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Abstract

A linear mixed model (LMM) M : y = Xβ +Zu+ ε with general assumptions and its
transformed model T : Ty = TXβ +TZu+Tε are considered. This work concerns the
comparison problem of predictors under M and T . Our aim is to establish equality
relations between the best linear unbiased predictors (BLUPs) of unknown vectors under
two LMMs M and T through their covariance matrices by using various rank formulas of
block matrices and elementary matrix operations.

1. Introduction

Throughout this note, the symbol Rm×n denotes the set of all m×n real matrices. A′, A+, r(A) and C (A) stand for the
transpose, the Moore–Penrose generalized inverse, the rank, and the column space of A ∈ Rm×n, respectively. Im refers the
m×m identity matrix. Furthermore, EA = A⊥ = Im−AA+ represents the orthogonal projector for A ∈ Rm×n.
A linear mixed model (LMM), formulated by

M : y = Xβ +Zu+ ε, (1.1)

where y ∈ Rn×1 is a vector of observable response variables, X ∈ Rn×k and Z ∈ Rn×p are known matrices of arbitrary rank,
β ∈ Rk×1 is a vector of fixed but unknown parameters, u ∈ Rp×1 is a vector of unobservable random effects, and ε ∈ Rn×1

is an unobservable vector of random errors. LMMs include fixed and random effects and supply helpful tools to explain the
variability of model parameters affecting response variables. In statistical inferences of analysis requirements, LMMs may
need to be transformed. One of the various transformations is the linear transformation of a given model which is obtained by
pre-multiplying the model by a given matrix. In such case, for given transformation matrix T ∈ Rm×n, transformed model of
M is obtained as follows

T : Ty = TXβ +TZu+Tε. (1.2)

We consider the following vector including all unknown vectors under the models M and T to establish simultaneous results
on predictors:

φ = Kβ +Gu+Hε = Kβ +
[
G, H

][u
ε

]
(1.3)
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https://orcid.org/0000-0002-6207-5687
https://orcid.org/0000-0003-3233-5377
https://orcid.org/0000-0003-3233-5377
https://orcid.org/0000-0002-9205-7842


144 Fundamental Journal of Mathematics and Applications

for given K ∈ Rs×k, G ∈ Rs×p, and H ∈ Rs×n. We assume the following general assumptions for considered models:

E
[

u
ε

]
= 0 and D

[
u
ε

]
= cov

{[
u
ε

]
,

[
u
ε

]}
=

[
Σ11 Σ12
Σ21 Σ22

]
:= Σ,

where Σ ∈ R(n+p)×(n+p) is a positive semi-definite matrix of arbitrary rank and all the elements of Σ are known.
Let A =

[
Z, In

]
and B =

[
G, H

]
. Then we obtain

E(y) = Xβ , D(y) =
[
Z, In

]
Σ
[
Z, In

]′
= AΣA′ := R,

E(φ) = Kβ , D(φ) =
[
G, H

]
Σ
[
G, H

]′
= BΣB′ := S,

cov(φ ,y) =
[
G, H

]
Σ
[
Z, In

]′
= BΣA′ := C.

Further, we assume that M is consistent, i.e., y ∈ C
[
X, R

]
holds with probability 1 (wp 1), see, e.g., [1]. The consistency of

T is provided with the condition Ty ∈ C
[
TX, TRT′

]
wp 1. It is easy to see that T is consistent under the consistency of

M .
Predictors under original models and their transformed models have different properties. In some cases, due to linear
transformation, observable random vectors in transformed models may preserve enough information to predict unknown
vectors under original models. For this reason, establishing relationships and comparisons between these models is statistically
useful. In prediction problems, covariance matrices of predictors can be used to establish some statistical properties of analysis
such as comparison of predictors. Further, some formulas in matrix algebra such as ranks of matrices offer practical ways for
simplifying various complicated matrix equations. The matrix rank method based on the fact that A = 0 if and only if r(A) = 0
is one of the useful methods for deriving algebraic and statistical properties of matrix expressions. This study considers the
comparison problem of predictors under an LMM and its transformed model under general assumptions. In particular, we
establish equality relations between the best linear unbiased predictors (BLUPs) of unknown vectors under M and T through
their covariance matrices by using various rank formulas for block matrices, the matrix rank method, and elementary matrix
operations. We also give some results for certain specific forms of φ which correspond to the best linear unbiased estimators
(BLUEs) of unknown parameters under M and T . To derive the results, we use the following situations to establish equalities
between two random vectors, see, e.g., [2] and [3]. Let u be a random vector

(a) If both E(F1u−F2u) = 0 and D(F1u−F2u) = 0 hold, F1u = F2u holds wp 1.
(b) If both E(F1u) = E(F2u) and D(F1u) = D(F2u) hold, the expectation and covariance of F1u and F2u are equal,

respectively.

Further, we use the following formulas for ranks of block matrices to establish the results in this study. They are given in the
following lemma; see [4] and [5].

Lemma 1.1. Let M ∈ Rm×n, N ∈ Rm×k, P ∈ Rl×n, and Q ∈ Rl×k. Then,

r
[
M, N

]
= r(M)+ r(EMN) = r(N)+ r(ENM),

r
[

M
P

]
= r(M)+ r(PEM′) = r(P)+ r(MEP′),

r
[

M N
P 0

]
= r(N)+ r(P)+ r(ENMEP′), (1.4)

r
[

MM′ N
N′ 0

]
= r
[
M, N

]
+ r(N),

r
[

M N
P Q

]
= r(M)+ r(Q−PM+N) if C (N)⊆ C (M) and C (P′)⊆ C (M′), (1.5)

Statistical inference of LMMs is an important part in the data analysis, and some previous and recent studies on relations
between predictors under these models can be found in, e.g., [6]-[19], among others. Searching relationships between a linear
model and its transformed model is one of the essential issues in linear regression analysis. For transformation approaches of
linear models, we may refer [2], [20]-[28].
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2. Notes on BLUPs in LMMs

To obtain some results of the BLUPs under models M and T , we need some fundamental facts on BLUPs under LMMs. In
this section, we review the predictability conditions and then we give the fundamental BLUP equations and related properties
under M and T .
The predictability requirement of vector φ in (1.3) under M is described as holding the inclusion C (K′) ⊆ C (X′). This
requirement also corresponds to the estimability of vector Kβ under M ; see, e.g., [29]. For transformed model T ,
the predictability requirement of vector φ is C (K′) ⊆ C (X′T′). It’s obvious that the predictability of φ under T shows
predictability of φ under M .
Let φ predictable under M . If there exists Ly such that

D(Ly−φ) = min subject to E(Ly−φ) = 0

holds in the Löwner partial ordering, the linear statistic Ly is defined to be the BLUP of φ and is denoted by Ly=BLUPM (φ)=
BLUPM (Kβ +Gu+Hε), is originated from [30]. If G = 0 and H = 0, Ly corresponds the BLUE of Kβ , denoted by
BLUEM (Kβ ), under M .
We have the following comprehensive result for the algebraic expressions of the BLUPs of φ and also properties of the BLUPs;
as a detailed study for linear random effects models see [3].

Lemma 2.1. Let T be as given in (1.2) and let φ in (1.3) be predictable under T . In this case,

E(LtTy−φ) = 0 and D(LtTy−φ) = min ⇔ Lt
[
TX, TRT′(TX)⊥

]
=
[
K, CT′(TX)⊥

]
. (2.1)

The equation in (2.1) is called the fundamental BLUP equation and

BLUPT (φ) = LtTy =
([

K, CT′(TX)⊥
]

W+
t T+UtW⊥

t T
)

y, (2.2)

where Ut ∈ Rs×m is arbitrary and Wt =
[
TX, TRT′(TX)⊥

]
. In particular,

(a) Lt is unique⇔ r
[
TX, TRT′(TX)⊥

]
= m.

(b) BLUPT (φ) is unique wp 1⇔ T is consistent.
(c) The rank of matrix Wt satisfies r

[
TX, TRT′(TX)⊥

]
= r
[
TX, TRT′

]
.

(d) BLUPT (φ) satisfies

D[BLUPT (φ)] =
[
K, CT′(TX)⊥

]
W+

t TRT′
([

K, CT′(TX)⊥
]

W+
t
)′
,

D[φ −BLUPT (φ)] =
([

K, CT′(TX)⊥
]

W+
t TA−B

)
Σ
([

K, CT′(TX)⊥
]

W+
t TA−B

)′
. (2.3)

Let φ in (1.3) be predictable under M . By setting T = In in Lemma 2.1, we obtain the following well-known results on BLUP
of φ under M . We may also refer [31] and for deriving the BLUPs under linear random-effects models see, [17].

BLUPM (φ) = Ly =
([

K, CX⊥
]

W++UW⊥
)

y, (2.4)

D[BLUPM (φ)] =
[
K, CX⊥

]
W+R

([
K, CX⊥

]
W+

)′
,

D[φ −BLUPM (φ)] =
([

K, CX⊥
]

W+A−B
)

Σ
([

K, CX⊥
]

W+A−B
)′
, (2.5)

where U ∈ Rs×n is arbitrary and W =
[
X, RX⊥

]
. Further, we can write the following results.

(a) L in (2.4) is unique⇔ r
[
X, RX⊥

]
= n.

(b) BLUPM (φ) is unique wp 1⇔M is consistent.
(c) The rank of matrix W satisfies r

[
X, RX⊥

]
= r
[
X, R

]
.

3. Equality relations of BLUPs in LMMs

In this section, we establish equality relations between BLUPs of φ under M and T through their covariance matrices by using
block matrices’ rank formulas and elementary matrix operations. Related conclusions are also given for some special forms of
φ . Equality relations between covariance matrices of BLUPs of φ under the models, which is obtained in the following results,
correspond to the equality situations given in Section 1, respectively, by combining the following result:

E[BLUPM (φ)] = E[BLUPT (φ)] = Kβ .
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Theorem 3.1. Let φ in (1.3) be predictable under T in (1.2) (also predictable under M in (1.1)). Let BLUPT (φ) and
BLUPM (φ) be as given in (2.2) and (2.4), respectively. Then,

BLUPM (φ) = BLUPT (φ) wp 1

⇔ r


R 0 X 0 R
0 TRT′ 0 TX TR
X′ 0 0 0 0
0 X′T′ 0 0 0
C −CT′ K −K 0

= r
[
X, R

]
+ r
[
TX, TR

]
+ r(X)+ r(TX).

Proof. Note from (2.2) and (2.4) that

r(D[BLUPM (φ)−BLUPT (φ)]) = r
([

K, CX⊥
]

W+R−
[
K, CT′(TX)⊥

]
W+

t TR
)

= r

([[
K, CX⊥

]
,
[
K, CT′(TX)⊥

]][W 0
0 −Wt

]+ [ R
TR

])
,

(3.1)

where Wt =
[
TX, TRT′(TX)⊥

]
and W =

[
X, RX⊥

]
. We can apply (1.5) to (3.1) since C (TR) = C (TRT′) ⊆ C (Wt),

C (R)⊆ C (W), C
([

K, CT′(TX)⊥
]′)⊆ C (W′

t), and C
([

K, CX⊥
]′)⊆ C (W′) hold. Then, by simplifying Lemma 1.1,

and congruence operations, (3.1) is equivalently written as

r

X RX⊥ 0 0 R
0 0 −TX −TRT′(TX)⊥ TR
K CX⊥ K CT′(TX)⊥ 0

− r
[
X, RX⊥

]
− r
[
TX, TRT′(TX)⊥

]

= r


X R 0 0 R
0 0 −TX −TRT′ TR
K C K CT′ 0
0 X′ 0 0 0
0 0 0 X′T′ 0

− r
[
X, R

]
− r
[
TX, TRT′

]
− r(X)− r(TX)

= r


R 0 X 0 R
0 TRT′ 0 TX TR
X′ 0 0 0 0
0 X′T′ 0 0 0
C −CT′ K −K 0

− r
[
X, R

]
− r
[
TX, TR

]
− r(X)− r(TX). (3.2)

The required result is seen from (3.2) by using the matrix rank method.

Corollary 3.2. Let models M and T be as given in (1.1) and (1.2), respectively.

(a) Assume that Kβ is estimable under T (also estimable under M ). Then

BLUEM (Kβ ) = BLUET (Kβ ) wp 1

⇔ r


R 0 X 0 R
0 TRT′ 0 TX TR
X′ 0 0 0 0
0 X′T′ 0 0 0
0 0 K −K 0

= r
[
X, R

]
+ r
[
TX, TR

]
+ r(X)+ r(TX).

(b) Xβ is estimable under T ⇔ r(TX) = r(X) (also note that Xβ is always estimable under M ). Then

BLUEM (Xβ ) = BLUET (Xβ ) wp 1 ⇔ r


R 0 X R
0 TRT′ TX TR
X′ 0 0 0
0 X′T′ 0 0

= r
[
X, R

]
+ r
[
TX, TR

]
+ r(X).

Theorem 3.3. Let φ in (1.3) be predictable under T in (1.2) (also predictable under M in (1.1)). Let BLUPT (φ) and
BLUPM (φ) be as given in (2.2) and (2.4), respectively. Then

D[φ −BLUPT (φ)] = D[φ −BLUPM (φ)]

⇔ r


R 0 X 0 C′
0 TRT′ 0 TX TC′
X′ 0 0 0 K′
0 X′T′ 0 0 K′
−C CT′ −K K 0

= r
[
X, R

]
+ r(TX)+ r

[
TX, TR

]
+ r(X).
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Proof. By using (2.3) and (1.5), we obtain

r(D[φ −BLUPM (φ)]−D[φ −BLUPT (φ)])

= r
(

D[φ −BLUPM (φ)]−
([

K, CT′(TX)⊥
]

W+
t TA−B

)
Σ
([

K, CT′(TX)⊥
]

W+
t TA−B

)′)

= r
[

Σ Σ
([

K, CT′(TX)⊥
]

W+
t TA

)′−ΣB′[
K, CT′(TX)⊥

]
W+

t TAΣ−BΣ D[φ −BLUPM (φ)]

]
− r(Σ)

= r

([
Σ −ΣB′
−BΣ D[φ −BLUPM (φ)]

]
+

[
ΣA′T′ 0

0
[
K, CT′(TX)⊥

]][ 0 Wt
W′

t 0

]+
×
[

TAΣ 0
0

[
K, CT′(TX)⊥

]′])− r(Σ),

(3.3)

where Wt =
[
TX, TRT′(TX)⊥

]
. We can apply (1.5) to (3.3) since

C (TAΣ) = C (TRT′)⊆ C (Wt) and C
([

K, CT′(TX)⊥
]′)⊆ C (W′

t).

Then (3.3) is equivalently written as

r


0 −TX −TRT′(TX)⊥ TAΣ 0

−X′T′ 0 0 0 K′
−(TX)⊥TRT′ 0 0 0 (TX)⊥TC′

ΣA′T′ 0 0 Σ −ΣB′
0 K CT′(TX)⊥ −BΣ D[φ −BLUPM (φ)]

− r(Σ)−2r
[
TX, TRT′(TX)⊥

]

= r


−TRT′ −TX −TRT′(TX)⊥ TC′
−X′T′ 0 0 K′

−(TX)⊥TRT′ 0 0 (TX)⊥TC′
CT′ K CT′(TX)⊥ D[φ −BLUPM (φ)]−S

−2r
[
TX, TRT′

]

= r

−TRT′ −TX TC′
−X′T′ 0 K′

CT′ K D[φ −BLUPM (φ)]−S

−2r
[
TX, TRT′

]
+ r[(TX)⊥TRT′(TX)⊥]

= r

TRT′ TC′ TX
CT′ S K
X′T′ K′ 0

−
0 0 0

0 D[φ −BLUPM (φ)] 0
0 0 0

+ r[(TX)⊥TRT′(TX)⊥]−2r
[
TX, TRT′

]
. (3.4)

We can apply (1.5) to (3.4) after setting the expression of D[φ −BLUPM (φ)] given in (2.5). In this case, in a similar way to
obtaining (3.3), (3.4) is equivalently written as

r




Σ 0 −ΣB′ 0
0 TRT′ TC′ TX
−BΣ CT′ S K

0 X′T′ K′ 0

+


ΣA′ 0
0 0
0

[
K, CX⊥

]
0 0

[ 0 W
W′ 0

]+ [AΣ 0 0 0
0 0

[
K, CX⊥

]′ 0

]
−2r

[
TX, TRT′

]
+ r[(TX)⊥TRT′(TX)⊥]− r(Σ),

(3.5)

where W =
[
X, RX⊥

]
. We can reapply (1.5) to (3.5) since C (AΣ) = C (R) ⊆ C (W) and C

([
K, CX⊥

]′) ⊆ C (W′).
Then from Lemma 1.1, and some congruence operations, (3.5) is equivalently written as

r



0 −X −RX⊥ AΣ 0 0 0
−X′ 0 0 0 0 K′ 0
−X⊥R 0 0 0 0 X⊥C′ 0

ΣA′ 0 0 Σ 0 −ΣB′ 0
0 0 0 0 TRT′ TC′ TX
0 K CX⊥ −BΣ CT′ S K
0 0 0 0 X′T′ K′ 0


+ r[(TX)⊥TRT′(TX)⊥]−2r

[
TX, TRT′

]

− r(Σ)−2r
[
X, RX⊥

]
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= r


−R −X −RX⊥ 0 C′ 0
−X′ 0 0 0 K′ 0
−X⊥R 0 0 0 X⊥C′ 0

0 0 0 TRT′ TC′ TX
C K CX⊥ CT′ 0 K
0 0 0 X′T′ K′ 0

+ r[(TX)⊥TRT′(TX)⊥]−2r
[
TX, TRT′

]

−2r
[
X, R

]

= r


−R −X 0 C′ 0
−X′ 0 0 K′ 0

0 0 TRT′ TC′ TX
C K CT′ 0 K
0 0 X′T′ K′ 0

+ r[(TX)⊥TRT′(TX)⊥]+ r(X⊥RX⊥)−2r
[
TX, TRT′

]

−2r
[
X, R

]

= r


R 0 X 0 C′
0 TRT′ 0 TX TC′
X′ 0 0 0 K′
0 X′T′ 0 0 K′
−C CT′ −K K 0

+ r
[

TRT′ TX
X′T′ 0

]
−2r(TX)+ r

[
R X
X′ 0

]
−2r

[
X, R

]

−2r
[
TX, TRT′

]
−2r(X).

(3.6)

The required result is seen from (3.6) by using (1.4) and the matrix rank method.

Corollary 3.4. Let models M and T be as given in (1.1) and (1.2), respectively.

(a) Assume that Kβ is estimable under T (also estimable under M ). Then

D[BLUET (Kβ )] = D[BLUEM (Kβ )]

⇔ r


R 0 X 0 0
0 TRT′ 0 TX 0
X′ 0 0 0 K′
0 X′T′ 0 0 K′
0 0 −K K 0

= r
[
X, R

]
+ r(TX)+ r

[
TX, TR

]
+ r(X).

(b) Xβ is estimable under T ⇔ r(TX) = r(X) (also note that Xβ is always estimable under M ). Then

D[BLUET (Xβ )] = D[BLUEM (Xβ )]⇔ r

R 0 X
0 TRT′ TX
X′ −X′T′ 0

= r
[
X, R

]
+ r
[
TX, TR

]
.
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Abstract

In this article, we purpose to obtain several approximation properties of Szász-Mirakjan-
Kantorovich operators with shape parameter λ ∈ [−1,1]. We compute some preliminaries
results such as moments and central moments for these operators. Next, we derive the
Korovkin type convergence theorem, estimate the degree of convergence with respect to
the moduli of continuity, for the functions belong to Lipschitz-type class and Peetre’s
K-functional, respectively. Further, we investigate Voronovskaya type asymptotic theorem
and give the comparison of the convergence of these newly defined operators to the certain
functions with some graphics.

1. Introduction

In [1, 2], Szász and Mirakjan defined and introduced the following polynomials

Sm(µ;y) =
∞

∑
j=0

µ

(
j

m

)
sm, j(y), (1.1)

where y≥ 0, m ∈ N, µ ∈C[0,∞) and Szász-Mirakjan basis functions sm, j(y) are given as below:

sm, j(y) = e−my (my) j

j!
.

A Kantorovich variant of (1.1) operators is presented by Ditzian and Totik [3] as follows:

Km(µ;y) = m
∞

∑
j=0

sm, j(y)

j+1
m∫
j

m

µ (t)dt, y≥ 0. (1.2)

Various approximation features of (1.1) and (1.2) operators have been introduced by many authors. More details on these
directions, we refer the readers to [4]-[12].
Very recently, Qi et al. [13] defined a new generalization of λ−Szász-Mirakjan operators with shape parameter λ ∈ [−1,1], as
below:

Sm,λ (µ;y) =
∞

∑
j=0

µ

(
j

m

)
s̃m, j(λ ;y),
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where Szász-Mirakjan bases functions s̃m, j(λ ;y) with shape parameter λ ∈ [−1,1] :

s̃m,0(λ ;y) = sm,0(y)−
λ

m+1
sm+1,1(y);

s̃m,i(λ ;y) = sm,i(y)+λ

(
m−2i+1

m2−1
sm+1,i(y) −

m−2i−1
m2−1

sm+1,i+1(y)
)
, (i = 1,2, ...,∞, y ∈ [0,∞)). (1.3)

They studied several theorems such as Korovkin approximation, local approximation, Lipschitz type convergence, Voronovskaja
and Grüss-Voronovskaja type for these new form operators. In the literature, recently several researchers have obtained some
approximation results for various linear positive operators with shape parameter λ ∈ [−1,1], one can refer to [14]-[23].
Now, motivated by all above mentioned works, we propose the Kantorovich kind of λ−Szász-Mirakjan operators as follows:

Rm,λ (µ;y) = m
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

µ (t)dt, y ∈ [0,∞), (1.4)

where s̃m, j(λ ;y) ( j = 0,1, ..∞) given in (1.3) and λ ∈ [−1,1].
The structure of this work is organized as follows: In section 2, we compute some moments and central moments. In section
3, we establish Korovkin type approximation theorem and discuss the order of convergence in terms of the usual moduli of
continuity, for the function belongs to Lipschitz-type class and Peetre’s K-functional, respectively. In section 4, we derive a
Voronovskaya type asymptotic theorem. In the final section, we show the comparison of the convergence of operators (1.4) to
the certain functions for the different values of m and λ . We also compare the convergence of operators (1.2) and (1.4) to the
certain function to see the behaviour of λ parameter.

2. Preliminaries

Lemma 2.1. [13]. For the λ−Szász-Mirakjan operators Sm,λ (µ;y) following expressions are satisfied:

Sm,λ (1;y) = 1;

Sm,λ (t;y) = y+

[
1− e−(m+1)y−2y

m(m−1)

]
λ ;

Sm,λ (t
2;y) = y2 +

y
m
+

[
2y+ e−(m+1)y−1−4(m+1)y2

m2(m−1)

]
λ ;

Sm,λ (t
3;y) = y3 +

3y2

m
+

y
m2 +

[
1− e−(m+1)y−2y+3(m−3)(m+1)y2−6(m+1)y3

m3(m−1)

]
λ ;

Sm,λ (t
4;y) = y4 +

6y3

m
+

7y2

m2 +
y

m3 +

[
e−(m+1)y−1+2my+2(3m−11)(m+1)y2 +4(m−8)(m+1)2y3−8(m+1)3y4

m4(m−1)

]
λ .

