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Abstract. In this study, Volterra integral equation is solved by Hosoya Polynomials. The solutions obtained
with Hosoya method were compared on the figure and table. And error analysis was done. Matlab package
programming has been used to obtain results, tables and error analysis.

1. Introduction

Many mathematical models in disciplines such as engineering, physics and chemistry consist of integral
equations [1]. Integral equations are equations in which the unknown function is under the integral sign
[9]. Integral equations has been used in various applications such as geophysics, electricity and magnetism,
kinetic theory of gases, regeneration theory, quantum mechanics, radiation, optimization, optimal control
systems, mathematical economics, mathematical problems of radiative equilibrium, fluid mechanics, steady
state heat [11]. One of most important integral equation is Volterra integral equation. Recently, Volterra
integral equations have been increasingly used in engineering and applied mathematics studies. This
equation has been studied in many fields of study such as Banach space, Haar functions problems, potential
theory and Dirichlet problems, spectral methods, numerical computational problems and computer science
problems [10]. In addition, the method studied in this paper was applied to the Volterra integral equation.

2. Volterra Integral Equations

The third kind of Volterra integral equations is of the form

u(x)h(x) = f (x) + λ

x∫
α

K(x, t)u(t)dt (1)

Corresponding author: MZG mail address: mzgecmen@agri.edu.tr ORCID:0000-0003-4602-6508, EÇ ORCID:0000-0002-1402-1457,
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where the limits of integration are function of x and the unknown function u(x) appears linearly under the
integral sign. Second kind of Volterra integral equations is of the form

u(x) = f (x) + λ

x∫
α

K(x, t)u(t)dt (2)

where h(x) = 1. First kind of Volterra integral equations is of the form

f (x) = λ

x∫
α

K(x, t)u(t)dt (3)

3. Hosoya Polynomials

The Hosoya polynomial was initiated in 1988 by Haruo Hosoya [5, 8]. Hosoya polynomials count the
distance between vertices of the path graph [12]. It is obtained from path graphs of certain pairs of graphs
[3, 4]. Studies such as obtaining the physical and chemical properties of organic molecules with the Hosoya
polynomial of the graph were carried out [12]. For a path graph with the Hosoya polynomial is described
as,

H(P, δ) =
∑
l≥0

d(P, l)δl (4)

where d(P, l) is the distance between vertex pairs in the path graph [6, 7]. Sum of the path graph vertices
m with 1, 2, ...,m are multipled δ parameter. Then Hosoya values are calculated based on m vertex values
[13]. For m integer values we represent path as ρm , then Hosoya polynomial of path compute as:

H(ρ1, δ) =
∑
l≥0

d(ρ1, l)δl = 1

H(ρ2, δ) =
∑
l≥0

d(ρ2, l)δl = δ + 2

H(ρ3, δ) =
∑
l≥0

d(ρ3, l)δl = δ2 + 2δ + 3

...

H(ρm, δ) = m + (m − 1)δ + (m − 2)δ2 + ...

+ (m − (m − 2))δm−2 + (m − (m − 1))δm−1

A function w(x) ∈ L2[0; 1] is dilated as:

w(x) =

n∑
i=1

ziH(ρi, x) = ZTHρ(x), (5)

where Z and Hρ(x) are m × 1 matrices shown as:

Z = [z1, z2, z3, ..., zm]T (6)

and
Hρ(x) = [H(ρ1, x),H(ρ2, x), ...,H(ρm, x)]T. (7)
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4. Hosoya Polynomial Method

Consider The Volterra integral equation

y(x) = w(x) +

x∫
1

L(x, t)y(t)dt, 0 ≤ x, t ≤ 1 (8)

to solve equation (8), the method is as follows:

1. First we define y(x) as defined in Equation (5). This equation is,

y(x) = ZTHρ(x) (9)

2. Then using place of (9) in (8), we get,

ZTHρ(x) = w(x) +

x∫
1

L(x, t)
[
ZTHρ(t)

]
dt (10)

3. Replacing the collocation point x j =
j−0.5

m , j = 1, 2, · · · ,m in Equation (10). Then we get,

ZTHρ(x j) = w(x j) + ZT


x∫

1

L(x j, t)Hρ(t)dt

 (11)

ZT(Hρ(x j) − Y) = w

where

Y =
x∫

1
L(x j, t)Hρ(t)dt

4. In the last step, we get the conclutions of unknown Hosoya values,

ZTL = w

where

L = Hρ(x j) − Y

solving this system of equations we get coefficients Z and then use in place of these coefficients in (9),
we obtain the necessary result of (8) [2].

5. Numerical Example

5.1. Example
Consider Volterra integral equation,

u(x) = x +

x∫
1

(t − x)u(t)dt (12)
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which has the exact solution u(x) = sin(x). First we substitute u(x) = ZTHρ(x) in equation (12). We get,

ZTHρ(x) = x +

x∫
1

(t − x)
[
ZTHρ(t)

]
dt (13)

Because of that reason for m = 3,

Z1[H1(x) −


x∫

1

tH1(t)dt −

x∫
1

xH1(t)dt

]
+ Z2[H2(x) −


x∫

1

tH2(t)dt −

x∫
1

xH2(t)dt

]
+ Z3[H3(x) −


x∫

1

tH3(t)dt −

x∫
1

xH3(t)dt

] = x

(14)

Next, we achieve the Hosoya polynomials as

Z1[1 −


x∫

1

tdt −

x∫
1

xdt

]
+ Z2[(x + 2) −


x∫

1

t(t + 2)dt −

x∫
1

x(t + 2)dt

]
+ Z3[(x2 + 2x + 3) −


x∫

1

t(t2 + 2t + 3)dt −

x∫
1

x(t
2
+ 2t + 3)dt

] = x

(15)

Next,

Z1[
3
2

+
x2

2
− x]

+ Z2[
x3

6
+ x2
−

3x
2

+
10
3

]

+ Z3[5 −
x2

2
+

53x
12
−

x4

4
−

2x3

3
] = x

(16)
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If it is compute as x j =
j−0.5

m and putting instead of the collocation points x1, x2, x3 , we get the system of
three equations with three unknowns as,

Z1[
3
2

+
x1

2

2
− x1]

+ Z2[
x1

3

6
+ x1

2
−

3x1

2
+

10
3

]

+ Z3[5 −
x1

2

2
+

53x1

12
−

x1
4

4
−

2x1
3

3
] = x1

Z1[
3
2

+
x2

2

2
− x2]

+ Z2[
x2

3

6
+ x2

2
−

3x2

2
+

10
3

]

+ Z3[5 −
x2

2

2
+

53x2

12
−

x2
4

4
−

2x2
3

3
] = x2

Z1[
3
2

+
x3

2

2
− x3]

+ Z2[
x3

3

6
+ x3

2
−

3x3

2
+

10
3

]

+ Z3[5 −
x3

2

2
+

53x3

12
−

x3
4

4
−

2x3
3

3
] = x3

(17)

resolving these systems we get the three unknown Hosoya values,

Z1 = 0.5012, Z2 = 0.8672, Z3 = -0.4101

putting back with these coefficients in the approximation, we get

u(x) = Z1[H1(x)] + Z2[H2(x) + Z3[H3(x)]

If in (17) is written in place of the x1, x2, x3 values, approximate solutions are achieved.

u1(x) = Z1[H1(x1)] + Z2[H2(x1) + Z3[H3(x1)]
u2(x) = Z1[H1(x2)] + Z2[H2(x2) + Z3[H3(x2)]
u3(x) = Z1[H1(x3)] + Z2[H2(x3) + Z3[H3(x3)]

(18)

We get the approximate values,

u1 = -0.0682718, u2 = 0.397826, u3 = 0.820127

Maximum Error analyzed for m = 3 is,

Emax =

√√
m∑

i=1

(ue(xi) − ua(xi))2 =√
(x1 − u1)2 + (x2 − u2)2 + (x3 − u3)2 = 0.2605

(19)

and for m = 3, 8, 10 are shown in the Tables 1, 2, 3 and Figures 1, 2, 3.
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Table 1: Conclution of Hosoya Polynomial Method, for m = 3
x Hosoya Polynomial Method Exact Solution

0.1667 0.1659 -0.0682718

0.5 0.4794 0.397826

0.8333 0.7402 0.820127

Figure 1: Example 5.1 for m = 3

Table 2: Conclution of Hosoya Polynomial for m = 8
x Hosoya Polynomial Method Exact Solution

0.0625 0.5851 -0.214276

0.1875 0.1864 -0.0383231

0.3125 0.3125 0.138228

0.4375 0.3074 0.312622

0.5625 0.5333 0.482137

0.6875 0.6875 0.644129

0.8125 0.6346 0.79607

0.9375 0.9361 0.935588
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Figure 2: Example 5.1 for m = 8

Table 3: . Conclution of Hosoya Polynomial Method for m = 10
x Hosoya Polynomial Method Exact Solution

0.050 0.050 -0.231732

0.150 0.1494 -0.0912973

0.250 0.2474 0.0500501

0.350 0.3429 0.190897

0.450 0.4350 0.329837

0.550 0.5227 0.465482

0.650 0.6052 0.596475

0.750 0.6816 0.721508

0.850 0.7513 0.839333

0.950 0.9134 0.948771
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Figure 3: Example 5.1 for m = 10

6. Conclution

In this paper, the solution of Volterra integral equations with Hosoya method is examined. The method
was applied to test problem in the matlab achieved with a certain algorithm. The method is solved for
m = 3, m = 8, m = 10 values. The maximum error analysis was obtained according to the results exact and
approximate solutions. The results exact and approximate solutions are shown with tables and figures.
When the achieved conclutions are analyzed, it is seen that the Hosoya method is an useful method for
solving the Volterra integral equation.
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Abstract. The main purpose of this paper is to study the structure of nearly α− cosymplectic manifolds
and some basic curvature relations of this manifolds satisfying some conditions where α is real defined.

1. Introduction

In more recent times,the geometry of cosymplectic manifolds has an increasing interest. The topology
of cosymplectic manifolds and curvature properties of almost cosymplectic manifolds have been examined
by Blair and Goldberg[1], Yano[14], Olszak[6], Kirichenko[17], Endo[9] and others. The category of almost
cosymplectic manifolds is much wider than other structures. Many other authors also have applications to
characterize and analize the properties of almost cosymplectic manifolds (see [18, 22, 25]).

In addition to geometric studies of cosymplectic manifolds, recent interest in the subject of the geometry
of nearly contact structures has become favorite. Many mathematicians have began to examine nearly
structures on various manifolds by examining new curvature properties. Some of these are nearly Kaehler,
nearly Sasakian, nearly Kenmotsu and nearly cosymplectic manifolds etc. Now we will try to give some of
these works in a chronological order.

Nearly Kaehler manifolds are presented by Gray in [4, 5]. Blair et al. has introduced nearly Sasakian
manifolds [2] and also Olszak has improved this kind of manifolds [7]. In another study of Olzsak, the
properties of five dimensional nearly Sasakian and non-Sasakian manifolds have been given [8]. Parallel
to Olszak’s works, Endo has analyzed and has studied the geometry and curvature properties of nearly
cosymplectic manifolds [10]. In addition to these important works, nearly cosymplectic manifolds and
some curvature conditions on nearly cosymplectic structures have been studied by many authors and they
have also introduced some of the remarkable properties of nearly cosymplectic structures [16, 20, 23, 24].

Starting from the previous studies, in this study we define nearly α− cosymplectic manifolds and obtain
some basic curvature properties of nearly α−cosymplectic manifolds. By means of this paper, we will
elaborate on the subject using the notations and terminology of nearly α−cosymplectic manifolds.

2. Preliminaries

Throughout this study, M is considered as C∞ class manifolds and we accept X,Y,U′,V′,U,V ∈ χ(M) as
vector fields unless otherwise stated.

Corresponding author: GA mail address: gulhanayar@gmail.com ORCID:0000-0002-1018-4590, DD ORCID:0000-0003-4576-2466
Received: 24 September 2021; Accepted: 25 November 2021; Published: 30 December 2021
Keywords. Nearly cosymplectic manifolds; nearly Kenmotsu manifolds; nearly α−cosymplectic manifolds.
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Let (M, φ, ξ, η, 1) be (2n+1)−dimensional differentiable almost contact metric manifold with (1, 1)−tensor
fieldφ, a characteristic vector fieldξ, 1−form η and the Riemannian metric 1. M, with this structure (φ, ξ, η, 1)
is called an almost contact metric structure. By the way, an almost contac metric structure satisfies the
following conditions here with [1];

1(φX, φY) = 1(X,Y) − η(X)η(Y), (1)

φ2X = −X + η(X)ξ,
η(ξ) = 1,

rankφ = 2n.

where X ,Y ∈ χ(M). Also an almost contact metric structure (φ, ξ, η, 1) satisfies;

η(X) = 1(X, ξ),
φ(ξ) = 0,

η(φX) = 0,

1(X, φY) + 1(Y, φX) = 0. (2)

In the above equations, φ is skew-symmetric operator with respect to 1 and Φ is the bilininear funda-
mental 2−form such that Φ(X,Y) = 1(X, φY) on M [15]. An almost contact metric manifold with dη = 2Φ
is called a contact metric manifold on M. Moreover, almost contact metric manifolds in which both Φ and
η are closed are called almost cosymplectic manifolds with dη = 0 and dΦ = 0, where d is the exterior
differential operator. Finally, a normal almost cosymplectic manifold is called a cosymplectic manifold (see
[1–3] for further details).

By the way, Kenmotsu manifolds, as it is named, were defined and studied by Katsueı Kenmotsu in
1972 [13]. Later, nearly Kenmotsu manifolds were studied by Shukla [11]. Shukla, A. defined an almost
contact manifold (M, φ, ξ, η, 1) as a nearly Kenmotsu manifold with the following relation;

(∇Xφ)Y + (∇Yφ)X = −η(Y)φX − η(X)φY (3)

where ∇ is Levi-Civita connection of 1.
Recently, many other authors [12, 19, 21] have studied the geometric properties of nearly Kenmotsu

manifolds. If we mentioning about nearly Kenmotsu manifolds briefly, we can describe the skew-symmetric
(1, 1)−tensor field H, with dη(X,Y) = 1(HX,Y). When H = 0 , M is said to be a nearly Kenmotsu manifold.
Now, it is easy to see that every Kenmotsu manifold is nearly Kenmotsu manifold but converse is not true.

On the other hand, a nearly cosymplectic manifold is an almost contact metric manifold (M, φ, ξ, η, 1)
such that

(∇Xφ)Y + (∇Yφ)X = 0, X,Y ∈ χ(M),

where ∇ denote the Levi-Civita connection with respect to the Riemannian metric 1 on M [10]. For a nearly
cosymplectic manifold, the vector field ξ is Killing and satisfies ∇ξξ = 0 and ∇ξη = 0 conditions.

As we know that with the normality condition ([φ,φ] + 2ηd ⊗ ξ) = 0), a nearly cosymplectic structure is
a cosymplectic structure [10].

Beside, for an α−cosymplectic manifold the following condition holds [22];

(∇Xφ)Y = α
[
1(φX,Y)ζ − η(Y)φX

]
(4)

for any vector field X and Y on M.
Now from the equation above, by the sum of (∇Xφ)Y and (∇Yφ)X, we define a nearly α−cosymplectic

manifold (M, φ, ξ, η, 1) , with the following definition;
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Definition 2.1. Let (M, φ, ξ, η, 1) be (2n + 1)− dimensional differentiable almost contact metric manifold with
(1, 1)−tensor field φ, a characteristic vector field ξ, 1−form η and the Riemannian metric 1.Then if M satisfies the
following relation ;

(∇Xφ)Y + (∇Yφ)X = α[−η(Y)φX − η(X)φY] (5)

then, M is a said to be a nearly α−cosymplectic manifold where ∇ is Levi-Civita connection of 1 and α ∈ R.

3. Nearly α−cosymplectic manifolds

In this section, for a nearly α−cosymplectic manifold (M, φ, ξ, η, 1), some basic structures are given.

Proposition 3.1. For a nearly α−cosymplectic manifold (M, φ, ξ, η, 1) we have;

1(∇U′ξ,V′) + 1(U′,∇V′ξ) = 2α1(φU′, φV′),

∇U′ξ = −αφ2U′ + HU′, (6)

φH + Hφ = 0,
∇ξφ = φH,
Hξ = 0,
∇ξξ = 0, (7)

where H is the skew-symmetric (1, 1)-tensor field.

Proof. By (5), (∇ξφ)ξ = − φ(∇ξξ) = 0, hence ∇ξξ = 0 and ∇ξη = 0. Now by making use of equation (1) we
have

0 = 1((∇ξφ)U′, φV′) + 1((∇ξφ)V′, φU′)
= −1((∇U′φ)ξ, φV′) − 1((∇V′φ)ξ, φU′) − 21(φU′, φV′)
= 1(∇U′ξ,V′) + 1(∇V′ξ,U′) − 2α1(φU′, φV′).

With help of definition of H, we get ∇U′ξ = −αφ2U′ + HU′.
By φξ = 0 and η(φU′) = 0,we have

0 = (∇U′φ)ξ + φ∇U′ξ = −(∇ξφ)U′ + φHU′, (8)

0 = η((∇U′φ)V′) + η((∇V′φ)U′)
= −1(U′, (∇V′φ)ξ) − 1(V′, (∇U′φ)ξ)
= 1((∇ξφ)U′,V′) + 1((∇ξφ)V′,U′)
= 1(U′, φHY) + 1(V′, φHU′)
= 1((φHU′ + HφU′),V′).



