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A New Hybrid Iterative Method for Solving Fixed
Points Problems for a Finite Family of Multivalued
Strictly Pseudo-Contractive Mappings and Convex

Minimization Problems in Real Hilbert Spaces
Thierno M. M. Sow

Abstract
In this paper, we investigate the problem of finding a common solution to fixed point problem involving
a finite family of multivalued strictly pseudo-contractive mappings and convex minimization problem
in the framework of Hilbert spaces. Inspired by the proximal point algorithm and general iterative
method, a new iterative method for solving the problem is introduced. Strong convergence theorem of
the proposed method is established without any compactness assumption. Our scheme generalize and
extend some of the existing results in the literature.

Keywords: Fixed points problems, Convex minimization problem, Set-valued operators, Iterative methods
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1. Introduction
Let H be a real Hilbert space with the inner product 〈., .〉 and norm ‖.‖ respectively. Let K be a nonempty closed

convex subset of H. Consider the following convex minimization problem: find x ∈ K such that

g(x) = min
y∈K

g(y),

where g : H → (−∞, +∞) be a proper convex and lower semi-continuous. The set of all minimizers of g on K is
denoted by argminy∈K g(y). In 1970, Martinet [21] introduced and studied the proximal point algorithm (PPA) for
solving optimization problems. Thereafter the likes of Rockafellar [29], find a solution of the constrained convex
minimization problem in the frame work of Hilbert space by using PPA. Let g be a proper convex and lower
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semi-continuous function on H. The PPA is defined as x1 ∈ H,
xn+1 = argminy∈H

[
g(y) +

1

2λn
‖xn − y‖2

]
,

(1.1)

where λn > 0 for all n ≥ 1. It was proved that the sequence {xn} converges weakly to a minimizer of g provided
∞∑
n=0

λn = ∞. In [12], it was shown that a PPA does not necessarily converges strongly. The fact that a PPA does

not necessarily converges strongly have been overcome by researchers in this area by introducing a more general
PPA in different spaces to obtain a weak and strong convergence . Over the years, researcher have been able to
further extend the convex minimization problems by finding a common element of the set of solutions of various
convex minimization problems and the set of fixed points for nonexpansive mappings in Hilbert spaces and Banach
spaces ( see, e.g., Güler [12], Solodov and Svaiter [31], Kamimura and Takahashi [14], Lehdili and Moudafi [15],
Reich, [28], Chidume and Djitte [7, 8] and the references therein).

Let (X, d) be a metric space, K be a nonempty subset of X and T : K → 2K be a multivalued mapping. An element
x ∈ K is called a fixed point of T if x ∈ Tx. For single valued mapping, this reduces to Tx = x. The fixed point set
of T is denoted by F (T ) := {x ∈ D(T ) : x ∈ Tx}.

The fixed point theory of multi-valued mappings is much more complicated and harder than the corresponding
theory of single-valued mappings. However, some classical fixed point theorems for single-valued mappings have
already been extended to multi-valued mappings; (see, for example, Brouwer [4], Kakutani [13], Nash [24, 25],
Garcia-Falset et al. [27]). The recent fixed point results for multi-valued mappings can be found Blasi et al. [3], Sow
[32], Sene et al. [30], Sow et al. [30] and the references cited therein.

Interest in the study of fixed point theory for multi-valued nonlinear mappings stems, perhaps, mainly from its
usefulness in real-world applications such as Game Theory and Non-Smooth Differential Equations, Optimization.

Let D be a nonempty subset of a normed space E. The set D is called proximinal (see, e.g., [26]) if for each x ∈ E,
there exists u ∈ D such that

d(x, u) = inf{‖x− y‖ : y ∈ D} = d(x,D),

where d(x, y) = ‖x − y‖ for all x, y ∈ E. Every nonempty, closed and convex subset of a real Hilbert space is
proximinal. Let CB(D), K(D) and P (D) denote the family of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of D respectively. The Pompeiu Hausdorff metric on
CB(D) is defined by:

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(D) (see, Berinde [2]). A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called L- Lipschitzian
if there exists L > 0 such that

H(Tx, Ty) ≤ L‖x− y‖, ∀x, y ∈ D(T ). (1.2)

When L ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if L = 1.

A mapping A : K → H is said to be k-strongly monotone if there exists k ∈ (0, 1) such that for all x, y ∈ K,

〈Ax−Ay, x− y〉H ≥ k‖x− y‖2.

A mapping A : K → H is said to be strongly positive bounded linear if there exists a constant k > 0 such that

〈Ax, x〉H ≥ k‖x‖2, ∀ x ∈ K.

Remark 1.1. From the definition of A, we note that strongly positive bounded linear operator A is a ‖A‖-Lipschitzian
and k-strongly monotone operator.
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Great attention has been paid to single-valued nonexpansive mappings (a special kind of strictly pseudo-contractive
mappings) because many nonlinear problems can be reduced to fixed point problems of nonexpansive mappings.
Among these iterative methods, the Mann iteration method is the mostfavour fixed point algorithm for nonexpansive
mappings since many algorithms can be reducedto Mann iteration. Recall that Mann’s iteration process [16] is
defined as follows: Let C be a nonempty, closed and convex subset of a Banach space X, Mann’s scheme is defined
by {

x0 ∈ C,
xn+1 = αnxn + (1− αn)Txn,

(1.3)

{αn} is a sequence in (0, 1). But Mann’s iteration process has only weak convergence, even in Hilbert space setting.
Therefore, many authors try to modify Mann’s iteration to have strong convergence for nonlinear operators (see,
e.g., [33], [30]).

In 2009, Yao et al. motivated by the fact that Mann’s algorithm method is remarkably useful for finding fixed
points of a nonexpansive mapping, they proved the following theorem.

Theorem 1.1. [37] Let H be a real Hilbert space. Let T : H → H be a nonexpansive mapping with F (T ) 6= ∅. For given
x0 ∈ H, let the sequences {xn} and {yn} be generated iteratively by{

yn = (1− αn)xn
xn+1 = βnyn + (1− βn)Tyn,

(1.4)

{βn} and {αn} are a real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)

∞∑
n=0

αn =∞.

Then the sequences {xn} and {yn} generated by (1.4) converge strongly to fixed point of T.

Recently, iterative methods for single-valued nonexpansive mappings have been applied to solve fixed points
problems and variational inequality problems in Hilbert spaces, see, e.g.,[18, 19, 35] and the references therein.

A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping
on a real Hilbert space H:

min
x∈F (T )

1

2
〈Ax, x〉 − 〈b, x〉. (1.5)

In [35], Xu proved that the sequence {xn} defined by iterative method below with initial guess x0 ∈ H chosen
arbitrary:

xn+1 = αnb+ (I − αnA)Txn, n ≥ 0, (1.6)

converges strongly to the unique solution of the minimization problem (1.5), where T is a nonexpansive mappings
in H and A a strongly positive bounded linear operator. In 2006 Marino and Xu [18] extended Moudafi’s results
[20] and Xu’s results [35] via the following general iteration x0 ∈ H and

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (1.7)

where{αn}n∈N ⊂ (0, 1), A is bounded linear operator on H and T is a nonexpansive. Under suitable conditions,
they proved the sequence {xn} defined by (1.7) converges strongly to the fixed point of T,which is a unique solution
of the following variational inequality

〈Ax∗ − γf(x∗), x∗ − p〉 ≤ 0, ∀p ∈ F (T ).

The important class of single-valued k-strictly pseudo-contractive maps on Hilbert spaces was introduced by
Browder and Petryshyn [5] as a generalization of the class of nonexpansive mappings.

Definition 1.1. Let K be a nonempty subset of a real Hilbert space H. A map T : K → H is called k-strictly
pseudo-contractive if there exists k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y − (Tx− Ty)‖2, ∀x, y ∈ K. (1.8)
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It is trivial to see that every nonexpansive map is strictly pseudo-contractive. Motivated by this, Chidume et al.
[10] introduced the of multivalued strictly pseudo-contractive mappings in real Hilbert as follows.

Definition 1.2. A multi-valued mapping T : D(T ) ⊆ H → CB(H) is said to be k-strictly pseudo-contractive, if there
exists k ∈ (0, 1) such for all x, y ∈ D(T ), we have(

H(Tx, Ty)
)2

≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, ∀u ∈ Tx, v ∈ Ty. (1.9)

if k = 1 in (1.9), the map T is said to be pseudo-contractive.

Remark 1.2. It is easily seen that any multivalued nonexpansive mapping is k-strictly pseudocontractive for any
k ∈ (0, 1). Moreover the inverse is not true (see,e.g., Sene et al. [30]).

With this definition at hand, many mathematicians proved some strong convergence theorems for approximating
fixed points of multivalued k-strictly pseudo-contrcative mappings under some compactness conditions (see, for
example, Sene et al. [30], Chidume et .al [10], Sow et al. [34] ).

In 2019, A. A. Mebawondu [22] introduced the following iterative method to find a common element of the set of
minimizers of a convex function and the set of common fixed points of a finite family of multivalued nonexpansive
mappings, proved the following theorem.

Theorem 1.2 ( A. A. Mebawondu [22] ). Let K be a nonempty closed convex subset of a real Hilbert space H. Let m ≥ 1 be
a fixed number, for i, 1 ≤ i ≤ m, let Ti : K → CB(K) be a multivalued nonexpansive mappings and f : K → (−∞, +∞)

be a proper convex and lower semi-continuous function such that Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈K f(y) 6= ∅ and Tip = {p} for

all p ∈
m⋂
i=1

F (Ti).Let {xn} be a sequence defined iteratively from arbitrary x1 ∈ K by:


yn = Jfλn

xn,

zn = γn
0xn +

m∑
i=1

γn
iyin, v

i
n ∈ Tiun

xn+1 = αn
0zn + (1− αn0)wn, wn ∈ Tizn

(1.10)

where = αn
0 ⊂ (0, 1), γn

0 ⊂ (0, 1) and {λn} ⊂]0,∞[ satisfy:

(i)

∞∑
n=0

αn
0 =

∞∑
n=0

γn
0 = 1, (ii){λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequence {xn}

generated by (3.3) converges weakly to an element of Γ.

In the recent years, the problem of finding a common element of the set of solutions of convex minimization
and fixed point problems in real Hilbert spaces have been intensively studied by many authors; see, for example,
[10, 16, 18, 34? , 35] and the references therein.

In this paper, motivated by above results, the fact that the class of multivalued strictly pseudo-contractive
mappings contains those of multivalued nonexpansive and multivalued firmly nonexpansive mappings as sub-
classes and general proximal point algorithm is remarkably useful for solving most important problems with
nonlinear operators, we construct and study an explicit iterative method and prove strong convergence theorems
by using a modified general proximal point algorithm for approximating for approximating a common element
of the set of minimizers of a convex function and the set of common fixed points of a finite family of multivalued
strictly pseudo-contractive mappings in the setting of a real Hilbert space which is a solution of some variational
inequalities problems. Our result extends and improves the results of A. A. Mebawondu [22], Yao et al. [37], Marino
and Xu [18] Rockafellar [29] and many other authors.

2. Preliminaries
Let us recall the following definitions and results which will be used in the sequel.
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Let H be a real Hilbert space. Let {xn} be a sequence in H, and let x ∈ H. Weak convergence of xn to x is
denoted by xn ⇀ x and strong convergence by xn → x. Let K be a nonempty, closed convex subset of H. The
nearest point projection from H to K, denoted by PK assigns to each x ∈ H the unique PKx with the property

‖x− PKx‖ ≤ ‖y − x‖

for all y ∈ K. It is well know that PK satisfies

〈x− PKx, y − PKx〉 ≤ 0 (2.1)

for all y ∈ K.

Definition 2.1. Let H be a real Hilbert space and T : D(T ) ⊂ H → 2H be a multivalued mapping. I − T is said to
be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and d(xn, Txn) converges
to zero, then p ∈ Tp.

Lemma 2.1 (Demiclosedness Principle, [4]). Let H be a real Hilbert space, K be a nonempty closed and convex subset of
H . Let T : K → CB(K) be a multivalued nonexpansive mapping with convex-values. Then I − T is demi-closed at zero.

Lemma 2.2 ([6]). Let H be a real Hilbert space. Then for any x, y ∈ H, the following inequality hold:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.3 (Xu, [36]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤ (1− αn)an + αnσn
for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)

∞∑
n=0

αn =∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| <∞. Then lim
n→∞

an = 0.

Lemma 2.4. [17] Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there exists a subsequence
tni

of tn such that tni
such that tni

≤ tni+1
for all i ≥ 0. For sufficiently large numbers n ∈ N, an integer sequence {τ(n)} is

defined as follows:
τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n)→∞ as n→∞ and
max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.5. [19] Let K be a nonempty closed convex subset of a real Hilbert space H and T : K → K be a mapping.
(i) If T is a k-strictly pseudo-contractive mapping, then T satisfies the Lipschitzian condition

‖Tx− Ty‖ ≤ 1 + k

1− k
‖x− y‖.

(ii) If T is a k-strictly pseudo-contractive mapping, then the mapping I − T is demiclosed at 0.

Lemma 2.6. [38] Let H be a real Hilbert space. Let K be a nonempty, closed convex subset of H and A : K → H be a

k-strongly monotone and L-Lipschitzian operator with k > 0, L > 0. Assume that 0 < η <
2k

L2
and τ = η

(
k− L2η

2

)
. Then

for each t ∈
(

0,min{1, 1

τ
}
)
, we have

‖(I − tηA)x− (I − tηA)y‖ ≤ (1− tτ)‖x− y‖, x, y ∈ K.

Lemma 2.7 (Sene et al. [30]). Let K be a nonempty, closed and convex subset of a real Hilbert space H and βi ∈ ]0, 1[, i =

1, · · · , n such that
n∑
i=1

βi = 1. Then,

∥∥∥ n∑
i=1

βiui

∥∥∥2

=

n∑
i=1

βi‖ui‖2 −
∑
i<j

βiλj‖ui − uj‖2 ∀ u1, u2, · · · , un ∈ K. (2.2)
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Let g : K → (−∞, +∞) be a proper convex and lower semi-continuous function. For any λ > 0, define the
Moreau-Yosida resolvent of g in a real Hilbert space H as follows:

Jgλx = argminu∈K
[
g(u) +

1

2λ
‖x− u‖2

]
,

for all x ∈ H. It was shown in [12] that the set of fixed points of the resolvent associated with g coincides with the
set of minimizers of g. Also, the resolvent Jgλ of g is nonexpansive for all λ > 0 (see [11]).

Lemma 2.8. (Miyadera [23]) For any r > 0 and µ > 0, the following holds:

Jgr x = Jgµx(
µ

r
x+ (1− µ

r
)Jgr x).