Lemma 2.2. Let the operators Rm,λ be defined by (1.4). Then, we have

Rm,λ (1;y) = 1; (2.1)

Rm,λ (t;y) = y+
1

2m
+

[
1− e−(m+1)y−2y

m(m−1)

]
λ ; (2.2)

Rm,λ (t
2;y) = y2 +

2y
m

+
1

3m2 +

[
−4(m+1)y2

m2(m−1)

]
λ ; (2.3)

Rm,λ (t
3;y) = y3 +

9y2

2m
+

7y
2m2 +

1
4m3 +

[
3(m−5)(m+1)y2− y−6(m+1)y3 + 1

2 −
1
2 e−(m+1)y

m3(m−1)

]
λ ; (2.4)

Rm,λ (t
4;y) = y4 +

8y3

m
+

15y2

m2 +
6y
m3 +

1
5m4 +

[
2(m−1)y+12(m−4)(m+1)y2 +4(m−11)(m+1)2y3−8(m+1)3y4

m4(m−1)

]
λ .(2.5)
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Proof. Taking Özger et al. [24] in to account and using (1.4), it is easy to see
∞

∑
j=0

s̃m, j(λ ;y) = 1, hence we get (2.1).

Now, with the help of Lemma 2.1, we will compute expressions (2.2) and (2.3).

Rm,λ (t;y) = m
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

tdt =
∞

∑
j=0

s̃m, j(λ ;y)
2 j+1

2m

=
∞

∑
j=0

s̃m, j(λ ;y)
j

m
+

1
2m

∞

∑
j=0

s̃m, j(λ ;y)

= Sm,λ (t;y)+
1

2m
= y+

1
2m

+

[
1− e−(m+1)y−2y

m(m−1)

]
λ ,

Rm,λ (t
2;y) = m

∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

t2dt =
∞

∑
j=0

s̃m, j(λ ;y)
3 j2 +3 j+1

3m2

=
∞

∑
j=0

s̃m, j(λ ;y)
j2

m2 +
1
m

∞

∑
j=0

s̃m, j(λ ;y)
j

m
+

1
3m2

∞

∑
j=0

s̃m, j(λ ;y)

= Sm,λ (t
2;y)+

1
m

Sm,λ (t;y)+
1

3m2 = y2 +
2y
m

+
1

3m2 +

[
−4(m+1)y2

m2(m−1)

]
λ .

Analogously, taking into consideration Lemma 2.1, hence we can arrive expressions (2.4) and (2.5) by simple computation,
thus we omitted details.

Corollary 2.3. Let y ∈ [0,∞), m > 1 and λ ∈ [−1,1]. As a consequence of Lemma 2.2, we obtain the following relations:

(i) Rm,λ (t− y;y) =
1

2m
+

[
1− e−(m+1)y−2y

m(m−1)

]
λ

≤ m+1+2e−(m+1)y +4y
2m(m−1)

:= βm(y);

(ii) Rm,λ ((t− y)2;y) =
y
m
+

1
3m2 +

[
2(e−(m+1)y−1)y

m(m−1)
− 4y2

m2(m−1)

]
λ

≤ y
m
+

1
3m2 +

2(e−(m+1)y +1)y
m(m−1)

+
4y2

m2(m−1)
:= γm(y);

(iii) Rm,λ ((t− y)4;y) =
3y2

m2 +
5y
m3 +

1
5m4 +

(
2(me−(m+1)y−1)y

m4(m−1)
+

4(3m2−8m−12)y2

m4(m−1)

−4(3m3 +3m2−6m−11)+4m3e−(m+1)y)y3

m4(m−1)
− 8y4

m4(m−1)

)
λ .

Lemma 2.4. Let y ∈ [0,∞) and λ ∈ [−1,1]. Then, the following expressions holds true:

(i) lim
m→∞

mRm,λ (t− y;y) =
1
2

;

(ii) lim
m→∞

mRm,λ ((t− y)2;y) = y;

(iii) lim
m→∞

m2Rm,λ ((t− y)4;y) = 3y2.

3. Direct theorems of Rm,λ

In the next theorem, we introduce a Korovkin type approximation theorem. As it is known, the space C[0,∞) denotes the all
continuous and bounded functions on [0,∞) and it is equipped with the sup-norm for a function µ as follows:

‖µ‖[0,∞) = sup
y∈[0,∞)

|µ(y)| .



Fundamental Journal of Mathematics and Applications 153

Theorem 3.1. Let µ ∈C[0,∞), then Rm,λ (µ;y) converge uniformly to µ on [0,∞).

Proof. According to the Bohman-Korovkin theorem [25], it is sufficient to verify

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ (t
s;y)− ys∣∣= 0, for s = 0,1,2.

Using (2.1), for s = 0, it can be seen that above expression is clear.
For s = 1, in view of (2.2), we have

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ (t;y)− y
∣∣ = lim

m→∞
sup

y∈[0,∞)

∣∣∣∣∣ 1
2m

+

(
1− e−(m+1)y

m(m−1)
− 2y

m(m−1)

)
λ

∣∣∣∣∣
≤ lim

m→∞
sup

y∈[0,∞)

(
m+1+2e−(m+1)y +4y

2m(m−1)

)
= 0.

Similarly, by (2.3), one has

lim
m→∞

sup
y∈[0,∞)

∣∣Rm,λ (t
2;y)− y2∣∣ = lim

m→∞
sup

y∈[0,∞)

∣∣∣∣2y
m

+
1

3m2 +

(
−4(m+1)
m2(m−1)

y2
)

λ

∣∣∣∣
≤ lim

m→∞
sup

y∈[0,∞)

(
2y
m

+
1

3m2 +
4(m+1)

m2(m−1)
y2
)
= 0.

Hence, we get the required sequel.

Further, we discuss the order of convergence in connection with the usual moduli of continuity, for the function belong to
Lipschitz type continuous and Peetre’s K-functional. The Peetre’s K-functional is defined by

K2(µ,η) = inf
ν∈C2[0,∞)

{
‖µ−ν‖+η

∥∥ν
′′∥∥} ,

where η > 0 and C2[0,∞) = {ν ∈C[0,∞) : ν ′,ν ′′ ∈C[0,∞)} .
Taking into account [26], there exist an absolute constant C > 0 such that

K2(µ;η)≤Cω2(µ;
√

η), η > 0, (3.1)

where

ω2(µ;η) = sup
0<α≤η

sup
y∈[0,∞)

|µ(y+2α)−2µ(y+α)+µ(y)| ,

is the second order modulus of smoothness of the function µ ∈C[0,∞). Further, by

ω(µ;η) := sup
0<α≤η

sup
y∈[0,∞)

|µ(y+α)−µ(y)| ,

we denote the usual moduli of continuity of µ ∈C[0,∞). Since η > 0, ω(µ;η) has some useful properties see details: [27].
Also, we give an element of Lipschitz continuous function with LipL(ζ ), where L > 0 and 0 < ζ ≤ 1. If the expression below:

|µ(t)−µ(y)| ≤ L |t− y|ζ , (t,y ∈ R),

holds, then one can say a function µ is belong to LipL(ζ ).

Theorem 3.2. Let µ ∈C[0,∞), y ∈ [0,∞) and λ ∈ [−1,1]. Then, we have following inequality verify∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ 2ω(µ;

√
γm(y)),

where γm(y) given as in Corollary 2.3.

Proof. Using the well-known property of moduli of continuity |µ(t)−µ(y)| ≤
(

1+ |t−y|
δ

)
ω(µ;δ ) and after operating

Rm,λ (.;y), it becomes ∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ (1+

1
δ

Rm,λ (|t− y| ;y)
)

ω(µ;δ ).

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality and from Corollary 2.3, we get∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ (

1+
1
δ

√
Rm,λ ((t− y)2;y)

)
ω(µ;δ )

≤
(

1+
1
δ

√
γm(y)

)
ω(µ;δ ).

Taking δ =
√

γm(y), hence we obtain the proof of Theorem 3.2.
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Theorem 3.3. Let µ ∈ LipL(ζ ), y ∈ [0,∞) and λ ∈ [−1,1]. Then, we obtain∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ L(γm(y))

ζ

2 .

Proof. By the linearity and monotonicity of the operators (1.4), it follows

∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ Rm,λ (|µ(t)−µ(y)| ;y)≤

∞

m∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

|µ (t)−µ(y)|dt ≤ Lm
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

|t− y|ζ dt.

Utilizing the Hölder’s inequality with p1 =
2
ζ

and p2 =
2

2−ζ
and in view of Corollary 2.3 and Lemma 2.2, we arrive

∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ L

m
∞

∑
j=0

s̃m, j(λ ;y)

j+1
m∫
j

m

(t− y)2 dt


ζ

2 {
∞

∑
j=0

s̃m, j(λ ;y)

} 2−ζ

2

= L
{

Rm,λ ((t− y)2;y)
} ζ

2
{

Rm,λ (1;y)
} 2−ζ

2 ≤ L(γm(y))
ζ

2 .

Thus, we get the proof of this theorem.

Theorem 3.4. For all µ ∈C[0,∞), y ∈ [0,∞) and λ ∈ [−1,1], the following inequality holds:∣∣Rm,λ (µ;y)−µ(y)
∣∣≤Cω2(µ;

1
2

√
γm(y)+(βm(y))2 +ω(µ;βm(y)),

where C > 0 is a constant, βm(y), γm(y) defined as in Corollary 2.3.

Proof. Let µ ∈C[0,∞). We denote αm,λ (y) := y+ 1
2m +

[
1−2y−e−(m+1)y

m(m−1)

]
λ , it is obvious that αm,λ (y) ∈ [0,∞) for sufficently

large m. We define the following auxiliary operators:

R̂m,λ (µ;y) = Rm,λ (µ;y)−µ(αm,λ (y))+µ(y). (3.2)

In view of (2.1) and (2.2), it follows that

R̂m,λ (t− y;y) = 0.

By Taylor’s formula, one has

ξ (t) = ξ (y)+(t− y)ξ ′(y)+
t∫
y

(t−u)ξ ′′(u)du, (ξ ∈C2[0,∞)). (3.3)

After operating R̂m,λ (.;y) to (3.3), yields

R̂m,λ (ξ ;y)−ξ (y) = R̂m,λ ((t− y)ξ ′(y);y)+ R̂m,λ (

t∫
y

(t−u)ξ ′′(u)du;y)

= ξ
′(y)R̂m,λ (t− y;y)+Rm,λ (

t∫
y

(t−u)ξ ′′(u)du;y)−
αm,λ (y)∫

y

(αm,λ (y)−u)ξ ′′(u)du

= Rm,λ (

t∫
y

(t−u)ξ ′′(u)du;y)−
αm,λ (y)∫

y

(αm,λ (y)−u)ξ ′′(u)du.

Taking Lemma 2.2 and (3.2) into the account, we get

∣∣∣R̂m,λ (ξ ;y)−ξ (y)
∣∣∣ ≤

∣∣∣∣∣∣Rm,λ (

t∫
y

(t−u)ξ ′′(u)du;y)

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
αm,λ (y)∫

y

(αm,λ (y)−u)ξ ′′(u)du

∣∣∣∣∣∣∣
≤ Rm,λ (

∣∣∣∣∣∣
t∫
y

(t−u)

∣∣∣∣∣∣ ∣∣ξ ′′(u)∣∣ |du|;y)+

αm,λ (y)∫
y

∣∣αm,λ (y)−u
∣∣ ∣∣ξ ′′(u)∣∣ |du|

≤
∥∥ξ
′′∥∥{Rm,λ ((t− y)2;y)+

(
αm,λ (y)− y

)2
}
≤
{

γm(y)+(βm(y))2}∥∥ξ
′′∥∥ .
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Also from (2.1), (2.2) and (3.2), it deduce the following∣∣∣R̂m,λ (µ;y)
∣∣∣≤ ∣∣Rm,λ (µ;y)

∣∣+2‖µ‖ ≤ ‖µ‖Rm,λ (1;y)+2‖µ‖ ≤ 3‖µ‖ . (3.4)

On the other hand, by (3.3) and (3.4) imply∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ ∣∣∣R̂m,λ (µ−ξ ;y)− (µ−ξ )(y)

∣∣∣+ ∣∣∣R̂m,λ (ξ ;y)−ξ (y)
∣∣∣+ ∣∣µ(y)−µ(αm,λ (y))

∣∣
≤ 4‖µ−ξ‖+

{
γm(y)+(βm(y))2}∥∥ξ

′′∥∥+ω (µ;βm(y)) .

On account of this, if we take the infimum on the right hand side over all ξ ∈C2[0,∞) and by (3.1), we arrive

∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ 4K2(µ;

{
γm(y)+(βm(y))2

}
4

)+ω(µ;βm,λ (y))

≤ Cω2(µ;
1
2

√
γm(y)+(βm(y))2)+ω(µ;βm(y)).

Hence, we obtain the proof of this theorem.

Theorem 3.5. If µ ∈C1[0,∞) := {µ : µ ′ is continuous and bounded on [0,∞) } , then for all y ∈ [0,∞) and λ ∈ [−1,1], we
arrive ∣∣Rm,λ (µ;y)−µ(y)

∣∣≤ βm(y)
∣∣µ ′(y)∣∣+2

√
γm(y)ω(µ ′;

√
γm(y)),

where βm(y), γm(y) defined as in Corollary 2.3.

Proof. Let µ ∈C1[0,∞). For any y, t ∈ [0,∞), we get

µ(t)−µ(y) = µ
′(y)(t− y)+

t∫
y

(µ ′(u)−µ
′(y))du.

After operating Rm,λ (.;y) to the both sides of above expression, it gives

Rm,λ (µ(t)−µ(y);y) = µ
′(y)Rm,λ (t− y;y)+Rm,λ (

t∫
y

(µ ′(u)−µ
′(y))du;y).

Taking into consideration the following well-known property

|µ(u)−µ(y)| ≤
(

1+
|u− y|

δ

)
ω(µ;δ ), δ > 0,

then ∣∣∣∣∣∣
t∫
y

∣∣µ ′(u)−µ
′(y)
∣∣du

∣∣∣∣∣∣≤
(
(t− y)2

δ
+ |t− y|

)
ω(µ ′;δ ).

Hence,

∣∣Rm,λ (µ;y)−µ(y)
∣∣≤ ∣∣Rm,λ (t− y;y)

∣∣ ∣∣µ ′(y)∣∣+[Rm,λ ((t− y)2;y)
δ

+Rm,λ (|t− y| ;y)

]
ω(µ ′;δ ).

Applying Cauchy-Bunyakovsky-Schwarz inequality on the right hand side of foregoing inequality and taking into consideration
Corollary 2.3, we find

∣∣Rm,λ (µ;y)−µ(y)
∣∣ ≤ ∣∣Rm,λ (t− y;y)

∣∣ ∣∣µ ′(y)∣∣+ω(µ ′;δ )


√

Rm,λ ((t− y)2;y)

δ
+1

√Rm,λ ((t− y)2;y)

≤ βm(y)
∣∣µ ′(y)∣∣+ω(µ ′;δ )

[√
γm(y)
δ

+1

]√
γm(y).

By taking δ =
√

γm(y), the required result is obtained.
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4. Voronovskaya type asymptotic theorem

Theorem 4.1. Let µ ∈C[0,∞) such that µ ′,µ ′′ ∈C[0,∞) and λ ∈ [−1,1], then we have for any y ∈ [0,∞) that

lim
m→∞

m
[
Rm,λ (µ;y)−µ(y)

]
=

µ ′(y)+ yµ ′′(y)
2

.

Proof. Suppose that y ∈ [0,∞) and µ ′,µ ′′ ∈C[0,∞). From Taylor’s formula, one has

µ(t) = µ(y)+(t− y)µ ′(y)+
1
2
(t− y)2

µ
′′(y)+(t− y)2

φ(t;y). (4.1)

In (4.1), φ(t;y) is a Peano of the remainder term and by the fact that φ(.;y) ∈C[0,∞), we have lim
t→y

φ(t;y) = 0.

After operating Rm,λ (.;y) to (4.1), hence

Rm,λ (µ;y)−µ(y) = Rm,λ ((t− y);y)µ ′(y)+
1
2

Rm,λ ((t− y)2;y)µ ′′(y)+Rm,λ ((t− y)2
φ(t;y);y).

If we take the limit of the both sides of above relation as m→ ∞, then

lim
m→∞

m(Rm,λ (µ;y)−µ(y) = lim
m→∞

m
(

Rm,λ ((t− y);y)µ ′(y)+
1
2

Rm,λ ((t− y)2;y)µ ′′(y)+Rm,λ ((t− y)2
φ(t;y);y)

)
. (4.2)

Utilizing the Cauchy-Bunyakovsky-Schwarz inequality to the last term on the right hand side of the above expression, it
becomes

lim
m→∞

mRm,λ ((t− y)2
φ(t;y);y)≤

√
lim

m→∞
Rm,λ (φ 2(t;y);y)

√
lim

m→∞
m2Rm,λ ((t− y)4;y).

It is observed that as φ(t;y) ∈C[0,∞), thus by Theorem 3.1, lim
t→y

φ(t;y) = 0. It follows that

lim
m→∞

Rm,λ (φ
2(t;y);y) = φ

2(y;y) = 0. (4.3)

If we combine (4.2)-(4.3) and in view of Lemma 2.4 (iii), we arrive

lim
m→∞

mRm,λ ((t− y)2
φ(t;y);y) = 0.

Thus, we obtain the desired sequel as follows:

lim
m→∞

m
[
Rm,λ (µ;y)−µ(y)

]
=

µ ′(y)+ yµ ′′(y)
2

.

5. Graphical analysis

In this section, we give some graphics to see the convergence of operators (1.4) to the certain functions. Also, we compare the
convergence of our newly defined operators (1.4) with the operators (1.2) with the different values of m and λ .
In Figure 5.1, for λ = 0.5 and m = 10,40,70 respectively, we demonstrate the convergence of operators (1.4) to µ(y) = ey. In
Figure 5.2, for λ = 0.9 and m = 10,40,70 respectively, we show the convergence of operators (1.4) to µ(y) = cos(πy). In
Figure 5.3, we denote with LKMS:= λ -Szász-Mirakjan-Kantorovich operators defined by (1.4) and KMS:= Szász-Mirakjan-
Kantorovich operators defined by (1.2). We compare the convergence of operators (1.4) with (1.2) for λ = 0.5, m = 10 to
µ(y) = ey. We can conclude from Figure 5.1 and Figure 5.2 that, as the values of m increases than the convergence of operators
(1.4) to the functions becomes better. Moreover, in Figure 5.3 it can be seen that for λ = 0.5 and m = 10 operators (1.4) have
better approximation than operators (1.2).
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Figure 5.1: The convergence of Rm,λ (µ;y) to µ(y) = ey for λ = 0.5 and m = 10,40,70.
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Figure 5.2: The convergence of Rm,λ (µ;y) to µ(y) = cos(πy) for λ = 0.9 and m = 10,40,70.
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Figure 5.3: The convergence of Rm,λ (µ;y) and Km(µ;y) to µ(y) = ey for λ = 0.5 and m = 10.

6. Conclusion

In the present paper, we introduced Szász-Mirakjan-Kantorovich operators based on shape parameter λ ∈ [−1,1]. The
importance of parameter λ , give us more flexibility in modeling. We derived a Korovkin type convergence theorem, estimated
the degree of convergence in terms of the moduli of continuity, for the functions belong to Lipschitz class and Peetre’s
K-functional, respectively. We also discussed Voronovskaya type asymptotic theorem. Moreover, we gave the comparison of
the convergence of our newly constructed operators (1.4) to the certain functions with some graphics and also we compared
the convergence of (1.4) between (1.2). As future works, we will consider the Stancu, Durrmeyer and Baskakov type
λ -Szász-Mirakjan operators.
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Abstract

We introduce the concept of b-θ -metric space as a generalization of θ -metric space and
investigate some of its properties. Then, we establish a fixed point theorem in b-θ -metric
spaces via b-simulation functions. Thus, we deduce Banach type fixed point in such spaces.
Also, we discuss some fixed point results in relation to existing ones.

1. Introduction

Fixed point theory plays a fundamental role in various fields of mathematics, engineering and applied science. A basic result in
fixed point theory is the Banach contraction principle which is an important tool for solving nonlinear analysis’ problems. This
result has been generalized and extended in various generalized metric spaces.
Many authors have generalized metric spaces in several ways. Bakhtin [1] introduced the concept of b-metric space, which is a
generalized form of metric space (see also [2]). Since then, several authors have many fixed point results for single- valued and
multi- valued operators in b- metric spaces (see [2]-[4]).
Khojasteh et al. [5] introduced θ -metric space by using a more generalized inequality instead of triangle inequality. They are
inspired by fuzzy metric spaces, which are generalizations of metric spaces. Then they proved Banach and Caristi type fixed
point in θ -metric spaces.
Khojasteh et al. [6] introduced Z -contraction as a new type of nonlinear contractions via simulation function which is useful
to express a family of contractivity conditions. After then Chanda and Dey [7] obtained some fixed point results on θ -metric
spaces by using simulation functions. Also, Demma et al.[8] deduced several related results in fixed point theory in b-metric
space via b-simulation functions.
In this paper, we defined b-θ -metric space as a generalization of b-metric space with the help of B-action and studied its
fundamental properties. Also, we compare it to both b-metric and θ -metric space. Then we obtain a fixed point result in
b-θ -metric spaces by using b-simulation functions. So we get the Banach contraction principle in such spaces. Finally, we give
some fixed point results regarding existing ones in b-metric spaces and θ -metric spaces.

2. Preliminaries

Definition 2.1. [1, 2] Let W be a nonempty set and b≥ 1 be a given real number. A function d : W ×W → [0,∞) is a b-metric
on W iff it satisfies the following conditions for all ω,ϖ ,ρ ∈W.

(b1) d(ω,ϖ) = 0 iff ω = ϖ .
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(b2) d(ω,ϖ) = d(ϖ ,ω).

(b3) d(ω,ϖ)≤ b[d(ω,ρ)+d(ρ,ϖ)].
Then, the pair (W,d) is called a b-metric space.

Definition 2.2. [5] Let θ : [0,∞)× [0,∞)→ [0,∞) be a continuous mapping with respect to each variable. θ is called an
B-action iff it satisfies the following conditions:

(B1) θ(0,0) = 0 and θ(ω,ϖ) = θ(ϖ ,ω) for all ω,ϖ ≥ 0,

(B2) θ(ω,ϖ)< θ(ρ,ν) if ω < ρ and ϖ ≤ ν or ω ≤ ρ and ϖ < ν .

(B3) For each r ∈ Im(θ)−{0} and for each ω ∈ (0,r], there exists ϖ ∈ (0,r] such that θ(ω,ϖ) = r, where Im(θ) = {θ(ω,ϖ) :
ω > 0,ϖ ≥ 0}.
(B4) θ(ω,0)≤ ω for all ω > 0.
The set of all B-actions is denoted by M .

Definition 2.3. [5] Let W be a nonempty set. A mapping dθ : W ×W → [0,∞) is called a θ -metric on W with respect to
B-action θ ∈M if dθ satisfies the following conditions:

(θ1) dθ (ω,ϖ) = 0 iff ω = ϖ ,

(θ2) dθ (ω,ϖ) = dθ (ϖ ,ω),

(θ3) dθ (ω,ϖ)≤ θ(dθ (ω,ρ),dθ (ρ,ϖ)) for all ω,ϖ ,ρ ∈W.
Then, the pair (W,dθ ) is called a θ -metric space.

Definition 2.4. [8] Let (W,d) be a b-metric space. A b-simulation function is a function ς : [0,∞)× [0,∞)→R satisfying the
following conditions:

(ς1) ς(ω,ϖ)< ϖ −ω for all ω,ϖ > 0.

(ς2) If {ωn},{ϖn} are sequences in (0,∞) such that

0 < limn→∞ ωn ≤ limn→∞ infϖn ≤ limn→∞ supϖn ≤ b limn→∞ ωn < ∞

then

limn→∞ supς(bωn,ϖn)< 0.