G. Ayar, D. Demirhan / TJOS 6 (3), 118–126 121

4. Curvature properties of nearly α−cosymplectic manifolds

In this section, for a nearly α−cosymplectic manifold (M, φ, ξ, η, 1), some curvature relations are given.
R is the Riemannian curvature tensor and it is defined by

R(U′,V′)U = (∇2
U′,V′U) − (∇2

V′,U′U) = [∇U′ ,∇V′ ]U − ∇[U′,V′]U.

At the same time, the (0, 4)−type tensor field is defined as

R(U′,V′,U,V) = 1(R(U′,V′)U,V).

Theorem 4.1. For a nearly α−cosymplectic manifold (M, φ, ξ, η, 1), following curvature relations are hold;

R(U′,V′, φU,V) + R(U′,V′,U, φV) + R(U′, φV′,U,V) + R(φU′,V′,U,V) = 0, (9)

R(ξ,U′,V′,U) = α
[
−2η(U′)1(U,HY) + η(V′)1(HU,U′) − η(U)1(HY,U′)

]
+ α2 [

η(V′)1(U′,U) − η(U)1(V′,U′)
]
− 1((∇U′H)V′,U), (10)

R(φU′, φV′,U,V) = R(U′,V′, φU, φV), (11)

R(φU′, φV′, φU, φV) = R(U′,V′,U,V) − η(U′)R(ξ,V′,U,V) + η(V′)R(ξ,U′,U,V). (12)

Proof. Let define a (1, 3)−type tensor field Ts as follow

(∇2
U′,V′φ)U − (∇2

U′,Uφ)V′ = Ts(U′,V′,U), (13)

which satisfies Ts(U′,V′,U) = Ts(U′,U,V′). To put it simples, we can write the (0, 4)−type tensor field Ts,
with respect to 1, as follows;

Ts(U′,V′,U,V) = 1(Ts(U′,V′,U),V).

If we use the Ricci identity, then we obtain

0 = R(U′,V′,U, φV) − R(U′,V′,V, φU) − 1((∇2
U′,V′φ)U,V) + 1(((∇2

V′,U′φ)U,V).

Also by the first Bianchi identity and (13), we get

R(U′,V′,U, φV) = R(U′,V′,V, φU) + 1((∇2
U′,V′φ)U,V) − 1(((∇2

V′,U′φ)U,V)

= R(U′,V′,V, φU) − 1((∇2
U′,Uφ)V′,V) + 1((∇2

V′,Uφ)U′,V)

+ Ts(U′,U,V′,V) − Ts(V′,U,U′,V),

and thus, we have

R(U′,V′,U, φV) = R(U′,U,V′, φV) − R(V′,U,U′, φV)
= R(U′,U,V′, φV) − R(V′,U,V, φU′)

+ 1((∇2
U,V′φ)U′,V) − 1((∇2

V′,Uφ)U′,V),

If we equalize the right sides of equations above, we get

R(U′,V′,U, φV) − R(U′,V′,V, φU) − R(V′,U,V, φU′) + 1((∇2
U′,Uφ)V′,V)

+1((∇2
U,V′φ)U′,V) + Ts(V′,U,U′,V) − Ts(U′,U,V′,V) = 21((∇2

V′,Uφ)U′,V). (14)
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and we note that

1((∇2
U′,Uφ)V′,V) + 1((∇2

U,V′φ)U′,V) = R(U′,U,V′, φV) − R(U′,U,V, φV′) + Ts(U,U′,V′,V),

1((∇2
V′,Uφ)U′,V) = 1((∇2

V′,Vφ)U,U′) − Ts(V′,V,U,U′).

By considering this in (14), we have

2R(U′,U,V′, φV) − R(U′,V′,V, φU) − R(V′,U,V, φU′) − R(U′,U,V, φV′)
− Ts(U′,V′,U,V) + Ts(V′,U,U′,V) + Ts(U,U′,V′,V) + 2Ts(V′,V,U,U′)

= 21((∇2
V′,Vφ)U,U′). (15)

If we apply (5) to (15), we obtain

Ts(U′,V′,U,V) = α(−1(V′,U′ + HU′) + η(U′)η(V′))1(φU,V)

+ α2(−1(U,U′ + HU′) + η(U′)η(U))1(φV′,V)
− η(V′)1((∇U′φ)U,V) − η(U)1((∇U′φ)V′,V),

and after a straight forward computation, we get

Ts(V′,U,U′,V) + Ts(U,U′,V′,V) − Ts(U′,V′,U,V) + 2Ts(V′,V,U,U′) =

α
[
G(U′,V′,U,V) + 21(φV′,V)1(HU′,U) + 21(φU,V)1(HU′,V′) +21(φU′,V)1(HY,U) + 21(φU′,U)1(HY,V)

]
+α2

[
21(φU,U′)1(V′, φ2V) + η(U′)η(V′)1(φU,V) − η(U)η(V′)1(φU′,V)

]
,

where

G(U′,V′,U,V) = α
[
−η(V′)1((∇Uφ)U′,V) +η(V′)1((∇U′φ)U,V) − 2η(V)1((∇V′φ)U,U′)

]
.

The anti-symmetrization of (15) in V′ and V and also using the first Bianchi identity, we have

3R(φU′,U,V′,V) + 3R(U′, φU,V′,V) + 3R(U′,U, φV′,V) + 3R(U′,U,V′, φV)

+α
[
41(φV′,V)1(HU′,U) + 21(φU,V)1(HU′,V′) − 21(φU,V′)1(HU′,V)

+41(φU′,U)1(HY,V) + 21(φU′,V)1(HY,U) − 21(φU′,V′)1(HV,U)
]

= 0,

which implies equation (9) if one assumes H = 0. Now we will show that H = 0. For U′ = ξ, (Hξ = φξ = 0),
we get

R(ξ, φU,V′,V) + R(ξ,U, φV′,V) + R(ξ,U,V′, φV) = 0, (16)

and
−R(ξ,U, φV′,V) − R(ξ, φU,V′,V) + R(ξ, φU, φV′, φV) + η(V′)R(ξ, φU, ξ,V) = 0. (17)

Hence we have
R(ξ,U,V′, φV) + R(ξ, φU, φV′, φV) + η(V′)R(ξ, φU, ξ,V) = 0, (18)

and

− R(ξ, φU,V′,V) + R(ξ,U, φV′,V) + η(V)R(ξ,U, ξ, φV′)
− η(V)R(ξ, φU, ξ,V′) + η(V′)R(ξ, φU, ξ,V) = 0. (19)

From (16) and (19), we have

2R(ξ, φU,V′,V) + R(ξ,U,V′, φV) = η(V′)R(ξ, φU, ξ,V) + η(V)
[
R(ξ,U, ξ, φV′) − R(ξ, φU, ξ,V′)

]
. (20)
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and changing U by φU and V by φV in (20), we get

−2R(ξ,U,V′, φV) − R(ξ, φU,V′,V) = −η(V′)R(ξ,U, ξ, φV) + η(V)R(ξ, φU, ξ,V′). (21)

Taking the sum of the last two equations above, we obtain

R(ξ, φU,V′,V) − R(ξ,U,V′, φV) = η(V′)R(ξ, φU, ξ,V) + η(V)R(ξ,U, ξ, φV′) − R(ξ,U, ξ, φV). (22)

From the equations (19) and (22), we get (16) as

3R(ξ, φU,V′,V) = η(V′)
[
2R(ξ, φU, ξ,V) − R(ξ,U, ξ, φV)

]
+ η(V)

[
2R(ξ,U, ξ, φV′) − R(ξ, φU, ξ,V′)

]
,

R(ξ,U, φV′, φV) = 0.

Applying ∇ξ = −αφ2 + H, we have

R(V′,U, ξ,U′) = −1((∇V′H)U′,U) + 1((∇UH)U′,V′) − 1((∇2
V′φ)U′,U) + 1((∇2

Uφ)U′,V′).

Using the first Bianchi identity by applying the cyclic sum on U′,V′,U, we obtain

1((∇U′H)V′,U) − 1((∇V′H)U′,U) + 1((∇UH)U′,V′) = 0,

in this way we have

R(V′,U, ξ,U′) = − 1((∇V′φ
2)U′,U) + 1((∇Uφ

2)U′,V′) − 1((∇U′H)V′,U)
+ α

[
−2η(U′)1(U,HY) + η(V′)1(U′,HU) − η(U)1(U′,HY)

]
+ α2 [

η(V′)1(U′,U) − η(U)1(U′,V′)
]
− 1((∇U′H)V′,U), (23)

0 = R(ξ,U′, φV′, φU) = −2αη(U′)1(HφV′, φU) − 1((∇U′H)φV′, φU)
= α

[
−2η(U′)1(HY,U)

]
− 1((∇U′H)φV′, φU). (24)

If we take V′ , a unit eigenvector field on M such that η(V′) = 0 and H2V′ = λV′; in this way, note that
H2φV′ = λφV′ , as φH = −Hφ. Then

0 = R(ξ,U′, φV′, φHY) = −2αλη(U′) − 1((∇U′H)φV′, φHY) −
1
2
1((∇U′H2)φV′, φV′)

= 2αλη(U′) −
1
2

dλ(U′) = 0, (25)

so that dλ = −4αλη, where U′ is arbitrary vector field on M.
As a result, λ = 0 or dη = 0, means H = 0. Then from (23), we obtain (10).
Stating the left hand side of (9) by R∗, we will prove (11).
Then, if we applying this regulation in (10), we have

0 = R∗(U′, φV′,U,V) − R∗(U′,V′, φU,V) − R∗(U′,V′,U, φV) + R∗(φU′,V′,U,V)
= −2R(U′,V′, φU, φV) + 2R(φU′, φV′,U,V).

Now, it is immediate to see (12).

Proposition 4.2. For a nearly α−cosymplectic manifold (M, φ, ξ, η, 1), following relation holds;

−2α1(φU′,V′)ξ + (∇U′φ)V′ + αη(V′)φU′ + (∇φU′φ)φV′ = 0.
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Proof. By φ2 = −Id + η ⊗ ξ, we have

1((∇U′φ)φV′,U) = α
[
η(V′)1(U′,U) + η(U)1(U′,V′) − 2η(U′)η(V′)η(U)

]
+ η(V′)1(HU′,U) + η(U)1(HU′,V′) + 1((∇U′φ)V′, φU),

taking into account (5), we get

1((∇φU′φ)V′,U) = α
[
2η(V′)1(U′,U) − η(U)1(U′,V′) − η(U′)η(V′)η(U)

]
+ η(U′)1(HU,V′) + η(U)1(HU′,V′) + 1((∇U′φ)V′, φU). (26)

From the equations above, the expression we are trying to show is obtained.

Proposition 4.3. For a nearly α−cosymplectic manifold (M, φ, ξ, η, 1), following curvature relations are hold;

Ric(U′, ξ) = α2 [
−2nη(U′)

]
, (27)

Ric(φV′, φU) = α2 [
2nη(V′)η(U)

]
+ Ric(V′,U), (28)

Ric(U, φV′) + Ric(φU,V′) = 0, (29)

where Ric is the Ricci tensor of M.

Proof. In for dimension M is 2n + 1 and (E0 = ξ,E1, ...,En,En+1, ...,E2n), orthonormal φ-frame satisfies φEi =
Ei+n, φEi+n = −Ei, i = 1, ...,n. If we evaluate the φ-basis with (10), we can give the Ricci tensor Ric(U′, ξ) by
(27).

Then from the equation (12) we get;

Ric(U′,V′) =

n∑
i=1

(R(Ei,U′,V′,Ei) + R(Ei+n,U′,V′,Ei+n)) + R(ξ,U′,V′, ξ)

= Ric(φU′, φV′) + η(U′)Ric(ξ,V′) − R(ξ, φU′, φV′, ξ) + R(ξ,U′,V′, ξ)

= Ric(φU′, φV′) + η(U′)Ric(ξ,V′) = Ric(φU′, φV′) − 2α2nη(U′)η(V′), (30)

in which we applied (27). From the direct consequence of (28), we obtain (29).

Proposition 4.4. The fundamental form of a nearly α−cosymplectic manifold (M, φ, ξ, η, 1) satisfies;

3dΦ(U′,V′,U) = α
[
−2η(U′)1(φV′,U) − η(V′)1(φU′,U) +η(U)1(φU′,V′)

]
− 31((∇U′φ)V′,U). (31)

dΦ(U′,V′,U) = 2α(η ∧Φ)(U′,V′,U) +
1
4
1([φ,φ](U′,V′), φU). (32)

Proof. From the well known following identities

3dΦ(U′,V′,U) = (∇U′Φ)(V′,U) + (∇V′Φ)(U,U′) + (∇UΦ)(U′,V′)

and
[φ,φ](U′,V′) = −φ(∇U′φ)V′ + φ(∇V′φ)U′ + (∇φU′φ)V′ − (∇φV′φ)U′,

we have

3dΦ(U′,V′,U) = −1((∇U′φ)V′,U) + 1((∇V′φ)U′,U) − 1((∇Uφ)U′,V′)

= α
[
−2η(U′)1(φV′,U) + η(V′)1(φU,U′) − η(U)1(φV′,U′)

]
− 31((∇U′φ)V′,U), (33)
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1
2

[φ,φ](U′,V′) = α
[
−η(U′)V′ + η(V′)U′

]
− φ(∇U′φ)V′ + φ(∇V′φ)U′. (34)

Hence

6dΦ(U′,V′,U) = α
[
−η(U′)1(φV′,U) + η(V′)1(φU′,U) + 2η(U)1(φU′,V′)

]
− 31((∇U′φ)V′ − (∇V′φ)U′,U)

= 4α
[
η(U′)1(V′, φU) + η(V′)1(U, φU′) + η(U)1(U′, φV′)

]
+

3
2
1([φ,φ](U′,V′), φU)

= 12α(η ∧Φ)(U′,V′,U) +
3
2
1([φ,φ](U′,V′), φU).

Theorem 4.5. Every normal nearly α−cosymplectic manifold (M, φ, ξ, η, 1) is cosymplectic manifold.

Proof. We know that dη = 0 and if and only if N = 0, the structure is normal. According to Proposition 4.4,
in the case of N = 0 we have

3dΦ(U′,V′,Z) = 2α(η ∧Φ)(U′,V′,Z)

and
dΦ = 2αη ∧Φ.

That is to say, M is almost α−cosymplectic. Namely, we can see that a normal almost α−cosymplectic
manifold is α−cosymplectic.
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Abstract. In this paper, we apply ZZ-transform to solve linear Volterra integral equation of the first kind.
The several examples solve by ZZ- Transform. This means that ZZ- transform is a powerful tool for solving
linear Volterra integral equations of the first kind. The Convolution theorem for the ZZ- transform has been
proved. ZZ- transform for the solution of linear Volterra integral equation of the first kind submitted in
application section of this paper, some applications are given to demonstrate the effectiveness of proposed
scheme.

1. Introduction

Integral transformations are encountered in many fields of engineering and science such as electrical
networks, heat transfer, mixing problems, springs, signal processing, bending of beams, Newton’s second
law of motion, carbon dating problems, decay and exponential growth problems. In later times, many the
scientist are related in solving the problems of engineering and science by introducing new integral trans-
forms. The ZZ-Transform is integral transform. There are many integral transforms in the literature. Some
of these transformations are Laplace transform, Fourier transform, Elzaki transform, Sumudu transform,
Aboodh transform, Kamal transform [1, 9]. These transformations are used to solve for differential equa-
tions and integral equations. The ZZ-Transform was first presented by Zain UI Abadin Zafar in 2016 [10].

The linear Volterra integral equation of the first kind is given by f (t) =
x∫

0
K(x, t)u(t)dt,u(x) is the unknown

function and occurs only inside the integral sign. The function f (x)and the kernel K(x, t) are real-valued
functions [11]. The ZZ−transform of the function f (t)for t ≥ 0is defined as;

Z(u, s) = Z
{
f (t)

}
= s

∫
∞

0
f (ut)e−stdt (1)

or

Z(u, s) = Z
{
f (t)

}
=

s
u

∫
∞

0
f (t)e−

s
u tdt (2)
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E. Özdemir, E. Çelik, S.Ş. Şener / TJOS 6 (3), 127–133 128

Where Z (u, s) is transform operator. Assuming that the integral on the right side in (2) exists. The unique
function f (t) in (2) is called the inverse transform of Z (u, s)is indicated by

f (t) = Z−1
{Z(u, s)} (3)

If F(t) is piecewise continuous and of exponential order, the ZZ−transform of the function F(t) for t ≥ 0exist.
These conditions are only sufficent conditions for the existence of ZZ−transform of the function F(t).

1.1. Linearity Property of ZZ−Transform:

If Z {F(t)} = A(u, s) and Z {G(t)} = B(u, s)then Z {aF(t) + bG(t)} = aZ {F(t)} + bZ {G(t)} = aA(u, s) + bB(u, s)
,where a, bare arbitrary constants.

1.2. ZZ− Transform of Some Elementary Functions:

Table 1: ZZ− Transform of Some Elementary Functions:
No f (t) Z f (t)

1 1 1

2 t u
s

3 eat u
s−au

4 sin at aus
s2+a2u2

5 cos at s2

s2+a2u2

6 tn n! un

sn

7 eat sin bt b s
u

( s
u−a)2

+b2

8 eat cos bt
s2

u2 −
as
u

( s
u−a)2

+b2

9 t cos at
s
u

(
s2

u2 −a2
)

(
s2

u2 +a2
)2

10 t sin at
2a s2

u2(
s2

u2 +a2
)2

1.3. Existence of ZZ−Transform

Theorem 1.1. If f (t) is piecewise continuous in interval 0 ≤ t ≤ Kand of exponential order γ for t > K, then its
ZZ− transform Z(u, s) exists for all s > γ,u > γ .

