

(
L1(k)

)2
L1(k)2

− 1

9

L1

(
L1(k)

)
P

L1(k)
− 1

3
L1

(
P
)

+
2

9
P2

)
.

�

As we already observed, the essential (invariant) torsion iK3 −Z6 can be set 0 to normalize
the group parameter d as

d := − i

2

cee

c
+ i

c

c
H0,

whence inserting in (8.1) ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0

− i
2

cee
c + i c

c H0 e c
c

 ρ0
κ′0
ζ ′0

 .

Thus, we are naturally led to change the initial coframe on M{
ρ0, κ

′
0, ζ
′
0, κ

′
0, ζ
′
0

}
 

{
ρ0, κ

′
0, ζ
′′
0 , κ

′
0, ζ
′′
0

}
,

by introducing the new 1-form
ζ ′′0 := ζ ′0 + iH0 ρ0,

so that a new, reduced by two real dimensions, G-structure, appears ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0
− i

2
cee
c e c

c

 ρ0
κ′0
ζ ′′0

 ,

which is justified by the computation
/

reorganization

ζ =
(
− i

2

cee

c
+ i

c

c
H0

)
ρ0 + eκ′0 +

c

c
ζ ′0

= − i

2

cee

c
ρ0 + eκ′0 +

c

c

(
ζ ′0 + iH0 ρ0︸ ︷︷ ︸

=: ζ′′0

)
.

Back to previous expressions, this last coframe writes out as

ρ0 :=
1

`

(
dv − A1 dz1 − A2 dz2 − A1

dz1 − A2
dz2

)
,

κ′0 := dz1 − k dz2 +
i

3
B0 ρ0,

ζ ′′0 := L1(k) dz2 + iH0 ρ0.

9. DARBOUX-CARTAN STRUCTURE OF THE COFRAME
{
ρ0, κ

′
0, ζ
′′
0 , κ

′
0, ζ
′′
0

}
The present change of initial coframe expresses as

ζ ′′0 := ζ ′0 + iH0 ρ0 ⇐⇒ ζ ′0 = ζ ′′0 − iH0.

The exterior differentiation of ζ ′′0 comprises 3 terms that we shall compute soon

dζ ′′0 = dζ ′0 + i dH0 ∧ ρ0 + iH0 dρ0.
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Back to the previous structure equations written in the abbreviated form (7.1), we may start by
replacing ζ ′0 in dρ0, while observing that

ρ0 ∧ ζ ′0 = ρ0 ∧ ζ ′′0 and ρ0 ∧ ζ
′
0 = ρ0 ∧ ζ

′′
0 ,

we come to unchanged coefficients for

dρ0 = R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ ′′0 + R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ
′′
0 + i κ′0 ∧ κ′0,

hence without computation, the third term is

iH0 dρ0 = iH0 R1′
0 ρ0 ∧ κ′0 + iH0 R2′

0 ρ0 ∧ ζ ′0 + iH0 R1′
0 ρ0 ∧ κ′0 + iH0 R2′

0 ρ0 ∧ ζ
′
0 −H0 κ0 ∧ κ′0.

Next, we do the same replacement of ζ ′0 in

dκ′0 = K1′
0 ρ0 ∧ κ′0 + K2′

0 ρ0 ∧
(
ζ ′′0 − iH0 ρ0

)
+ K3′

0 ρ0 ∧ κ′0

+ K5′
0 κ
′
0 ∧
(
ζ ′′0 − iH0 ρ0

)
+ K6′

0 κ
′
0 ∧ κ′0 +

(
ζ ′′0 − iH0 ρ0

)
∧ κ′0,

hence
dκ′0 =

(
K1′

0 + iK5′
0 H0︸ ︷︷ ︸

=: K1′′
0

)
ρ0 ∧ κ′0 + K2′

0 ρ0 ∧ ζ ′′0 +
(

K3′
0 − iH0︸ ︷︷ ︸
=: K3′

0

)
ρ0 ∧ κ′0

+ K5′
0 κ
′
0 ∧ ζ ′′0 + K6′

0 κ
′
0 ∧ κ′0 + ζ ′′0 ∧ κ′0.

Similarly, do the same for

dζ ′0 = Z2′
0 ρ0 ∧

(
ζ ′′0 − iH0 ρ0

)
+ Z5′

0 κ
′
0 ∧
(
ζ
′′
0 + iH0 ρ0

)
+ Z8′

0

(
ζ ′′0 − iH0 ρ0

)
∧ κ′0 + Z9′

0

(
ζ ′′0 − iH0 ρ0

)
∧
(
ζ
′′
0 + iH0 ρ0

)
,

hence
dζ ′0 = iZ5′

0 H0 ρ0 ∧ κ′0 +
(

Z2′
0 − iZ9′

0 H0

)
ρ0 ∧ ζ ′′0 − iZ8′

0 H0 ρ0 ∧ κ′0

− iZ9′
0 H0 ρ0 ∧ ζ

′′
0 + Z5′

0 κ
′
0 ∧ ζ ′′0 + Z8′

0 ζ
′′
0 ∧ κ′0 + Z9′

0 ζ
′′
0 ∧ ζ

′′
0 .

Next, we have to compute the second term in dζ ′′0 , and using

dH0 = T
(
H0

)
ρ0 + L1

(
H0

)
κ0 +K

(
H0

)
ζ0 + L1

(
H0

)
κ0 +K

(
H0

)
ζ0,

it comes

dH0 ∧ ρ0 = 0− L1

(
H0

)
ρ0 ∧ κ0 −K

(
H0

)
ρ0 ∧ ζ0 − L1

(
H0

)
ρ0 ∧ κ0 −K

(
H0

)
ρ0 ∧ ζ0

= −L1

(
H0

)
ρ0 ∧

(
κ′0 −

i

3
B0 ρ0

)
−K

(
H0

)
ρ0 ∧

ζ ′0
L1(k)

− L1

(
H0

)
ρ0 ∧

(
κ′0 +

i

3
B0 ρ0

)
− K

(
H0

)
ρ0 ∧

ζ
′
0

L1(k)

= −L1

(
H0

)
ρ0 ∧ κ′0 −

K(H0)

L1(k)
ρ0 ∧ ζ ′0 − L1

(
H0

)
ρ0 ∧ κ′0 −

K(H0)

L1(k)
ρ0 ∧ ζ

′
0,

hence multiplying by i, we get the expression of the second term

i dH0 ∧ ρ0 = − iL1

(
H0

)
ρ0 ∧ κ′0 − i

K(H0)

L1(k)
ρ0 ∧ ζ ′′0 − iL1

(
H0

)
ρ0 ∧ κ′0 − i

K(H0)

L1(k)
ρ0 ∧ ζ

′′
0 .
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Summing and collecting the three computed terms yields

dζ ′′0 = ρ0 ∧ κ′0
[
iZ5′

0 H0 − iL1

(
H0

)
+ iH0 R1′

0︸ ︷︷ ︸
=: Z1′′

0

]
+ ρ0 ∧ ζ ′′0

[
Z2′
0 − iZ9′

0 H0 − i
K(H0)

L1(k)
+ iH0 R2′

0︸ ︷︷ ︸
=: Z2′′

0

]

+ ρ0 ∧ κ′0
[
− iZ8′

0 H0 − iL1

(
H0

)
+ iH0 R1′

0︸ ︷︷ ︸
=: Z3′′

0

]
+ ρ0 ∧ ζ

′′
0

[
− iZ9′

0 H0 − i
K(H0)

L1(k)
+ iH0 R2′

0

◦

]

+ Z5′
0 κ
′
0 ∧ ζ ′′0 + κ′0 ∧ κ′0

[
−H0︸ ︷︷ ︸
=: Z6′′

0

]
+ Z8′

0 ζ
′′
0 ∧ κ′0 + Z9′

0 ζ
′′
0 ∧ ζ

′′
0 .

Lemma 9.1. One has the identical vanishing of the coefficient of ρ0 ∧ ζ
′′
0 in dζ ′′0

Z4′′
0 := − iZ9′

0 H0 − i
K(H0)

L1(k)
+ iH0 R2′

0

≡ 0.

Proof. This is equivalent to

K
(
H0

) ?≡ L1

(
k
)

H0

(
− Z9′

0 + R2′
0

)
and after a replacement using Proposition 7.2, to

K
(
H0

) ?≡ L1

(
k
)

H0

(
− L1(k)

L1(k)
− L1(k)

L1(k)

)
,

an identity which was already seen by Lemma 8.8. �

In summary

dρ0 = R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ ′′0 + R1′
0 ρ0 ∧ κ′0 + R2′

0 ρ0 ∧ ζ
′′
0 + i κ′0 ∧ κ′0,

dκ′0 = K1′′
0 ρ0 ∧ κ′0 + K2′

0 ρ0 ∧ ζ ′′0 + K3′′
0 ρ0 ∧ κ′0

+ K5′
0 κ
′
0 ∧ ζ ′′0 + K6′

0 κ
′
0 ∧ κ′0 + ζ ′′0 ∧ κ′0,

dζ ′′0 = Z1′′
0 ρ0 ∧ κ′0 + Z2′′

0 ρ0 ∧ ζ ′′0 + Z3′′
0 ρ0 ∧ κ′0

+ Z5′
0 κ
′
0 ∧ ζ ′′0 + Z6′′

0 κ′0 ∧ κ′0 + Z8′
0 ζ
′′
0 ∧ κ′0 + Z9′

0 ζ
′′
0 ∧ ζ

′′
0 .

Notice that new coefficients Z2′′
0 , Z3′′

0 , Z4′′
0 appear in dζ ′′0 , which were absent in dζ ′0, as they are

coming from the second term i dH0 ∧ ρ0.