3. Main results

Definition 3.1. Let W be a nonempty set and b ≥ 1 be a given real number. A mapping db
θ

: W ×W → [0,∞) is called a
b-θ -metric on W with respect to B-action θ ∈M if it satisfies the following properties for each ω,ϖ ,ρ ∈W.

(bθ1) db
θ
(ω,ϖ) = 0 iff ω = ϖ .

(bθ2) db
θ
(ω,ϖ) = db

θ
(ϖ ,ω).

(bθ3) db
θ
(ω,ϖ)≤ bθ(db

θ
(ω,ρ),db

θ
(ρ,ϖ)).

Then, the pair (W,db
θ
) is called b-θ -metric space.

Remark 3.2. Every θ -metric space is b-θ -metric space and the concept of b-θ -metric space coincides with the concept of
θ -metric space when b = 1.

Example 3.3. Let W = {ω,ϖ ,ν} and db
θ

: W ×W → [0,∞) be defined by

db
θ
(ω,ϖ) = db

θ
(ϖ ,ω) = db

θ
(ω,ν) = db

θ
(ν ,ω) = 1

db
θ
(ϖ ,ν) = db

θ
(ν ,ϖ) = 2, db

θ
(ω,ω) = db

θ
(ϖ ,ϖ) = db

θ
(ν ,ν) = 0.

Suppose that θ(u,ρ) = 1
2 (u+ρ). Then, (W,db

θ
) is b-θ -metric space with b = 2 but it is not θ -metric space since db

θ
(ϖ ,ν)>

θ(db
θ
(ϖ ,ω),db

θ
(ω,ν)).

Remark 3.4. The concept of b-θ -metric space coincides with the concept of b-metric space when θ(u,ρ) = u+ρ . Every
b-θ -metric space is b-metric space when θ(u,ρ) = k(u+ρ),k ∈ (0,1].

Example 3.5. Let W = {ω,ϖ ,ν} and db
θ

: W ×W → [0,∞) be defined by

db
θ
(ν ,ω) = db

θ
(ω,ν) = db

θ
(ϖ ,ν) = db

θ
(ν ,ϖ) = 1

db
θ
(ω,ϖ) = db

θ
(ϖ ,ω) = 3, db

θ
(ω,ω) = db

θ
(ϖ ,ϖ) = db

θ
(ν ,ν) = 0.

Suppose that θ(u,ρ) = uρ

1+uρ
. Then, (W,db

θ
) is b-metric space with b = 3

2 but it is not b-θ -metric space.

Definition 3.6. Let (W,db
θ
) be a b-θ -metric space. We define the open ball with center ω and radius r > 0 by
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Bdb
θ

(ω,r) = {ϖ ∈W : db
θ
(ω,ϖ)< r}

Example 3.7. W = { 1
n : n ∈N}∪{0} and let db

θ
: W ×W → [0,∞) be defined by

db
θ
(0,1) = db

θ
(1,0) = 2,

db
θ
(1, 1

n ) = db
θ
( 1

n ,1) =
1
n if n≥ 2,

db
θ
(0, 1

n ) = db
θ
( 1

n ,0) = 3 if n≥ 2,

db
θ
( 1

n ,
1
m ) = db

θ
( 1

m ,
1
n ) =

1
n +

1
m if m,n≥ 2,

db
θ
(m,n) = 0 iff m = n.

Suppose that θ(u,ρ) = u+ρ +uρ . Then, (W,db
θ
) is a b-θ -metric space with b = 2. Bdb

θ

(0,3) = {0,1} and there is no open
ball with center 1 contained in Bdb

θ

(0,3). Thus, Bdb
θ

(0,3) is not open.

Definition 3.8. Let (W,db
θ
) be a b-θ -metric space. Then, a sequence {ϖn} in W is said to be

1. convergent iff there exists ϖ ∈W such that db
θ
(ϖn,ϖ)→ 0 as n→ ∞ and we write limn→∞ ϖn = ϖ ,

2. Cauchy iff db
θ
(ϖn,ϖm)→ 0 as n,m→ ∞.

Definition 3.9. The b-θ -metric space (W,db
θ
) is complete if every Cauchy sequence in W converges to ϖ ∈W.

Proposition 3.10. If (W,db
θ
) is a b-θ -metric space, then the following hold:

1. The limit of a convergent sequence is unique.
2. Each convergent sequence is a Cauchy sequence.

Proof.

1. Suppose that limn→∞ ϖn = ϖ and limn→∞ ϖn = ω . We claim that ϖ = ω . Since limn→∞ ϖn = ϖ and limn→∞ ϖn = ω ,
then db

θ
(ϖn,ϖ)→ 0 and db

θ
(ϖn,ω)→ 0 as n→ ∞. From (bθ3), we have

0≤ db
θ
(ϖ ,ω)≤ bθ(db

θ
(ϖn,ϖ),db

θ
(ϖn,ω)).

Letting n→ ∞ in the above inequality, using the continuity of θ , we get db
θ
(ϖ ,ω) = 0. Thus, ϖ = ω .

2. It is obvious.

Example 3.11. Let W =N∪{∞} and let db
θ

: W ×W → [0,∞) be defined by

db
θ (ϖ ,ω) =

 5 if ϖ ,ω ∈N(ϖ 6= ω),
2 if one of ϖ ,ω ∈N and the other is ∞,
0 if ϖ = ω.

Suppose that θ(u,ρ) =
√

u2 +ρ2. Then, (W,db
θ
) is a b-θ -metric space with b = 2. Let ϖn = 5n for each n ∈ N. Then,

db
θ
(5n,2)→ 5 as n→ ∞. But db

θ
(∞,2)→ 2 since ϖn→ ∞. Thus, it is not continuous.

4. Fixed point results

Let W 6= /0 and T be a self mapping on W . Let ϖ0 ∈W and ϖn = T ϖn−1 for all n ∈N. Then, {ϖn} is called a Picard sequence
of initial point at ϖ0 and Fix(T ) = {ϖ ∈W : ϖ = T ϖ} is the set of fixed points of T .

Theorem 4.1. Let (W,db
θ
) be a complete b-θ -metric space and let T : W →W be a mapping. Suppose that there exists a

b-simulation function ς such that

ς(bdb
θ
(T ϖ ,T ρ),db

θ
(ϖ ,ρ))≥ 0 for all ϖ ,ρ ∈W.

Then, T has a unique fixed point.

Proof. Let {ϖn} be a sequence of Picard with initial point ϖ0 ∈W . Suppose that ϖn 6= ϖn−1 for all n ∈N. We prove this
theorem in 4 cases.
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Case 1: We claim that limn→∞ db
θ
(ϖn−1,ϖn) = 0.

By the hypotheses and using (ς1), respectively, we have

0 ≤ ς(bdb
θ (ϖn,ϖn+1),db

θ (ϖn−1,ϖn))

< db
θ (ϖn−1,ϖn)−bdb

θ (ϖn,ϖn+1).

Thus, for all n ∈N, we get

bdb
θ (ϖn,ϖn+1)< db

θ (ϖn−1,ϖn).

That is, {db
θ
(ϖn−1,ϖn)} is a decreasing sequence of positive real numbers. Hence, there exists r≥ 0 such that limn→∞ db

θ
(ϖn−1,ϖn)=

r. Assume r > 0. From (ς2) for νn = db
θ
(ϖn,ϖn+1),ωn = db

θ
(ϖn−1,ϖn), we obtain

0 ≤ limn→∞ supς(bdb
θ
(ϖn,ϖn+1),db

θ
(ϖn−1,ϖn))< 0.

This is a contradiction. Thus, r = 0. That is limn→∞ db
θ
(ϖn−1,ϖn) = 0.

Case 2: Our aim is to show that {ϖn} is a bounded sequence.
Suppose that ϖn is not a bounded sequence. Then, there exists a subsequence {ϖn(k)} of {ϖn} such that n(1) = 1 and n(k+1)
is the minimum integer for each k ∈N such that

db
θ
(ϖn(k+1),ϖn(k))> 1 and db

θ
(ϖm,ϖn(k))≤ 1 for n(k)≤ m≤ n(k+1)−1.

Thus, by using (bθ3), we have

1 < db
θ (ϖn(k+1),ϖn(k)) ≤ bθ(db

θ (ϖn(k+1),ϖn(k+1)−1),d
b
θ (ϖn(k+1)−1,ϖn(k)))

≤ bθ(db
θ (ϖn(k+1),ϖn(k+1)−1),1).

By taking the limit from two sides of above inequality, we get

1 < limk→∞ db
θ
(ϖn(k+1),ϖn(k))≤ b.

From Case 1 and (bθ3), we have

bdb
θ (ϖn(k+1),ϖn(k)) ≤ db

θ (ϖn(k+1)−1,ϖn(k)−1)

≤ bθ(db
θ (ϖn(k+1)−1,ϖn(k)),d

b
θ (ϖn(k),ϖn(k)−1))

≤ bθ(1,db
θ (ϖn(k),ϖn(k)−1)).

Again by taking the limit from two sides of above inequality, we obtain

b < limk→∞ bdb
θ
(ϖn(k+1),ϖn(k))≤ limk→∞ db

θ
(ϖn(k+1)−1,ϖn(k)−1)≤ b

Thus,

limk→∞ db
θ
(ϖn(k+1)−1,ϖn(k)−1) = b and limk→∞ db

θ
(ϖn(k+1),ϖn(k)) = 1.

Now, by (ς2), with νk = db
θ
(ϖn(k+1),ϖn(k)) and ωk = db

θ
(ϖn(k+1)−1,ϖn(k)−1), we get

0≤ limk→∞ ς(bνk,ωk)< 0.

This is a contradiction. Hence, {ϖn} is a bounded sequence.

Case 3: We will show that {ϖn} is a Cauchy sequence.
Let Mn = sup{db

θ
(ϖi,ϖ j) : i, j ≥ n and n ∈N}. From Case 2, for each n ∈N, Mn < ∞. Here, Mn is a positive decreasing

sequence. So, there exists M ≥ 0 such that limn→∞ Mn = M.
Assume that M > 0. For k ∈N, there exist n(k),m(k) ∈N such that m(k)> n(k)≥ k and

Mk− 1
k < db

θ
(ϖm(k),ϖn(k))≤Mk.

After taking the limit in the above inequality, we have

limk→∞ db
θ
(ϖm(k),ϖn(k)) = M.

From Case 1 and the definition of Mn, we obtain
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bdb
θ
(ϖm(k),ϖn(k))≤ db

θ
(ϖm(k)−1,ϖn(k)−1)≤Mk−1.

Again, by taking the limit, we find

bM ≤ limk→∞ infdb
θ
(ϖm(k)−1,ϖn(k)−1)≤ limk→∞ supdb

θ
(ϖm(k)−1,ϖn(k)−1)≤M.

If b > 1, then M = 0. If b = 1, from (ς2) with νk = db
θ
(ϖm(k),ϖn(k)) and ωk = db

θ
(ϖm(k)−1,ϖn(k)−1), we obtain

0≤ limk→∞ supς(bνk,ωk)< 0.

This is a contradiction. Thus, M = 0. This implies that {ϖn} is a Cauchy sequence.

Case 4: Since (W,db
θ
) is a complete b-θ -metric space and {ϖn} is a Cauchy sequence from Case 3, there exists ρ ∈W such

that limn→∞ ϖn = ρ . We must show that ρ ∈ Fix(T ). From Case 1,

bdb
θ
(T ϖn,T ρ)≤ db

θ
(ϖn,ρ) for all n ∈N.

Thus,

0≤ db
θ (ρ,T ρ) ≤ bθ(db

θ (ρ,ϖn+1),db
θ (ϖn+1,T ρ))

< bθ(db
θ (ρ,ϖn+1),

1
b

db
θ (ϖn,ρ)).

By taking the limit from two sides of above inequality, we get db
θ
(ρ,T ρ) = 0 since limn→∞ ϖn = ρ . Therefore, ρ = T ρ .

Finally, we must show that the uniqueness of fixed point. Assume that there exists w ∈W such that w = Tw and w 6= ρ . By
Case 1, we get

0≤ bdb
θ
(Tw,T ρ)≤ db

θ
(w,ρ).

This implies that b≤ 1. This is a contradiction with our assumption. Hence, T has a unique fixed point.

Corollary 4.2. Let (W,db
θ
) be a complete b-θ -metric space and T : W →W be a mapping satisfies the following inequality

bdb
θ
(T ω,T ϖ)≤ αdb

θ
(ω,ϖ)

for each ω,ϖ ∈W, where α ∈ [0,1). Then, T has a unique fixed point.

Proof. It follows from Theorem 4.1 if we take b-simulation function as ς(ν ,ρ) = αρ−ν for all ν ,ρ ≥ 0.

Remark 4.3. Let (W,db
θ
) be a complete b-θ -metric space.

1. Theorem 3.4 in [8] is obtained from Theorem 4.1 by taking θ(ν ,ρ) = ν +ρ .
2. Theorem 3.3 in [7] is obtained from Theorem 4.1 by taking b = 1.

Now, we illustrate the validity of fixed point result in Theorem 4.1 by the following examples.

Example 4.4. Let W = [0,∞) and db
θ

: W ×W → [0,∞) be defined by db
θ
(ω,ϖ)) = | ω−ϖ |3. Also, we take θ(ν ,ρ) =

ν +ρ +νρ . Then, (W,db
θ
) is a complete b-θ -metric space with b = 4. Define a mapping T : W →W by T ω = ω

a for all
ω ∈W and a > 0,a 6= 1. From Theorem 4.1, T has a unique fixed point u = 0 for b-simulation function ς(ν ,ρ) = λρ−ν

where λ ≥ 4
a3 for all ν ,ρ ∈ [0,∞), since

ς(4db
θ (T ω,T ϖ),db

θ (ω,ϖ)) = λdb
θ (ω,ϖ)−4db

θ (T ω,T ϖ)

= λ (| ω−ϖ |3)−4(| T ω−T ϖ |3)

= λ (| ω−ϖ |3)−4(| ω

a
− ϖ

a
|
3
)

= (λ − 4
a3 )(| ω−ϖ |3)

≥ 0.
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Example 4.5. Let W = [0,1] and db
θ

:W×W→ [0,∞) be defined by db
θ
(ω,ϖ)= | ω−ϖ |2. Also, we take θ(ν ,ρ)=

√
ν2 +ρ2.

Then, (W,db
θ
) is a complete b-θ -metric space with b = 2

√
2. Define a mapping T : [0,1]→ [0,1] by T ω = ω√

2
+ a for all

ω ∈W and a <
√

2−1√
2

. From Theorem 4.1, T has a unique fixed point u =
√

2a√
2−1

for b-simulation function ς(ν ,ρ) = λρ−ν

where λ ≥
√

2 for all ν ,ρ ∈ [0,∞), since

ς(2
√

2db
θ (T ω,T ϖ),db

θ (ω,ϖ)) = λdb
θ (ω,ϖ)−2

√
2db

θ (T ω,T ϖ)

= λ (| ω−ϖ |2)−2
√

2(| T ω−T ϖ |2)

= λ (| ω−ϖ |2)−2
√

2(| ω√
2
− ϖ√

2
|
2
)

= (λ − 2
√

2
2

)(| ω−ϖ |2)

≥ 0.
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Abstract

The paper deals with three dynamic properties of the numerical solution for differential
equations with piecewise constant arguments of advanced and retarded type: oscillation,
stability and convergence. The Euler-Maclaurin methods are used to discretize the equations.
According to the characteristic theory of the difference equation, the oscillation and stability
conditions of the numerical solution are obtained. It is proved that the convergence order of
numerical method is 2n+2. Furthermore, the relationship between stability and oscillation
is discussed for analytic solution and numerical solution, respectively. Finally, several
numerical examples confirm the corresponding conclusions.

1. Introduction

As a special type of delay differential equations [1]- [4], differential equations with piecewise constant argument [5]- [9]
(abbreviated as EPCA) has some characteristics of continuous and discrete dynamic system, so it has important value in
practical application such as population biology [10], neural networks [11, 12], predator-prey model [13], epidemiology [14]
and so on. In recent years, the comprehensive exploration of EPCA has become a scientific issue widely concerned by scholars
in various fields. Because of the complexity of this kind of equation in structure, it is difficult to solve it accurately. Therefore,
it is necessary to study the numerical solution of EPCA, and then clarify the applicability of numerical method in EPCA.
In the study of differential equations with piecewise constant arguments, much research has been focused on the properties
of numerical solution of EPCA. Gao [15] considered numerical oscillation of the Runge-Kutta method for EPCA of mixed
type. In [16], convergence and stability of stochastic EPCA in split-step theta method was considered. The stability of the
Runge-Kutta method for nonlinear neutral EPCA was studied in [17]. Wang and Yao [18] studied the stability and oscillation
of a kind of functional differential equation. Liang et al. [19] considered numerical stability of system u′(t) = Lu(t)+Mu([t])
with matrix coefficients in the case of 2-norm. Different from previous studies, this paper mainly considers the numerical
oscillation, stability and convergence of Euler-Maclaurin methods for forward EPCA with advanced and retarded type, and
gives some new conclusions.
Consider the following equation:

x′(t) = ax(t)+a0x([t])+a1x([t +1]),x(0) = c0, (1.1)

where [·] designates the greatest-integer function.

Email address and ORCID number: yinhefan@126.com, 0000-0001-7182-3272 (H. Yin), bmwzwq@126.com, 00000-0003-3578-2551 (Q. Wang)

https://orcid.org/0000-0001-7182-3272
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Denote

b0(t) = eat +a−1a0(eat −1),b1(t) = a−1a1(eat −1),λ = b0(1)/(1−b1).

Theorem 1.1. [20] Eq. (1.1) has on a unique solution

x(t) = (b0({t})+λb1({t}))λ [t]c0, (1.2)

where {t} is the fractional part of t, if b1(1) 6= 1.

In particular, the solution of Eq. (1.1) is

x(t) =
(

1+
a0 +a1

1−a1
{t}
)(

1+a0

1−a1

)[t]

c0,

for a = 0.

Theorem 1.2. [20] The solution x = 0 of Eq. (1.1) is stable (asymptotically stable) as t→+∞, if and only if

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≥ 0. (1.3)

Theorem 1.3. [20] In each internal (n,n+1), the solution of Eq. (1.1) with the condition x(0) = c0 6= 0 has exact roots

tn = n+
1
a

ln
a0 +a1ea

a+a0 +a1

if (
a0 +

aea

ea−1

)(
a1−

a
ea−1

)
> 0. (1.4)

If (1.4) is not satisfied and a0 6=−aea/(ea−1),c0 6= 0, then solution (1.2) has no zero in [0,+∞).

2. Numerical oscillation and non-oscillation

2.1. Euler-Maclaurin methods and convergence

Firstly, we introduce Bernoulli’s numbers and Bernoulli’s polynomials as follows:

z
ez−1

=
∞

∑
j=0

B j

j!
z j, |z|< 2π,

zexz

ez−1
=

∞

∑
j=0

B j(x)
j!

z j, |z|< 2π,

where B j and B j(x), j = 0,1,2 · · · are called Bernoulli’s number and the jth-order Bernoulli’s polynomial, respectively.

Lemma 2.1. [21] B j and B j(x) have the following several properties:
(I) B0 = 1,B1 =− 1

2 ,B2 j = 2(−1) j+1(2 j)!∑
∞
k=1(2kπ)−2 j,B2 j+1 = 0, j ≥ 1,

(II) B0(x) = 1,B1(x) = x− 1
2 ,B2(x) = x2− x+ 1

6 ,Bk(x) = ∑
k
j=0
(k

j

)
B jxk− j.

Lemma 2.2. [22] Suppose that f (x) has 2n+3rd continuous derivative on [ti, ti+1], then we have

∣∣∣∣∣
∫ tt+1

ti
f (t)dt− h

2
[ f (ti+1)+ f (ti)]+

n

∑
j=1

B2 jh2 j

(2 j)!

[
f (2 j−1) (ti+1)− f (2 j−1) (ti)

]∣∣∣∣∣= O
(
h2n+3) . (2.1)

Let h = 1
m be a given step-size and ti be defined by ti = ih, i = 0,1,2 · · · , then let i = km+ l, l = 0,1,2, · · · ,m−1. The derivative

x( j)(t) exists in every interval [k,k+1). We suppose

f (t) = x′(t) = ax(t)+a0x([t])+a1x([t +1])

for all j = 0,1,2 · · · , then we have

f ′(t) = x′′(t) = ax′(t) = a2x(t)+aa0x([t])+aa1x([t +1]),
f ( j)(t) = x( j+1)(t) = a j+1x(t)+a ja0x([t])+a ja1x([t +1]).

(2.2)
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Apply (2.2) to (2.1), we get

xi+1 = xi +
ha
2
(xi+1 + xi)+ha0xkm +ha1x(k+1)m−

n

∑
j=1

B2 j(ah)2 j

(2 j)!
(xi+1− xi) . (2.3)

Since i = km+ l, l = 0,1,2, · · · ,m−1, (2.3) can be expressed as:

x(k+1)m =
1+a0

1−a1
xkm, (2.4)

xkm+l+1 = (1+(l +1)ha0)xkm +(l +1)ha1x(k+1)m, (2.5)

for a = 0, and

x(k+1)m =
R(z)m + a0

a (R(z)m−1)
1− a1

a (R(z)m−1)
xkm, (2.6)

xkm+l+1 =
(

R(z)l+1 +
a0

a

(
R(z)l+1−1

))
xkm +

a1

a

(
R(z)l+1−1

)
x(k+1)m, (2.7)

for a 6= 0, where l = 0,1, · · · ,m− 2, z = ah, φ(z) = 1− z
2 +∑

n
j=1

B2 jz2 j

(2 j)! and R(z) = 1+ z
φ(z) is the stability function of the

Euler-Maclaurin methods.

Theorem 2.3. For every given n ∈ N, the Euler-Maclaurin method is of order 2n+2.

Proof. Let km≤ i < (k+1)m−1, then by Lemma 2.2 and f (t) = x′(t), we get

x(ti+1)− x(ti) =
∫ ti+1

ti
x′(t)dt =

ha
2
[x(ti+1)+ x(ti)]+ha0x(k)+ha1x(k+1)

−
n

∑
j=1

B2 j(ah)2 j

(2 j)!
[x(ti+1)− x(ti)]+O

(
h2n+3) .

Let i = (k+1)m−1, then for any 0 < ε < h, we have

x(ti+1− ε)− x(ti) =
∫ ti+1−ε

ti
x′(t)dt =

ha
2
[x(ti+1− ε)+ x(ti)]+ha0x(k)+ha1x(k+1)

−
n

∑
j=1

B2 j(ah)2 j

(2 j)!
[x(ti+1− ε)+ x(ti)]+O

(
h2n+3) . (2.8)

Let ε → 0+ in (2.8), (2.7) holds true for i = (k+1)m−1. Suppose

(x(ti+1)− xi+1)

(
1+

ha
2

+
n

∑
j=1

B2 j(ha)2 j

(2 j)!

)
= O

(
h2n+3) ,

then from (2.4)-(2.7) we obtain

(x(ti+1)− xi+1)

(
1+

ha
2

+
n

∑
j=1

B2 j(ha)2 j

(2 j)!

)
= O

(
h2n+3) ,

the proof is complete.

2.2. Oscillation analysis

Theorem 2.4. If {xn} and {xkm} are given by (2.5), (2.7) and (2.4), (2.6), respectively, then {xn} is non-oscillatory if and only
if {xkm} is non-oscillatory.