Lemma 2.9 (Sub-differential inequality, [1]). Let g : H → (−∞, +∞) be a proper convex and lower semicontinuous
function. Then, for all x, y ∈ H and λ > 0, the following sub-differential inequality holds:

1

λ
‖Jgλx− y‖

2 − 1

λ
‖x− y‖2 +

1

λ
‖x− Jgλx‖

2 + g(Jgλx) ≤ g(y). (2.3)

3. Main Results
Throughout this section, we will assume that H be a real Hilbert space and K be a nonempty, closed convex subset
of H. Let A : K → H be an α-strongly monotone and L-Lipschitzian operator, m ≥ 1 be a fixed number, for
i, 1 ≤ i ≤ m, let Ti : K → CB(K) be a multivalued ki-strictly pseudo-contractive mapping and g : K → (−∞, +∞)

be a proper convex and lower semi-continuous function such that Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈K g(y) 6= ∅.

We consider the following fixed point problem:

Problem 1.

find x ∈ K such that x ∈
m⋂
i=1

F (Ti). (3.1)

We consider the following convex minimization problem:

Problem 2.
find x ∈ K such that g(x) ≤ g(y), ∀ y ∈ K. (3.2)

Remark 3.1. We can observe that x∗ solves Problem 3.1 and Problem 3.2 if and only if x∗ ∈ Γ.

We show the main result of this paper, that is, the strong convergence analysis for Algorithm 1.

Algorithm 1. Step 0. Take {αn} ⊂ (0, 1), η > 0, and {λn} ⊂]0,∞[ arbitrarily choose x0 ∈ K; and let n := 0.
Step 1. Given xn ∈ K, compute xn+1 ∈ K as


un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

yn = β0un +

m∑
i=1

βiv
i
n, v

i
n ∈ Tiun

xn+1 = PK(I − αnηA)yn, n ≥ 0.

(3.3)

Update n := n+ 1 and go to Step 1.
Where β0 ∈]µ, 1[, µ := max

{
ki, i = 1, ....,m

}
, βi ∈ ]0, 1[ and β0 + β1 + · · ·+ βm = 1.

Theorem 3.1. Assume that I − Ti is demiclosed at origin and Tip = {p} for all p ∈ Γ. Suppose that:

(i) lim
n→∞

αn = 0; (ii)0 < η <
2α

L2
, and

∞∑
n=0

αn =∞ and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 0 and some

λ. Then, the sequences {xn} and {un} defined by Algorithm 1 converge strongly to x∗ ∈ Γ, which is a unique solution of the
following variational inequality:

〈Ax∗, x∗ − p〉 ≤ 0, ∀p ∈ Γ. (3.4)
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Proof. From the choice of η, properties of PΓ, and A is strongly monotone, then the variational inequality (3.4) has a

unique solution in Γ. Without loss of generality, we can assume αn ∈
(

0,min{1 , 1

τ
}
)

where τ = η
(
k − L2η

2

)
. In

what follows, we denote x∗ to be the unique solution of (3.4). Now, we prove that the sequences {xn} is bounded.
Let p ∈ Γ. Then, g(p) ≤ g(u) for all u ∈ K This implies that

g(p) +
1

2λn
‖p− p‖2 ≤ g(u) +

1

2λn
‖u− p‖2

and hence Jgλn
p = p for all n ≥ 0, where Jgλn

is the Moreau-Yosida resolvent of g in K. We have

‖un − p‖ = ‖Jgλn
xn − p‖ ≤ ‖xn − p‖, ∀n ≥ 0. (3.5)

By Using (3.3) and Lemma 2.7, we have

‖yn − p‖2 =
∥∥∥β0(un − p) +

m∑
i=1

βi(v
i
n − p)

∥∥∥2

= β0‖un − p‖2 +

m∑
i=1

βi‖vin − p‖2 −
m∑
i=1

β0βi‖vin − un‖2 −
m∑

1≤i<j

βiβj‖vin − vjn‖2.

Using the fact that, for i = 1, · · · ,m, Tip = {p}, we get

‖yn − p‖2 ≤ β0‖un − p‖2 +

m∑
i=1

βi

(
H(Tiun, Tip)

)2

−
m∑
i=1

β0βi‖vin − un‖2 −
m∑

1≤i<j

βiβj‖vin − vjn‖2.

Using the fact that, for i = 1, · · · ,m, Ti is ki-strictly pseudo-contractive, we have

‖yn − p‖2 ≤ β0‖un − p‖2 +

m∑
i=1

βi

(
‖un − p‖2 + ki‖vin − un‖2

)
−

m∑
i=1

β0βi‖vin − un‖2

−
m∑

1≤i<j

βiβj‖vin − vjn‖2.

Hence,

‖yn − p‖2 ≤ ‖un − p‖2 −
m∑
i=1

βi(β0 − ki)‖vin − un‖2. (3.6)

Since β0 ∈]µ, 1[, we obtain,

‖yn − p
∥∥∥ ≤ ‖un − p∥∥∥ ≤ ‖xn − p‖. (3.7)

From (3.3), (3.7) and Lemma 2.6, we have

‖xn+1 − p‖ ≤ ‖(I − αnηA)yn − p‖
≤ (1− ταn)‖xn − p‖+ αn‖ηAp‖

≤ max {‖xn − p‖,
‖ηAp‖
τ
}.

By induction, it is easy to see that

‖xn − p‖ ≤ max {‖x0 − p‖,
‖ηAp‖
τ
}, n ≥ 0.

Hence {xn} is bounded also are {un)}, and {yn}.
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Consequently, by inequality (3.6) and property of µ, we obtain

‖xn+1 − p‖2 = ‖PK(I − αnηA)yn − p‖2

≤ ‖yn − p− αnηAyn‖2

= ‖yn − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2

≤ ‖un − p‖2 −
m∑
i=1

βi(β0 − ki)‖vin − un‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖

≤ ‖xn − p‖2 −
m∑
i=1

βi(β0 − ki)‖vin − un‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖.

Thus, for every i, 1 ≤ i ≤ m, we get

m∑
i=1

βi(β0 − ki)‖uin − vn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖.

Since {xn} is bounded, then there exists a constant B > 0 such that for every i, 1 ≤ i ≤ m,
m∑
i=1

βi(β0 − ki)‖vin − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnB. (3.8)

Now we prove that {xn} converges strongly to x∗. Now we divide the rest of the proof into two cases.
Case 1. Assume that there is n0 ∈ N such that {‖xn− p‖} is decreasing for all n ≥ n0. Since {‖xn− p‖} is monotonic
and bounded, {‖xn − p‖} is convergent. Clearly, we have

lim
n→∞

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
= 0. (3.9)

It then implies from (3.8) that

lim
n→∞

m∑
i=1

βi(β0 − ki)‖vin − un‖2 = 0. (3.10)

Since β0 ∈]µ, 1[, we have

lim
n→∞

∥∥∥un − vin∥∥∥2

= 0. (3.11)

Since vin ∈ Tiun, it follows that
lim
n→∞

d(un, Tiun) = 0, ∀ i = 1, · · · ,m. (3.12)

Let p ∈ Γ. Using Lemma 2.9 and since g(p) ≤ g(un), we get

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖un − p‖2. (3.13)

Therefore, from (3.3), Lemma 2.2 and inequality (3.13), we get that

‖xn+1 − p‖2 = ‖(I − αnηA)yn − p‖2

≤ ‖yn − p− αnηAyn‖2

≤ ‖yn − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖

≤ ‖un − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2

≤ ‖xn − p‖2 − ‖xn − un‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2

and hence

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2.

Thanks inequality (3.9) and αn → 0 as n→∞, we have

lim
n→∞

‖xn − un‖ = 0. (3.14)
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Next, we prove that lim sup
n→+∞

〈x∗, x∗ − xn〉 ≤ 0. Since H is reflexive and {xn} is bounded, there exists a subsequence

{xnj
} of {xn} such that xnj

converges weakly to ω in K and

lim sup
n→+∞

〈Ax∗, x∗ − xn〉 = lim
j→+∞

〈Ax∗, x∗ − xnj
〉.

From (3.12) and the fact that I − Ti are demiclosed, we obtain ω ∈
m⋂
i=1

F (Ti). Using (3.3) and Lemma 2.8 we arrive at

‖xn − Jgλxn‖ ≤ ‖un − Jgλxn‖+ ‖un − xn‖
≤ ‖Jgλn

xn − Jgλxn‖+ ‖un − xn‖

≤ ‖un − xn‖+ ‖Jgλ
(λn − λ

λn
Jgλn

xn +
λ

λn
xn

)
− Jgλxn‖

≤ ‖un − xn‖+ ‖λn − λ
λn

Jgλn
xn +

λ

λn
xn − xn‖

≤ ‖un − xn‖+
(

1− λ

λn

)
‖un − xn‖

≤
(

2− λ

λn

)
‖un − xn‖.

Hence,
lim
n→∞

‖xn − Jgλxn‖ = 0. (3.15)

Since Jgλ is single valued and nonexpasive, using (3.15) and Lemma 2.1, then ω ∈ F (Jgλ) = argminu∈K g(u).
Therefore, ω ∈ Γ.On other hand, using the fact that x∗ solves (3.4), we then have

lim sup
n→+∞

〈Ax∗, x∗ − xn〉 = lim
j→+∞

〈Ax∗, x∗ − xnj
〉

= 〈Ax∗, x∗ − ω〉 ≤ 0.

Finally, we show that xn → x∗.

‖xn+1 − x∗‖2 = ‖PK(I − ηαnA)yn − x∗‖2

≤ 〈(I − ηαnA)yn − x∗, xn+1 − x∗〉
= 〈(I − ηαnA)yn − x∗ − αnηAx∗ + αnηAx

∗, xn+1 − x∗〉
≤ ‖(I − αnηA)(yn − x∗)‖‖xn+1 − x∗‖

+αn〈ηAx∗, x∗ − xn+1〉
≤ (1− αnτ)‖xn − x∗‖‖xn+1 − x∗‖+ αn〈ηAx∗, x∗ − xn+1〉
≤ (1− αnτ)‖xn − x∗‖2 + 2αnη〈Ax∗, x∗ − xn+1〉.

From Lemma 2.3, its follows that xn → x∗. We can check that all the assumptions of Lemma 2.3 are satisfied.
Therefore, we deduce xn → x∗.
Case 2. Assume that there is not n0 ∈ N such that {‖xn − x∗‖} is not monotonically decreasing sequence. Set
Ωn = ‖xn − x∗‖ and τ : N→ N be a mapping for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤
n, Ωk ≤ Ωk+1}.
We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Ωτ(n) ≤ Ωτ(n)+1 for n ≥ n0. From
(3.8), we have

m∑
i=1

βi(β0 − ki)
∥∥∥uτ(n) − viτ(n)

∥∥∥2

≤ ατ(n)B.

Furthermore, we have

lim
n→+∞

m∑
i=1

βi(β0 − ki)‖uτ(n) − viτ(n)

∥∥∥2

= 0.
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Since β0 ∈]µ, 1[, we have

lim
n→∞

∥∥∥uτ(n) − viτ(n)

∥∥∥2

= 0. (3.16)

Since viτ(n) ∈ Tiuτ(n), it follows that

lim
n→∞

d
(
uτ(n), Tiuτ(n)

)
= 0 ∀ i = 1, · · · ,m. (3.17)

By same argument as in case 1, we can show that xτ(n) converges weakly in K and lim sup
n→+∞

〈Ax∗, x∗ − xτ(n)〉 ≤ 0.

We have for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2 ≤ ατ(n)[−τ‖xτ(n) − x∗‖2 + 2η〈Ax∗, x∗ − xτ(n)+1〉],

which implies that

‖xτ(n) − x∗‖2 ≤
2η

τ
〈Ax∗, x∗ − xτ(n)+1〉.

Then, we have
lim
n→∞

‖xτ(n) − x∗‖2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Thus, by Lemma 2.4, we conclude that

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

Now, we apply Algorithm 1 for solving fixed points problem involving multivalued nonexpansive mappings
and convex minimization problem without demiclosedness assumption.

Theorem 3.2. Let H be a real Hilbert space and K be a nonempty, closed convex cone of H. Let A : K → H be an α-strongly
monotone and L-Lipschitzian operator, m ≥ 1 be a fixed number, for i, 1 ≤ i ≤ m, let Ti : K → CB(K) be a multivalued
ki-strictly pseudo-contractive mapping and g : K → (−∞, +∞) be a proper convex and lower semi-continuous function

such that Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈K g(y) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:


un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

yn = β0un +

m∑
i=1

βiv
i
n, v

i
n ∈ Tiun

xn+1 = PK(I − αnηA)yn, n ≥ 0.

(3.18)

With conditions {αn} ⊂ (0, 1) and η > 0 satisfy:

(i) lim
n→∞

αn = 0, (ii) 0 < η <
2α

L2
and

∞∑
n=0

αn =∞,

(iii)β0 ∈]µ, 1[, µ := max
{
ki, i = 1, ....,m

}
, βi ∈ ]0, 1[ and β0 + β1 + · · ·βm = 1.

(iv) {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequences {xn} and {un} defined by
Algorithm 1 converge strongly to x∗ ∈ Γ, which is a minimizer of g in K as well as it is also a common fixed points of Ti in K.

Proof. Since every multivalued nonexpansive mapping is multivalued strictly pseudo-contractive mapping, then,
the proof follows Lemma 2.1 and Theorem 3.1.
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Corollary 3.1. Let H be a real Hilbert space. Let m ≥ 1 be a fixed number, for i, 1 ≤ i ≤ m, let Ti : H → H be a ki-strictly
pseudo-contractive mapping and g : H → (−∞, +∞) be a proper convex and lower semi-continuous function such that

Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈B g(y) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ H by:


un = argminu∈H

[
g(u) +

1

2λn
‖u− xn‖2

]
,

yn = β0un +

m∑
i=1

βiTiun

xn+1 = (1− αn)yn, n ≥ 0.

(3.19)

With conditions {αn} ⊂ (0, 1) satisfies:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii)β0 ∈]µ, 1[, µ := max
{
ki, i = 1, ....,m

}
, βi ∈ ]0, 1[ and β0 + β1 + · · ·βm = 1.

(iv) {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequences {xn} and {un} defined by
Algorithm 1 converge strongly to x∗ ∈ Γ.

Proof. Since every single-valued strictly pseudo-contractive is multivalued strictly pseudo-contractive mapping,
then, the proof follows Theorem 3.1.