10. ABSORPTION AND APPARITION OF TWO 1-FORMS π1, π2

With the 4-dimensional group parametrized by
(
c, c, e, e

)
, the lifted coframe writes:

 ρ
κ
ζ

 :=

 cc 0 0
−i ce c 0
− i

2
cee
c e c

c

 ρ0
κ′0
ζ ′′0

 ⇐⇒


ρ := cc ρ0,

κ := − i ce ρ0 + cκ′0,

ζ := − i

2

cee

c
ρ0 + eκ′0 +

c

c
ζ ′′0 ,
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with inverse formulas

ρ0 =
1

cc
ρ,

κ′0 = i
e

cc
ρ+

1

c
κ,(10.1)

ζ ′′0 = − i

2

cee

ccc
ρ− ce

cc
κ+

c

c
ζ.

The Maurer-Cartan matrix becomes

dg · g−1 =

 c dc + cdc 0 0
−i edc− i cde dc 0

− i
2
ee dc
c − i

ce de
c + i

2
cee dc
cc de dc

c −
c dc
cc

 1
cc 0 0
i e
cc

1
c 0

− i
2
cee
ccc − ce

cc
c
c


=:

 α+ α 0 0
β α 0
0 i β α− α

 ,

in terms of the group-invariant 1-forms

α :=
dc

c
,

β := i
e dc

cc
− i e dc

cc
− i de

c
.

Now, if we exterior-differentiate the lifted coframe on the product manifold equipped with
coordinates (

z1, z2, z1, z2, v
)
×
(
c, c, e, e

)
∈ M5 ×G4,

after hard computations, we may come to structure equations of the abstract shape

dρ =
(
α+ α

)
∧ ρ+R1 ρ ∧ κ+R2 ρ ∧ ζ +R

1
ρ ∧ κ+R

2
ρ ∧ ζ + i κ ∧ κ,

dκ = β ∧ ρ+ α ∧ κ+K1 ρ ∧ κ+K2 ρ ∧ ζ +K3 ρ ∧ κ+K4 ρ ∧ ζ
+K5 κ ∧ ζ +K6 κ ∧ κ+ ζ ∧ κ,

dζ = γ ∧ ρ+ i β ∧ κ+
(
α− α

)
∧ ζ

+ Z1 ρ ∧ κ+ Z2 ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ
+ Z5 κ ∧ ζ + Z6 κ ∧ κ+ Z7 κ ∧ ζ + Z8 ζ ∧ κ+ Z9 ζ ∧ ζ.

A moment of reflection convinces of the truth of

Assertion 10.2. The relations coming from the normalizations of the group parameters f, b, c are
preserved

1 =
[
ζ ∧ κ

]{
dκ
}
,

0 = R
1 − 2K6 + Z8,

0 = iK3 − Z6,

as well as the auxiliary relations

K5 = R2,

Z7 = iK4,

Z9 = −R2
. �
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Now, we want to absorb as many as possible of these torsion coefficients. So we introduce
modified Maurer-Cartan forms — mind notations

π1 := α− a1 ρ− a2 κ− a3 ζ − a4 κ− a5 ζ,
π2 := β − b1 ρ− b2 κ− b3 ζ − b4 κ− b5 ζ

and we try to determine (fix) the unknown coefficients ai, bi. By replacement, setting ci := 0 in
the formula seen above for dζ, we obtain without pain

dρ =
(
π1 + π1

)
+ ρ ∧ κ

(
R1 − a2 − a4

)
+ ρ ∧ ζ

(
R2 − a3 − a5

)
+ ρ ∧ κ

(
R

1 − a4 − a2
)

+ ρ ∧ ζ
(
R

2 − a5 − a3
)

+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ρ ∧ κ
(
K1 + a1 − b2

)
+ ρ ∧ ζ

(
K2 − b3

)
+ ρ ∧ κ

(
K3 − b4

)
+ ρ ∧ ζ

(
K4 − b5

)
+ κ ∧ ζ

(
K5 − a3

)
+ κ ∧ κ

(
K6 − a4

)
+ κ ∧ ζ

(
− a5

)
+ ζ ∧ κ,

dζ = i π2 ∧ κ+
(
π1 − π1

)
∧ ζ + ρ ∧ κ

(
Z1 + i b1

)
+ ρ ∧ ζ

(
Z2 + a1 − a1

)
+ ρ ∧ κ

(
Z3
)

+ ρ ∧ ζ
(
Z4
)

+ κ ∧ ζ
(
Z5 − i b3 + a2 − a4

)
+ κ ∧ κ

(
Z6 − i b4

)
+ κ ∧ ζ

(
Z7 − i b5

)
+ ζ ∧ κ

(
Z8 − a4 + a2

)
+ ζ ∧ ζ

(
Z9 − a5 + a3

)
.

Now, replacing from Assertion 10.2

Z8 := −R1
+2K6, Z6 := iK3, K5 := R2, Z7 := iK4, Z9 := −R2

,

the absorption equations write out as

a2 + a4 = R1,

a3 + a5 = R2,

− a1 + b2 = K1,

b3 = K2,

b4 = K3,

b5 = K4,

a3 = R2,

a4 = K6,

− a5 = 0,

i b1 = −Z1,

− a1 + a1 = Z2,

0 = Z3 ,

0 = Z4 ,

− a2 + a4 + i b3 = Z5,

i b4 = iK3,

i b5 = iK4,

− a2 + a4 = −R1
+ 2K6,

− a3 + a5 = −R2
.

The boxed Z3 and Z4 are clearly essential torsions, since they cannot be annihilated by any
choice of ai, bi. We will compute them explicitly a bit later.
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At the end of the second colon, a5 = 0, whence at the ends of the other two colons, we get
a3 := R2, hence all the 4 underlined equations drop. Also, unique assignments exist for

b3 := K2,

b4 := K3,

b5 := K4,

a4 := K6,

b1 := i Z1,

b4 := K3,

b5 := K4

and it remains to solve

a2 +K
6 ∗

= R1, − a1 + b2 = K1, − a1 + a1 = Z2,

− a2 +K
6

+ iK2 ?
= Z5,

− a2 +K6 ∗= −R1
+ 2K6.

Certainly
b2 := K1 + a1

and the two equations ∗
= for a2 are equivalent — this comes from the normalization relation

0 = R
1 − 2K6 + Z8 already taken account of —, yielding

a2 := R1 −K6
.

However, the equation ?
= cannot be satisfied automatically, and this provides an essential tor-

sion combination

−R1 +K
6

+K
6

+ iK2 = Z5 ⇐⇒ − iK2 + Z5 − Z8
= 0,

which was already seen in Lemma 8.6. The last remaining equation

− a1 + a1 = Z2

shows that one can annihilate ImZ2 by choosing

Im a1 := − 1

2
ImZ2

and it still remains precisely one real degree of freedom, a free variable that we will re-denote

t := Re a1.

In summary, we have established a fundamental

Proposition 10.3. With t ∈ R being a free variable, by defining the precise modified Maurer-Cartan
forms

π1 := α−
(
t− i

2
ImZ2

)
ρ−

(
R1 −K6

)
κ−R2 ζ −K6 κ− 0,

π2 := β − i Z1 ρ−
(
t− i

2
ImZ2 +K1

)
κ−K2 ζ −K3 κ−K4 ζ,

it holds

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ

+
(

ReZ2
)
ρ ∧ ζ + Z3 ρ ∧ κ+ Z4 ρ ∧ ζ +

(
Z5 +R1 − 2K

6 − iK2
)
κ ∧ ζ. �
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We yet have to compute the remaining 4 essential torsion coefficients

ReZ2, Z3, Z4, Z5 +R1 − 2K
6 − iK2.

Fortunately, by anticipation, we have already explored and finalized

Z5 +R1 − 2K
6 − iK2 = − iK2 + Z5 − Z8

=
1

c
W0.

Assertion 10.4. One torsion coefficient vanishes identically

0 ≡ Z4.

Proof. Recall
Z4 =

[
ρ ∧ ζ

]{
dζ
}

=
[
ρ ∧ ζ

]{
− i

2

cee

c
dρ0 + e dκ′0 +

c

c
dζ ′′0

}
.

Compute separately

− i

2

cee

c

[
ρ ∧ ζ

]{
dρ0
}

= − i

2

cee

c
R2′

0

( 1

cc

)(c
c

)
= − i

2

ee

cc
R2′

0 ,

e
[
ρ ∧ ζ

]{
dκ′0
}

= 0,

c

c

[
ρ ∧ ζ

]{
dζ ′′0
}

=
c

c
Z4′′
0 ◦

( 1

cc

)(c
c

)
+

c

c
Z9′
0

(
− i

2

cee

ccc

)(c
c

)
= 0− i

2

ee

cc
Z9′
0

and since we have already seen in Lemma 9.1 that Z4′′
0 ≡ 0, in the proof of which we have used

R2′
0 + Z9′

0 ≡ 0, the sum of these 3 terms is indeed zero, and we done. �

It remains to analyze Z3 and ReZ2, a substantial task to which the two next sections are
devoted. At least, we know that

dζ =
(
π1 − π1

)
∧ ρ+ i κ ∧ κ

+
(

ReZ2
)
ρ ∧ ζ + Z3 ρ ∧ κ+

1

c
W0 κ ∧ ζ.

