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Research Article

Norm attaining multilinear forms on the spaces c0 or l1

SUNG GUEN KIM*

ABSTRACT. T ∈ L(nE) is called a norming attaining if there are x1, . . . , xn ∈ E such that ‖x1‖ = · · · = ‖xn‖ = 1

and |T (x1, . . . , xn)| = ‖T‖, where L(nE) denotes the space of all continuous n-linear forms on E. We investigate
norm attaining multilinear forms on c0 or l1.

Keywords: Norming attaining multilinear forms, norming points, norming sets.

2020 Mathematics Subject Classification: 46A22.

1. INTRODUCTION

Let us sketch a brief history of norm attaining multilinear mappings and polynomials on Ba-
nach spaces. In 1961, Bishop and Phelps [3] initiated and showed that the set of norm attaining
functionals on a Banach space is dense in the dual space. Shortly after, attention was paid to
possible extensions of this result to more general settings, specially bounded linear operators
between Banach spaces. The problem of denseness of norm attaining functions has moved to
other types of mappings like multilinear forms or polynomials. The first result about norm
attaining multilinear forms appeared in a joint work of Aron, Finet and Werner [2], where they
showed that the Radon-Nikodym property is sufficient for the denseness of norm attaining
multilinear forms. Choi and Kim [4] showed that the Radon-Nikodym property is also suffi-
cient for the denseness of norm attaining polynomials. Jimenez-Sevilla and Paya [7] studied
the denseness of norm attaining multilinear forms and polynomials on preduals of Lorentz
sequence spaces. Acosta and Dávila [1] characterized real Banach spaces Y such that the pair
(ln∞, Y ) has the Bishop-Phelps-Bollobás property for operators. Recently, Dantas et al. [5] intro-
duced and studied a concept of norm-attainment in the space of nuclear operators and in the
projective tensor product space of given two Banach spaces.

Let n ∈ N. We write BE and SE for the unit ball and sphere of a Banach space E. We
denote by L(nE) the Banach space of all continuous n-linear forms on E endowed with the
norm ‖T‖ = sup(x1,··· ,xn)∈SE×···×SE

|T (x1, · · · , xn)|. Ls(
nE) denotes the closed subspace of all

continuous symmetric n-linear forms on E. An element (x1, . . . , xn) ∈ En is called a norming
point of T if ‖x1‖ = · · · = ‖xn‖ = 1 and |T (x1, . . . , xn)| = ‖T‖. For T ∈ L(nE), we define

Norm(T ) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}.

Norm(T ) is called the norming set of T . Notice that (x1, . . . , xn) ∈ Norm(T ) if and only if
(ε1x1, . . . , εnxn) ∈ Norm(T ) for some εk = ±1 (k = 1, . . . , n). Indeed, if (x1, . . . , xn) ∈ Norm(T )
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2 Sung Guen KIM

then
|T (ε1x1, . . . , εnxn)| = |ε1 · · · εnT (x1, . . . , xn)| = |T (x1, . . . , xn)| = ‖T‖

which shows that (ε1x1, . . . , εnxn) ∈ Norm(T ). If (ε1x1, . . . , εnxn) ∈ Norm(T ) for some εk =
±1 (k = 1, . . . , n), then

(x1, . . . , xn) = (ε1(ε1x1), . . . , εn(εnxn)) ∈ Norm(T ).

For m ∈ N, let lm∞ := Rm with the supremum norm. Notice that for every T ∈ L(nlm∞),
Norm(T ) 6= ∅ since Slm∞ is compact. Kim [10] classified Norm(T ) for every T ∈ Ls(

2l2∞). If
Norm(T ) 6= ∅, T ∈ L(nE) is called ([2, 4]) a norm attaining n-linear form and we denote by

NA(L(nE)) = {T ∈ L(nE) : T is norm attaining }.
If SE is compact, then NA(L(nE)) = L(nE). Notice that if T ∈ NA(L(nE)), then λT ∈
NA(L(nE)) for every λ ∈ R. A mapping P : E → R is a continuous n-homogeneous poly-
nomial if there exists a continuous n-linear form L on the product E × · · · × E such that
P (x) = L(x, . . . , x) for every x ∈ E. We denote by P(nE) the Banach space of all continuous
n-homogeneous polynomials from E into R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|.

