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İstanbul University-Cerrahpaşa,
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Topological Bihyperbolic Modules
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Abstract
The aim of this article is introducing and researching hyperbolic modules, bihyperbolic modules, topological
hyperbolic modules and topological bihyperbolic modules. In this regard, we define balanced, convex and
absorbing sets in hyperbolic and bihyperbolic modules. In particular, we investigate convex sets in hyperbolic
numbers set (it is a hyperbolic module over itself) by considering the isomorphic relation of this set with
2−dimensional Minkowski space. Moreover, bihyperbolic numbers set is a bihyperbolic module over itself, too.
So, we define convex sets in this module by considering hypersurfaces of 4−dimensional semi Euclidean space
that are isomorphic to some subsets of bihyperbolic numbers set. We also study the interior and closure of some
special sets and neighbourhoods of the unit element of the module in the introduced topological bihyperbolic
modules. In the light of obtained results, new relationships are presented for idempotent representations in
topological bihyperbolic modules.
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1. Introduction
J. Cockle introduced commutative quaternions as Tessarine numbers in [10, 11, 12]. Besides C. Segre studied these numbers
by denominating them bicomplex numbers [3]. Afterwards, G. B. Price comprehensively analyzed bicomplex numbers,
functions defined by bicomplex power series, derivatives, integrals, holomorphic functions and also their generalizations to
higher dimensions [7]. Actually, the system of bicomplex numbers (Tessarine numbers) is a special case of the commutative
fourcomplex numbers system that was generalized by F. Catoni et al. in [6]. The set of generalized commutative quaternions is
defined as

{q| q = t + ix+ jy+kz; t,x,y,z ∈ R}

where i2 = k2 = α , j2 = 1, ij = ji = k. A generalized commutative quaternion is called an elliptic, parabolic or hyperbolic
commutative quaternion, respectively; provided that α < 0, α = 0 or α > 0. In the case of α =−1, the elliptic quaternions
corresponds to bicomplex numbers. However, the case of α = 1 has not been handled as well as the bicomplex case. In the
meantime, the commutative quaternions and their higher versions were considered by S. Olariu and in the case of α = 1, a
commutative quaternion was called hyperbolic fourcomplex number in [20]. Recently, the set of zeros of polynomials of
hyperbolic fourcomplex numbers were studied and these numbers were denominated bihyperbolic numbers since they can be
written as a pair of hyperbolic numbers [1].

On the other hand, the hyperbolic fourcomplex numbers are used in digital signal processing and these numbers are called



Topological Bihyperbolic Modules — 116/129

multi-hyperbolic numbers [4]. Also, multi-hyperbolic numbers are a generalization of the hyperbolic fourcomplex numbers,
since multi-hyperbolic numbers include the hyperbolic fourcomplex numbers.

Apart from all these, detailed surveys on the algebraic [13], geometric and topological [14], and combinatorial properties
[8, 9] of bihyperbolic numbers were given. However, bihyperbolic modules and topological bihyperbolic modules have not
investigated yet.

The real or complex vector space, topological vector space and balanced, convex and absorbing sets in these spaces are
known very well in the literature [2, 21]. These concepts are thought again with the discovery of the quaternions and especially
commutative quaternions. For instance, the bicomplex modules are introduced with the discovery of bicomplex numbers. The
set of bicomplex numbers is a commutative ring. Hence, the researches on modules over this ring are accelerated with new
results on commutative algebra [5, 16]. Also, topological bicomplex modules are presented and balanced, convex and absorbing
sets are investigated in these modules [17, 18].

As its known, the set of hyperbolic numbers is a subalgebra of the algebra of bicomplex numbers and the system of
hyperbolic numbers is an active studying area in several disciplines. Besides, hyperbolic module and convex set in this module
partially are studied in [15]. In connection with these, we introduce hyperbolic modules, bihyperbolic modules, topological
hyperbolic modules and topological bihyperbolic modules. Also, we give new results on these subjects by using the idempotent
representations of bihyperbolic numbers which were analyzed in detail [13, 14].

2. Preliminaries
Definition 2.1. The set of bihyperbolic numbers is defined as

H2 = {ζ | ζ = z1 + j2z2, z1,z2 ∈ H (j1)}

where j1, j2 are hyperbolic units satisfying j1j2 = j2j1 = j3, j2s = 1, js 6=±1 for s= 1,2,3 and H (j1) = { z| z = x+ j1y : x,y ∈ R}
is the set of hyperbolic numbers based on hyperbolic unit j1 [13].

Definition 2.2. The set of multi-hyperbolic numbers is given by

Hn =
{

A+ jnB
∣∣ A,B ∈ Hn−1, j2n = 1, jn 6=±1

}
for n ∈ Z+.

The set H0 is the real numbers set and the set H1 is the hyperbolic numbers set corresponding H (j1) in the previous
definition. In the rest of the article, the notion H will be used for the hyperbolic numbers set based on the hyperbolic unit j1.

The space, null, and time cones of z0 ∈ H are defined as

SH (z0) =
{

z ∈ H| (z− z0)(z− z0)> 0 or z = z0

}
,

NH (z0) =
{

z ∈ H| (z− z0)(z− z0) = 0
}
,

and
T H (z0) =

{
z ∈ H| (z− z0)(z− z0)< 0 or z = z0

}
,

respectively [14].

Although the sets H and H2 are commutative rings with unity according to the addition and multiplication operations, they
do not have field structure algebraically since they have non-invertible elements according to multiplication operation.

There are especially non-invertible elements such as

e1,js =
1+ js

2
and e2,js =

1− js
2

for s = 1,2,3.

These numbers are hyperbolic numbers with the hyperbolic units js and they are called idempotent elements because of(
e1,js

)n
= e1,js and

(
e2,js

)n
= e2,js for n ∈ Z+ [13]. Every element of H2 can be written as a linear decomposition of the set
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{
e1,js ,e2,js

}
in three different ways which are ζ = ζ1,js e1,js +ζ2,jse2,js for ζ ∈ H2 with s = 1,2,3. The coefficients of the linear

decompositions of a bihyperbolic number are bihyperbolic numbers for s = 1 and hyperbolic numbers based on the hyperbolic
unit j1 for s = 2,3. These representations are given for s = 1,2 in [13] and for s = 3 in [6]. More details about the idempotent
representations of bihyperbolic numbers can be found in [13, 14].

There is another idempotent representation of bihyperbolic numbers in the literature. Briefly, a bihyperbolic number
ζ = x0 + j1x1 + j2x2 + j3x3 can be written as ζ = w1i1 +w2i2 +w3i3 +w4i4 where i1, i2, i3 and i4 are bihyperbolic components
such that i1 =

1+j1+j2+j3
4 , i2 =

1−j1+j2−j3
4 , i3 =

1+j1−j2−j3
4 , i4 =

1−j1−j2+j3
4 and w1 = x0 + x1 + x2 + x3, w2 = x0− x1 + x2− x3,

w3 = x0 + x1− x2− x3 and w4 = x0− x1− x2 + x3 where x0,x1,x2,x3 ∈ R [20]. Hence, a partial order is defined on the
real vector space H2 by using this representation in [13]. It defines as ζ ≤ ϕ for ζ ,ϕ ∈ H2 if and only if wk ≤ w̃k where
ζ = wkik and ϕ = w̃kik for k = 1,2,3,4 [13]. Moreover, positive bihyperbolic numbers set is given with this partial or-
der such that H+

2 = {ζ |ζ = wkik,wk ≥ 0} [13]. Also, positive hyperbolic numbers are known in the literature such that
H+ =

{
z| z = x+ j1y = (x+ y)e1,j1 +(x− y)e2,j1 , x+ y≥ 0, x− y≥ 0

}
[5].

On the other hand, a bihyperbolic number ζ = x0 + j1x1 + j2x2 + j3x3 has three conjugates such that

ζ
j1 = x0 + j1x1− j2x2− j3x3, ζ

j2 = x0− j1x1 + j2x2− j3x3 and ζ
j3 = x0− j1x1− j2x2 + j3x3 [6]. Considering these conju-

gates, the hyperbolic valued modulus is introduced [9]. It is defined as |ζ |js =
√∣∣∣ζ ζ

js
∣∣∣ for s = 1,2,3 and named js−modulus

of ζ . Also, by taking x0x1−x2x3 = 0, x0x2−x1x3 = 0 and x0x3−x1x2 = 0, three different hypersurfaces of H2 are defined such
that

M1 = {x0 + j1x1 + j2x2 + j3x3|x0x1− x2x3 = 0} ,

M2 = {x0 + j1x1 + j2x2 + j3x3|x0x2− x1x3 = 0}

and
M3 = {x0 + j1x1 + j2x2 + j3x3|x0x3− x1x2 = 0} .

The modulus of ζ is given by

|ζ |j1 =
√
|x02 + x12− x22− x32|,

|ζ |j2 =
√
|x02− x12 + x22− x32|

and

|ζ |j3 =
√
|x02− x12− x22 + x32|

in M1, M2 and M3, respectively [13]. The cones of a bihyperbolic number ζ0 ∈Mk ⊆ H2 are classified as

SMk (ζ0) =
{

ζ ∈Mk|(ζ −ζ0)(ζ −ζ0)
jk > 0 or ζ = ζ0

}
,

NMk (ζ0) =
{

ζ ∈Mk|(ζ −ζ0)(ζ −ζ0)
jk = 0

}
,

T Mk (ζ0) =
{

ζ ∈Mk|(ζ −ζ0)(ζ −ζ0)
jk < 0 or ζ = ζ0

}
and they are called space cone, null cone, and time cone for k = 1,2,3, respectively [14].

Definition 2.3. Let X be a vector space over a field F (real or complex numbers set) and ∅ 6= A⊆ X be a subset. If λx ∈ A or
λA⊆ A where λA := {λx| x ∈ A} for every x ∈ A and every λ ∈ F with |λ | ≤ 1, then A is balanced (circled) set [19].

Definition 2.4. Let X be a vector space over the real numbers field R and ∅ 6= A⊆ X. A is convex if the line segment connecting
x and y is included in A for all x,y ∈ A. This means that (1− t)x+ ty ∈ A for 0≤ t ≤ 1 [19].

Definition 2.5. Let X be a vector space over a field F (real or complex numbers set) and ∅ 6= A⊆ X. A is absorbing set, if
some real number λ > 0 for all x ∈ X, x ∈ µA for all scalars µ ∈ F that is |µ| ≥ λ where µA := {µa| a ∈ A} [19].
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3. Topological Hyperbolic Modules

Definition 3.1. Let (X ,⊕) be a commutative group. If the operations

⊕ : X×X → X and � : H×X → X

(u,v)→ u+ v (z,u)→ z�u

satisfy the properties
(z1z2)�u = z1� (z2�u) ,

(z1 + z2)�u = (z1�u)⊕ (z2�u) ,

z1� (u⊕ v) = (z1�u)⊕ (z1� v) ,

1H �u = u, (1H = 1+ j10 = 1)

for every z1,z2 ∈ H and every u,v ∈ X, then (X ,H,⊕,�,+, ·) is called H−module. Later on, z�u will be denoted by zu.

Example 3.2. Hyperbolic numbers set H, bihyperbolic numbers set H2 and multi-hyperbolic numbers set Hn for n ∈ Z+ are
H−modules.

Remark 3.3. Real numbers set R is not H−module because of H×R→ H.

Since hyperbolic numbers set H includes the isotropic numbers, the unit balls in H can be classified into three types. So, let
us define a new three types of balanced sets by considering three different cases for each hyperbolic number λ = λ1 + j1λ2 ∈ H

satisfying |λ |H =

√∣∣∣λλ

∣∣∣=√∣∣λ 2
1 −λ 2

2

∣∣≤ 1.

Definition 3.4. Let X be a H−module, ∅ 6= B⊆ X and λ = λ1 + j1λ2 ∈ H.

i) B is called SH−balanced set if λB⊆ B for every λ ∈ SH (O) such that λ 2
1 −λ 2

2 ≤ 1,

ii) B is called NH−balanced set if λB⊆ B for every λ ∈ NH (O) that is λ 2
1 −λ 2

2 = 0,

iii) B is called T H−balanced set if λB⊆ B for every λ ∈ T H (O) such that −1≤ λ 2
1 −λ 2

2 .

Here, SH (O), NH (O) and T H (O) denotes the space cone, the light cone and the time cone of H at the origin, respectively.

Example 3.5. The subsets SH (O) and T H (O) in H−module H are SH−balanced sets. But, they are not NH−balanced set
and T H−balanced set. Also, the subset NH (O)⊆ H is T H,NH and SH−balanced set.

The partial order on the real vector space H2 was introduced in [13]. The definition of H−convex set is given in [15] by
using such an order as follows: Let X be a H−module and ∅ 6= B⊆ X . If λx+(1−λ )y ∈ B for every x,y ∈ B and λ ∈ H+

with 0≤ λ ≤ 1, then B is called H−convex set. Nevertheless, here we investigate especially the H−module H. Eventually,
three different definitions of convex sets which are geometrically meaningful will be given in H−module H for the first time as
follows.

Definition 3.6. Let B be a non-empty subset of H−module H. For all x,y ∈ B and all λ ∈ R with 0≤ λ ≤ 1,

i) B is called SH−convex set if y ∈ SH (x) and λx+(1−λ )y ∈ B,

ii) B is called NH−convex set if y ∈ NH (x) and λx+(1−λ )y ∈ B,

iii) B is called T H−convex set if y ∈ T H (x) and λx+(1−λ )y ∈ B.

This definition indicates that the classical definition of the convexity is valid for the convexity of a subset of the hyperbolic
numbers set. However, three different convexity types are needed depending on whether the line segments connecting all two
different elements of the set belong to either the space cone, the light cone or the time cone.

Definition 3.7. Let X be a H−module and ∅ 6= B⊆ X. For all x ∈ X,

i) B is called SH−absorbing set if there is a non-negative real number λ such that x ∈ µB for all µ ∈ SH (O)⊆ H with
|µ|H ≥ λ ,
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ii) B is called T H−absorbing set if there is a non-negative real number λ such that x ∈ µB for all µ ∈ T H (O)⊆ H with
|µ|H ≥ λ .

Definition 3.8. Let X be a H−module and τ is a Hausdorff topology on X. If the operations

+ : X×X → X

· : H×X → X

are continuous, then the pair (X ,τ) is called a topological hyperbolic module or topological H−module.

4. Topological Bihyperbolic Modules

Since (H2,+, ·) is a commutative ring with unity, we can construct a module structure over this ring. For instance, the
bihyperbolic numbers set H2 or the multi-hyperbolic numbers set Hn for n ∈ {2,3,4, . . .} are H2−modules.

Let X be an arbitrary H2−module with the classical addition and multiplication operations. The idempotent representations
of the elements of X are given correlatively the elements of H2 in the following theorem.

Theorem 4.1. Let X be a H2−module. Then X = e1,jsX + e2,js X for s = 1,2,3.

Proof. Let x ∈ X . Then e1,js + e2,js = 1 for e1,js ,e2,js ∈ H (js)⊆ H2 and s = 1,2,3. Hence, the element x can be written as

x =
(
e1,js + e2,js

)
x = e1,js x+ e2,jsx.

Since each element of X can be written as above, it can be generalized to the whole set.

Here if we write e1,jsX = X1,js and e2,js X = X2,js , then X = X1,js +X2,js .

Corollary 4.2. Let X be a H2−module. Then, there are e1,jsX = e1,jsX1,js and e2,jsX = e2,js X2,js equations for s = 1,2,3.

Proof. Let e1,jsX = X1,js . Then multiplying both sides of this equation from left by e1,js gives us e1,js

(
e1,jsX

)
= e1,js X1,js . Hence

e1,jsX = e1,js X1,js , since e1,js and e2,js are the idempotent elements. Similarly, we can write e2,js

(
e2,jsX

)
= e2,jsX2,js whenever

e2,jsX = X2,js . So, e2,jsX = e2,js X2,js is obtained.

Corollary 4.3. Let X be a H2−module. Then, X = e1,js X1,js + e2,js X2,js for s = 1,2,3.

Corollary 4.4. Let X be a H2−module. Then, X1,js and X2,js are H2−submodules of X for s = 1,2,3.

Proof. Let X be a H2−module and X1,js ⊆ X for s = 1,2,3. Moreover, let t1, t2 ∈ X1,js . There are the elements x and y
in X satisfied the equations t1 = e1,js x and t2 = e1,jsy, since X1,js = e1,js X . (X ,+) is a commutative group, since X is a
H2−module. Hence, x− y ∈ X . So, t1− t2 = e1,jsx− e1,jsy = e1,js (x− y) ∈ e1,jsX = X1,js . On the other hand, let ζ ∈ H2 and
t ∈ X1,js . The product of ζ and t is ζ t =

(
ζ1,jse1,js +ζ2,js e2,js

)(
e1,jsx

)
= ζ1,js e1,jsx and ζ1,jsx ∈ X since X a H2−module. Hence

ζ t = e1,js ζ1,jsx ∈ e1,jsX = X1,js . Consequently, X1,js is a H2−submodule of the H2−module X . Similarly, the set X2,js is a
H2−submodule of the H2−module X .

Especially, the subsets X1,js and X2,js are H−submodules of the H2−module X for s = 2,3 since ζ1,js ,ζ2,js ∈ H.

Corollary 4.5. The subsets e1,js H2 and e2,jsH2 are H2−modules for s = 1,2,3. Especially, these sets are H−modules for
s = 2,3.

Definition 4.6. Let X be a H2−module. If there is a finite H2−base such that {xl : l = 1, . . . ,n} ⊆ X, then X is a free

H2−module. The free H2−module X can be written as X =

{
x | x =

n
∑

l=1
ζlxl , ζl ∈ H2,xl ∈ X

}
.

Definition 4.7. Let X be a free H2−module.

A :=

{
x̃ | x̃ =

n

∑
l=1

ζlxl , ζl ∈ H,xl ∈ X

}
⊆ X

is a free H−module depending on the H2−base of X.
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Here, when the elements of any subset A of the free H2−module X are written as a linear combination of the finite base
{xl : l = 1, . . . ,n} ⊆ X , if the coefficients are bihyperbolic number, then the subset A is a free H2−module depends on the
H2−base of X .