Proof. The necessity is obvious for a 6= 0. Sufficiency: if {xkm} is non-oscillatory, without loss of generality, we assume
that {xkm} is an eventually negative solution of (2.6), that is, there exists a k0 ∈ R such that xkm < 0 for k > k0. In order
to prove xkm+l < 0 for all k > k0 + 1 and l = 0,1, · · · ,m− 1, we suppose a0 < 0,a1 < 0. If a > 0, then 1 < R(z) < ∞ and
R(z)−m ≤ R(z)−l , therefore from (2.7) we have

R(z)−lxkm+l =
(

1+
a0

a

(
1−R(z)−l

))
xkm +

a1

a

(
1−R(z)−l

)
x(k+1)m

≤
(

1+
a0

a

(
1−R(z)−m))xkm +

a1

a

(
1−R(z)−m)x(k+1)m

= R(z)−mx(k+1)m < 0.

So xkm+l < 0. The case of a < 0 and a = 0 can be studied in the same way. The proof is complete.
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By Theorem 2.4, we can get the following theorem.

Theorem 2.5. The following propositions are equivalent:
(I) {xn} is oscillatory ;
(II) {xkm} is oscillatory ;
(III) The two cases hold

(i) a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1 ,

(ii) a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1 ,
for a 6= 0, and

(i) a0 <−1 and a1 < 1,
(ii) a0 >−1 and a1 > 1,

for a = 0.

Proof. According to Theorem 2.4, the equivalence of (I) and (II) is obvious, then we prove that (II) and (III) are equivalent.
{xn} is oscillatory for a 6= 0 if and only if the corresponding characteristic equation has no positive roots, which is equivalent to

R(z)m + a0
a (R(z)m−1)

1− a1
a (R(z)m−1)

< 0,

so we have

R(z)m + a0
a (R(z)m−1)< 0 and 1− a1

a (R(z)m−1)> 0

or

R(z)m + a0
a (R(z)m−1)> 0 and 1− a1

a (R(z)m−1)< 0,

that is

a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1

or

a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1 .

In the same way, λ = 1+a0
1−a1

for a = 0. The proof is complete.

From Theorem 1.3, we have the following corollary.

Corollary 2.6. If any of the following conditions holds true:
(I) When a 6= 0,

(i) a0 <− aea

ea−1 and a1 <
a

ea−1 ,
(ii) a0 >− aea

ea−1 and a1 >
a

ea−1 ,
(II) When a = 0,

(i) a0 <−1 and a1 < 1,
(ii) a0 >−1 and a1 > 1,

then every solution of Eq. (1.1) is oscillatory.

Lemma 2.7. [21] If |z| ≤ 1, then we have φ(z)≥ 1
2 · for z > 0 and φ(z)≥ 1 for z≤ 0.

Lemma 2.8. [21] If |z| ≤ 1, then
(I) φ(z)≤ z

ez−1 , n is even ;
(II) φ(z)≥ z

ez−1 , n is odd.

Theorem 2.9. If a 6= 0, then the Euler-Maclaurin methods preserve the oscillation of Eq. (1.1) if and only if n is even.

Proof. According to Theorem 2.5 and Corollary 2.6, we can get the Euler-Maclaurin methods preserve the oscillation of (1.1)
if and only if

aea

ea−1 ≤−
aR(z)m

R(z)m−1 or a
ea−1 ≥

a
R(z)m−1

holds true. If a > 0, we have

ea

ea−1 ≥
R(z)m

R(z)m−1 or ea ≤ R(z)m.
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Since the function y = x
x−1 is decreasing, so

ea ≤ R(z)m.

Therefore,
φ(z)≤ z

ez−1
.

From Lemma 2.8, n is even. The case of a < 0 can be proved in the same way.

Theorem 2.10. If a 6= 0, then the Euler-Maclaurin methods preserve the non-oscillation of (1.1) if and only if n is odd.

From Theorem 2.5 and Corollary 2.6, we can get this proof.

Theorem 2.11. When a = 0, the Euler-Maclaurin methods preserve the oscillation and non-oscillation of (1.1) for any n ∈ N.

3. Relationship between stability and oscillation

From Theorem 1.2, we have the following corollary.

Corollary 3.1. The analytic solution of Eq. (1.1) is asymptotically stable as t→+∞, if and only if

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
> 0

for a 6= 0, and
(a0 +a1)(a1−a0−2)> 0

for a = 0.

Theorem 3.2. The numerical solution of Eq. (1.1) is asymptotically stable (xn→ 0 as n→ ∞) if and only if

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
> 0

for a 6= 0, and
(a0 +a1)(a1−a0−2)> 0

for a = 0.

Proof. According to (2.3) and (2.5), it is well known that xn→ 0 as n→ ∞ if and only if |λ̂ |< 1, where

λ̂ =
R(z)m + a0

a (R(z)m−1)
1− a1

a (R(z)m−1)

for a 6= 0, and

λ̂ =
1+a0

1−a1

for a = 0. So we have

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
> 0

for a 6= 0, and
(a0 +a1)(a1−a0−2)> 0

for a = 0. This completes the proof.

According to Corollary 2.6 and Corollary 3.1, we get the conclusion for the analytic solution.

Theorem 3.3. When a 6= 0, the analytic solution of Eq. (1.1) is
(A1) non-oscillatory and asymptotically stable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 <− aea

ea−1 and a1 ≥ a
ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 >− aea

ea−1 and a1 ≤ a
ea−1

holds true.
(A2) non-oscillatory and unstable if
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(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aea

ea−1 and a1 ≥ a
ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aea

ea−1 and a1 ≤ a
ea−1

holds true.
(A3) oscillatory and unstable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aea

ea−1 and a1 <
a

ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aea

ea−1 and a1 >
a

ea−1

holds true.
(A4) oscillatory and asymptotically stable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 <− aea

ea−1 and a1 <
a

ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 >− aea

ea−1 and a1 >
a

ea−1

holds true.

According to Theorem 2.5 and Theorem 3.2, we get the corresponding conclusion for the numerical solution.

Theorem 3.4. When a 6= 0, the numerical solution of (1.1) is
(B1) non-oscillatory and asymptoticallystable if

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 <− aR(z)m

R(z)m−1 and a1 ≥ a
R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 >− aR(z)m

R(z)m−1 and a1 ≤ a
R(z)m−1

holds true.
(B2) non-oscillatory and unstable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aR(z)m

R(z)m−1 and a1 ≥ a
R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aR(z)m

R(z)m−1 and a1 ≤ a
R(z)m−1

holds true.
(B3) oscillatory and unstable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1

holds true.
(B4) oscillatory and asymptotically stable if

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1

holds true.

Theorem 3.5. When a = 0, the analytic solution and numerical solution of Eq. (1.1) are both
(C1) non-oscillatory and asymptotically stable if

(a0 +a1)(a1−a0−2)> 0, a0 <−1 and a1 ≥ 1
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or

(a0 +a1)(a1−a0−2)> 0, a0 >−1 and a1 ≤ 1.

(C2) non-oscillatory and unstable if

(a0 +a1)(a1−a0−2)≤ 0, a0 <−1 and a1 ≥ 1

or

(a0 +a1)(a1−a0−2)≤ 0, a0 >−1 and a1 ≤ 1.

(C3) oscillatory and unstable if

(a0 +a1)(a1−a0−2)≤ 0, a0 <−1 and a1 < 1

or

(a0 +a1)(a1−a0−2)≤ 0, a0 >−1 and a1 > 1.

(C4) oscillatory and asymptotically stable if

(a0 +a1)(a1−a0−2)> 0, a0 <−1 and a1 < 1

or

(a0 +a1)(a1−a0−2)> 0, a0 >−1 and a1 > 1.

4. Numerical examples

Consider the following equations

x′(t) =−x(t)−2x([t])+5x([t +1]), x(0) = 1, (4.1)

x′(t) = x(t)+4x([t])−3x([t +1]), x(0) = 1, (4.2)

x′(t) = x(t)+ x([t])+2x([t +1]), x(0) = 1, (4.3)

x′(t) =−2x(t)−3x([t])−2x([t +1]), x(0) = 1. (4.4)

From Theorem 1.1, the analytic solution of Eq. (4.1) is x(10)≈ 1.51037040806E−4 at t = 10. We listed the absolute errors
(AE) and the relative errors (RE) at n = 2 and t = 10 and the ratio of the errors of the case m = 20 over that of m = 40 . We
can see from Table 1 that the Euler-Maclaurin methods is of order 6 when n = 2. The Euler-Maclaurin methods have good
convergence for this kind of equations.
Further, from (4.1) we know that the coefficients are a =−1,a0 =−2,a1 = 5, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈ 9.6721 > 0,a0 <−

aea

ea−1
≈−0.5820 and a1 ≥

a
ea−1

≈ 1.5820,

so (A1) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 3, we have

z = ha =
a
m

=−0.02,B2 j = 2.3404×10−8,φ(z) = 1.0100,R(z) = 1+
z

φ(z)
= 0.9802.

Table 1: The errors of the Euler-Maclaurin methods (n = 2)

AE RE
m = 2 3.0083E−10 1.9918E−6
m = 3 2.6198E−11 1.7345E−7
m = 5 1.2172E−12 8.0591E−9
m = 10 1.8986E−14 1.2570E−10
m = 20 2.9751E−16 1.9697E−12
m = 40 4.0115E−18 2.6560E−14
ratio 74.16 74.16
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Because

φ(z)≥ z
ez−1

≈ 1.0100,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈ 9.6721 > 0,a0 <−

aR(z)m

R(z)m−1
≈−0.5820 and a1 ≥

a
R(z)m−1

≈ 1.5820,

so (B1) in Theorem 3.4 holds true.

From Figure 4.1 we can see that the analytic solution and the numerical solution of (4.1) are asymptotically stable and
non-oscillatory, which is agreement with Theorems 3.3 (A1) and 3.4 (B1).

Figure 4.1: The analytic solution (left) and the numerical solution (right, n = 3 ) of (4.1).

From (4.2) we know that the coefficients are a = 1,a0 = 4,a1 =−3, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈−18.3279≤ 0,a0 >−

aea

ea−1
≈−1.5820 and a1 ≤

a
ea−1

≈ 0.5820,

so (A2) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 3, we have

z = ha =
a
m

= 0.02,B2 j = 2.3404×10−8,φ(z) = 0.9900,R(z) = 1+
z

φ(z)
= 1.0202.

Because

φ(z)≥ z
ez−1

≈ 0.9900,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈−18.3279≤ 0,a0 >−

aR(z)m

R(z)m−1
≈−1.5820 and a1 ≤

a
R(z)m−1

≈ 0.5820,

so (B2) in Theorem 3.4 holds true.

From Figure 4.2 we can see that the analytic solution and the numerical solution of (4.2) are unstable and non-oscillatory,
which is agreement with Theorems 3.3 (A2) and 3.4 (B2).
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Figure 4.2: The analytic solution (left) and the numerical solution (right, n = 3 ) of (4.2).

From (4.3) we know that the coefficients are a = 1,a0 = 1,a1 = 2, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈−4.6558≤ 0,a0 >−

aea

ea−1
≈−1.5820 and a1 >

a
ea−1

≈ 0.5820,

so (A3) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 4, we have

z = ha =
a
m

= 0.02,B2 j = 2.3404×10−8,φ(z) = 0.9900,R(z) = 1+
z

φ(z)
= 1.0202.

Because
φ(z)≥ z

ez−1
≈ 0.9900,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈−4.6558≤ 0,a0 >−

aR(z)m

R(z)m−1
≈−1.5820 and a1 >

a
R(z)m−1

≈ 0.5820,

so (B3) in Theorem 3.4 holds true.
From Figure 4.3 we can see that the analytic solution and the numerical solution of (4.3) are unstable and oscillatory, which is
agreement with Theorems 3.3 (A3) and 3.4 (B3).

Figure 4.3: The analytic solution (left) and the numerical solution (right, n = 4 ) of (4.3).
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From (4.4) we know that the coefficients are a =−2,a0 =−3,a1 =−2, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈ 11.3825 > 0,a0 <−

aea

ea−1
≈−0.3130 and a1 <

a
ea−1

≈ 2.3130,

so (A4) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 4, we have

z = ha =
a
m

=−0.04,B2 j = 2.3404×10−8,φ(z) = 1.0201,R(z) = 1+
z

φ(z)
= 0.9608.

Because

φ(z)≥ z
ez−1

≈ 1.0201,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈ 11.3825 > 0,a0 <−

aR(z)m

R(z)m−1
≈−0.3130 and a1 <

a
R(z)m−1

≈ 2.3130,

so (B4) in Theorem 3.4 holds true.

From Figure 4.4 we can see that the analytic solution and the numerical solution of (4.4) are asymptotically stable and
oscillatory, which is agreement with Theorems 3.3 (A4) and 3.4 (B4).

Figure 4.4: The analytic solution (left) and the numerical solution (right, n = 4 ) of (4.4).

In particular, when a = 0, Eq. (4.1) becomes

x′(t) =−2x([t])+5x([t +1]), x(0) = 1, (4.5)

that is, a0 =−2,a1 = 5, so we have

(a0 +a1)(a1−a0−2) = 15 > 0, a0 <−1 and a1 ≥ 1,

so (C1) in Theorem 3.5 holds true.

From Figure 4.5 we also see that the analytic solution and the numerical solution of (4.5) are asymptotically stable and
non-oscillatory, which is agreement with Theorem 3.5 (C1).
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Figure 4.5: The analytic solution (left) and the numerical solution (right) of (4.5).

When a = 0, Eq. (4.2) becomes

x′(t) = 4x([t])−3x([t +1]), x(0) = 1, (4.6)

that is, a0 = 4,a1 =−3, so we have

(a0 +a1)(a1−a0−2) =−9≤ 0, a0 >−1 and a1 ≤ 1,

so (C2) in Theorem 3.5 holds true.
From Figure 4.6 we also see that the analytic solution and the numerical solution of (4.6) are unstable and non-oscillatory,
which is agreement with Theorem 3.5 (C2).

Figure 4.6: The analytic solution (left) and the numerical solution (right) of (4.6).

When a = 0, Eq. (4.3) becomes

x′(t) = x([t])+2x([t +1]), x(0) = 1, (4.7)

that is, a0 = 1,a1 = 2, so we have

(a0 +a1)(a1−a0−2) =−3≤ 0, a0 >−1 and a1 > 1,
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so (C3) in Theorem 3.5 holds true.
From Figure 4.7 we also see that the analytic solution and the numerical solution of (4.7) are unstable and oscillatory, which is
agreement with Theorem 3.5 (C3).

Figure 4.7: The analytic solution (left) and the numerical solution (right) of (4.7).

When a = 0, Eq. (4.4) becomes

x′(t) =−3x([t])−2x([t +1]), x(0) = 1, (4.8)

that is, a0 =−3,a1 =−2, so we have

(a0 +a1)(a1−a0−2) = 5 > 0, a0 <−1 and a1 < 1,

so (C4) in Theorem 3.5 holds true.
From Figure 4.8 we also see that the analytic solution and the numerical solution of (4.8) are asymptotically stable and
oscillatory, which is agreement with Theorem 3.5 (C4).

Figure 4.8: The analytic solution (left) and the numerical solution (right) of (4.8).



Fundamental Journal of Mathematics and Applications 177

5. Conclusion

In this paper, the Euler-Maclaurin methods are applied to discrete differential equations with piecewise constant arguments of
advanced and retarded type. We obtained the stability, oscillation conditions and convergence order of numerical methods. The
type of Euler-Maclaurin methods for solving differential equations with piecewise constant arguments is extended and the
results of corresponding literature are generalized. In the future, we will consider the application of the numerical method to
the multi-dimensional and fractional cases.
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Appendix A

The following code is the Matlab detail of Table 1.
%n = 2
syms d;
a =−1;
a0 =−2;
a1 = 5;
x0 = 1;
t = 10;
m = 2;
h = 1/m;
z = h∗a;
R1 = symsum(1/d∧2,1, in f );R1 = double(R1);
R2 = symsum(1/d∧4,1, in f );R2 = double(R2);
A = 1− z/2+R1∗ z∧2/(2∗ pi∧2)−R2∗ z∧4/(8∗ pi∧4);
R = 1+ z/A;
k1 = (R∧m+(a0/a)∗ (R∧m−1))/(1− (a1/a)∗ (R∧m−1));
x = zeros(1,11);
x(1) = x0;
for k = 1 : 10

x(k+1) = k1∗ x(k)
end
b0 = (exp(a)+(exp(a)−1)∗ (a0/a))/(1− (a1/a)∗ (exp(a)−1));
X = b0∧10;
AE = abs(x(11)−X)
RE = abs(AE/X)

Appendix B

The following code is the Matlab detail of Figure 4.1.
a =−1;
a0 =−2;
a1 = 5;
x0 = 1;
%t = 10;
m = 50;
h = 1/m;
z = h∗a;
for j = 1 : 3

for k = 1 : 10
B = 2∗ (−1)∧( j+1)∗ f actorial(2∗ j)∗ sum((2∗ k ∗ pi)∧(−2∗ j));
A = 1− z/2+ sum((B∗ z∧(2∗ j))/ f actorial(2∗ j));

end
end
R = 1+ z/A;
k1 = (R∧m+(a0/a)∗ (R∧m−1))/(1− (a1/a)∗ (R∧m−1));
x = zeros(1,12∗m);
%x(0) = x0;
x(m) = x0;
t = zeros(1,11∗m+1);
for k = 1 : 11

x(m∗ (k+1)) = k1∗ x(m∗ k);
for l = 0 : m−2

k2 = R∧(l +1)+(a0/a)∗ (R∧(l +1)−1);
k3 = (a1/a)∗ (R∧(l +1)−1);
x(k ∗m+ l +1) = k2∗ x(k ∗m)+ k3∗ x((k+1)∗m);

end
end
y = x(m : end);
for i = 0 : 11∗m
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t(i+1) = i/m;
end
subplot(1,2,2)
plot(t,y,′ r−′)
xlabel(′t ′);
ylabel(′x n′);
hold on;
for n = 0 : 10

for t = n : 0.01 : n+1
z = ((exp(a∗ (t−n))+(a0/a)∗ (exp(a∗ (t−n))−1))+(exp(a)+(a0/a)∗ (exp(a)−1))/(1− (a1/a)∗ (exp(a)−

1))∗ (a1/a)∗ (exp(a∗ (t−n))−1))∗ ((exp(a)+(a0/a)∗ (exp(a)−1))/(1− (a1/a)∗ (exp(a)−1)))∧n;
subplot(1,2,1)
plot(t,z,′ b− .′)
hold on

end
end
hold off
xlabel(′t ′);
ylabel(′x(t)′);
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Abstract

In this study, we develop a general method to solve the general linear elliptic quaternionic
matrix equations by means of real representation of elliptic quaternion matrices. A pseudo-
code for our approach that provides the solution of the linear elliptic quaternionic matrix
equations is expressed. Moreover, we apply this method to the well-known Slyvester matrix
equations and Kalman Yakubovich matrix equations over the elliptic quaternion algebra.

1. Introduction and Preliminaries

Real quaternions are a four-dimensional number system that was first expressed by Hamilton in 1843, based on the idea of
generalizing complex numbers [1]. Hamilton first tried to describe the 3-dimensional number system as follows:

q = q0 +q1i+q2 j

where q0,q1,q2 ∈ R and i2 = j2 =−1. However, he saw that this number system does not provide the closure property under
multiplication. In this way, Hamilton saw that there could not be a system similar to any 3-dimensional complex number
system and defined the 4-dimensional number system is known as the real quaternion in the following way:

K= {q = q0 +q1i+q2 j+q3k : q0,q1,q2,q3 ∈ R and i, j,k /∈ R} (1.1)

such that

i2 = j2 = k2 =−1, i j =− ji = k, ik =−ki =− j, jk =−k j = i. (1.2)

There are many applications of real quaternion algebra in different fields of the scientific world. The main areas are kinematics,
mechanics, quantum physics, chemistry, image-signal restoration, and game development. For this reason, there are many
studies related to real quaternions in literature [2]-[6].

On the other hand, Segre defined commutative quaternions in 1892 [7]. One of the most essential properties of a commutative
quaternion is that it meets the commutative property of multiplication. The commutative quaternion algebra is a significant
factor in fields such as Hopfield neural networks, digital signal, and image processing [8]-[11]. Therefore, commutative

Email address and ORCID number: kemaleren52@gmail.com, 0000-0001-5273-7897 (K. Eren), hhkosal@sakarya.edu.tr, 0000-0002-4083-462X
(H. H. Kösal)
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quaternion algebra theory has been increasingly important in recent years.

Elliptic quaternions are the generalized form of commutative quaternions. The set of elliptic quaternions is a commutative ring
under a commutative law and combination law of a four-dimensional Clifford algebra. Moreover, this set contains non-trivial
idempotents, nilpotent elements, and zero-divisors [8, 12, 13].
The set of elliptic quaternions with basic elements 1, i, j and k is represented as

Hα = {a = a0 +a1i+a2 j+a3k : a0, a1, a2, a3 ∈ R and i, j,k /∈ R} (1.3)

which satisfy the equalities i2 = k2 = α, j2 = 1, i j = ji = k, jk = k j = i, ki = ik = α j, α < 0, α ∈ R, [8]. Addition
of any two elliptic quaternions a = a0 + a1i+ a2 j + a3k, b = b0 + b1i+ b2 j + b3k ∈ Hα is given by a+ b = (a0 +b0)+
(a1 +b1) i+(a2 +b2) j+(a3 +b3)k. Scalar multiplication of a elliptic quaternion a ∈Hα with a scalar λ ∈ R is expressed as
λa = λ (a0 +a1i+a2 j+a3k) = λa0 +λa1i+λa2 j+λa3k . In addition, the operation of the quaternionic multiplication of
two elliptic quaternions a,b ∈Hα is expressed as

ab = (a0b0 +αa1b1 +a2b2 +αa3b3)+(a1b0 +a0b1 +a3b2 +a2b3) i
+(a0b2 +a2b0 +αa1b3 +αa3b1) j+(a3b0 +a0b3 +a1b2 +a2b1)k. (1.4)

On the other hand, we know that the elliptic quaternion a∈Hα has three types of the conjugate: 1a= a0−a1i+a2 j−a3k, 2a=
a0−a1i−a2 j+a3k and 3a = a0 +a1i−a2 j−a3k. Additionally, the norm of the elliptic quaternion a ∈Hα is

‖a‖= 4
√

a (1a) (2a) (3a) = 4

√[
(a0 +a2)

2−α(a1 +a3)
2
] [

(a0−a2)
2−α(a1−a3)

2
]
. (1.5)

If a ∈Hα and ‖a‖ 6= 0 then there exists multiplicative inverse of the elliptic quaternion a. So, multiplicative inverse of the

elliptic quaternion a is a−1 =
(1a)(2a)(3a)

‖a‖4
[8, 12].

For

H′α =




a0 αa1 a2 αa3
a1 a0 a3 a2
a2 αa3 a0 αa1
a3 a2 a1 a0

 ∈ R4×4 : a0, a1, a2,a3 ∈ R

 , (1.6)

Hα is algebraically isomorphic to the matrix algebra H′α through the bijective map

φ : Hα → H′α , φa =


a0 αa1 a2 αa3
a1 a0 a3 a2
a2 αa3 a0 αa1
a3 a2 a1 a0

 . (1.7)

Thus, every elliptic quaternion a ∈Hα has a real matrix representation

φa =


a0 αa1 a2 αa3
a1 a0 a3 a2
a2 αa3 a0 αa1
a3 a2 a1 a0

 (1.8)

in H′α [8].

Theorem 1.1. ([8, 12]). For a, b ∈Hα and λ ∈ R, the following identities are satisfied:

1. a = b⇔ φa = φb,
2. φ(a+b) = φa +φb,
3. φ(ab) = φaφb,
4. φ(φ(a)b)

= φaφb,

5. φ(λa) = λφa,

6. trace(φa) = a+ 1a+ 2a+ 3a,
7. ‖a‖4 = |det(φa)| .
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Let’s denote by Hm×n
α which is the set of all m× n type matrices with elliptic quaternion entries. Hm×n

α with the ordinary
matrix summation and multiplication is a ring with identity. The conjugates of elliptic quaternion matrix A = (ai j) ∈Hm×n

α

which has three types of conjugate are given the following as:

1A =
(1ai j

)
∈Hm×n

α , 2A =
(2ai j

)
∈Hm×n

α and 3A =
(3ai j

)
∈Hm×n

α .