4. Conclusion
The problem of finding a common element of the set of fixed points of nonlinear operators and the set of

solutions of convex minimization problem has attracted much attention because of its extraordinary utility and
broad applicability in many branches of mathematical science and engineering. General terative algorithm and
proximal point algorithm are remarkably useful methods for solving most important problems with nonlinear
operators. In this article, we introduce and analyze a new iterative algorithm for approximating a common
solution of an equilibrium problem, variational inequality problems and fixed point problems with a finite family
of multivalued strictly pseudo-contractive mappings without imposing any compactness-type condition on either
the operators or the space considered. The results obtained in this paper are important improvements of recent
important results in this field.
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SITEM for the Conformable Space-Time Fractional
(2+1)-Dimensional Breaking Soliton, Third-Order KdV

and Burger’s Equations
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Abstract
In the present paper, new analytical solutions for the conformable space-time fractional (2+1)-dimensional
breaking soliton, third-order KdV and Burger’s equations are obtained by using the simplified tan(φ(ξ)

2 )-
expansion method (SITEM). Here, fractional derivatives are described in conformable sense. The obtained
traveling wave solutions are expressed by the trigonometric, hyperbolic, exponential and rational func-
tions. Simulation of the obtained solutions are given at the end of the paper.

Keywords: Space-time fractional (2+1)-dimensional breaking soliton equations; Space-time fractional third-order KdV equation;
Space-time fractional Burger’s equation; Simplified tan(φ(ξ)

2
)-expansion method (SITEM).

AMS Subject Classification (2020): Primary: 35C07, 35C08, 35R11.

1. Introduction
Nonlinear fractional partial differential equations have significant applications in various fields of science and

engineering such as fluid mechanics, mechanics of materials, biology, plasma physics, finance, chemistry, image
processing (see, for example, [1–5]). Traveling wave solutions to nonlinear fractional partial differential equations
play an important role in the study of nonlinear physical phenomena. The traveling wave solutions of the nonlinear
partial differential equations have been investigated by using various method such as exponential rational function
method, (G′/G)-expansion method, Exp-function method, extended sinh-Gordon equation expansion method,
modified exponential rational function method, Jacobi elliptic equation method (see, for example,[6–10]).

(2+1)-dimensional breaking soliton equations describe the (2 + 1)-dimensional interaction of a Riemann wave
propagating along the y-axis with a long wave along the x-axis. (G′/G)-expansion method, extended tanh-function
method, improved Riccati equations method, sine-cosine method, improved extended Fan sub-equation method,
generalized (G′/G)-expansion method and extended three wave method have been applied to the (2+1)-dimensional
breaking soliton equations [11–18]. The space-time fractional (2 + 1)-dimensional breaking soliton equations with
modified Riemann-Liouville derivative have been solved by using new fractional Jacobi elliptic equation method,
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new fractional sub-equation method, modified simple equation method, improved fractional sub-equation method,
exponential rational function method, new fractional Jacobi elliptic equation method [19–23]. (G′/G)-expansion
method has been studied for the space fractional (2 + 1)-dimensional breaking soliton equations with modified
Riemann-Liouville derivative [24].

The general projective Riccati equation method, Exp-function method, extended hyperbolic function method and
collocation method with the modified exponential cubic B-spline have been applied to the third-order KdV equation
[25–28]. Time-fractional generalized third-order KdV equation with modified Riemann-Liouville derivative has
been solved by using generalized Kudryashov method [29].

Burger’s equation plays a major role in the study of nonlinear waves since it is used as a mathematical
model in turbulence problems, in the theory of shock waves, and in continuous stochastic processes [30]. Hopf-
Cole transformation and a reproducing kernel function method, a semi-analytical iterative method, (G′/G, 1/G)-
expansion method have been applied to the Burger’s equation [31–33].

In this paper, the conformable space-time fractional (2+1)-dimensional breaking soliton, third-order KdV and
Burger’s equations have been solved by using the simplified tan(φ(ξ)

2 )-expansion method (SITEM). SITEM has
been applied to the Kundu-Eckhaus equation only for the parameter p = 0 in [34]. In our work, SITEM for the
nonzero parameter p has been applied to the space-time fractional some evolution equations with conformable
fractional derivative. New analytic solutions for these equations have been reported. Note that space-time fractional
(2+1)-dimensional breaking soliton, third-order KdV and Burger’s equations including conformable derivatives
have not yet been solved.

2. Description of the conformable fractional derivative and its properties

For a function f : (0,∞)→ R, the conformable fractional derivative of f of order 0 < α < 1 is defined as (see,
for example, [35])

Tαt f(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
. (2.1)

Some important properties of the the conformable fractional derivative are as follows:

Tαt (af + bg)(t) = aTαt f(t) + bTαt g(t), ∀a, b ∈ R,
Tαt (tµ) = µtµ−α, (2.2)

Tαt (f(g(t)) = t1−αg
′
(t)f

′
(g(t)).

3. Analytic solutions to the conformable space-time fractional (2+1)-dimensional breaking
soliton equations

The breaking soliton equations can be used to describe the (2 + 1)-dimensional interaction of a Riemann wave
propagating along the y-axis with a long wave propagating along the x-axis. The u(x, y, t) and v(x, y, t) represent
the physical field and some potential, respectively. This equation was studied by Bogoyavenskii [36].

Conformable space-time fractional (2+1)-dimensional breaking soliton equations are given in the following
form[23]

Tαt u+ T βx T
β
x T

θ
y u+ 4uT βx v + 4vT βx u = 0, (3.1)

T θy u = T βx v, 0 < α ≤ 1, 0 < β ≤ 1, 0 < θ ≤ 1. (3.2)

Let us consider the following transformation

u(x, y, t) = U(ξ), v(x, y, t) = V (ξ), ξ = k
tα

α
+m

xβ

β
+ n

yθ

θ
, (3.3)
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where k, m and n are constants. Using the third property in Eq.(2.2), we can compute the following derivatives

Tαt u(x, y, t) = Tαt U(ξ) = t1−α
dξ

dt

dU(ξ)

dξ
= kU ′(ξ),

T βx u(x, y, t) = T βx U(ξ) = x1−β dξ

dx

dU(ξ)

dξ
= mU ′(ξ),

T θy u(x, y, t) = T θyU(ξ) = y1−θ dξ

dy

dU(ξ)

dξ
= nU ′(ξ),

T βx T
β
x T

θ
y u(x, y, t) = nm2kU ′′′(ξ),

T βx v(x, y, t) = T βx V (ξ) = x1−β dξ

dx

dV (ξ)

dξ
= mV ′(ξ). (3.4)

Substituting Eqs.(3.4) into Eqs.(3.1)-(3.2), we obtain the following differential equations

kU ′ +m2nU ′′′ + 4mUV ′ + 4mV U ′ = 0, (3.5)
nU ′ = mV ′. (3.6)

Integrating of Eqs.(3.5)-(3.6) with zero constant of integration and eliminating V , we have

kU +m2nU ′′ + 4nU2 = 0. (3.7)

Let us suppose that the solution of Eq.(3.7) can be expressed in the following form

U(ξ) =

N∑
k=0

Ak

[
p+ tan

(φ(ξ)

2

)]k
+

N∑
k=1

Bk

[
p+ tan

(φ(ξ)

2

)]−k
. (3.8)

Here, φ(ξ) satisfies the following ordinary differential equation

φ′(ξ) = a sin(φ(ξ)) + b cos(φ(ξ)) + c, (3.9)

and a, b, c, Ak(0 ≤ k ≤ N) and Bk(1 ≤ k ≤ N) are constants to be determined. The solution of Eq. (3.9) is given
as follows:
For b = c, a = 0,

tan(
φ

2
) = bξ + c1 − p.

For b = c, a 6= 0,

tan(
φ

2
) = c1 exp(aξ)− b

a
.

For b 6= c, ∆ = a2 + b2 − c2 > 0,

tan(
φ

2
) =

2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)
− p.

For b 6= c, ∆ = a2 + b2 − c2 = 0,

tan(
φ

2
) =

a

b− c
+

2

b− c
c2

c1 + c2ξ
.

For b 6= c, ∆ = a2 + b2 − c2 < 0,

tan(
φ

2
) =

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

,

where c1 and c2 are arbitrary constants, r1 = (a+ p(b− c) +
√

∆)/2 and r2 = (a+ p(b− c)−
√

∆)/2.
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Substituting Eq.(3.8) into Eq.(3.7) and then by balancing the highest order derivative term and nonlinear term in
result equation, the value of N can be determined as 2. Therefore, Eq.(3.8) reduces to

U(ξ) = A0 +A1

[
p+ tan

(φ(ξ)

2

)]
+A2

[
p+ tan

(φ(ξ)

2

)]2
+ B1

[
p+ tan

(φ(ξ)

2

)]−1

+B2

[
p+ tan

(φ(ξ)

2

)]−2

. (3.10)

Substituting Eq.(3.10) into Eq.(3.7), collecting all the terms with the same power of tan(φ2 ), we can obtain a set of
algebraic equations for the unknowns A0, A1,A2, B1, B2, k, m, n:

8nA2
2 + 3nA2b

2m2 − 6nA2bcm
2 + 3nA2c

2m2 = 0,

64npA2
2 + ....

Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:
Case 1: A0 = − 3

8 (b− c)m2(−b− c+ 2ap+ bp2 − cp2), A1 = 0, A2 = 0, B1 = 3
4m

2(−ab− ac+ 2a2p− b2p+ c2p+
3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3), B2 = − 3

8m
2(−b− c+ 2ap+ bp2 − cp2)2, k = −∆m2n :

For b = c and a = 0,

U1(ξ) = −3

2
m2b2

[
bξ + c1

]−2

. (3.11)

For b = c and a 6= 0,

U2(ξ) =
3

4
m2(−2ab+ 2a2p)

[
p+ c1 exp(aξ)− b

a

]−1

− 3

8
m2(−2b+ 2ap)2

.
[
p+ c1 exp(aξ)− b

a

]−2

. (3.12)

For ∆ > 0 and b 6= c,

U3(ξ) = −3

8
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+
3

4
m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−1

(3.13)

− 3

8
m2(−b− c+ 2ap+ bp2 − cp2)2

[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−2

.

For ∆ < 0 and b 6= c,

U4(ξ) = −3

8
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+
3

4
m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−1

(3.14)

− 3

8
m2(−b− c+ 2ap+ bp2 − cp2)2

[
p+

a

b− c

−
√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−2

.

Here ξ = −∆m2n t
α

α +mxβ

β + nx
θ

θ .
Case 2: A0 = − 1

8m
2(2a2− b2 + c2 + 6abp− 6acp+ 3b2p2− 6bcp2 + 3c2p2), A1 = 0, A2 = 0, B1 = 3

4m
2(−ab− ac+

2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3), B2 = − 3
8m

2(−b− c+ 2ap+ bp2 − cp2)2, k = ∆m2n :
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For b = c and a = 0,

U5(ξ) = −3

2
m2b2

[
bξ + c1

]−2

. (3.15)

For b = c and a 6= 0,

U6(ξ) = −1

4
m2a2 +

3

2
m2(−ab+ a2p)

[
p+ c1 exp(aξ)− b

a

]−1

+ −3

2
m2(−b+ ap)2

[
p+ c1 exp(aξ)− b

a

]−2

. (3.16)

For ∆ > 0 and b 6= c,

U7(ξ) = −1

8
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+
3

4
m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−1

(3.17)

− 3

8
m2(−b− c+ 2ap+ bp2 − cp2)2

[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−2

.

For ∆ < 0 and b 6= c,

U8(ξ) = −1

8
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+
3

4
m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−1

(3.18)

− 3

8
m2(−b− c+ 2ap+ bp2 − cp2)2

[
p+

a

b− c

+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−2

.

Here ξ = ∆m2n t
α

α +mxβ

β + nx
θ

θ .
Case 3: A0 = − 3

8 (b− c)m2(−b− c+ 2ap+ bp2 − cp2), A1 = 3
4 (b− c)m2(a+ bp− cp), A2 = − 3

8 (b− c)2m2, B1 =
0, B2 = 0, k = −∆m2n :

For ∆ > 0 and b 6= c,

U9(ξ) = −3

8
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+
3

2
m2(a+ bp− cp)

[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]
− 3

2
m2
[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]2
. (3.19)

For ∆ < 0 and b 6= c,

U10(ξ) = −3

8
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+
3

4
m2(a+ bp− cp)

[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]
− 3

8
m2
[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]2
. (3.20)
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Here ξ = −∆m2n t
α

α +mxβ

β + nx
θ

θ .
Case 4: A0 = − 1

8m
2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2), A1 = 3

4 (b− c)m2(a+ bp− cp), A2 =
− 3

8 (b− c)2m2, B1 = 0, B2 = 0, k = ∆m2n :
For b = c and a 6= 0,

U11(ξ) = −1

4
m2a2. (3.21)

For ∆ > 0 and b 6= c,

U12(ξ) = −1

8
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+
3

2
m2(a+ bp− cp)

[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]
− 3

2
m2
[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]2
. (3.22)

For ∆ < 0 and b 6= c,

U13(ξ) = −1

8
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+
3

4
m2(a+ bp− cp)

[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]
− 3

8
m2
[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]2
. (3.23)

Here ξ = ∆m2n t
α

α +mxβ

β + ny
θ

θ . Using formula V (ξ) = n
mU(ξ) the unknown function V (ξ) can be computed.

The solutions u2(x, y, t), u3(x, y, t) and u4(x, y, t) of the Eqs.(3.1)-(3.2) are simulated as traveling wave solutions
for various values of the physical parameters in Fig.1-Fig.6. Figs.1, 2 show kink waves solutions, Figs.3 and 4 show
solitary waves solutions, Figs.5, 6 show periodic waves solutions of Eqs.(3.1)-(3.2). Figs.1 and 2 are 3D and 2D
plots of the traveling wave solution u2(x, 1, t) and u2(x, 1, 1) in Eq.(3.12)for parameters α = 0.75, β = 1, θ = 0.5,
m = −0.05, n = 0.5, a = 1, b = 5, c = 5, c1 = 1, c2 = 2 and p = 0.1. Figs.3 and 4 are 3D and 2D plots
of the traveling wave solution u3(x, 1, t) and u3(x, 1, 1) in Eq.(3.13) for α = 0.75, β = 1, θ = 0.5, m = 0.5,
n = 0.2, a = 0.1, b = 0.5, c = 0.02, c1 = 1, c2 = 1 and p = 2. Figs.5 and 6 are 3D and 2D plots of the
traveling wave solution u4(x, 1, t) and u4(x, 1, 1) in Eq.(3.14) for α = 0.5, β = 1, θ = 0.5, m = 0.5, n = 0.2,
a = 0.05, b = 0.2, c = 0.6, c1 = 1, c2 = 1 and p = 1. Note that the 3D graphs describe the behavior of u in space x
and time t at fixed y = 1, which represents the change of amplitude and shape for each obtained traveling wave
solutions. 2D graphs describe the behavior of u in space x at fixed time t = 1 and fixed y = 1. All graphics in figures
are drawn by the aid of Mathematica 10.