Example 4.8. Each element of H2 can be written as a linear combination of the idempotent elements e1,js and e2,js for s = 1,2,3
such that ζ = ζ1,js e1,js +ζ2,jse2,js ∈H2. Also, the set

{
e1,js ,e2,js

}
is linearly independent. Therefore, the subset

{
e1,js ,e2,js

}
⊆H2

is a base of the H2. It is known that ζ1,js ,ζ2,js ∈ H2 for s = 1 and ζ1,js ,ζ2,js ∈ H for s = 2,3. So, H2 is a free H2−module for
s = 1. Moreover, H2 is a free H−module according to H2−base for s = 2,3.

Now, let us give the necessary conditions for any subset of a H2−module to be balanced, convex or absorbing set. In order
to give the conditions specified here, there must be a real-valued norm on the ring in which the module structure is defined.
Since there are real-valued norms on the hypersurfaces Mk ⊆ H2 for k = 1,2,3, related conditions will be given and theorems
will be proved by using the elements of Mk.

Three different balanced (circular) sets, convex sets and two different absorbing (swallowing) sets have emerged on the
H2−module due to the presence of light cone on hypersurfaces Mk ⊆ H2.

Firstly, the following definition of a balanced (circular) set is given by considering the three different conditions for each

bihyperbolic number ζ ∈Mk ⊆ H2 satisfying the condition |ζ |jk =
√∣∣∣ζ ζ

jk
∣∣∣≤ 1.

Definition 4.9. Let X be a H2−module, ∅ 6= B⊆ X and ζ ∈Mk ⊆ H2 (k = 1,2,3).

i) B is called SMk−balanced set if ζ B⊆ B for every ζ ∈ SMk (O) such that ζ ζ
jk ≤ 1,

ii) B is called NMk−balanced set if ζ B⊆ B for every ζ ∈ NMk (O) such that ζ ζ
jk = 0,

iii) B is called T Mk−balanced set if ζ B⊆ B for every ζ ∈ T Mk (O) such that −1≤ ζ ζ
jk .

Here the sets SMk (O), NMk (O) and T Mk (O) are the space cone, the null cone and the time cone at the origin in the
hypersurfaces Mk, respectively.

Theorem 4.10. Let X be a H2−module and the set B is a SMk−balanced or T Mk−balanced subset of X for k = 1,2,3.

i) ζ B = B for every ζ ∈Mk ⊆ H2 such that |ζ |jk = 1.

ii) ζ B = |ζ |jk B for every ζ ∈Mk ⊆ H2 such that |ζ |jk 6= 0.

Proof. i) Let ζ ∈Mk such that |ζ |jk = 1. Since B is a SMk−balanced or T Mk−balanced set, ζ B⊆ B. On the other hand∣∣∣∣ 1
ζ

∣∣∣∣
jk

=
1
|ζ |jk

= 1.

So 1
ζ

B⊆ B and in this way B⊆ ζ B. Consequently ζ B = B.

ii) Let’s take any ζ ∈Mk such that |ζ |jk 6= 0. Then ∣∣∣∣∣ ζ

|ζ |jk

∣∣∣∣∣
jk

= 1.

So,
ζ

|ζ |jk
B = B

from the condition (i). Hence, we have ζ B = |ζ |jk B.

Theorem 4.11. Let X be a H2−module and the set B is a SMk−balanced subset of X for k = 1,2,3.
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i) For s = k = 1, e1,jsB = B1,js and e2,js B = B2,js are SMk−balanced subsets of H2−modules e1,jsX = X1,js and e2,js X = X2,js ,
respectively.

ii) For s,k = 2,3 and s = k, e1,js B = B1,js and e2,js B = B2,js are SH−balanced subsets of H−modules e1,jsX = X1,js and
e2,jsX = X2,js , respectively.

Proof. i) Let X be a H2−module and B be a SMk−balanced subset of X for k = 1. Therefore, ζ x ∈ B for all x ∈ B and all
ζ ∈ SMk (O) such that ζ ζ

jk ≤ 1. Assume that the idempotent representation of ζ is ζ = ζ1,js e1,js +ζ2,jse2,js for s = 1.

Since ζ ∈ SMk (O) and ζ ζ
jk ≤ 1, ζ1,js ∈ SMk (O) and ζ1,js

(
ζ1,js

)jk ≤ 1. An element t ∈ e1,jsB1,js = e1,js B is represented
by t = e1,js x for x ∈ B.

Hence, ζ1,jst = ζ1,jse1,js x = e1,js ζ1,jsx = e1,js ζ x ∈ e1,js B = e1,jsB1,js where e1,js ζ = e1,js

(
ζ1,js e1,js +ζ2,jse2,js

)
= e1,jsζ1,js .

So, the set e1,js B1,js is SMk−balanced set of the H2−module e1,js X1,js . Similarly, the set e2,js B = B2,js is a SMk−balanced
set of the H2−module e2,js X = X2,js for s = k = 1.

ii) Let X be a H2−module and B be a SMk−balanced subset of X for k = 2,3. Hence, ζ x ∈ B for all x ∈ B and all
ζ ∈ SMk (O) such that ζ ζ

jk ≤ 1. The idempotent representation of ζ is ζ = ζ1,jse1,js + ζ2,js e2,js for s = 2,3 and
e1,jsζ = e1,js

(
ζ1,js e1,js +ζ2,jse2,js

)
= e1,jsζ1,js . Moreover, the coefficient ζ1,js ∈ H ⊆ H2 is ζ1,js ∈ SH (O) and it provides

the inequality ζ1,jsζ1,js ≤ 1 for s,k = 2,3 s = k. An element t ∈ e1,jsB1,js = e1,js B can be written as t = e1,js x since
x ∈ B. Thus, ζ1,jst = ζ1,jse1,js x = e1,js ζ1,js x = e1,js ζ x ∈ e1,js B = e1,jsB1,js . So, the sets e1,js B1,js are SH−balanced sets of
H−modules e1,js X1,js for s,k = 2,3 and s = k. Similarly, the sets e2,jsB = B2,js are SH−balanced sets of H−modules
e2,jsX = X2,js for s,k = 2,3 s = k.

Theorem 4.12. Let X be a H2−module and B be a NMk−balanced subset of X for k = 1,2,3.

i) For s = k = 1, e1,jsB = B1,js and e2,js B = B2,js are NMk−balanced subsets of H2−modules e1,js X = X1,js and e2,jsX = X2,js ,
respectively.

ii) For s,k = 2,3 and s = k, e1,js B = B1,js and e2,js B = B2,js are NH−balanced subsets of H−modules e1,jsX = X1,js and
e2,jsX = X2,js , respectively.

Theorem 4.13. Let X be a H2−module and B be a T Mk−balanced subset of X for k = 1,2,3.

i) For s = k = 1, e1,js B = B1,js and e2,js B = B2,js are T Mk−balanced subsets of H2−modules e1,jsX = X1,js and e2,js X = X2,js ,
respectively.

ii) For s,k = 2,3 and s = k, e1,js B = B1,js and e2,jsB = B2,js are T H−balanced subsets of H−modules e1,js X = X1,js and
e2,jsX = X2,js , respectively.

Theorem 4.14. Let X be a H2−module and B be a NMk−balanced subset of X for k = 1,2,3. Then e1,jsB = B1,js ⊆ B and
e2,jsB = B2,js ⊆ B for s = 1,2,3 and s 6= k.

Proof. Let x ∈ B and an element t ∈ e1,js B1,js = e1,js B be given by t = e1,jsx. Since the set B is NMk−balanced set, ζ x ∈ B
for all ζ ∈ NMk (O). e1,js ∈ NMk (O) for s,k = 1,2,3 and s 6= k. Thus, if we choose ζ = e1,js , then e1,js B1,js ⊆ B. Similarly, if
ζ = e2,js is chosen, e2,js B2,js ⊆ B for s,k = 1,2,3 and s 6= k.

The inclusions e1,js B = B1,js ⊆ B and e2,js B = B2,js ⊆ B do not exist for a SMk−balanced or T Mk−balanced subset B of
H2−modules X . Because the idempotent components e1,js and e2,js are e1,js ,e2,js /∈Mk for s = k and e1,js ,e2,js ∈ NMk for s 6= k.

Definition 4.15. Let X be a H2−module and ∅ 6= B⊆ X. B is a H2−convex set if ζ x+(1−ζ )y ∈ B for all x,y ∈ B and all
ζ ∈ H+

2 such that 0≤ ζ ≤ 1.

Theorem 4.16. Let X be a H2−module and ∅ 6= B⊆ X is a H2−convex subset of X.

i) The sets e1,js B and e2,js B are H2−convex sets of H2−modules e1,jsX and e2,jsX for s = 1, respectively.

ii) The sets e1,js B and e2,js B are H−convex sets of the H−modules e1,jsX and e2,jsX for s = 2,3, respectively.
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iii) There are the inclusions e1,js B⊆ B and e2,jsB⊆ B for s = 1,2,3, if θ ∈ B where θ is the unit element of the H2−module
X.

Proof. i) Let B be a H2−convex subset of the H2−module X and t1, t2 ∈ e1,js B for s = 1. There exist x,y ∈ B such that
t1 = e1,jsx ∈ e1,jsB and t2 = e1,jsy ∈ e1,jsB. Consider ζ = ζ1,jse1,js + ζ2,js e2,js ∈ H+

2 for all ζ1,js ,ζ2,js ∈ H+
2 such that

ζ1,js ,ζ2,js ∈ [0,1]. If ζ1,js ,ζ2,js ∈ [0,1], then ζ ∈ [0,1] [13]. Thus, since the set B is H2−convex, ζ x+(1−ζ )y ∈ B for
x,y ∈ B, ζ ∈ H+

2 and ζ ∈ [0,1]. In that case,

e1,js (ζ x+(1−ζ )y) = e1,js
((

ζ1,js e1,js +ζ2,js e2,js
)

x
+
(
1−
(
ζ1,js e1,js +ζ2,jse2,js

))
y
)

= ζ1,js e1,jsx+
(
1−ζ1,js

)
e1,js y

= ζ1,jst1 +
(
1−ζ1,js

)
t2 ∈ e1,jsB.

From here, the set e1,jsB is a H2−convex subset of H2−modules e1,js X . Similarly, it can be proved that the set e2,jsB is
H2−convex subset of H2−module e2,jsX for s = 1.

ii) Let t1 = e1,js x ∈ e1,js B and t2 = e1,js y ∈ e1,jsB for x,y ∈ B and s = 2,3. ζ = ζ1,js e1,js + ζ2,js e2,js ∈ H+
2 such that

ζ1,js ,ζ2,js ∈ H+ and ζ1,js ,ζ2,js ∈ [0,1]. Hence, ζ ∈ [0,1]. Since the set B is H2−convex set ζ x+(1−ζ )y ∈ B. Similarly,
we get

e1,js (ζ x+(1−ζ )y) = e1,js
((

ζ1,js e1,js +ζ2,js e2,js
)

x
+
(
1−
(
ζ1,jse1,js +ζ2,jse2,js

))
y
)

= ζ1,jse1,js x+
(
1−ζ1,js

)
e1,jsy

= ζ1,jst1 +
(
1−ζ1,js

)
t2 ∈ e1,js B.

Hence, the sets e1,js B for s = 2,3 are H−convex subsets of H−modules e1,jsX . Also, it can be proved that the sets e2,js B
are H−convex subsets of H−modules e2,jsX for s = 2,3 in a similar manner.

iii) Let B be a H2−convex subset of the H2−module X and θ ∈ B. t ∈ e1,js B for s = 1,2,3. There is an element x ∈ B
such that t = e1,js x ∈ e1,js B. Considering that θ ∈ B, since B is H2−convex subset e1,js x+

(
1− e1,js

)
θ = e1,jsx = t ∈ B

where 0≤ e1,js ≤ 1 and e1,js ∈ H+
2

(
H+ ⊆ H+

2

)
for x,θ ∈ B. Consequently e1,js B⊆ B is obtained. Similarly, we deduce

e2,jsB⊆ B for s = 1,2,3.

Lemma 4.17. Let X be a H2−module and the sets {Bl : l arbitrary} be any H2−convex subsets of X. Then, the set ∩
l

Bl = B

is H2−convex, too.

Theorem 4.18. Let X be a H2−module and ∅ 6= B⊆ X be a H2−convex subset. Then, B = e1,js B+ e2,js B for s = 1,2,3.

Proof. Assume that B is a H2−convex subset of H2−modules X and take x ∈ B. e1,js x ∈ e1,js B and e2,js x ∈ e2,js B for s = 1,2,3.
Since e1,js + e2,js = 1 then

x =
(
e1,js + e2,js

)
x = e1,jsx+ e2,jsx ∈ e1,js B+ e2,js B.

Thus, B⊆ e1,jsB+e2,js B. Conversely, let us take t1 ∈ e1,js B and t2 ∈ e2,jsB where t1 = e1,js x and t2 = e2,jsy for x,y ∈ B. Since the
set B is H2−convex, t1 + t2 = e1,js x+ e2,jsy = e1,jsx+

(
1− e1,js

)
y ∈ B where e1,js ,e2,js ∈ H+

2 and 0≤ e1,js ,e2,js ≤ 1. Therefore,
e1,jsB+ e2,jsB⊆ B. This completes the proof.

Theorem 4.19. Let X be a H2−module and ∅ 6= B⊆ X. If the sets e1,jsB and e2,js B are H2−convex sets for s = 1,2,3 then the
set e1,jsB+ e2,jsB is a H2−convex subset of X, too.

Proof. Assume that x,y ∈ e1,js B+ e2,js B and ζ ∈ H+
2 such that 0 ≤ ζ ≤ 1. Then, x = e1,js x+ e2,js x and y = e1,js y+ e2,js y

where e1,js x, e1,jsy ∈ e1,js B and e2,jsx, e2,js y ∈ e2,jsB. The idempotent representation of ζ is ζ = ζ1,jse1,js + ζ2,js e2,js . Hence,
0≤ ζ1,js ,ζ2,js ≤ 1 and ζ1,js ,ζ2,js ∈ H+

2 because of ζ ∈ H+
2 . Since the sets e1,jsB and e2,jsB are H2−convex, then

e1,jsζ1,jsx+ e1,js

(
1−ζ1,js

)
y ∈ e1,jsB,

e2,js ζ2,jsx+ e2,js

(
1−ζ2,js

)
y ∈ e2,jsB.
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Therefore,
ζ x+(1−ζ )y = ζ1,jse1,js x+ζ2,js e2,jsx+

(
1−ζ1,js

)
e1,js y+

(
1−ζ2,js

)
e2,js y

= ζ1,js e1,jsx+
(
1−ζ1,js

)
e1,js y+ζ2,js e2,jsx+

(
1−ζ2,js

)
e2,js y

and [ζ x+(1−ζ )y] ∈ e1,jsB+ e2,js B. This proves the assertion.

Especially, if we take H2−modules X = H2, three different convex set definitions which are meaningful geometrically are
given for the first time in the following definition.

Definition 4.20. Let B⊆Mk ⊆ H2 be a subset of H2−module H2 for k = 1,2,3. For all x,y ∈ B and all real numbers λ ∈ R
such that 0≤ λ ≤ 1, then

i) B is called SMk−convex set if λx+(1−λ )y ∈ B and y ∈ SMk (x),

ii) B is called NMk−convex set if λx+(1−λ )y ∈ B and y ∈ NMk (x),

iii) B is called T Mk−convex set if λx+(1−λ )y ∈ B and y ∈ T Mk (x).

Theorem 4.21. Let B⊆Mk ⊆H2 be a SMk−convex subset of H2−module H2. The sets e1,jsB = e1,jsB1,js and e2,js B = e2,js B2,js
are, respectively s,k = 1,2,3,

i) SMk−convex subsets of H2−modules e1,jsH2 and e2,jsH2 if s = k,

ii) NMk−convex subsets of H2−modules e1,js H2 and e2,js H2 if s 6= k.

Proof. i) Let us take t1, t2 ∈ e1,jsB1,js for s = k s,k = 1,2,3. There are arbitrary elements x,y ∈ B such that t1 = e1,js x and
t2 = e1,jsy. Since the set B is a SMk−convex set, λx+(1−λ )y ∈ B where y ∈ SMk (x) and λ ∈ R such as 0 ≤ λ ≤ 1.
Moreover, we find

e1,js (λx+(1−λ )y) = λe1,js x+(1−λ )e1,js y
= λ t1 +(1−λ ) t2 ∈ e1,js B
= e1,jsB1,js .

Also, if t1, t2 ∈ e1,js B1,js , then t1 = e1,jst1 and t2 = e1,jst2. When s = k, if y ∈ SMk (x), then t2 ∈ SMk (t1) from [14].
Consequently, the sets e1,js B are SMk−convex subsets of the H2−modules e1,js H2. Similarly, it is proven that the sets
e2,jsB are SMk−convex subsets of H2−modules e2,js H2 for s = k.

ii) Following a similar way to the first proof and considering that if y ∈ SMk (x), then t2 ∈ NMk (t1) for s 6= k from [14], it is
proven that the sets e1,js B are NMk−convex subsets of H2−modules e1,jsH2. Similarly, the sets e2,jsB are NMk−convex
subsets of H2−modules e2,js H2, too.

Theorem 4.22. Let B⊆Mk ⊆H2 be a NMk−convex subset of H2−module H2. The sets e1,js B = e1,jsB1,js and e2,jsB = e2,js B2,js
are NMk−convex sets of H2−modules e1,jsH2 and e2,jsH2 respectively s,k = 1,2,3 where s = k or s 6= k.

Theorem 4.23. Let B⊆Mk ⊆H2 be a T Mk−convex subset of H2−module H2. The sets e1,jsB = e1,jsB1,js and e2,js B = e2,js B2,js
are, respectively s,k = 1,2,3,

i) T Mk−convex subsets of H2−modules e1,jsH2 and e2,jsH2 if s = k,

ii) NMk−convex subsets of H2−modules e1,js H2 and e2,js H2 if s 6= k.