11. COMPUTATION OF POCCHIOLA’S INVARIANT J0

We now determine

Z3 =
[
ρ ∧ κ

]{
dζ
}

= − i

2

cee

c

[
ρ ∧ κ

]{
dρ0
}

+ e
[
ρ ∧ κ

]{
dκ′0
}

+
c

c

[
ρ ∧ κ

]{
dζ ′′0
}

= − i

2

cee

c

[
R1′

0

( 1

cc

)(1

c

)
+ R2′

0

( 1

cc

)(
− ce

cc

)
+ i
(
i
e

cc

)(1

c

)
◦

]
+ e

[
K3′′

0

( 1

cc

)(1

c

)
+ K6′

0

(
i
e

cc

)(1

c

)
+
(
− i

2

cee

ccc

)(1

c

)
◦

]
+

c

c

[
Z3′′
0

( 1

cc

)(1

c

)
+ Z6′′

0

(
i
e

cc

)(1

c

)
+ Z8′

0

(
− i

2

cee

ccc

)(1

c

)
+ Z9′

0

(
− i

2

cee

ccc

)(ce
cc

)]
,
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hence after collecting

Z3 =
ee

ccc

[
− i

2
R1′

0 + iK6′
0 −

i

2
Z8′
0

]
+

eee

ccc

[
i

2
R2′

0 +
i

2
Z9′
0
◦

]
+

e

ccc

[
K3′′

0 + iZ6′′
0

]
+

1

ccc
Z3′′
0 .

As we already know, the second term vanishes, the third one as well

K3′′
0 + iZ6′′

0 = 2iH0 − iH0 − iH0,

and also the first one

− i

2
R1′

0 + iK6′
0 −

i

2
Z8′
0 = − i

2

(
1

3

L1

(
L1(k)

)
L1(k)

+
2

3
P
)

+ i

(
−1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

− i

2

(
−
L1

(
L1(k)

)
L1(k)

)
.

It remains only one term

Z3 =
1

ccc
Z3′′
0

=
1

ccc

(
− iZ8′

0 H0 − iL1

(
H0

)
+ iH0 R1′

0

)
=

i

ccc

(
L1

(
L1(k)

)
L1(k)

H0 − L1

(
H0

)
+

1

3

L1

(
L1(k)

)
L1(k)

H0 +
2

3
H0 P

)

=
i

ccc

(
4

3

L1

(
L1(k)

)
L1(k)

H0 +
2

3
P0 H0 − L1

(
H0

)
︸ ︷︷ ︸

=: J0

)
.

Then a direct expansion of the derivativeL1

(
H0

)
which uses neither Lemma 2.5, nor Lemma 2.9,

provides (exercise) exactly the same expression as the one of Pocchiola

J0 =
1

6

L1

(
L1

(
L1

(
L1(k)

)))
L1(k)

− 5

6

L1

(
L1

(
L1(k)

))
L1

(
L1(k)

)
L1(k)2

− 1

6

L1

(
L1

(
L1(k)

))
L1(k)

P

+
20

27

L1

(
L1(k)

)3
L1(k)3

+
5

18

L1

(
L1(k)

)2
L1(k)2

P +
1

6

L1

(
L1(k)

)
L1

(
P
)

L1(k)
− 1

9

L1

(
L1(k)

)
L1(k)

P P

− 1

6
L1

(
L1

(
P
))

+
1

3
L1

(
P
)

P− 2

27
P P P.



360 Wei Guo Foo and Joël Merker

12. COMPUTATION OF THE DERIVED INVARIANT R := ReZ2

Next, we determine

Z2 =
[
ρ ∧ ζ

]{
dζ
}

= − i

2

cee

c

[
ρ ∧ ζ

]{
dρ0
}

+ e
[
ρ ∧ ζ

]{
dκ′0
}

+
c

c

[
ρ ∧ ζ

]{
dζ ′′0
}

= − i

2

cee

c

[
R2′

0

( 1

cc

)(c
c

)]
+ e

[
K2′

0

( 1

cc

)(c
c

)
+ K5′

0

(
i
e

cc

)(c
c

)
−
(c
c

)(
− i e

cc

)]
+

c

c

[
Z2′′
0

( 1

cc

)(c
c

)
+ Z5′

0

(
i
e

cc

)(c
c

)
− Z8′

0

(c
c

)(
− i e

cc

)
− Z9′

0

(c
c

)( i
2

cee

ccc

)]

hence after collecting

Z2 = i
ee

cc
+

cee

ccc

(
− i

2
R2′

0 + iK5′
0

)
+

cee

ccc

(
− i

2
Z9′
0

)
+

e

cc

(
K2′

0 + iZ5′
0

)
+

e

cc

(
iZ8′

0

)
+

1

cc
Z2′′
0 ,

that is to say

Z2 = i
ee

cc
+

cee

ccc

(
i

2

L1(k)

L1(k)
− i L1(k)

L1(k)

)
+

cee

ccc

(
− i

2

L1(k)

L1(k)

)

+
e

cc

(
− i

3

K
(
L1

(
L1(k)

))
L1(k)2

+
i

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− i

3

L1

(
L1(k)

)
L1(k)

− i

3

L1

(
L1(k)

)
L1(k)

− 2

3

T (k)

L1(k)
+ i
L1

(
L1(k)

)
L1(k)

)

+
e

cc

(
−i
L1

(
L1(k)

)
L1(k)

)
+

1

cc

− iZ9′
0 H0 + iH0 R2′

0︸ ︷︷ ︸
on hold

+Z2′
0 − i

K(H0)

L1(k)

 .

Now, observe firstly that when we consider

2 ReZ2 = Z2 + Z
2
,

the real part of the sum of the first three terms of Z2

i
ee

cc
+

cee

ccc

(
− i

2

L1(k)

L1(k)

)
+

cee

ccc

(
− i

2

L1(k)

L1(k)

)
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vanishes, visibly. Secondly, in the sumZ2+Z
2
, if the terms multiples of e

cc are grouped together,
we realize that we recover W0 exactly

i
e

cc

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

− 1

3

L1

(
L1(k)

)
L1(k)

− 1

3

L1

(
L1(k)

)
L1(k)

+
2i

3

T (k)

L1(k)
+
L1

(
L1(k)

)
L1(k)

+
L1

(
L1(k)

)
L1(k)

)

= i
e

cc

(
− 1

3

K
(
L1

(
L1(k)

))
L1(k)2

+
1

3

K
(
L1(k)

)
L1

(
L1(k)

)
L1(k)3

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L1(k)

)
L1(k)

+
i

3

T (k)

L1(k)

)
= i

e

cc
W0,

as we remember its explicit expression from Section 8.
In addition thirdly, using the explicit expressions from Proposition 7.2

R2′
0 = − L1(k)

L1(k)
and Z9′

0 =
L1(k)

L1(k)
,

and the explicit expression of

H0 = − 1

6

L1

(
L1

(
L1(k)

))
L1(k)

+
2

9

L1

(
L1(k)

)2
L1(k)2

+
1

18

L1

(
L1(k)

)
L1(k)

P +
1

6
L1

(
P
)
− 1

9
P P,

we verify by a direct computation the identical vanishing

0 ≡ − iZ9′
0 H0 + iH0 R2′

0 +− iZ9′
0 H0 + iH0 R2′

0 ,

which means that the term ‘on hold’ underbraced above disappears when taking 2 ReZ2, and
we receive

2 ReZ2 = i
e

cc
W0 − i

e

cc
W0 +

1

cc

(
Z2′
0 − i

K(H0)

L1(k)
+ Z2′

0 + i
K(H0)

L1(k)

)
.

Fourthly and lastly, by replacing

H0 = − i

2
K3′

0 ,

we get

2 ReZ2 = 2 Re

(
i
e

cc
W0 +

1

cc

(
Z2′
0 −

1

2

K
(
K3′

0

)
L1(k)︸ ︷︷ ︸

on hold

))
.(12.1)

A miraculous re-expression of 2 ReZ2 was discovered by Pocchiola on his computer, and
was shown in [25, 18], but without any details of proof.

Lemma 12.2. One has in fact

2 ReZ2 = 2 Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
.
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This expression shows that Re(Z2) depends on the first jet of W0, that it vanishes when
W0 = 0, and therefore, ReZ2 is not a primary invariant. We provide details of proof, with no
computer help.

Proof. To transform the term ‘on hold’ above, we need a technical lemma, whose proof, to be
done afterwards, uses mainly the Poincaré relation d ◦ d = 0 applied to the structure equa-
tions (7.1).

Lemma 12.3. The following two identities hold identically

K
(
K3′

0

)
L1(k)

= L1

(
K2′

0

)
−K2′

0 K6′
0 −K1′

0 + K1′
0 + Z2′

0 ,(12.4)

L1

(
Z5′
0

)
+ L1

(
Z8′
0

)
= Z5′

0 K6′
0 + Z8′

0 K6′
0 + iZ2′

0 .(12.5)

Admitting these identities temporarily, let us prove the proposition. In order to replace the
term ‘on hold’ in (12.1) above, let us multiply by − 1

2 the first identity (12.4), and take 2 Re(•)

2 Re

(
− 1

2

K
(
K3′

0

)
L1(k)

)
= 2 Re

(
− 1

2
L1

(
K2′

0

)
+

1

2
K2′

0 K6′
0 + 0− 1

2
Z2′
0

)
.

We yet have to transform the boxed term. To this aim, we conjugate the second identity (12.5)

L1

(
Z5′
0

)
+ L1

(
Z8′
0

)
= Z5′

0 K6′
0 + Z8′

0 K6′
0 − iZ

2′
0 ,

and to this identity multiplied by i, we subtract (12.4) also multiplied by i, to get

− iL1

(
Z5′
0 − Z8′

0

)
+ iL1

(
Z5′
0 − Z8′

0

)
= − iK6′

0

(
Z5′
0 − Z8′

0

)
+ iK6′

0

(
Z5′
0 − Z8′

0

)
+ Z2′

0 + Z2′
0 .