An element x ∈ E is called a norming point of P ∈ P(nE) if ‖x‖ = 1 and |P (x)| = ‖P‖. For
P ∈ P(nE), we define

Norm(P ) = {x ∈ E : x is a norming point of P}.
Norm(P ) is called the norming set of P . Notice that Norm(P ) = ∅ or a finite set or an infinite
set. Kim [9] classify Norm(P ) for every P ∈ P(2l2∞). If Norm(P ) 6= ∅, P ∈ P(nE) is called [4] a
norm attaining n-homogeneous polynomial.

For more details about the theory of multilinear mappings and polynomials on a Banach
space, we refer to [6].

It seems to be natural and interesting to study about NA(L(nE)). In this paper, we investi-
gate NA(L(nE)) for E = c0 or l1, where

c0 = {(xj)j∈N : xj ∈ R, lim
j→∞

xj = 0},

l1 = {(xj)j∈N : xj ∈ R,
∞∑
j=1

|xj | <∞}.

2. RESULTS

Throughout the paper, we let n ∈ N, n ≥ 2. For a real sequence (xj)j∈N, we denote by
supp((xj)j∈N) = {j ∈ N : xj 6= 0}. For T ∈ L(nc0) or L(nl1) with

T ((x
(1)
j )j∈N, . . . , (x

(n)
j )j∈N) =

∑
(j1,...,jn)∈Nn

aj1···jn x
(1)
j1
· · ·x(n)jn

for some aj1···jn ∈ R, we denote by supp(T ) = {(j1, . . . , jn) ∈ Nn : ai1···in 6= 0}. Notice that if
supp(T ) is finite, then T is norm attaining. Without loss of generality, we may restrict T such
that supp(T ) is infinite.

The following theorem presents a sufficient condition that the norm of T ∈ L(nc0) is less
than of the sum of the absolute values of its coefficients.

Theorem 2.1. Let T ∈ L(nc0) be such that

T ((x
(1)
j )j∈N, . . . , (x

(n)
j )j∈N) =

∑
(j1,...,jn)∈Nn

aj1···jn x
(1)
j1
· · ·x(n)jn

for some aj1···jn ∈ R. If T ∈ NA(L(nc0)) and supp(T ) is infinite, then ‖T‖ <
∑

(j1,...,jn)∈A |aj1···jn |.
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Proof. Assume the contrary. Let ((x(1)j )j∈N, . . . , (x
(n)
j )j∈N) ∈ Norm(T ). Let A = supp(T ) and

Al := {il ∈ N : (i1, . . . , il, . . . , in) ∈ A} for l = 1, . . . , n. There is 1 ≤ l ≤ n such that
supp((x(l)j )j∈N)∩Al is infinite. Without loss of generality, we may assume that supp((x(1)j )j∈N)∩
A1 is infinite. Choose i

′

1 ∈ A1 such that |x(1)
i
′
1

| < 1
2 . Let (i

′

1, . . . , i
′

n) ∈ A. It follows that

‖T‖ =
∣∣∣T ((x(1)j )j∈N, . . . , (x

(n)
j )j∈N)

∣∣∣
=
∣∣∣ ∑
(j1,...,jn)∈A

aj1···jn x
(1)
j1
· · ·x(n)jn

∣∣∣
≤

∑
(j1,...,jn)∈A

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|

=
∑

(j1,...,jn)∈A\{(i
′
1,...,i

′
n)}

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|+ |ai′1···i′n | |x
(1)

i
′
1

| · · · |x(n)
i′n
|

≤
∑

(j1,...,jn)∈A\{(i
′
1,...,i

′
n)}

|aj1···jn |+
1

2
|ai′1···i′n |

<
∑

(j1,...,jn)∈A

|aj1···jn | ≤ ‖T‖

which is a contradiction. Therefore, ‖T‖ <
∑

(j1,...,jn)∈A |aj1···jn |. �

Remark 2.1. The converse of Theorem 2.1 is not true in general.
In fact, let

T ((xj)j∈N, (yj)j∈N) =
1

2
(x1y1 − x2y2 + x1y2 + x2y1) +

∞∑
k=3

1

2k−1
xkyk ∈ L(2c0).

Obviously, supp(T ) = {(k, k), (1, 2), (2, 1) : k ∈ N}. Let A = supp(T ).