Also, elliptic quaternion matrix A = (ai j)∈Hm×n
α can be expressed as A = A0+A1i+A2 j+A3k where A0, A1, A2, A3 ∈Rm×n.

Then, 1A = A0−A1i+A2 j−A3k, 2A = A0−A1i−A2 j+A3k and 3A = A0+A1i−A2 j−A3k. A matrix AT ∈Hn×m
α is transpose

of A∈Hm×n
α . Also A∗s =

(
sA
)T ∈Hm×n

α , s= 1,2,3, is called conjugate transpose with respect to the sth conjugate of A∈Hm×n
α ,

[12].

Theorem 1.2. ([12]) Let’s assume that A and B are elliptic quaternion matrices of appropriate sizes. Then the following
expressions are provided:

1.
(

sA
)T

=s(AT ),
2. (AB)∗s = B∗s A∗s ,
3. (AB)T = BT AT ,
4. s(AB) =

(
sA
)(

sB
)
,

5. If A−1 and B−1 exist then (AB)−1 = B−1A−1 ,

6. If A−1 exists (A∗s)−1 =
(
A−1

)∗s ,
7.
(

sA
)−1

=s(A−1).

For any elliptic quaternion matrix A = A0 +A1i+A2 j+A3k ∈ Hm×n
α , the real representation ΦA of the elliptic quaternion

matrix A were given in [13] as follows,

ΦA =


A0 αA1 A2 αA3
A1 A0 A3 A2
A2 αA3 A0 αA1
A3 A2 A1 A0

 ∈ R4m×4n

in here A0, A1, A2, A3 ∈ Rm×n, α ∈ R and α < 0.

Theorem 1.3. ([13]) Let A, B ∈ Hm×n, C ∈ Hn×p
α and λ ∈ R be given. In that case, following identities for the elliptic

quaternion matrix are satisfied:

1. A = B⇔ΦA = ΦB, ΦA+B = ΦA +ΦB,
2. ΦAC = ΦAΦC, ΦλA = λΦA,
3. A = 1

2−2α
E4mΦA

(
1E4n

)T where E4t =
(
It iIt jIt kIt

)
∈Ht×4t ,

4. If A is a nonsingular matrix of size m, then

ΦA−1 = Φ
−1
A , A−1 =

1
2−2α

E4mΦ
−1
A

(1E4n
)T

,

5. ΦA− = Φ
−
A , A− = 1

2−2α
E4mΦ

−
A

(
1E4n

)T are generalized inverse of ΦA and A, respectively,
6. ΦA = R−1

4mΦAR4n, ΦA = S−1
4m ΦAS4n and ΦA = T−1

4m ΦAT4n where

R4t =


0 αIt 0 0
It 0 0 0
0 0 0 αIt
0 0 It 0

 , S4t =


0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0

 , T4t =


0 0 0 αIt
0 0 It 0
0 αIt 0 0
It 0 0 0

 .

2. On solutions of general linear elliptic quaternionic matrix equations

In this section, we study the solutions of the equations

A1XB1 + · · ·+AlXBl =C (2.1)

by means of the real representations of elliptic quaternion matrices, where As ∈Hm×n
α , Bs ∈Hp×q

α , C∈Hm×q
α and s= 1,2,3, ..., l.
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Theorem 2.1. The elliptic quaternionic matrix equation given by (2.1) has a solution X if and only if the real matrix equation

ΦA1Y ΦB1 + · · ·+ΦAlY ΦBl = ΦC (2.2)

has a solution Y ∈ R4n×4p, in which case, if Y ∈ R4n×4p is a solution of the real matrix equation (2.2), then the matrix

X =
1

2−2α
E4nY ′

(1E4p
)T

(2.3)

is a solution of (2.1) where

Y ′ =
1
4

(
Y +R4nY R−1

4p +S4nY S−1
4p +T4nY T−1

4p

)
(2.4)

and

E4t =
(

It iIt jIt kIt
)
∈Ht×4t

α , t = n, p.

Proof. Suppose that the real matrix

Y =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

 , Yuv ∈ Rn×p, u,v = 1,2,3,4 (2.5)

is a solution to the equation (2.2), then, we say that the matrix given in (2.3) is a solution to equation (2.1). According to
Theorem 1.3, we get

ΦAs = R−1
4mΦAs R4n, ΦBs = R−1

4p ΦBsR4q and ΦC = R−1
4mΦCR4q,

ΦAs = S−1
4mΦAs S4n, ΦBs = S−1

4p ΦBs S4q and ΦC = S−1
4mΦCS4q,

ΦAs = T−1
4m ΦAs T4n, ΦBs = T−1

4p ΦBsT4q and ΦC = T−1
4m ΦCT4q.

where s = 1,2,3, ..., l. Substituting them into (2.2), respectively, and simplifying the corresponding equation, we have three
equations as follows,

ΦA1

(
R4nY R−1

4p

)
ΦB1 + · · ·+ΦAl

(
R4nY R−1

4p

)
ΦBl = (ΦC) ,

ΦA1

(
S4nY S−1

4p

)
ΦB1 + · · ·+ΦAl

(
S4nY S−1

4p

)
ΦBl = (ΦC) ,

ΦA1

(
T4nY T−1

4p

)
ΦB1 + · · ·+ΦAl

(
T4nY T−1

4p

)
ΦBl = (ΦC) .

(2.6)

This equation express that if Y is a solution of the equation given by (2.2), then R4nY R−1
4p , S4nY S−1

4p and T4nY T−1
4p are also

solutions of the real matrix equation defined by (2.2). Thus the undermentioned real matrix:

Y ′ =
1
4

(
Y +R4nY R−1

4p +S4nY S−1
4p +T4nY T−1

4p

)
(2.7)

is a solution to (2.2). By substituting (2.5) in (2.7) and making necessary simplifications, it can easily be written by

Y ′ =


Z0 αZ1 Z2 αZ3
Z1 Z0 Z3 Z2
Z2 αZ3 Z0 αZ1
Z3 Z2 Z1 Z0


where
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Z0 =
1
4 (Y11 +Y22 +Y33 +Y44) , Z1 =

1
4

(
Y12
α

+Y21 +
Y34
α

+Y43

)
,

Z2 =
1
4 (Y13 +Y24 +Y31 +Y42) , Z3 =

1
4

(
Y14
α

+Y23 +
Y32
α

+Y41

)
.

(2.8)

Thus, we get ΦX = Y ′. From Theorem 1.3, we obtain

X =
1

2−2α
(In iIn jIn kIn)Y ′


Ip
−iIp
jIp
−kIp

= Z0 +Z1i+Z2 j+Z3k. (2.9)

Moreover, since ΦX = Y ′ the elliptic quaternionic matrix equation given in (2.1) has a solution if and only if the real matrix
equation given in (2.2) has a solution.

3. Numerical algorithm

Considering the discussions in the previous section, now, we provide numerical Algorithm for solving general linear elliptic
quaternionic matrix equation

A1XB1 + · · ·+AlXBl =C

where As ∈Hm×n
α , Bs ∈Hp×q

α , C ∈Hm×q
α and s = 1,2,3, ..., l.

Algorithm 1 Numerical Algorithm for Solving General Linear Elliptic Quaternionic Matrix Equations

1: Begin
2: Input As ∈Hm×n

α , Bs ∈Hp×q
α and C ∈Hm×q

α where 1≤ s≤ l.
3: Form ΦAs , ΦBs and ΦC.

4: Compute Y and Y ′ = 1
4

(
Y +R4nY R−1

4p +S4nY S−1
4p +T4nY T−1

4p

)
.

5: Calculate X = 1
2−2α

(In iIn jIn kIn)Y ′


Ip
−iIp
jIp
−kIp

 .

6: End

4. Numerical examples

For l = 2, the special case of (2.1) is given by

A1XB1 +A2XB2 =C (4.1)

where A1,A2 ∈Hm×n
α , B1,B2 ∈Hp×q

α and C ∈Hm×q
α . If B1 = Ip, A2 =−In, m = n, p = q are taken in (4.1), we have elliptic

quaternionic Sylvester matrix equation AX −XB =C. Similarly, A1 = In, B1 = Ip, m = n, p = q, A2 = −A and B2 = B are
taken in (4.1) we have elliptic quaternionic Kalman-Yakubovich matrix equation X−AXB =C.

In the literature, the equations AX−XB =C and X−AXB =C are known as the Sylvester matrix equation and the Kalman-
Yakubovich matrix equation, respectively. These equations play an important role in control theory, signal processing, filtering,
image restoration, decoupling techniques for ordinary and partial differential equations, and block-diagonalization of matrices,
[14]-[18]. In this section, we obtain the solutions of the given elliptic quaternionic matrix equations AX −XB = C and
X−AXB =C according to our Algorithm.

Note that all computations in the rest of the paper are performed on an Intel i7-3630QM@2.40 GHz/16GB computer using
MATHEMATICA 9 software.

Let’s take α =−2 specifically to solve the elliptic quaternionic Kalman Yakubovich matrix equation

X−
(

1+ k i
j− k 1− j

)
X
(

j 1+2i
k i+ j

)
=

(
3+ i+3 j+ k 2+2i+7 j+ k
5+2i−6 j+ k −7−2i−2 j+8k

)
.
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Real representation of given equation is

Y −



1 0 0 −2 0 0 −2 0
0 1 0 0 1 −1 2 0
0 1 1 0 1 0 0 0
0 0 0 1 −1 0 1 −1
0 0 −2 0 1 0 0 −2
1 −1 2 0 0 1 0 0
1 0 0 0 0 1 1 0
−1 0 1 −1 0 0 0 1


Y



0 1 0 −4 1 0 0 0
0 0 0 −2 0 1 −2 0
0 2 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 −4
0 1 −2 0 0 0 0 −2
0 0 1 0 0 2 0 1
1 0 0 1 0 1 0 0



=



3 4 −2 6 1 7 0 −2
7 −12 0 6 −7 3 −4 −18
1 −3 3 4 0 1 1 7
0 −3 7 −12 2 9 −7 3
1 7 0 −2 3 4 −2 6
−7 3 −4 −18 7 −12 0 6
0 1 1 7 1 −3 3 4
2 9 −7 3 0 −3 7 −12


.

If we solve this equation, we have

Y =



1 0 2 0 0 1 0 0
1 0 0 0 0 1 −2 −4
−1 0 1 0 0 0 0 1
0 0 1 0 1 2 0 1
0 1 0 0 1 0 2 0
0 1 −2 −4 1 0 0 0
0 0 0 1 −1 0 1 0
1 2 0 1 0 0 1 0


.

Then

X = 1
24

(
I2 iI2 jI2 kI2

)(
Y +R8Y R−1

8 +S8Y S−1
8 +T8Y T−1

8

)
I2
−iI2
jI2
−kI2


=

(
1− i j
1+ k j+2k

)
.

Similarly, let’s take α =−5 specifically to solve the elliptic quaternionic Sylvester matrix equation(
1+ i i+3 j+2k
3k 2

)
X−X

(
i j+2k

5+ i 2−3 j

)
=

(
−46+13i−19 j+ k −19+6i−35 j+15k
25−22i−8 j+7k 48−6i+21k

)
.

The solution of real representation of given elliptic quaternionic Sylvester matrix equation is

Y =



1 2 −5 0 1 0 0 0
0 0 0 −25 1 3 −20 0
1 0 1 2 0 0 1 0
0 5 0 0 4 0 1 3
1 0 0 0 1 2 −5 0
1 3 −20 0 0 0 0 −25
0 0 1 0 1 0 1 2
4 0 1 3 0 5 0 0


.

Thus, we get

X = 1
24

(
I2 iI2 jI2 kI2

)(
Y +R8Y R−1

8 +S8Y S−1
8 +T8Y T−1

8

)
I2
−iI2
jI2
−kI2


=

(
1+ i+ j 2

j+4k 5i+3 j

)
.
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5. Conclusion

In this study, we established the solution of general linear elliptic quaternionic matrix equations with the help of the real
representation of elliptic quaternion matrices and expressed an Algorithm for the solutions of these equations. In addition,
we investigated solutions of elliptic quaternionic Sylvester and Kalman Yakubovich matrix equations, which are essential
applications in various areas of science. Actually, general linear matrix equations over the complex field form a special class of
general linear elliptic quaternionic matrix equations. Thus, the obtained results extend, generalize and complement the scope
of general linear matrix equations known in the literature.
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Abstract

In this study, some new exact wave solutions of nonlinear partial differential equations
are investigated by the modified simple equation method. This method is applied to the
(2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and the (3+1)-dimensional
Jimbo-Miwa equation. Our applications reveal how to use the proposed method to solve
nonlinear partial differential equations with the balance number equal to two. Consequently,
some new exact traveling wave solutions of these equations are achieved, and types of
waves are determined. To verify our results and draw the graphs of the solutions, we use the
Mathematica package program.

1. Introduction

Nonlinear partial differential equations (NPDEs) have proved to be precious instruments for the modelling of physical
phenomena, and have been the focus of many researchers due to their extensive use in several areas such as mathematical
physics, biology, nonlinear optics, fluid mechanics, ocean engineering, chemical physics, plasma physics etc. [1]-[6]. Thus,
it has gained great importance in the literature to examine the solutions of these equations to explain the nonlinear complex
processes in nature. However, exact solutions of equations in the nonlinear form are not always obtained by classical methods.
In recent times, many useful methods and techniques such as the modified simple equation (MSE) method [7], the improved
tan(ϕ/2)-expansion method [8], the extended rational sine-cosine method [9], the (G′/G,1/G)-expansion method [10], the
improved F-expansion method [11], the modified exp (−φ (ε))-expansion method [12], the first integral method [13], the
(G′/G)-expansion method [14] etc. have been enhanced to find traveling wave solutions. In this paper, we propose the MSE
method, which is a remarkable and useful method for finding various solutions of NPDEs. This method converts NPDEs into
nonlinear ordinary differential equations (NODEs) with wave transformation. Also, the advantage of the proposed method
is that the general solution form is defined as the sum of the finite series and an unknown function in this solution form is
determined according to the solution of a system of algebraic equations obtained from the main equation. Compared to other
methods in the literature such as (G′/G,1/G)-expansion method, the sine-cosine method, the improved F-expansion method,
the (G′/G)-expansion method, etc., the MSE method does not require symbolic computational software programs to solve
algebraic equation systems. In addition, the unknown function in this method is not depend on a pre-defined function or a
solution of the ODE, and the obtained exact solutions have arbitrary coefficients. Thus, the traveling wave solutions can be
obtained in a new and extensible form. We observe that this method is highly systematic, understandable and applicable. We
perform the MSE method to NPDEs, namely, the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation [15]
and the (3+1)-dimensional Jimbo-Miwa equation [16]. The CBS equation is a frequently used model in fluid dynamics that
describes and explains situations such as fusion, annihilation and fission of complex waves [17]. The Jimbo-Miwa equation is
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used in fluid mechanics to define some specific (3+1)-dimensional nonlinear waves, and this equation is the second equation
in the notable Kadomtsev–Petviashvili hierarchy of integrable systems [18]. As a result, new exact solutions of the equations
are obtained and their graphs are drawn to observe the physical behaviors of these solutions. The article is concerted in the
following: In Sec. 2, we summarize the illustration of the MSE method. In Sec. 3, applications of the MSE method are given.
In Sec. 4, we draw graphs of wave solutions and physical explanations. Sec. 5 includes the conclusion.

2. The modified simple equation method

In this section, we present the major steps of the MSE method [7]:
Consider the NPDE in the following:

G(u,ut ,ux,uy,utt ,uxx,uyy, ...) = 0, (2.1)

where G is a polynomial of u(x,y, t) and its several partial derivatives.
Step 1. We use the traveling wave transformation

u(x,y, t) = u(ϒ) , ϒ = x+ y−Θt, (2.2)

to reduce (2.1) into the succeeding NODE:

R
(
u,u′,u′′,u′′′, ...

)
= 0, (2.3)

where R is a polynomial in u(ϒ) and its all derivatives with respect to ϒ.
Step 2. Suppose that the solution of (2.3) can be expressed in the form,

u(ϒ) =
N

∑
k=0

Ak

[
φ ′ (ϒ)

φ (ϒ)

]k

, (2.4)

where Ak are arbitrary constants (AN 6= 0) and φ (ϒ) is an unknown function to be calculated.
Step 3. We determine balancing number N in (2.4) by considering the homogeneous balance between the highest order
nonlinear terms and the highest order derivatives occurred in (2.3).
Step 4. We replace (2.4) and its derivatives into (2.3). Hereby, we have a polynomial of φ (ϒ). Then, we equalize all the
coefficients of φ−i (ϒ) (i = 0,1,2 . . .) to zero in this polynomial. This operation gives a system of equations to obtain Ak and
φ (ϒ). Thus, we achieve the exact solution of (2.1).

3. Applications

In this section, the MSE method is applied to nonlinear equations which express some special physical phenomena and wave
solutions of these equations are obtained.

3.1. (2+1)-dimensional Calogera-Bogoyavlenskii-Schiff (CBS) equation

This equation was examined by Schiff and Bogoyavlenskii in varied ways. Bogoyavlenskii used the modified Lax formalism,
while Schiff obtained the similar equation by reducing the self-dual Yang-Mills equation [19]. This equation has various forms
for different coefficients. Also, many studies in the literature obtain different solution types of this equation [17], [20]-[23].
The (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation is as follows [15]:

uxxxy +2uyuxx +4uxuxy +uxt = 0, (3.1)

where x, y represent the position of the wave and t represents the time. Applying the wave transformation in (2.2) to (3.1),
integrating once respect to ϒ and considering the integration constant as zero, we attain nonlinear ODE in the following form:

u′′′+3
(
u′
)2−Θu′ = 0. (3.2)

Now, using the transformation u′(ϒ) = v(ϒ), (3.2) reduces to

v′′+3v2−Θv = 0. (3.3)

Balancing v′′ and v2 in (3.3), we find N = 2. Consequently, (2.4) turns into the following form:

v(ϒ) = A0 +A1

(
φ ′ (ϒ)

φ (ϒ)

)
+A2

(
φ ′ (ϒ)

φ (ϒ)

)2

. (3.4)
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Substituting (3.4) and its derivatives into (3.3), and setting all the coefficients with the same power of φ−i (ϒ), we attain a
system as follows:

(φ)0 : 3A2
0−ΘA0 = 0,

(φ)−1 : 6A0A1φ
′ (ϒ)−ΘA1φ

′ (ϒ)+A1φ
′′′ (ϒ) = 0, (3.5)

(φ)−2 : 3A2
1
(
φ
′ (ϒ)

)2
+6A0A2

(
φ
′ (ϒ)

)2−ΘA2
(
φ
′ (ϒ)

)2−3A1φ
′ (ϒ)φ

′′ (ϒ)

+2A2φ
′′′ (ϒ)φ

′ (ϒ)+2A2
(
φ
′′ (ϒ)

)2
= 0, (3.6)

(φ)−3 : 6A1A2
(
φ
′ (ϒ)

)3
+2A1

(
φ
′ (ϒ)

)3−10A2
(
φ
′ (ϒ)

)2
φ
′′ (ϒ) = 0, (3.7)

(φ)−4 : 3A2
2
(
φ
′ (ϒ)

)4
+6A2

(
φ
′ (ϒ)

)4
= 0.

Case 1: A0 = 0, A1 6= 0, A2 = −2 and φ ′ (ϒ) 6= 0. In this case, by using (3.5) and (3.7), we obtain φ ′ (ϒ) = 2 c1
A1

e
2Θ

A1
ϒ and

φ (ϒ) = c1
Θ

e
2Θ

A1
ϒ
+ c2. Here and throughout the paper, c1 and c2 are arbitrary constants of integration. Then, we use these

equations and (3.6), we achieve A1 =±2
√

Θ. Inserting A0, A1, A2, φ(ϒ) and φ ′(ϒ) into (3.4), we deduce the exact solution of
(3.1) as follows:

v(ϒ) =±2
√

Θ

 ± c1√
Θ

e±
√

Θϒ

c1
Θ

e±
√

Θϒ + c2

−2

 ± c1√
Θ

e±
√

Θϒ

c1
Θ

e±
√

Θϒ + c2

2

,

where ϒ = x+ y−Θt.
Now, by using hyperbolic function features, we obtain the wave solutions when c1 = Θ and c2 = 1 as:

v1,2 (x,y, t) = Θ

(
1+ tanh

(
±
√

Θ

2
(x+ y−Θt)

))
− Θ

2

(
1+ tanh

(
±
√

Θ

2
(x+ y−Θt)

))2

,

u1,2 (x,y, t) =
√

Θ tanh

(√
Θ

2
(x+ y−Θt)

)
. (3.8)

When c1 = Θ, c2 =−1 as:

v3,4 (x,y, t) = Θ

(
1+ coth

(
±
√

Θ

2
(x+ y−Θt)

))
− Θ

2

(
1+ coth

(
±
√

Θ

2
(x+ y−Θt)

))2

,

u3,4 (x,y, t) =
√

Θcoth

(√
Θ

2
(x+ y−Θt)

)
. (3.9)

Case 2: A0 = Θ

3 , A1 6= 0, A2 = −2 and φ ′(ϒ) 6= 0. By using (3.5) and (3.7), we obtain φ ′(ϒ) = 2 c1
A1

e
−2Θ

A1
ϒ and φ(ϒ) =

c2− c1
Θ

e
−2Θ

A1
ϒ. Considering these equations and (3.6), we have A1 =±2i

√
Θ. Now, inserting A0, A1, A2, φ(ϒ) and φ ′(ϒ) into

(3.4), the exact solution of (3.1) follows as:

v(ϒ) =
Θ

3
±2i
√

Θ

 ±√c1
i
√

Θ
e∓
√

Θ

i ϒ

c2− c1
Θ

e∓
√

Θ

i ϒ

−2

 ±√c1
i
√

Θ
e∓
√

Θ

i ϒ

c2− c1
Θ

e∓
√

Θ

i ϒ

2

.

where ϒ = x+ y−Θt.
Hence, by using hyperbolic function features, we achieve the wave solutions for c1 =−Θ and c2 = 1 as:

v5,6 (x,y, t) =
Θ

3
−Θ

(
1+ tanh

(
∓
√

Θ

2i
(x+ y−Θt)

))
+

Θ

2

(
1+ tanh

(
∓
√

Θ

2i
(x+ y−Θt)

))2

,

u5,6 (x,y, t) =
Θ(x+ y−Θt)

3
−
√

Θ tan

(√
Θ

2
(x+ y−Θt)

)
. (3.10)
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For c1 =−Θ and c2 =−1 as:

v7,8 (x,y, t) =
Θ

3
−Θ

(
1+ coth

(
∓
√

Θ

2i
(x+ y−Θt)

))
+

Θ

2

(
1+ coth

(
∓
√

Θ

2i
(x+ y−Θt)

))2

,

u7,8 (x,y, t) =
Θ(x+ y−Θt)

3
+
√

Θcot

(√
Θ

2
(x+ y−Θt)

)
. (3.11)

3.2. (3+1)-dimensional Jimbo-Miwa equation

This equation appears in many areas of science, such as geochemistry, fluid mechanics, optical fiber, astrophysics, plasma
physics, chemical kinematics and solid state physics [24]. Furthermore, there are many studies in the literature investigating
the different forms of solutions for this equation [18], [25]-[28].
The (3+1)-dimensional Jimbo-Miwa equation is as follows [16]:

uxxxy +6uxuy +3uvxx +3uxxv+3uyt −3uzz = 0,
uy = vx, (3.12)

where x,y,z represent the position of the wave and t represents the time. Using the wave transformation in the following:

u(x,y,z, t) = u(ϒ) , v(x,y,z, t) = v(ϒ) , ϒ = x+ y+ z−Θt,

and three times integrating with respect to ϒ, considering the integration constants as zero, (3.12) converts to nonlinear ODE:

u′′+3u2−3(Θ+1)u = 0. (3.13)

Balancing u′′ and u2 in (3.13), we get N = 2. Therefore, (2.4) turns into the following form:

u(ϒ) = A0 +A1

(
φ ′(ϒ)

φ(ϒ)

)
+A2

(
φ ′(ϒ)

φ(ϒ)

)2

. (3.14)

Substituting (3.14) and its derivatives into (3.13), and editing all the coefficients with the same power of φ−i(ϒ), we obtain a
system as follows:

(φ)0 : 3A2
0−3(Θ+1)A0 = 0,

(φ)−1 : 6A0A1φ
′ (ϒ)−3(Θ+1)A1φ

′ (ϒ)+A1φ
′′′ (ϒ) = 0, (3.15)

(φ)−2 : 3A2
1
(
φ
′ (ϒ)

)2
+6A0A2

(
φ
′ (ϒ)

)2−3(Θ+1)A2
(
φ
′ (ϒ)

)2

−3A1φ
′ (ϒ)φ

′′ (ϒ)+2A2φ
′′′ (ϒ)φ

′ (ϒ)+2A2
(
φ
′′ (ϒ)

)2
= 0, (3.16)

(φ)−3 : 6A1A2
(
φ
′ (ϒ)

)3
+2A1

(
φ
′ (ϒ)

)3−10A2
(
φ
′ (ϒ)

)2
φ
′′ (ϒ) = 0, (3.17)

(φ)−4 : 3A2
2
(
φ
′ (ϒ)

)4
+6A2

(
φ
′ (ϒ)

)4
= 0.