4. Analytic solutions to the conformable space-time fractional Korteweg-de Vries (KdV)
equation

Conformable space-time fractional KdV equation is given in the following form[25]

Tαt u+ T βx T
β
x T

β
x u+ 6uT βx u = 0, 0 < α ≤ 1, 0 < β ≤ 1. (4.1)

Let us consider the following transformation

u(x, t) = U(ξ), ξ = k
tα

α
+m

xβ

β
, (4.2)

where k, m are constants. Substituting (4.2) into Eq.(4.1) we obtain the following differential equations

kU ′ +m3U ′′′ + 6mUU ′ = 0. (4.3)
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Integrating of Eq.(4.3)with zero constant of integration, we have

kU +m3U ′′ + 3mU2 = 0. (4.4)

Let us suppose that the solution of Eq.(4.4) can be expressed in the form Eq.(3.8). Substituting Eq.(3.8) into Eq.(4.4)
and then by balancing the highest order derivative term and nonlinear term in result equation, the value of N can be
determined as 2. Therefore, Eq.(3.8) reduces to Eq.(3.10). Substituting Eq.(3.10) into Eq.(4.4), collecting all the terms
with the same power of tan(φ2 ), we can obtain a set of algebraic equations for the unknowns A0, A1,A2, B1,B2, k, m:

6A2
2m+ 3A2b

2m3 − 6A2bcm
3 + 3A2c

2m3 = 0,

48pA2
2m+ ...

Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:
Case 1: A0 = − 1

2 (b − c)m2(−b − c + 2ap + bp2 − cp2), A1 = 0, A2 = 0, B1 = m2(−ab − ac + 2a2p − b2p + c2p +
3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3), B2 = − 1

2m
2(−b− c+ 2ap+ bp2 − cp2)2, k = −∆m3 :

For b = c and a = 0,

U1(ξ) = −2m2b2
[
bξ + c1

]−2

. (4.5)

For b = c and a 6= 0,

U2(ξ) = 2m2(a2p− ab)
[
p+ c1 exp(aξ)− b

a

]−1

− 2m2(ap− b)2
[
p+ c1 exp(aξ)− b

a

]−2

. (4.6)

For ∆ > 0 and b 6= c,

U3(ξ) = −1

2
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+ m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−1

(4.7)

− 1

2
m2(−b− c+ 2ap+ bp2 − cp2)2

[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−2

.

For ∆ < 0 and b 6= c,

U4(ξ) = −1

2
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+ m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−1

(4.8)

− 1

2
m2(−b− c+ 2ap+ bp2 − cp2)2

[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−2

.

Here ξ = −∆m3 tα

α +mxβ

β .
Case 2: A0 = − 1

6m
2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2), A1 = 0, A2 = 0, B1 = m2(−ab− ac+

2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3), B2 = − 1
2m

2(−b− c+ 2ap+ bp2 − cp2)2, k = ∆m3 :
For b = c and a = 0,

U5(ξ) = −2m2b2
[
bξ + c1

]−2

. (4.9)

For b = c and a 6= 0,

U6(ξ) = −1

3
m2a2 + 2m2(a2p− ab)

[
p+ c1 exp(aξ)− b

a

]−1

− 2m2(ap− b)2
[
p+ c1 exp(aξ)− b

a

]−2

. (4.10)
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For ∆ > 0 and b 6= c,

U7(ξ) = −1

6
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+ m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−1

(4.11)

− 1

2
m2(−b− c+ 2ap+ bp2 − cp2)2

[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−2

.

For ∆ < 0 and b 6= c,

U8(ξ) = −1

6
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+ m2(−ab− ac+ 2a2p− b2p+ c2p+ 3abp2 − 3acp2 + b2p3 − 2bcp3 + c2p3)

.
[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−1

(4.12)

− 1

2
m2(−b− c+ 2ap+ bp2 − cp2)2

[
p+

a

b− c

+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−2

.

Here ξ = ∆m3 tα

α +mxβ

β .

Case 3: A0 = − 1
2 (b − c)m2(−b − c + 2ap + bp2 − cp2), A1 = (b − c)m2(a + bp − cp), A2 = − 1

2 (b − c)2m2, B1 =
0, B2 = 0, k = −∆m3 :

For ∆ > 0 and b 6= c,

U9(ξ) = −1

2
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+ 2m2(a+ bp− cp)
[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]
− 2m2

[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]2
(4.13)

For ∆ < 0 and b 6= c,

U10(ξ) = −1

2
(b− c)m2(−b− c+ 2ap+ bp2 − cp2)

+ (b− c)m2(a+ bp− cp)
[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]
+ −1

2
(b− c)2m2

[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]2
(4.14)

Here ξ = −∆m3 tα

α +mxβ

β .

Case 4: A0 = − 1
6m

2(2a2 − b2 + c2 + 6abp − 6acp + 3b2p2 − 6bcp2 + 3c2p2), A1 = (b − c)m2(a + bp − cp), A2 =
− 1

2 (b− c)2m2, B1 = 0, B2 = 0, k = ∆m3 :

For b = c and a 6= 0,

U11(ξ) = −1

3
m2a2. (4.15)
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For ∆ > 0 and b 6= c,

U12(ξ) = −1

6
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+ 2m2(a+ bp− cp)
[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]
− 2m2

[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]2
. (4.16)

For ∆ < 0 and b 6= c,

U13(ξ) = −1

6
m2(2a2 − b2 + c2 + 6abp− 6acp+ 3b2p2 − 6bcp2 + 3c2p2)

+ m2(a+ bp− cp)
[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]
− 1

2
m2
[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]2
. (4.17)

Here ξ = ∆m3 tα

α +mxβ

β .
The solution u13(x, t) of the Eq.(4.1) is simulated in Fig.7-Fig.8 as periodic waves solutions. 3D plot of the

obtained solution u13(x, t) is given for parameters α = 0.5, β = 1,m = 0.5, a = 0.5, b = 0.25, c = 1, c1 = 1, c2 = 3
and p = 1 in Fig.7. Fig.8 demonstrate the same solution with 2D plot for −40 ≤ x ≤ 40 at t = 1.

5. Analytic solutions to the conformable space-time fractional Burger’s equation

Conformable space-time fractional Burger’s equation is given in the following form[31]

Tαt u+ uT βx u− T βx T βx u = 0, 0 < α ≤ 1, 0 < β ≤ 1. (5.1)

Let us consider the following transformation

u(x, t) = U(ξ), ξ = k
tα

α
+m

xβ

β
, (5.2)

where k, m are constants. Substituting Eq.(5.2) into Eq.(5.1) we obtain the following differential equations

kU ′ +mUU ′ −m2U ′′ = 0. (5.3)

Integrating of Eq.(5.3)with zero constant of integration, we have

kU +
m

2
U2 −m2U ′ = 0. (5.4)

Let us suppose that the solution of Eq.(5.4) can be expressed in the form Eq.(3.8). Substituting Eq.(3.8) into Eq.(5.4)
and then by balancing the highest order derivative term and nonlinear term in result equation, the value of N can
be determined as 1. Therefore, Eq.(3.8) reduces to

U(ξ) = A0 +A1

[
p+ tan

(φ(ξ)

2

)]
+B1

[
p+ tan

(φ(ξ)

2

)]−1

. (5.5)

Substituting Eq.(5.5) into Eq.(5.4), collecting all the terms with the same power of tan(φ2 ), we can obtain a set of
algebraic equations for the unknowns A0, A1,B1, k, m:

A2
1m+A1bm

2 −A1cm
2 = 0,

2A1k + 2A0A1m− 2aA1m
2 + 4A2

1mp+ 2A1bm
2p− 2A1cm

2p = 0,

2A0k +A2
0m+ 6A2

1mp
2 + 2A1B1m+ 6A1kp−A1bm

2 −A1cm
2 − bB1m

2

+ B1cm
2 − 4aA1m

2p+A1bm
2p2 −A1cm

2p2 + 6A0A1mp = 0,

2B1k + 4A2
1mp

3 + 2A0B1m+ 4A0kp+ 2aB1m
2 + 6A1kp

2 + 2A2
0mp

+ 6A0A1mp
2 − 2A1bm

2p− 2A1cm
2p− 2aA1m

2p2 + 4A1B1mp = 0,

B2
1m+A2

0mp
2 +A2

1mp
4 + 2B1kp+ bB1m

2 +B1cm
2 + 2A0kp

2 + 2A1kp
3

+ 2A0A1mp
3 + 2A1B1mp

2 −A1bm
2p2 −A1cm

2p2 + 2A0B1mp = 0.
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Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:

Case 1: A0 = −am±
√
m2∆−mp(b− c), A1 = 0, B1 = m(−b− c+ 2ap+ bp2 − cp2), k = ∓m

√
m2∆ :

For b = c and a = 0,

U1(ξ) = −2bm
[
bξ + c1

]−1

. (5.6)

For b = c and a 6= 0,

U2,3(ξ) = −am±
√
m2a2 + 2m(ap− b)

[
p+ c1 exp(aξ)− b

a

]−1

. (5.7)

For ∆ > 0 and b 6= c,

U4,5(ξ) = −am±
√
m2∆−mp(b− c) (5.8)

+ m(−b− c+ 2ap+ bp2 − cp2)
[ 2

b− c
c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]−1

.

For ∆ < 0 and b 6= c,

U6,7(ξ) = −am±
√
m2∆−mp(b− c) (5.9)

+ m(−b− c+ 2ap+ bp2 − cp2)
[
p+

a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]−1

.

Here ξ = ∓m
√
m2∆ tα

α +mxβ

β .

Case 2: A0 = am±
√
m2∆ +mp(b− c), A1 = −m(b− c), B1 = 0, k = ∓m

√
m2∆ :

For ∆ > 0 and b 6= c,

U8,9(ξ) = am±
√
m2∆ +mp(b− c) (5.10)

− 2m
[c1r1 exp(r1ξ) + c2r2 exp(r2ξ)

c1 exp(r1ξ) + c2 exp(r2ξ)

]
.

For ∆ < 0 and b 6= c,

U10,11(ξ) = am±
√
m2∆ +mp(b− c) (5.11)

− m
[
p(b− c) + a+

√
−∆
−c1 sin(

√
−∆
2 ξ) + c2 cos(

√
−∆
2 ξ)

c1 cos(
√
−∆
2 ξ) + c2 sin(

√
−∆
2 ξ)

]
.

Here ξ = ∓m
√
m2∆ tα

α +mxβ

β .

The solution u5(x, t) in Eq.(5.8) is simulated in Fig.9-Fig.10. These figures show kink wave solutions. Figs.9 and
10 are 3D and 2D plots of the traveling wave solution u5(x, t) and u5(x, 1) in Eq.(5.8) for α = 0.75, β = 1, θ = 0.5,
m = 0.5, a = 2, b = 5, c = 2, c1 = 1, c2 = 1 and p = 0.2.
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Figure 1. 3D plot of the obtained traveling wave solution u2(x, 1, t) in Eq.(3.12).
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Figure 2. 2D plot of the obtained traveling wave solution u2(x, 1, 1) in Eq.(3.12).

Figure 3. 3D plot of the obtained traveling wave solution u3(x, 1, t) in Eq.(3.13).
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Figure 4. 2D plot of the obtained traveling wave solution u3(x, 1, 1) in Eq.(3.13).

Figure 5. 3D plot of the obtained traveling wave solution u4(x, 1, t) in Eq.(3.14).
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Figure 6. 2D plot of the obtained traveling wave solution u4(x, 1, 1) in Eq.(3.14).
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Figure 7. 3D plot of the obtained traveling wave solution u13(x, t) in Eq.(4.17).
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Figure 8. 2D plot of the obtained traveling wave solution u13(x, 1) in Eq.(4.17).

Figure 9. 3D plot of the obtained traveling wave solution u5(x, t) in Eq.(5.8).
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Figure 10. 2D plot of the obtained traveling wave solution u5(x, 1) in Eq.(5.8).

6. Conclusion
The fundamental goal of the paper has been to construct an approximation to the solution of the conformable

space-time fractional (2+1)-dimensional breaking soliton, third-order KdV and Burger’s equations by SITEM.
The obtained solutions are traveling wave solutions of the conformable space-time fractional (2+1)-dimensional
breaking soliton, third-order KdV and Burger’s equations. These equations have been converted into its equivalent
nonlinear ordinary differential equation by using fractional complex transformation. Solutions of the obtained
nonlinear ordinary differential equation have been seek in the form of the summation of the function p+ tan(φ(ξ)

2 ).
Substituting the summation of the function p + tan(φ(ξ)

2 ) into the nonlinear ordinary differential equation and
equalizing coefficients of the term with the same degree, nonlinear algebraic system is obtained. Solving the
nonlinear algebraic system, we have the traveling wave solutions.

There are many types of traveling waves that are of particular interest in solitary wave theory. Three of these
types are the solitary waves, the periodic waves and the kink waves. The solitary waves are asymptotically zero at
large distances, the periodic waves have periodicity, the kink waves rise or descend from one asymptotic state to
another. The 3D and 2D graphics of the obtained solutions have been presented in the paper. Figs.1- 2, Figs.9-10
show kink waves solutions, Figs.5- 6, Figs.7-8 have periodic waves solutions and Figs.3-4 give solitary waves
solutions. This method changes the given difficult problems into simple one and solve easily by using MATLAB
programming. The obtained solutions are new and have not been reported in former literature. The method can
also be applied to other nonlinear fractional partial differential equations.
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Abstract
The main purpose of the paper is to investigate geodesics on the tangent bundle with respect to the
twisted-Sasaki metric. We establish a necessary and sufficient conditions under which a curve be a
geodesic respect. Afterward, we also construct some examples of geodesics.
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1. Introduction
The geometry of the tangent bundle TM equipped with Sasaki metric has been studied by many authors such as

Sasaki, S. [18], Yano, K. and Ishihara, S. [20], Dombrowski, p. [6], Salimov, A., Gezer, A., and Cengiz, N. [2, 7, 14–16].
The rigidity of Sasaki metric has incited some geometers to construct and study other metrics on TM . Musso, E. and
Tricerri, F. have introduced the notion of Cheeger-Gromoll metric [13], Jian, W. and Yong, W. have introduced the
notion of Rescaled Metric [9], Zagane, A. and Djaa, M. have introduced the notion of Mus-Sasaki metric [12, 21, 22].

The main idea in this note consists in the modification of the Sasaki metric. First we introduce a new metric
called twisted-Sasaki metric on the tangent bundle TM . This new natural metric will lead us to interesting results.
Afterward we establish a necessary and sufficient conditions under which a curve be a geodesic with respect to the
twisted-Sasaki metric.