Proof. We have for every positive number K,

s
u

∞∫
0

f (t)e−
s
u tdt =

s
u

∫ K

0
f (t)e−

s
u tdt +

s
u

∫
∞

K
f (t)e−

s
u tdt

Since f (t) is piecewise continuous in every finite interval 0 ≤ t ≤ K, the first integral on the right side exists.
Also the second integral on the right side exists. So f (t) is of exponential order γ for t > K. To see this we
have only to observe that in such case:
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 s
u

∞∫
K

f (t)e−
s
u tdt

 ≤ s
u

[
f (t)e−

s
u t
]

dt

≤
s
u

∞∫
0

e−
s
u t( f (t))dt ≤

s
u

∫
∞

0
e−

s
u tMeγtdt

≤
sM
u

∞∫
0

e−
s
u teγtdt ≤

sM
u

∞∫
0

e−( s
u−γ)tdt

=
sM
u

e−( s
u−γ)t(

−
s
u − γ

) /∞
0

=
sM

s − γu

1.4. Convolution of two Functions:

Convolution of F(t) and G(t) functions is defined by

F(t) ⊗ G(t) = F ⊗ G =

t∫
0

F(x)G(t − x)dx =

t∫
0

F(t − x)G(x)dx.

u
s

s2

s2 + u2 Z {x(t)} = 2
s2

u2

u4

(s2 + u2)2

1.5. Convolution Theorem for ZZ−Transforms:

Theorem 1.2. If Z{F(t)} = A(u, s) and Z{G(t)} = B(u, s) then

Z( f ⊗ 1) =
u
s

Z( f )Z(1)

Z {F(t) ⊗ G(t)} =
u
s

Z {F(t)}Z {G(t)} =
u
s

A(u, s)B(u, s)

Proof.

Z( f )Z(1) =
s
u

∞∫
0

f (τ)e−
s
u τdτ

s
u

∞∫
0

1(ϑ)e−
s
uϑdϑ

Z( f )Z(1) =
s2

u2

∞∫
0

f (τ)e−
s
u τdτ

∞∫
0

1(ϑ)e−
s
uϑdϑ (4)

t = ϑ + τ and ϑ = t − τ

Z(1) =

∞∫
τ

1(t − τ)e−
s
u (t−τ)dt

=

∞∫
0

1(t − τ)e−
s
u te

s
u τdt
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=

∞∫
τ

1(t − τ)e−
s
u te

s
u τdt

= e
s
u τ

∞∫
τ

1(t − τ)e−
s
u tdt

Thus

=
s2

u2

∞∫
0

f (τ)e−
s
u τdτe

s
u τ

∞∫
τ

e−
s
u t1(t − τ)dt

=
s2

u2

∞∫
0

f (τ)

∞∫
τ

e−
s
u t1(t − τ)dtdτ

=
s2

u2

∞∫
0

e−
s
u t

t∫
0

f (t)1(t − τ)dτdt

=
s2

u2

∞∫
0

e−
s
u t( f ⊗ 1)(t)dt

=
s
u

Z( f ⊗ 1)

Z( f ⊗ 1) =
u
s

Z( f )Z(1)

1.6. Inverse of ZZ−Transforms:
If Z {F(t)} = Z {u, s}then F(t) is called the inverse ZZ−transform of Z {u, s}and it is defined as F(t) =

Z−1
{Z (u.s)} , where Z−1 is the inverse ZZ−transform operator.

1.7. Applications:
In this chapter, some applications are given to show the effectiveness of ZZ−transform for solving of

linear Volterra integral equation of the first kind.

Example 1.3. Consider linear Volterra integral equation of the first kind:

x =

x∫
0

u(t)dt (5)

Applying the ZZ− transform to both sides of (5), we have:

Z {x} = Z


x∫

0

u(t)dt

 (6)

Using convolution theorem of ZZ−transform on (6), we have:

Z {x} =
u
s

Z {1}Z {u(x)}
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u
s

=
u
s
.1.Z {u(x)}

Z {u(x)} = 1 (7)

Operating inverse ZZ−transform on both sides of (7), we have:

Z−1
{Z {u(x)}} = Z−1(1)

u(x) = 1.

This is the exact solution of equation (5).

Example 1.4. Consider linear Volterra integral equation of the first kind:

x2 =
1
2

x∫
0

(x − t)u(t)dt (8)

Applying the ZZ−transform to both sides of (8), we have:

Z
{
x2

}
= Z

1
2

x∫
0

(x − t)u(t)dt

 (9)

Using convolution theorem of ZZ−transform on (9), we have:

2
u2

s2 =
1
2

u
s

Z {x}Z {u(x)}

2
u2

s2 =
1
2

u
s

u
s

Z {u(x)}

Z {u(x)} = 4 (10)

operating inverse ZZ−transform on both sides of (10), we have:

Z−1
{Z {u(x)}} = Z−1

{4}

u(x) = 4

This is the exact solution of equation (8).

Example 1.5. Consider linear Volterra integral equation of the first kind:

y(t) = t2 +

t∫
0

y(u) sin(t − u)du (11)

Z
{
y(t)

}
= Z

t2 +

t∫
0

y(u) sin(t − u)du


From the linearity property of the inverse ZZ−transform

Z
{
y(t)

}
= Z

{
t2
}

+ Z


t∫

0

y(u) sin(t − u)du

 (12)
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Using convolution theorem of transform on (12), we have:

Z
{
y(t)

}
= Z

{
t2
}

+
u
s

Z
{
y(t)

}
Z {sin t}

Z
{
y(t)

}
= 2

u2

s2 +
u
s

Z
{
y(t)

} us
s2 + u2

Z
{
y(t)

}
− Z

{
y(t)

} ( su2

s3 + su2

)
= 2

u2

s2

Z
{
y(t)

} (
1 −

su2

s3 + su2

)
= 2

u2

s2

Z
{
y(t)

} ( s3

s3 + su2

)
= 2

u2

s2

Z
{
y(t)

} ( s2

s2 + u2

)
= 2

u2

s2

Z
{
y(t)

}
= 2

u2

s2 .
s2 + u2

s2 .

Z
{
y(t)

}
= 2

u2

s2 + 2
u4

s4 (13)

operating inverse ZZ−transform on both sides of (13), we have:

Z−1 {
Z

{
y(t)

}}
= Z−1

{
2

u2

s2 + 2
u4

s4

}
From the linearity property of the inverse ZZ−transform

y(t) = Z−1

{
2

u2

s2

}
+ Z−1

{
2

u4

s4

}

y(t) = t2 +
t4

12
This is the exact solution of equation (11).

Example 1.6. Consider linear Volterra integral equation of the first kind:

t∫
0

cos(t − s)x(s)ds = t sin t (14)

Applying the ZZ−transform to both sides of (14), we have:

Z


t∫

0

cos(t − s)x(s)ds

 = Z {t sin t} (15)

Using convolution theorem of ZZ−transform on (15), we have:

u
s

Z {cos t}Z {x(t)} =
2 s2

u2(
s2

u2 + 1
)2



E. Özdemir, E. Çelik, S.Ş. Şener / TJOS 6 (3), 127–133 133

u
s

s2

s2 + u2 Z {x(t)} = 2
s2

u2

u4

(s2 + u2)2

Z {x(t)} = 2
us

s2 + u2 (16)

operating inverse ZZ−transform on both sides of (16), we have:

Z−1
{Z {x(t)}} = Z−1

{
2

us
s2 + u2

}
x(t) = sin t

This is the exact solution of equation (14).

2. Conclusion

In this study, we have discussed the ZZ−transform for the solution of linear volterra integral equation
of the first kind. The given examples show that the exact solution have been obtained spending a very little
time and using very less computational work.
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Abstract. In this paper, we regard the Padovan-p Jacobsthal sequence and then we discuss the connection
of the Padovan-p Jacobsthal numbers and Jacobsthal numbers. Furthermore, we give the permanental,
determinantal, combinatorial, and exponential representations, and the sums of the Padovan-p Jacobsthal
numbers by the aid of the generating function and generating matrix of this sequence.

1. Introduction

The well-known Jacobsthal sequence {Jn} is defined by the following recurrence relation:

Jn = Jn−1 + 2Jn−2

for n ≥ 2 in which J0 = 0 and J1 = 1. It is easy to see that the characteristic polynomial of the Jacobsthal
sequence is j (x) = x2

− x − 2.

In [2], Aküzüm defined the Padovan-p Jacobsthal sequence
{
Jp
n

}
by the following homogeneous linear

recurrence relation for any given p (3, 4, 5, . . .) and n ≥ 0

Jp
n+p+4 = Jp

n+p+3 + 3Jp
n+p+2 − Jp

n+p+1 − 2Jp
n+p + Jp

n+2 − Jp
n+1 − 2Jp

n

in which Jp
0 = · · · = Jp

p+2 = 0 and Jp
p+3 = 1.

Corresponding author: ÖE mail address: ozgur erdag@hotmail.com ORCID:https://orcid.org/0000-0001-8071-6794, ÖD
ORCID:https://orcid.org/0000-0001-5870-5298

Received: 25 November 2021; Accepted: 21 December 2021; Published: 30 December 2021
Keywords. (Padovan-p Jacobsthal number, Matrix, Representation, Sum.)
2010 Mathematics Subject Classification. 11K31; 11C20, 15A15
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Also in [2], she gave the generating matrix of the Padovan-p Jacobsthal sequence
{
Jp
n

}
as follows:

PJp =



1 3 −1 −2 0 · · · 0 1 −1 −2
1 0 0 0 0 · · · 0 0 0 0
0 1 0 0 0 · · · 0 0 0 0
0 0 1 0 0 · · · 0 0 0 0
0 0 0 1 0 · · · 0 0 0 0
0 0 0 0 1 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 0 · · · 1 0 0 0
0 0 0 0 0 · · · 0 1 0 0
0 0 0 0 0 · · · 0 0 1 0


(p+4)×(p+4).

The matrix PJp is entitled a Padovan-p Jacobsthal matrix. By an inductive argument, she obtained that

(
PJp

)n
=



Jp
n+p+3 Jp

n+p+4 − Jp
n+p+3 Pap

(
n + p + 3

)
− Jp

n+p+3 Pap
(
n + p + 4

)
− Jp

n+p+4 − Jp
n+p+3

Jp
n+p+2 Jp

n+p+3 − Jp
n+p+2 Pap

(
n + p + 2

)
− Jp

n+p+2 Pap
(
n + p + 3

)
− Jp

n+p+3 − Jp
n+p+2

Jp
n+p+1 Jp

n+p+2 − Jp
n+p+1 Pap

(
n + p + 1

)
− Jp

n+p+1 Pap
(
n + p + 2

)
− Jp

n+p+2 − Jp
n+p+1 PJ∗p

...
...

...
...

Jp
n+1 Jp

n+2 − Jp
n+1 Pap (n + 1) − Jp

n+1 Pap (n + 2) − Jp
n+2 − Jp

n+1
Jp
n Jp

n+1 − Jp
n Pap (n) − Jp

n Pap (n + 1) − Jp
n+1 − Jp

n


,

where PJ∗p is a
(
p + 4

)
×

(
p
)

matrix as follows:

PJ∗p =



Pap (n + 3) Pap (n + 4) · · · Pap
(
n + p

)
−Jp

n+p+2 − 2Jp
n+p+1 −2Jp

n+p+2

Pap (n + 2) Pap (n + 3) · · · Pap
(
n + p − 1

)
−Jp

n+p+1 − 2Jp
n+p −2Jp

n+p+1

Pap (n + 1) Pap (n + 2) · · · Pap
(
n + p − 2

)
−Jp

n+p − 2Jp
n+p−1 −2Jp

n+p
...

...
...

...
...

Pap
(
n − p + 1

)
Pap

(
n − p + 2

)
· · · Pap (n − 2) −Jp

n − 2Jp
n−1 −2Jp

n
Pap

(
n − p

)
Pap

(
n − p + 1

)
· · · Pap (n − 3) −Jp

n−1 − 2Jp
n−2 −2Jp

n−1


for n ≥ p.

In the literature, many authors studied number theoretic properties such as these obtained from homo-
geneous linear recurrence relations relevant to this paper; see for example, [5, 7, 8, 14, 15]. In [1, 3, 4, 10–
13, 16–20, 23], the authors defined some linear recurrence sequences and gave their various properties
by matrix methods. In this paper, we investigate the Padovan-p Jacobsthal sequence. Firstly, we discuss
connections between the Jacobsthal and Padovan-p Jacobsthal numbers. Furthermore, we derive the per-
manental and determinantal representations of the Padovan-p Jacobsthal numbers by using certain matrices
which are obtained from the generating matrix of this sequence. Finally, we acquire the combinatorial and
exponential representations and the sums of the Padovan-p Jacobsthal numbers by the aid of the generating
function and the generating matrix of this sequence.

2. Main Results

First, we derive a relationship between the above-described Padovan-p Jacobsthal sequence and Jacob-
sthal sequence.

Theorem 2.1. Let J (n) and Jp
n be the nth the Jacobsthal number and Padovan-p Jacobsthal numbers, respectively.

Then,
J (n) = Jp

n+p+2 − Jp
n+p − Jp

n

for n ≥ 0 and p ≥ 3.
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Proof. The assertion may be proved by induction method on n. It is clear that J (0) = Jp
p+2 − Jp

p − Jp
0 = 0.

Assume that the equation holds for n ≥ 1. Then we must show that the equation holds for n + 1. Since the
characteristic polynomial of the Jacobsthal sequence {J (n)}, is

j (x) = x2
− x − 2

we obtain the following relations:

J
(
n + p + 4

)
= J

(
n + p + 3

)
+ 3J

(
n + p + 2

)
− J

(
n + p + 1

)
− 2J

(
n + p

)
+ J (n + 2) − J (n + 1) − 2J (n)

for n ≥ 1. Hence, by a simple calculation, we have the conclusion.

Now we take into account the relationship between the Padovan-p Jacobsthal numbers and the perma-
nents of a certain matrix which is obtained using the Padovan-p Jacobsthal matrix

(
PJp

)n
.

Definition 2.2. A u × v real matrix M =
[
mi, j

]
is called a contractible matrix in the kth column (resp. row.) if the

kth column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M. If M is contractible in the kth column such
that mi,k , 0,m j,k , 0 and i , j, then the (u − 1) × (v − 1) matrix Mi j:k obtained from M by replacing the ith

row with mi,kx j + m j,kxi and deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [6], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order α > 1 and N is a
contraction of M.

Now we concentrate on finding relationships among the Padovan-p Jacobsthal numbers and the per-
manents of certain matrices which are obtained by using the generating matrix of this sequence. Let

FPa,J
m,p =

[
f (p)
i, j

]
be the m ×m super-diagonal matrix, defined by

f (p)
i, j =



3 if i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 1,

1

if i = τ and j = τ for 1 ≤ τ ≤ m,
i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 1

and
i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 1,

−1
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 2

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 2,

−2
if i = τ and j = τ + 3 for 1 ≤ τ ≤ m − 3

and
i = τ and j = τ + p + 3 for 1 ≤ τ ≤ m − p − 3,

0 otherwise.

,

for m ≥ p + 4. Then we have the following Theorem.

Theorem 2.3. For m ≥ p + 4,
perFPa,J

m,p = Jp
m+p+3.

Proof. Let us keep in view matrix FPa,J
m,p and let the equation be hold for m ≥ p + 4. Then we show that the

equation holds for m + 1. If we expand the perFPa,J
m,p by the Laplace expansion of permanent with respect to

the first row, then we obtain

perFPa,J
m+1,p = perFPa,J

m,p + 3perFPa,J
m−1,p − perFPa,J

m−2,p − 2perFPa,J
m−3,p + perFPa,J

m−p−1,p − perFPa,J
m−p−2,p − 2perFPa,J

m−p−3,p.
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Since
perFPa,J

m,p = Jp
m+p+3,

perFPa,J
m−1,p = Jp

m+p+2,

perFPa,J
m−2,p = Jp

m+p+1,

perFPa,J
m−3,p = Jp

m+p,

perFPa,J
m−p−1,p = Jp

m+2,

perFPa,J
m−p−2,p = Jp

m+1

and
perFPa,J

m−p−3,p = Jp
m,

we easily obtain that perFPa,J
m+1,p = Jp

m+p+4. So the proof is complete.

Let GPa,J
m,p =

[
1

(p)
i, j

]
be the m ×m matrix, defined by

1
(p)
i, j =



3 if i = τ and j = τ + 1 for 1 ≤ τ ≤ m − 2,

1

if i = τ and j = τ for 1 ≤ τ ≤ m,
i = τ and j = τ + p + 1 for 1 ≤ τ ≤ m − p − 2

and
i = τ + 1 and j = τ for 1 ≤ τ ≤ m − 2,

−1
if i = τ and j = τ + 2 for 1 ≤ τ ≤ m − 3

and
i = τ and j = τ + p + 2 for 1 ≤ τ ≤ m − p − 3,

−2
if i = τ and j = τ + 3 for 1 ≤ τ ≤ m − 4

and
i = τ and j = τ + p + 3 for 1 ≤ τ ≤ m − p − 3,

0 otherwise.

,

for m ≥ p + 4. Then we have the following Theorem.

Theorem 2.4. For m ≥ p + 4,
perGPa,J

m,p = Jp
m+p+2.