But here, remembering that, by definition of W0

Z5′
0 − Z8′

0 = W0 + iK2′
0 ,

we can replace to get

− iL1

(
W0

)
+L1

(
K2′

0

)
+iL1

(
W0

)
+L1

(
K2′

0

)
= − iK6′

0 W0+K6′
0 K2′

0 +iK6′
0 W0+K6′

0 K2′
0 +Z2′

0 +Z2′
0 ,

that is to say for the mentioned boxed term

2 Re
(
L1

(
K2′

0

))
= 2 Re

(
iL1

(
W0

)
− iK6′

0 W0 + K2′
0 K6′

0 + Z2′
0

)
.

Multiplying this result by − 1
2 , and replacing above yields

2 Re

(
− 1

2

K
(
K3′

0

)
L1(k)

)
= 2 Re

(
− i

2
L1

(
W0

)
+
i

2
K6′

0 W0−
1

2
K2′

0 K6′
0
◦
− 1

2
Z2′
0 +

1

2
K2′

0 K6′
0
◦
− 1

2
Z2′
0

)
and a final replacement in (12.1) concludes, if one remembers that

K6′
0 = − 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P. �
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Proof of Lemma 12.3. To treat the first identity (12.4), apply the exterior differentiation operator
d to the structure equation for dκ′0 from (7.1)

0 = d2κ′0

= dK1′
0 ∧ ρ0 ∧ κ′0 + K1′

0 dρ0 ∧ κ′0 −K1′
0 ρ0 ∧ dκ′0

+ dK2′
0 ∧ ρ0 ∧ ζ ′0 + K2′

0 dρ0 ∧ ζ ′0 −K2′
0 ρ0 ∧ dζ ′0

+ dK3′
0 ∧ ρ0 ∧ κ′0︸ ︷︷ ︸

needed

+K3′
0 dρ0 ∧ κ′0 −K3′

0 ρ0 ∧ dκ′0

+ dK5′
0 ∧ κ′0 ∧ ζ ′0 + K5′

0 dκ′0 ∧ ζ ′0 −K5′
0 κ′0 ∧ dζ ′0

+ dK6′
0 ∧ κ′0 ∧ κ′0 + K6′

0 dκ′0 ∧ κ′0 −K6′
0 κ′0 ∧ dκ′0

+ dζ ′0 ∧ κ′0 − ζ ′0 ∧ dκ′0.

Because we are dealing withK
(
K3′

0

)
, we can wedge throughout with κ′0∧ζ

′
0 to obtainK

(
K3′

0

)/
L1(k)

from the term marked ‘needed’, and we get

0 = 0 + 0 −K1′
0 ρ0 ∧ dκ′0 ∧ κ′0 ∧ ζ

′
0

+ dK2′
0 ∧ ρ0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 + K2′

0 dρ0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0 −K2′

0 ρ0 ∧ dζ ′0 ∧ κ′0 ∧ ζ
′
0

+ dK3′
0 ∧ ρ0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 + K3′

0 dρ0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0 −K3′

0 ρ0 ∧ dκ′0 ∧ κ′0 ∧ ζ
′
0

+ 0 + K5′
0 dκ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 − 0

+ 0 + K6′
0 dκ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 − 0

+ 0 + dζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0 − ζ ′0 ∧ dκ′0 ∧ κ′0 ∧ ζ

′
0.

In the left column, observe that two exterior differentials appear, dK2′
0 , dK3′

0 . Already in Sec-
tion 9, we have implicitly used the following companion of Lemma 2.6.

Lemma 12.6. The exterior differential of any function G = G
(
z1, z2, z1, z2, v

)
on M expresses as

dG =

(
T
(
G
)
− i

3
B0 +

i

3
B0

)
ρ0 + L1

(
G
)
κ′0 +

K(G)

L1(k)
ζ ′0 + L1

(
G
)
κ′0 +

K(G)

L1(k)
ζ
′
0.

Proof. Replacing κ0 by κ′0 − i
3 B0 ρ0 from (6.8), and ζ0 by ζ′0

L1(k)
from (5.4), we indeed obtain

dG = T
(
G
)
ρ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0 + L1

(
G
)
κ0 +K

(
G
)
ζ0

= T
(
G
)
ρ0 + L1

(
G
) (
κ′0 −

i

3
B0 ρ0

)
+K

(
G
) ζ ′0
L1(k)

+ L1

(
G
) (
κ′0 +

i

3
B0 ρ0

)
+K

(
G
) ζ

′
0

L1(k)
. �



364 Wei Guo Foo and Joël Merker

Using this lemma for dK2′
0 , dK3′

0 , and replacing also dρ0, dκ′0, dζ ′0, dκ′0, dζ
′
0 by means of (7.1),

we have

0 = 0 + 0 −K1′
0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0

+ L1

(
K2′

0

)
κ′0 ∧ ρ0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 + K2′

0 R1′
0 ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ

′
0 −K2′

0 ρ0 ∧ Z8′
0 ζ
′
0 ∧ κ′0 ∧ ζ

′
0

+
K(K3′

0 )

L1(k)
ζ ′0 ∧ ρ0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 + K3′

0 R2′
0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 − 0

+ 0 + K5′
0 K3′

0 ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0 − 0

+ 0 + K6′
0 K2′

0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0 − 0

+ 0 + Z2′
0 ρ0 ∧ ζ ′0 ∧ κ′0 ∧ κ′0 ∧ ζ

′
0 − ζ ′0 ∧K1′

0 ∧ ρ0 ∧ κ′0 ∧ κ′0 ∧ ζ
′
0,

hence caring about signs when factoring by the naturally appearing 5-form

0 = ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0

(
0 + 0 −K1′

0

L1

(
K2′

0

)
−K2′

0 R1′
0 −K2′

0 Z8′
0

− K(K3′
0 )

L1(k)
+ K3′

0 R2′
0 − 0

+ 0 −K5′
0 K3′

0 − 0

+ 0 + K6′
0 K2′

0 − 0

+ 0 + Z2′
0 + K1′

0

)
,

whence we arrive at the announced first identity (12.4) by remembering some useful relations

K
(
K3′

0

)
L1(k)

= L1

(
K2′

0

)
+ K2′

0 K6′
0 −K2′

0

(
R1′

0 + Z8′
0︸ ︷︷ ︸

= 2 K6′
0

)
+ K3′

0

(
R2′

0 −K5′
0︸ ︷︷ ︸

= 0!

)
−K1′

0 + K1′
0 + Z2′

0 .

For the second identity (12.5), we proceed similarly, applying the exterior differentiation oper-
ator d to the structure equation for dζ ′0 from (7.1)

0 = d2ζ ′0

= d(Z2′
0 ) ∧ ρ0 ∧ ζ ′0︸ ︷︷ ︸
don’t want

+Z2′
0 dρ0 ∧ ζ ′0 − Z2′

0 ρ0 ∧ dζ ′0

+ d(Z5′
0 ) ∧ κ′0 ∧ ζ ′0︸ ︷︷ ︸

want

+Z5′
0 dκ′0 ∧ ζ ′0 − Z5′

0 κ′0 ∧ dζ ′0

+ d(Z8′
0 ) ∧ ζ ′0 ∧ κ′0︸ ︷︷ ︸

want

+Z8′
0 dζ ′0 ∧ κ′0 − Z8′

0 ζ ′0 ∧ dκ′0

+ d(Z9′
0 ) ∧ ζ ′0 ∧ ζ

′
0︸ ︷︷ ︸

don’t want

+Z9′
0 dζ ′0 ∧ ζ

′
0 − Z9′

0 ζ ′0 ∧ dζ
′
0.
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Observe that the desired identity involves the derivatives of Z5′
0 and Z8′

0 . Hence we may con-
serve those terms marked ‘want’ by wedging with the appropriate 2-form ρ0 ∧ ζ

′
0

0 = 0 + Z2′
0 dρ0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + 0

+ dZ5′
0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + Z5′

0 dκ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ
′
0 − Z5′

0 κ′0 ∧ dζ ′0 ∧ ρ0 ∧ ζ
′
0

+ dZ8′
0 ∧ ζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0 + Z8′

0 dζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ
′
0 − Z8′

0 ζ ′0 ∧ dκ′0 ∧ ρ0 ∧ ζ
′
0

+ 0 + 0 − Z9′
0 ζ ′0 ∧ dζ

′
0 ∧ ρ0 ∧ ζ

′
0.

Using Lemma 12.6 for dZ5′
0 , dZ8′

0 , and replacing also dρ0, dκ′0, dζ ′0, dκ′0, dζ
′
0 by means of (7.1),

we have

0 = 0 + Z2′
0 i κ

′
0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + 0

+ L1

(
Z5′
0

)
κ′0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + Z5′

0 K6′
0 κ
′
0 ∧ κ′0 ∧ ζ ′0 ∧ ρ0 ∧ ζ

′
0 + Z5′

0 κ
′
0 ∧ Z8′

0 ζ
′
0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0

+ L1

(
Z8′
0

)
κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0 + Z8′

0 Z5′
0 κ
′
0 ∧ ζ ′0 ∧ κ′0 ∧ ρ0 ∧ ζ

′
0 + Z8′

0 ζ
′
0 ∧K6′

0 ∧ κ′0 ∧ κ′0 ∧ ρ0 ∧ ζ
′
0

+ 0 + 0 − 0,

hence caring about signs when factoring by the naturally appearing 5-form, we arrive at the
announced second identity (12.5)

0 = ρ0 ∧ κ′0 ∧ ζ ′0 ∧ κ′0 ∧ ζ
′
0

(
0 + iZ2′

0 + 0

− L1

(
Z5′
0

)
+ Z5′

0 K6′
0 + Z5′

0 Z8′
0 ◦

− L1

(
Z8′
0

)
− Z8′

0 Z5′
0 ◦

+ Z8′
0 K6′

0

+ 0 + 0 − 0
)
. �

13. SUMMARIZED STRUCTURE EQUATIONS

All this work conducted us to finalize the statement of Proposition 10.3, but before, let us
make an ample summary.