2. Preliminaries
Let (Mm, g) be an m-dimensional Riemannian manifold and (TM, π,M) be its tangent bundle. A local chart

(U, xi)i=1,m on M induces a local chart (π−1(U), xi, yi)i=1,m on TM . Denote by Γkij the Christoffel symbols of g and
by∇ the Levi-Civita connection of g.

We have two complementary distributions on TM , the vertical distribution V and the horizontal distributionH
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defined by :

V(x,u) = Ker(dπ(x,u)) = {ai ∂
∂yi
|(x,u); ai ∈ R},

H(x,u) = {ai ∂
∂xi
|(x,u) − aiujΓkij

∂

∂yk
|(x,u); ai ∈ R},

where (x, u) ∈ TM , such that T(x,u)TM = H(x,u) ⊕ V(x,u).
Let X = Xi ∂

∂xi be a local vector field on M . The vertical and the horizontal lifts of X are defined by

XV = Xi ∂

∂yi
, (2.1)

XH = Xi δ

δxi
= Xi{ ∂

∂xi
− yjΓkij

∂

∂yk
}. (2.2)

For consequences, we have ( ∂
∂xi )H = δ

δxi and ( ∂
∂xi )V = ∂

∂yi , then ( δ
δxi ,

∂
∂yi )i=1,m is a local adapted frame on TTM .

If w = wi ∂
∂xi + wj ∂

∂xj ∈ T(x,u)TM, then its horizontal and vertical parts are defined by

wh = wi
∂

∂xi
− wiujΓkij

∂

∂yk
∈ H(x,u), (2.3)

wv = (wk + wiujΓkij)
∂

∂yk
∈ V(x,u). (2.4)

Lemma 2.1. [20] Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita connection and R its tensor curvature, then for
all vector fields X,Y ∈ Γ(TM), we have following relations

1. [XH , Y H ]p = [X,Y ]Hp − (Rx(X,Y )u)V ,

2. [XH , Y V ]p = (∇XY )Vp ,

3. [XV , Y V ]p = 0,

where p = (x, u) ∈ TM .

3. Twisted-Sasaki metric
3.1 Twisted-Sasaki metric
Definition 3.1. Let (M, g) be a Riemannian manifold and f : M → [0,+∞[ be a positive smooth function on M .
On the tangent bundle TM , we define a twisted-Sasaki metric noted gf by

1 gf (XH , Y H)(x,u) = gx(X,Y ),

2 gf (XH , Y V )(x,u) = 0,

3 gf (XV , Y V )(x,u) = gx(X,Y ) + f(x)gx(X,u)gx(Y, u),

where X,Y ∈ Γ(TM), (x, u) ∈ TM , f is called twisting function.

Remark 3.1. 1 If f = 0 gf is the Sasaki metric [20],

2 gf (XV , UV ) = αg(X,u), α = 1 + fr2 and r2 = g(u, u),
where X,U ∈ Γ(TM), Ux = u ∈ TxM and (x, u) ∈ TM .

In the following, we consider f 6= 0, α = 1 + fr2 and r2 = g(u, u) = ‖u‖2 where ‖.‖ denote the norm with
respect to (M, g).

Lemma 3.1. Let (M, g) be a Riemannian manifold and ρ : R→ R a smooth function. For all X,Y ∈ Γ(TM), p = (x, u) ∈
TM and u ∈ TxM , we have following relations

1. XH(ρ(r2))p = 0,
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2. XV (ρ(r2))p = 2ρ′(r2)g(X,u)x,

3. XH(g(Y, u))p = g(∇XY, u)x,

4. XV (g(Y, u)p = g(X,Y )x.

Proof. Locally, if U : x ∈M → Ux = u = ui ∂
∂xi ∈ TxM be a local vector field constant on each fiber TxM , then we

have

1. XH(ρ(r2))p =
[
Xi ∂

∂xi
(ρ(r2))− ΓkijX

iyj
∂

∂yk
(ρ(r2))

]
p

=
[
Xiρ′(r2)

∂

∂xi
(r2)− ρ′(r2)ΓkijX

iyj
∂

∂yk
(r2)

]
p

= ρ′(r2)
[
Xi ∂

∂xi
gsty

syt − ΓkijX
iyj

∂

∂yk
gsty

syt
]
p

= ρ′(r2)
[
Xg(U,U)x − 2(ΓkijX

iyjgsky
s)p
]

= ρ′(r2)[Xg(U,U)x − 2g(U,∇XU)x]

= 0.

2. XV (ρ(r2))p = [Xiρ′(r2)
∂

∂yi
gsty

syt]p

= 2ρ′(r2)Xigitu
t

= 2ρ′(r2)g(X,u)x.

The other formulas are obtained by a similar calculation.

Lemma 3.2. Let (M, g) be a Riemannian manifold, we have the following

1) XHgf (Y H , ZH) = Xg(Y,Z),

2) XV gf (Y H , ZH) = 0,

3) XHgf (Y V , ZV ) = gf ((∇XY )V , ZV ) + gf (Y V , (∇XZ)V ) +X(f)g(Y, u)g(Z, u),

4) XV gf (Y H , ZH) = f
[
g(X,Y )g(Z, u) + g(Y, u)g(X,Z)

]
,

where X,Y, Z ∈ Γ(TM).

Proof. Lemma 3.2 follows from Definition 3.1 and Lemma 3.1.

3.2 The Levi-Civita connection

We shall calculate the Levi-Civita connection ∇f of TM with twisted-Sasaki metric gf . This connection is
characterized by the Koszul formula

2gf (∇f
X̃
Ỹ , Z̃) = X̃gf (Ỹ , Z̃) + Ỹ gf (Z̃, X̃)− Z̃gf (X̃, Ỹ )

+gf (Z̃, [X̃, Ỹ ]) + gf (Ỹ , [Z̃, X̃])− gf (X̃, [Ỹ , Z̃]). (3.1)

for all X̃, Ỹ , Z̃ ∈ Γ(TM).

Lemma 3.3. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki metric.
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If ∇ (resp ∇f ) denotes the Levi-Civita connection of (M, g) (resp (TM, gf )), then we have following relations

1) gf (∇f
XHY

H , ZH) =gf
(
(∇XY )H , ZH

)
,

2) gf (∇f
XHY

H , ZV ) =− 1

2
gf
(
(R(X,Y )u)V , ZV

)
,

3) gf (∇f
XHY

V , ZH) =
1

2
gf
(
(R(u, Y )X)H , ZH

)
,

4) gf (∇f
XHY

V , ZV ) =gf
(
(∇XY )V , ZV

)
+

1

2α
X(f)g(Y, u)gf (UV , ZV ),

5) gf (∇f
XV Y

H , ZH) =
1

2
gf
(
(R(u,X)Y )H , ZH

)
,

6) gf (∇f
XV Y

H , ZV ) =
1

2α
Y (f)g(X,u)gf (UV , ZV ),

7) gf (∇f
XV Y

V , ZH) =
−1

2
g(X,u)g(Y, u)gf ((grad f)H , ZH),

8) gf (∇f
XV Y

V , ZV ) =
f

α
g(X,Y )gf (UV , ZV ),

for all vector fields X,Y, U ∈ Γ(TM), Ux = u ∈ TxM and (x, u) ∈ TM , where R denotes the curvature tensor of (M, g).

Proof. The proof of Lemma 3.3 follows directly from Kozul formula (3.1), Lemma 2.1, Definition 3.1 and Lemma 3.2.
1) The statement is obtained as follows

2gf (∇f
XHY

H , ZH) =XHgf (Y H , ZH) + Y Hgf (ZH , XH)− ZHgf (XH , Y H)

+ gf (ZH , [XH , Y H ]) + gf (Y H , [ZH , XH ])− gf (XH , [Y H , ZH ])

=Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + gf (ZH , [X,Y ]H)

+ gf (Y H , [Z,X]H)− gf (XH , [Y,Z]H)

=Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g(Z, [X,Y ])

+ g(Y, [Z,X])− g(X, [Y, Z])

=2g(∇XY,Z)

=2gf ((∇XY )H , ZH).

2) Direct calculations give

2gf (∇f
XHY

H , ZV ) =XHgf (Y H , ZV ) + Y Hgf (ZV , XH)− ZV gf (XH , Y H)

+ gf (ZV , [XH , Y H ]) + gf (Y H , [ZV , XH ])− gf (XH , [Y H , ZV ])

=gf (ZV , [XH , Y H ])

=− gf ((R(X,Y )u)V , ZV ).

The other formulas are obtained by a similar calculation.

As a direct consequence of Lemma 3.3, we get the following theorem.

Theorem 3.1. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If∇ (resp ∇f ) denotes the Levi-Civita connection of (M, g) (resp (TM, gf ) ), then we have:

1. (∇f
XHY

H)p = (∇XY )Hp −
1

2
(Rx(X,Y )u)V ,

2. (∇f
XHY

V )p = (∇XY )Vp +
1

2α
Xx(f)gx(Y, u)UVp +

1

2
(Rx(u, Y )X)H ,

3. (∇f
XV Y

H)p =
1

2α
Yx(f)gx(X,u)UVp +

1

2
(Rx(u,X)Y )H ,

4. (∇f
XV Y

V )p =
−1

2
gx(X,u)gx(Y, u)(grad f)Hp +

f

α
gx(X,Y )UVp ,

for all vector fields X,Y, U ∈ Γ(TM), Ux = u ∈ TxM and p = (x, u) ∈ TM , where R denotes the curvature tensor of
(M, g).
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4. Geodesics of twisted-Sasaki metric.
Lemma 4.1. Let (M, g) be a Riemannian manifold. If X,Y ∈ Γ(TM) are vector fields on M and (x, u) ∈ TM such that
Yx = u, then we have

dxY (Xx) = XH
(x,u) + (∇XY )V(x,u).

Proof. Let (U, xi) be a local chart onM in x ∈M and π−1(U), xi, yj) be the induced chart on TM , ifXx = Xi(x) ∂
∂xi |x

and Yx = Y i(x) ∂
∂xi |x = u, then

dxY (Xx) = Xi(x)
∂

∂xi
|(x,u) +Xi(x)

∂Y k

∂xi
(x)

∂

∂yk
|(x,u).

Thus the horizontal part is given by:

(dxY (Xx))h = Xi(x)
∂

∂xi
|(x,u) −Xi(x)Y j(x)Γkij(x)

∂

∂yk
|(x,u)

= XH
(x,u),

and the vertical part is given by:

(dxY (Xx))v = {Xi(x)
∂Y k

∂xi
(x) +Xi(x)Y j(x)Γkij(x)} ∂

∂yk
|(x,u)

= (∇XY )V(x,u).

Let (M, g) be a Riemannian manifold and x : I →M be a curve on M . We define a curve C : I → TM by for all
t ∈ I, C(t) = (x(t), y(t)) where y(t) ∈ Tx(t)M i.e. y(t) is a vector field along x(t).

Definition 4.1. ([17, 20]) Let (M, g) be a Riemannian manifold. If x(t) is a curve on M , the curve C(t) = (x(t), ẋ(t))
is called the natural lift of curve x(t).

Definition 4.2. ([20]) Let (M, g) be a Riemannian manifold and ∇ denotes the Levi-Civita connection of (M, g). A
curve C(t) = (x(t), y(t)) is said to be a horizontal lift of the cure x(t) if and only if ∇ẋy = 0.

Lemma 4.2. Let (M, g) be a Riemannian manifold and ∇ denotes the Levi-Civita connection of (M, g). If x(t) be a curve on
M and C(t) = (x(t), y(t)) be a curve on TM , then

Ċ = ẋH + (∇ẋy)V . (4.1)

Proof. Locally, if Y ∈ Γ(TM) is a vector field such Y (x(t)) = y(t), then we have

Ċ(t) = dC(t) = dY (x(t)).

Using Lemma 4.1, we obtain
Ċ(t) = dY (x(t)) = ẋH + (∇ẋy)V .

Theorem 4.1. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If∇ (resp. ∇f ) denotes the Levi-Civita connection of (M, g) (resp. (TM, gf )) and C(t) = (x(t), y(t)) is the cure on
TM such y(t) is a vector field along x(t), then

∇f
Ċ
Ċ = (∇ẋẋ)H + (R(y,∇ẋy)ẋ)H − 1

2
g(∇ẋy, y)2(grad f)H

+(∇ẋ∇ẋy)V +
1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
yV . (4.2)
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Proof. Using Lemma 4.2, we obtain

∇f
Ċ
Ċ = ∇f

[ẋH + (∇ẋy)V ]
[ẋH + (∇ẋy)V ]

= ∇f
ẋH

ẋH +∇f
ẋH

(∇ẋy)V +∇f
(∇ẋy)V

ẋH +∇f
(∇ẋy)V

(∇ẋy)V

= (∇ẋẋ)H − 1

2
(R(ẋ, ẋ)y)V + (∇ẋ∇ẋy)V +

1

2α
ẋ(f)g(∇ẋy, y)yV

+
1

2
(R(y,∇ẋy)ẋ)H +

1

2α
ẋ(f)g(∇ẋy, y)yV +

1

2
(R(y,∇ẋy)ẋ)H

−1

2
g(∇ẋy, y)g(∇ẋy, y)(grad f)H +

f

α
g(∇ẋy,∇ẋy)yV

= (∇ẋẋ)H + (R(y,∇ẋy)ẋ)H − 1

2
g(∇ẋy, y)2(grad f)H

+(∇ẋ∇ẋy)V +
1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
yV .

Theorem 4.2. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If C(t) = (x(t), y(t)) is the cure on (TM, gf ) such y(t) is a vector field along x(t), then C(t) is a geodesic on TM if
and only if 

∇ẋẋ =
1

2
g(∇ẋy, y)2grad f −R(y,∇ẋy)ẋ

∇ẋ∇ẋy = − 1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
y.

(4.3)

Proof. The statement is a direct consequence of Theorem 4.1 and definition of geodesic.

Using Theorem 4.2, we deduce following.

Corollary 4.1. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. The natural lift C(t) = (x(t), ẋ(t)) of any geodesic x(t) on (M, g) is a geodesic on (TM, gf ).

Corollary 4.2. Let (M, g) be a Riemannian manifold, (TM, gf ) its tangent bundle equipped with the twisted-Sasaki metric.
The horizontal lift C(t) = (x(t), y(t)) of the curve x(t) is a geodesic on (TM, gf ) if and only if x(t) is a geodesic on (M, g).

Remark 4.1. Let (Mm, g) be an m-dimensional Riemannian manifold. If C(t) = (x(t), y(t)) horizontal lift of the
curve x(t), locally we have

∇ẋy = 0 ⇔ dyk

dt
+ Γkijy

i dx
j

dt
= 0

⇔ y′(t) = A(t).y(t),

where, A(t) = [akj ] , akj =

m∑
i=1

−Γkij
dxj

dt
.