Definition 4.24. Let X be a H2−module and ∅ 6= B ⊆ X. Some real numbers λ > 0 for all x ∈ X and for all scalars
µ ∈Mk ⊆ H2 such that |µ|jk ≥ λ (k = 1,2,3),

i) B is called SMk−absorbing set if x ∈ µB and µ ∈ SMk (O),

ii) B is called T Mk−absorbing set if x ∈ µB and µ ∈ T Mk (O).

Theorem 4.25. Let X be a H2−module and ∅ 6= B⊆ X. If the subset B is a SMk−absorbing set (k = 1,2,3). Then
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i) e1,jsB = e1,js B1,js and e2,jsB = e2,jsB2,js are SMk−absorbing sets of H2−modules e1,js X = X1,js and e2,js X = X2,js for
s = k = 1, respectively.

ii) e1,jsB = e1,js B1,js and e2,js B = e2,jsB2,js are SH−absorbing sets of H−modules e1,jsX = X1,js and e2,js X = X2,js for
s,k = 2,3 and s = k, respectively.

Proof. i) Let’s take x̃ ∈ e1,j1X for s = 1. There is an element x ∈ X such that x̃ = e1,j1x. Since B is SM1−absorbing
set for k = 1, x ∈ µB for some real numbers λ > 0 and all scalars µ ∈ SM1 (O) such as |µ|j1 ≥ λ . If we take
µ = µ1,j1e1,j1 +µ2,j1e2,j1 , then

x̃ = e1,j1 x ∈ e1,j1 µB = e1,j1

(
µ1,j1 e1,j1 +µ2,j1e2,j1

)
B = µ1,j1e1,j1B

is obtained. On the other hand, if µ ∈ SM1 (O), then |µ|j1 =
∣∣µ1,j1

∣∣
j1

and hence µ1,j1 ∈ SM1 (O) from the [14]. Conse-

quently, x̃ ∈ µ1,j1e1,j1B for some real numbers λ > 0 and for all scalars µ1,j1 ∈ SM1 (O) such that
∣∣µ1,j1

∣∣
j1
= |µ|j1 ≥ λ . In

that case, the set e1,j1B = e1,j1B1,j1 is a SM1−absorbing subset of H2−module e1,j1X = e1,j1X1,j1 .

ii) Consider x̃ ∈ e1,j2X for s = k = 2 where x̃ = e1,j2x and x ∈ X . Since B is SM2−absorbing set for k = 2, x ∈ µB for some
real numbers λ > 0 and for all scalars µ ∈ SM2 (O) such that |µ|j2 ≥ λ . Hence

x̃ = e1,j2x ∈ e1,j2 µB = e1,j2

(
µ1,j2e1,j2 +µ2,j2e2,j2

)
B = µ1,j2e1,j2B

is obtained where µ = µ1,j2e1,j2 +µ2,j2e2,j2 . On the other hand, |µ|j2 =
∣∣µ1,j2

∣∣
H and µ1,j2 ∈ SH (O) from the [14]. Hence,

the set e1,j2 B = e1,j2B1,j2 is SH−absorbing set of H2−modules e1,j2X = e1,j2X1,j2 . The case s = k = 3 can be proved by
using the similar way.

Theorem 4.26. Let X be a H2−module and ∅ 6= B⊆ X. If the subset B is T Mk−absorbing set for k = 1,2,3, then

i) e1,jsB = e1,js B1,js and e2,jsB = e2,js B2,js are T Mk−absorbing sets of H2−modules e1,jsX = X1,js and e2,jsX = X2,js for
s = k = 1,

ii) e1,jsB = e1,jsB1,js and e2,jsB = e2,js B2,js are T H−absorbing sets of H−modules e1,js X = X1,js and e2,jsX = X2,js for
s,k = 2,3 and s = k.

Topological bihyperbolic module which is not previously found in the literature is defined as follows.

Definition 4.27. Let X be a H2−module and τ is a Hausdorff topology on X. If the operations

+ : X×X → X

· : H2×X → X

are continuous, then the pair (X ,τ) is called a topological bihyperbolic module or topological H2−module.

When the topological vector spaces were introduced in [21], there was a condition such that the single point sets are
closed according to the topology on it. The topological vector spaces are Hausdorff space with this condition. But, when the
topological vector spaces were introduced in the literature, it was not said that the topology which is corresponding with the
topological vector spaces are Hausdorff topology. The reason for this is usually that most of the spaces already provide the
Hausdorff property. For instance, the topologies generated by norms on the normed vector space or the topologies generated
by metrics are Hausdorff topologies. These structures which are using in the functional analysis frequently appear in the
topological vector spaces, too. Although this article has more general structure than these structures, the topology corresponding
with H2−module is taken as Hausdorff topology, unless otherwise stated.

Theorem 4.28. Let (X ,τ) be a topological H2−module. The families

τ1,js =
{

e1,jsG : G ∈ τ
}
,

τ2,js =
{

e2,jsG : G ∈ τ
}

are Hausdorff topologies on the H2−modules X1,js and X2,js for s = 1,2,3, respectively. Especially, they are Hausdorff
topologies on H−modules X1,js and X2,js for s = 2,3, respectively.
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Theorem 4.29. Let (X ,τ) be a topological H2−module and
(
Xi,js ,τi,js

)
be topological spaces for s = 1,2,3 and i = 1,2. Then,

the operations
+ : Xi,js ×Xi,js → Xi,js ,

· : H2×Xi,js → Xi,js

are continuous.

Especially, the subsets X1,js and X2,js are H−modules of the H2−modules X , since ζ1,js ,ζ2,js ∈ H where
ζ = ζ1,js e1,js +ζ2,jse2,js ∈ H2 for s = 2,3. Hence, the operations

+ : Xi,js ×Xi,js → Xi,js

· : H×Xi,js → Xi,js

are continuous for s = 2,3 and i = 1,2, too.

Corollary 4.30. Let (X ,τ) be a topological H2−module. The pair
(
Xi,js ,τi,js

)
are topological H2−modules for s = 1,2,3 and

i = 1,2. Especially, the pair
(
Xi,js ,τi,js

)
are topological H−modules for s = 2,3 and i = 1,2, too.

Theorem 4.31. Let (X ,τ) be a topological H2−module. If the operation Ty : X → X for any y ∈ X is defined as Ty (x) = x+ y
for all x ∈ X, then it is a homeomorphism.

Proof. The operation Ty is continuous by the definition of the topological module and it is bijective by the axioms of the
module. Moreover, T−1

y (x) = T−y (x) = x− y and Ty ◦T−y = T−y ◦Ty = I are obtained. Therefore, the operation T−1
y = T−y is

also continuous. Consequently, the operation Ty is a homeomorphism.

Theorem 4.32. Let (X ,τ) be a topological H2−module. If the operation Mζ : X → X for any ζ ∈H∗2 is defined as Mζ (x) = ζ x
for all x ∈ X, then it is a homeomorphism.

Proof. The operation Mζ is continuous by the definition of the topological H2−module and it is bijective by the axioms of the
module. M−1

ζ
(x) = M1/ζ

(x) = x
ζ

for ζ ∈ H∗2 and Mζ ◦M1/ζ
= M1/ζ

◦Mζ = I are obtained. Hence, the operation M−1
ζ

= M1/ζ

is also continuous. This completes the proof.

We will investigate the properties of the interiors and the closures of the subsets of the H2−module X in the following
theorems. A◦ represents the interior of the set A and Ā represents the closure of the set A.

Theorem 4.33. Let X be a topological H2−module and ∅ 6= B⊆ X. Then the followings are satisfied.

i)
(
e1,js B

)◦
= e1,jsB

◦ and
(
e2,jsB

)◦
= e2,js B

◦ (s = 1,2,3).

ii)
(
e1,js B

)
= e1,js B̄ and

(
e2,js B

)
= e2,js B̄ (s = 1,2,3).

Proof. i) Let’s take x ∈
(
e1,js B

)◦. There exists an open neighbourhood G⊆ X such that x ∈ e1,js G⊆ e1,js B where x = e1,js y
and y ∈ G. Clearly, y ∈ G◦. Thus, x = e1,jsy ∈ e1,jsB

◦ and
(
e1,jsB

)◦ ⊆ e1,jsB
◦ are obtained. Conversely, let’s take

y ∈ B◦. Hence, e1,js y ∈ e1,jsB
◦. If y ∈ B◦, then there is an open neighbourhood G ⊆ X such as y ∈ G ⊆ B. Therefore,

e1,jsy ∈ e1,jsG⊆ e1,jsB. Since G is the open set in X , the set e1,jsG is also an open set in e1,jsX from Theorem 4.28 , too.
Consequently, e1,jsy ∈

(
e1,js B

)◦ and e1,js B
◦ ⊆

(
e1,js B

)◦ are obtained. These two inclusions prove the assertion. Similarly,

it can be shown that
(

e2
js

B
)◦

= e2
js

B◦.

ii) Let’s take x ∈
(
e1,js B

)
. There exists a net {xl} ∈ e1,js B such that {xl} → x. Moreover, the net {yl} ∈ B where

{xl} =
{

e1,jsyl
}

can be taken such as {yl} → y. Hence, y ∈ B̄. This means that {xl} =
{

e1,js yl
}
→ e1,jsy. Since

the topological space (X ,τ) is Hausdorff, the spaces
(
e1,jsX ,τ1,js

)
are Hausdorff, too. So, if there is the limit of a net in

the subset e1,jsB⊆ e1,js X , it is unique. Therefore, x = e1,jsy ∈ e1,js B̄. From here, the inclusion
(
e1,js B

)
⊆ e1,js B̄ is obtained.

Conversely, take y ∈ B̄. Hence, e1,jsy ∈ e1,js B̄. If y ∈ B̄, then there is a net {yl} ⊆ B such that {yl}→ y. Therefore, there

exists a net
{

e1,js yl
}
⊆ e1,jsB such as

{
e1,js yl

}
→ e1,jsy. So, e1,js y ∈

(
e1,js B

)
and e1,js B̄⊆

(
e1,jsB

)
are obtained. Similarly,

one can prove that
(
e2,jsB

)
= e2,js B̄.
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Theorem 4.34. Let X be a topological H2−module and ∅ 6= B ⊆ X. If B is a H2−convex subset of X then the following
relations are satisfied for s = 1,2,3.

i) B◦ = e1,jsB
◦+ e2,jsB

◦,

ii) B̄ = e1,js B̄+ e2,js B̄,

iii) B◦ is H2−convex,

iv) B is H2−convex.

Proof. i) Take into consideration x ∈ B◦. Then x =
(
e1,js + e2,js

)
x = e1,js x+ e2,js x ∈ e1,js B

◦
+ e2,js B

◦
since e1,js + e2,js = 1.

So B
◦ ⊆ e1,jsB

◦
+ e2,js B

◦
. On the other hand, since B is H2−convex, B = e1,js B+ e2,js B from Theorem 4.18. Hence,

e1,jsB
◦
+ e2,js B

◦
is an open subset of the topological H2−module X where e1,js B

◦
+ e2,jsB

◦ ⊆ e1,jsB+ e2,js B = B. But, the
largest open set contained in B must be B◦. So, e1,js B

◦
+ e2,js B

◦ ⊆ B
◦
. This completes the proof.

ii) If x ∈ B̄ is taken, then x ∈ e1,js B̄+ e2,js B̄ and B̄⊆ e1,js B̄+ e2,js B̄ are obtained. Note that in a topological vector space X if
A⊆ X and B⊆ X , then Ā+ B̄⊆ A+B [21]. Thus,

e1,js B̄+ e2,js B̄ = e1,jsB+ e2,jsB⊆ e1,jsB+ e2,jsB = B̄

from Theorem 4.33.

iii) Since B is H2−convex, ζ x+(1−ζ )y ∈ B for all x,y ∈ B and for all ζ ∈ H+
2 such that 0 ≤ ζ ≤ 1. This means that

ζ x+(1−ζ )y is an element of B when the elements x and y are scanning the set B. So, ζ B+(1−ζ )B⊆ B is obtained.
B
◦
= ζ B

◦
+(1−ζ )B

◦ ⊆ B since B◦ ⊆ B. Assume that ζ = 0. Therefore, ζ B
◦
+(1−ζ )B

◦
= B

◦ ⊆ B
◦
. Now, let’s take

ζ 6= 0. Since the addition and multiplication with scalar operations are homeomorphisms in X and B
◦
is an open set

in X , ζ B◦+(1−ζ )B◦ is an open set, too. But, the largest open set contained in B is B◦. So, ζ B◦+(1−ζ )B◦ ⊆ B◦.
Consequently, B◦ is a H2−convex set.

iv) Let B be a H2−convex subset of the topological H2−module X . Let’s define an operation

ϕζ : X×X → X

(x,y)→ ζ x+(1−ζ )y

for all ζ ∈ H+
2 such that 0 ≤ ζ ≤ 1. Since X is a topological H2−module, the addition and the multiplication with

scalar operations are continuous on X and hence the operation ϕζ is continuous, too. Moreover, since B is H2−convex,
ϕζ (B×B) ⊆ B for ζ ∈ H+

2 such as 0 ≤ ζ ≤ 1. Therefore, ϕζ (B×B) ⊆ B. So we get ϕζ (B×B) ⊆ ϕζ (B×B) since
the operation ϕζ is continuous. Consequently, ϕζ

(
B×B

)
= ϕζ (B×B) ⊆ B. Hence, B is a H2−convex subset of the

topological H2−module X .

Theorem 4.35. Let X be a topological H2−module and the subset ∅ 6= B⊆ X be a SMk−balanced subset of X for k = 1,2,3.
Then, the sets B and B◦ are SMk−balanced sets under the condition θ ∈ B◦ where θ is the unit element.

Proof. Let’s take ζ ∈ SMk (O) such that ζ ζ
jk ≤ 1. If ζ = 0, then ζ B = {θ} ⊆ B. We assume that ζ 6= 0. Since B ⊆ X

is a SMk−balanced subset, ζ B ⊆ B. Hence ζ B ⊆ B. Considering that the multiplication with the scalar operation is a
homeomorphism for ζ ∈ H∗2 from Theorem 4.32, ζ B = ζ B ⊆ B is obtained. Therefore, B is a SMk−balanced set. Assume
that θ ∈ B◦. First, if ζ = 0, then ζ B◦ = {θ} ⊆ B◦. Secondly, let’s take ζ 6= 0. ζ B⊆ B since B⊆ X is a SMk−balanced subset.
Thus, (ζ B)◦ ⊆ B◦ and ζ B◦ = (ζ B)◦ ⊆ B◦ from Theorem 4.32. Consequently, B◦ is a SMk−balanced set.

Theorem 4.36. Let X be a topological H2−module and the subset ∅ 6= B⊆ X be a NMk−balanced subset of X for k = 1,2,3.
Then B is a NMk−balanced set.

Proof. Let’s take ζ ∈ NMk (O) such that ζ ζ
jk = 0. If ζ = 0, then ζ B = {θ} ⊆ B. We assume that ζ 6= 0. Since B ⊆ X is a

NMk−balanced subset, ζ B⊆ B. Hence, ζ B⊆ B.ζ B⊆ ζ B from Theorem 4.32. Finally, ζ B⊆ ζ B⊆ B is obtained and so B is a
NMk−balanced set.
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The multiplication with scalar operation has inverse only for ζ ∈ H∗2 . Since the inverse of the multiplication with scalar
operation must be continuous so that ζ B◦ ⊆ (ζ B)◦, B◦ do not have to be a NMk−balanced set while the subset B is a
NMk−balanced set.

Theorem 4.37. Let X be a topological H2−module and the subset ∅ 6= B⊆ X be a T Mk−balanced subset of X for k = 1,2,3.
Then, B and B◦ are T Mk−balanced sets under the condition θ ∈ B◦ where θ is the unit element.

Theorem 4.38. Let X be a topological H2−module. The followings are satisfied for k = 1,2,3.

i) All neighbourhoods of the element θ contain a SMk−absorbing neighbourhood of the element θ in X.

ii) All neighbourhoods of the element θ contain a SMk−balanced neighbourhood of the element θ in X.

iii) All H2−convex neighbourhoods of the element θ contain a H2−convex and SMk−balanced neighbourhood of the element
θ in X.

Proof. i) Let Uθ be any neighbourhood of θ ∈ X and Vx be any neighbourhood of x ∈ X . If ζ = 0, then M0 (x) = θ . Since
the multiplication with the scalar operation Mζ is continuous, MA0 (Vx)⊆Uθ . Also, there is a neighbourhood of radius
λ > 0 and center 0 ∈ H2 such as A0 ⊆ Mk ⊆ H2. Therefore, there is a neighbourhood Wθ ⊆Uθ such that µx ∈Wθ ,
|µ|jk ≤ λ and µ ∈ (SMk (O)∩A0). Moreover, if we choose 1

λ
= δ , then δ > 0 and x ∈ µ−1Wθ for the scalars µ such as∣∣µ−1

∣∣
jk
≥ δ . Consequently, Wθ is a SMk−absorbing subset of X .

ii) Let Uθ be any neighbourhood of the unit element θ ∈X . Since M0 (θ) = θ and the multiplication with the scalar operation
is continuous, there is a neighbourhood of θ such as Vθ and µVθ ⊆Uθ where the elements of the neighbourhood of
0 ∈ H2 with radius δ > 0 are µ ∈ H2 and |µ|jk ≤ δ . Especially, let’s choose µ ∈ SMk (O). If we say ∪

|µ|jk≤δ

µVθ = Aθ ,

then ∪
|µ|jk≤δ

µVθ = θ for µ = 0 and {θ} ⊆Uθ . If µ 6= 0, then Aθ is a neighbourhood of θ and Aθ ⊆Uθ . Because the

multiplication with the scalar operation is a homeomorphism only for the invertible scalars. On the other hand, take
x ∈ Aθ and ζ ∈ SMk (O) such that |ζ |jk ≤ 1. Hence, there is some y ∈Vθ such as x = µy. We get ζ x = ζ µy ∈ Aθ since
|ζ µ|jk = |ζ |jk |µ|jk ≤ δ . So, Aθ is a SMk−balanced subset of the neighbourhood Uθ .

iii) Let Uθ ⊆ X be a H2−convex neighbourhood of θ ∈ X and A = ∩
|µ|jk=1

µUθ . There is a SMk−balanced neighbourhood

of θ such that Vθ ⊆Uθ from the previous proposition. Hence, µ−1Vθ = Vθ for µ ∈ SMk (O) such that |µ|jk = 1 and
Vθ ⊆ µUθ . Moreover, Vθ ⊆ A. It appears that A is a neighbourhood of θ and θ ∈ A◦ ⊆Uθ . Now, let’s see that the
set A◦ is a H2−convex and SMk−balanced subset. Since the images and inverse images of convex sets under linear
transformations are convex, the sets µUθ are H2−convex for µ ∈ SMk (O) such that |µ|jk = 1. Also, the intersection of
the H2−convex sets is H2−convex. So, the set A = ∩

|µ|jk=1
µUθ is H2−convex, too. Hence, the set A◦ is H2−convex from

Theorem 4.34 (iii). Finally, since µUθ are H2−convex sets containing the element θ , ζ µUθ ⊆ µUθ for all ζ ∈ H+
2 such

that 0≤ ζ ≤ 1. On the other hand, ζ λA = ∩
|µ|jk=1

ζ λ µUθ = ∩
|µ|jk=1

ζ µUθ ⊆ ∩
|µ|jk=1

µUθ = A for λ ∈ SMk (O) such that

|λ |jk = 1. Hence, the set A is SMk−balanced. A◦ is SMk−balanced according to Theorem 4.35 since θ ∈ A◦.