Case 1: A0 = 0, A1 6= 0, A2 = −2 and φ ′ (ϒ) 6= 0. From (3.15) and (3.17), we get φ ′ (ϒ) = 2 c1
A1

e
6(Θ+1)

A1
ϒ and φ (ϒ) =

c1
3(Θ+1)e

6(Θ+1)
A1

ϒ
+ c2. Then, by these equations and (3.16), we deduce A1 =±2

√
3(Θ+1). Substituting A0, A1, A2, φ (ϒ) and

φ ′(ϒ) into (3.14) we have the exact solution of (3.12) as in the following:

u(ϒ) =±2
√

3(Θ+1)

 ± c1√
3(Θ+1)

e±
√

3(Θ+1)ϒ

c1
3(Θ+1)e±

√
3(Θ+1)ϒ + c2

−2

 ± c1√
3(Θ+1)

e±
√

3(Θ+1)ϒ

c1
3(Θ+1)e±

√
3(Θ+1)ϒ + c2


2

.

where ϒ = x+ y+ z−Θt.
Hence, by using hyperbolic function properties, we get the wave solutions when c1 = 3(Θ+1) and c2 = 1 as:

u1,2 (x,y,z, t) = 3(Θ+1)

(
1+ tanh

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ tanh

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))2

. (3.18)
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When c1 = 3(Θ+1) and c2 =−1 as:

u3,4 (x,y,z, t) = 3(Θ+1)

(
1+ coth

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ coth

(
±
√

3(Θ+1)
2

(x+ y+ z−Θt)

))2

. (3.19)

Case 2: A0 = Θ+1, A1 6= 0, A2 =−2 and φ ′ (ϒ) 6= 0. Taking (3.15) and (3.17) into account, we get φ ′ (ϒ) = 2 c1
A1

e
−6(Θ+1)

A1
ϒ

and φ (ϒ) = c2− c1
3(Θ+1)e

−6(Θ+1)
A1

ϒ. From these equations and (3.16), we have A1 =±2i
√

3(Θ+1). Substituting A0, A1, A2,
φ (ϒ) and φ ′ (ϒ) into (3.14), we get the exact solutions of (3.12) as follows:

u(ϒ) = (Θ+1)±2i
√

3(Θ+1)


±c1

i
√

3(Θ+1)
e
∓3
√

Θ+1
i
√

3
ϒ

−c1
3(Θ+1)e

∓3
√

Θ+1
i
√

3
ϒ
+ c2

−2


±c1

i
√

3(Θ+1)
e
∓3
√

Θ+1
i
√

3
ϒ

−c1
3(Θ+1)e

∓3
√

Θ+1
i
√

3
ϒ
+ c2


2

.

where ϒ = x+ y+ z−Θt.
Then, by using hyperbolic function properties, the wave solutions are obtained for c1 =−3(Θ+1) and c2 = 1 as:

u5,6 (x,y,z, t) = (Θ+1)−3(Θ+1)

(
1+ tanh

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ tanh

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))2

. (3.20)

For c1 =−3(Θ+1) and c2 =−1 as:

u7,8 (x,y,z, t) = (Θ+1)−3(Θ+1)

(
1+ coth

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))

−3(Θ+1)
2

(
1+ coth

(
∓
√

3(Θ+1)
2i

(x+ y+ z−Θt)

))2

. (3.21)

Moreover, the values of v(x,y,z, t) can be easily calculated according to the uy = vx.

Consequently, the set of exact solutions for the CBS and the Jimbo-Miwa equations can be expanded by selecting more varied
arbitrary constants c1 and c2.

4. Physical explanation and graphs

This part shows physical behaviour of the achieved exact wave solutions of the CBS and the Jimbo-Miwa equations. The MSE
method is implemented to both equations and the new traveling wave solutions are obtained in (3.8), (3.9), (3.10), (3.11) and
(3.18), (3.19), (3.20), (3.21), respectively. These results are drawn with proper values in different types of graphs and intervals
such as 3D (−8≤ x, t ≤ 8), 2D (−8≤ x≤ 8) and contour graph (0≤ x, t ≤ 10). Other independent variables y and z are used
with appropriate values in the solution graphs.

4.1. Graphs of solutions for the CBS equation:

Fig.4.1-(a), (b), (c), (d) demonstrate (3.8) u1,2 (x,y, t), (3.9) u3,4 (x,y, t) for Θ = 1.39, and (3.10) u5,6 (x,y, t), (3.11) u7,8 (x,y, t)
for Θ = 1.5, respectively. Fig.4.2-(a)-(b) represent (3.8) u1,2 (x,y, t) and (3.9) u3,4 (x,y, t) for Θ = 1.39, t = 1 and y = 0. Also,
Fig.4.2-(c)-(d) show (3.10) u5,6 (x,y, t) and (3.11) u7,8 (x,y, t) for Θ = 1.5, t = 1 and y = 0.
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(a) (b)

(c) (d)

Figure 4.1: 3D-graphs.

(a) (b)

(c) (d)

Figure 4.2: (a)-(c) 2D-graphs. (b)-(d) Contour graphs.

4.2. Graphs of solutions for the Jimbo-Miwa equation:

Fig.4.3-(a), (b), (c), (d) indicate (3.18) u1 (x,y,z, t), (3.19) u3 (x,y,z, t) for Θ = 1.2, and (3.20) u5 (x,y,z, t), (3.21) u7 (x,y,z, t)
for Θ = 1.5, respectively. Fig.4.4-(a)-(b) express (3.18) u1 (x,y,z, t) and (3.19) u3 (x,y,z, t) for Θ = 1.2, t = 1, y = 0 and z = 0.
Further, Fig.4.4-(c)-(d) represent (3.20) u5 (x,y,z, t) and (3.21) u7 (x,y,z, t) for Θ = 1.5, t = 1, y = 0 and z = 0.

(a) (b)

(c) (d)

Figure 4.3: 3D-graphs.
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(a) (b)

(c) (d)

Figure 4.4: (a)-(c) 2D-graphs. (b)-(d) Contour graphs.

As a consequence, we have achieved some new wave solutions of equations (3.1) and (3.12) in hyperbolic and trigonometric
forms. The graphs show that the resulting solitary wave solutions have several shapes, such as periodic and kink forms with
respect to the wave speed Θ.

5. Conclusion

We have implemented the MSE method to attain some new exact solutions of the (2+1)-dimensional CBS equation and the
(3+1)-dimensional Jimbo-Miwa equation. The correctness of the solutions has been demonstrated using the Mathematica
package program. The graphics of the solutions have been plotted according to the appropriate values. The features of the
MSE method allow us to obtain new traveling wave solutions to explain some complex physical phenomena. Consequently,
our results show that the proposed method is practical, straightforward and effective for finding solutions to physics and
engineering models. In our future studies, this effective and useful method will be applied to some other nonlinear equations
involving integer and fractional derivatives expressing different complex phenomena.
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Abstract

In this paper, timelike base curve and spacelike main geodesic with the timelike ruled
surface are studied, which is a special class of ruled surface in de-Sitter space S3

1. A ruled
surface in the de-Sitter space S3

1 is obtained by moving a geodesic along a curve. So we
will call these surfaces in the de-Sitter space as the geodesic ruled surface. Developable
ruled surface, striction point, striction curve, dispersion parameter, and orthogonal trajectory
concepts are investigated for the obtained geodesic ruled surface.

1. Introduction

The de-Sitter space is a model for physical events, and many physical phenomena can be explained by these models. Therefore,
the surface varieties in de-Sitter space are very important. The surface types in different spaces guide the areas related to our
daily life such as architecture and geometric design and therefore, the ruled surfaces in de-Sitter space are of great importance.
It can be seen during history via the Euclidean motif in BC first, then spherical motif in the medieval and hyperbolic motif
in the modern times in the architectures. In the future, architectural structures and geometric designs using de-Sitter lines
will enter our daily lives. There is more than one causal character for surfaces, curves, and lines of de-Sitter space due to the
structure of de-Sitter space. Since the surface of de-Sitter space can be considered as spacelike and timelike, then also curves
and lines of de-Sitter space can be considered as spacelike and timelike.
Let U ⊂ R2 be an open subset, and let x : U → S3

1 be an embedding. If the vector subspace Ũ which generated by {xu1 ,xu2}
contains at least a timelike vector field then x is called timelike surface in S3

1,i.e., the normal on the surface is a spacelike
vector. In [1], Turgut and Hacısalihoglu studied timelike ruled surfaces in the Minkowski-3 space. They showed that these
surfaces are obtained by a timelike straight line moving along a spacelike curve. A ruled surface is a surface generated by a
straight line l moving along a curve α [1]. The various positions of the generating line l are called the rulings of the surface.
Similarly, they studied spacelike ruled surfaces in the Minkowski-3 space [2]. Sabuncuoğlu studied generalized ruled surfaces
in Euclidean n−space En and showed that the necessary and sufficient condition for the n−dimensional ruled surface to be a
minimal surface is that the curves perpendicular to the rectangular space are asymptotic curves [3]. Later, Mert introduced
spacelike ruled surfaces in the hyperboloid model of hyperbolic 3-space in Minkowski space, and using the properties of
hyperbolic space, she investigated the properties of these type ruled surfaces [4].
Let x : M −→ R4

1 be an immersion of a surface M into R4
1. We say that x is timelike (resp. spacelike, lightlike) if the induced

metric on M via x is Lorentzian (resp. Riemannian, degenerated). If 〈x,x〉 = 1, then x is an immersion of S3
1 [5]. Since

geodesic which is lines of de-Sitter space on a ruled surface can be obtained by moving of curves in space, a sort of ruled
surface can be captured up to causal characters of the base curve and main geodesic. In this paper, we investigate timelike
ruled surfaces which have a base curve as timelike and main geodesic as spacelike in de-Sitter space S3

1. A ruled surface is
a surface obtained by a geodesic dα

s moving along a curve α . Therefore, such surfaces may also be called geodesic ruled
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surfaces. Thus, the geodesic ruled surface has a parameterization in S3
1 as follows

ϕ (s, t) = (cos t)α (s)+(sin t)Z (s)

where α is called the base curve and Z is called the director vector of dα
s . If the tangent plane is constant along with a fixed

ruling, then the ruled surface is called a developable geodesic ruled surface.

2. Preliminaries

For basic notions and properties of the Lorentz-Minkowski space from the viewpoint of Lorentz geometry, see [6]. Let R4
1 be

4-dimensional vector space equipped with the scalar product 〈,〉 which is defined by

〈x,y〉=−x1y1 + x2y2 + x3y3 + x4y4 .

Then, R4
1 is called Lorentzian 4- space or 4-dimensional Minkowski space. The Lorentzian norm (length) of x is defined to be

‖x‖= |〈x,x〉|
1
2 .

If
(
xi

1,x
i
2,x

i
3,x

i
5

)
is the coordinate of xi with respect to canonical basis {e1,e2,e3,e4} of R4

1, then the lorentzian cross product
x1× x2× x3 is defined by the symbolic determinant

x1× x2× x3 =

∣∣∣∣∣∣∣∣
−e1 e2 e3 e4
x1

1 x1
2 x1

3 x1
4

x2
1 x2

2 x2
3 x2

4
x3

1 x3
2 x3

3 x3
4

∣∣∣∣∣∣∣∣ .
One can easily see that

〈x1× x2× x3,x4〉= det(x1,x2,x3,x4) .

Given a vector v ∈ R4
1 and a real number c, the hyperplane with pseudonormal v is defined by

HP(v,c) =
{

x ∈ R4
1 |〈x,v〉= c

}
We say that HP(v,c) is a spacelike hyperplane, timelike hyperplane or lightlike hyperplane if v is timelike, spacelike or
lightlike, respectively. We have the following three types of pseudo-spheres in R4

1 :

Hyperbolic-3 space : H3 (−1) =
{

x ∈ R4
1 |〈x,x〉=−1,x0 ≥ 1

}
,

de Sitter 3- space : S3
1 =

{
x ∈ R4

1 |〈x,x〉= 1
}
,

(open) lightcone : LC∗ =
{

x ∈ R4
1\{0}|〈x,x〉= 0,x0 > 0

}
.

We also define the lightcone 3−sphere

S3
+ = {x = (x1,x2,x3,x4) |〈x,x〉= 0,x1 = 1} .

A hypersurface given by the intersection of S3
1 with a spacelike (resp.timelike) hyperplane is called an elliptic hyperquadric

(resp. hyperbolic hyperquadric). If c 6= 0 and HP(v,c) are lightlike, then HP(v,c)∩S3
1 is a de Sitter horosphere.

In the point of view of Kasedou [7], we construct the extrinsic differential geometry of curves in S3
1. Since S3

1 is a Riemannian
manifold, the regular curve γ : I→ S3

1 is given by the arclength parameter.

Theorem 2.1. i) If γ : I→ S3
1 is a spacelike curve with unit speed, then Frenet-Serret type formulae are obtained

γ ′ (s) = t (s)
t
′
(s) = κd (s)n(s)− γ (s)

n′ (s) =−κd (s) t (s)− τd (s)e(s)
e′ (s) =−τd (s)n(s)

where

κd (s) =
∥∥t ′ (s)+ γ (s)

∥∥
and

τd (s) =−
det(γ (s) ,γ ′ (s) ,γ ′′ (s) ,γ ′′′ (s))

(κd (s))
2 ,
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in [8].

ii) If γ : I→ S3
1 is a timelike curve with unit speed, then Frenet-Serret type formulae are obtained

γ ′ (s) = t (s)
t
′
(s) = κd (s)n(s)+ γ (s)

n′ (s) =−κd (s) t (s)+ τd (s)e(s)
e′ (s) =−τd (s)n(s)

where

κd (s) =
∥∥t ′ (s)− γ (s)

∥∥
and

τd (s) =−
det(γ (s) ,γ ′ (s) ,γ ′′ (s) ,γ ′′′ (s))

(κd (s))
2 ,

in [8].

It is easily seen that κd (s) = 0 if and only if there exists a lightlike vector c such that γ (s)− c is a geodesic.
Now we give extrinsic differential geometry on surfaces in S3

1 due to Kasedou [7].
Let U ⊂ R2 is an open subset, and x : U → S3

1 is a regular surface M = x(U). Since M is a timelike surface, there is

e(u) =
x(u)∧ xu1 (u)∧ xu2 (u)
‖x(u)∧ xu1 (u)∧ xu2 (u)‖

such that

〈e,x〉 ≡ 〈e,xui〉 ≡ 0,〈e,e〉= 1.

Thus there is de Sitter Gauss image of x which is defined by mapping E : U → S3
1,

E (u) = e(u) .

The lightcone Gauss image of x is defined by map L± : U → LC∗,

L± (u) = x(u)± e(u) .

The derivative dx(u0) can be identified by the mapping 1TpM on the tangent space TpM. Therefore, we have

dL± (u0) = 1TpM±dE (u0) .

The linear transformations

S±p :=−dL± (u0) : TpM→ TpM

and

Ap :=−dE (u0) : TpM→ TpM

are called the hyperbolic shape operator and de Sitter shape operator of M at p = x(uo), respectively.
Let K̄±i (p) and Ki (p) ,(i = 1,2) be the eigenvalues of S±p and Ap. Since

S±p =−1TpM±Ap ,

S±p and Ap have the same eigenvectors and relations

K̄±i (p) =−1±Ki (p) .

K̄±i (p) and Ki (p), (i = 1,2) are called hyperbolic and de Sitter principal curvatures of M at p, respectively.
Let γ (s) be a unit speed curve on M, with p = γ (u1 (s0) ,u2 (s0)) . We consider the hyperbolic curvature vector

k (s) = t ′ (s)− γ (s)
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and the de Sitter normal curvature

K±n (s0) =
〈
k (s0) ,L± (u1 (s0) ,u2 (s0))

〉
=
〈
t ′ (s0) ,L± (u1 (s0) ,u2 (s0))

〉
+1

of p = γ (u1 (s0) ,u2 (s0)) . The de Sitter normal curvature depends only on the point p and the unit tangent vector of M at p.
The hyperbolic normal curvature of γ (s) is defined to be

K̄±n (s) = K±n (s)−1.

The extrinsic (de Sitter) Gauss curvature and mean curvature of M at p is given by

Ke (u0) = detAp = K1 (p)K2 (p)

and

Kd (u0) =
1
2

TraceAp =
K1 (p)+K2 (p)

2
.

3. T S−geodesic ruled surface in de-Sitter 3-space

Now let’s investigate the timelike ruled surfaces that its base curve is a timelike curve and its direction geodesic is a spacelike
geodesic in the de-Sitter space S3

1. Hereinafter, in terms of brevity, we call the T S−geodesic ruled surfaces the geodesic ruled
surfaces whose base curve is timelike and the direction geodesic is spacelike.
Let α be a differentiable timelike curve with the unit speed in de-Sitter space S3

1, then it is defined by

α : I→ S3
1 ⊂ R4

1 , α (s) = (α1 (s) ,α2 (s) ,α3 (s) ,α4 (s)) , ∀s ∈ I

where {0} ⊂ I ⊂ R . In here

〈α (s) ,α (s)〉= 1

and since α base curve is a timelike curve, we have〈
α
′ (s) ,α ′ (s)

〉
=−1.

Let’s assume that

〈α (s) ,Z (s)〉= 0,∀s ∈ I

where

Z : I→ S3
1,Z (s) = (z1 (s) ,z2 (s) ,z3 (s) ,z4 (s))

and

〈Z (s) ,Z (s)〉= 1.

Then, a geodesic dα
s in de-Sitter space S3

1 has a parametrization

dα
s : R→S3

1,d
α
s (t) = (cos t)α (s)+(sin t)Z (s)

where α (s) is a initial point and Z (s) is the direction vector of dα
s [6]. Here frenet components of base curve α (s) are

{Tα ,Nα ,Bα ,κd ,τd}. Let Td be tangent of geodesic dα
s at the point α (s) and assume that Td and Tα are linearly independent

for all s ∈ I. Then, we obtain (I×R,ϕ) parametrized by ϕ : I×R→S3
1

ϕ (s, t) = (cos t)α (s)+(sin t)Z (s) .

This (I×R,ϕ) surface is called a geodesic ruled surface which is produced by the geodesic dα
s . Let us denote this geodesic

ruled surface with M. Then we can give the following definition.

Definition 3.1. The surface obtained by moving a given dα
s spacelike geodesic along a given α timelike curve is called the

T S−geodesic ruled surface in the de-Sitter space S3
1, where dα

s is the direction geodesic of the T S−geodesic ruled surface
and the α curve is called the base curve of T S−geodesic ruled surface.
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Let us find the orthonormal base of tangent space χ (M) of geodesic ruled surface M along the timelike curve α . If T is a unit
tangent vector of timelike curve α and Z is the unit director vector of spacelike geodesic dα

s , then we can choose spacelike
vector field such that

Y = T̃d +
〈
T̃d ,T

〉
T

that is orthogonal to T in this plane, where

T̃d =
Td

‖Td‖

is the unit tangent of geodesic dα
s and

Td = (cos t)Tα(s)+(sin t)TZ(s).

Also, if we take

X =
Y
‖Y‖

,

then

‖X‖= 1,〈X ,T 〉= 0 and 〈T,T 〉=−1.

Thus, {X ,T} are the orthonormal vectors of χ (M). Also,

ξ = ϕ×T ×X

is the normal vector of T S−geodesic ruled surface M in de-Sitter space S3
1, that is

ξ ∈ χ⊥ (M)

χ
(
S3

1
)

= Sp{X ,T}⊕Sp{ξ}
χ
(
R4

1
)

= Sp{X ,T}⊕Sp{ξ ,ϕ}

In this case, system {ϕ,T,X ,ξ} is the orthonormal base of M.
Now let investigate the alteration of this system along the timelike curve α. The Levi-Civita connection of R4

1,S
3
1, and M is

denoted D, D̄, and D, respectively. Then we have the Gauss formulas [9]{
DXY = D̄XY −〈X ,Y 〉α , Ã(X) = DX α = I (X)
D̄XY = DXY −〈A(X) ,Y 〉ξ ,A(X) = D̄X ξ .

In de-Sitter space S3
1, let’s derive the {T,X ,ξ} orthonormal frame along timelike curve α . In this case, we get the system in S3

1 D̄T T = aX +bξ

D̄T X = aT + cξ

D̄T ξ = bT − cX

The matrix representation of this system is D̄T T
D̄T X
D̄T ξ

=

 0 a b
a 0 c
b −c 0

 T
X
ξ

 ,
where

a = 〈D̄T T,X〉 ,b = 〈D̄T T,ξ 〉 and c = 〈D̄T X ,ξ 〉

Now, in R4
1, let’s derive the {ϕ,T,X ,ξ} orthonormal frame along timelike curve α . In this case, we get the system

DT ϕ = (cos t +asin t)T +(csin t)ξ

DT T = ϕ +aX + cξ

DT X = aT + cξ

DT ξ = bT − cX

(3.1)
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in R4
1. System 3.1 have the for matrix form

DT ϕ

DT T
DT X
DT ξ

=


0 cos t +asin t 0 csin t
1 0 a b
0 a 0 c
0 b −c 0




ϕ

T
X
ξ


For ruled surface M that is given by parametrization

ϕ : I×R→ S3
1,ϕ (s, t) = (cos t)α (s)+(sin t)X (s)

 E = 〈ϕs,ϕs〉=−(cos t +asin t)2 + c2 sin2 t
F = 〈ϕs,ϕt〉= 0
G = 〈ϕt ,ϕt〉= 1,

where

〈ξ ,ξ 〉= F2−EG =−E.

Since ξ is the spacelike vector that is

〈ξ ,ξ 〉> 0,

then the geodesic ruled surface is a timelike surface and

E < 0.