Remark 4.2.
Using the Remark 4.1, we can construct an infinity of examples of geodesics on (TM, gf ).

Example 4.1. We consider on R the metric g = exdx2.
The Christoffel symbols of the Levi-cita connection associated with g are

Γ1
11 =

1

2
g11(

∂g11
∂x1

+
∂g11
∂x1

− ∂g11
∂x1

) =
1

2
.

1)The geodesics x(t) such that x(0) = a ∈ R, x′(0) = v ∈ R of g satisfies the equation

d2xs

dt2
+

n∑
i,j=1

dxi

dt

dxj

dt
Γsij = 0⇔ x′′ +

1

2
(x′)2 = 0.
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Hence, we get x′(t) =
2v

2 + vt
and x(t) = a+ 2 ln(1 +

vt

2
).

Then, the natural lift

C1(t) = (x(t), x′(t)) =
(
a+ 2 ln(1 +

vt

2
),

2v

2 + vt

)
is a geodesic on TR.
2) The curve C2(t) = (x(t), y(t)) such ∇ẋy = 0 satisfies the equation

dys

dt
+ yiΓsij

dxj

dt
= 0⇔ y′ +

1

2
yx′ = 0,

after that y(t) = k. exp(− v

2 + tv
) , k ∈ R.

Then, the horizontal lift

C2(t) = (x(t), y(t)) =
(
a+ 2 ln(1 +

vt

2
), k. exp(− v

2 + tv
)
)

is a geodesic on TR.

Corollary 4.3. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If f be a constant function, then the curve C(t) = (x(t), y(t)) is a geodesic on (TM, gf ) if and only if

∇ẋẋ = −R(y,∇ẋy)ẋ

∇ẋ∇ẋy = −f
α
‖∇ẋy‖

2y.

(4.4)

Proof. The statement is a direct consequence of Theorem 4.2.

Theorem 4.3.
Let (M, g) be a Riemannian manifold, (TM, gf ) its tangent bundle equipped with the twisted-Sasaki metric and x(t) be a
geodesic on M . If C(t) = (x(t), y(t)) is a geodesic on TM such that ‖y(t)‖ is not a constant, then f is a constant along the
curve x(t).

Proof. Let x(t) be a geodesic on M , then∇ẋẋ = 0. Using the first equation of formula (4.3), we obtain

g(∇ẋẋ, ẋ) = 0 ⇒ 1

2
g(∇ẋy, y)2g(grad f, ẋ)− g(R(y,∇ẋy)ẋ, ẋ) = 0

⇒ 1

2
g(∇ẋy, y)2ẋ(f) = 0

⇒ ẋ(f) = 0,

as ‖y(t)‖ is a constant⇔ ẋg(y, y) = 0⇔ g(∇ẋy, y) = 0.

Corollary 4.4. Let (M, g) be a Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If C(t) = (x(t), y(t)) is the cure on (TM, gf ) such ‖y(t)‖ is a constant, then the curve C(t) = (x(t), y(t)) is a
geodesic on (TM, gf ) if and only if 

∇ẋẋ = −R(y,∇ẋy)ẋ

∇ẋ∇ẋy = −f
α
‖∇ẋy‖

2y.

(4.5)

Proof. The statement is a direct consequence of Theorem 4.2, and we have
‖y(t)‖ is a constant⇔ ẋg(y, y) = 0⇔ g(∇ẋy, y) = 0.

Theorem 4.4. Let (M, g) be a flat Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. Then, the cure C(t) = (x(t), y(t)) is a geodesic on TM if and only if

∇ẋẋ =
1

2
g(∇ẋy, y)2grad f

∇ẋ∇ẋy = − 1

α

[
ẋ(f)g(∇ẋy, y) + f‖∇ẋy‖

2
]
y.

(4.6)
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Proof. The statement is a direct consequence of Theorem 4.1.

Corollary 4.5. Let (M, g) be a flat Riemannian manifold and (TM, gf ) its tangent bundle equipped with the twisted-Sasaki
metric. If f is a constant function, then the curve C(t) = (x(t), y(t)) is a geodesic on TM implies that x(t) is a geodesic on
M .

Proof. The statement is a direct consequence of Theorem 4.4.
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Structure Preserving Algorithm for the Logarithm of
Symplectic Matrices

Bahar Arslan*

Abstract
The current algorithms use either the full form or the Schur decomposition of the matrix in the inverse
scaling and squaring method to compute the matrix logarithm. The inverse scaling and squaring method
consists of two main calculations: taking a square root and evaluating the Padé approximants. In this
work, we suggest using the structure preserving iteration as an alternative to Denman-Beavers iteration
for taking a square root. Numerical experiments show that while using the structure preserving square
root iteration in the inverse scaling and squaring method preserves the Hamiltonian structure of matrix
logarithm, Denman-Beavers iteration and Schur decomposition cause a structure loss.

Keywords: Matrix functions; matrix logarithm; symplectic matrix; Hamiltonian matrix; inverse scaling and squaring method

AMS Subject Classification (2020): Primary: 00A00 ; Secondary: 00B00; 00C00; 00D00; 00E00; 00F00.

1. Introduction
The matrix logarithm is not only important for being the inverse function of the matrix exponential, it has also

many applications. It has been used by engineers in the continuization process. They compute the logarithm of
matrices in converting a discrete process into a continuous one [17, 18]. It has also applications to the stability
of differential equations [14, 16]. The growing interest in computing structured matrix functions stems from the
fact that predicting and preserving the structure of matrices can help us to explain the results physically and
geometrically. The logarithm of structured matrices has applications in the control mechanical systems [4, 15] and
in the optometry [6]. Structured matrix logarithm is also used for generalizing Bézier curves to non-Euclidean
spaces. Crouch’s algorithm, which generalizes De Casteljau algorithm to find polynomial splines on Riemannian
manifolds, requires the computation of matrix logarithm when this manifold is a Lie group of matrices [4]. The
theory of splines on Lie groups has applications in robotics path planning and air traffic control.

This paper focuses on computing the logarithm of a real symplectic matrix A with the spectrum ρ(A) such that
ρ(A) ∩ R− = ∅, for which W = logA is Hamiltonian. In the computation of matrix logarithm, we use the inverse
scaling and squaring method proposed by Kenney and Laub [12] and which is based on the relation

log(A) = 2k log(A1/2k).
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There are two important calculations in the inverse scaling and squaring method. The first one is taking a square
root of a symplectic matrix and the second is the Padé approximation [7]. Moreover, the inverse scaling and
squaring method can be applied to A directly or it can be used with the Schur decomposition of A. However, we
show that the latter case does not preserve the structure of the symplectic matrices. The aim of this paper is to
propose using the structure preserving iteration for the square root in the inverse scaling and squaring method.
We analyse this approach in terms of structure error, accuracy and computational cost. Numerical experiments
assess the advantage of this approach and suggest using the structure preserving iteration in the inverse scaling
and squaring method for the logarithm of symplectic matrices to preserve the Hamiltonian structure.

The paper is organized as follows. Section 2 begins with the definition of symplectic matrices and the matrix
logarithm. We also review the inverse scaling and squaring method in this section. In Section 3, we propose our
algorithm using the structure preserving square root iteration in the inverse scaling and squaring method. Section 4
presents the numerical findings and analyses our approach in terms of structure error, accuracy and cost. Finally,
Section 5 gives a brief summary and critique of the findings .

2. Logarithm of symplectic matrices

2.1 Symplectic matrices
Let K denote the field R or C. Consider a scalar product 〈·, ·〉M defined by any nonsingular matrix M , for

x, y ∈ Kn,

〈x, y〉M =

{
xTMy, for real or complex bilinear forms,
x∗My, for sesquilinear forms.

For any matrix A ∈ Kn×n, there exists a unique operator A? ∈ Kn×n, called the adjoint of A with respect to the
scalar product, such that

〈Ax, y〉M = 〈x,A?y〉M , ∀x, y ∈ Kn.

A? can be written explicitly

A? =

{
M−1ATM, for real or complex bilinear forms,
M−1A∗M, for sesquilinear forms.

Symplectic matrices belong to the automorphism group which is characterized by the adjoint matrix as

G = {A ∈ Kn×n : A? = A−1}.

So for M = J the matrix A ∈ K2n×2n is symplectic if ATJA = J . The permutation matrix J ∈ R2n×2n is given as

J =

[
0 In
−In 0

]
where In is the identity matrix of order n.

2.2 Inverse scaling and squaring method
For a given A ∈ Kn×n a logarithm of A is any matrix W such that eW = A. We assume that A has no eigenvalues

on R− so that the existence of a unique principal logarithm is assured as shown in the following theorem.

Theorem 2.1. [7, Thm. 1.31] Let A ∈ Kn×n have no eigenvalues on R−. There is a unique logarithm W of A all of whose
eigenvalues lie in the strip {z : −π < Im(z) < π}. We refer to W as the principal logarithm of A and write W = logA. If A
is real, then its principal logarithm is real.

For M = J , a matrix W is called Hamiltonian if W? = −W , which implies WT = JWJ . The function logarithm
maps a symplectic matrix to a Hamiltonian matrix as proved in Theorem 2.2.

Theorem 2.2. [3, Thm. 2.1] If A ∈ Kn×n is a symplectic matrix and ρ(A) ∩ R− = ∅, then logA =W is Hamiltonian.

Proof. Since A is symplectic it satisfies
AT = −JA−1J = J−1A−1J.
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Then,
log(AT ) = J−1 logA−1J.

As stated in [7, Thm.1.13 and Thm.11.2 ], log(AT ) = (logA)T and logA−1 = − logA. Therefore,

(logA)T = −J−1 logAJ

= J logAJ.

Hence, it shows that logA is Hamiltonian.

In the computation of matrix logarithm we use the inverse scaling and squaring method. The basic idea of the
inverse scaling and squaring method is to take the repetitive square root of A so the result is close to the identity
matrix and then use the m-th order Padé approximant rm. We summarise the method in the following algorithm.
Algorithm 2.3. [12] Given A ∈ Kn×n with no eigenvalues on R− this algorithm employs the inverse scaling and
squaring method to compute W = logA.

1 Bring A close to an identity matrix by taking k repetitive square root of A
2 Decide the order of rm(A1/2k − I) by minimising the cost and maximising the accuracy
3 Approximate log(A1/2k) by using rm(A1/2k − I) ≈ log(A1/2k)

4 Rescale to obtain W ≈ 2krm(A1/2k − I)

The question we need to deal with is whether the square root function and the Padé approximation preserve the
structure or not. After taking the square root of any matrix in the automorphism group it stays in the automorphism
group, which is proved in the following theorem.

Theorem 2.4. [13] Let A be a matrix that has a principal square root A1/2. If A is symplectic, then A1/2 is symplectic.

Proof. If A is symplectic, then A? = A−1. We have the equality

(A?)1/2 = (A−1)1/2 ⇒ (A1/2)? = (A1/2)−1.

Theorem 2.5. [9, Thm. 6.2] Let G be any automorphism group and A ∈ G. If A has no eigenvalues on R−, then the iteration

Yk+1 =
1

2
(Yk + Y −?

k ) (2.1)

=
1

2
(Yk +M−1Y −T

k M)

with starting matrix Y1 = 1
2 (I +A), is well defined and Yk converges quadratically to A1/2.

Since a symplectic matrix belongs to an automorphism group G the advantage of using iteration (2.1) is that it
will preserve the symplectic structure and the result will lie in the group to approximately machine precision. With
this iteration, we preserve the symplectic structure and when we evaluate the Padé approximant, we obtain the
Hamiltonian structure which is proved in the following theorem.

Theorem 2.6. [5] Let rm(X) be the diagonal Padé approximants to log(I+X),m = 0, 1, . . . . LetW = logA andX = A−I
with ρ(X) < 1. If A is symplectic, then rm(A− I) is Hamiltonian.

Proof. We will use the homographic invariance [2, Thm. 1.5.2] under the argument transformations for this proof.
Since f(x) = log x does not have a power series we take f(x) = log(1 + x). By using the equality log(1 + x) =

− log

(
1 +

−x
x+ 1

)
and [2, Thm. 1.5.2] we get rm(x) = −rm(−x/(x+ 1)).

For the matrix case this formula yields rm(X) = −rm(−X(X + I)−1). If A is a symplectic matrix, then
A−1 = −JATJ . Thus, we can write

rm(A− I) = −rm(A−1 − I)
= −rm(−JATJ − I)
= −rm(−J(AT − I)J).

We obtain rm(X) = −rm(−J(XT )J) = Jrm(XT )J = Jrm(X)TJ = −J−1rm(X)TJ which indicates that rm(X) is
Hamiltonian.
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We state in the next theorem that the error in matrix Padé approximation is less than the error in scalar Padé
approximation at the norm of the matrix, which is used in the inverse scaling and squaring method to decide the
order of Padé approximation.

Theorem 2.7. [11] For ‖A− I‖ < 1 and any subordinate matrix norm,

‖rm(A− I)− logA‖ ≤ |rm(−‖A− I‖)− log(1− ‖A− I‖)|. (2.2)

Table 1. Maximal values θm of ‖A− I‖ ensure that the bound ‖rm(A− I)− logA‖ does not exceed u = 2−53 [7,
Table 11.1].

m 1 2 3 4 5 6 7 8 9
θm 1.10e-5 1.82e-3 1.62e-2 5.39e-2 1.14e-1 1.87e-1 2.64e-1 3.40e-1 4.11e-1

m 10 11 12 13 14 15 16 32 64
θm 4.75e-1 5.31e-1 5.81e-1 6.24e-1 6.62e-1 6.95e-1 7.24e-1 9.17e-1 9.78e-1

The maximal values θm of ‖A− I‖ such that the error bound ‖rm(A− I)− logA‖ does not exceed u = 2−53 ≈
1.1× 10−16 are given in Table 1.