After normalizations of the group parameters f, b, d, the equivalence problem for 2-nondegenerate
(constant) Levi rank 1 Cω or C∞ real hypersurfaces M5 ⊂ C3 conducts to a 4-dimensional G-
structure  cc 0 0

−i ce c 0
− i

2
cee
c e c

c

 ,

where c ∈ C∗ and e ∈ C, with Maurer-Cartan forms (conjutates are not written)

α :=
dc

c
,

β := i
e dc

cc
− i e dc

cc
− i de

c
.

Furthermore, 2 fundamental primary differential invariants occur

J =
i

ccc
J0 and W =

1

c
W0,
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where J0 and W0 are explicit functions on M , together with 1 secondary invariant

R := ReZ2

= Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
.

On the 10-dimensional manifold M5 ×G4 × R equipped with coordinates(
z1, z2, z1, z2, v

)
×
(
c, c, e, e

)
× (t),

there are two modified-prolonged Maurer-Cartan forms

π1 := α−
(
t− i

2
ImZ2

)
ρ−

(
R1 −K6

)
κ−R2 ζ −K6 κ− 0,

π2 := β − i Z1 ρ−
(
t− i

2
ImZ2 +K1

)
κ−K2 ζ −K3 κ−K4 ζ,

where Ri, Ki, Zi are explicit functions on M5 ×G4.

Theorem 13.1. After finalization of absorption, the structure equations read

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ

+Rρ ∧ ζ + J ρ ∧ κ+W κ ∧ ζ. �

14. THE FINAL {e}-STRUCTURE

Let Ω1 and Ω2 be the two 2-forms defined by:

Ω1 := dπ1 − i κ ∧ π2 − ζ ∧ ζ,
Ω2 := dπ2 − π2 ∧ π1 − ζ ∧ π2.

When the two fundamental invariants J0 ≡ 0 ≡ W0 vanish identically, since we know that

R = Re

[
i
e

cc
W0 +

1

cc

(
− i

2
L1

(
W0

)
+
i

2

(
− 1

3

L1

(
L1(k)

)
L1(k)

+
1

3
P
)

W0

)]
,

J =
i

ccc
J0,

W =
1

c
W0,

it comes
0 ≡ R ≡ J ≡ W.

Independently, the addendum to [18] shows that in the case where all invariants vanish, these
auxiliary 2-forms Ω1 and Ω2 satisfy (

Ω1 + Ω1

)
∧ ρ = 0,

Ω2 ∧ ρ+ Ω1 ∧ κ = 0,(
Ω1 − Ω1

)
∧ ζ + iΩ2 ∧ κ = 0.

In general, the right-hand sides of these structure equations are not necessarily zero, and they
depend on the invariants R, J , W .
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Proposition 14.1. The two 2-forms Ω1 and Ω2 satisfy(
Ω1 + Ω1

)
∧ ρ = 0,(14.2)

Ω2 ∧ ρ+ Ω1 ∧ κ = −Rρ ∧ ζ ∧ κ−W κ ∧ ζ ∧ κ,(14.3)

iΩ2 ∧ κ+
(
Ω1 − Ω1

)
∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ − i R π2 ∧ ρ ∧ κ(14.4)

+ i R κ ∧ ζ ∧ ζ − dJ ∧ ρ ∧ κ− 3 J π1 ∧ ρ ∧ κ
− J ρ ∧ κ ∧ ζ − dW ∧ κ ∧ ζ −W π2 ∧ ρ ∧ ζ
−W π1 ∧ κ ∧ ζ −WJ ρ ∧ κ ∧ κ.

Proof. These relations come from Poincaré’s identities

0 ≡ d ◦ dρ ≡ d ◦ dκ ≡ d ◦ dζ,

applied to the finalized structure equations of Theorem 13.1, in which dρ, dκ, dζ should be
replaced again using Theorem 13.1, followed by a reorganization of the obtained 3-forms.

For the first line (14.2)

0 = d ◦ dρ
=
(
dπ1 + dπ1

)
∧ ρ−

(
π1 + π1

)
∧ dρ+ i dκ ∧ κ− i κ ∧ dκ

=
(
dπ1 + dπ1

)
∧ ρ−

(
π1 + π1

)
∧
((
π1 + π1

◦
)
∧ ρ+ i κ ∧ κ

)
+ i
(
π2 ∧ ρ+ π1 ∧ ρ+ ζ ∧ κ◦

)
∧ κ− i κ ∧

(
π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ◦

)
.

Afer simplification, this becomes

0 =
(
dπ1 − i κ ∧ π2

)
∧ ρ+

(
dπ1 + i κ ∧ π2

)
∧ ρ,

and after insertion of twice −ζ ∧ ζ which is purely imaginary — hence disappears —, we ob-
tain (14.2)

0 =
(
dπ1 − i κ ∧ π2 − ζ ∧ ζ

)
∧ ρ+

(
dπ1 + i κ ∧ π2 − ζ ∧ ζ

)
∧ ρ

= Ω1 ∧ ρ+ Ω1 ∧ ρ.
For (14.3), we proceed analogously, starting from the second structure equation of Theorem 13.1

0 = d ◦ dκ
= dπ2 ∧ ρ− π2 ∧ dρ+ dπ1 ∧ κ− π1 ∧ dκ+ dζ ∧ κ− ζ ∧ dκ

= dπ2 ∧ ρ− π2 ∧
((
π1 + π1

)
∧ ρ+ i κ ∧ κ

)
+ dπ1 ∧ κ− π1 ∧

(
π2 ∧ ρ+ ζ ∧ κ

)
+
((
π1 − π1

)
∧ ζ + i π2 ∧ κ+Rρ ∧ ζ +W κ ∧ ζ

)
∧ κ− ζ ∧

(
π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ

)
.

After four annihilations by pairs and a reorganization, this becomes

0 = dπ2 ∧ ρ− π2 ∧ π1 ∧ ρ
1
− π2 ∧ π1 ∧ ρ− i π2 ∧ κ ∧ κ2 + dπ1 ∧ κ− π1 ∧ π2 ∧ ρ

1
− π1 ∧ ζ ∧ κ

3

+ π1 ∧ ζ ∧ κ
3
− π1 ∧ ζ ∧ κ

4
+ i π2 ∧ κ ∧ κ2 +Rρ ∧ ζ ∧ κ+W κ ∧ ζ ∧ κ− ζ ∧ π2 ∧ ρ

− ζ ∧ π1 ∧ κ
4
− ζ ∧ ζ ∧ κ

=
(
dπ2 − π2 ∧ π1 − ζ ∧ π2

)
∧ ρ+

(
dπ1 − ζ ∧ ζ

)
∧ κ

+Rρ ∧ ζ ∧ κ+W κ ∧ ζ ∧ κ,
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which is (14.3), since we can insert
(
− i κ ∧ π2

)
∧ κ = 0. Lastly

0 = d ◦ dζ
= i dπ2 ∧ κ− i π2 ∧ dκ+ dπ1 ∧ ζ − π1 ∧ dζ − dπ1 ∧ ζ + π1 ∧ dζ

+ dR ∧ ρ ∧ ζ +Rdρ ∧ ζ −Rρ ∧ dζ
+ dJ ∧ ρ ∧ κ+ J dρ ∧ κ− J ρ ∧ dκ
+ dW ∧ κ ∧ ζ +W dκ ∧ ζ −W κ ∧ dζ,

whence by replacements

0 = i dπ2 ∧ κ− i π2 ∧
(
π1 ∧ κ+ ζ ∧ κ

)
+ dπ1 ∧ ζ − π1 ∧

(
i π2 ∧ κ− π1 ∧ ζ +Rρ ∧ ζ

+ J ρ ∧ κ+W κ ∧ ζ
)
− dπ1 ∧ ζ + π1 ∧

(
i π2 ∧ κ+ π1 ∧ ζ +Rρ ∧ ζ + J ρ ∧ κ+W κ ∧ ζ

)
+ dR ∧ ρ ∧ ζ +R

((
π1 + π1

)
∧ ρ+ i κ ∧ κ

)
∧ ζ −Rρ ∧

(
i π2 ∧ κ+

(
π1 − π1

)
∧ ζ +W κ ∧ ζ

)
+ dJ ∧ ρ ∧ κ+ J

(
π1 + π1

)
∧ ρ ∧ κ− J ρ ∧

(
π1 ∧ κ+ ζ ∧ κ

)
+ dW ∧ κ ∧ ζ +W

(
π2 ∧ ρ+ π1 ∧ κ

)
∧ ζ −W κ ∧

((
π1 − π1

)
∧ ζ +Rρ ∧ ζ + J ρ ∧ κ

)
.

Let us expand this and underline the eight annihilating pairs

0 = i dπ2 ∧ κ− i π2 ∧ π1 ∧ κ1 − i π2 ∧ ζ ∧ κ+ dπ1 ∧ ζ − i π1 ∧ π2 ∧ κ1 + π1 ∧ π1 ∧ ζ
2

−Rπ1 ∧ ρ ∧ ζ
3
− J π1 ∧ ρ ∧ κ

6
−W π1 ∧ κ ∧ ζ

7
− dπ1 ∧ ζ + i π1 ∧ π2 ∧ κ+ π1 ∧ π1 ∧ ζ

2

+Rπ1 ∧ ρ ∧ ζ
4

+ J π1 ∧ ρ ∧ κ+W π1 ∧ κ ∧ ζ
8

+ dR ∧ ρ ∧ ζ +Rπ1 ∧ ρ ∧ ζ
3

+Rπ1 ∧ ρ ∧ ζ

+ i R κ ∧ κ ∧ ζ − i R ρ ∧ π2 ∧ κ−Rρ ∧ π1 ∧ ζ +Rρ ∧ π1 ∧ ζ
4
−RW ρ ∧ κ ∧ ζ

5

+ dJ ∧ ρ ∧ κ+ J π1 ∧ ρ ∧ κ
6

+ J π1 ∧ ρ ∧ κ− J ρ ∧ π1 ∧ κ− J ρ ∧ ζ ∧ κ+ dW ∧ κ ∧ ζ

+W π2 ∧ ρ ∧ ζ +W π1 ∧ κ ∧ ζ
7
−W κ ∧ π1 ∧ ζ +W κ ∧ π1 ∧ ζ

8
−WRκ ∧ ρ ∧ ζ

5

−WJ κ ∧ ρ ∧ κ.