Let us the denote domain of t by

J = {t | E = E (t)< 0} .

ϕto : I×{t0}→M , ϕt0 (s, t0) = (cos t0)α (s)+(sin t0)X (s)

determines a curve of T S−geodesic ruled surface M where t is constant in its domain. The tangent vector field of this curve is

A = (cos t0 +asin t0)T (s)+ c(sin t0)ξ (s) .

Since

〈A,A〉= E

and

E < 0,

then A is a timelike vector. Thus ϕt0 curve is a timelike curve and also

〈X ,A〉= 0

Remark 3.2. Since the stereographic projection is a conformal map, using stereographic projection, the following example
can be provided from [10].

Example 3.3. Let us take T S−geodesic ruled surface M in de-Sitter space S3
1 given by parametrization

ϕ : I×R→S3
1 , ϕ (s, t) = (cos t)α (s)+(sin t)X (s) .

In here, if

α (s) = (sinhs,0,coshs,0)

and

X (s) =
(
−coshs,

√
2,sinhs,0

)
are chosen, then ϕ (s, t) is T S−geodesic ruled surface in de-Sitter space S3

1.
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Figure 3.1: Timelike Geodesic Ruled Surface in de-Sitter 3-Space

4. Developable timelike geodesic ruled surfaces

Definition 4.1. If the tangent planes of a T S−geodesic ruled surface in S3
1 are the same along its main geodesics, then this

timelike ruled surface is called a developable timelike geodesic ruled surface.

Theorem 4.2. Let M be timelike ruled surface whose are base curve as timelike and main geodesic as spacelike in de-Sitter
space S3

1. Then the tangent planes are the same along the main geodesic if and only if c = 0.

Proof. Let M be a T S−geodesic ruled surface in de-Sitter space S3
1, and suppose that tangent planes of this ruled surface are

the same along with one of its main geodesics. We consider the tangent vector field

A = (cos t0 +asin t0)T (s)+ c(sin t0)ξ (s)

of curve ϕt0 : I×{t0}→M which is at t0 ∈ I. Since ϕt0 is the parameter curve of M, the vector A is in the tangent plane of the
surface M. Hence

c = 0.

Conversely, assume that

c = 0.

In this case, since

A = (cos t0 +asin t0)T (s)

and

Tϕ(t0,s)M = sp{T,X}= sp{T,A} .

This means that the tangent planes are the same along with one of its main geodesics.

Corollary 4.3. The T S−geodesic ruled surface M in de-Sitter space S3
1 is a developable surface if and only if c = 0.

Corollary 4.4. For T S−geodesic ruled surface M in de-Sitter space S3
1,

b =−det
(

T,X ,ϕ,DT T
)

and c =−det
(

T,X ,ϕ,DT X
)

Example 4.5. The surface of example-1 above is an example of a developable ruled surface in de-Sitter space S3
1. Really, for

timelike geodesic ruled surface M in de-Sitter space S3
1 given by parametrization

ϕ : I×R→S3
1 , ϕ (s, t) = (cos t)α (s)+(sin t)X (s)

if

α (s) = (sinhs,0,coshs,0)
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and

X (s) =
(
−coshs,

√
2,sinhs,0

)
are chosen, then

c =−det
(

T,X ,ϕ,DT X
)
=

∣∣∣∣∣∣∣∣∣
coshs −sin

(
s√
2

)
cos
(

s√
2

)
0

−coshs −sins coss 0
cos t sinhs− sin t coshs

√
2sin t cos t coshs+ sin t sinhs 0

−sinhs 0 coshs 0

∣∣∣∣∣∣∣∣∣ .
Therefore, it is clear that

c = 0.

5. A striction point and position vector of a striction point

Definition 5.1. Let T S−geodesic ruled surface be given in de-Sitter space S3
1. If there exists a common perpendicular of two

neighbors the main geodesic of timelike geodesic ruled surface the foot of this perpendicular on principal geodesic is called
striction point.

Definition 5.2. When the main geodesic of T S−geodesic ruled surface in de-Sitter space S3
1 creates the timelike geodesic

ruled surface through the base curve, the geometrical place of the striction points of the ruled surface is called the striction
curve of M.

If w be the distance between the striction point of the timelike geodesic ruled surface and base curve, then position vector ᾱ (s)
can be defined by

ᾱ (s,w) = (cosw)α (s)+(sinw)X (s)

where α (s) is the position vector of the timelike base curve and X (s) is the direction vector of the spacelike main geodesic.
The parameter w can be written as the combination of the position vector of the base curve and direction vector of the timelike
geodesic ruled surface. Let the first two of three neighbor geodesic of the timelike ruled surface be

dα
s = (cos t)α (s)+(sin t)X (s)

and

dα
s+∆s = (cos t)α (s+∆s)+(sin t)X (s+∆s)

where X (s) and X (s)+ D̄T (s)X (s) are the direction vectors of these main geodesic, respectively. Also let P,P′ and Q,Q′ be the
feet on the main geodesic of the common perpendicular of the neighbor geodesic. Thus P and Q are two different striction
points. The direction of common perpendicular first two main geodesics are linearly dependent to the vector

α (s)×X (s)×
[
X (s)+ D̄T (s)X (s)

]
.

Therefore

α (s)×X (s)×
[
X (s)+ D̄T (s)X (s)

]
= α (s)×X (s)× D̄T (s)X (s) .

The vector
−→
PQ coincides with the vector

−→
PP′ in the limiting position, and

−→
PQ will be the tangent vector of the striction curve.

Since 〈
X (s) ,

−→
PQ
〉
= 0 and

〈
X (s)+ D̄T (s)X (s) ,

−→
PQ
〉
= 0

we obtain 〈
D̄T (s)X (s) ,

−→
PQ
〉
= 0.

Thus we get 〈
D̄T (s)X (s) , D̄T (s)ᾱ (s)

〉
= 0. (5.1)

On the other hand, since

D̄T (s)ᾱ (s) = DT (s)ᾱ (s)+ 〈T (s) , ᾱ (s)〉 ᾱ (s)
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we obtain

D̄T (s)ᾱ (s) = DT (s)ᾱ (s) .

Consequently, from 5.1, we have 〈
DT (s)X (s) ,DT (s)ᾱ (s)

〉
= 0

and then

sinw
cosw

=
a

−a2 + c2 ,

that is

w = arctan
(

a
−a2 + c2

)
and

cosw =
−a2 + c2√

a2 +(−a2 + c2)2
, sinw =

a√
a2 +(−a2 + c2)2

.

So, the position vector of the striction curve is

ᾱ (s) =

 −a2 + c2√
a2 +(−a2 + c2)2

α (s)+

 a√
a2 +(−a2 + c2)2

X (s) . (5.2)

Theorem 5.3. The distance between the striction point of the timelike geodesic ruled surface and base curve is constant, that
is

w = arctan
(

a
−a2 + c2

)
.

Proof. Since

〈X (s) ,PQ〉= 0,

we obtain 〈
X (s) , D̄T (s)ᾱ (s)

〉
= 0

and

D̄T (s)ᾱ (s) = DT (s)ᾱ (s) .

Thus 〈
X (s) ,DT (s)ᾱ (s)

〉
= 0

and

(cosw)
dw
ds

= 0,

which implies that

dw
ds

= 0

and so, w is constant.

Theorem 5.4. The striction curve of an undevelopable T S−geodesic ruled surface in de-Sitter space S3
1 is independent from

choosing base curve.
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Proof. Let us denote two T S−geodesic ruled surface in de-Sitter space S3
1 by

ϕ (t,s) = (cos t)α (s)+(sin t)X (s)

ϕ (t,s) = (cos t)β (s)+(sin t)X (s) ,

where α and β are two different base curves of the timelike geodesic ruled surface in S3
1. Then the striction curves of timelike

geodesic ruled surface are

ᾱ (s) =

(
−a2+c2√

a2+(−a2+c2)
2

)
α (s)+

 a

−
√

a2 +(−a2 + c2)2

(cos t)X (s)

β̄ (s) =

(
−a2+c2√

a2+(−a2+c2)
2

)
β (s)+

 a

−
√

a2 +(−a2 + c2)2

X (s)

If we subtract β̄ (s) from ᾱ (s) and use 5.2, we obtain

ᾱ (s)− β̄ (s) = 0

which gives up the proof.

Theorem 5.5. Let M be undevelopable T S−geodesic ruled surface in de-Sitter space S3
1. The point ϕ (s,v0) is striction point

on the main geodesic which passes through α (s) point if and only if D̄T (s)X (s) is a normal vector of the tangent plane on
ϕ (s,v0) point.

Proof. Let M be undevelopable T S−geodesic ruled surface in de-Sitter space S3
1. Suppose that D̄T (s)X (s) is a normal vector

of the tangent plane on ϕ (s,v0) point. Since the tangent vector field of ϕv0 : I×{v0}→M given by

A = (cosv0 +asinv0)T (s)+ c(sinv0)ξ (s) ,

then 〈
D̄T (s)X (s) ,A

〉
= 0.

Thus, we obtain

sinvo

cosv0
=

a
−a2 + c2 .

Therefore ϕ (s,v0) is a striction point of M.
Conversely, suppose that ϕ (s,v0) is a striction point with main geodesic passing through the point α (s). Thus, we have〈

D̄T (s)X (s) ,X (s)
〉
= 0,

〈
D̄T (s)X (s) ,A

〉
=−a(cosv0 +asinv0)+ c2 sinv0.

Since ϕ (s,v0) is striction point, then we get

−a(cosv0 +asinv0)+ c2 sinv0 = 0.

Hence, we obtain 〈
D̄T (s)X (s) ,A

〉
= 0.

So, D̄T (s)X (s) is a normal vector of tangent plane at ϕ (s,v0).

Remark 5.6. Let D̄T (s)X (s) be a normal vector of the tangent plane on the striction point. From the equality, we conclude that〈
D̄T (s)X (s) , D̄T (s)X (s)

〉
=−a2 + c2,

i) If −a2 + c2 > 0, then D̄T (s)X (s) is a spacelike normal vector field.

ii) If −a2 + c2 < 0, then D̄T (s)X (s) is a timelike normal vector field.
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Theorem 5.7. Let M be undevelopable T S−geodesic ruled surface in de-Sitter space S3
1. The striction curve ᾱ (s) has the form.

i) If −a2 + c2 > 0, then the striction curve ᾱ (s) is a timelike curve.

ii) If −a2 + c2 < 0, then the striction curve ᾱ (s) is a spacelike curve.

Proof. We need to show that the tangent vector field of striction curve ᾱ is a spacelike vector field or timelike vector field. It is
clear that 〈

DT (s)ᾱ (s) ,DT (s)ᾱ (s)
〉
=

−c2

−a2 + c2 cos2 w,

where

DT (s)ᾱ (s) = (cosw)DT (s)α (s)+
a

−a2 + c2 (cosw)DT (s)X (s) .

If

−a2 + c2 > 0,

that is 〈
DT (s)ᾱ (s) ,DT (s)ᾱ (s)

〉
< 0,

then ᾱ (s) is timelike curve and similarly, if

−a2 + c2 < 0,

that is 〈
DT (s)ᾱ (s) ,DT (s)ᾱ (s)

〉
> 0,

then ᾱ (s) is spacelike curve.

6. Dispersion parameter

Let the base curve of a T S−geodesic ruled surface M be the striction curve in de-Sitter space S3
1. Then, the distance from the

striction point to the base curve is

w = arctan
(

a
−a2 + c2

)
= 0.

Hence, we have

a = 0

and since

D̄T (s)X (s) = aT (s)+ cξ (s) ,

the vector field D̄T (s)X (s) and normal of surface ξ (s) are linearly independent. Therefore, there exists λ ∈ R for the equality

ξ (s) = λ D̄T (s)X (s) .

On the other hand, since

ξ (s) = ϕ×X×T

and

ϕ = (cos t)α (s)+(sin t)X (s) ,

we have

ξ (s) = (cos t) [α (s)×X (s)×T (s)] .
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Therefore, we have

λ D̄T (s)X (s) = (cos t) [α (s)×X (s)×T (s)] .

If we take the scalar product with D̄T (s)X (s) of both sides of the above equality, then we have

λ = (cos t)
det
(
α (s) ,T (s) ,X (s) , D̄T (s)X (s)

)〈
D̄T (s)X (s) , D̄T (s)X (s)

〉 ,

where λ is called a dispersion parameter of T S−geodesic ruled surface in de-Sitter space S3
1.

Example 6.1. The surface of example-1 above is an example of a developable ruled surface in de-Sitter space S3
1. It is clear

that for timelike geodesic ruled surface M in de-Sitter space S3
1 given by parametrization

ϕ : I×R→S3
1 , ϕ (s, t) = (cos t)α (s)+(sin t)X (s)

if

α (s) = (sinhs,0coshs,0)

and

X (s) =
(
−coshs,

√
2,sinhs,0

)
are chosen, then we can derive

det
(

T,X ,ϕ,∆T X
)
= 0.

Therefore

λ = (cos t)
det
(
α (s) ,T (s) ,X (s) , ∆̄T (s)X (s)

)〈
∆̄T (s)X (s) , ∆̄T (s)X (s)

〉 = 0.

Theorem 6.2. The T S−geodesic ruled surface M in de-Sitter space S3
1 is developable if and only if the dispersion parameter

of M is zero.

Proof. From Corollary-1 and Corollary-2, we get

c =−det
(

T (s) ,X (s) ,α (s) ,DT (s)X (s)
)
= 0.

It is clear from the definition of the dispersion parameter that

λ = (cos t)
det
(
α (s) ,T (s) ,X (s) , D̄T (s)X (s)

)〈
D̄T (s)X (s) , D̄T (s)X (s)

〉 = 0.

Definition 6.3. If there exists a curve that cuts vertically each main geodesic of the T S−geodesic ruled surface in de-Sitter
space S3

1, then this curve is called orthogonal trajectory of T S−geodesic ruled surface in de-Sitter space S3
1.

Theorem 6.4. Let M be a T S−geodesic ruled surface in de-Sitter space S3
1. There is only one orthogonal trajectory which

passes through every point of M.

Proof. Let M be a T S−geodesic ruled surface given by the parametrization ϕ : I× J→ S3
1 ⊂ R4

1,

ϕ (s, t) = (cos t)α (s)+(sin t)Z (s) .

Then, the orthogonal trajectory of M is β : Ĩ ⊂ I→M,

β (s) = [cos f (s)]α (s)+ [sin f (s)]Z (s) .

Since 〈
D̄T (s)β (s) ,Z (s)

〉
= 0,
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we get

f (s) =−
∫ 〈

DT (s)α (s) ,Z (s)
〉

ds+h,

where 〈Z (s) ,Z (s)〉= 1. If we take

F (s) =−
∫ 〈

DT (s)α (s) ,Z (s)
〉

ds,

we get

f (s) = F (s)+h.

Since h is chosen arbitrary, there are a lot of curves that satisfy the condition〈
D̄T (s)β (s) ,Z (s)

〉
= 0.

Let us now find s ∈ R such that

P0 = [cos(F (s)+h)]α (s)+ [sin(F (s)+h)]Z (s) .

This leads to

[cos f (s)]α (s)+ [sin f (s)]Z (s) = [cosv0]α (s0)+ [sinv0]Z (s0)

So,

α (s0) = α (s) ,v0 = f (s) .

If we choose interval I such that α is one to one, then we get

s = s0.

Thus,

h = f (s0)−F (s0) .

Consequently, there exists only one orthogonal trajectory passing through the point P0. Therefore, Ĩ must be equal to I.

Theorem 6.5. Let M be undevelopable T S−geodesic ruled surface in de-Sitter space S3
1. The shortest distance along the

orthogonal trajectory between of any two main geodesics of M is the distance measured along curve ϕt : I→M corresponding
to

t =
1
2

arctan
(

2a
1−a2 + c2

)
.

Proof. Let us take two geodesics passing through points α (s1) and α (s2) where s1,s2 ∈ I and s1 < s2. Also, let us denote
distance obtained along orthogonal trajector t =constant between these lines by d (t) . Then,

d (t) =

s2∫
s1

‖A‖ds =
√
−(cos t +asin t)2 + c2 sin2 t (s2− s1) ,

where

A = (cos t +asin t)T (s)+ c(sin t)ξ (s) .

If d′ (t) = 0, then d (t) takes minimum value. Hence we get

t =
1
2

arctan
(

2a
1−a2 + c2

)
.

Theorem 6.6. Let M be T S−geodesic ruled surface in de-Sitter space S3
1. The geodesic of M is both asymptotic and geodesic

curves.
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Proof. Let X be a tangent vector field of a geodesic of a T S−geodesic ruled surface M. Since every geodesic in ruled surface
M, it is a geodesic S3

1. Thus we get

D̄X X = 0.

From [9] , we also get

D̄X X = DX X−〈S (X) ,X〉ξ .

Thus

DX X = 〈S (X) ,X〉ξ .

Therefore

DX X ∈ χ (M) and 〈S (X) ,X〉ξ ∈ χ
⊥ (M) .

Since the metric on M is nondegenerate, we get

χ
(
S3

1
)
= χ (M)⊕χ

⊥ (M) and χ (M)∩χ
⊥ (M) = {0} .

Thus

DX X = 0 and 〈S (X) ,X〉= 0.

The proof is completed.

Theorem 6.7. Let M be T S−geodesic ruled surface in de-Sitter space S3
1. Then

K (p)≥ 0 for all p ∈M

where K is the Gauss curvature function of M.

Proof. Let X be the tangent vector field of the main geodesic at point p ∈M and take the orthonormal basis {X ,Y} of χ (M) .
Since M is a timelike ruled surface, X ,Y are timelike and spacelike vector fields, respectively. The Weingarten operator S of M
can be written

S (X) =−〈S (X) ,X〉X + 〈S (X) ,Y 〉Y
S (Y ) =−〈S (Y ) ,X〉X + 〈S (Y ) ,Y 〉Y .

In this case, the matrix

S =

[
−〈S (X) ,X〉 〈S (X) ,Y 〉
−〈S (Y ) ,X〉 〈S (Y ) ,Y 〉

]
is corresponding to Weingarten operator S. On the other hand, the Weingarten operator S is selfadjoint,

〈S (Y ) ,X〉= 〈Y,S (X)〉 .

Also, by Theorem 6.6, we conclude

〈S (X) ,X〉= 0,〈S (Y ) ,Y 〉= 0.

Hence, from the definition of Gauss curvature, we get

K = detS = 〈S (X) ,Y 〉2 .

The proof is completed.

Theorem 6.8. Let M be a T S−geodesic ruled surface in de-Sitter space S3
1. Then

ϕ×T ×X = ξ

T ×X×ξ =−ϕ

ξ ×ϕ×T =−X
X×ξ ×ϕ =−T,

where T is a unit tangent vector of base curve, ϕ is the position vector of M, X is unit tangent vector field of the main geodesic
of M and ξ is unit normal vector field of M.
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Abstract

In this study, we define tubular surfaces whose center curves are null curves and their spher-
ical images in Minkowski 3−space. Firstly, we give the interior properties of the surfaces
and calculate their invariant curvatures. Then, we obtain some special characterizations for
the parameter curves of the surfaces. Finally, we demonstrate the theory via example and
give their visualizations with the help of Mathematica.

1. Introduction

Minkowski space is defined as the basic model of quantum physics. Many notions in Euclidean space are different in this
space. There are three spheres such as de Sitter 2−space, hyperbolic 2−space, and lightcone. Moreover, curves are divided
into three groups due to the casual characters of their tangent vectors in the Minkowski space. An arbitrary curve is called as a
spacelike curve, a timelike curve or a null (lightlike) curve, if its tangent vector is a spacelike vector, a timelike vector or a null
(lightlike) vector, respectively. Similarly, a surface is called a timelike, spacelike, or lightlike surface if its normal vector lies
on the de Sitter 2−space, hyperbolic 2−space, or null cone, respectively. Null curves have different properties than spacelike
and timelike curves. So, the author [1] has defined Cartan frame as the most useful frame, and he used this frame to study null
curves. Also, studies in the differential geometry are examined in two classes as null and non-null structures (see [2]- [4]).
A canal surface is defined as an envelope of one parameter family of spheres centered by a space curve. A tubular surface is a
canal surface with constant radius. Many authors have studied on the characaterizations of tubular and canal surfaces [5]- [10].
The authors [4] have studied some characterizatons of the tubular surfaces generated by non-null curves in Minkowski 3−space.
Blaga [11] has presented a new approach to the tubular surfaces and provided CAD applications. Arslan et.al. [12] have
obtained a medical application of the tube surfaces. In [13], they have examined a new type of the canal surface.
A tubular surface is one of the fundamental objects in geometric modelling. It appears in many application areas such as the
networks of blood vessels and the neurons in medicine, hose systems, surface modeling in CAGD and CAD/CAM systems.
On the other hand, null curves are important curves in general relativity. The surfaces produced by these curves provide good
models for the study of different horizon types. In this study, we indicate the tubular surface around a null curve since they
are generated by parabolas. To find geodesics on tubular surfaces are important to found the shortest distances between two
points on a surface. Asymptotic curve on a surface whose osculating plane at each point coincides with the tangent plane to the
surface at that point. Therefore, we have obtained characterizations of these curves on the surface. Also, we have examined the
singular points of the tubular surface and the condition of the tubular surface being a Weingarten surface. Finally, we have
investigated the tubular surfaces formed by spherical images of the null curve.

Email address and ORCID number: fgokcelik@erbakan.edu.tr, 0000-0002-3529-1077

https://orcid.org/0000-0002-3529-1077
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2. Preliminaries

The standard metric of the Minkowski 3−space is

〈x,y〉=−x1y1 + x2y2 + x3y3,

where xi and y j (i, j = 1,2,3) are shown the coefficients of the vectors x and y, respectively [14]. Since 〈,〉 is an indefinite
metric, recall that a vector u ∈ E3

1 has three categories: if 〈u,u〉 > 0 or u = 0 it is a spacelike vector, if 〈u,u〉 < 0 it is
a timelike vector and if 〈u,u〉 = 0 and u 6= 0 it is a null (lightlike) vector. Also, an arbitrary curve α in E3

1 is called as
spacelike, timelike or null (lightlike) curves according to casual character of the tangent vector. Cartan [1] has defined a frame
{L(s) = α ′(s),N(s),W (s)} similar to the Frenet frame for a null curve α(s), called Cartan frame satisfying

〈L,L〉= 〈N,N〉= 0,〈L,N〉= 1,
〈W,L〉= 〈W,N〉= 0,〈W,W 〉= 1,

with L×N =W,W ×L = L and N×W = N. The Cartan equations are

L
′
(s) = k1 (s)W (s) ,

N
′
(s) = k2 (s)W (s) ,

W
′
(s) = −k2 (s)L(s)− k1 (s)N (s) ,

where k1(s) = 〈α ′′,α ′′〉1/2 and k2(s) = 〈N′(s),W (s)〉 are Cartan curvature functions [15].
For investigate the interior geometry of the parametric surface X(s,θ) at the point X(s0,θ0), we use the first fundamental
form. The coefficients of the first fundamental form are calculated as e = 〈Xs,Xs〉, f = 〈Xs,Xθ 〉, g = 〈Xθ ,Xθ 〉 . The Gauss
map of the surface X(s,θ) is U such that {Xs,Xθ ,U} is an orthogonal frame along the surface. Let ε be a sign function of the
Gauss map U , this is used to determine the causal character of the surface. If ε = 1 or ε =−1, then the surface is the timelike
surface or the spacelike surface, respectively. The coefficients of the second fundamental form are `= 〈Xss,U〉, m = 〈Xsθ ,U〉,
n = 〈Xθθ ,U〉. The invariant curvatures K and H of the surface are calculated as:

K :=
ε
(
`n−m2

)
eg− f 2 and H :=

ε (en−2 f m+g`)
2(eg− f 2)

(2.1)

where K, H are called as Gaussian curvature and mean curvature of the surface, respectively. A surface in Minkowski 3−space
is called as linear Weingarten surface if its invariant curvatures is satisfied the equation 2aH +bK = c, where a,b,c are real
numbers and (a,b,c) 6= (0,0,0) [16].
The parametric equation of the canal surface is given by

X(s,θ) = α(s)+ r(s)(cosθN(s)+ sinθB(s))

where N(s) and B(s) are the Frenet normal vectors of the spine curve α . There are three kind of the tubular surface with
respect to causal characters of the non-null curves in Minkowski 3−space [4].