3. Using the structure preserving square root iteration

We adapt the algorithm [7, Alg. 11.10] by using the structure preserving iteration to take a square root. Iteration
(2.1) is used to compute the square root of symplectic matrix and it exploits the symplecticity in each iteration.
Let itj be the number of iterations required in each square root. If M was a full matrix, then the operation count
would include the inverse of M and the matrix multiplication. However, since M = J is a permutation of diag(±1)
multiplication by J−1 is trivial and the cost of each iteration is one matrix inversion per iteration which is 2n3 flops.
Evaluating the partial fraction form of the Padé approximation with the order m costs 8

3mn
3 flops. In iteration (2.1)

the number of iterations required to take a square root of A typically changes from 16 on the first iterations to 4 for
the last few iterations. So the cost of taking a square root of symplectic matrix A at the last few iterations is 8n3

flops. It is worth only taking one more square root if it reduces the order of Padé approximation by at least 3. That
decrease in the order of Padé approximation can only be obtained when ‖A1/2s − I‖ > θ16, where θ16 is the value
given in Table 1. Taking a square root of A approximately reduces the distance of A1/2k to the identity matrix by a
half. This is easy to see since

(I −A1/2k+1

)(I +A1/2k+1

) = I −A1/2k ,

and A1/2k → I as k →∞, it gives

‖I −A1/2k+1

‖ ≈ 1

2
‖I −A1/2k‖. (3.1)

When ‖A1/2s − I‖ ≤ θ16 is obtained, in order to compare the cost of the Padé approximation and the cost of the
square root iteration, we check the inequality

8

3
(m1 −m2)n

3 ≤ 2n3itj ⇒ 4

3
(m1 −m2) ≤ itj (3.2)

by assuming the same number of iterations is required. In equation (3.2) m1 and m2 are the order of Padé
approximants before and after the extra square root, respectively. Since the cost of taking 2 more extra square roots
exceeds the cost of evaluating the Padé approximant we limit it by taking p = 2. That is, only one extra square root
is taken if it is required. By using the cost checking (3.2), we present the modified algorithm of the inverse scaling
and squaring method using the structure preserving square root iteration (2.1).

Algorithm 3.1. Given a symplectic matrix A ∈ Kn×n with no eigenvalues on R− this algorithm computes W = logA
by the inverse scaling and squaring method. It uses the constants θm given in Table 1 for the Padé approximation
and iteration (2.1) to take a square root of A. This algorithm is intended for IEEE double precision arithmetic.
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1 k = 0, p = 0
2 while true
3 τ = ‖A− I‖1
4 if τ < θ16
5 p = p+ 1
6 m1 = min{i : τ ≤ θi, i = 3: 16}
7 m2 = min{i : τ/2 ≤ θi, i = 3: 16}
8 if 4(m1 −m2)/3 ≤ itj or p = 2, m = m1, go to line 13, end
9 end

10 A← A1/2 by using iteration (2.1)
11 k = k + 1
12 end
13 Evaluate Y = rm(A− I)
14 W = 2kY

Cost: Taking a square root costs (
∑k

j=1 itj)2n
3 flops where k is the number of square root and evaluating the partial

fraction form of the Padé approximation costs about 8
3mn

3 flops. It is (
∑k

j=1 itj)2n
3 + 8

3mn
3 flops in total.

4. Numerical experiments

4.1 Error measure
The appropriate relative measure of departure from Hamiltonian structure can be computed by [1]

errH(W ) =
‖W? +W‖2
‖W‖2

. (4.1)

The relative error for the computed logarithm Ŵ is given by

relerr(Ŵ ) =
‖Ŵ −W‖2
‖W‖2

, (4.2)

where W = logA is the "exact" logarithm. In the numerical tests, W is computed at 100 digit precision and
we measure the departure from the Hamiltonian structure and the relative error by equations (4.1) and (4.2),
respectively.

4.2 Numerical tests
In the numerical experiments, we test using the structure preserving square root iteration (2.1) in the inverse

scaling and squaring method in terms of structure loss, accuracy and computational cost. The experiments are
carried out in MATLAB R2020b with u = 1.1× 10−16. We form the full form of symplectic test matrices A ∈ R10×10

by using the function rand_rsymp from Jagger’s MATLAB Toolbox [10].
Let Ŵ represent the computed logarithm and W = logA represent the "exact" logarithm obtained by using

MATLAB’s Symbolic Math Toolbox, where A is diagonalized in 100 digit precision as A = V DV −1 and computed
by logA = V logDV −1.

In the experiments, the relative error of the logarithm of the symplectic matrices relerr(Ŵ ), the structure error
errH(W ) for the Hamiltonian structure and the computational cost are presented. All the results are plotted with
the condition number of the symplectic matrices computed by κ2(A) = ‖A‖2‖A−1‖2. The legend labels in figures
are described as follows:

1. full_preserve: Ŵ is computed by Algorithm 3.1 using the full form of A with the structure preserving
square root iteration (2.1).

2. full_DB: Ŵ is computed using the full form of A with the scaled product Denman-Beavers iteration [7, Alg.
11.10].

3. Schur: Ŵ is computed using the Schur decomposition of A [7, Alg. 11.9] with a square root algorithm [7,
Alg. 6.3].
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Figure 1 provides the comparison of the structure error. We can see that while using the scaled product
Denman-Beavers iteration with the full form of the matrix and Schur decomposition cause a structure loss for the
ill-conditioned matrices, using Algorithm 3.1 preserves the Hamiltonian structure. We compare the accuracy of the
approaches in Figure 2. As shown, while for the well-conditioned matrices, i.e., κ2(A) ≈ 1 the methods give the
good estimate to the "exact" logarithm, we obtain less accurate results for the badly conditioned matrices. Since we
obtain almost the same accuracy from three different approaches, we cannot say one is superior to other in terms of
accuracy. Figure 3 reveals that using the iterative methods to compute the square root is computationally expensive.
However, reducing the matrix to an upper triangular matrix with the Schur decomposition and using a square root
algorithm [7, Alg. 6.3] is relatively cheaper than other approaches.
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Figure 1. Comparison of the structure error for full_preserve, full_DB and Schur.
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Figure 2. Comparison of the relative error for full_preserve, full_DB and Schur.
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Figure 3. Comparison of the computational cost of full_preserve, full_DB and Schur.

5. Conclusion
We proposed using the structure preserving square root iteration in the inverse scaling and squaring method to

compute the logarithm of symplectic matrices and we compared it with the algorithms using either the full form of
the matrix with the scaled product Denman-Beavers iteration or the Schur decomposition in terms of the structure
loss, the accuracy and the computational cost. The findings show that the best structure is obtained by using the
structure preserving square root iteration (2.1) instead of using scaled product Denman-Beavers iteration or the
Schur decomposition. While there is not much big difference in their accuracy, however, using the iteration (2.1)
with the full form of the symplectic matrices is computationally expensive.
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Abstract
The objective of this article is to analyze the stability of solutions for the following fourth- order nonlinear
wave equations with an internal delay term:

utt + ∆2u+ u+ σ1(t)|ut(x, t)|2m−2ut(x, t) + σ2(t)|ut(x, t− τ)|2m−2ut(x, t− τ) = 0.

We obtain appropriate conditions on σ1(t) and σ2(t) for the decay properties of the solutions. The
multiplier technique and nonlinear integral inequalities are used in the proof.

Keywords: Energy decay rate; Fourth order wave; Asymptotic behavior.

AMS Subject Classification (2020): Primary: 35B30; Secondary: 35B35; 35G25.

1. Introduction
In this study, we examine the following initial boundary value problem for the nonlinear fourth-order time-

delayed wave equations:

utt + ∆2u+ u+ σ1(t)|ut(x, t)|2m−2ut(x, t)

+ σ2(t)|ut(x, t− τ)|2m−2ut(x, t− τ) = 0, in Ω× (0,∞), (1.1)

u(x, t) =
∂u

∂ν
= 0, ∂Ω× (0,∞), (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (1.3)
ut(x, t− τ) = f(x, t− τ) in Ω× (0, τ), (1.4)

where m > 1 is a constant; σ1 and σ2 are positive functions; Ω ⊂ Rn(n > 4) is a bounded domain; ∂Ω is a smooth
boundary of Ω; τ is the time delay and initial function (u0, u1, f0) in a suitable space.
Without the delay term (σ2 = 0), the behaviors of the solutions of the fourth-order wave equations have been
broadly analyzed in the literature (see [5],[7], [8], [14] and the references therein). Moreover, there are fewer results
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on the stability analysis of the solutions of time- delayed wave equations (see [1], [6], [11], [13] and the references
therein). However, there is no detection of the decay rate of the nonlinear fourth-order wave equations with a delay
term.
In [2], Benaissa, Benaissa and Messaoudi considered a nonlinear wave equation,

utt −∆u+ µ1σ(t)g1 (ut(x, t)) + µ2σ(t)g2 (ut(x, t− τ(t))) = 0,

where τ(t) > 0 is a time dependent delay term, and µ1 and µ2 are positive constants. The existence and decay
estimates for the solutions of the initial boundary value problem were proven.
In [3], Benaissa and Messaoudi analyzed the following nonlinear wave equation:

utt −∆u+ µ1σ(t)ut(x, t) + µ2σ(t)ut(x, t− τ(t)) + θ(t)h (∇u(x, t)) = 0,

and the decay properties of the solutions were determined.
In [12], Ning, Shen and Zhao examined a wave equation of the form

utt +Au+ a(x) [µ1ut(x, t) + µ2ut(x, t− τ)] = 0,

where Au = −divA(x) = (aij(x)) is a symmetric matrix, a(x) is a positive bounded function, and µ1 and µ2 are
positive constants. The well-posedness of the system and exponential decay of the solutions were established.
In [4], Benaissa, Benguessoum and Messaoudi analyzed the following linear wave equation:

utt −∆u+ µ1(t)ut(x, t) + µ2(t)ut(x, t− τ(t)) = 0,

under assumptions about µ1(t) and µ2(t), the existence and decay properties of the solutions of the above equation
with the initial boundary values were investigated.
In [9], Li and Chai examined the following damped plate equation:

utt +A2u+ b(x) [µ1β (ut(x, t)) + µ2φ (ut(x, t− τ))] = 0,

where Au = div (A(x)∇u). The existence of solutions was proven, and the decay rate estimates for the energy were
obtained.
The main goal of the present study is to deduce the decay properties of the solutions of the time-delayed fourth-order
problem (1.1)-(1.4). To the best of our insight, this problem has not been considered in this respect.
The proof of our principle result is founded on the following Lemma which was demonstrated by Martinez in ([10]).

Lemma 1.1. ([10]) Let E : R+ → R+ be a non increasing function and φ : R+ → R+ a strictly increasing function of class
C1 such that

φ(0) = 0 and φ(t)→∞ as t→∞. (1.5)

Assume that there exist σ ≥ 0 and ω > 0 such that∫ +∞

S

E(t)1+σφ
′
(t)dt ≤ 1

ω
E(0)σE(S), 0 ≤ S <∞, (1.6)

then E(t) has the following decay properties:

if σ = 0, then E(t) ≤ E(0)e1−ωφ(t),∀t ≥ 0, (1.7)

if σ > 0, then E(t) ≤ E(0)
( 1 + σ

1 + ωσφ(t)

) 1
σ

,∀t ≥ 0. (1.8)

2. asymptotic behavior

In the present section, we aim to constitute a decay property of the solutions of the problem (1.1)-(1.4) using
multiplier method and integral inequalities. We use the following variable as in [11].

z(x, ρ, t) = ut(x, t− τρ). (2.1)
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Hence, we change problem (1.1)-(1.4) to the following problem:

utt + ∆2u+ u+ σ1(t)|ut(x, t)|2m−2ut(x, t)

+ σ2(t)|z(x, 1, t)|2m−2z(x, 1, t) = 0 in Ω× (0,∞), (2.2)
τzt + zρ = 0 in Ω× (0, 1)× (0,∞), (2.3)

u(x, t) =
∂u

∂ν
= 0 ∂Ω× (0,∞), (2.4)

z(x, 0, t) = ut(x, t) in Ω× (0,∞), (2.5)
z(x, ρ, 0) = ut(x,−τρ) = f(x,−τρ) in Ω× (0, 1). (2.6)

Lemma 2.1. Assume that (u, z) is a solution of the new problem (2.2)-(2.6) and σ1(t), σ2(t) satisfy the following properties
A1: σ1(t) : R+ → (0,∞) is a non-increasing function on C1 (R+) such that

|σ1(t)| ≤M.

A2: σ2(t) : R+ → (0,∞) is a function on C1 (R+) such that

|σ2(t)| < M2σ1(t),

where M and M2 are positive constants. Then, the positive energy of problem (2.2)-(2.6) satisfies the following inequality:

dE(t)

dt
≤ −σ1(t)(1− θ1)

∫
Ω

|ut|2m dx− σ1(t)θ2

∫
Ω

|z(x, 1, t)|2m dx,

where

θ1 =
M2 + M̃

2m
, θ2 =

M̃ + (2m− 1)M2

2m
,

(2m− 1)M2 < M̃ < 2m−M2. (2.7)

Proof. By multiplying equation (2.2) by ut and integrating over Ω we obtain

d

dt

(
1

2
‖ut‖2 +

1

2
‖∆u‖2 +

1

2
‖u‖2

)
= −

∫
Ω

σ1(t)ut|ut|2m−1dx

−
∫

Ω

σ2(t)ut|z(x, 1, t)|2m−2z(x, 1, t)dx. (2.8)

Furthermore, multiplying equation (2.3) by function γ1(t) |z(x, ρ, t)|2m−2
z(x, ρ, t) and integrating over (0, 1)× Ω

we derive

d

dt

(
τ

2m

∫
Ω

∫ 1

0

γ1(t) |z(x, ρ, t)|2m dρdx
)

=
τ

2m

∫
Ω

∫ 1

0

γ′1(t) |z(x, ρ, t)|2m dρdx

− 1

2m

∫
Ω

γ1(t)
(
|z(x, 1, t)|2m − |z(x, 0, t)|2m

)
dx, (2.9)

where
γ1(t) = M̃σ1(t), (2.10)

γ′1(t) < 0. (2.11)

We define

E(t) :=
1

2
‖ut‖2 +

1

2
‖∆u‖2 +

1

2
‖u‖2 +

τ

2m

∫
Ω

γ1(t)

∫ 1

0

|z(x, ρ, t)|2m dρdx. (2.12)

Hence, by combining equations (2.8) and (2.9), we have

d

dt
E(t) =−

∫
Ω

σ1(t)ut|ut|2m−1dx−
∫

Ω

σ2(t)ut|z(x, 1, t)|2m−1dx

+
τ

2m

∫
Ω

∫ 1

0

γ′1(t) |z(x, ρ, t)|2m dρdx− 1

2m

∫
Ω

γ1(t)
(
|z(x, 1, t)|2m − |ut|2m

)
dx,
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Then, using the definition of γ1(t) (2.10), condition (2.5) and property (2.11) we get

d

dt
E(t) ≤−

∫
Ω

σ1(t)ut|ut|2m−1dx−
∫

Ω

σ2(t)ut|z(x, 1, t)|2m−2z(x, 1, t)dx

− 1

2m

∫
Ω

M̃σ1(t)
(
|z(x, 1, t)|2m − |ut|2m

)
dx.