Theorem 4.39. Let X be a topological H2−module. Then the following properties are provided for k = 1,2,3.

i) All neighbourhoods of the element θ contain a T Mk−absorbing neighbourhood of the element θ in X.

ii) All neighbourhoods of the element θ contain a T Mk−balanced neighbourhood of the element θ in X.

iii) All H2−convex neighbourhoods of the element θ contain a H2−convex and T Mk−balanced neighbourhood of the
element θ in X.

Since the multiplication with the scalar operation is a homeomorphism only for the scalars which have a multiplicative
inverse, the neighbourhood of θ ∈ X does not contain NMk−balanced neighbourhood. Also, a H2−convex neighbourhood of
the element θ ∈ X does not contain a NMk−balanced neighbourhood of the element θ .
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Abstract
Orthoptic curves for the conics are well known. It is the Monge’s circle for ellipse and hyperbola, and for parabola
it is its directrix. These conics are level sets of quadratic functions in the plane. We consider level sets of
quadratic functions in higher dimension, known as quadric hypersurfaces. For these hypersurfaces we present
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1. Introduction
In the plane the orthoptic curve is the locus of the points by which pass two perpendicular tangents to the curve, in other words,
the locus of the points from which we ”see” the curve under a right angle. For the conics in the plane it is related to Monge’s
work [3].

For ellipse and hyperbola it is called the Monge’s circle. Given the ellipse x2

a2 +
y2

b2 = 1, the Monge’s circle is x2+y2 = a2+b2,

while for the hyperbola x2

a2 − y2

b2 = 1, it is x2 + y2 = a2−b2, which exists only for a2−b2 > 0. For the parabola y2 = 2px, the
orthoptic curve is its directrix x =−p/2. See for example [1], [2], [4] for more details.

For these examples in the plane we need two perpendicular tangents to a curve. So the two normal vectors to the tangent
planes, which are also normal vectors to the curve, are also orthogonal. One way to consider this locus in higher dimension is
to consider a set of tangent planes to the hypersurface such that the set of their normal vectors, to the given tangent planes, form
an orthogonal set.

In this paper we consider a natural way to define an orthoptic set associated to a quadric hypersurface. We first present,
in Section 2, the surface we are considering and define what we will consider as an orthoptic set. Then some notations are
introduced in Section 3. The next two sections contain the presentation and the proofs of our main results. In Section 4 we
consider ellipsoid and hyperboloid hypersurfaces. For ellipsoid, the technique in R3 seems to be due to Monge, as reported in
[5] where it is referred to [3]. We present here that it can be extended not only to ellipsoid in Rn, but also to hyperboloid in Rn.
Moreover in Section 5 a variant of this technique is also used to determine the orthoptic set for paraboloid hypersurfaces. In the
last section, the conclusion, a summary is presented and some questions are raised for future research.

The contribution of this paper is to present results for orthoptic sets, not only for conics in R2 [4] and quadrics in R3 [5],
but also for quadric hypersurfaces in Rn. Even thought it can be said that the technique for ellipsoid in R3 can be extended to
higher dimension [5], we present this extension not only for ellipsoids, but also for hyperboloids and paraboloids. We will see
that it is a nice application of the trace operator of a matrix. Finally, one question remains unanswered. The results say that the
orthoptic sets are included in some sets, but are these sets exactly the orthoptic sets. This result is true in Rn for n = 2,3, but for
n > 3 it is an open question.
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2. Preliminaries

2.1 Quadric hypersurfaces
The two quadratic functions we will study lead to ellipsoid or hyperboloid hypersurface defined by

f (x,y) =
I

∑
i=1

x2
i

a2
i
−

J

∑
j=1

y2
j

b2
j
= 1,

for (x,y) ∈ RI+J , and to paraboloid surface defined by

g(x,y,z) =
I

∑
i=1

x2
i

a2
i
−

J

∑
j=1

y2
j

b2
j
−

K

∑
k=1

pkzk = 0,

for (x,y,z) ∈ RI+J+K .

2.2 Orthoptic surface
Based on the fact that in the plane each point of the orthoptic curve is associated to two normal vectors to the tangent planes
or also to the curve, the next definition is suggested for a generalization in multidimensional Euclidean spaces of the usual
orthoptic curve in the plane.

Definition. Let a hypersurface S defined by h(ξ ) = 0 in RL. The orthoptic set is the set of points common to L tangent planes
to S under the condition that the L normals to the tangent planes form an orthogonal set.

3. Notations

Let x = (x1, . . . ,xI)∈RI , y= (y1, . . . ,yJ)∈RJ , z= (z1, . . . ,zK) and p= (p1, . . . , pK) ∈RK . Let N = I+J and M =N+K =
I + J+K. Let us introduce the I’th order diagonal matrix A = diag(ai), the J’th order diagonal matrix B = diag(b j), and the
N’th order diagonal matrix

P =

[
A O
O ιB

]
,

where ι is the unit complex number such that ι2 =−1. For any integer l ∈ Z, we have

Al = diag(al
i) and Bl = diag(bl

j),

and also

Pl =

[
Al O
O ι lBl

]
.

For any (line vector) q ∈ RL, qt will be its (column vector) transpose. So, we can rewrite the quadratic form f (x,y) as

f (x,y) = xA−2xt − yB−2yt = vP−2vt = f (v),

where v = (x,y) ∈ RN , and the quadratic form g(x,y,z) as

g(x,y,z) = xA−2xt − yB−2yt −2pzt = vP−2vt −2pzt = g(w),

where w = (v,z) = (x,y,z) ∈ RM .

4. Ellipsoid and Hyperboloid hypersurfaces
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4.1 Tangent planes
For

f (v) = vP−2vt ,

a row normal vector to the surface f (v) = 1 at a point v0 of this surface, noted V (v0), can be taken to be

V (v0) =
1
2

∇ f (v0) = v0P−2.

The tangent plane to f (v) = 1 at v0 is given by the condition

V (v0)(v− v0)
t = 0,

which gives
V (v0)vt =V (v0)vt

0 = v0P−2vt
0 = f (v0) = 1.

4.2 Orthoptic set
Let us suppose that there exists a finite sequence of points {vn}N

n=1 such that f (vn) = 1 for n = 1, . . . ,N, and {V (vn)}N
n=1 is an

orthogonal set. Let us look for the common point to the N tangent planes to the surface f (vn) = 1 at vn, that is to say a point
ṽ = (x̃, ỹ) such that

V (vn)ṽt = 1

for n = 1, . . . ,N. We have to solve the linear system V (v1)
...

V (vN)

 ṽt =

 1
...
1

 .
Using the orthogonality property of the family of normal vectors, we get V (v1)

...
V (vN)


−1

=
[

V t (v1)

|V (v1)|2
. . . V t (vN)

|V (vN)|2
]

and then

ṽ =
N

∑
n=1

1

|V (vn)|2
V (vn).

Again, from the orthogonality condition we get

|ṽ|2 = ṽṽt =
N

∑
n=1

1

|V (vn)|4
V (vn)V t(vn) =

N

∑
n=1

1

|V (vn)|2
.

Let us look at the inverse. We have

I =

 V (v1)
...

V (vN)

[ V t (v1)

|V (v1)|2
. . . V t (vN)

|V (vN)|2
]

and also

I =
[

V t (v1)

|V (v1)|2
. . . V t (vN)

|V (vN)|2
] V (v1)

...
V (vN)


=

N

∑
n=1

1

|V (vl)|2
V t(vn)V (vn)

=
N

∑
n=1

1

|V (vl)|2
P−2vt

nvnP−2.
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Let us observe that

P2 = PIP =
N

∑
n=1

1

|V (vn)|2
P−1vt

nvnP−1,

and taking the trace on both sides, we get

Trace(P2) =
I

∑
i=1

a2
i −

J

∑
j=1

b2
j ,

and

Trace(P2) =
N

∑
n=1

1

|V (vn)|2
Trace(P−1vt

nvnP−1)

=
N

∑
n=1

1

|V (vn)|2
Trace(vnP−2vt

n)

=
N

∑
n=1

1

|V (vn)|2
f (vn)

=
N

∑
n=1

1

|V (vn)|2
,

where we used the fact that Trace(HHt) = Trace(HtH). So we obtain the result we were looking for.

Theorem 4.1. Let the hypersurface, ellipsoid or hyperboloid, be defined by

I

∑
i=1

x2
i

a2
i
−

J

∑
j=1

y2
j

b2
j
= 1,

in RN where N = I + J. The orthoptic set of this hypersurface, if it exists, is included in the hypersphere of radius√
∑

I
i=1 a2

i −∑
J
j=1 b2

j ≥ 0 given by

I

∑
i=1

x2
i +

J

∑
j=1

y2
j =

I

∑
i=1

a2
i −

J

∑
j=1

b2
j .

5. Paraboloid hypersurface

5.1 Tangent planes
For

g(w) = vP−2vt −2pzt ,

a row normal vector to the surface g(w) = 0 at a point w0 of this surface, noted W (w0), can be taken to be

W (w0) =
1
2

∇g(w0) = (v0P−2,−p).

The tangent plane to g(w) = 0 at w0 is given by the condition

W (w0)(w−w0)
t = 0,

which gives

W (w0)wt =W (w0)wt
0 = v0P−2vt

0− pzt
0 = g(w0)+ pzt

0 = pzt
0.
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5.2 Orthoptic set
Let us suppose that there exists a sequence of points {wm}M

m=1 such that g(wm) = 0 for m = 1, . . . ,M, and {W (wm)}M
m=1 is an

orthogonal sequence. Let us look for the common point to the M tangent planes to the surface g(wm) = 0 at wm, that is to say a
point w̃ = (x̃, ỹ, z̃) such that

W (wm)w̃t = pzt
m

for m = 1, . . . ,M. We have to solve the linear system W (w1)
...

W (wM)

 w̃t =

 pzt
1

...
pzt

M

 .
Using the orthogonality properties of the family of normal vectors, we get W (w1)

...
W (wM)


−1

=
[

W t (w1)

|W (w1)|2
. . . W t (wM)

|W (wM)|2
]

and then

w̃t =
M

∑
m=1

1

|W (wm)|2
W t(wm)pzt

m,

and so

pz̃t =−|p|2
M

∑
m=1

1

|W (wm)|2
pzt

m.

Let us look at the inverse. We have

I =

 W (w1)
...

W (wM)

[ W t (w1)

|W (w1)|2
. . . W t (wM)

|W (wM)|2
]

and also

I =
[

W t (w1)

|W (w1)|2
. . . W t (wM)

|W (wM)|2
] W (w1)

...
W (wM)


=

M

∑
m=1

1

|W (wl)|2
W t(wm)W (wm)

=
M

∑
m=1

1

|W (wm)|2

[
P−2vt

lvlP−2 P−2vt
l p

ptvlP−2 pt p

]
.

Let us first observe that

|p|2 =
[

0 p
]

I
[

0
pt

]
=

M

∑
m=1

1

|W (wm)|2
[

0 p
][ P−2vt

lvlP−2 P−2vt
l p

ptvlP−2 pt p

][
0
pt

]
=

M

∑
m=1

1

|W (wm)|2
ppt ppt

=
M

∑
m=1

1

|W (wm)|2
|p|4 ,

so

|p|2
M

∑
m=1

1

|W (wm)|2
= 1.
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Using any K’th order diagonal matrix Q = diag(qk) where qk ∈ R for k = 1, . . . ,K, we have[
P2 0
0 Q2

]
=

[
P 0
0 Q

]
I
[

P 0
0 Q

]
=

M

∑
m=1

1

|W (wm)|2

[
P−1vt

lvlP−1 P−1vt
l pQ

QptvlP−1 Qpt pQ

]
,

and taking the trace on both sides, we get

Trace(P2)+Trace(Q2) =
I

∑
i=1

a2
i −

J

∑
j=1

b2
j +

K

∑
k=1

q2
k ,

and
M

∑
m=1

1

|W (wm)|2
Trace

[
P−1vt

lvlP−1 P−1vt
l pQ

QptvlP−1 Qpt pQ

]
=

M

∑
m=1

1

|W (wm)|2
[
Trace(P−1vt

mvmP−1)+Trace(Qpt pQ)
]

=
M

∑
m=1

1

|W (wm)|2
[
Trace(vmP−2vt

m)+Trace(pQ2 pt)
]

=
M

∑
m=1

1

|W (wm)|2
[
vmP−2vt

m + pQ2 pt]
=

M

∑
m=1

1

|W (wm)|2
[
P(wm)+2pzt

m + pQ2 pt]
= 2

M

∑
m=1

1

|W (wm)|2
pzt

m + pQ2 pt
M

∑
m=1

1

|W (wm)|2
.

For Q = 0 we obtain
I

∑
i=1

a2
i −

J

∑
j=1

b2
j = 2

M

∑
m=1

1

|W (wm)|2
pzt

m,

and for Q = I, since Trace(Q2) = Trace(I) = K and pQ2 pt = ppt = |p|2, we get

I

∑
i=1

a2
i −

J

∑
j=1

b2
j +K = 2

M

∑
m=1

1

|W (wm)|2
pzt

m + |p|2
M

∑
m=1

1

|W (wm)|2

= 2
M

∑
m=1

1

|W (wm)|2
pzt

m +1.

This is possible only for K = 1. So we obtain the result we were looking for.

Theorem 5.1. Let the hypersurface, a paraboloid, defined by

I

∑
i=1

x2
i

a2
i
−

J

∑
j=1

y2
j

b2
j
−

K

∑
k=1

pkzk = 0,

in RM where M = N +K = I + J+K.

For K = 1, the orthoptic set might exist and, if it exists, is included in the hyperplane

z =− p
2

[
I

∑
i=1

a2
i −

J

∑
j=1

b2
j

]
,

where we have considered p > 0.

For K > 1 the orthoptic set does not exist.
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Let us observe that the fact that K = 1 in this last theorem is not a surprise. Indeed for K > 1, since the last K entries of any
normal vectors are all equal to 1, it is not possible to find a set of M = I + J+K orthogonal (normal) vectors to the paraboloid
as assumed to get the result.

6. Conclusion
We have introduced orthoptic sets for hypersurfaces associated to quadratic forms in Rn. At least one interesting question
remains: are the hypersphere in Theorem 4.1 or the hyperplane in Theorem 5.1 exactly the orthoptic surfaces ? In other words,
to any point on the given hypersphere or hyperplane does there exists a set of orthogonal normals for which the point is the
unique common point to the corresponding set of planes ? As an example, for Theorem 4.1 with N = 2 and I = 1 = J, if the
radius is 0, which means that a1 = b1, it is not possible to find a set of 2 orthogonal normals, except if we consider that the two
asymptotes are tangent at infinity to the hyperbola. So what happens in higher dimension ?
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Abstract
The world is faced with disasters caused by natural or human effects from time to time. The various political,
economic, health, and social consequences of these disasters affect people for different periods of time. In
natural disasters and especially in epidemic diseases, some measures are taken to protect people from the
negative effects of the situation. One of the measures that can be taken is quarantine. The target audience of
this study is children aged 5-6 in early childhood. Children of this age group are in the process of gaining skills
in expressing their feelings during this period. In addition, the emotional responses of these children can be
noticed by a careful observer or even an expert.The aim of the paper is to evaluate the risks of the impacts of
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1. Introduction
Risk is the value determined according to the probability of the damage that dangerous situations can cause. The likelihood
and severity of the danger determine the degree of risk. Risk can also be defined as the combination of the probability
and violence of the danger, since it has a value determined according to the probability and consequence (severity) of the
danger, that is, the potential harm. The risk changes over time. So it is dynamic. Therefore, risk is a manageable phe-
nomenon. Broadly speaking, there are two different approaches to risk: In the first approach, risk means uncertainty. In
this case, it can contain both positive and negative consequences. In the second approach, risk means threat/danger. In this
case, it contains only negative consequences. It generally has the potential to cause harm. That is, it is dangerous and is
often linked to a condition or action that, if left unrestrained, could outcome in undesirable consequences such as illness or injury.
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Risk refers to the uncertainty contained in the applied activities. This uncertainty can have positive or negative consequences.
The purpose of risk management is to control the consequences of this uncertainty. For this, risk factors must be determined
and analysed. Each new unpredictable incident provides valuable experiences for risk executives on how to reply. Corona virus
is also no exception, as all other outbreaks are no exception. Based on what is known about the disease so far, some general
conclusions can be drawn about how such events should be handled in the future.