After simplification and reorganization

0 = i
(
dπ2 − π2 ∧ π1

)
∧ κ+

(
dπ1 − dπ1 − i κ ∧ π2

)
∧ ζ

+ dR ∧ ρ ∧ ζ +Rπ1 ∧ ρ ∧ ζ − i R κ ∧ ζ ∧ κ+ i R π2 ∧ ρ ∧ κ+Rπ1 ∧ ρ ∧ ζ
+ dJ ∧ ρ ∧ κ+ 3 J π1 ∧ ρ ∧ κ+ J ρ ∧ κ ∧ ζ
+ dW ∧ κ ∧ ζ +W π2 ∧ ρ ∧ ζ +W π1 ∧ κ ∧ ζ +WJ ρ ∧ κ ∧ κ.

To reach (14.4) completely, only the first line must yet be transformed, and it suffices to insert
into it two terms which cancel together

i
(
dπ2 − π2 ∧ π1 − ζ ∧ π2

◦

)
∧ κ+

(
dπ1 − i κ ∧ π2

◦ − dπ1 − i κ ∧ π2
)
∧ ζ. �

Remind that all present considerations hold on the 9-dimensional manifoldM5×G4 equipped
with the coordinates (

z1, z2, z1, z2, v
)
×
(
c, e, c, e

)
,

the supplementary real variable t ∈ R being considered as a parameter until it becomes a
variable at the very end of the process for an {e}-structure on the 10-dimensional manifold
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M5×G4×R. In order to build up such an {e}-structure, the goal now is to fully determine the
two 2-forms Ω1, Ω2, and precisely, to determine how they express in terms of the coframe{

π1, π2, π1, π2, ρ, κ, ζ, κ, ζ
}
.

To begin with, suppose that there are two ways of solving for
{

Ω1,Ω2

}
the structure equations

of Proposition 14.1, leading to another set of solutions
{

Ω′1,Ω
′
2

}
. Then their differences Γ1 :=

Ω′1 − Ω1 and Γ2 := Ω′2 − Ω2 must necessarily satisfy the homogeneous equations(
Γ1 + Γ1

)
∧ ρ = 0,

Γ2 ∧ ρ+ Γ1 ∧ κ = 0,

iΓ2 ∧ κ+
(
Γ1 − Γ1

)
∧ ζ = 0.

The addendum to the article [18] provides a detailed proof of the elementary

Proposition 14.5. The general solution
{

Γ1,Γ2

}
to these homogeneous equations is given by

Γ1 := Λ ∧ ρ, Γ2 := Λ ∧ κ+ h ρ ∧ κ,
where Λ is a real 1-form and h is purely imaginary function. �

This means that the two sets of solutions are related to each other by

Ω′1 = Ω1 + Λ ∧ ρ, Ω′2 = Ω2 + Λ ∧ κ+ h ρ ∧ κ.
Due to this flexibility represented by Λ, h, it will be necessary to prolong the structure equa-

tions by adding this real 1-form:
Λ = dt + · · · ,

the remainder terms being very complicated, while the function h could be some new invariant.
However, it will be later shown that h expresses in terms of the 3rd-order jets of W and J , thus
eliminating the possibility of appearance of new primary CR invariants. On the other hand,
the existence of Λ can be explained by an application (not detailed here) of Cartan’s test, due to
the fact that there is one degree of real-valued indeterminancy during the fourth absorption.

It therefore suffices to find a particular set of solution Ω1 and Ω2, and then to parametrize the
solution space by means of Λ, h. We will adopt the following strategy. First, we will find the
simplest forms for Ω1 and Ω2 restrained by the first two equations (14.2), (14.3) of the starting
Proposition 14.1. Then we will simplify these 2-forms by means of Cartan’s lemma to eliminate
as many unknown variables as possible using the third, more subtle, equation (14.4). At the
end of the elimination, those remaining unknowns which cannot be computed due to the lack
of information turn out to behave like Λ and h, and hence we will terminate the process of
solving for solutions.

In M5 ×G4, it will be useful to adopt the following notations for the covariant derivatives

dR = Rπ1 π1 +Rπ2 π2 +Rπ1 π1 +Rπ2 π2 +Rρ ρ+Rκ κ+Rζ ζ +Rκ κ+Rζ ζ,

dJ = Jπ1 π1 + Jπ2 π2 + Jπ1 π1 + Jπ2 π2 + Jρ ρ+ Jκ κ+ Jζ ζ + Jκ κ+ Jζ ζ,(14.6)

dW = Wπ1 π1 +Wπ2 π2 +Wπ1 π1 +Wπ2 π2 +Wρ ρ+Wκ κ+Wζ ζ +Wκ κ+Wζ ζ.

Some of these coefficients will be revealed during the course of solving the structure equa-
tions. We first turn ourselves to finding the simplest form of Ω1, Ω2 satisfying only the first two
equations (14.2), (14.3).

Proposition 14.7. There exists a real-valued function p and two differential 1-forms Π, Ψ such that

Ω1 = Π ∧ ρ+ p κ ∧ κ−W κ ∧ ζ −W ζ ∧ κ,
Ω2 = Ψ ∧ ρ+ Π ∧ κ−Rζ ∧ κ.
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Proof. We can rearrange the terms in (14.3)

0 =
(
Ω1 +W ζ ∧ κ

)
∧ κ+

(
Ω2 +Rζ ∧ κ

)
∧ ρ,(14.8)

in order that an application of the Cartan Lemma yield functions ∆, Θ, Π′′, Ψ so that

Ω1 +W ζ ∧ κ = ∆ ∧ κ+ Θ ∧ ρ,
Ω2 +Rζ ∧ κ = Π′′ ∧ κ+ Ψ ∧ ρ,

with a double prime on Π′′ meaning that we will soon modify it two times.
In fact, substituting these representations back into (14.8), we see that there are constraints

on Θ and Π′′

0 =
(
∆ ∧ κ◦ + Θ ∧ ρ

)
∧ κ+

(
Π′′ ∧ κ+ Ψ ∧ ρ◦

)
∧ ρ

=
(
Θ−Π′′

)
∧ ρ ∧ κ.

By the Cartan Lemma again, this implies the existence of two functions a, b so that Θ and Π′′

are related to each other by
Θ = Π′′ + a ρ+ b κ.

Next, putting this into the expression of Ω1, while letting Π′ := Π′′ + b κ, it follows that

Ω1 = ∆ ∧ κ+ Θ ∧ ρ−W ζ ∧ κ
= ∆ ∧ κ+

(
Π′′ + a ρ◦ + b κ

)
∧ ρ−W ζ ∧ κ

= ∆ ∧ κ+ Π′ ∧ ρ−W ζ ∧ κ,

while Ω2 becomes
Ω2 = Π′′ ∧ κ+ Ψ ∧ ρ−Rζ ∧ κ

=
(
Π′′ + b κ

)
∧ κ+ Ψ ∧ ρ−Rζ ∧ κ

= Π′ ∧ κ+ Ψ ∧ ρ−Rζ ∧ κ.
The next observation is that ∆ can be further simplified. Indeed, let us replace Ω1 in (14.2)

0 =
(
Ω1 + Ω1

)
∧ ρ

= ∆ ∧ κ ∧ ρ−W ζ ∧ κ ∧ ρ+ ∆ ∧ κ ∧ ρ−W ζ ∧ κ ∧ ρ.

Then decomposing ∆ as a linear combination along the coframe

∆ = d1 π
1 + d2 π

2 + d3 π
1 + d4 π

2 + d5 ρ+ d6 κ+ d7 ζ + d8 κ+ d9 ζ,

we obtain the following values for these coefficients

d1 = d2 = d3 = d4 = 0, d8 = d8, d9 = W,

except for d5 and d6 which on which no constraint is deduced so, and hence

∆ = d5 ρ+ d6 κ+ d8 κ+W ζ.

Finally, if we write p := − d8 and if we set Π := Π′ − d5 κ, we obtain by reorganization

Ω1 = ∆ ∧ κ+ Π′ ∧ ρ−W ζ ∧ κ

=
(
d5 ρ+ d6 κ◦ + d8 κ+W ζ

)
∧ κ+ Π′ ∧ ρ−W ζ ∧ κ

= − d8 κ ∧ κ+
(
Π′ − d5 κ

)
∧ ρ−W κ ∧ ζ −W ζ ∧ κ

= p κ ∧ κ+ Π ∧ ρ−W κ ∧ ζ −W ζ ∧ κ,
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and moreover

Ω2 = Ψ ∧ ρ+ Π′ ∧ κ−Rζ ∧ κ
= Ψ ∧ ρ+

(
Π′ − d5 κ

)
∧ κ−Rζ ∧ κ

= Ψ ∧ ρ+ Π ∧ κ−Rζ ∧ κ. �

Now, using the representations of Ω1 and of Ω2 offered by this Proposition 14.7, we can
therefore rewrite the third (still not taken account of) equation (14.4) as

iΨ ∧ ρ ∧ κ− i R ζ ∧ κ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ + 2 p κ ∧ κ ∧ ζ − 2W κ ∧ ζ ∧ ζ

= − dR ∧ ρ ∧ ζ −R
(
π1 + π1

)
∧ ρ ∧ ζ − i R π2 ∧ ρ ∧ κ+ i R κ ∧ ζ ∧ κ(14.9)

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ− J ρ ∧ κ ∧ ζ
− dW ∧ κ ∧ ζ −W π2 ∧ ρ ∧ ζ −W π1 ∧ κ ∧ ζ −WJ ρ ∧ κ ∧ κ.