Proof. Let us keep in view matrix GPa,J
m,p and let the equation be hold for m ≥ p + 4. Then we show that the

equation holds for m + 1. If we expand the perGPa,J
m,p by the Laplace expansion of permanent with respect to

the first row, then we obtain

perGPa,J
m+1,p = perGPa,J

m,p + 3perGPa,J
m−1,p − perGPa,J

m−2,p − 2perGPa,J
m−3,p + perGPa,J

m−p−1,p − perGPa,J
m−p−2,p − 2perGPa,J

m−p−3,p.

Since
perGPa,J

m,p = Jp
m+p+2,

perGPa,J
m−1,p = Jp

m+p+1,

perGPa,J
m−2,p = Jp

m+p,

perGPa,J
m−3,p = Jp

m+p−1,
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perGPa,J
m−p−1,p = Jp

m+1,

perGPa,J
m−p−2,p = Jp

m

and
perGPa,J

m−p−3,p = Jp
m−1,

we easily obtain that perGPa,J
m+1,p = Jp

m+p+3. So the proof is complete.

Suppose that HPa,J
m,p =

[
h(p)

i, j

]
be the m ×m matrix, defined by

HPa,J
m,p =



(m − 1) th
↓

1 · · · 1 0
1
0 GPa,J

m−1,p
...
0


,

for m > p + 4, then we have the following results:

Theorem 2.5. For m > p + 4,

perHPa,J
m,p =

m+p+1∑
i=0

Jp
i .

Proof. If we extend per HPa,J
m,p with respect to the first row, we write

perHPa,J
m,p = perHPa,J

m−1,p + perGPa,J
m−1,p.

Thence, by the results and an inductive argument, the proof is easily seen.

A matrix M is called convertible if there is an n× n (1,−1)-matrix K such that perM = det (M ◦ K), where
M ◦ K denotes the Hadamard product of M and K.

Now we give relationships among the Padovan-p Jacobsthal numbers and the determinants of certain
matrices which are obtained by using the matrices FPa,J

m,p , GPa,J
m,p and HPa,J

m,p . Let m > p + 4 and let R be the m×m
Hadamard matrix, defined by

R =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


.

Corollary 2.6. For m > p + 4,
det

(
FPa,J

m,p ◦ R
)

= Jp
m+p+3,

det
(
GPa,J

m,p ◦ R
)

= Jp
m+p+2

and

det
(
HPa,J

m,p ◦ R
)

=

m+p+1∑
i=0

Jp
i .
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Proof. Since perFPa,J
m,p = det

(
FPa,J

m,p ◦ R
)
, perGPa,J

m,p = det
(
GPa,J

m,p ◦ R
)

and perHPa,J
m,p = det

(
HPa,J

m,p ◦ R
)

for m > p + 4, by
Theorem 2.3, Theorem 2.4 and Theorem 2.5, we have the conclusion.

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0


.

For more details on the companion type matrices, see [21, 22].

Theorem 2.7. (Chen and Louck [9]) The
(
i, j

)
entry k(n)

i, j (k1, k2, . . . , kv) in the matrix Kn (k1, k2, . . . , kv) is given by
the following formula:

k(n)
i, j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

t j + t j+1 + · · · + tv

t1 + t2 + · · · + tv
×

(
t1 + · · · + tv

t1, . . . , tv

)
kt1

1 · · · k
tv
v (1)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,
(t1+···+tv

t1,...,tv

)
=

(t1+···+tv)!
t1!···tv! is a

multinomial coefficient, and the coefficients in (1) are defined to be 1 if n = i − j.

Then we can give combinatorial representations for the Padovan-p Jacobsthal numbers by the following
Corollary.

Corollary 2.8. Let Jp
n be the nth the Padovan-p Jacobsthal number for n ≥ p. Then

i.

Jp
n =

∑
(t1,t2,...,tp+4)

(
t1 + t2 + · · · + tp+4

t1, t2, · · · , tp+4

)
3t2 (−1)t3+tp+3 (−2)t4+tp+4

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 4

)
tp+4 = n − p − 3.

ii.

FPa,p
n = −

1
2

∑
(t1,t2,...,t4)

tp+4

t1 + t2 + · · · + tp+4
×

(
t1 + t2 + · · · + tp+4

t1, t2, · · · , tp+4

)
3t2 (−1)t3+tp+3 (−2)t4+tp+4

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · +
(
p + 4

)
tp+4 = n + 1.

Proof. If we take i = p + 4, j = 1 for the case i. and i = p + 3, j = p + 4 for the case ii. in Theorem 2.7, then we
can directly see the conclusions from

(
PJp

)n
.

The generating function of the Padovan-p Jacobsthal sequence
{
Jp
n

}
is obtained as follows:

1 (x) =
xp+3

1 − x − 3x2 + x3 + 2x4 − xp+2 + xp+3 + 2xp+4 ,

where p ≥ 3.
Then, with the following theorem, we can deliver an exponential representation for the Padovan-p

Jacobsthal numbers by the aid of the generating function.

Theorem 2.9. Let 1 (x) be generating function of the Padovan-p Jacobsthal numbers. The following exponential
representation for the Padovan-p Jacobsthal numbers as follows::

1 (x) = xp+3 exp

 ∞∑
i=1

(x)i

i

(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)i
 ,

where p ≥ 3.
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Proof. Since

ln 1 (x) = ln xp+3
− ln

(
1 − x − 3x2 + x3 + 2x4

− xp+2 + xp+3 + 2xp+4
)

and

− ln
(
1 − x − 3x2 + x3 + 2x4

− xp+2 + xp+3 + 2xp+4
)

= −[−x
(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)
−

1
2

x2
(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)2
− · · ·

−
1
i

xi
(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)i
− · · · ]

it is clear that

1 (x) = xp+3 exp

 ∞∑
i=1

(x)i

i

(
1 + 3x − x2

− 2x3 + xp+1
− xp+2

− 2xp+3
)i


by a simple calculation, we obtain the conclusion.

Now we consider the sums of the Padovan-p Jacobsthal numbers. Let

Tn =

n∑
i=0

Jp
i

for n ≥ p and p ≥ 3, and let KPa,J
p and

(
KPa,J

p

)n
be the

(
p + 5

)
×

(
p + 5

)
matrix such that

KPa,J
p =



1 0 0 · · · 0 0
1
0
... PJp
0
0


.

If we use induction on n, then we obtain

(
KPa,J

p

)α
=



1 0 0 · · · 0 0
Tn+p+2
Tn+p+1
... PJp

Tn
Tn−1


.

3. Conclusion

We considered a sequence called the Padovan-p Jacobsthal sequence, which is obtained using polynomi-
als characteristic of the Padovan p-sequence and the Jacobsthal sequence. Furthermore, using the generating
matrix of the Padovan-p Jacobsthal sequence, we obtained some new structural properties of the Padovan-p
Jacobsthal numbers such as the generating functions, the permanental, combinatorial, determinantal, and
exponential representations and the finite sums.
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Abstract. In this study, we study the complex-type Pell p-numbers modulo m and further we get the periods
and the ranks of the complex-type Pell p-numbers modulo m. Additionally, we give some results on the
periods and the ranks of the complex-type Pell p-numbers modulo m. Then, we consider the multiplicative
orders of the complex-type Pell p-matrix when read modulo m. Also, we redefine the complex-type Pell
p-numbers by means of the elements of groups. Finally, we produce the periods of the complex-type Pell
2-numbers in the semidihedral group SD2m , (m ≥ 4).

1. Introduction

The complex-type Pell p-numbers for any given p
(
p = 2, 3, . . .

)
is defined [2] by the following recurrence

equation:
P∗p

(
n + p + 1

)
= 2ip+1

· P∗p
(
n + p

)
+ i · P∗p (n) (1)

for n ≥ 1, where P∗p (1) = · · · = P∗p
(
p
)
= 0, P∗p

(
p + 1

)
= 1 and

√
−1 = i.

In [2], the complex-type Pell p-matrix Kp had been given as:

Kp =


2ip+1 0 · · · 0 i

1 0 · · · 0 0
0 1 0 0
...

. . .
. . .

...
0 0 1 0


(p+1)×(p+1).

Then, for n ≥ p, they found that

(
Kp

)n
=



P∗p
(
n + p + 1

)
iP∗p (n + 1) iP∗p (n + 2) · · · iP∗p

(
n + p

)
P∗p

(
n + p

)
iP∗p (n) iP∗p (n + 1) · · · iP∗p

(
n + p − 1

)
...

...
...

...
P∗p (n + 2) iP∗p

(
n − p + 2

)
iP∗p

(
n − p + 3

)
· · · iP∗p (n + 1)

P∗p (n + 1) iP∗p
(
n − p + 1

)
iP∗p

(
n − p + 2

)
· · · iP∗p (n)


,

(2)

in addition, the determinant of the Kp matrix is (−1)p i.
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Definition 1.1. A sequence is well known to be periodic if after a certain point it consists only of repeats of a fixed
subsequence. A sequence is simply periodic with period k if the first k elements in the sequence form a repeating
subsequence.

For a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , an }, the sequence xu = au+1, 0 ≤ u ≤ n − 1,

xn+u =
n∏

v=1
xu+v−1, u ≥ 0 is called the Fibonacci orbit of G with respect to the generating set A, denoted as

FA (G) in [6].
A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group elements x0, x1, x2, . . ., xn,

. . .for which, given an initial (seed) set x0, x1, x2, . . ., x j−1, each element is defined by

xn =

{
x0x1 · · · xn−1 for j ≤ n < k,

xn−kxn−k+1 · · · xn−1 for n ≥ k.

The k-nacci sequence of a group G generated by x0, x1, x2, . . ., x j−1 is indicated by Fk

(
G; x0, x1, x2, . . . , x j−1

)
in [15].

In [9], Deveci and Shannon showed that the following conditions apply for every elements x, y of the
group G:

Definition 1.2. (i) Suppose that z = a+ ib such that a and b are integers and suppose that e is the identity of G, then
∗ xz
≡ xa(mod|x|)+ib(mod|x|) = xa(mod|x|)xib(mod|x|) = xib(mod|x|)xa(mod|x|) = xib(mod|x|)+a(mod|x|),

∗ xia =
(
xi
)a
= (xa)i,

∗ eu = e,
∗ x0+i0 = e.
(ii) Let z1 = a1 + ib1 and z2 = a2 + ib2 such that a1, b1, a2 and b2 are integers , then

(
xz1 yz2

)−1 = y−z2 x−z1 .
(iii) If xy , yx, then xiyi , yixi.

(iv)
(
xy

)i = yixi and
(
xiyi

)i
= x−1y−1.

(v) xyi = yix and so
(
xyi

)i
= xiy−1 and

(
xiy

)i
= x−1yi.

In [1, 3, 4, 8, 11, 16], the authors have produced the cyclic groups and the semigroups through some
special matrices and then, they have studied the orders of these algebraic structures. The study of the
recurrence sequences in groups began with the earlier work of Wall [21]. Also, the theory extended to
some special linear recurrence sequences by several authors; see for example, [5, 7, 10, 12–15, 17–20, 22].
In this study, we study the complex-type Pell p-numbers modulo m and then we get the periods and the
ranks of the complex-type Pell p-numbers modulo m. Then, we consider the multiplicative orders of the
complex-type Pell p-matrix when read modulo m. Also, we redefine the complex-type Pell p-numbers with
the elements of groups and then we give the periods of the complex-type Pell 2-numbers in the semidihedral
group.

2. The Complex-type Pell p-Numbers in Finite Groups

Reducing the complex-type Pell p-numbers by a modulus m, we obtain a repeating sequence, indicated
by {

P∗p,m (n)
}
=

{
P∗p,m (1) , P∗p,m (2) , . . . , P∗p,m

(
j
)
, . . .

}
where P∗p,m (n) = P∗p (n) (modm). This relation has the same recurrence relation as in (1)

Theorem 2.1. For p ≥ 2, the sequence
{
P∗p,m (n)

}
is simply periodic sequence.
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Proof. Consider the set

W =
{(

w1,w2, . . . ,wp+1

)
| wv’s are complex numbers av + ibv where

av and bv are integers such that 0 ≤ av, bv ≤ m − 1 and 1 ≤ v ≤ p + 1
}

.

Suppose that the notation |W| is the order of the set W. Since the set W is finite, there are |W| distinct
p+1-tuples of the complex-type Pell p-numbers modulo m. So, at least one of the p+1-tuples appears twice
in the sequence

{
P∗p,m (n)

}
. Then, the subsequence following this p + 1-tuple repeats; that is,

{
P∗p,m (n)

}
is a

periodic sequence. Let P∗p,m (k) ≡ P∗p,m (l), P∗p,m (k + 1) ≡ P∗p,m (l + 1), . . . , P∗p,m
(
k + p + 1

)
≡ P∗p,m

(
l + p + 1

)
and

k ≥ l, then k ≡ l
(
modp + 1

)
. It is obvious that

P∗p (n) = (−i) · P∗p
(
n + p + 1

)
+ 2ip+2

· P∗p
(
n + p

)
.

So we get P∗p,m (k − 1) ≡ P∗p,m (l − 1), P∗p,m (k − 2) ≡ P∗p,m (l − 2), . . . , P∗p,m (1) ≡ P∗p,m (k − l + 1), which indicates

that
{
P∗p,m (n)

}
is a simply periodic.

We indicate the period of the sequence
{
P∗p,m (n)

}
by tp (m).

For given a matrix B =
[
bi j

]
with bi j’s being integers, B (modm) means that each element of B are

reduced modulo m, that is, B (modm) =
(
bi j (modm)

)
. If (det B,m) = 1, then the set 〈B〉m is a cyclic group; if

(det B,m) , 1, then the set 〈B〉m is a semigroup. Let the notation |〈B〉m| indicates the order of the set 〈B〉m.
Since det Kp = (−1)p i, the set

〈
Kp

〉
m

is a cyclic group for every positive integer m ≥ 2. It is easy to see

from (2) that it is tp (m) =
∣∣∣∣〈Kp

〉
m

∣∣∣∣.
Theorem 2.2. Let v be a prime. If r is the smallest positive integer such that tp

(
vr+1

)
, tp (vr), then tp

(
vr+1

)
= vtp (vr)

for every integer p ≥ 2

Proof. Suppose that r is the smallest positive integer such that tp

(
vr+1

)
, tp (vr) and suppose that z is a

positive integer. If
(
Kp

)tp(vz+1)
≡ I

(
modvz+1

)
, then

(
Kp

)tp(vz+1)
≡ I (modvz). Thus we obtain that tp (vz) divides

tp

(
vz+1

)
. Also, writing

(
Kp

)tp(vz)
= I +

(
m(z)

i, j · v
z
)
, by the binomial theorem, we obtain

(
Kp

)vtp(vz)
=

(
I +

(
m(z)

i, j · v
z
))v
=

v∑
i=0

(
v
i

) (
m(z)

i, j · v
z
)i
≡ I

(
mod vz+1

)
.

and so it appears that tp

(
vz+1

)
divides v tp (vz). Therefore, tp

(
vz+1

)
= tp (vz) or tp

(
vz+1

)
= v tp (vz), and the latter

holds if and only if there is a m(z)
i, j which is not divisible by v. Since we assume that r is the smallest positive

integer such that tp

(
vr+1

)
, tp (vr), there is an m(z)

i, j that is not divisible by v. This shows that p

(
vr+1

)
= vtp (vr).

So, the proof is complete.

Definition 2.3. The rank of the sequence
{
P∗p,m (n)

}
is the least positive integer α such that P∗p,m (α) ≡ P∗p,m (α + 1) ≡

· · · ≡ P∗p,m
(
α + p − 1

)
≡ 0 (modm), and we indicate the rank of

{
P∗p,m (n)

}
by rp (m).

If P∗p,m
(
α + p − 1

)
≡ 0 (modm), then the terms of the sequence

{
P∗p,m (n)

}
starting with index rp (m), namely

0, 0, . . . , 0︸     ︷︷     ︸
p

, θ, θ, . . . , are exactly the initial terms of
{
P∗p,m (n)

}
multiplied by a factor θ.
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The exponents $ for which
(
Kp

)$
≡ I (modm) form a simple aritmetic progression. So we give(

Kp

)$
≡ I (modm)⇐⇒ tp (m) | $.

Similarly, the exponents $ for which
(
Kp

)$
≡ θI (modm) for some θ ∈ C form a simple aritmetic progression,

and so (
Kp

)$
≡ θI (modm)⇐⇒ rp (m) | $.

Thus, it is simple to show that rp (m) divides tp (m).

The order of the sequence
{
P∗p,m (n)

}
is defined by tp(m)

rp(m) and we indicate it by Qp (m). Let
(
Kp

)rp(m)
≡

θI (modm), then ordm (θ) is the least positive value of δ such that
(
Kp

)δrp(m)
≡ I (modm). So it is confirm that

ordm (θ) is the least positive integer δ with tp (m) | δrp (m). Thus, we obtain ordm (θ) = δ. As a result, we
may easily conclude that Qp (m) is always a positve integer, and that Qp (m) = ordm

(
P∗p

(
rp (m) + p

))
, the

multiplicative order of P∗p,m
(
rp (m) + p

)
.

Example 2.4. Since {
P∗5,2 (n)

}
= {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, i, 0, 0, 0, 0, 0, 1, 0, . . . , } ,

we have t5 (2) = 12, r5 (2) = 6 and Q5 (2) = 2.

Theorem 2.5. suppose that m1 and m2 are positive integers with m1,m2 ≥ 2, then rp (lcm [m1,m2]) = lcm
[
rp (m1) , rp (m2)

]
.

In the same way, tp (lcm [m1,m2]) = lcm
[
tp (m1) , tp (m2)

]
.