Multi-criteria decision making(MCDM) is carried out by modeling the decision process according to the criteria and
analyzing it in a way that maximizes the benefit that the decision-maker(DM) will obtain at the end of the continuum. Due to
the complexity of the decision-making continuum, the suggestion of a different approach in the literature every day ensures that
the MCDM approaches are constantly updated. MCDM approaches consisting of different ad numerous methods have been
subjected to different classifications in the literature. Generally, these classes are examined under two groups as MADM(multi-
attribute decision making) and MODM(multi-objective decision-making). The AHP (Analytic Hierarchy Process), put forward
by Thomas L. Saaty [1], is one of the MADM methods that help the DM. The fact that the criteria can be evaluated analytically
by comparison methods without numerical values makes this method more advantageous compared to other methods. This
technique speeds up the decision-making process and makes it more systematic. Tuysuz and Kahraman [2] stated that the
reliability and accuracy of risks with different dimensions should be evaluated and calculated by taking into account more than
one criterion.

Countries or associations generally try to calculate the economic effects of natural disasters first. For example, the European
Parliament published a briefing on the economic impacts of the COVID-19 global pandemic in February 2020 [3]. However,
people and countries are not only economically affected by disasters. Examples of the sociological effects of COVID-19 can be
given from China. The Financial Times reports that courts’ demands for divorce have increased dramatically after quarantine in
China [4]. An example of the impact of the SARS quarantine on mental health is the study by Hawryluck et al [5]. This study
emphasizes that after the virus, the results of the high rate of post-traumatic stress disorder and depression are reached in humans.

In natural disasters and especially in epidemic diseases, some measures are taken to protect people from the negative effects
of the situation. One of the measures that can be taken is quarantine. Therefore, Cliff and Smallman-Raynor [6] stated that the
quarantine was used to indicate restrictions on the activities of people or animals exposed to infectious diseases during the
infectious period. Children, who are members of the society and cannot be isolated from society, should be informed correctly
and sufficiently to prevent them from being affected by both the biological effect and the psychological effect of the epidemic.
Then, in a study conducted by Lima and Lemos [7] with children, it was emphasized that it was extremely important to inform
and raise awareness of children beforehand in order to prevent a pandemic. Because children may face troubles due to the long
duration of natural disasters and measures such as quarantine restricting people. Children may face personal losses, collective
deaths, and discomfort caused by the diseases caught in natural disasters and outbreaks. These situations can cause adversities
such as stress, anxiety, depression, and behavioral disorders in children.

Children’s responses to disasters can be examined in three categories: emotion, thought, and behavior. Pfefferbaum et al [8]
stated that the behavioral responses of children and adolescents against natural disasters differ from the behavior of adults in the
disaster process, however, traces of the reactions of adults to disasters can be seen in the behavior of children. In other words,
while children can develop different reactions to disasters than adults, they may show similar responses from time to time. For
this reason, it is important to remember that adults should be positive models against children under all conditions.

Children learn a lot of the information they learn through environmental stimuli. Vygotsky [9] states that the interaction of
the child with his environment, social relationships, other people, especially adults, play a very important role in cognitive
development. The stimuli that it is exposed to in the pandemic process direct the perception of children to the pandemic. In this
case, it is clear that children will pay more attention to the pandemic, quarantine, and related stimuli. In the process, the vast
majority of stimuli around children, including parents and digital media, lead their perception of COVID-19. If this perception
cannot be controlled properly, a false cognition and belief in children will be inevitable.

The most sensitive and vulnerable groups that are affected by the psychological and behavioural effects of disasters are
children [10]. In a survey of 1200 social workers published by the BASW (British Association of Social Workers) on March
25, 2020, participating experts stated that they were particularly concerned about children and their parents in the course of
the COVID-19 pandemic process [11]. Corona-virus quarantine, which started on 27 January 2020 in Wuhan, China due to
the spread of viruses in December 2019, has been shown as the largest quarantine in human history. Schools, workplaces,
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meetings, social events, and entry-exit to the city have been stopped [12]. In the following days, similar situations in other cities
and countries caused this quarantine to be applied in many parts of the world. In a meta-analysis study by Bish and Michie
[13], however, it was emphasized that there were some strategies that could be a guide in combating pandemics, and it was
emphasized that the confidence of the state was important in combating pandemics.

Gul [14] has integrated the fuzzy analytical hierarchy process (PFAHP) and fuzzy VIKOR (FVIKOR) into the risk assess-
ment process for the field of OHS. Site safety and decoration, repair, and maintenance projects in skyscrapers are of vital
importance. Ilkbahar et al [15] using PF Proportional Risk Assessment (PFPRA), PFAHP, and a fuzzy inference system have
developed a new integrated approach. In [16], by using Safety and Critical Effect Analysis and PFSs jointly, a new, more
exhaustive, and more accurate risk assessment method has been obtained. In [17], the risk assessment of these issues has been
examined with the AHP technique. Mahmudova and Jabrailova [18] developed an algorithm to evaluate the functionality of
the software using the analytical hierarchy process (AHP) method. An FMEA-based AHP-MOORA integrated approach in
Pythagorean fuzzy environment for a pipeline construction project was first developed by Mete [19]. Yucesan and Kahraman
[20] used the PFAHP method for risk assessment in hydroelectric power plants. The risk assessment of a hydroelectric power
plant project using the TOPSIS method was studied by Zhang et al. [21]. In [22], new convenient foundations of the PFSs
method were determined and the validity of these bases was discussed.

In [23], pandemic control measures are discussed on the negative consequences of coronavirus for children. In addition,
results regarding the mental health and well-being of children were expressed. Saurabh and Ranjan [24] selected a group of
children and adolescents who were quarantined in India as the target audience and examined their quarantine experiences, their
adaptation to the quarantine, and the impact of the quarantine on this group. In [25], the psychological effects of quarantine have
been investigated by using electronic databases. In this study, results such as trauma, stress symptoms, confusion, and anger
were obtained. In addition, it has been stated that the longer the quarantine period, the more negative situations are encountered.
Jiao et al [26] worked on the measures recommended to parents and family members to alleviate the fears and concerns of
children in the quarantine process. It has been suggested to produce many facilities such as increasing communication, playing
games, physical activities, and singing as music therapy in order to eliminate the fears and worries in children. There are similar
studies prepared recently ([27], [28], [29], [30], [31]).

The target audience of this study is children aged 5-6 at the end of early childhood. Children of this age group are in the
process of gaining skills in expressing their feelings during this period. In addition, the emotional responses of these children
can be noticed by a careful observer or even an expert. In addition to those mentioned in the literature, most of the studies
related to the effects on the adolescents and children of natural disasters in the World and Turkey focused on the symptoms of
”Post Traumatic Stress Disorder” which is one of the psychological effects of disasters [32]. The aim of the work is to evaluate
the risks of the impacts of quarantine status related to COVID-19 pandemic on cognition and behavior of children staying at
home.

2. Preliminaries
2.1 Pythagorean Fuzzy Sets
Uncertainty is a crucial concept for decision-making problems. It is not easy to make precise decisions in life since each
information contains vagueness, uncertainty, imprecision. Fuzzy Set(FS) Theory, Zadeh’s [33] pioneering work, proposed
a membership function to solve problems such as vagueness, uncertainty, imprecision, and this function took value in the
range of [0,1]. FS Theory had solved many problems in practice, but there was no membership function in real life, which
only includes acceptances. Rejection is as important as acceptance in real life. Atanassov [34] clarified this problem and
posed the Intuitionistic Fuzzy Set(IFS) Theory using the membership function as well as the non-membership function. In
IFS, the sum of membership and non-membership grades is 1. This condition is also a limitation for solutions of vague-
ness, uncertainty, imprecision. Yager [35], [36] has presented a solution to this situation and suggested Pythagorean Fuzzy
Sets(PFS). PFS is more comprehensive than IFS because it uses the condition that the sum of the squares of membership and non-
membership grades is equal to or less than 1. PFS is also a particular case of the Neutrosophic Set initiated by Smarandache [37].

In this paper, the initial universe, parameters sets will denote U , P, respectively.

The FS has emerged as a generalization of the classical set concept. A function dA : U → [0,1] is called FS on U . This
indicated by

A = {(ui,dA(ui)) : dA(ui) ∈ [0,1];∀ui ∈U} .
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Consider the set

B = {(u,dB(u),yB(u)) : u ∈U}.

The set B is called an IFS on U , where, dB : U → [0,1] and yB : U → [0,1] such that 0≤ dB(u)+ yB(u)≤ 1 for any u ∈U [34].

bB = 1−dB(u)− yB(u) is called the degree of indeterminacy.

An PFS C in U is given by

C = {(u,dC(u),yC(u)) : u ∈U},

where dC : U → [0,1] denotes the degree of membership and yC : U → [0,1] denotes the degree of non-membership of the
element u ∈U to the set C, respectively, with the condition that 0≤ [dC(u)]2 +[yC(u)]2 ≤ 1 [35], [36], [38].

bC =
√

1− [dC(u)]2− [yC(u)]2 is called the degree of indeterminacy.

Example 2.1. Let U = {u1,u2,u3} and A(u1) = (0.8,0.6),A(u2) = (0.7,0.7),A(u3) = (0.5,0.6) be three PFNs of ui,(i =
1,2,3). Then A is called a PFS with

A = {(u1,0.8,0.6),(u2,0.7,0.7),(u3,0.5,0.6)}. (2.1)

2.2 PFAHP
One of the techniques that gives the best results in Pythagorean fuzzy AHP. Mohd and Abdullah [39] proposed new
method(PFAHP) by integrating PFS into AHP for determination of criteria weight.

Weighted scales for PFAHP method are given in Table 1 [15], where Linguistic terms Certainly Low Importance, Very Low
Importance, Low Importance, Below Average Importance, Average Importance, Above Average Importance, High Importance,
Very High Importance, Certainly High Importance, Exactly Equal are shown as α , β , γ , δ , ε , η , θ , λ , µ , ϕ , respectively.

The algorithm of PFAHP as follows:

Step 1. According to experts’ evaluations, the pairwise comparison matrix E = (eik)m×m is created using Table 1.

Step 2. The upper and lower values of the membership and non-membership functions are calculated using Equations 2.2 and
2.3 and the difference matrix F = ( fik)m×m is obtained.

Step 3. The interval multiplicative matrix G = (gik)m×m is computed using the Equations 2.4 and 2.5.

Step 4. The determinacy value H = (hik)m×m of the eik is calculated using the Equation 2.6.

Step 5. The determinacy values and matrix G = (gik)m×m are multiplied to find the weight matrix before normalization, and the
T = (tik)m×m matrix is constructed using Equation 2.7.

Step 6. The normalized priority weights ωi are obtained with Equation 2.8.

fikI = d2
ikI− y2

ikI (2.2)
fikU = d2

ikJ− y2
ikJ (2.3)

gikI =
√

1000 fikI (2.4)

gikJ =
√

1000 fikJ (2.5)
hik = 1−

(
d2

ikJ−d2
ikI
)
−
(
y2

ikJ− y2
ikI
)

(2.6)

tik =
{

gikI +gikJ

2

}
hik (2.7)

ωi =
∑

m
k=1 tik

∑
m
i=1 ∑

m
k=1 tik

(2.8)
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Table 1. Weighted scales for the PFAHP

Linguistic terms PFN equivalents
IVPF numbers

mI mJ nI nJ
α 0.00 0.00 0.90 1.00
β 0.10 0.20 0.80 0.90
γ 0.20 0.35 0.65 0.80
δ 0.35 0.45 0.55 0.65
ε 0.45 0.55 0.45 0.55
η 0.55 0.65 0.35 0.45
θ 0.65 0.80 0.20 0.35
λ 0.80 0.90 0.10 0.20
µ 0.90 1.00 0.00 0.00
ϕ 0.195 0.195 0.195 0.195

3. COVID-19 Quarantine Implementation
According to identify the criteria to be measured, the cognitive and behavioral status of children should be taken into account
when doing risk analysis with respect to their attitudes in quarantine practice. For the weighting procedure, an aggregate of
expert opinions consisting of evaluations of Early Childhood experts will be taken. After this stage, the sub-criteria and their
weights will be used as entries for the AHP technique to prioritize the objectives and take the final decision. The experts in this
study are people working on Early Childhood. Experts cross-check the criteria identified in accordance with the cognitive and
behavioral attitudes of these age children and express their evaluations.

The linguistic terms and their numeric labels are:
For Questions to be asked to the child: Yes (1), maybe/some (2), no (3).
For Questions to be asked to parents: too much (1), much (2), some (3), too little (4), none (5).
The survey was prepared to be answered on the internet. Survey questions were asked to children aged 5-6 and their families.
The survey includes the following questions:

Questions to be asked to the child:

E1 Do you know Corona-virus?

E2 Does Corona-virus harm people?

E3 Does Corona-virus harm animals?

E4 Can Corona-virus be prevented?

E5 Are you afraid of Corona-virus?

E6 Do you think it’s nice not to go to school?

E7 Are you upset that you can’t go to school?

E8 Is the obligation to stay home boring?

E9 Can we be protected from Corona-virus by staying at home?

E10 Do you think you can go to school from now on?

Questions to be asked to parents:

P1 Does your child pay more attention to cleaning after Corona-virus?

P2 Has your child’s sleep pattern been impaired after Corona-virus?

P3 Have there been changes in your child’s nutritional habits after Corona-virus?
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Table 2. Classifications of hazards about children’s cognition

Current status information(CSI)

Children’s COVID-19 knowledge E1
The idea of COVID-19 harming people E2
The idea of COVID-19 harming animals E3

Knowledge of to prevent COVID-19 E4

Affecting children’s emotions(ACE)

Children’s fear of COVID-19 E5
Nice not to go to school E6

It’s sad to not go to school E7
The boringness of staying in the compulsory home E8

Affecting children’s thoughts(ACT) Being protected from COVID-19 by staying at home E9
To think that schools can be reopened E10

P4 Does your child behave anxiously after Corona-virus?

P5 Is your child afraid when a conversation about Corona-virus has passed?

P6 Does your child ask about Corona-virus?

P7 Did your child develop undesirable behaviour after Corona-virus?

P8 Is your child happy because she/he can’t go to school?

P9 Has the time your child spent on the Internet after Corona-virus increased?

P10 Has the time your child spent in front of the TV increased after Corona-virus?

The cognitive and behavioral distributions of questions are as follows:

For children’s cognition;

C1 Do children know about the current situation? (4 questions)

C2 Does the current situation affect children’s emotions? (4 questions)

C3 Does the current situation affect children’s thoughts? (2 questions)

For children’s behavioral;

B1 Has Corona-virus changed the basic habits of children? (3 questions)

B2 Did behavior change occur in children after quarantine? (5 questions)

B3 Did children’s behavior regarding information technologies increase after quarantine? (2 questions)

In this study, from Turkey, 201 children ages 5-6 units and 201 parents were the participants. Opinions of each child and
each parent about the questions asked were got. The effect of quarantine on their own cognition in line with the answers given
by the children and the effect of the behaviour of their children in line with the observations of the parents have been revealed.

Risk factors were identified as a result of interviews and evaluations with Early Childhood experts. Basic problem and
sub-problems related to this problem were created and data were obtained. The evaluations of early childhood experts were
obtained for the weights with the acquired data. The risk analysis structure of children’s and parents’ evaluations is given in
Figure 3.1. Cognitive and behavioral risks that can be classified in children are classified in Table 2 and Table 3. In Table
4, Table 5, compromised pairwise comparison tables for CSI and CB are given, respectively. These tables were created
according to the evaluations given by the experts by using the values in Table 1. Pythagorean fuzzy numbers are denoted by
< degree of membership,degree of non-membership >=< µL,µU ,υL,υU > in Table 4, Table 5.

For the weighting procedure, the sum of the assessments of the three experts was taken. As a result of expert evaluations,
10 critical criteria for cognitive development, and 10 critical criteria for behavioral development were determined. After this
step, in order to identify the priorities of the aims and make final decision, the sub-problems and their weights as PFAHP
inputs are studied. Experts are early childhood employees and can compare specified problems, report results, and indicate
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Table 3. Classifications of hazards about children’s behaviour

Change of basic habits of children(CBHC)
Change in cleaning habits after COVID-19 P1
Disruption in sleep pattern after COVID-19 P2

in the quarantine period Change in nutritional habits after COVID-19 P3

Change in behavioural after COVID-19(CB)

Anxiety increase after COVID-19 P4
The emergence of fear when COVID-19 is spoken P5

Asking questions about COVID-19 P6
Development of undesirable behavior after COVID-19 P7

The idea that it is good not to go to school P8

Change in behavior related
increase in time spent on the internet P9
Increase in time spent in front of TV P10

to Information Technologies(CBIT)

Figure 3.1. Risk analysis a) for children’s cognition, b) for children’s behavioural

their evaluations. Using pairwise comparison with the PFAHP method, 10 different hazards and associated risks identified
for each development situation are weighted. Pairwise comparisons were given by experts for the importance weight of each
evaluation criterion. Experts were asked to implement the linguistic variables indicated in Table 1. Here, the linguistic variables
are transformed into the corresponding interval-valued PFNs. Since the evaluation degrees of each expert are subjective and
will differ from each other, these subjective values are given as compromised pairwise comparison matrices in Table 4 for CSI
and Table 5 for CB, respectively. The D matrices and S matrices for CSI and CB are given Tables 6, 7, 8 and 9, respectively.
After hik determinacy values were calculated with Equation 2.6, T matrices (Tables 10 and 11) for CSI and CB were established
with Equation 2.7. Further, the importance weights for CSI and CB are indicated in Tables 12 and 13.

Analysis and Discussion

These tables will be calculated in ACT and ACE for the cognitive development category, CBIT and CBC for behavioral
development category. Then, the risk factors in each category will be determined. According to the results obtained with the
calculated tables, E2 for CSI and P5 for CB were determined as the most important risk factors. The evaluation here will be
made for E2 and P5.