Claim 1. 1 = ‖T‖ <
∑

(i,j)∈A |aij | =
5
2 .

We may consider the bilinear form x1y1 − x2y2 + x1y2 + x2y1 as an element of L(2l2∞). It was shown
[8] that for T ((x1, x2), (y1, y2)) = ax1y1 + bx2y2 + cx1y2 + dx2y1 ∈ L(2l2∞),

(2.1) ‖T‖ = max{|a+ b|+ |c+ d|, |a− b|+ |c− d|}.
By (2.1), ‖x1y1 − x2y2 + x1y2 + x2y1‖ = 1. It follows that

‖T‖ ≤ 1

2

∥∥∥x1y1 − x2y2 + x1y2 + x2y1

∥∥∥+ ∞∑
k=3

∥∥∥ 1

2k−1
xkyk

∥∥∥
=

1

2
+

1

2
= 1.

For n ∈ N,

‖T‖ ≥ |T (e1 +
n+2∑
k=3

ek, e1 +

n+2∑
k=3

ek)| = 1− 1

2n+1
→ 1

as n→∞. Hence, ‖T‖ = 1. Obviously,
∑

(i,j)∈A |aij | =
5
2 .

Claim 2. T /∈ NA(L(2c0)).
Assume the contrary. Let ((xj)j∈N, (yj)j∈N) ∈ Norm(T ). Notice that

S := supp((xj)j∈N) ∩ supp((yj)j∈N)
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is infinite because if S is finite, then ‖T‖ < 1 by the above argument. Choose i0 ∈ S\{1, 2} such that
|xi0 | < 1

2 . It follows that

1 = ‖T‖ =
∣∣∣1
2
(x1y1 − x2y2 + x1y2 + x2y1) +

∑
k∈S\{1,2}

1

2k−1
xkyk

∣∣∣
≤ 1

2

∣∣∣x1y1 − x2y2 + x1y2 + x2y1

∣∣∣+ ∑
k∈S\{1,2}

∣∣∣ 1

2k−1
xkyk

∣∣∣
≤ 1

2
+

∑
k∈S\{1,2,i0}

1

2k−1
|xk| |yk|+

1

2i0−1
|xi0 | |yi0 | (by (2.1))

<
1

2
+

∑
k∈S\{1,2,i0}

1

2k−1
+

1

2i0
< 1

which is a contradiction. Hence, T /∈ NA(L(2c0)).

Lemma 2.1. Let T ∈ NA(L(2c0)) and (x1, x2) ∈ Norm(T ) with xk = (x
(k)
j )j∈N for k = 1, 2. Then,

there is N ∈ N such that
(1) if n ≥ N and |x(1)j | < 1 for some j ∈ N, then T (ej , en) = 0,

(2) if n ≥ N and |x(2)j | < 1 for some j ∈ N, then T (en, ej) = 0.

Proof. (1) Since x1, x2 ∈ Sc0 , there are N ∈ N and 0 < δ < 1
2 such that if n ≥ N, then |x(k)n | < δ

for k = 1, 2. It follows that for 0 < λ < 1− |x(1)j | and 0 < β < 1− δ,

‖T‖ ≥ max{|T (x1 ± λej , x2 ± βen)|}
= max{|T (x1, x2)± βT (x1, en)± λT (ej , x2)± λβT (ej , en)|}
= |T (x1, x2)|+ β|T (x1, en)|+ λ|T (ej , x2)|+ λβ|T (ej , en)|
= ‖T‖+ β|T (x1, en)|+ λ|T (ej , x2)|+ λβ|T (ej , en)|

which shows that |T (x1, en)| = |T (ej , x2)| = |T (ej , en)| = 0.
(2) follows by the similar argument as in the proof of (1). �

The following theorem presents a sufficient condition that T ∈ NA(L(2c0)) is a finite-type
bilinear form.

Theorem 2.2. Let T ∈ NA(L(2c0)) and (x1, x2) ∈ Norm(T ) with xk = (x
(k)
j )j∈N for k = 1, 2.

Suppose that |{j ∈ N : |x(k)j | = 1}| = 1 for k = 1, 2. Then T ((xj)j∈N, (yj)j∈N) =
∑

1≤i,j≤N aijxiyj
for some aij ∈ R and N ∈ N. Hence, supp(T ) is finite.