Proof. Let lcm [m1,m2] = m. Then

P∗p
(
rp (m)

)
≡ P∗p

(
rp (m) + 1

)
≡ · · · ≡ P∗p

(
rp (m) + p − 1

)
≡ 0 (modm)

and
P∗p

(
rp (mw)

)
≡ P∗p

(
rp (mw) + 1

)
≡ · · · ≡ P∗p

(
rp (mw) + p − 1

)
≡ 0 (modm)

for w = 1, 2. Using the least common multiple operation implies that P∗p
(
rp (m)

)
≡ P∗p

(
rp (m) + 1

)
≡ · · · ≡

P∗p
(
rp (m) + p − 1

)
≡ 0modmw for w = 1, 2. Hence we get rp (m1) | rp (m) and rp (m2) | rp (m), which signifies

that lcm
[
rp (m1) , rp (m2)

]
divides rp (lcm [m1,m2]). We also know that

P∗p
(
lcm

[
rp (m1) , rp (m2)

])
≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ 1

)
≡ · · · ≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ p − 1

)
≡ 0 (modmw)

for w = 1, 2. Then we can write

P∗p
(
lcm

[
rp (m1) , rp (m2)

])
≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ 1

)
≡ · · · ≡ P∗p

(
lcm

[
rp (m1) , rp (m2)

]
+ p − 1

)
≡ 0 (modm) ,

and it follows that rp (lcm [m1,m2]) divides lcm
[
rp (m1) , rp (m2)

]
. Thus, the proof is complete.

The period tp (m) is proved with a similar proof method.

Now we take into account the complex-type Pell p-numbers in groups.
Suppose that G be a finite j-generator group and let X = {(x1, x2, . . . , x j) ∈ G × G × · · · × G︸             ︷︷             ︸

j

| <
{
x1, x2, . . . , x j

}
>=

G}. We call
(
x1, x2, . . . , x j

)
a generating j-tuple for G.
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Definition 2.6. Suppose that G is a j-generator group and suppose that
(
x1, x2, . . . , x j

)
is a generating j-tuple for G.

So we define the complex-type Pell p-orbit P∗p
(
G; x1, x2, . . . , x j

)
=

{
ap (n)

}
as shown:

ap
(
n + p

)
= ap (n − 1)i ap

(
n + p − 1

)2ip+1
(n > 1)

where {
ap (1) = x1, ap (2) = x2, . . . , ap

(
j
)
= x j, ap

(
j + 1

)
= e, . . . , ap

(
p + 1

)
= e if j < p + 1,

ap (1) = x1, ap (2) = x2, . . . , ap
(
p + 1

)
= xp+1 if j = p + 1.

Theorem 2.7. Suppose that G is a j-generator group. If G is finite, then the complex-type Pell p-orbit of G is periodic.

Proof. We think of the set

H =
{(

(h1)a1(mod|h1 |)+ib1(mod|h1 |) ,

(h2)a2(mod|h2 |)+ib2(mod|h2 |) , . . . ,(
h j

)a j(mod|h j|)+ib j(mod|h j|)
)

:

h1, h2, . . . , h j ∈ G and an, bn ∈ Z such that 1 ≤ n ≤ j
}

.

If G is finite, the H is a finite set. For any c ≥ 0, there exists k ≥ c + j such that ap (c + 1) = ap (k + 1),
ap (c + 2) = ap (k + 2), . . . , ap

(
c + j

)
= ap

(
k + j

)
. Due to repeating, for all generating j-tuples, the sequence

P∗p
(
G; x1, x2, . . . , x j

)
is periodic.

We indicate the length of the period of the complex-type Pell p-orbit P∗p
(
G; x1, x2, . . . , x j

)
by hP∗p

(
G; x1, x2, . . . , x j

)
.

Now we give the lengths of the periods of the complex-type Pell 2-orbit of the semidihedral group SD2m .
The semidihedral group SD2m of order 2m is defined by the presentation

SD2m = 〈x, y | x2m−1
= y2 = e, y−1xy = x−1+2m−2

〉

for every m ≥ 4. Note that the orders x and y are 2m−1 and 2, respectively.

Theorem 2.8. For generating pairs
(
x, y

)
, the length of the period of the complex-type Pell 2-orbit in the semidihedral

group SD2m is 2m−3
· t2 (2).

Proof. For the complex-type Pell 2-orbit, we consider t2 (2) = 6. The orbit P∗2
(
SD2m ; x, y

)
is

x, y, e, xi, yix2, x−4i, x−9, yx20i, x44,

x−97i, yix42, x−40i, x17, yx8i, x56, . . . ,

and so the orbit becomes:

a2 (1) = x, a2 (2) = y, a2 (3) = e, . . .
a2 (2 · t2 (2)α + 1) = x8αλ1+1, a2 (2 · t2 (2)α + 2) = yx4αλ2·i, a2 (2 · t2 (2)α + 3) = x4αλ3, . . . .

where λ1, λ2 and λ3 are positive integers such that 1cd (λ1, λ2, λ3) = 1. Thus, for β ∈N, we need the smallest
integer α such that 8α = 2m−1

· β . If we choose α = 2m−4, we get

a2

(
2m−3

· t2 (2) + 1
)
= x, a2

(
2m−3

· t2 (2) + 2
)
= y, a2

(
2m−3

· t2 (2) + 3
)
= e . . . .

Since the elements succeeding a2

(
2m−3

· t2 (2) + 1
)
, a2

(
2m−3

· t2 (2) + 2
)

and a2

(
2m−3

· t2 (2) + 3
)

depend on

x, y, e for their values, the cycle begins again with the a2

(
2m−3

· t2 (2) + 1
)

nd element. Thus it is verified that
the length of the period of the complex-type Pell 2-orbit in SD2m is 2m−3

· t2 (2).
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Example 2.9. The sequence P∗2
(
SD64; x, y

)
is

x, y, e, xi, yix2, x−4i, x−9, yx20i, x12, x−i, yix10,

x−8i, x17, yx8i, x24, xi, yx26, x4i, x7, yx12i, x20,

x−i, yix18, x16i, x, yx16i, x16, xi, yix18, x12i, x23,

yx4i, x28, x−i, yix26, x8i, x17, yx24i, x8, xi, yix10,

x20i, x7, yx28i, x4, x31i, yix2, e, x, y, e, . . . .

which implies that hP∗2
(
SD32; x, y

)
= 48.

3. Conclusion

In this study, we have considered the complex-type Pell p-numbers modulo m and then we have
obtained the periods and the ranks of the complex-type Pell p-numbers modulo m. Also, we have studied
the multiplicative orders of the complex-type Pell p-matrix when read modulo m. Finally, we have redefined
the complex-type Pell p-numbers with the elements of groups and then we have obtained the periods of
the complex-type Pell 2-numbers in the semidihedral group SD2m , (m ≥ 4).
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Abstract. In this paper, higher order inverse quasi-linear parabolic problem was investigated. It demon-
strated the solution by the Fourier approximation. It proved the existence, uniqueness of the solution by
Fourier and iteration method.

1. Introduction

In this study we present a high order scheme for determining unknown control parameter and unknown
solution of two-dimensional parabolic inverse problem. Two- dimensional inverse parabolic problems
are used especially in chemical diffusion applications, heat transfer processes have been used a lot such
as population, medical area, electrochemistry, engineering, chemical area, plasma physics .This kind of
problems with nonlocal boundary conditions are not easy to study. There are many papers on finding
analytical and numerical solutions of inverse coefficient problems with nonlocal boundary conditions in
one dimension [2, 5]. In these papers, Finite Difference Method, Boundary Element Method, Finite Element
Method, etc. are examined to approximate numerical solutions.Finding of the unknown function in a
nonlinear parabolic equation is used frequently by many engineers and scientists [1–5].

In this study, Fourier method is used for the for the solution of this problem.
Here Γ :=

{
0 < x < π, 0 < y < π, 0 < t < T

}
, ϕ(x, y), f (x, y, t,u) are given functions.

∂u
∂t

= b(t)
∂2u
∂x2 +

∂2u
∂y2 + f

(
x, y, t,u

)
, (x, y, t) ∈ Γ (1)

u(x, y, 0) = ϕ(x, y), x ∈ [0, π] , y ∈ [0, π] (2)

u(0, y, t) = u(π, y, t), y ∈ [0, π] , t ∈ [0,T]
u(x, 0, t) = u(x, π, t), x ∈ [0, π] , t ∈ [0,T] (3)
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ux(0, y, t) = ux(π, y, t), y ∈ [0, π] , t ∈ [0,T]
uy(x, 0, t) = uy(x, π, t), x ∈ [0, π] , t ∈ [0,T] (4)

k(t) =

π∫
0

π∫
0

xyu(x, y, t)dxdy, t ∈ [0,T] (5)

where, in heat diffusion in a thin rod in which the law of variation k(t) of the total quantity of heat in
the bar is given. [6]

2. Solution of (1)-(4) Model

As known, in Fourier Method, the solution of problem (1)–(4) is considered in the following form :

u(x, y, t) =
u0(t)

4

+

∞∑
m,n=1

(ucmn(t) cos (2mx) cos
(
2ny

)
+ ucsmn(t) cos (2mx) sin

(
2ny

)
)

+

∞∑
m,n=1

(uscmn(t) sin (2mx) cos
(
2ny

)
+ usmn(t) sin (2mx) sin

(
2ny

)
).

We have Fourier coefficients by applying the standart procedure of the Fourier method, as follows:

u0(t) = u0(0) +
4
π2

t∫
0

π∫
0

π∫
0

f
(
x, y, τ,u

)
dxdydτ

ucmn(t) = ucmn(0)e
−

t∫
0

[b(s)(2m)2+(2n)2]ds
+

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
f
(
x, y, τ,u

)
cos (2mx) cos

(
2ny

)
dxdydτ

ucsmn(t) = ucsmn(0)e
−

t∫
0

[b(s)(2m)2+(2n)2]ds
+

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
f
(
x, y, τ,u

)
cos (2mx) sin

(
2ny

)
dxdydτ

uscmn(t) = uscmn(0)e
−

t∫
0

[b(s)(2m)2+(2n)2]ds
+

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
f
(
x, y, τ,u

)
sin (2mx) cos

(
2ny

)
dxdydτ

usmn(t) = usmn(0)e
−

t∫
0

[b(s)(2m)2+(2n)2]ds
+

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
f
(
x, y, τ,u

)
sin (2mx) sin

(
2ny

)
dxdydτ

Then we obtain the solution:
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u(x, y, t) =
1
4

ϕ0 +
4
π2

t∫
0

f0(τ,u) dτ


+

∞∑
m,n=1

ϕcmn +
4
π2

t∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

fcmn(τ,u) dτ

 cos (2mx) cos
(
2ny

)

+

∞∑
m,n=1

ϕcsmn +
4
π2

t∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

fcsmn(τ,u)dτ

 cos (2mx) sin
(
2ny

)
(6)

+

∞∑
m,n=1

ϕscmn +
4
π2

t∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

fscmn(τ,u)dτ

 sin (2mx) cos
(
2ny

)

+

∞∑
m,n=1

ϕsmn +
4
π2

t∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

fsmn(τ,u)dτ

 sin (2mx) sin
(
2ny

)

where ϕ0 = u0(0), ϕcmn = ucmn(0)e
−

t∫
0
[b(s)(2m)2+(2n)2]ds

, ϕcsmn = ucsmn(0)e
−

t∫
0
[b(s)(2m)2+(2n)2]ds

,

ϕscmn = uscmn(0)e
−

t∫
0
[b(s)(2m)2+(2n)2]ds

, ϕsmn = usmn(0)e
−

t∫
0
[b(s)(2m)2+(2n)2]ds

.
We have the following constraints for functions of the problem:
(C1) k(t) ∈ C1 [0,T]
(C2) ϕ(x, y)εC1,1 ([0, π] × [0, π]) , ϕ(0, y) = ϕ(π, y), ϕx(0, y) = ϕx(π, y), ϕ(x, 0) = ϕ(x, π), ϕy(x, 0) = ϕy(x, π)

and
π∫

0

π∫
0

xyϕ(x, y)dxdy = k(0),

(C3) f (x, y, t,u) is provided following conditions:

(1)
∣∣∣∣ ∂ f (x,y,t,u)

∂x −
∂ f (x,y,t,ũ)

∂x

∣∣∣∣ ≤ l(x, y, t)
∣∣∣u − ũ

∣∣∣ ,∣∣∣∣ ∂ f (x,y,t,u)
∂y −

∂ f (x,y,t,ũ)
∂y

∣∣∣∣ ≤ l(x, y, t)
∣∣∣u − ũ

∣∣∣ ,∣∣∣∣ ∂2 f (x,y,t,u)
∂x∂y −

∂2 f (x,y,t,ũ)
∂x∂y

∣∣∣∣ ≤ l(x, y, t)
∣∣∣u − ũ

∣∣∣ where l(x, y, t) ∈ L2(Γ), l(x, y, t) ≥ 0,

(2) f (x, y, t,u) ∈ C2,2,0[0, π], t ∈ [0,T],
(3) f (x, y, t,u)

∣∣∣
x=0

= f (x, y, t,u)
∣∣∣
x=π

, fx
(
x, y, t,u

)∣∣∣
x=0

= fx(x, y, t,u)
∣∣∣
x=π

, fy
(
x, y, t,u

)∣∣∣
y=0

= fy(x, y, t,u)
∣∣∣
y=π

,

fxy(x, y, t,u)
∣∣∣
x=0

= fxy(x, y, t,u)
∣∣∣
x=π

, fxy(x, y, t,u)
∣∣∣
y=0

= fxy(x, y, t,u)
∣∣∣
y=π

(5) can be diffrentiated under the assumptions (C1)-(C3),

π∫
0

π∫
0

xyut(x, t)dxdy = k
′

(t), 0 ≤ t ≤ T. (7)

then the unknown coefficient is obtained in this form

b(t) =

k′ (t) −
π∫

0

π∫
0

xy f (x, y, t,u)dxdy − π3

2 uy(π, t)

π3

2 ux(π, t)
. (8)

Definition 2.1. Show the set {u(t)} = {u0(t),ucmn(t),ucsmn(t),uscmn(t),usmn(t),m,n = 1, ...} of continuous functions
on [0,T] which satisfy the condition
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max
0≤t≤T

|u0(t)|
4 +

∞∑
m,n=1

(
max
0≤t≤T

|ucmn(t)| + max
0≤t≤T

|ucsmn(t)| + max
0≤t≤T

|uscmn(t)| + max
0≤t≤T

|usmn(t)|
)
< ∞ .

‖u(t)‖ = max
0≤t≤T

|u0(t)|
4 +

∞∑
m,n=1

(
max
0≤t≤T

|ucmn(t)| + max
0≤t≤T

|ucsmn(t)| + max
0≤t≤T

|uscmn(t)| + max
0≤t≤T

|usmn(t)|
)

is the norm in B. (B

is the Banach spaces).

Theorem 2.2. If the conditions (C1)-(C3) be implemented. Then it has a unique solution.

Proof. If we apply an iteration to equation (6), the following functions are obtained:

u(N+1)
0 (t) = ϕ0 +

4
π2

t∫
0

π∫
0

π∫
0

f
(
x, y, τ,u(N)

)
dxdydτ,

u(N+1)
cmn (t) = ϕcmn +

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

cos (2mx) cos
(
2ny

)
f
(
x, y, τ,u(N)

)
dxdydτ,

u(N+1)
csmn (t) = ϕcsmn +

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

cos (2mx) sin
(
2ny

)
f
(
x, y, τ,u(N)

)
dxdydτ,

u(N+1)
scmn (t) = ϕscmn +

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

sin (2mx) cos
(
2ny

)
f
(
x, y, τ,u(N)

)
dxdydτ,

u(N+1)
smn (t) = ϕsmn +

4
π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[b(s)(2m)2+(2n)2]ds

sin (2mx) sin
(
2ny

)
f
(
x, y, τ,u(N)

)
dxdydτ.

According to the assumptions , we get u(0)(t) ∈ B, t ∈ [0,T]. Using Cauchy ,Hölder, Bessel inequalities and
Lipschitzs condition, finally we get:

∥∥∥u(1)(t)
∥∥∥

B
= max

0≤t≤T

∣∣∣u(1)
0 (t)

∣∣∣
4

+

∞∑
m,n=1

(
max
0≤t≤T

∣∣∣u(1)
cmn(t)

∣∣∣ + max
0≤t≤T

∣∣∣u(1)
csmn(t)

∣∣∣ + max
0≤t≤T

∣∣∣u(1)
scmn(t)

∣∣∣ + max
0≤t≤T

∣∣∣u(1)
smn(t)

∣∣∣)
≤

∣∣∣ϕ0

∣∣∣
2

+

∞∑
m,n=1

(∣∣∣ϕcmn

∣∣∣ +
∣∣∣ϕcsmn

∣∣∣ +
∣∣∣ϕscmn

∣∣∣ +
∣∣∣ϕsmn

∣∣∣)
+
√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B

+
√

T(
3
√
π + 16
3π

)M.

According to the assumptions of the theorem, we have u(1)(t) ∈ B. The same operations for the step N,
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∥∥∥u(N+1)(t)
∥∥∥

B = max
0≤t≤T

∣∣∣u(N)
0 (t)

∣∣∣
4

+

∞∑
m,n=1

(
max
0≤t≤T

∣∣∣u(N)
cmn(t)

∣∣∣ + max
0≤t≤T

∣∣∣u(N)
csmn(t)

∣∣∣ + max
0≤t≤T

∣∣∣u(N)
scmn(t)

∣∣∣ + max
0≤t≤T

∣∣∣u(N)
smn(t)

∣∣∣)
≤

∣∣∣ϕ0

∣∣∣
2

+

∞∑
m,n=1

(∣∣∣ϕcmn

∣∣∣ +
∣∣∣ϕcsmn

∣∣∣ +
∣∣∣ϕscmn

∣∣∣ +
∣∣∣ϕsmn

∣∣∣)
+
√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(N)(t)
∥∥∥

B

+
√

T(
3
√
π + 16
3π

)M.

is obtained. We get u(N+1)(t) ∈ B since u(N)(t) ∈ B,

{u(t)} = {u0(t),ucmn(t),ucsmn(t),uscmn(t),usmn(t),m,n = 1, ...} ∈ B.