But before we commence with analyzing this equation (a long task), we make a side remark.
As we can rewrite

Ω1 = 1
2

(
Π + Π

)
∧ ρ+ 1

2

(
Π−Π

)
∧ ρ+ p κ ∧ κ−W κ ∧ ζ −W ζ ∧ κ,

Ω2 = Ψ ∧ ρ+ 1
2

(
Π + Π

)
∧ κ+ 1

2

(
Π−Π

)
∧ κ−Rζ ∧ κ,

we remark that Proposition 14.5 already tells us that the real part 1
2

(
Π + Π

)
of Π is a priori not

fully determined, as can be formulated by an

Observation 14.10. For an arbitrary real 1-form Λ, the 2-forms

Ω′1 := Ω1 + Λ ∧ ρ and Ω′2 := Ω2 + Λ ∧ κ
still satisfy the structure equations of Proposition 14.1.

Proof. For the sake of completeness, let us detail the arguments. The first equation (14.2) is
clear (

Ω′1 + Ω
′
1

)
∧ ρ =

(
Ω1 + Λ ∧ ρ◦ + Ω1 + Λ ∧ ρ◦

)
∧ ρ =

(
Ω1 + Ω1

)
∧ ρ.

The second equation (14.3) also

Ω′2 ∧ ρ+ Ω′1 ∧ κ =
(
Ω2 + Λ ∧ κ

)
∧ ρ+

(
Ω1 + Λ ∧ ρ

)
∧ κ

= Ω2 ∧ ρ+ Λ ∧ κ ∧ ρ◦ + Ω1 ∧ κ+ Λ ∧ ρ ∧ κ◦
= Ω2 ∧ ρ+ Ω1 ∧ κ,

and the third one as well

iΩ′2 ∧ κ+
(
Ω′1 − Ω

′
1

)
∧ ζ = i

(
Ω2 + Λ ∧ κ◦

)
∧ κ+

(
Ω1 + Λ ∧ ρ◦ − Ω1 − Λ ∧ ρ◦

)
∧ ζ

= iΩ2 ∧ κ+
(
Ω1 − Ω1

)
∧ ζ. �

Now, coming back to (14.9), we remember that we should insert the covariant derivatives dR,
dJ , dW from (14.6), and we will do this in a progressive way, not in one stroke.
Indeed, by wedging (•) ∧ ρ both sides of (14.9), we get rid of dJ , dR and it remains only

− i R ζ ∧ κ ∧ κ ∧ ρ+ 2p κ ∧ κ ∧ ζ ∧ ρ− 2W κ ∧ ζ ∧ ζ ∧ ρ
= i R κ ∧ ζ ∧ κ ∧ ρ− dW ∧ κ ∧ ζ ∧ ρ−W π1 ∧ κ ∧ ζ ∧ ρ,

that is to say after putting everything to the right

0 = − dW ∧ ρ ∧ κ ∧ ζ −
(
2 p+ 2 i R

)
ρ ∧ κ ∧ ζ ∧ κ+ 2W p ∧ κ ∧ ζ ∧ ζ −W π1 ∧ ρ ∧ κ ∧ ζ.
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Thus, inserting the expansion of dW from (14.6)

− dW ∧ ρ ∧ κ ∧ ζ = −Wπ1 π1 ∧ ρ ∧ κ ∧ ζ −Wπ2 π2 ∧ ρ ∧ κ ∧ ζ −Wπ1 π1 ∧ ρ ∧ κ ∧ ζ
−Wπ2 π2 ∧ ρ ∧ κ ∧ ζ −Wκ κ ∧ ρ ∧ κ ∧ ζ −Wζ ζ ∧ ρ ∧ κ ∧ ζ,

we get

0 = −
(
Wπ1 +W

)
π1 ∧ ρ ∧ κ ∧ ζ −Wπ2 π2 ∧ ρ ∧ κ ∧ ζ −Wπ1 π1 ∧ ρ ∧ κ ∧ ζ −Wπ2 π2 ∧ ρ ∧ κ ∧ ζ

−
(
2 p+ 2 i R−Wκ

)
ρ ∧ κ ∧ ζ ∧ κ−

(
2W +Wζ

)
ρ ∧ κ ∧ ζ ∧ ζ,

whence by identification of coefficients of these independent 4-forms

Wπ1 = −W, Wπ2 = 0, Wπ1 = 0, Wπ2 = 0,

Wκ = 2 p+ 2 i R, Wζ = − 2W,

while no condition is imposed so on Wρ, Wκ, Wζ , and thus

dW = −W π1 +Wρ ρ+Wκ κ+Wζ ζ +
(
2 p+ 2 i R

)
κ− 2W ζ.

Next, putting this expression of dW back into (14.9) allows us to eliminate p so that we can
focus only on Π−Π and Ψ, which we place on the left

iΨ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = i R ζ ∧ κ ∧ κ

1
− 2 p κ ∧ κ ∧ ζ

2
− 2W κ ∧ ζ ∧ ζ

3
− dR ∧ ρ ∧ ζ

−R
(
π1 + π1

)
∧ ρ ∧ ζ − i R π2 ∧ ρ ∧ κ+ i R κ ∧ ζ ∧ κ

1

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ− J ρ ∧ κ ∧ ζ
+W π1 ∧ κ ∧ ζ

4
−Wρ ρ ∧ κ ∧ ζ −

(
2 p

2
+ 2 i R1

)
κ ∧ κ ∧ ζ

+ 2W ζ ∧ κ ∧ ζ
3
− W π2 ∧ ρ ∧ ζ −W π1 ∧ κ ∧ ζ

4
−WJ ρ ∧ κ ∧ κ.

Here, four simplifications by pairs are underlined, in which we observe that p eliminates itself,
and if we collect at first the terms divisible by ρ ∧ κ, we get

iΨ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ =

(
− i R π2 − J ζ −Wρ ζ −WJ κ

)
∧ ρ ∧ κ

− dR ∧ ρ ∧ ζ −R
(
π1 + π1

)
∧ ρ ∧ ζ

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ−W π2 ∧ ρ ∧ ζ.
By introducing the modified 1-form

Ψ′ := Ψ− i
(
i R π2 + J ζ +Wρ ζ +WJ κ

)
,

the equation becomes

iΨ′ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ

− dJ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ−W π2 ∧ ρ ∧ ζ.(14.11)

Now, let us wedge (•)∧κ∧ ζ all this to make Ψ and Π−Π disappear, replacing simultaneously

dJ = Jπ1 π1 + Jπ2 π2 + Jπ1 π1 + Jπ2 π2 + Jρ ρ+ Jκ κ+ Jζ ζ + Jκ κ+ Jζ ζ,

to obtain
0 = − Jπ1 π1 ∧ ρ ∧ κ ∧ κ ∧ ζ − Jπ2 π2 ∧ ρ ∧ κ ∧ κ ∧ ζ − Jπ1 π1 ∧ ρ ∧ κ ∧ κ ∧ ζ − Jπ2 π2 ∧ ρ ∧ κ ∧ κ ∧ ζ

− Jζ ζ ∧ ρ ∧ κ ∧ κ ∧ ζ − 3J π1 ∧ ρ ∧ κ ∧ κ ∧ ζ

= − Jπ1 π1 ∧ ρ ∧ κ ∧ ζ ∧ κ− Jπ2 π2 ∧ ρ ∧ κ ∧ ζ ∧ κ−
(
Jπ1 + 3 J

)
π1 ∧ ρ ∧ κ ∧ ζ ∧ κ− Jπ2 π2 ∧ ρ ∧ κ ∧ ζ ∧ κ

− Jζ ρ ∧ κ ∧ ζ ∧ κ ∧ ζ,
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and since these 5-forms are linearly independent, we get by identification

Jπ1 = 0, Jπ2 = 0, Jπ1 = − 3J, Jπ2 = 0, Jζ = 0,

while no condition is imposed in this way on Jρ, Jκ, Jζ , Jκ. Consequently, the 1-form dJ
contracts as

dJ = − 3J π1 + Jρ ρ+ Jκ κ+ Jζ ζ + Jκ κ,

hence putting this expression back into (14.11), we obtain

iΨ′ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1) ∧ ρ ∧ ζ

+ 3J π1 ∧ ρ ∧ κ
◦
− Jκ κ ∧ ρ ∧ κ− Jζ ζ ∧ ρ ∧ κ− 3J π1 ∧ ρ ∧ κ

◦
−W π2 ∧ ρ ∧ ζ.

We can yet absorb in Ψ′ one term from the right-hand side by introducing

Ψ′′ := Ψ′ + i Jκ κ,

so that our equation becomes

iΨ′′ ∧ ρ ∧ κ+
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ

+ Jζ ρ ∧ ζ ∧ κ−W π2 ∧ ρ ∧ ζ.
Now, observe that all terms except the first one iΨ′′ ∧ ρ∧κ are multiple of ρ∧ ζ. Consequently,
wedging on both sides by (•) ∧ ζ, we annihilate everything except

iΨ′′ ∧ ρ ∧ κ ∧ ζ = 0.

Thanks to the Cartan Lemma, there exist function e, f , g so that

Ψ′′ = e ρ+ f κ+ g ζ.