3. Tubular surface around a null curve

In this section, we will analyze the properties of the tubular surface whose center curve is a null curve α and characterize some
special curves on this surface.
Lopez [14] defined that the orbit of a point lies in the null plane is a parabola. The parabola in the null plane play the same role
as the circle in Euclidean ambient. In [17], the authors is defined the tubular surface around the null curve α(s) as follows:

X(s,θ) = α(s)+θN(s)+θ
2W (s)

where N(s) and W (s) are the Cartan frame vectors of the null curve α and the parameter θ is characterized the parabola lies on
the null plane spanned by the vectors N(s) and W (s). The coefficients of the first fundamental form are given by

e =−2θ 2k1(s)(1−θ 2k2(s))+θ 2k2
2(s),

f = 1+θ 2k2(s), g = 4θ 2.
(3.1)

The Gauss map U of the tubular surface X(s,θ) is calculated as

U =
1√
A
{−2θ(1−θ

2k2(s))L(s)− (2θ
3k1(s)+θk2(s))N(s)+(1−θ

2k2(s))W (s)}
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and also, the coefficients of the second fundamental form are

`= 1√
A
{2θ 5(k1k′2− k′1k2)+2θ 4k1k2

2 +2θ 3k′1 +θ 2(k3
2− k1k2)+θk′2 + k1},

m = 1√
A
{θ 2k2

2(s)+4θ 2k1(s)+ k2(s)}, n = 2(1−θ 2k2(s))√
A

,

(3.2)

where A = ε(1−θ 2k2(s))(8θ 4k1(s)+3θ 2k2(s)+1) and the derivatives are taken by the parameter s.

Proposition 3.1. The tubular surface X(s,θ) generated by the null curve α is a regular surface if and only if it satisfies the

following conditions θ 2 6= 1
k2(s)

and θ 2 6=
(
−3k2(s)±

√
9k2

2(s)−32k1(s)
)

16k1(s)
for k2

2(s)≥
32k1(s)

9 .

Proof. The condition eg− f 2 6= 0 provide for every regular surface at the point (s,θ). By using the equation (3.1), we obtain
−(1−θ 2k2(s))(8θ 4k1(s)+3θ 2k2(s)+1) 6= 0 for the surface X(s,θ) and this equation gives us the desired conditions.

Remark 3.2. The tubular surface X(s,θ) has singular points at (s0,θ0) if and only if the equation (1−θ 2k2(s))(8θ 4k1(s)+
3θ 2k2(s)+1) = 0 is satisfied for the points (s0,θ0).

Using the equation (2.1), the invariant curvatures of the surface X(s,θ) can be computed as

K =− ε

A2


(1−θ 2k2)(2θ 3k1 +θk2)(2k′2θ 2−2k2

2θ −16k1k2θ 3)
+(1−θ 2k2)

2(4θ 3k′1 +2k1 +2k′2θ −16k2
1θ 4−8k1k2θ 2− k2

2)
−4k2

2θ 2(2θ 3k1 +θk2)
2


and

H =− ε

A3/2

{
(1−θ 2k2)(−4θ 2k1− k2 +4θ 5k′1−2θ 4k1k2 +2θ 3k′2)

+(2θ 3k1 +θk2)(−2θk2 +2θ 4k′2)

}
where A = ε(1−θ 2k2(s))(8θ 4k1(s)+3θ 2k2(s)+1).

Theorem 3.3. The s−parameter curves of X(s,θ) are the geodesic curves if and only if the condition is satisfied

k′2(s)(k2(s)+θ
2k1(s))− k′1(s)(1−θ

2k2(s)) = 0

in terms of the Cartan curvatures of the null curve α .

Proof. If the normal vector of the surface and second derivative of a curve lying on the surface are linearly dependent, then the
curve is called the geodesic curve of the surface [8]. Based on this definition, we obtain the following system of equations for
the s−parameter curves on the regular tubular surface X(s,θ):

(1−θ 2k2)[−k′2θ 2 + k2(2θ 3k1 +θk2)−2θk1(1−θ 2k2)] = 0,
(1−θ 2k2)(2θ 3k2

1−θ 2k′1)+(2θ 3k1 +θk2)(−θ 2k1k2 +θk′2) = 0,
(1−θ 2k2)(−2θ 3k′1−2θ 2k1k2)+(2θ 3k1 +θk2)(θ

2k′2 +θk2
2) = 0.

(3.3)

Since X(s,θ) is the regular surface, we have −k′2θ 2 + k2(2θ 3k1 + θk2)− 2θk1(1− θ 2k2) = 0. If this equation is solved
together with the last two equations in equation (3.3), we get

k′2(s)(k2(s)+θ
2k1(s))− k′1(s)(1−θ

2k2(s)) = 0.

Corollary 3.4. The s−parameter curves of the surface with the Cartan curvatures k1(s) = 1
1−(asn+b)θ 2 (

a2s2n

2 +absn + c) and
k2(s) = asn +b,(n≥ 1 and a,b,c

are constants) are the geodesic curves on the tubular surface.

Proof. If we consider k2(s) = asn + b for the constants a, b and substituting this equation into the equation k′2(s)(k2(s)+
θ 2k1(s))− k′1(s)(1−θ 2k2(s)) = 0, then the following differential equation is obtained

k′1(s)−
ansn−1θ 2

1− (asn +b)θ 2 k1(s) =
ansn−1(asn +b)
1− (asn +b)θ 2 .

From solution of the ODE according to function k1(s), the first Cartan curvature is found as k1(s) = 1
1−(asn+b)θ 2 (

a2s2n

2 +absn +

c).
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Theorem 3.5. The s−parameter curves of X(s,θ) are the asymptotic curves if and only if the condition is fulfilled the following
equation

2θ
5(k1k′2− k′1k2)+2θ

4k1k2
2 +2θ

3k′1 +θ
2(k3

2− k1k2)+θk′2 + k1 = 0

where k1(s) and k2(s) are the Cartan curvatures of the curve α(s).

Proof. If the normal vector of the surface is tangent to second derivative of a curve lying on the surface, this curve is called as
the asymptotic curve of the surface, that is `= 0 [8]. The desired result is obtained from the expression of `= 0 in the equation
(3.2) for the s−parameter curves on the regular tubular surface X(s,θ).

Theorem 3.6. The θ−parameter curves of the regular surface X(s,θ) are neither geodesic curve nor asymptotic curve.

Proof. For θ− parameter curves to be geodesic, it must provide the condition U×Xθθ = 0. From this condition, we obtain

1√
A
{−4θ(1−θ

2k2(s))L(s)+2(2θ
3k1(s)+θk2(s))N(s)}= 0.

Since 1− θ 2k2(s) = 0 conflicts with the regularity condition of the surface X(s,θ), the θ− parameter curves cannot be
geodesic curves. If the θ− parameter curves are to be asymptotic curve, then the coefficient of the second fundamental form n
in equation (3.2) must be equal to zero. This condition conflicts with the regularity condition of the surface X(s,θ). So, the
θ− parameter curves cannot be an asymptotic curve.

4. Tubular surfaces around the spherical images of the null curve

In this section, we introduce tubular surfaces formed by spherical images of the null curve α . First, we will give definitions of
the spheres in the Minkowski 3−space. There are three kinds of spheres in E3

1 : de Sitter 2−space, hyperbolic 2−space, and
lightlike cone. These are respectively:

S2
1 =

{
p ∈ E3

1 | 〈p, p〉= 1
}
,H2

0 =
{

p ∈ E3
1 | 〈p, p〉=−1

}
and Q2 =

{
p ∈ E3

1 | 〈p, p〉= 0
}

.

Now, we will give the definitions of the spherical images of the null curve. The null Cartan vector field L of the curve α is
located at the center of the lightcone, the geometric location of this vector with respect to each point s indicates a curve on the
lightcone Q2, which is called the spherical (L) image of the curve α . In this definition, the spherical (N) image of the curve is
defined by taking the null Cartan vector N instead of L. The spherical (W ) image of the null curve is defined by the geometric
location of the spacelike vector W on the de Sitter 2−space S2

1.
Note: Unless stated otherwise, the parameter θ given for each surface is different from each other.

4.1. Tubular surface around the spherical (L) and (N) images of the null curve

Let the spine curves of the tubular surfaces is respectively the spherical (L) and (N) images of the null curve α , that is, βi(si) =
i(s) where the function si is the arc length parameter of the (i) image curve and si =

∫ s
0 k j(s)ds where indices are respectively

i = L, j = 1 and i = N, j = 2. In [18], the author defined the Darboux frame
{

βi(si), ti(si) =
dβ

dsi
,yi(si) = βi(si)× ti(si),κi(si)

}
of the spacelike curve βi on the lightcone Q2. The Darboux frame apparatus are calculated as follows:

βL(sL) = L(s), tL(sL) =W (s), yL(sL) = N(s) and κL(sL) =− k2(s)
k1(s)

,

and

βN(sN) = N(s), tN(sN) =W (s), yN(sN) = L(s) and κN(sN) =− k1(s)
k2(s)

.

The Darbox equations are given by

βi
′(si) = ti(si),

ti′(si) = κi(si)βi(si)− yi(si),

yi
′(si) = −κi(si)ti(si),

where yi× ti = yi, βi× yi = ti and ti×βi = βi. The spacelike tubular surface around the curve β is

X (si,θ) = (1+θ)βi(si)+θ
2yi(si)

with the Gauss map U = 1
2
√
|θ |

(βi(si)−2θyi(si)). The coefficients of the first and second fundamental forms of X (s,θ) are

found by

E = (1+θ −θ 2κi(si))
2, F = 0, G = 4θ ,

L =− (1+θ−θ 2κi(si))(1+2θκi(si))

2
√
|θ |

, M = 0, N = 1√
|θ |

.
(4.1)
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Proposition 4.1. The tubular surface X (si,θ) is a regular surface if and only if it has the condition θ 6= 1∓
√

1+4κi(si)

2κi(si)
.

Proof. The condition E G −F 2 6= 0 must be provided for a regular surface. By using the equation (4.1), we obtain 1+θ −
θ 2κi(si) 6= 0 for the surface X (si,θ) and the desired condition is obtained from the solution of this equation with respect to
θ .

Remark 4.2. The surface X (si,θ) has the singular points at the points (s0,θ0 =
1∓
√

1+4κi(s0)

2κi(s0)
.

From equation (2.1) and ε =−1, the curvatures of the surface X (si,θ) are calculated as follows:

K =− (1+2θκi(si))

8θ 2(1+θ −θ 2κi(si))
and H =−2θ

3/2
(

1
16θ 3 +K

)
.

Theorem 4.3. The s−parameter curves of X (si,θ) are the geodesic curves if and only if the Darboux curvature κi(si) = 1/2θ

is a constant, this means that the image curve (i) is a planar curve.

Proof. The s−parameter curves on the regular tubular surface X (si,θ) are the geodesic curves if and only if Xsisi ×U = 0.
From the last equation, we obtain

1

2| θ |1/2 (1−2θκi)(1+θ −θ
2κi) = 0.

Since the surface is the regular, then 1+θ −θ 2κi 6= 0. So the curvature κi(si) = 1/2θ is obtained as a constant.

Theorem 4.4. The s−parameter curves of X (si,θ) are the asymptotic curves if and only if the image curve (i) is a planar
curve.

Proof. The s−parameter curves on the regular tubular surface X (si,θ) are the asymptotic curves if and only if 〈Xsisi ,U 〉= 0.
From here, we get κi(si) =−1/2θ . Since the parameter θ is a constant for the s−parameter curves, the curvature κi(si) is a
constant.

Theorem 4.5. The θ−parameter curves on the regular surface X(s,θ) are neither geodesic curve nor asymptotic curve.

Proof. For θ− parameter curves, Xθθ ×U 6= 0 and N 6= 0 are satisfied, so the θ− parameter curves cannot be a geodesic
curve and an asymptotic curve.

Since the proofs of the theorems and propositions involving the properties of the tubular surfaces consisting of W− image
curve of the null curve are similar to the proofs given above, the following theorems and propositions will be given without
proof.

4.2. Tubular surface around the spherical (W) image of the null curve

Let γ be the (W ) image curve of the null curve α . In this subsection, the spine curve of the surface X(sW ,θ) will take as the
curve γ , that is, γ(sW ) =W (s) where the function sW =

∫ s
0

√
2 | k1(s)k2(s) |ds is the arc length parameter of the (W) image

curve. The Darboux frame apparatus are given by

γ(sW ) = W (s),

tW (sW ) = − 1√
2 | k1(s)k2(s) |

(k2(s)L(s)+ k1(s)N(s)),

yW (sW ) =
1√

2 | k1(s)k2(s) |
(−k2(s)L(s)+ k1(s)N(s)),

κW (sW ) =
k′1(s)k2(s)− k1(s)k′2(s)
(2 | k1(s)k2(s) |)3/2 .

There are two cases here: k1(s)k2(s) 6= 0 and k1(s)k2(s) = 0.
Case 1: k1(s)k2(s) 6= 0. We will examine this situation as two sub-cases.
Case 1.1: If k1(s)k2(s)> 0, then the curve γ is a spacelike curve on de Sitter 2−space S2

1. In [14], the Darboux equations are

γ
′(sW ) = tW (sW ),

tW ′(sW ) = −γ(sW )+κW (sW )yW (sW ),

yW
′(sW ) = κW (sW )tW (sW ),

where yW × tW = γ, γ× yW = tW and tW × γ =−yW . The timelike tubular surface around the curve γ is

X(sW ,θ) = (1+ r coshθ)γ(sW )− r sinhθyW (sW )
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with the Gauss map U = coshθγ(sW )− sinhθyW (sW ). The coefficients of the first and second fundamental forms of X(s,θ)
are found by

E = (1+ r coshθ − rκW (sW )sinhθ)2, F = 0, G =−r2,

L = (κW (sW )sinhθ − coshθ)(1+ r coshθ − rκW (sW )sinhθ), M = 0, N = r.

Proposition 4.6. The tubular surface X(sW ,θ) is a regular surface if and only if it has the condition 1 + r coshθ −
rκW (sW )sinhθ 6= 0.

Remark 4.7. The surface X(sW ,θ) has the singular points satisfying the equation 1+ r coshθ − rκW (sW )sinhθ = 0.

From equation (2.1) and ε = 1, the curvatures of the surface X(sW ,θ) are calculated as follows:

K =
(coshθ −κW (sW )sinhθ)

r(1+ r coshθ − rκW (sW )sinhθ)
and H =−1

2

(
1
r
+ rK

)
.

Remark 4.8. Since the surface X(sW ,θ) has the condition 2H+ rK = −1
r

, the surface X(sW ,θ) is a linear Weingarten
surface.

Theorem 4.9. The s−parameter curves of X(sW ,θ) are the geodesic curves if and only if the Darboux curvature κW (sW ) =
tanhθ is a constant.

Theorem 4.10. The s−parameter curves of X(sW ,θ) are the asymptotic curves if and only if the curvature κW is a constant
and equal to cothθ .

Theorem 4.11. The θ−parameter curves on the regular surface X(sW ,θ) are always a geodesic curve and cannot be an
asymptotic curve.

Case 1.2: If k1(s)k2(s)< 0, then the curve γ is a timelike curve on de Sitter 2−space S2
1. In [14], the Darboux equations are

γ
′(sW ) = tW (sW ),

tW ′(sW ) = γ(sW )+κW (sW )yW (sW ),

yW
′(sW ) = κW (sW )tW (sW ),

where yW × tW =−γ, γ× yW = tW and tW × γ =−yW . The timelike tubular surface around the curve γ is

X(sW ,θ) = (1+ r cosθ)γ(sW )+ r sinθyW (sW )

with the spacelike Gauss map U = cosθγ(sW )+ sinθyW (sW ). The coefficients of the first and second fundamental forms of
X(s,θ) are found by

E =−(1+ r cosθ + rκW (sW )sinθ)2, F = 0, G = r2,

L = (cosθ +κW (sW )sinθ)(1+ r cosθ + rκW (sW )sinθ), M = 0, N =−r.

Proposition 4.12. The tubular surface X(sW ,θ) is a regular surface if and only if it has the condition 1 + r cosθ +
rκW (sW )sinθ 6= 0.

Remark 4.13. The surface X(sW ,θ) has the singular points satisfying the equation 1+ r cosθ + rκW (sW )sinθ = 0.

The invariant curvatures of the surface X(sW ,θ) are calculated as follows:

K =
(cosθ +κW (sW )sinθ)

r(1+ r cosθ + rκW (sW )sinθ)
and H =−1

2

(
1
r
+ rK

)
.

Since the surface X(sW ,θ) has the condition 2H+ rK =−1
r

, the surface X(sW ,θ) is a linear Weingarten surface.

Theorem 4.14. The s−parameter curves of X(sW ,θ) are the geodesic curves if and only if the Darboux curvature κW (sW ) =
tanθ is a constant.

Theorem 4.15. The s−parameter curves of X(sW ,θ) are the asymptotic curves if and only if the curvature of the (W ) image
curve is a constant.

Theorem 4.16. The θ−parameter curves on the regular surface X(sW ,θ) are always the geodesic curves and they cannot be
the asymptotic curves.
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Case 2: k1(s)k2(s) = 0. If k1(s) = 0, the null curve α is a planar line. So, we will examine the case of k2(s) = 0. For k1(s) 6= 0
and k2(s) = 0, the curve α is called a generalized null cubic curve in [15] and it is given by

α(s) =
(

1√
2

(
(s+

φ(s)
2

)
,

1√
2

(
s− φ(s)

2

)
,ψ(s)

)
where φ ′(s) = (ψ ′(s))2. The third Cartan vector of the curve α is W (s) =

(
ψ ′(s)√

2
,−ψ ′(s)√

2
,1
)
. To find the tubular surface around

the (W ) image curve of the generalized null cubic curve, we calculate the Cartan frame of the (W ) image curve as follows:
L =

(
ψ ′′(s)√

2
,−ψ ′′(s)√

2
,0
)
,N(s) =

(
− 1√

2ψ ′′(s)
,− 1√

2ψ ′′(s)
,0
)
,W = (0,0,1).

From these vectors, we obtain ψ ′′(s) =
√

2a, where a is a constant. The surface consisting of the (W ) image curve of the
generalized null cubic curve α can be written as

X(sW ,θ) =W (s)+θN(s)+θ
2W (s).

This tubular surface is degenerated to a plane.

5. Visualization

In this section, we give the tubular surfaces whose center curves are a null curve α and its spherical images. Then, we calculate
the some special curves on these surfaces and find the singular points of them. Also, we visualize the our calculations with
Mathematica.
Let α = α(s) be a null curve is defined by

α(s) =
(

s,
1
5

sin(5s+4)+1,−1
5

cos(5s+4)−1
)

with the Cartan frame apparatus

L(s) = (1,cos(5s+4),sin(5s+4)) ,
N(s) = 1

2 (−1,cos(5s+4),sin(5s+4)) ,
W (s) = (0,−sin(5s+4),cos(5s+4)) ,

k1(s) = 5 and k2(s) = 5/2. The parametric form of the tubular surface X(s,θ) is given as follows

X(s,θ) = α(s)+θN(s)+θ
2W (s),

X(s,θ) =
(

s− θ

2
,1+

θ

2
cos(5s+4)+

1
5

sin(5s+4)−θ
2 sin(5s+4),

−1+
θ

2
sin(5s+4)− 1

5
cos(5s+4)+θ

2 cos(5s+4)
)
.

We calculate the singular points on the surface X(s,θ), then we obtain two curves consisting of singular points in Figure (5.1).
Since the Cartan curvatures of the curve α are constants, the s−parameter curves in Figure (5.2) of the tubular surface X(s,θ)

Figure 5.1: Tubular surface generated by the null curve α for s ∈ [−2π/5,2π/5], θ ∈ [−1,1] and its singular curves for θ =
√

2
5 (red),

θ =−
√

2
5 (green).

are always the geodesic curves. Since the condition given in the Theorem (3.5) is not satisfied in this example, the s−parameter
curves are not the asymptotic curves. Also, we have shown in Theorem (3.6) that the θ−parameter curves in Figure (5.3) are
neither geodesic curves nor asymptotic curves.
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Figure 5.2: Geodesic s−parameter curves on the tubular surface X(s,θ)

Figure 5.3: The θ−parameter curves on the tubular surface X(s,θ)

The tubular surface around (L) image curve is given by

X (sL,θ) = (1+θ)L(s)+θ
2N(s),

X (sL,θ) =

(
1+θ − θ 2

2
,

(
1+θ +

θ 2

2

)
cos(5s+4),

(
1+θ +

θ 2

2

)
sin(5s+4)

)
where sL = 5s. The tubular surface X (sL,θ) has no singular points. The s−parameter curves are the geodesic curves for
θ =−1 in Figure (5.4) (red) and are the asymptotic curves for θ = 1 in Figure (5.4) (green). The θ−parameter curves on the
tubular surface X (sL,θ) are shown in Figure (5.5).

Figure 5.4: Geodesic s−parameter curves on X (sL,θ) for θ =−1 (red) and θ = 1 (green).
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Figure 5.5: The θ−parameter curves on X (sL,θ).

The tubular surface around (N) image curve is given by

X (sN ,θ) = (1+θ)N(s)+θ
2L(s),

X (sN ,θ) =

(
−1

2
− θ

2
+θ

2,

(
1
2
+

θ

2
+θ

2
)

cos(5s+4),
(

1
2
+

θ

2
+θ

2
)

sin(5s+4)
)

where sN = 5s/2. The tubular surface X (sN ,θ) has no singular points. The s−parameter curves are the geodesic curves for
θ =−1/4 in Figure (5.6) (red) and the asymptotic curves for θ = 1/4 in Figure (5.6) (green). The θ−parameter curves on the
tubular surface X (sL,θ) are shown in Figure (5.7).

Figure 5.6: Geodesic s−parameter curves on X (sN ,θ) for θ =−0.25 (red) and θ = 0.25 (green).
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Figure 5.7: The θ−parameter curves on X (sN ,θ).

Since k1(s)k2(s)> 0, the tubular surface generated by (W ) image curve is

X(sW ,θ) = (1+ r coshθ)W (s)− r sinhθ

(
−1

2
L(s)+N(s)

)
,

X(sW ,θ) = (r sinhθ ,−(1+ r coshθ)sin(5s+4),(1+ r coshθ)cos(5s+4))

where sW = 5s. Since κW (sW ) = 0 and r > 0, the equation in Remark (4.7) has no real root. So, there is no singular points on
the tubular surface X(sW ,θ). Some special curves on X(sW ,θ) are shown in Figure (5.8).

Figure 5.8: Geodesic s−parameter curve for θ = 0 (red) and geodesic θ−parameter curves (black) for r = 0.8 on the surface X(sW ,θ).

6. Conclusion

This study is important in terms of finding tubular surface formed by the null curve and its image curves on the Minkowski
spheres. Their singular points are characterized in terms of Cartan frame and Darboux frame apparatus. It is also noteworthy
that to use the Darboux frame instead of the Frenet frame, this is provided an opportunity to examine the expressions in their
simplest form.
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