If we apply an iteration to equation (8), the following functions are obtained::

b(N+1)(t) =

k′ (t) −
π∫

0

π∫
0

xy f (x, y, t,u(N))dxdy − π3

2 u(N)
y (π, t)

π3

2 u(N)
x (π, t)

.

By using the same operations we obtain:

∥∥∥b(N+1)(t)
∥∥∥

C[0,T]
≤

∣∣∣k′ (t)∣∣∣ + π4

4

∥∥∥u(N)(t)
∥∥∥

B
π3

2

∥∥∥u(N)(t)
∥∥∥

B

∥∥∥b(N+1)(t)
∥∥∥

C[0,T]
≤
π
2

+
2
∣∣∣k′ (t)∣∣∣∥∥∥u(N)(t)

∥∥∥
B

We get b(N+1)(t) ∈ C[0,T] since u(N)(t) ∈ B.
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Let us show that, u(N+1)(t), b(N+1) are converged for N→∞.

u(1)(t) − u(0)(t) =
(u(1)

0 (t) − u(0)
0 (t))

4

+[(u(1)
cmn(t) − u(0)

cmn(t)) + (u(1)
csmn(t) − u(0)

csmn(t)) + (u(1)
scmn(t) − u(0)

scmn(t)) + (u(1)
smn(t) − u(0)

smn(t))]

=
1
4

 4
π2

t∫
0

π∫
0

π∫
0

[
fαβ(x, y, τ,u(0)) − fαβ(x, y, τ, 0)

]
dxdydτ


+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

[
fxy(x, y, τ,u(0)) − fxy(x, y, τ, 0)

]
e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
cos (2mx) cos

(
2ny

)
dxdydτ

+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
cos (2mx) sin

(
2ny

)
dxdydτ

+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

[
fxy(x, y, τ,u(0)) − fxy(x, y, τ, 0)

]
e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
sin (2mx) cos

(
2ny

)
dxdydτ

+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

[
fxy(x, y, τ,u(0)) − fxy(x, y, τ, 0)

]
e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
sin (2mx) sin

(
2ny

)
dxdydτ

+
1
4

 4
π2

t∫
0

π∫
0

π∫
0

fxy(x, y, τ, 0) dxdydτ


+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

fxy(x, y, τ, 0)e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
cos (2mx) cos

(
2ny

)
dxdydτ

+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

fxy(x, y, τ, 0)e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
cos (2mx) sin

(
2ny

)
dxdydτ

+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

fxy(x, y, τ, 0)e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
sin (2mx) cos

(
2ny

)
dxdydτ

+

∞∑
m,n=1

4
π2mn

t∫
0

π∫
0

π∫
0

fxy(x, y, τ, 0)e
−

t∫
τ

[b(s)(2m)2+(2n)2]ds
sin (2mx) sin

(
2ny

)
dxdydτ.

Let some inequalities(Bessel, Hölder, Lipschitzs) be implemented , the following estimations are obtained:

∥∥∥u(1)(t) − u(0)(t)
∥∥∥

B ≤
√

T(
3
√
π + 16
3π

)
(∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B + M
)

where

A =
√

T(
3
√
π + 16
3π

)
(∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B + M
)
.

∥∥∥u(N+1)(t) − u(N)(t)
∥∥∥

B ≤

A
∥∥∥l(x, y, t)

∥∥∥N

L2(Γ)
SN

√
N!

(9)

where

S =
√

T(
3
√
π + 16
3π

)

1 +
πM

2
∥∥∥u(N)(t)

∥∥∥
B

∥∥∥u(N+1)(t)
∥∥∥

B

+
π

∥∥∥l(x, y, t)
∥∥∥

L2(Γ)

2
∥∥∥u(N)(t)

∥∥∥
B

 .
By using the same operations we obtain:
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∥∥∥b(1)(t) − b(0)(t)
∥∥∥

C[0,T]
≤ C1

∥∥∥u(1)(t) − u(0)(t)
∥∥∥

B .

The same operations for the step N :∥∥∥b(N+1)(t) − b(N)(t)
∥∥∥

C[0,T]
≤ CN

∥∥∥u(N+1)(t) − u(N)(t)
∥∥∥

B

where C1 =

(
πM

2‖u(0)(t)‖B‖u
(1)(t)‖B

+
π‖l(x,y,t)‖

L2(Γ)

2‖u(0)(t)‖B

)
, ...,CN =

(
πM

2‖u(N)(t)‖B‖u
(N+1)(t)‖B

+
π‖l(x,y,t)‖

L2(Γ)

2‖u(N)(t)‖B

)
.The series which

is consisting of the right hand side of (9) are convergent by ratio test. So, the series which is consisting of
the left hand side of (9) are convergent by comparison test. Moreover, by the Weierstrass M test , the series
∞∑

N=0

∣∣∣u(N+1)(t) − u(N)(t)
∣∣∣ is uniformly convergent.

We obtain u(N+1)
→ u(N), b(N+1)

→ b(N), N→∞.
Therefore u(N+1)(t) and b(N+1)(t) are converged.
Now let’s show that:

lim
N→∞

u(N+1)(t) = u(t), lim
N→∞

b(N+1)(t) = b(t).

By using Cauchy, Hölder, Bessel and Lipschitzs inequalities, we have

∥∥∥u(t) − u(N+1)(t)
∥∥∥

B
≤

√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(t) − u(N+1)(t)
∥∥∥

B

+
√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(N+1)(t) − u(N)(t)
∥∥∥

B

+
√

T(
3
√
π + 16
3π

)M |T|
∥∥∥u(t) − u(N+1)(t)

∥∥∥
B .

By using the same operations we obtain:

∥∥∥b(t) − b(N+1)(t)
∥∥∥

C[0,T]
≤ CN

∥∥∥l(x, y, t)
∥∥∥

L2(Γ)

∥∥∥u(t) − u(N+1)(t)
∥∥∥

B

+CN

∥∥∥l(x, y, t)
∥∥∥

L2(Γ)

∥∥∥u(N+1)(t) − u(N)(t)
∥∥∥

B.

∥∥∥u(t) − u(N+1)(t)
∥∥∥

B
≤

√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(t) − u(N+1)(t)
∥∥∥

B

+
√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)

∥∥∥u(N+1)(t) − u(N)(t)
∥∥∥

B

+
√

T(
3
√
π + 16
3π

)M |T|
∥∥∥b(t) − b(N+1)(t)

∥∥∥
B

applying Gronwall’s inequality to last inequality ,we have

∥∥∥u(t) − u(N+1)(t)
∥∥∥2

B
≤ 2

(
A
√

T( 3
√
π+16
3π )

)2

√
N!

(∥∥∥l(x, y, t)
∥∥∥N+1

L2(Γ)

)2

× exp
(
√

T(
3
√
π + 16
3π

)
)2 ∥∥∥l(x, y, t)

∥∥∥2

L2(Γ)
. (10)
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The series which is consisting of the right hand side of (10) are convergent by ratio test. So, the series
which is consisting of the left hand side of (10) are convergent by comparison test. Moreover, by the

Weierstrass M test , the series
∞∑

N=0

∣∣∣u(t) − u(N+1)(t)
∣∣∣ is uniformly convergent.

We obtain u(N+1)
→ u, b(N+1)

→ b, N→∞.
To show the uniqueness, we get two solution pairs of the problem (1)–(5) as (c,u) and (b, v)
Applying Cauchy inequality, Hölder Inequality, Lipschitzs condition and Bessel inequality to the differ-

ence |u(t) − v(t)|, we obtain

‖u(t) − v(t)‖B ≤

√

T(
3
√
π + 16
3π

)
∥∥∥l(x, y, t)

∥∥∥
L2(Γ)
‖u(t) − v(t)‖B

+
√

T(
3
√
π + 16
3π

)M |T| ‖b(t) − c(t)‖B

‖u(t) − v(t)‖B ≤ 0 × exp
(
√

T(
3
√
π + 16
3π

)
)2 ∥∥∥l(x, y, t))

∥∥∥2

L2(Γ)
, (11)

we get u(t) = v(t) and c(t) = b(t).
The proof is over.
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Abstract. In this paper, we study the complex-type Padovan-p sequence modulo m and then we give
some results concerning the periods and ranks of this sequence for any p and m. Furthermore, we produce
the cyclic groups using the multiplicative orders of the generating matrix of the complex-type Padovan-p
sequence when read modulo m. Finally, we give the relationships between the periods of the complex-type
Padovan-p sequence modulo m and the orders of the cyclic groups produced.

1. Introduction

It is well-known that the Padovan sequence {P (n)} is defined recursively by the equation:

P (n) = P (n − 2) + P (n − 3)

for n ≥ 3, where P (0) = P (1) = P (2) = 1.
The Padovan p-sequence

{
Pap (n)

}
is defined [6] by initial values Pap (1) = Pap (2) = · · · = Pap

(
p
)

= 0,
Pap

(
p + 1

)
= 1, Pap

(
p + 2

)
= 0 and the following homogeneous linear recurrence relation

Pap
(
n + p + 2

)
= Pap

(
n + p

)
+ Pap (n)

for any given p
(
p = 2, 3, 4, . . .

)
and n ≥ 1. Note that the (2n + 1) th term of the Padovan 2-sequence {Pa2 (n)},

is equal to nth Fibonacci number.
The complex-type Padovan p-sequence

{
Pa(i)

p (n)
}

is defined [11] as follows:

Pa(i)
p

(
n + p + 2

)
= i2 · Pa(i)

p
(
n + p

)
+ ip+2

· Pa(i)
p (n) (1)

for any given p
(
p = 3, 5, 7, . . .

)
and n ≥ 1, where Pa(i)

p (1) = · · · = Pa(i)
p

(
p
)

= 0, Pa(i)
p

(
p + 1

)
= 1, Pa(i)

p
(
p + 2

)
= 0

and
√
−1 = i.

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The
number of elements in the shortest repeating subsequence is called the period of the sequence. For example,
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the sequence a, b, c, d, b, c, d, b, c, d, . . . is periodic after the initial element a and has period 3. A sequence is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For
example, the sequence a, b, c, d, a, b, c, d, a, b, c, d, . . . is simply periodic with period 4.

The study of the behavior of the linear recurrence sequences under a modulus began with the earlier
work of Wall [17] where the periods of the ordinary Fibonacci sequences modulo m were investigated.
Recently, the theory extended to some special linear recurrence sequences by several authors; see, for
example, [3, 4, 12, 15, 16]. In the first part of this paper, we consider the complex-type Padovan-p sequence
modulo m and then we derive some interesting results concerning the periods and ranks of the complex-type
Padovan-p sequence for any p and m.

The relationships between the periods of the linear recurrence sequences modulo m and the cyclic groups
which are produced using the multiplicative orders of the generating matrices of these sequences when
read modulo m have been studied recently by many authors; see, for example, [1, 2, 5, 7–10, 13, 14, 18].
In the second part, we derive the cyclic groups using the multiplicative orders of the generating matrix of
the complex-type Padovan-p numbers when read modulo m. Then, we give the relationships between the
periods of the complex-type Padovan-p sequence modulo m and the orders of the cyclic groups produced.

2. The Main Results

If we reduce the complex-type Padovan-p sequence
{
Pa(i)

p (n)
}

by a modulus m, taking least nonnegative
residues, then we get the following recurrence sequence:{

Pa(i,m)
p (n)

}
=

{
Pa(i,m)

p (0) , Pa(i,m)
p (1) , . . . ,Pa(i,m)

p
(
j
)
, . . .

}
where Pa(i,m)

p
(
j
)

is used to mean the jth element of the complex-type Padovan-p sequence when read modulo

m. We note here that the recurrence relations in the sequences
{
Pa(i,m)

p (n)
}

and
{
Pa(i)

p (n)
}

are the same.

Theorem 2.1. For any given p
(
p = 3, 5, 7, . . .

)
, the sequence

{
Pa(i,m)

p (n)
}

is simply periodic.

Proof. Consider the set

C =
{(

c1, c2, . . . , cp+2

)
| cn’s are complex numbers an + ibn where (2)

an and bn are integers such that 0 ≤ an, bn ≤ m − 1 and 1 ≤ n ≤ p + 2
}

. (3)

Let the notation |C| indicate the cardinality of the set C. Since the set C is finite, there are |C| distinct(
p + 2

)
-tuples of the complex-type Padovan-p numbers modulo m. Thus, it is clear that at least one of these(

p + 2
)
-tuples appears twice in the sequence

{
Pa(i,m)

p (n)
}
. Therefore, the subsequence following this

(
p + 2

)
-

tuple repeats; that is,
{
Pa(i,m)

p (n)
}

is a periodic sequence. Let us consider Pa(i,m)
p (u) ≡ Pa(i,m)

p (v), Pa(i,m)
p (u + 1) ≡

Pa(i,m)
p (v + 1), . . . , Pa(i,m)

p
(
u + p + 2

)
≡ Pa(i,m)

p
(
v + p + 2

)
and v ≥ u. Then we have v ≡ u

(
mod(p + 2)

)
. From the

recurrence relation in (1), we can write the following recursive equations:

Pa(i)
p (u) = i2−p

· Pa(i)
p

(
u + p + 2

)
+ i3−p

· Pa(i)
p

(
u + p

)
and

Pa(i)
p (v) = i2−p

· Pa(i)
p

(
v + p + 2

)
+ i3−p

· Pa(i)
p

(
v + p

)
.

So we get Pa(i,m)
p (u − 1) ≡ Pa(i,m)

p (v − 1), Pa(i,m)
p (u − 2) ≡ Pa(i,m)

p (v − 2), . . . , Pa(i,m)
p (2) ≡ Pa(i,m)

p (v − u + 2),
Pa(i,m)

p (1) ≡ Pa(i,m)
p (v − u + 1), which implies that the complex-type Padovan-p sequence modulo m is simply

periodic.
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Let the notation lPi
p (m) denote the smallest period of the sequence

{
Pa(i,m)

p (n)
}
.

Given an integer matrix A =
[
ai j

]
, A (modm) means that all entries of A are modulo m, that is, A (modm) =(

ai j (modm)
)
. Let us consider the set 〈A〉m =

{
(A)n (modm) | n ≥ 0

}
. If (det A,m) = 1, then the set 〈A〉m is a

cyclic group; if (det A,m) , 1, then the set 〈A〉m is a semigroup.
In [11], the generating matrix of the complex-type Padovan-p sequence had been given as:

Dp =
[
d(p)

jk

]
(p+2)×(p+2)

=



0 −1 0 · · · 0 0 ip+2

1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0


.

The matrix Dp is said to be the complex-type Padovan-p matrix. Then they had been written the
following matrix relation: 

Pa(i)
p

(
n + p + 2

)
Pa(i)

p
(
n + p + 1

)
...

Pa(i)
p (n + 2)

Pa(i)
p (n + 1)


= Dp ·



Pa(i)
p

(
n + p + 1

)
Pa(i)

p
(
n + p

)
...

Pa(i)
p (n + 1)
Pa(i)

p (n)


.

It can be readily established by mathematical induction that for n ≥ p + 1,

(
Dp

)n
=



Pa(i)
p

(
n + p + 1

)
Pa(i)

p
(
n + p + 2

)
ip+2
· Pa(i)

p (n + 1) ip+2
· Pa(i)

p (n + 2) · · · ip+2
· Pa(i)

p
(
n + p

)
Pa(i)

p
(
n + p

)
Pa(i)

p
(
n + p + 1

)
ip+2
· Pa(i)

p (n) ip+2
· Pa(i)

p (n + 1) · · · ip+2
· Pa(i)

p
(
n + p − 1

)
Pa(i)

p
(
n + p − 1

)
Pa(i)

p
(
n + p

)
ip+2
· Pa(i)

p (n − 1) ip+2
· Pa(i)

p (n) · · · ip+2
· Pa(i)

p
(
n + p − 2

)
...

...
...

...
. . .

...

Pa(i)
p (n + 1) Pa(i)

p (n + 2) ip+2
· Pa(i)

p
(
n − p + 1

)
ip+2
· Pa(i)

p
(
n − p + 2

)
· · · ip+2

· Pa(i)
p (n)

Pa(i)
p (n) Pa(i)

p (n + 1) ip+2
· Pa(i)

p
(
n − p

)
ip+2
· Pa(i)

p
(
n − p + 1

)
· · · ip+2

· Pa(i)
p (n − 1)


.

(4)

Since det Dp = ip+2, the set
〈
Dp

〉
m

is a cyclic group for every positive integer m ≥ 2. From Theorem 2.1

and the equation (??), it is easy to see that lPi
p (m) =

∣∣∣∣〈Dp

〉
m

∣∣∣∣ for any given p
(
p = 3, 5, 7, . . .

)
.

Clearly,

ip+2 =

{
i, p ≡ −1 (mod4) ,
−i, p ≡ 1 (mod4) .

Since also det Dp = ip+2 and lPi
p (m) =

∣∣∣∣〈Dp

〉
m

∣∣∣∣,
(
ip+2

)lPi
p(m)

=
(
det Dp

)lPi
p(m)

= det D
lPi

p(m)
p ≡ 1 (modm) .