For later use, we also observe in passing that

Ψ = Ψ′ + iWρ ζ + iWJ κ−Rπ2 + i J ζ(14.12)

= Ψ′′ − i Jκ κ+ iWρ ζ + iWJ κ−Rπ2 + i J ζ

= −Rπ2 + e ρ+ f κ+
(
iWρ + g

)
ζ + i

(
WJ − Jκ

)
κ+ i J ζ.

Inserting this just above conducts to an identity

i g ρ ∧ κ ∧ ζ +
(
Π−Π

)
∧ ρ ∧ ζ = − dR ∧ ρ ∧ ζ −R

(
π1 + π1

)
∧ ρ ∧ ζ

+ Jζ ρ ∧ ζ ∧ κ−W π2 ∧ ρ ∧ ζ,
in which all terms are now multiples of ρ ∧ ζ. Consequently, the Cartan Lemma implies the
existence of functions r and s such that

Π−Π = i g κ− dR−Rπ1 −Rπ1 + Jζ κ−W π2 + r ρ+ s ζ.

But here, we can take advantage of the fact that Π − Π is purely imaginary to obtain some
information about g, r, s. Indeed, conjugating

Π−Π = − i g κ− dR−Rπ1 −Rπ1 − Jζ κ−W π2 + r ρ+ s ζ,

and summing, we eliminate Π−Π, hence we are left after reorganization with

0 = − 2 dR− 2Rπ1 −W π2 − 2Rπ1 −W π2

+ (r + r) ρ+
(
i g + Jζ

)
κ+ s ζ +

(
− i g + Jζ

)
κ+ s ζ.

Naturally, one has to use the expansion of dR from (14.6) to continue the computation

0 = −
(
2Rπ1 + 2R

)
π1 −

(
2Rπ2 +W

)
π2 −

(
2Rπ1 + 2R

)
π1 −

(
2Rπ2 +W

)
π2

−
(
2Rρ − r − r

)
ρ−

(
2Rκ − i g − Jζ

)
κ−

(
2Rζ − s

)
ζ −

(
2Rκ + i g − Jζ

)
κ−

(
2Rζ − s

)
ζ.
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An identification to zero of all the nine coefficients of π1, π2, π1, π2, ρ, κ, ζ, κ, ζ gives

Rπ1 = −R, Rπ2 = − 1
2
W, Rπ1 = −R, Rπ2 = − 1

2
W,

Rρ = 1
2

(
r + r

)
, Rκ = 1

2

(
i g + Jζ

)
, Rζ = 1

2
s, Rκ = 1

2

(
− i g + Jζ

)
, Rζ = 1

2
s,

and so:

dR = −Rπ1 − 1
2 W π2 −Rπ1 − 1

2 W π2 +Rρ ρ+Rκ κ+Rζ ζ +Rκ κ+Rζ ζ.

Inserting this back into what precedes, we can therefore obtain both

Π−Π = − 1
2Wπ2 + 1

2Wπ2 +Rζζ −Rζζ + (Rκ − Jζ)κ− (Rκ − Jζ)κ+ 1
2 (gρ − gρ)ρ,

and replacing g = − 2i Rκ + i Jζ in (14.12)

Ψ = −Rπ2 + eρ+ fκ+ i(Wρ − 2Rκ + Jζ)ζ + i(WJ − Jκ)κ+ iJζ.

Thus

Ω1 = pκ ∧ κ+ Π ∧ ρ+Wζ ∧ κ−Wζ ∧ κ
= pκ ∧ κ+ 1

2 (Π−Π) ∧ ρ+Wζ ∧ κ−Wζ ∧ κ+ 1
2 (Π + Π) ∧ ρ

= − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ + 1
2 (Rκ − Jζ)ρ ∧ κ

+ 1
2Rζρ ∧ ζ + ( 1

2Wκ − iR)κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ+ 1
2 (Π + Π) ∧ ρ,

and

Ω2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ

−Rζ ∧ κ+ 1
2 (Π + Π) ∧ κ+ ( 1

2 (r − r)− f)ρ ∧ κ.

If we define

Λ := 1
2 (Π + Π) + real part of

(
1
2 (gρ − gρ)− dκ

)
ρ

and

h := imaginary part of
(
1
2 (gρ − gρ)− dκ

)
,

we conclude that

Ω1 = − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ + 1
2 (Rκ − Jζ)ρ ∧ κ

+ 1
2Rζρ ∧ ζ +

(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ+ Λ ∧ ρ,

Ω2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ
−Rζ ∧ κ+ Λ ∧ κ+ hρ ∧ κ.

Notice that all coefficients of 2-forms — except only h — depend onR, J ,W and their coframe
derivatives.
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We are now close to the termination towards an {e}-structure. In summary, we have ob-
tained the following structure equations

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ +Wκ ∧ ζ +Rρ ∧ ζ + Jρ ∧ κ,
dπ1 = Λ ∧ ρ− 1

4Wπ2 ∧ ρ+ 1
4Wπ2 ∧ ρ− iπ2 ∧ κ

− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ + 1
2 (Rκ − Jζ)ρ ∧ κ+ 1

2Rζρ ∧ ζ

+
(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ+ ζ ∧ ζ,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ
+ hρ ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ − i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ
− 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ −Rζ ∧ κ.

But at this stage, we cannot directly deduce from these equations an appropriate expression
for h. For example, any attempt to isolate h by wedging the equation dπ2 = · · · with any
appropriate differential form will include a component of Maurer-Cartan type. This is to be
expected, because h will soon be shown below to depend on higher order jets of R, J , W ,
while the torsions above only depend up to the 2nd-order jets of these invariants. Therefore,
an application of the exterior differentiation on both sides of the equation dπ2 = · · · appears
necessary to reach an expression for h from the Poincaré relation d ◦ d = 0.

To facilitate the discussion, we set

Ω̂1 = − 1
4Wπ2 ∧ ρ+ 1

4Wπ2 ∧ ρ− 1
2 (Rκ − Jζ)ρ ∧ κ− 1

2Rζρ ∧ ζ

+ 1
2 (Rκ − Jζ)ρ ∧ κ+ 1

2Rζρ ∧ ζ +

(
1
2Wκ − iR

)
κ ∧ κ−Wκ ∧ ζ −Wζ ∧ κ,

Ω̂2 = −Rπ2 ∧ ρ− 1
4Wπ2 ∧ κ+ 1

4Wπ2 ∧ κ− i(Wρ − 2Rκ + Jζ)ρ ∧ ζ
− i(WJ − Jκ)ρ ∧ κ− iJρ ∧ ζ − 1

2Rζκ ∧ ζ + 1
2 (Rκ − Jζ)κ ∧ κ+ 1

2Rζκ ∧ ζ
−Rζ ∧ κ,

so that

dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ + Ω̂1,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ + Ω̂2 + hρ ∧ κ.

Proposition 14.13. The function h is a function of the 3rd-order jets of W and J .

Proof. By applying exterior differentiation d to the equation of dπ2, while wedging on both
sides with κ ∧ π1 ∧ π1 ∧ π2 ∧ π2, we obtain

2h ρ ∧ κ ∧ κ ∧ ζ ∧ π1 ∧ π1 ∧ π2 ∧ π2 = −Ω̂2 ∧ κ ∧ ζ ∧ π1 ∧ π1 ∧ π2 ∧ π2

− dΩ̂2 ∧ κ ∧ π1 ∧ π1 ∧ π2 ∧ π2. �

At this point, let Φ be the auxiliary real 2-form

Φ := dΛ− Λ ∧ π1 − Λ ∧ π1 − iπ2 ∧ π2.
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Again this comes from the consideration of the model case. The structure equations therefore
become

dρ = π1 ∧ ρ+ π1 ∧ ρ+ iκ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = iπ2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ +Wκ ∧ ζ +Rρ ∧ ζ + Jρ ∧ κ,

dπ1 = Λ ∧ ρ− iπ2 ∧ κ+ ζ ∧ ζ + Ω̂1,

dπ2 = Λ ∧ κ+ π2 ∧ π1 − π2 ∧ ζ + Ω̂2 + hρ ∧ κ,
dΛ = Λ ∧ π1 + Λ ∧ π1 + iπ2 ∧ π2 + Φ.

Proposition 14.14. The real 2-form Φ is a function of the 4th-order jets of W and J .

Proof. By taking exterior derivative of dπ1 and dπ2 again, this time using the expression of dΛ,
we have

Φ ∧ ρ = iΩ̂2 ∧ κ+ ihρ ∧ κ ∧ κ−Wκ ∧ ζ ∧ ζ +Wζ ∧ κ ∧ ζ − 2Rρ ∧ ζ ∧ ζ

− Jρ ∧ κ ∧ ζ + Jρ ∧ κ ∧ ζ − dΩ̂1,

Φ ∧ κ = −Ω̂2 ∧ π1 − hρ ∧ κ ∧ π1 + π2 ∧ Ω̂1 + Ω̂2 ∧ ζ − hρ ∧ κ ∧ ζ −Wπ2 ∧ κ ∧ ζ

−Rπ2 ∧ ρ ∧ ζ − Jπ2 ∧ ρ ∧ κ− dΩ̂2 − d(hρ ∧ κ).

Writing Φ as
Φ = Ω̂3 + uρ ∧ κ,

where Ω̂3 is the 2-form not containing ρ ∧ κ, then each of the coefficients in Ω̂3 is a function of
the 4th-order jet of W and J . Since Φ is real, taking conjugate on both sides, we must have

Ω̂3 + uρ ∧ κ = Ω̂3 + uρ ∧ κ.
Therefore by inspection, u is also a function of the 4th-order jets of W and J , and therefore so is
u. This finishes the proof. �

With this proposition, we have therefore fully constructed an {e}-structure.
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