Table 4. Linguistic evaluations for CSI

E1 E2 E3 E4
E1 < 0.195,0.195,0.195,0.195 > < 0.90,1.00,0.00,0.00 > < 0.65,0.80,0.20,0.35 > < 0.80,0.90,0.10,0.20 >
E2 < 0.80,0.90,0.10,0.20 > < 0.195,0.195,0.195,0.195 > < 0.54,0.64,0.36,0.46 > < 0.91,1.00,0.05,0.03 >
E3 < 0.65,0.80,0.20,0.35 > < 0.81,0.91,0.09,0.13 > < 0.195,0.195,0.195,0.195 > < 0.24,0.33,0.65,0.76 >
E4 < 0.90,1.00,0.00,0.00 > < 0.81,0.91,0.09,0.13 > < 0.48,0.59,0.41,0.52 > < 0.195,0.195,0.195,0.195 >
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Quarantine, which is one of the most important ways to prevent epidemic diseases, requires conscious participation.
However, in this process, it is also an important issue to direct the cognition and behaviour of more sensitive and disadvantaged
groups such as children. Although the World Health Organization (WHO) states that quarantine increases the capacity of people
to control the spread of infectious diseases [40], this may have negative repercussions on people. In addition to the restrictions
that may be experienced during the quarantine process, fear, anxiety, etc. related to basic needs and habits can threaten the
individual’s well-being, especially in terms of mental aspects.

The fact that the stimuli in the environment are intensely related to the virus causes children to learn about the virus. It is
possible to be exposed to such an intense flow of information in a short time, to limit life in an instant, to create a perception of
danger by talking about unpredictability and death news unnecessarily. According to the results obtained for CSI, the riskiest
factor is E2. During the quarantine process, the child is exposed to the flow of information from many sources, from her/his
immediate environment to her distant environment. When evaluated within the framework of ecological theory [41], it can be
said that sensitivity to interaction between different environments will increase during the quarantine process. The diversity of
information reaching the child through family and media-communication technologies reinforces this situation. However, if
this information is not suitable for the child’s level, misunderstanding and wrong cognition may develop. According to Piaget
[42], it is possible that the child who is still in the pre-operational period does not understand the information that contains
abstract elements. This situation can cause emotional problems in the child.

Misunderstanding and wrong cognition can disrupt the emotional balance of preschool children. According to the results
obtained for CB, the riskiest factor is P5. Piaget [42] stated that newly learned information creates an imbalance in mental
processes and that balance will occur with correct experiences. The child may develop fear, anxiety, and panic as a result of
the imbalance caused by the information he receives from the environment. However, the exaggerated application of control
measures may also increase children’s fears.

Gagne [43] stated that learning is a cumulative process. The individual can make sense of the stimuli coming from the
environment in her/his mind, associate that information with new situations and use it in solving problems [44], [45]. The
beliefs that the Corona-virus harms people, guides the children’s other cognitions and behaviours on this issue. In particular, the
negative behaviours of one or more of the family members related to the virus also affect the children. Because children imitate
adult responses. Even if there are different reasons for children to be affected cognitively, when these and similar triggering
factors are combined with the effect of the current period, it is possible to leave permanent problems in children. This situation
may negatively affect the healthy preparation of children for adulthood.

Every new experience means new knowledge. Especially children should get the correct information with correct experi-
ences in natural disasters such as epidemics. The information must be coded correctly and transformed into behaviour. For this,
administrators should inform the public with correct information and thinking about the psychology of society.

As children model adult reactions, parents should pay attention to their own behaviour and their own discourse in the home.
It is also important not to overreact to stimuli received from the media. However, messages sent by the media to children
should be filtered. When considered as a whole, it is recommended that parents and adults take a controlled approach without
exaggerating their way of interacting with the child. Considering the cognitive and behavioral development of children, parents
should not allow children to be exposed to too many news, notifications, and stimuli. However, it is not healthy also to act as if
nothing happened or will not happen by moving away from the usual situation.

At this point, as experts [46] have stated, it is important that adults have enough knowledge about the new coronavirus
and try to find a balance in order to answer their children’s questions well enough without increasing the severity of their
anxiety. All possible situations that cause anxiety and fear should be discussed in accordance with the developmental levels
of children in this period. Again, the questions of children on these issues should be tried to be answered. The message that
children will be safe and that the situation is controllable, especially when necessary precautions are taken, should be given in
an age-appropriate manner.

4. Conclusion
The quarantine measures carried out as a result of COVID-19 and the protective / preventive decisions taken in connection with
this process are very important for the psychological conditions of early childhood children. Risk assessments related to the
negative effects of the cognitive and behavioral development of children in this period have an important effect on decision-
making processes. In this study, 10 risk factors for cognitive development and 10 risk factors for behavioral development were
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Table 6. Difference matrix for CSI

E1 E2 E3 E4
E1 < 0.00,0.00 > <−0.19,0.00 > < 0.30,0.48 > < 0.48,0.80 >
E2 < 0.48,0.80 > < 0.00,0.00 > < 0.08,0.28 > < 0.8272,0.9975 >
E3 < 0.30,0.48 > < 0.6392,0.82 > < 0.00,0.00 > <−0.52,−0.3136 >
E4 < 0.81,1.00 > < 0.6392,0.82 > <−0.04,0.18 > < 0.00,0.00 >

Table 7. Difference matrix for CB

P4 P5 P6 P7 P8
P4 < 0.00,0.00 > <−0.10,−0.10 > < 0.828,0.9996 > < 0.81,1.00 > < 0.36,0.56 >
P5 < 0.81,1.00 > < 0.00,0.00 > < 0.5828,0.78 > < 0.846,0.9984 > <−0.06,0.18 >
P6 < 0.10,0.30 > < 0.36,0.56 > < 0.00,0.00 > <−0.06,0.18 > <−0.52,−0.3456 >
P7 < 0.81,1.00 > < 0.6664,0.82 > < 0.3456,0.52 > < 0.00,0.00 > <−0.10,0.10 >
P8 <−0.80,−0.60 > <−0.60,−0.30 > <−1.00,−0.81 > <−0.62,−0.3724 > < 0.00,0.00 >

Table 8. The interval multiplicative matrix for CSI

E1 E2 E3 E4
E1 < 1.00,1.00 > < 0.52,1.00 > < 2.81,5.25 > < 5.25,15.85 >
E2 < 5.25,15.85 > < 1.00,1.00 > < 1.32,2.63 > < 17.41,31.35 >
E3 < 2.82,5.25 > < 9.42,17.00 > < 1.00,1.00 > < 0.17,0.30 >
E4 < 16.40,31.62 > < 9.1,17.00 > < 0.79,1.86 > < 1.00,1.00 >

Table 9. The interval multiplicative matrix for CB

P4 P5 P6 P7 P8
P4 < 1.00,1.00 > < 0.70,0.70 > < 17.46,31.58 > < 16.40,31.62 > < 3.47,6.92 >
P5 < 16.40,31.62 > < 1.00,1.00 > < 7.49,14.80 > < 18.58,31.44 > < 0.81,1.86 >
P6 < 2.00,2.82 > < 3.47,6.92 > < 1.00,1.00 > < 0.81,1.86 > < 0.17,0.303 >
P7 < 16.40,31.62 > < 10.00,17.00 > < 3.30,6.02 > < 1.00,1.00 > < 0.707,1.41 >
P8 < 0.063,0.13 > < 0.13,0.35 > < 0.031,0.060 > < 0.117,0.276 > < 1.00,1.00 >

Table 10. The weights before normalization for CSI

E1 E2 E3 E4
E1 1.00 0.152 2.82 8.44
E2 8.44 1.00 1.58 19.80
E3 2.82 10.83 1.00 0.19
E4 4.80 10.70 1.03 1.00

Table 11. The weights before normalization for CB

P4 P5 P6 P7 P8
P4 1.00 0.70 20.35 4.80 4.16
P5 4.80 1.00 8.92 21.26 1.015
P6 1.93 4.16 1.00 1.015 0.20
P7 4.80 11.48 3.87 1.00 1.06
P8 0.08 0.17 0.01 0.15 1.00

Table 12. Importance weights of evaluation for CSI

Criteria Weight
E1 0.17
E2 0.40
E3 0.20
E4 0.23
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Table 13. Importance weights of evaluation for CB

Criteria Weight
P4 0.31
P5 0.37
P6 0.08
P7 0.22
P8 0.01

determined and evaluated with PFAHP. For this evaluation, the opinions of early childhood experts were taken. Preventive
measures have been expressed in order to minimize the most important risk factors identified.
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Abstract
In this paper, we consider the following system of rational difference equations

xn+1 =
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b+ cyn +dxn−1
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1. Introduction
Difference equations appear naturally as discrete analogues and as numerical solutions of differential and delay differential
equations having applications in biology, ecology, economy, physics, and so forth [5, 7, 14, 15]. Recently, there has been a
lot of works concerning the global behaviors of positive solutions of rational difference equations and positive solutions of
systems of rational difference equations [1, 2, 4, 8, 9, 12, 13]. It is extremely difficult to understand thoroughly the global
behaviors of solutions of rational difference equations and solutions of systems of rational difference equations, although they
have very simple forms. One can refer to [1]-[22] and the references cited therein to illustrate this. Therefore, the study of
rational difference equations and systems of rational difference equations is worth further consideration.

In [1] M.R.S. Kulenović and M. Nurkanović studied the global asymptotic behavior of solutions of the system of difference
equations

xn+1 =
Axnyn

1+ yn
, yn+1 =

Bxnyn

1+ xn
, n = 0,1,2, . . . ,

where A,B ∈ (0,∞) and the initial conditions x0 and y0 are arbitrary nonnegative numbers.
In [2] S. Kalabusić and M.R.S. Kulenović considered two systems of difference equations

xn+1 =
α1 + γ1yn

xn
, yn+1 =

α2 +β2xn

yn
, n = 0,1,2, . . . ,



Global Behavior of a System of Second-Order Rational Difference Equations — 151/162

and

xn+1 =
α1 + γ1yn

1+ xn
, yn+1 =

α2 +β2xn

1+ yn
, n = 0,1,2, . . . ,

where α1,α2,β2,γ1 ∈ (0,∞) and x0,y0 are positive numbers.
In [3], Q. Din et al. investigated behavior of the competitive system of difference equations

xn+1 =
α1 +β1xn−1

a1 +b1yn
, yn+1 =

α2 +β2yn−1

a2 +b2xn
, n = 0,1,2, . . . ,

where ai,bi,αi,βi ∈ (0,∞) for i ∈ {1,2} and initial conditions x−1,x0,y−1,y0 are positive numbers.
In [4], the author investigate the local asymptotic stability and global stability of equilibrium points, and the rate of

convergence of positive solutions of the system

xn+1 =
axn−bxnyn

1+ cxn +dyn
, yn+1 =

αxnyn−βyn

1+ γxn +ηyn
, n = 0,1,2, . . . ,

where a,b,c,d,α,β ,γ,η ∈ (0,∞) and the initial values (x0,y0) ∈ (0,∞).
Motivated by these above papers, in this paper we will consider the following system of difference equations

xn+1 =
a+ xn

b+ cyn +dxn−1
, yn+1 =

α + yn

β + γxn +ηyn−1
, n = 0,1,2, . . . , (1.1)

where a,b,c,d,α,β ,γ,η ∈ (0,∞) and the initial values x−1,x0,y−1,y0 ∈ (0,∞). More precisely, we investigate the local
asymptotic stability and global stability of equilibrium points, and the rate of convergence of positive solutions of the system
(1.1) which converge to its unique positive equilibrium point.

2. Boundedness and persistence
In the first result we will establish the boundedness and persistence of every positive solution of the system (1.1).

Theorem 2.1. Assume that b > 1, d < 1, β > 1 and γ < 1 then every positive solution {(xn,yn)} of the system (1.1) is bounded
and persists.

Proof. For any positive solution {(xn,yn)} of the system (1.1), we have

xn+1 ≤
a
b
+

1
b

xn, yn+1 ≤
α

β
+

1
β

yn, n = 0,1,2, . . . . (2.1)

Consider the following linear difference equations:

un+1 =
a
b
+

1
b

un, vn+1 =
α

β
+

1
β

vn, n = 0,1,2, . . . . (2.2)

We can see the solutions of (2.2) have the forms

un =
a

b−1
+C1(

1
b
)n, vn =

α

β −1
+C2(

1
β
)n, n = 1,2, . . . , (2.3)

where C1,C2 depend on initial conditions u0,v0.
Assume that b > 1 and β > 1 then the sequences {un} and {vn} are bounded. Suppose that u0 = x0 and v0 = y0 then by

comparison we have

xn ≤
a

b−1
=U1, yn ≤

α

β −1
=U2, n = 1,2, . . . . (2.4)

Also, from (1.1) and (2.4), we infer

xn+1 ≥
a

b+ cyn +dxn−1
≥ a

b+ cU2 +dxn−1
,

yn+1 ≥
α

β + γxn +ηyn−1
≥ α

β + γU1 +ηyn−1
,
n = 1,2, . . . . (2.5)
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Consider the following linear difference equations:

sn+1 = δ +dsn−1, tn+1 = θ +ηtn, n = 0,1,2, . . . , (2.6)

where δ = b+ cU2,θ = β + γU1.
We can see the solutions of (2.6) have the forms

sn =
δ

1−d
+C3(

√
d)n +C4(−

√
d)n,

tn =
θ

1− γ
+C5(

√
γ)n +C6(−

√
γ)n,

n = 1,2, . . . , (2.7)

where C3,C4 depend on initial conditions s−1,s0 and C5,C6 depend on initial conditions t−1, t0.
Assume that d < 1 and γ < 1 then the sequences {sn} and {tn} are bounded. Suppose that s−1 = x−1,s0 = x0 and

t−1 = y−1, t0 = y0 then by comparison we have

xn ≥
a

δ/(1−d)
=

a(1−d)
b+ cU2

=
a(1−d)
b+ c α

β−1
=

a(1−d)(β −1)
b(β −1)+ cα

= L1,

yn ≥
α

θ/(1− γ)
=

α(1− γ)

β + γU1
=

α(1− γ)

β + γ
a

b−1
=

α(1− γ)(b−1)
β (b−1)+ γa

= L2,

n = 1,2, . . . . (2.8)

From (2.4) and (2.5), we have

L1 ≤ xn ≤U1, L2 ≤ yn ≤U2, n = 1,2, . . . . (2.9)

Hence, the proof is completed.

Lemma 2.2. Let {(xn,yn)} be a positive solution of the system (1.1). Then, [L1,U1]× [L2,U2] is an invariant set for system
(1.1).

Proof. The proof follows by induction.

3. Global behavior
In the following, we state some main definitions used in this paper.

Let I,J be some intervals of real numbers and let

f : I2× J2 −→ I and g : I2× J2 −→ J (3.1)

are continuously differentiable functions. Then, for all initial values (x−1,x0,y−1,y0) ∈ I2× J2, the system of difference
equations

xn+1 = f (xn,xn−1,yn,yn−1), yn+1 = g(xn,xn−1,yn,yn−1), n = 0,1,2, . . . , (3.2)

has a unique solution {(xn,yn)}∞
n=1.

Definition 3.1. A point (x̄, ȳ) is called an equilibrium point of the system (3.2) if

x̄ = f (x̄, x̄, ȳ, ȳ), ȳ = g(x̄, x̄, ȳ, ȳ). (3.3)

Definition 3.2. [3, 5] Let (x̄, ȳ) be an equilibrium point of the system (3.2).

1. An equilibrium point (x̄, ȳ) is said to be stable if for every ε > 0 there exists δ > 0 such that for every initial point

(xi,yi), i ∈ {−1,0} if
0

∑
i=−1
‖(xi,yi)− (x̄, ȳ)‖< δ implies ‖(xn,yn)− (x̄, ȳ)‖< ε for all n > 0. An equilibrium point (x̄, ȳ)

is said to be unstable if it is not stable (the Euclidean norm in R2 given by ‖(x,y)‖=
√

x2 + y2 is denoted by ‖.‖).

2. An equilibrium point (x̄, ȳ) is said to be asymptotically stable if there exists η > 0 such that
0

∑
i=−1
‖(xi,yi)− (x̄, ȳ)‖< η

and (xn,yn)→ (x̄, ȳ) as n→ ∞.
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3. An equilibrium point (x̄, ȳ) is called a global attractor if (xn,yn)→ (x̄, ȳ) as n→ ∞.

4. An equilibrium point (x̄, ȳ) is called an asymptotic global attractor if it is global attractor and stable.

Definition 3.3. [3, 5] Let (x̄, ȳ) be an equilibrium point of a map F = ( f ,xn,g,yn), where f and g are continuously differentiable
functions at (x̄, ȳ). The linearized system of (3.2) about the equilibrium point (x̄, ȳ) is given by

Xn+1 = F(Xn) = FJXn,

where Xn =


xn
yn

xn−1
yn−1

 and FJ is a Jacobian matrix of the system (3.2) about the equilibrium point (x̄, ȳ).

In order to corresponding linearized form of system (1.1) we consider the following transformation:

(xn,xn−1,yn,yn−1)−→ ( f ,g, f1,g1), (3.4)

where f = xn+1,g = yn+1, f1 = xn,g1 = yn. The linearized system of (1.1) about (x̄, ȳ) is given by

Yn+1 = FJ(x̄, ȳ)Yn, (3.5)

where Yn =


xn
yn

xn−1
yn−1

 and the Jacobian matrix of the system (1.1) about the equilibrium point (x̄, ȳ) is given by

FJ(x̄, ȳ) =


1

b+cȳ+dx̄
−cx̄

b+cȳ+dx̄
−dx̄

b+cȳ+dx̄ 0
−γ ȳ

β+γ x̄+η ȳ
1

β+γ x̄+η ȳ 0 −η ȳ
β+γ x̄+η ȳ

1 0 0 0
0 1 0 0

 (3.6)

The following results will be useful in the sequel.

Lemma 3.4. [3] Assume that Xn+1 = F(Xn),n = 0,1,2, . . ., is a system of difference equations such that X̄ is a fixed point of F.
If all eigenvalues of Jacobian matrix FJ about X̄ lie inside the open unit disk |λ |< 1, then X̄ is locally asymptotically stable. If
one of them has a modulus greater than one, then X̄ is unstable.