To estimate the second integral of the above equation, we use Young Inequality to obtain∫
Ω

σ2(t)ut|z(x, 1, t)|2m−1dx ≤ 1

2m

∫
Ω

|σ2(t)| |ut|2m dx+
2m− 1

2m

∫
Ω

|σ2(t)| |z|2m dx. (2.13)

Moreover, we have
|σ2(t)| < M2σ1(t). (2.14)

Thus, we deduce that inequality

d

dt
E(t) ≤ −σ1(t) [1− θ1]

∫
Ω

|ut|2m dx− σ1(t)θ2

∫
Ω

|z|2m dx, (2.15)

where

θ1 =
M̃ +M2

2m
, (2.16)

and

θ2 =
M̃ + (2m− 1)M2

2m
. (2.17)

Recalling the property of M̃ (2.7) we have
d

dt
E(t) ≤ 0. (2.18)

Hence, the positive energy is non-increasing.

Now, we are ready to obtain the decay rate of the solutions of problem (2.2)-(2.6).

Theorem 2.1. Assume that A1 and A2 hold. Then, there exist positive constants q and ω such that the energy of problem
(2.2)-(2.6) satisfies the following property

E(t) ≤ E(0)

(
1 + q

1 + ωq
∫ t

0
σ1(s)ds

) 1
q

, ∀t > 0,

where

q >
2m− 1

2
,

and

ω−1 =
2e2τ

3
max

{
2M,

2

(q + 1)(1− θ1)
,

(
4qe2τ

E(0)

)q (
1− θ1

2(q + 1)

)q+1

,
qM

M + 1

,
(2m− 1)E(0)

m−1
2m−1

2m

(
2m+2e2τ (M2c21)m

m

) 1
2m−1

 1

1− θ1
+
M

2
2m−1

2

θ2


,

MM̃

2m(q + 1)
(

1
θ2

+ 1
1−θ1

)}.
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Proof. To establish a decay rate estimate of the positive energy; by multiplying the equation (2.2) by function
φ′(t)Eq(t)u(x, t) and integrating over (S, T )× Ω we deduce the following equation,

0 =

∫ T

S

∫
Ω

φ′Equ
[
utt + ∆2u+ u+ σ1(t)|ut|2m−2ut + σ2(t)|z(x, 1, t)|2m−2z(x, 1, t)

]
dxdt,

where φ(t) satisfies the hypothesis of Lemma 1.1. Using the boundary conditions, we have

0 =

∫ T

S

∫
Ω

[
d

dt
(φ′Equut)− (φ′Eq)

′
uut − φ′Equ2

t

]
dxdt

+

∫ T

S

φ′Eq
∫

Ω

(∆u)2dxdt+

∫ T

S

φ′Eqσ1(t)

∫
Ω

u |ut|2m−2
utdxdt

+

∫ T

S

φ′Eq
∫

Ω

u2dxdt+

∫ T

S

φ′Eqσ2(t)

∫
Ω

u |z|2m−2
z(x, 1, t)dxdt. (2.19)

Furthermore, by multiplying equation (2.3) by φ′(t)Eq(t)γ1(t)e−2τρ |z|2m−2
z(x, ρ, t) and integrating over (S, T )×

Ω× (0, 1), we obtain

0 =

∫ T

S

φ′(t)Eq(t)

∫
Ω

∫ 1

0

γ1(t)e−2τρ |z|2m−2
z(x, ρ, t) (τzt + zρ) dρdxdt,

with the boundary conditions, we get

0 =
τ

2m

∫
Ω

∫ 1

0

φ′Eqγ1e
−2τρ |z|2m

∣∣∣T
S
dρdx+

1

2m

∫ T

S

φ′Eqγ1

∫
Ω

e−2τρ |z|2m
∣∣∣1
0
dxdt

+
τ

m

∫ T

S

φ′Eqγ1

∫
Ω

∫ 1

0

e−2τρ |z|2m dρdxdt

− τ

2m

∫ T

S

(φ′Eqγ1)
′
∫

Ω

∫ 1

0

e−2τρ |z|2m dρdxdt. (2.20)

By taking the sum of equations (2.19) and (2.20), we have

0 =

∫
Ω

φ′Equut

∣∣∣T
S
−
∫ T

S

∫
Ω

[
(φ′Eq)

′
uut − φ′Equ2

t

]
dxdt

+

∫ T

S

φ′Eq
∫

Ω

(∆u)2dxdt+

∫ T

S

φ′Eq
∫

Ω

u2dxdt

+

∫ T

S

φ′Eqσ1(t)

∫
Ω

u |ut|2m−2
utdxdt

+

∫ T

S

φ′Eqσ2(t)

∫
Ω

u |z|2m−2
z(x, 1, t)dxdt

+
τ

2m

∫
Ω

∫ 1

0

φ′Eqγ1e
−2τρ |z|2m

∣∣∣T
S
dρdx

− τ

2m

∫ T

S

(φ′Eqγ1)
′
∫

Ω

∫ 1

0

e−2τρ |z|2m dρdxdt

+
1

2m

∫ T

S

φ′Eqγ1

∫
Ω

e−2τρ |z|2m
∣∣∣1
0
dxdt

+
τ

2m

∫ T

S

φ′Eqγ1

∫
Ω

∫ 1

0

e−2τρ |z|2m dρdxdt. (2.21)

Because of the definition of E(t), we get the following inequality,

τ

2m

∫ T

S

φ′Eqγ1

∫
Ω

∫ 1

0

e−2τρ |z|2m dρdxdt >∫ T

S

φ′Eqe−2τ
(

2E(t)− ‖ut‖2 − ‖∆u‖2 − ‖u‖2
)
dt.
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By combining the last inequality with equation (2.21), we obtain

2

∫ T

S

φ′Eq+1e−2τdt < −
[
φ′Eq

∫
Ω

uutdx

] ∣∣∣T
S

+ 2

∫ T

S

φ′Eq
∫

Ω

u2
tdxdt

−
∫ T

S

φ′Eqσ1(t)

∫
Ω

u |ut|2m−1
dxdt

−
∫ T

S

φ′Eqσ2(t)

∫
Ω

u |z|2m−2
z(x, 1, t)dxdt

+

∫ T

S

(φ′Eq)′
∫

Ω

uutdxdt

− τ

2m

∫
Ω

∫ 1

0

φ′Eqγ1e
−2τρ |z|2m

∣∣∣T
S
dρdx

+
τ

2m

∫ T

S

(φ′Eqγ1)
′
∫

Ω

∫ 1

0

e−2τρ |z|2m dρdxdt

− 1

2m

∫ T

S

φ′Eqγ1

∫
Ω

e−2τρ |z|2m
∣∣∣1
0
dxdt. (2.22)

By virtue of Young’s Inequality, Sobolev inequality, the definition of function γ1(t) (2.10), hypothesis of theorem 2.1
, conclusion of lemma 2.1 and assumption that φ′(t) : R+ → R+ is a bounded function (0 < |φ′| < M ) we reach the
following inequalities; ∣∣∣∣φ′Eq ∫

Ω

uutdx

∣∣∣∣ ≤ 2MEq+1(t). (2.23)

∣∣∣∣φ′Eq ∫
Ω

uutdx

∣∣∣∣T
S

≤ 2MEq+1(S). (2.24)∣∣∣∣∣
∫ T

S

(φ′Eq)′
∫

Ω

uutdxdt

∣∣∣∣∣ ≤ 2MEq+1(S) +
2Mq

q + 1
Eq+1(S). (2.25)

∫ T

S

φ′Eqσ1(t)

∫
Ω

u |ut|2m−1
dxdt ≤ (2m− 1)ε

− 2m
2m−1

1

2m

∫ T

S

[−E′(t)]dt

+
ε2m1
2m

∫ T

S

(
σ

1
2m
1 c1φ

′(t)2
1
2

(1− θ1)
2m−1
2m

)2m (
Eq+

1
2

)2m

dt. (2.26)

∫ T

S

φ′Eqσ2(t)

∫
Ω

u |z|2m−2
z(x, 1, t)dxdt ≤ (2m− 1)ε

− 2m
2m−1

2

2m

∫ T

S

[−E′(t)] dt

+
ε2m2
2m

∫ T

S

(
σ

1
2m
1 M2c1φ

′2
1
2

θ
2m−1
2m

2

)2m (
Eq+

1
2

)2m

dt. (2.27)

− τ

2m

∫
Ω

∫ 1

0

φ′Eqγ1e
−2τρ |z|2m

∣∣∣T
S
dρdx ≤MEq+1(S). (2.28)

τ

2m

∫ T

S

(φ′Eqγ1)
′
∫

Ω

∫ 1

0

e−2τρ |z|2m dρdxdt ≤ Mq

q + 1
Eq+1(S). (2.29)

1

2m

∫ T

S

φ′Eqγ1

∫
Ω

e−2τ |z(x, 1, t)|2m dxdt ≤ MM̃

2mθ2(q + 1)
Eq+1(S). (2.30)

1

2m

∫ T

S

φ′Eqγ1

∫
Ω

|z(x, 0, t)|2m dxdt ≤ MM̃

2m(1− θ1)(q + 1)
Eq+1(S). (2.31)



148 M. Meyvacı

Based on the estimates (2.23)-(2.31) and equation (2.21),

2

∫ T

S

φ′Eq+1e−2τdt ≤ 4MEq+1(S) + 2

∫ T

S

φ′Eq
∫

Ω

u2
tdxdt

+
(2m− 1)ε

− 2m
2m−1

1

2m

∫ T

S

[−E′(t)]dt

+
ε2m1
2m

∫ T

S

(
σ

1
2m
1 c1φ

′2
1
2

(1− θ1)
2m−1
2m

)2m (
Eq+

1
2

)2m

dt

+
(2m− 1)ε

− 2m
2m−1

2

2m

∫ T

S

[−E′(t)] dt

+
ε2m2
2m

∫ T

S

(
σ

1
2m
1 M2c1φ

′2
1
2

θ
2m−1
2m

2

)2m (
Eq+

1
2

)2m

dt

+
2Mq

q + 1
Eq+1(S) +

MM̃

2mθ2(q + 1)
Eq+1(S)

+
MM̃

2m(1− θ1)(q + 1)
Eq+1(S), (2.32)

where ε1 and ε2 are positive constants, which will be later selected. Let us define φ(t) as follows;

φ(t) =

∫ t

0

σ1(s)ds,

Dividing region Ω such that Ω1 = {x; |ut| ≥ 1} and Ω2 = {x; |ut| < 1}, we get

2

∫ T

S

φ′Eq
∫

Ω

u2
tdxdt = 2

∫ T

S

φ′Eq
∫

Ω1

u2
tdxdt+ 2

∫ T

S

φ′Eq
∫

Ω2

u2
tdxdt.

Moreover, using Young’s inequality, lemma 2.1 and the definition of φ(t) we infer the following inequalities

2

∫ T

S

φ′Eq
∫

Ω1

u2
tdxdt ≤

2

(1− θ1)(q + 1)
Eq+1(S), (2.33)

and

2

∫ T

S

φ′Eq
∫

Ω2

u2
tdxdt ≤

2ε
k+1
2

3

k + 1

∫ T

S

[−E′(t)] dt

+
k − 1

(k + 1)ε
k+1
k−1

3

(
2

1− θ1

) k+1
k−1

∫ T

S

φ′E
q(k+1)
k−1 dt, (2.34)

where k > 2m and ε3 is a positive constant, which will be later selected. From the estimates (2.33), (2.34) and
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inequality (2.32), we obtain

2e−2τ

∫ T

S

∫
Ω

φ′Eq+1dt ≤2MEq+1(S) +
2

(1− θ1)(q + 1)
Eq+1(S)

+
(k − 1)ε

− k+1
k−1

3

k + 1

(
2

1− θ1

) k+1
k−1

∫ T

S

φ′E
q(k+1)
k−1 dt+

(2m− 1)ε
− 2m

2m−1

1

2m
E(S)

+
(2m− 1)ε

− 2m
2m−1

2

2m
E(S) +

ε2m1
2m

∫ T

S

(
σ

1
2
1 c1φ

′2
1
2

(1− θ1)
2m−1
2m

)2m (
Eq+

1
2

)2m

dt

+
ε2m2
2m

∫ T

S

(
σ

1
2m
1 M2c1φ

′2
1
2

θ
2m−1
2m

2

)2m (
Eq+

1
2

)2m

dt+
2Mq

q + 1
Eq+1(S)

+
2ε

k+1
2

3

k + 1
E(S) +

MM̃

2m(q + 1)

(
1

θ2
+

1

1− θ1

)
Eq+1(S).

Selecting k = 2q + 1, we deduce the following inequality,

2e−2τ

∫ T

S

∫
Ω

φ′Eq+1dt ≤4MEq(0)E(S) +
2

(1− θ1)(q + 1)
Eq(0)E(S)

+
ε
(q+1)
3

q + 1
E(S) +

qε
− q+1

q

3

q + 1

(
2

1− θ1

) q+1
q
∫ T

S

φ′Eq+1dt

+
(2m− 1)ε

− 2m
2m−1

2

2m
E(S) +

(2m− 1)ε
− 2m

2m−1

1

2m
E(S)

+
M2mε2m1

2m

(
c12

1
2

(1− θ1)
2m−1
2m

)2m

E(0)θ
∫ T

S

φ′Eq+1dt

+
ε2m2
2m

(
M2c12

1
2

θ
2m−1
2m

2

)2m

E(0)θ
∫ T

S

φ′Eq+1dt+
2Mq

q + 1
Eq(0)E(S)

+
MM̃

2m(q + 1)

(
1

θ2
+

1

1− θ1

)
Eq(0)E(S),

where θ = m(2q + 1)− (q + 1). Selecting ε1 =
(
me−2τ (1−θ1)2m−1

E(0)θ2m+2(M2c21)m

) 1
2m

, ε2 =
(

me−2τθ2m−1
2

E(0)θ2m+2(M2
2M

2c21)m

) 1
2m

and ε3 = 1−θ1
2

(
(q+1)e−2τ

4q

) q
q+1

we get

∫ T

S

φ′(t)Eq+1(t)dt ≤ 1

ω
Eq(0)E(S),

where

ω−1 =
2e2τ

3
max

{
2M,

2

(q + 1)(1− θ1)
,

(
4qe2τ

E(0)

)q (
1− θ1

2(q + 1)

)q+1

,
qM

M + 1

,
(2m− 1)E(0)

m−1
2m−1

2m

(
2m+2e2τ (M2c21)m

m

) 1
2m−1

 1

1− θ1
+
M

2
2m−1

2

θ2


,

MM̃

2m(q + 1)
(

1
θ2

+ 1
1−θ1

)}.
and

q >
2m− 1

2
.
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Hence, we deduce the following result from the conclusion of Lemma 1.1

E(t) ≤ E(0)

(
1 + q

1 + ωq
∫ t

0
σ1(s)ds

) 1
q

, ∀t > 0.
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