From this we see that 4
∣∣∣lPi

p (m) .

The rank of the sequence
{
Pa(i,m)

p (n)
}

is the least positive integer r such that Pa(i,m)
p (r + 1) ≡ Pa(i,m)

p (r + 2) ≡

Pa(i,m)
p

(
r + p

)
≡ 0(modm), Pa(i,m)

p
(
r + p + 1

)
≡ u(modm) (u ∈ C), Pa(i,m)

p
(
r + p + 2

)
≡ 0(modm), and we denote

the rank of
{
Pa(i,m)

p (n)
}

by RPi
p (m). If Pa(i,m)

p
(
r + p + 1

)
≡ u(modm) (u ∈ C), then the terms of the sequence
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Pa(i,m)

p (n)
}

starting with index RPi
p (m), namely 0, 0, . . . , 0︸     ︷︷     ︸

p

,u, 0,−u, 0,u, . . . , are exactly the initial terms of

{
Pa(i,m)

p (n)
}

multiplied by a factor u.

Let the notation I denote the identity matrix of size
(
p + 2

)
. The exponents n for which

(
Dp

)n
≡ I(modm)

form a simple aritmetic progression. Then we have(
Dp

)n
≡ I(modm)⇐⇒ lPi

p (m) | n.

Similarly, the exponents n for which
(
Dp

)n
≡ cI(modm) for some c ∈ C form a simple aritmetic progression,

and hence (
Dp

)n
≡ cI(modm)⇐⇒ RPi

p (m) | n.

Consequently, we can see that RPi
p (m) divides lPi

p (m) for any given p
(
p = 3, 5, 7, . . .

)
and m ≥ 3.

The order of the sequence
{
Pa(i,m)

p (n)
}
, (m ≥ 3) is defined by

lPi
p(m)

RPi
p(m) and we denote it by OPi

p (m). Let(
Dp

)RPi
p(m)
≡ cI(modm) (c ∈ C), then ordm (c) is the least positive value of λ such that

(
Dp

)λRPi
p(m)
≡ I(modm).

So it is confirm that ordm (c) is the least positive integer λ with lPi
p (m) | λRPi

p (m) for m ≥ 3. As a direct
consequence of this we see that the smallest such λ is OPi

p (m) for m ≥ 3. Therefore, we obtain OPi
p (m) =

ordm (c), (m ≥ 3) when
(
Dp

)RPi
p(m)
≡ cI(modm). As a result, we may easily deduce that OPi

p (m) is always

a positive integer, and that OPi
p (m) = ordm

(
Pa(i)

p

(
RPi

p (m) + p + 1
))

for m ≥ 3, the multiplicative order of

Pa(i,m)
p

(
RPi

p (m) + p + 1
)
.

Example 2.2. The sequence
{
Pa(i,2)

3 (n)
}

is as follows:
0, 0, 0, 1, 0, 1, 0, 1, i, 1, 0, 1, i, , 0, 0, 0, i, 1, i, 1, i,
0, 0, 1, i, 0, i, 0, 0, 1, 0, 0, 0, 0, i, 0, i, 0, i, 1, i, 0,
i, 1, 0, 0, 0, 1, i, 1, i, 1, 0, 0, i, 1, 0, 1, 0, 0, i, 0,

0, 0, 0, 1, 0, 1, 0, 1, i, . . . .


Thus it is verified that lPi

3 (2) = 62, RPi
3 (2) = 31 and OPi

3 (2) = 2.

Example 2.3. The sequence
{
Pa(i,4)

3 (n)
}

is as follows:
0, 0, 0, 1, 0, 3, 0, 1, i, 3, 2i, 1, 3i, 2, 0, 0, i, 1, i, 3, 3i, 0, 2i, 3, i, 2, 3i, 0, 0, 3, 2i,
2, 2i, 2, i, 0, i, 2, i, 1, 3i, 2, 3i, 1, 2i, 0, 0, 1, i, 1, 3i, 3, 2i, 0, 3i, 1, 0, 1, 0, 0, i, 0,

0, 0, 0, 3, 0, 1, 2i, 3, 3i, 1, 2i, 3, i, 2, 0, 0, 3i, 3, 3i, 1, i, 0, 2i, 1, 3i, 2, i, 0, 0, 1, 2i,
2, 2i, 2, 3i, 0, 3i, 2, 3i, 3, i, 2, i, 3, 2i, 0, 0, 3, 3i, 3, i, 1, 2i, 0, i, 3, 0, 3, 0, 0, 3i, 0,

0, 0, 0, 1, 0, 3, 0, 1, i, . . . .


Thus it is verified that lPi

3 (4) = 124, RPi
3 (4) = 62 and OPi

3 (4) = 2.

Theorem 2.4. Let ρ be a prime. Then we have the following results for any given p
(
p = 3, 5, 7, . . .

)
:

i. If t is the smallest positive integer such that lPi
p

(
ρt+1

)
, lPi

p
(
ρt), then lPi

p

(
ρt+1

)
= ρlPi

p
(
ρt).

ii. If t is the smallest positive integer such that RPi
p

(
ρt+1

)
, RPi

p
(
ρt), then RPi

p

(
ρt+1

)
= ρRPi

p
(
ρt).

Proof. i. Let n be a positive integer such that
(
Dp

)lPi
p(ρn+1)

≡ I(modρn+1). Then we can easily derive(
Dp

)lPi
p(ρn+1)

≡ I(modρn), which implies that lPi
p

(
ρn+1

)
is divided by lPi

p
(
ρn). On the other hand, we may
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write
(
Dp

)lPi
p(ρn)

= I +
((

d(p)
jk

)n
· ρn

)
. Thus, we get the following matrix equation by using binomial expansion

(
Dp

)ρ·lPi
p(ρn)

=
(
I +

((
d(p)

jk

)n
· ρn

))ρ
=

ρ∑
k=0

(
ρ

k

) ((
d(p)

jk

)n
· ρn

)k
≡ I

(
modρn+1

)
,

which yields that ρ · lPi
p
(
ρn) is divided by lPi

p

(
ρn+1

)
. Hence, lPi

p

(
ρn+1

)
= lPi

p
(
ρn) or lPi

p

(
ρn+1

)
= ρ · lPi

p
(
ρn),

and the latter holds if and only if there is a
(
d(p)

jk

)n
which is not divisible by ρ. Due to fact that we assume t

is the smallest positive integer such that lPi
p

(
ρt+1

)
, lPi

p
(
ρt), there is an

(
d(p)

jk

)n
which is not divisible by ρ.

This shows that lPi
p

(
ρt+1

)
= ρlPi

p
(
ρt).

ii. The proof is similar to the above and is omitted.

Theorem 2.5. Let m1 and m2 be positive integers with m1,m2 ≥ 2, then RPi
p (lcm [m1,m2]) = lcm

[
RPi

p (m1) ,RPi
p (m2)

]
and lPi

p (lcm [m1,m2]) = lcm
[
lPi

p (m1) , lPi
p (m2)

]
for any given p

(
p = 3, 5, 7, . . .

)
.

Proof. Let us consider the ranks RPi
p (m1) and RPi

p (m2). Suppose that lcm [m1,m2] = m. Then we may write

Pa(i)
p

(
RPi

p (m1) + 1
)
≡ Pa(i)

p

(
RPi

p (m1) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m1) + p
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m1) + p + 1
)
≡ u1(modm), Pa(i)

p

(
RPi

p (m1) + p + 2
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m2) + 1
)
≡ Pa(i)

p

(
RPi

p (m2) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m2) + p
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m2) + p + 1
)
≡ u2(modm), Pa(i)

p

(
RPi

p (m2) + p + 2
)
≡ 0(modm)

and
Pa(i)

p

(
RPi

p (m) + 1
)
≡ Pa(i)

p

(
RPi

p (m) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m) + p
)
≡ 0(modm),

Pa(i)
p

(
RPi

p (m) + p + 1
)
≡ u(modm), Pa(i)

p

(
RPi

p (m) + p + 2
)
≡ 0(modm)

where u1, u2 and u are complex numbers. Using the least common multiple operation this implies that

Pa(i)
p

(
RPi

p (m) + 1
)
≡ Pa(i)

p

(
RPi

p (m) + 2
)
≡ · · · ≡ Pa(i)

p

(
RPi

p (m) + p
)
≡ 0(modm j),

Pa(i)
p

(
RPi

p (m) + p + 1
)
≡ u(modm j), Pa(i)

p

(
RPi

p (m) + p + 2
)
≡ 0(modm j)

for j = 1, 2. So we get RPi
p (m1) | RPi

p (m) and RPi
p (m2) | RPi

p (m), which means that RPi
p (lcm [m1,m2]) is

divided by lcm
[
RPi

p (m1) ,RPi
p (m2)

]
. We also know that

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 1

)
≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 2

)
≡ · · · ≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p

)
≡ 0(modm j),

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 1

)
≡ u j(modm j), Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 2

)
≡ 0(modm j)

for j = 1, 2. Then we can write

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 1

)
≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ 2

)
≡ · · · ≡ Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p

)
≡ 0(modm),

Pa(i)
p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 1

)
≡ u(modm), Pa(i)

p

(
lcm

[
RPi

p (m1) ,RPi
p (m2)

]
+ p + 2

)
≡ 0(modm),

which yields that lcm
[
RPi

p (m1) ,RPi
p (m2)

]
is divided by RPi

p (lcm [m1,m2]). So we have the conclusion.
There is a similar proof for the periods lPi

p (m1) and lPi
p (m2).
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3. Conclusion

We have examined the complex-type Padovan-p sequence modulo m and then we give some results
concerning the periods and ranks of this sequence for any p and m. In addition, we have considered the
complex-type Padovan-p matrix and we obtained cyclic groups by taking the multiplicative order of this
matrix according to m. Finally, we have reached that the periods of the complex-type Padovan-p sequence
according to modulo m are equal to the order the cyclic groups obtained.
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Abstract. In this study, a groove was formed on the Ti-6Al-4V plate with Nd:YAG laser. The structure of the
resulting grooves was examined. Mathematical modeling of the heat dissipation was made by making use
of the melting and boiling temperatures observed on the plate. Later, to prove the validity of the obtained
mathematical model, grooves with different geometries were obtained with different laser energies. The
results obtained with the proposed mathematical model are quite compatible with the experimental results.

1. Introduction

When it is desired to modify the mechanical properties of materials such as friction and adhesion, one of
the most used methods is the surface texturing process. For different materials, different texturing methods
can be applied according to the material properties and the intended pattern properties. Surface texturing
processes can be divided into three main groups as chemical, mechanical and thermal.

Ti-6Al-4V alloy is widely used in industry and especially in the healthcare industry due to its low density
and high toughness. Titanium and titanium alloys are used in the production of many parts, especially
in aviation, health and space technology, because they are more durable than steel but much lighter [1].
Ti-6Al-4V is a titanium alloy with high specific strength and excellent corrosion resistance. It is one of the
most commonly used titanium alloys and is applied in a wide range of applications where low density
and excellent corrosion resistance are necessary such as e.g. biomechanical applications (implants and
prostheses) [2]. Additive Manufacturing [3], racing and aerospace industry [4], marine applications and
chemical industry [5], etc..

Although Ti-6Al-4V alloy has superior properties and is preferred in many applications, tribological
performance is inadequate. The tribologic properties can be improved by surface texturing. The process
of creating regular patterns on the material surface by various methods can be called surface texturing.
The sizes, shapes and proportions of these patterns on the surface greatly affect the adhesion and friction
properties of the surface. Due to the different physical and chemical properties of materials, it can be
processed with different methods for different materials. In addition to the many advantages of these
methods, they also have some disadvantages such as environmental pollution, increased burrs from the
material and wear of the parts.
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Lasers have many advantages in material processing. Lasers are preferred in many areas, especially
thanks to their superior qualities such as the absence of wear on parts, precise processing and the preserva-
tion of this sensitivity in almost all products. Although many metals can be processed very easily by laser,
there are difficulties in laser processing of Al and its alloys due to their high reflectivity.

Many studies have been carried out to control the dimensions and geometries of the patterns created
on the material with the laser and to determine the appropriate laser parameters [6, 7]. Many parameters,
including the properties of the laser used in laser material processing and the ambient conditions, affect the
properties of the patterns obtained on the material. Numerous experimental studies have been carried out
to obtain suitable parameters [8–10]. Since there are many parameters affecting the result in laser material
processing, classical experimental methods take a lot of time and have high costs. For this, successful results
are obtained with mathematical modeling as well as optimization studies [11–13].

In this study, a groove was created on the Ti-6Al-4V plate and mathematical modeling of the heat distri-
bution was made with the measurements taken from the geometries of these grooves and the data obtained.
In the mathematical modeling using the Fourier method, Melting, Boiling and melting Temperature were
used as boundary conditions.

The effects of the laser beam energy on the groove width of Ti-6Al-4V plate were investigated in the
mathematical model. Physical properties of Ti-6Al-4V and laser parameters were used to conduct model.

The heat distribution equation on surface can be written as below;

∂T(x, t)
∂t

= α2 ∂
2T(x, t)
∂x2 (1)

where, T is the temperature as a function of time ”t” and distance ”x”, α is the thermal diffusivity of the
material that can be obtained as below;

α2 = λ
cρ

where, λ is the thermal conductivity, c specific heat and ρ density of material.
Let tp > 0 be a fixed number and denote by D = {(x.t) : 0 < x < l, 0 < t < tp}

where x is the investigated length that varies between zero and l. tp is the pulse duration that means
laser beam start at “0” and laser is beam is cut of at tp.

Therefore one of the initial condition can be written as;
T(x, 0) = T0, 0 < x < l
where T0 is the initial temperature of the material. It was assumed that all the energy absorbed by the

surface was transmitted to the material. Thus, in the absence of heat loss, the boundary condition (x = 0)
on the surface can be written as follows:

(∂T(0, t))/∂t = 0, (∂T(l, t))/∂t = 0(t > 0)
This is a parabolic problem. Classical solution of the problem (1)-(3) is T(x, t) ∈ C2,1(D) ∩ C1,0(D). The

heat source problem has been investigated with parabolic equation in many studies.
By applying the standard procedure of the Fourier method, we obtain the following representation for

the solution of (1)-(3).
T(x, t) = Z(x)T(t)
(X′′

(x))/(X(x)) = (T′ (t))/(α2T(t)) = −λ2

where λ is fix number.
The eigen values are
λk = (2πk/l)2, k = 1, ...,∞
The eigien functions are
X1(x) = cos 2πk

l x,X2 = sin 2πk
l x,

X(x) = C1cos 2πk
l x + C2sin 2πk

l x.
T(t) = C3e−( 2παk

l )2t.
Then the following solution is obtained using Fourier method.

T(x, t) =
∞∑

k=1

(
Tck cos 2παk

l + Tsk sin 2παk
l

)
e−( 2παk

l )2t.
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The laser intensity within the material can be found using the Beer-Lambert’s Law:
dI(x)

dx = −al
Where I(x) is the laser intensity as a function of distance from laser spot and a is the absorption coefficient

of the material respectively. Although absorption coefficient is changed within the material but it was taken
as constant in our study. Laser intensity as a function of distance within material can be written as;

I = I0e
−

z∫
b

adx
.

Actually most of the beam intensities have Gaussian distribution. We made one more assumption that
our laser beam is top-hat beam that means intensity is homogeneously distributed in spot area.

The heat generation from the laser beam absorbed by the material is defined as,
S = −dI

dx
Using Leibniz rule yields, the heat source can be written as;

S = I0e
−

z∫
b

adx

The temperature distribution as a function was obtained as given below;

T(x, t) =

∞∑
k=1

ϕcke−( 2παk
l )2t +

t∫
0

π∫
0

S(x, t) cos
2παk

l
xe−( 2παk

l )2(t−τ)dxdτ

 cos
2παk

l
x (2)

+

∞∑
k=1

ϕske−( 2παk
l )2t +

t∫
0

π∫
0

S(x, t) sin
2παk

l
xe−( 2παk

l )2(t−τ)dxdτ

 sin
2παk

l
x − −xH/lλ.

2. MATERIAL AND EXPERIMENTAL SETUP

The Ti-6Al-4V plates with 2.5 cm x 2.5 cm having an area of 3 mm thick were used for to surface
machining process. Some physical and thermal properties of Ti-6Al-4V which were used in mathematical
modeling have been listed in Table 1. In the ablation process commercial Nd:YAG laser was used with
different energy at constant scan speed. The laser beams were focused 1 mm above the surface, the spot
diameters were obtained as 580 µm.

Table 1 Some physical and thermal properties of Ti-6Al-4V
Properties Value Unit
Density 4410 kg/m3
Specific Heat Capacity 5263 kJ / kg.K
Melting point 1650 K
Boiling Temperature 3133 K
Thermal Conductivity 6.7 W/mK

3. RESULTS AND DISCUSSION

In this study, mathematical model has been proposed for the groove width on Ti-6Al-4V plate with 3 J
of energy and 2 mm/s scan speed. An optical microscope was used to take the images of ablated surfaces
of Ti-6Al-4V plate. Groove widths were measured from these images.

The Boiling and molten zone boundary distances were measured as 1310 µm and 1120 µm respectively.
Temperatures at Boiling and molten zone boundary are 3133 K and 1650 K respectively. These temperatures
are used in obtained mathematical model obtain the Fourier coefficients. These coefficients depend on the
material properties. The coefficients in the temperature distribution equation (2) were calculated as ϕck
(=701,68) and ϕsk (-112.48). Then, in order to verify the validity of mathematical model, new grooves
were created obtained using 2.5, 3.5,4, and 4.5 Joules of laser energies. The coefficients obtained with first
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experiment (conducted with 3 Joule of laser energy) were used to calculate temperature distribution for the
Ti-6Al-4V plate and different laser beam energies.