Lemma 3.5. [6] Assume that q0,q1, . . . ,qk are real numbers such that

|q0|+ |q1|+ . . .+ |qk|< 1.

Then all roots of the equation

λ
k+1 +q0λ

k + . . .+qk−1λ +qk = 0

lie inside the unit disk.

The next theorem will show the existence and uniqueness of positive equilibrium point of the system (1.1).

Theorem 3.6. Assume that b > 1,β > 1 and the following conditions are satisfied:

−(c2
α + cdγ)U2

1 − cd(β −1)U1 +d2
η < 0, (3.7)

and

(cdγ−d2
η)L4

1 +[(b−1)cγ + cd(β −1)−2(b−1)dη ]L3
1

+[2adη + c2
α +(b−1)c(β −1)−acγ−η(b−1)2]L2

1

+[2a(b−1)η−ac(β −1)]L1−a2
η > 0,

(3.8)
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or

−(c2
α + cdγ)U2

1 − cd(β −1)U1 +d2
η > 0, (3.9)

and

(cdγ−d2
η)L4

1 +[(b−1)cγ + cd(β −1)−2(b−1)dη ]L3
1

+[2adη + c2
α +(b−1)c(β −1)−acγ−η(b−1)2]L2

1

+[2a(b−1)η−ac(β −1)]L1−a2
η < 0,

(3.10)

and

U1 <
2
√

αη

γ
(3.11)

Then there exists unique positive equilibrium point of the system (1.1) in [L1,U1]× [L2,U2].

Proof. Firstly, we consider the following system of algebraic equations

x =
a+ x

b+ cy+dx
, y =

α + y
β + γx+ηy

. (3.12)

From (3.12), it follows that

y =
a+ x−bx−dx2

cx
=

a
cx
− d

c
x− b−1

c
,

x =
α + y−βy−ηy2

γy
=

α

γy
− η

γ
y− β −1

γ
.

(3.13)

Set

f (x) =
a
cx
− d

c
x− b−1

c
, (3.14)

and

F(x) =
α

γ f (x)
− η

γ
f (x)− β −1

γ
− x. (3.15)

We have

f (U1) =
a

cU1
− d

c
U1−

b−1
c

=
a
c

b−1
a
− d

c
a

b−1
− b−1

c

=− d
c

a
b−1

=− d
cU1

,

(3.16)

F(U1) =
α

γ f (U1)
− η

γ
f (U1)−

β −1
γ
−U1

=− cαU1

dγ
+

dη

cγU1
− β −1

γ
−U1

=
−(c2α + cdγ)U2

1 − cd(β −1)U1 +d2η

cdγU1
,

(3.17)

f (L1) =
a

cL1
− d

c
L1−

b−1
c

=
−dL2

1− (b−1)L1 +a
cL1

, (3.18)
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F(L1) =
α

γ f (L1)
− η

γ
f (L1)−

β −1
γ
−L1

=
−η [−dL2

1− (b−1)L1 +a]2− cγL2
1[−dL2

1− (b−1)L1 +a]
cγL1[−dL2

1− (b−1)L1 +a]

+
−c(β −1)L1[−dL2

1− (b−1)L1 +a]+ c2αL2
1

cγL1[−dL2
1− (b−1)L1 +a]

=
(cdγ−d2η)L4

1 +[(b−1)cγ + cd(β −1)−2(b−1)dη ]L3
1

cγL1[−dL2
1− (b−1)L1 +a]

+
[2adη + c2α +(b−1)c(β −1)−acγ−η(b−1)2]L2

1

cγL1[−dL2
1− (b−1)L1 +a]

+
[2a(b−1)η−ac(β −1)]L1−a2η

cγL1[−dL2
1− (b−1)L1 +a]

.

(3.19)

From (3.15), we have

F(x) =
α

γ
.

cx
−dx2− (b−1)x+a

− η

γ
.
−dx2− (b−1)x+a

cx
− β −1

γ
− x. (3.20)

It follows that

F ′(x) =
cα

γ
.
−dx2− (b−1)x+a− x(−2dx−b+1)

[−dx2− (b−1)x+a]2

− η

cγ
.
x(−2dx−b+1)− [−dx2− (b−1)x+a]

x2 −1

=
cα

γ
.

dx2 +a
[−dx2− (b−1)x+a]2

+
η

cγ
.
dx2 +a

x2 −1

≥2
√

αη

γ
.

dx2 +a
x[−dx2− (b−1)x+a]

−1 > 2
√

αη

γ
.
1
x
−1.

(3.21)

Assume that condition (3.11) is satisfied, then we have F ′(x)> 0. Hence, F(x) = 0 has a unique positive solution in [L1,U1].

Theorem 3.7. The unique positive equilibrium point (x̄, ȳ) of system (1.1) is locally asymptotically stable if the following
condition holds

1+dU1

b+dL1 + cL2
+

1+ηU2

β + γL1 +ηL2
+

1+dU1 +ηU2 +(cγ +dη)U1U2

(b+dL1 + cL2)(β + γL1 +ηL2)
< 1. (3.22)

Proof. The characteristic polynomial of Jacobian matrix FJ(x̄, ȳ) about (x̄, ȳ) is given by

P(λ ) = λ
4− (A+B)λ 3 +(dx̄A+η ȳB+AB− cγ x̄ȳAB)λ 2− (dx̄AB+η ȳAB)λ +dη x̄ȳAB, (3.23)

where A =
1

b+dx̄+ cȳ
,B =

1
β + γ x̄+η ȳ

.

We have

|A+B|+ |dx̄A+η ȳB+AB− cγ x̄ȳAB|+ |dx̄AB+η ȳAB|+ |dη x̄ȳAB|
< (1+dx̄)A+(1+η ȳ)B+(1+dx̄+η ȳ+ cγ x̄ȳ+dη x̄ȳ)AB

<
1+dU1

b+dL1 + cL2
+

1+ηU2

β + γL1 +ηL2
+

1+dU1 +ηU2 +(cγ +dη)U1U2

(b+dL1 + cL2)(β + γL1 +ηL2)
< 1.

(3.24)

By using Lemma 3.5, we can see that all the roots of (3.23) satisfy |λ |< 1, and it follows from Lemma 3.4 that the unique
positive equilibrium point (x̄, ȳ) of the system (1.1) is locally asymptotically stable. Hence, the proof is completed.
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Theorem 3.8. The unique positive equilibrium point (x̄, ȳ) of system (1.1) is globally asymptotically stable if the following
condition holds

a+U1 < L1(b+ cL2 +dL1),α +U2 < L2(β + γL1 +ηL2). (3.25)

Proof. Arguing as in Theorem 1.1 of [11], we consider the following Lyapunov function:

Vn = x̄g(
xn

x̄
)+ ȳg(

yn

ȳ
), (3.26)

where

g(x) = x−1− lnx≥ 0,∀x > 0. (3.27)

It is easy to see that Vn is nonnegative function.
Consider

Vn+1−Vn =x̄(
xn+1

x̄
−1− ln

xn+1

x̄
)+ ȳ(

yn+1

ȳ
−1− ln

yn+1

ȳ
)

− x̄(
xn

x̄
−1− ln

xn

x̄
)+ ȳ(

yn

ȳ
−1− ln

yn

ȳ
)

=x̄(
xn+1− xn

x̄
+ ln

xn

xn+1
)+ ȳ(

yn+1− yn

ȳ
+ ln

yn

yn+1
).

(3.28)

Furthermore, from (3.27) we have

ln
xn

xn+1
≤ xn

xn+1
−1, ln

yn

yn+1
≤ yn

yn+1
−1. (3.29)

Then, from (3.28) and (3.29) we have

Vn+1−Vn ≤x̄
(

xn+1− xn

x̄
+

xn− xn+1

xn+1

)
+ ȳ
(

yn+1− yn

ȳ
+

yn− yn+1

yn+1

)
=

(xn+1− xn)(xn+1− x̄)
xn+1

+
(yn+1− yn)(yn+1− ȳ)

yn+1

≤(U1−L1)(1−
x̄

xn+1
)+(U2−L2)(1−

ȳ)
yn+1

)

= (U1−L1)
[a+ xn− x̄(b+ cyn +dxn−1)]

a+ xn

+(U2−L2)
[α + yn− ȳ(β + γxn +ηyn−1)]

α + yn

≤ (U1−L1)[a+U1−L1(b+ cL2 +dL1)]

a+L1

+
(U2−L2)[α +U2−L2(β + γL1 +ηL2)]

α +L2
.

(3.30)

By using condition (3.25), we have Vn+1−Vn ≤ 0 for all n≥ 0, so that Vn ≥ 0 is monotonically decreasing sequence. It follows
that lim

n→∞
Vn exists and is nonnegative. Hence, we imply that

lim
n→∞

(Vn+1−Vn) = 0. (3.31)

Then it follows that lim
n→∞

xn+1 = x̄ and lim
n→∞

yn+1 = ȳ. Furthermore, Vn≤V0 for all n≥ 0, which gives that (x̄, ȳ)∈ [L1,U1]× [L2,U2]

is uniformly stable. Hence, unique positive equilibrium point (x̄, ȳ)∈ [L1,U1]× [L2,U2] of system (1.1) is globally asymptotically
stable.
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4. Rate of convergence

In this section we give the rate of convergence of a solution that converges to the equilibrium E = (x̄, ȳ) of the systems (1.1)
for all values of parameters. The rate of convergence of solutions that converge to an equilibrium has been obtained for some
two-dimensional systems in [16] and [17].

The following results give the rate of convergence of solutions of a system of difference equations

xn+1 = [A+B(n)]xn (4.1)

where xn is a k-dimensional vector, A ∈ Ck×k is a constant matrix, and B : Z+ −→ Ck×k is a matrix function satisfying

‖B(n)‖→ 0 when n→ ∞, (4.2)

where ‖.‖ denotes any matrix norm which is associated with the vector norm; ‖.‖ also denotes the Euclidean norm in R2 given
by

‖x‖= ‖(x, y)‖=
√

x2 + y2. (4.3)

Theorem 4.1. ([18]) Assume that condition (4.2) holds. If xn is a solution of system (4.1), then either xn = 0 for all large n or

ρ = lim
n→∞

n
√
‖xn‖

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 4.2. ([18]) Assume that condition (4.2) holds. If xn is a solution of system (4.1), then either xn = 0 for all large n or

ρ = lim
n→∞

‖xn+1‖
‖xn‖

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 4.3. Assume that {(xn,yn)} is a positive solution of the system (1.1) such that limn→∞ xn = x̄, limn→∞ yn = ȳ, where

x̄ ∈ [L1,U1], ȳ ∈ [L2,U2]. Then the error vector en =


e1

n
e2

n
e1

n−1
e2

n−1

=


xn− x̄
yn− ȳ

xn−1− x̄
yn−1− ȳ

 of every solution (xn,yn) 6= (x̄, ȳ) of (1.1) satisfies

both of the following asymptotic relations:

lim
n→∞

n
√
‖en‖= |λi(JF(x̄, ȳ))| for some i ∈ {1, 2, 3, 4}

and

lim
n→∞

‖en+1‖
‖en‖

= |λi(JF(x̄, ȳ))| for some i ∈ {1, 2, 3, 4}

where |λi(JF(x̄, ȳ))| is equal to the modulus of one of the eigenvalues of the Jacobian matrix evaluated at the equilibrium (x̄, ȳ).

Proof. Let {(xn,yn)} be an arbitrary positive solution of the system (1.1) such that limn→∞ xn = x̄, limn→∞ yn = ȳ, where
x̄ ∈ [L1,U1], ȳ ∈ [L2,U2]. Firstly, we will find a system satisfied by the error terms, which are given as

xn+1− x̄ =
a+ xn

b+ cyn +dxn−1
− a+ x̄

b+ cȳ+dx̄

=
1

(b+ cyn +dxn−1)
(xn− x̄)

− c(a+ x̄)
(b+ cyn +dxn−1)(b+ cȳ+dx̄)

(yn− ȳ)

− d(a+ x̄)
(b+ cyn +dxn−1)(b+ cȳ+dx̄)

(xn−1− x̄),

(4.4)
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and

yn+1− ȳ =
α + yn

β + γxn +ηyn−1
− α + ȳ

β + γ x̄+η ȳ

=− γ(α + ȳ)
(β + γxn +ηyn−1)(β + γ x̄+η ȳ)

(xn− x̄)

+
1

(β + γxn +ηyn−1)
(yn− ȳ)

− η(α + ȳ)
(β + γxn +ηyn−1)(β + γ x̄+η ȳ)

(yn−1− ȳ).

(4.5)

Let e1
n = xn− x̄ and e2

n = yn− ȳ, then from (4.4) and (4.5) we have:

e1
n+1 = pne1

n +qne2
n + rne1

n−1,

e2
n+1 = gne1

n +hne2
n +wne2

n−1,

where

pn =
1

(b+ cyn +dxn−1)
,

qn =−
c(a+ x̄)

(b+ cyn +dxn−1)(b+ cȳ+dx̄)
,

rn =−
d(a+ x̄)

(b+ cyn +dxn−1)(b+ cȳ+dx̄)
,

gn =−
γ(α + ȳ)

(β + γxn +ηyn−1)(β + γ x̄+η ȳ)
,

hn =
1

(β + γxn +ηyn−1)
,

wn =−
η(α + ȳ)

(β + γxn +ηyn−1)(β + γ x̄+η ȳ)
.

Taking the limmits of pn, qn, rn,gn,hn and wn as n→ ∞, we obtain

lim
n→∞

pn =
1

(b+ cȳ+dx̄)
, lim

n→∞
qn =−

c(a+ x̄)
(b+ cȳ+dx̄)2 , lim

n→∞
rn =−

d(a+ x̄)
(b+ cȳ+dx̄)2 ,

lim
n→∞

gn =−
γ(α + ȳ)

(β + γ x̄+η ȳ)2 , lim
n→∞

hn =
1

(β + γ x̄+η ȳ)
, lim

n→∞
wn =−

η(α + ȳ)
(β + γ x̄+η ȳ)2 .

that is

pn =
1

(b+ cȳ+dx̄)
+αn, qn =−

c(a+ x̄)
(b+ cȳ+dx̄)2 +βn, rn =−

d(a+ x̄)
(b+ cȳ+dx̄)2 + γn,

gn =−
γ(α + ȳ)

(β + γ x̄+η ȳ)2 +δn, hn =
1

(β + γ x̄+η ȳ)
+ηn, wn =−

η(α + ȳ)
(β + γ x̄+η ȳ)2 +θn.

where αn→ 0, βn→ 0, γn→ 0,δn→ 0,ηn→ 0 and θn→ 0 as n→ ∞.
Now, we have system of the form (4.1):

en+1 = (A+B(n))en,

where

A =


1

(b+ cȳ+dx̄)
− c(a+ x̄)
(b+ cȳ+dx̄)2 − d(a+ x̄)

(b+ cȳ+dx̄)2 0

− γ(α + ȳ)
(β + γ x̄+η ȳ)2

1
(β + γ x̄+η ȳ)

0 − η(α + ȳ)
(β + γ x̄+η ȳ)2

1 0 0 0
0 1 0 0

 ,
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B(n) =


αn βn γn 0
δn ηn 0 θn
0 0 0 0
0 0 0 0

 ,

and
‖B(n)‖→ 0 as n→ ∞.

Thus, the limiting system of error terms can be written as:
e1

n+1
e2

n+1
e1

n
e2

n

= A


e1

n
e2

n
e1

n−1
e2

n−1

 .

The system is exactly linearized system of (1.1) evaluated at the equilibrium E = (x̄, ȳ). Then Theorem 4.1 and Theorem 4.2
imply the result.

5. Examples
In order to verify our theoretical results and to support our theoretical discussion, we consider several interesting numerical
examples. These examples represent different types of qualitative behavior of solutions of the systems (1.1). All plots in this
section are drawn with Matlab.

Example 5.1. Let a = 3,b = 1.045,c = 0.09,d = 0.8,α = 4,β = 1.5,γ = 0.69,η = 0.7. The system (1.1) can be written as

xn+1 =
3+ xn

1.045+0.09yn +0.8xn−1
, yn+1 =

4+ yn

1.5+0.69xn +0.7yn−1
, (5.1)

with initial conditions x−1 = 1.14, x0 = 1.8, y−1 = 1.1 and y0 = 1.6.

(a) Plot of xn for the system (5.1) (b) Plot of yn for the system (5.1)

(c) An attractor of the system (5.1)

Figure 5.1. Plots for the system (5.1)
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In this case, the unique positive equilibrium point of the system (1.1) is global attractor. In Figure 5.1, the plot of xn is
shown in Figure 5.1 (a), the plot of yn is shown in Figure 5.1 (b), and a phase portrait of the system (5.1) is shown in Figure 5.1
(c).

Example 5.2. Let a = 20,b = 1.002,c = 0.07,d = 0.8,α = 0.8,β = 2,γ = 0.09,η = 0.2. The system (1.1) can be written as

xn+1 =
20+ xn

1.002+0.07yn +0.8xn−1
, yn+1 =

0.8+ yn

2+0.09xn +0.2yn−1
, (5.2)

with initial conditions x−1 = 2, x0 = 3, y−1 = 0.45 and y0 = 0.55.

(a) Plot of xn for the system (5.2) (b) Plot of yn for the system (5.2)

(c) An attractor of the system (5.2)

Figure 5.2. Plots for the system (5.2)

In this case, the unique positive equilibrium point of the system (1.1) is global attractor. In Figure 5.2, the plot of xn is
shown in Figure 5.2 (a), the plot of yn is shown in Figure 5.2 (b), and a phase portrait of the system (5.2) is shown in Figure 5.2
(c).