Proof. LetN ∈ N be the number in the proof of Lemma 2.1. Let j1, j2 ∈ N be such that |x(k)jk
| = 1

and |x(k)j | < 1 for all j 6= jk. By the proof of Lemma 2.1, T (x1, en) = T (ej , en) = 0 for every
j 6= j1 and n ≥ N. It follows that

0 = T (x1, en) = T (
∑

1≤k≤N

x
(1)
k ek, en)

=
∑

1≤k≤N

x
(1)
k T (ek, en) = x

(1)
j1

T (ej1 , en)
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which implies that T (ej1 , en) = 0. Hence, T (ej , en) = 0 for all j ∈ N and n ≥ N. By the proof of
Lemma 2.1, T (en, x2) = T (en, ej) = 0 for every j 6= j2 and n ≥ N. It follows that

0 = T (en, x2) = T (en,
∑

1≤k≤N

x
(2)
k ek)

=
∑

1≤k≤N

x
(2)
k T (en, ek) = x

(2)
j2

T (en, ej2)

which implies that T (en, ej2) = 0. Hence, T (en, ej) = 0 for all j ∈ N and n ≥ N. Therefore,
T ((xj)j∈N, (yj)j∈N) =

∑
1≤i,j≤N aijxiyj for some aij ∈ R. �

Motivated by Theorem 2.2, we propose some question.
Question. Is it true that NA(L(2c0)) = {T ∈ L(2c0) : supp(T ) is finite}?
The following theorem characterizes NA(L(nl1)).

Theorem 2.3. Let T ∈ L(nl1) be such that

T ((x
(1)
j )j∈N, . . . , (x

(n)
j )j∈N) =

∑
(j1,...,jn)∈Nn

aj1···jn x
(1)
j1
· · ·x(n)jn

for some aj1···jn ∈ R. Then T ∈ NA(L(nl1)) if and only if there are j
′

1, . . . , j
′

n ∈ N such that ‖T‖ =∣∣∣aj′1···j′n ∣∣∣.
Proof. Without loss of generality, we may assume that T 6= 0.

(⇒) Assume the contrary. Let ((x(1)j )j∈N, . . . , (x
(n)
j )j∈N) ∈ Norm(T ). LetB = supp(T ).We claim

that B is infinite. Assume that B is finite. Let δ := max{|aj1···jn | : (j1, . . . , jn) ∈ B} < ‖T‖. It
follows that

‖T‖ =
∣∣∣T ((x(1)j )j∈N, . . . , (x

(n)
j )j∈N)

∣∣∣ = ∣∣∣ ∑
(j1,...,jn)∈B

aj1···jn x
(1)
j1
· · ·x(n)jn

∣∣∣
≤

∑
(j1,...,jn)∈B

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

| ≤ δ
∑

(j1,...,jn)∈Nn

|x(1)j1
| · · · |x(n)jn

| = δ < ‖T‖

which is a contradiction. Hence, B is infinite. Since T 6= 0, there are (j
′

1, . . . , j
′

n) ∈ B such that
j
′

k ∈ supp((x(k)j )j∈N) for k = 1, . . . , n. Then

‖T‖ =
∣∣∣T ((x(1)j )j∈N, . . . , (x

(n)
j )j∈N)

∣∣∣
=
∣∣∣ ∑
(j1,...,jn)∈B

aj1···jn x
(1)
j1
· · ·x(n)jn

∣∣∣
≤

∑
(j1,...,jn)∈B

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|

= |aj′1···j′n | |x
(1)

j
′
1

| · · · |x(n)
j′n
|+

∑
(j1,...,jn)∈B\{(j

′
1,...,j

′
n)}

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|
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< ‖T‖ |x(1)
j
′
1

| · · · |x(n)
j′n
|+

∑
(j1,...,jn)∈B\{(j

′
1,...,j

′
n)}

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|

≤ ‖T‖
∑

(j1,...,jn)∈Nn

|x(1)j1
| · · · |x(n)jn

|

= ‖T‖(
∑
j1∈N
|x(1)j1
|) · · · (

∑
jn∈N

|x(n)jn
|) = ‖T‖

which is a contradiction.
(⇐) Since ‖T‖ = |T (ej′1 , . . . , ej′n)| for some (j

′

1, . . . , j
′

n) ∈ Nn, (ej′1
, . . . , ej′n) ∈ Norm(T ) and

T ∈ NA(L(nl1)). We complete the proof. �

REFERENCES

[1] M. D. Acosta, J. L. Dávila: A basis of Rn with good isometric properties and some applications to denseness of norm
attaining operators, J. Funct. Anal., 279 (6) (2020), 108602, 26 pp.