Table 2 Laser Energies and groove widths measured from images.
Laser Energy Boiled Melt
Joule Zone width Zone width
26 1252 1434
39 1319 1513
52 1367 1568
65 1404 1611

78 1434 1646
The calculated temperatures for boundaries are given in Table 3.
Table 3. Melting and Boiling Temperatures calculated with mathematical model, real values and percent

error between them.
Energy
Joule T(x,t) (K) T(x,t) (K) (calculated) % error

2.5 Melting 1650 1640 0.61
2.5 Boiling 3133 3121 0.38
3 Melting 1650 (ref)
3 Boiling 3133 (ref)
3.5 Melting 1650 1662 0.72
3.5 Boiling 3133 3178 1.44
4 Melting 1650 1674 1.45
4 Boiling 3133 3191 1.85
4.5 Melting 1650 1692 2.55
4.5 Boiling 3133 3209 2.43

4. CONCLUSION

Micro-scale patterns created on metal surfaces change the mechanical properties of the surfaces. In
addition to the many advantages of laser surface treatment, it is very difficult to accurately predict the
properties of the surface to be obtained due to the complexity of the laser-material interaction. Thanks
to the mathematical modeling of the heat distribution of the surface to be obtained with the laser texture,
the properties of the product to be obtained can be known in advance. In mathematical modeling, as in
parameter optimizations, both time and material can be saved in experimental studies.

In this study, firstly, grooves were created on the Ti-6Al-4V plate with a 3 J laser. Measurements were
made on the obtained through and the constants to be used in the temperature distribution equation were
calculated. Then, grooves were obtained with 2.5, 3.5, 4 and 4.5 Joules energies to prove the validity of the
mathematical model obtained. The measurements made on these grooves and the results obtained with
the mathematical model were compared. The error rates of the results obtained vary between 0.38 and 2.55
%. The fact that the error rates are so low indicates that the proposed model is an acceptable one.
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Abstract. This article deals with the ratio of normalized Miller-Ross function Eν,c (z) and its sequence of
partial sums

(
Eν,c

)
m (z) . Several examples which illustrate the validity of our results are also given.

1. Introduction

LetA be the class of functions f normalized by

f (z) = z +

∞∑
n=2

anzn (1)

which are analytic in the open unit diskU = {z ∈ C : |z| < 1} .
Denote by S the subclass of A which consists of univalent functions in U. Consider the function Eν,c (z)
defined by

Eν,c (z) = zν
∞∑

n=0

(cz)n

Γ (ν + n + 1)
(2)

where Γ stands for the Euler gamma function and ν > −1, c ∈ C and z ∈ U. This function was introduced
by Miller and Ross in 1993 [9] and is therefore known as the Miller-Ross function.
The function defined by (2) does not belong to the class A. Therefore, we consider the following normal-
ization of the Miller-Ross function Eν,c (z) : for z ∈ U,

Eν,c (z) = Γ (ν + 1) z1−νEν,c (z) =

∞∑
n=0

cnΓ (ν + 1)
Γ (ν + n + 1)

zn+1 (3)

where ν > −1 and c ∈ C.
Note that some special cases of Eν,c (z) are:

E0,1 (z) = ezz
E1,1 (z) = ez

− 1

E3,1 (z) =
3(2ez

−z2
−2z−2)

z2

E 1
2 ,

1
2

(z) = e
z
2
√
π
2

√
zErf

√ z
2 ,

(4)
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where Erf
√

z is the error function.
For various interesting developments concerning partial sums of analytic univalent functions, the reader
may be (for examples) refered to the works of Brickman et al. [1], Kazımoğlu et al. [7], Çağlar and Orhan
[2], Lin and Owa [8], Deniz and Orhan [4, 5], Owa et al. [11], Sheil-Small [14], Silverman [15] and Silvia
[16]. Recently, some researchers have studied on partial sums of special functions (see [3, 7, 10, 13, 17]).
By using the Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma functions, by (λ)n =
Γ(λ+n)

Γ(λ) = λ (λ + 1) · · · (λ + n + 1) , we obtain the following series representation for the ratio of normalized
Miller-Ross function Eν,c (z) given by (3):

(
Eν,c

)
0 (z) = z(

Eν,c
)

m (z) = z +
m∑

n=1
Anzn+1, m ∈N = {1, 2, 3, . . .} , (5)

where

An =
cnΓ (ν + 1)

Γ (ν + n + 1)
=

cn

(ν + 1)n
, ν > −1 and c ∈ C.

We obtain lower bounds on ratios like

<

{
Eν,c (z)(
Eν,c

)
m (z)

}
, <

{(
Eν,c

)
m (z)

Eν,c (z)

}
, <

{
E′ν,c (z)(
Eν,c

)′
m (z)

}
, <

{(
Eν,c

)′
m (z)

E′ν,c (z)

}
.

Several examples will be also given.
Results concerning partial sums of analytic functions may be found in [6, 12] etc.

2. MAIN RESULTS

In order to obtain our results we need the following lemma.

Lemma 2.1. Let ν > −1, c ∈ C and |c| < ν + 1. Then the function Eν,c (z) satisfies the next two inequalities:∣∣∣Eν,c (z)
∣∣∣ ≤ ν + 1

ν − |c| + 1
(z ∈ U) (6)

∣∣∣E′ν,c (z)
∣∣∣ ≤ 1 +

2ν |c| + 2 |c| − |c|2

(ν − |c| + 1)2
(z ∈ U) . (7)

Proof. By using the well-known triangle inequality:

|z1 + z2| ≤ |z1| + |z2|

and the inequality
(ν + 1)n ≥ (ν + 1)n , n ∈N, (8)

we have

∣∣∣Eν,c (z)
∣∣∣ =

∣∣∣∣∣∣∣z +

∞∑
n=1

cnΓ (ν + 1)
Γ (ν + n + 1)

zn+1

∣∣∣∣∣∣∣ ≤ 1 +

∞∑
n=1

|c|nΓ (ν + 1)
Γ (ν + n + 1)

= 1 +

∞∑
n=1

|c|n

(ν + 1)n
≤ 1 +

∞∑
n=1

(
|c|
ν + 1

)n

=
ν + 1

ν − |c| + 1
, (|c| < ν + 1)
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and thus, inequality (6) is proved.
To prove (7), using again (8) and the triangle inequality, for z ∈ U, we obtain

∣∣∣E′ν,c (z)
∣∣∣ =

∣∣∣∣∣∣∣1 +

∞∑
n=1

(n + 1) cnΓ (ν + 1)
Γ (ν + n + 1)

zn

∣∣∣∣∣∣∣ ≤ 1 +

∞∑
n=1

(n + 1) |c|nΓ (ν + 1)
Γ (ν + n + 1)

= 1 +

∞∑
n=1

(n + 1) |c|n

(ν + 1)n
≤ 1 +

∞∑
n=1

(n + 1)
(
|c|
ν + 1

)n

= 1 +
2ν |c| + 2 |c| − |c|2

(ν − |c| + 1)2 , (|c| < ν + 1)

and thus, inequality (7) is proved.

Let w (z) be an analytic function inU. In the sequel, we will frequently use the following well-known result:

<

{
1 + w (z)
1 − w (z)

}
> 0, z ∈ U if and only if |w (z)| < 1, z ∈ U.

Theorem 2.2. Let ν > −1 and 0 < 2 |c| ≤ ν + 1. Then

<

{
Eν,c(z)(
Eν,c

)
m (z)

}
≥
ν − 2 |c| + 1
ν − |c| + 1

, z ∈ U (9)

and

<

{(
Eν,c

)
m (z)

Eν,c(z)

}
≥
ν − |c| + 1
ν + 1

. (10)

Proof. From inequality (6) we get

1 +

∞∑
n=1

An ≤
ν + 1

ν − |c| + 1
,where An =

cnΓ (ν + 1)
Γ (ν + n + 1)

, ν > −1, c ∈ C and n ∈N.

The last inequality is equivalent to (
ν − |c| + 1
|c|

) ∞∑
n1

An ≤ 1.

In order to prove the inequality (9), we consider the function w(z) defined by

1 + w(z)
1 − w(z)

=
(
ν − |c| + 1
|c|

) Eν,c(z)(
Eν,c

)
m (z)

−

(
ν − 2 |c| + 1
|c|

)
or

1 + w(z)
1 − w(z)

=
1 +

∑m
n=1 Anzn +

(
ν−|c|+1
|c|

)∑
∞

n=m+1 Anzn

1 +
∑m

n=1 Anzn
. (11)

From (11), we obtain

w(z) =

(
ν−|c|+1
|c|

)∑
∞

n=m+1 Anzn

2 + 2
∑m

n=1 Anzn +
(
ν−|c|+1
|c|

)∑
∞

n=m+1 Anzn

and

|w(z)| ≤

(
ν−|c|+1
|c|

)∑
∞

n=m+1 An

2 − 2
∑m

n=1 An −
(
ν−|c|+1
|c|

)∑
∞

n=m+1 An

.

Now, |w(z)| ≤ 1 if and only if

2
(
ν − |c| + 1
|c|

) ∞∑
n=m+1

An ≤ 2 − 2
m∑

n=1

An
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which is equivalent to
m∑

n=1

An +
(
ν − |c| + 1
|c|

) ∞∑
n=m+1

An ≤ 1. (12)

To prove (12), it suffices to show that its left-hand side is bounded above by(
ν − |c| + 1
|c|

) ∞∑
n=1

An

which is equivalent to (
ν − 2 |c| + 1
|c|

) m∑
n=1

An ≥ 0.

The last inequality holds true for 0 < 2 |c| ≤ ν + 1.
We use the same method to prove the inequality (10). Consider the function w(z) given by

1 + w(z)
1 − w(z)

=
(
ν + 1
|c|

) Eν,c(z)(
Eν,c

)
m (z)

−

(
ν − |c| + 1
|c|

)
=

1 +
∑m

n=1 Anzn
−

(
ν−|c|+1
|c|

)∑
∞

n=m+1 Anzn

1 +
∑m

n=1 Anzn
.

From the last equality we get

w(z) =
−

(
ν+1
|c|

)∑
∞

n=m+1 Anzn

2 + 2
∑m

n=1 Anzn −
(
ν−2|c|+1
|c|

)∑
∞

n=m+1 Anzn

and

|w(z)| ≤

(
ν+1
|c|

)∑
∞

n=m+1 An

2 − 2
∑m

n=1 An −
(
ν−2|c|+1
|c|

)∑
∞

n=m+1 An

.

Then, |w(z)| ≤ 1 if and only if
m∑

n=1

An +
(
ν − |c| + 1
|c|

) ∞∑
n=m+1

An ≤ 1. (13)

Since the left-hand side of (13) is bounded above by(
ν − |c| + 1
|c|

) ∞∑
n=1

An,

we have that the inequality (10) holds true. Now, the proof of our theorem is completed.

Theorem 2.3. Let ν > −1 and 0 < 2ν |c| + 2 |c| − |c|2 ≤ (ν+1)2

2 . Then

<

{
E′ν,c(z)(
Eν,c

)′
m (z)

}
≥ 1 −

2ν |c| + 2 |c| − |c|2

(ν − |c| + 1)2 , z ∈ U (14)

and

<

{(
Eν,c

)′
m (z)

E′ν,c(z)

}
≥

(ν − |c| + 1)2

(ν − |c| + 1)2 + 2ν |c| + 2 |c| − |c|2
, z ∈ U. (15)
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Proof. From (7) we have

1 +

∞∑
n=1

(n + 1) An ≤ 1 +
2ν |c| + 2 |c| − |c|2

(ν − |c| + 1)2 ,

where An = cnΓ(ν+1)
Γ(ν+n+1) , ν > −1, c ∈ C and n ∈N. The above inequality is equivalent to

(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

∞∑
n=1

(n + 1) An ≤ 1.

To prove (14), define the function w(z) by

1 + w(z)
1 − w(z)

=
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2
E′ν,c(z)(
Eν,c

)′
m (z)

−

(
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2
− 1

)
which gives

w(z) =

(ν−|c|+1)2

2ν|c|+2|c|−|c|2
∑
∞

n=m+1 (n + 1) Anzn

2 + 2
∑m

n=1 (n + 1) Anzn +
(ν−|c|+1)2

2ν|c|+2|c|−|c|2
∑
∞

n=m+1 (n + 1) Anzn

and

|w(z)| ≤

(ν−|c|+1)2

2ν|c|+2|c|−|c|2
∑
∞

n=m+1 (n + 1) An

2 − 2
∑m

n=1 (n + 1) An −
(ν−|c|+1)2

2ν|c|+2|c|−|c|2
∑
∞

n=m+1 (n + 1) An

.

The condition |w(z)| ≤ 1 holds true if and only if

m∑
n=1

(n + 1) An +
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

∞∑
n=m+1

(n + 1) An ≤ 1. (16)

The left-hand side of (16) is bounded above by

(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

∞∑
n=1

(n + 1) An

which is equivalent to (
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2
− 1

) m∑
n=1

(n + 1) An ≥ 0

which holds true for 0 < 2ν |c| + 2 |c| − |c|2 ≤ (ν+1)2

2 .
The proof of (15) follows the same pattern. Consider the function w(z) given by

1 + w(z)
1 − w(z)

=

(
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2
+ 1

)
E′ν,c(z)(
Eν,c

)′
m (z)

−

(
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

)

=
1 +

∑m
n=1 (n + 1) Anzn

−

(
(ν−|c|+1)2

2ν|c|+2|c|−|c|2

)∑
∞

n=m+1 (n + 1) Anzn

1 +
∑
∞

n=1 (n + 1) Anzn
.

Consequently, we have that

w(z) =
−

(
(ν−|c|+1)2

2ν|c|+2|c|−|c|2
+ 1

)∑
∞

n=m+1 (n + 1) Anzn

2 + 2
∑m

n=1 (n + 1) Anzn −

(
(ν−|c|+1)2

2ν|c|+2|c|−|c|2
− 1

)∑
∞

n=m+1 (n + 1) Anzn
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and

|w(z)| ≤

(
(ν−|c|+1)2

2ν|c|+2|c|−|c|2
+ 1

)∑
∞

n=m+1 (n + 1) An

2 − 2
∑m

n=1 (n + 1) An −

(
(ν−|c|+1)2

2ν|c|+2|c|−|c|2
− 1

)∑
∞

n=m+1 (n + 1) An

.

The last inequality implies that |w(z)| ≤ 1 if and only if(
2 (ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

) ∞∑
n=m+1

(n + 1) An ≤ 2 − 2
m∑

n=1

(n + 1) An

or equivalently
m∑

n=1

(n + 1) An +

(
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

) ∞∑
n=m+1

(n + 1) An ≤ 1. (17)

It remains to show that the left-hand side of (17) is bounded above by(
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2

) ∞∑
n=1

(n + 1) An.

This is equivalent to (
(ν − |c| + 1)2

2ν |c| + 2 |c| − |c|2
− 1

) m∑
n=1

(n + 1) An ≥ 0,

which holds true for 0 < 2ν |c| + 2 |c| − |c|2 ≤ (ν+1)2

2 . Now, the proof of our theorem is completed.

3. Examples

In this section, we give several examples which illustrate our main theorems in Sections 2. In Theorem
2.2 and Theorem 2.3, we obtain the following corollaries for special cases of ν and c.

Corollary 3.1. If we take ν = 3 and c = 1, we have

E3,1 (z) =
3
(
2ez
− z2
− 2z − 2

)
z2 , E′3,1 (z) =

6 (ez (z − 2) + z + 2)
z3

and for m = 0 we get (
E3,1 (z)

)
0 (z) = z,

(
E′3,1 (z)

)
0

(z) = 1,

so,

<


(
2ez
− z2
− 2z − 2

)
z3

 ≥
2
9
≈ 0.222, z ∈ U,

<

{
z3

(2ez − z2 − 2z − 2)

}
≥

9
4
≈ 2.25, z ∈ U,

<

{
(ez (z − 2) + z + 2)

z3

}
≥

1
27
≈ 0.037, z ∈ U,

<

{
z3

(ez (z − 2) + z + 2)

}
≥

27
8
≈ 3.375, z ∈ U.

Setting m = 0, ν = 3
2 and c = 1

2 in Theorem 2.2 and Theorem 2.3 respectively, we obtain the next result
involving the function E 1

2 ,
1
2

(z), defined by (4), and its derivative.
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Corollary 3.2. The following inequıalities hold true:

<

 e
z
2
√
π
2 Erf

√ z
2 −
√

z

z
√

z

 ≥
1
4
≈ 0.25, z ∈ U,

<

 z
√

z

e
z
2
√
π
2 Erf

√ z
2 −
√

z

 ≥
12
5
≈ 2.4, z ∈ U,

<

 e
z
2
√

2π (z − 1) Erf
√ z

2 + 2
√

z

z
√

z

 ≥
7

12
≈ 0.583, z ∈ U,

<

 z
√

z

e
z
2
√

2π (z − 1) Erf
√ z

2 + 2
√

z

 ≥
12
25
≈ 0.48, z ∈ U.

Example 3.3. The image domains of f1(z) =
e

z
2
√

π
2 Erf
√

z
2−
√

z

z
√

z
, f2(z) =

z
√

z

e
z
2
√

π
2 Erf
√

z
2−
√

z
, f3(z) =

e
z
2
√

2π(z−1)Erf
√

z
2 +2
√

z

z
√

z

and f4(z) =
z
√

z

e
z
2
√

2π(z−1)Erf
√

z
2 +2
√

z
are shown in Figure 1.

Figure1.
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