6. Conclusion
This work is related to qualitative behavior of the system of second-order rational difference equations. We have investigated
the existence and uniqueness of positive equilibrium of system (1.1). Under certain parametric conditions the boundedness and
persistence of positive solutions is proved. Moreover, we have shown that unique positive equilibrium point of system (1.1) is
locally as well as globally asymptotically stable under certain parametric conditions. Furthermore, the rate of convergence of
positive solutions of (1.1) which converge to its unique positive equilibrium point is demonstrated. Finally, numerical examples
are established to support our theoretical results.
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1. Introduction
Optimization problems appear in all parts of our lives. These problems are classified according to the type of objective functions.
For example, when the objective function is a set-valued function/mapping/map, the optimization problem is named set-valued
optimization problem (shortly, SVOP). Recently, SVOP has attracted increasing attention because it has many applications
such as finance, control theory, game theory, engineering, statistic, etc.

In the SVOP, there are several approaches to solve these optimization problems. Vector and set approaches are the most
commonly used types. The first used is the vector approach. In this approach, efficient vectors of the image set of the objective
map are investigated. In order to be a solution of a point, the image set of this point has to contain an efficient vector of the
image set. The set approach, which is given by Kuroiwa [16, 17], depends on the comparison among values of the objective
map. So, an order relation must be used to compare sets in this approach. More information about these approaches and the
solution concepts are also available in [4, 6, 8–15, 17, 18], and references therein. In this current investigation, vector and set
approaches are considered.

Firstly, Kuroiwa et al. [19] mentioned about set relation based on the ordering cone. Then, they defined six order relations.
They gave relationships with each other. By using these order relations, the set optimization approach is constructed by
Kuroiwa [16, 17]. Kuroiwa obtained the solutions of SVOP with respect to (shortly, wrt) set approach. Jahn & Ha [6] obtained
some new order relations for SVOP. Two new partial order relations are defined by Karaman et al. [13] for SVOP. There are
still sets that can not be compared with these partial and the other order relations. That’s why we define a new order relation to
compare such sets in this paper.

In order to solve SVOP, some methods are used as vectorization, scalarization, directional derivative, subdifferential,
embedding space, and so on [1–4, 7–9, 11–15, 21, 23]. The well-known scalarization functions are Gerstewitz, the oriented
function of Hiriart-Urruty [5] and generalizations of them. Hernández & Rodrı́guez-Marı́n [4] found some optimality conditions
for SVOP via derived an extension of Gerstewitz function. Recently, some authors like Khushboo & Lalitha [15], Xu & Li [23],
Jiménez et al. [7], Ansari et al. [1] and Chen et al. [2] obtained scalarizations via some extension of the oriented function.
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A new relation on the subset of the space is defined via `-difference in this work. We show that this order relation is a
pre-order on the family of nonempty sets. Some properties of this pre-order relation are obtained. This pre-order relation is
compared with some well-known order relations in the literature. Also, the solutions of SVOP wrt set and vector approaches
are examined.

The layout of the study is ordered as follows: The basic definitions and concepts of SVOP are stated and mentioned in
section 2. In section 3, a pre-order relation is introduced and some properties are discovered. In section 4, after the solutions
concept of SVOP are recalled wrt set approach, the solutions of SVOP are compared according to set and vector approaches.

2. Mathematical Preliminaries
In this study, Y is denoted as a normed space and X is a vector space. Let K ⊂ Y be given. If λx ∈ K for all x ∈ K, λ > 0,
then K is called a cone. Assume that cone K is a convex, pointed (K∩ (−K) = {0Y}) and closed with the nonempty interior,
and Y be ordered by cone K. P(Y ) is denoted the family of proper and nonempty subsets of Y , that is, P(Y ) := {A ⊂ Y :
A 6= Y and A is nonempty}. Topological interior and convex hull of any set A ∈P(Y ) are indicated by int(A) and convA,
respectively.

It is denoted that the algebraic sum of A and B by A+B, the algebraic difference of A and B by A−B, Minkowski
(Pontryagin) difference of A and B by A−̇B := {x ∈ Y | x+B⊂ A} and `-difference of A and B by A	` B := {x ∈ Y | x+B⊂
A+K}= (A+K)−̇B for any A,B ∈P(Y ). Readers can find more information about these in [20–22].

The cone K induces an ordering relations on Y as follow: For x,x′ ∈Y , x≤K x′ iff x′−x ∈ K, and x <K x′ iff x′−x ∈ int(K).
Let A ∈P(Y ) be a set and a0 ∈ A. If A∩ (a0−K) = {a0} (A∩ (a0 +K) = {a0}), then a0 is called a minimal (maximal)

point of A. The set of all minimal and maximal points of A is indicated by minA and maxA, respectively. Likewise, if
A∩ (a0− int(K)) = /0 (A∩ (a0 + int(K)) = /0), then we say that a0 is a weak minimal (weak maximal) point of A.

Note that the binary relation � on S ⊂P(Y ) is called a pre-order on S if � is reflexive and transitive. Also, if pre-order
relation � is antisymmetric then the order relation is called a partial order on S .

Definition 2.1. Let S ⊂P(Y ) and A,B,C ∈S be any sets. The relation � on S is said to be

(i) compatible with the addition if A� B implies A+C � B+C,

(ii) compatible with positive scalar multiplication if A� B implies λA� λB for all scalars λ > 0.

Let F : X ⇒Y be a set-valued function such that F(x)∈P(Y ) for all x ∈ X , and dom(F) := {x ∈ X | F(x) 6= /0} be efficient
domain set of the set-valued mapping F . S⊂ dom(F) be given. Basic SVOP is described by

SVOP
{

min(max)F(x)
s.t. x ∈ S.

We denote the problem by (v− SVOP) when SVOP considers wrt vector approach. Efficient points of the set F(S) :=⋃
x∈S

F(x) are investigated to solve (v− SVOP), that is, if F(x0) contains a minimal (maximal) point of F(S), then x0 ∈ S is

called a solution of (v−SVOP). In the same way, if F(x0) contains a weak minimal (weak maximal) point of F(S), then x0 ∈ S
is entitled a weak solution of (v−SVOP).

In the set approach, a comparison among the values of the set-valued mapping is considered. Namely, efficient sets of
F (S) := {F(x) | x ∈ S} are investigated to solve SVOP. So, an order relation is needed to solve a SVOP by using the set
approach. In the following definition, some order relations are given:

Definition 2.2. [6, 13, 17] Let A,B ∈P(Y ).

(i) A�1 B is described by ∀a ∈ A, ∀b ∈ B, a≤K b,

(ii) A�2 B is described by ∃a ∈ A such ∀b ∈ B, a≤K b,

(iii) A�3 B is described by ∀b ∈ B, ∃a ∈ A such a≤K b,

(iv) A�4 B is described by ∃b ∈ B, such ∀a ∈ A, a≤K b,

(v) A�5 B is described by ∀a ∈ A, ∃b ∈ B such that a≤K b,

(vi) A�6 B is described by ∃a ∈ A, ∃b ∈ B such that a≤K b,

(vii) A�s B is described by A�3 B and A�5 B,
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(viii) A�m1 B is described by (B−̇A)∩K 6= /0,

(ix) A�m2 B is described by (A−̇B)∩ (−K) 6= /0.

It is assumed that ∗ ∈ {1,2,3,4,5,6,s,m1,m2} in the rest of the study. In the set approach, the problem is denoted by
(∗− SVOP) when SVOP considers wrt order relation �∗. The efficient set of F (S) is investigated to solve (∗− SVOP).
That is, if F(x0) ∈F (S) is a minimal (resp., maximal) set of F (S), then x0 is called a solution of (∗−SVOP). Similarly, if
F(x0) ∈F (S) is a weak minimal (resp., weak maximal) set of F (S), then x0 is named a weak solution of (∗−SVOP).

3. A new Order Relation for Set Approach
In this section, a pre-order relation is derived by using `-difference and some properties of this relation are examined.

Definition 3.1. Let A,B ∈P(Y ). `1 relation is defined as

A�`1 B :⇐⇒ (B	` A)∩K 6= /0.

When A and B are taken as singleton, there is a relation between �`1 and vector order relation ≤K on Y as:

a≤K b =⇒{a} �`1 {b}

for any A = {a},B = {b} and a,b ∈ Y .
When two sets don’t compare wrt partial order relation �m1 , they may be compared wrt order relation �`1 . For example,

when A = {(x,0) ∈ R2 | 1≤ x≤ 3} and B = {(0,y) ∈ R2 | 1≤ y≤ 3}, we have A�`1 B and A 6�m1 B.
Now, some properties of �`1 are presented.

Proposition 3.2. The order relation �`1 has the following properties;

(i) �`1 is compatible with the addition,

(ii) �`1 is compatible with the positive scalar multiplication.

Proof.

(i) Let A,B,C ∈P(Y ) and A�`1 B be given. Since A�`1 B, we have (B	` A)∩K 6= /0. That means there exists x̄ ∈ K such
that x̄ ∈ B	` A. Then, we get x̄+A⊂ B+K. So, x̄+A+C ⊂ B+C+K, that is x̄ ∈ (B+C)	` (A+C). Therefore,

[(B+C)	` (A+C)]∩K 6= /0.

Thus, we obtain A+C �`1 B+C that implies �`1 is compatible with the addition.

(ii) Let A �`1 B. We show that λA �`1 λB for all scalars λ > 0. Since A �`1 B, there exists an x̄ ∈ K such x̄ ∈ B	` A,
i.e., x̄+A ⊂ B+K. So, we have λ x̄+ λA ⊂ λB+ λK = λB+K and λ x̄ ∈ K because K is cone. Then, we obtain
(λB	` λA)∩K 6= /0, i.e., λA�`1 λB. Hence, �`1 is compatible with the positive scalar multiplication.

Proposition 3.3. The order relation �`1 has the following properties;

(i) �`1 is reflexive,

(ii) �`1 is transitive.

Proof.

(i) Let A ∈P(Y ). Because 0Y ∈ A	` A and 0Y ∈ K, we have (A	` A)∩K 6= /0. Hence, A�`1 A.

(ii) Assume that A�`1 B and B�`1 C for any A,B,C ∈P(Y ). We have (B	` A)∩K 6= /0 since A�`1 B. Then, there exists
x1 ∈ K such

x1 +A⊂ B+K. (3.1)

Since B�`1 C, (C	` B)∩K 6= /0 yields. Then, there exists x2 ∈ K such

x2 +B⊂C+K. (3.2)

From (3.1) and (3.2) we get x1 + x2 +A⊂ x2 +B+K ⊂C+K +K =C+K. As x1 + x2 +A⊂C+K and x1 + x2 ∈ K,
we obtain (C	` A)∩K 6= /0, i.e., A�`1 C.
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Remark 3.4. The order relation �`1 isn’t antisymmetric. For example, let Y = R2, K = R2
+, A = {(1,1)} and B = {(2,2)}

be given. Then, we get B	` A = {x ∈ R2 | x+A ⊂ B+K} = [1,∞)× [1,∞) and A	` B = {x ∈ R2 | x+B ⊂ A+K} =
[−1,∞)× [−1,∞). So, we have (B	` A)∩K 6= /0 and (A	` B)∩K 6= /0, i.e., A�`1 B and B�`1 A. But A 6= B. Hence, �`1 isn’t
antisymmetric.

Corollary 3.5. The order relation �`1 is a pre-order relation on P(Y ).

Now, a relation between the order relation �`1 and order relation �m1 are given.

Proposition 3.6. Let A,B ∈P(Y ). If A�m1 B, then A�`1 B.

Proof. Let A �m1 B, i.e., (B−̇A)∩K 6= /0 be given. There exists an x ∈ K such x+A ⊂ B. Because K is pointed, we get
x+A⊂ B+K, i.e., x ∈ B	` A. As x ∈ K and (B	` A)∩K 6= /0, we obtain A�`1 B

Note that �`1 doesn’t imply �m1 . This is presented in the following example.

Example 3.7. Let Y = R2, K = R2
+, A = conv{(0,0),(1,2)} and B = conv{(0,0),(2,1)}.

Figure 3.1. A = conv{(0,0),(1,2)}, B = conv{(0,0),(2,1)}, A	` B and B	` A

As seen in Figure 3.1, since (B	` A) = K, we have (B	` A)∩K = K, i.e., A�`1 B. On the other hand, as B−̇A = /0, we get
(B−̇A)∩K = /0, i.e., A 6�m1 B.

In the following definition, strict version of �`1 is given.

Definition 3.8. Let A,B ∈P(Y ). The strict `1 order relation is defined by

A≺`1 B :⇐⇒ (B	` A)∩ int(K) 6= /0

Note that ≺`1 implies �`1 . Namely, if A≺`1 B, then A�`1 B for all A,B ∈P(Y ).

Remark 3.9. The order relation ≺`1 is compatible with not only the addition but also the positive scalar multiplication.
Moreover, it is reflexive and transitive. But it isn’t antisymmetric.

One of the most important problems in the set order relations is that some sets can not be compared according to any order
relation. Although two sets may not be compared wrt order relation �∗, these sets can be compared wrt `1 order relation. This
is illustrated in the accompanying example.

Example 3.10. Let K = R2
+, A = {(x,y) ∈ R2 | 1≤ x≤ 2 and 3≤ y≤ 4} and B = {(x,y) ∈ R2 | 3≤ x≤ 4 and 1≤ y≤ 2}.

As seen Figure 3.2, while A 6�∗ B we obtain (B	` A)∩K 6= /0, i.e., A�`1 B.
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Figure 3.2. A = {(x,y) ∈ R2 | 1≤ x≤ 2 and 3≤ y≤ 4}, B = {(x,y) ∈ R2 | 3≤ x≤ 4 and 1≤ y≤ 2} and B	` A

Proposition 3.11. Let A,B ∈P(Y ). Then, the following assertions are satisfied:

(i) If there exist a ∈ A and b ∈ B such that b≤K a, then A�`1 B,

(ii) if there exist a ∈ A and b ∈ B such that b <K a, then A≺`1 B.

Proof. (i) Assume that there exist a ∈ A and b ∈ B such that b ≤K a. By contradiction, suppose that A 6�l1 B. Then,
(B	` A)∩K = /0, and we have k+A 6⊂ B+K for all k ∈ K. So, k+a 6∈ B+K for all k ∈ K, a ∈ A. From here, we get
k+a 6∈ b+K for all k ∈ K, a ∈ A and b ∈ B. Let k = 0Y , then a 6∈ b+K for all a ∈ A and b ∈ B. Therefore, for all a ∈ A
and b ∈ B we get b 6≤K a, which is a contradict.

(ii) This can be proven by similarly to (i).

4. Solution Concepts of SVOP According to Set and Vector Approaches

In this part of the study, we obtain relations between the solutions of (v−SVOP) and (`1−SVOP).
In the following definition, the efficient elements of a family are given wrt pre-order relation �`1 .

Definition 4.1. Let S ⊂P(Y ) and A ∈S be given. We call that

(i) A is an `1-minimal (`1-maximal) element of S iff

B�`1 A for some B ∈S =⇒ A�`1 B (A�`1 B for some B ∈S =⇒ B�`1 A),

(ii) A is a weak `1-minimal (weak `1-maximal) element of S iff

B≺`1 A for some B ∈S =⇒ A≺`1 B (A≺`1 B for some B ∈S =⇒ B≺`1 A).

If we consider SVOP wrt `1 order relation, then problem is denoted by

(`1−SVOP)
{

min(max)F(x)
s.t. x ∈ S.

Let x0 ∈ S be given. x0 is called a solution of (`1−SVOP) if F(x0) ∈F (S) is an `1-minimal (`1-maximal) set of F (S).
Similarly, x0 is called a weak solution of (`1−SVOP) if F(x0) ∈F (S) is a weak `1-minimal (weak `1-maximal) set of F (S).

The solution of (`1−SVOP) may not be the solution of (v−SVOP). Now, we will give an example related to this situation.
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Figure 4.1. F(A) = {(x,0) ∈ R2 | x > 0} and F(B) = {(0,y) ∈ R2 | y > 0}

Example 4.2. Let Y = R2, K = R2
+, set-valued map F : {A,B}⇒ R2 be defined as F(A) = {(x,0) ∈ R2 | x > 0} and

F(B) = {(0,y) ∈ R2 | y > 0}. Consider the following set-valued optimization problem

SVOP
{

minF(x)
s.t. x ∈ {A,B}.

As seen in Figure 4.1, F(A)∩min{F(A)∪F(B)} = /0 and F(B)∩min{F(A)∪F(B)} = /0. So, A and B pairs of sets are
not a solution of (v− SVOP). On the other hand, A and B are solution of (`1− SVOP) because F(A) �`1 F(B) implies
F(B)�`1 F(A), and F(B)�`1 F(A) implies F(A)�`1 F(B).

Conversely, the solution of (v−SVOP) may not be the solution of (`1−SVOP). The following example is related to this
situation.

Example 4.3. Let Y =R2, K =R2
+, set-valued map F : {1,2}⇒R2 be defined as F(1) = {(x,y) ∈R2| x = y and x≥ 0} and

F(2) = {(x,y) ∈ R2 | y =−x and x≥ 0}. Let’s consider the following problem

SVOP
{

minF(x)
s.t. x ∈ {1,2}.

Figure 4.2. F(1) = {(x,y) ∈ R2| x = y and x≥ 0} and F(2) = {(x,y) ∈ R2 | y =−x and x≥ 0}

As seen in Figure 4.2, because min{F(1)∪F(2)}∩F(1) 6= /0 and min{F(1)∪F(2)}∩F(2) 6= /0, 1 and 2 are solution of
(v−SVOP).
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Since (F(2)	` F(1))∩K 6= /0, we have F(1)�`1 F(2). As F(1)	` F(2) = /0, we obtain (F(1)	` F(2))∩K = /0. Hence,
we get F(2) 6�`1 F(1). Because F(1)�`1 F(2) doesn’t imply F(2)�`1 F(1), 2 isn’t a solution of (`1−SVOP). Although 2 is
a solution of (v−SVOP), it isn’t a solution of (`1−SVOP).

5. Conclusion
In this study, a new pre-order relation on the family of nonempty sets is introduced, and set-valued optimization problems
(`1−SVOP) are derived. Some optimality conditions can be obtained by using different tools such as vectorization, directional
derivative, scalarization, subdifferential etc. for (`1−SVOP).
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