[2] R. M. Aron, C. Finet and E. Werner: Some remarks on norm-attaining n-linear forms, Function spaces (Edwardsville,
IL, 1994), 19–28, Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, (1995).

[3] E. Bishop, R. Phelps: A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97–98.
[4] Y. S. Choi, S. G. Kim: Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc.,

54 (1) (1996), 135–147.
[5] S. Dantas, M. Jung, O. Roldán and A. R. Zoca: Norm-attaining tensors and nuclear operators, to appear in Mediterr.

J. Math. (2022). DOI: https://doi.org/10.1007/s00009-021-01949-5
[6] S. Dineen: Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, (1999).
[7] M. Jimenez Sevilla, R. Paya: Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces,

Studia Math., 127 (1998), 99–112.
[8] S. G. Kim: The geometry of L(2l2∞), Kyungpook Math. J., 58 (2018), 47–54.
[9] S. G. Kim: The norming set of a polynomial in P(2l2∞), Honam Math. J., 42 (3) (2020), 569-576.

[10] S. G. Kim: The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud., 55 (2) (2021),
171–180.

SUNG GUEN KIM

KYUNGPOOK NATIONAL UNIVERSITY

DEPARTMENT OF MATHEMATICS

DAEGU 702-701, REPUBLIC OF KOREA

ORCID: 0000-0001-8957-3881
E-mail address: sgk317@knu.ac.kr



CONSTRUCTIVE MATHEMATICAL ANALYSIS
5 (2022), No. 1, pp. 7-13
http://dergipark.gov.tr/en/pub/cma

ISSN 2651 - 2939

Research Article

Oscillation of noncanonical second-order advanced differential
equations via canonical transform

MARTIN BOHNER*, KUMAR S. VIDHYAA, AND ETHIRAJU THANDAPANI

ABSTRACT. In this paper, we develop a new technique to deduce oscillation of a second-order noncanonical ad-
vanced differential equation by using established criteria for second-order canonical advanced differential equations.
We illustrate our results by presenting two examples.

Keywords: Advanced differential equation, canonical transform, second-order, oscillation.
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1. INTRODUCTION

Consider the second-order noncanonical advanced differential equation

(1.1) (µ1η
′)′(t) + f1(t)η(σ(t)) = 0, t ≥ t0

subject to
(P1) µ1, f1 ∈ C([t0,∞), (0,∞)),
(P2) σ ∈ C1([t0,∞),R), σ′(t) > 0, σ(t) ≥ t for all t ≥ t0,
(P3) Equation (1.1) is in noncanonical form, that is,

Ω(t0) :=

∫ ∞

t0

dt

µ1(t)
<∞.

If (P3) does not hold, then we say that (1.1) is in canonical form.
In recent years, there are many results dealing with the oscillation of (1.1) and its modifica-

tions for the delay case, that is, σ(t) ≤ t, see for example [2, 4, 7, 11, 12, 14], and few results
in the case of σ(t) ≥ t, see [1, 3, 5, 6, 8–10, 13–17, 19, 20, 23]. Many authors paid attention to
a comparison technique, which is a powerful tool in the theory of oscillation, see, for instance,
the papers [11, 19, 21, 24] for more details. Further, many authors used the Riccati transfor-
mation method to obtain oscillation criteria for delay equations. For the mixed case, that is,
σ(t) ≤ t and σ(t) ≥ t, the author in [22] discussed the oscillatory and nonoscillatory behavior
of systems of differential equations based on the analysis of the corresponding characteristic
equations. On the other hand in [10], Jozef Džurina already obtained oscillation criteria for the
canonical second-order advanced differential equation

(ru′)′(t) + p(t)u(σ(t)) = 0

Received: 09.01.2022; Accepted: 13.02.2022; Published Online: 16.02.2022
*Corresponding author: Martin Bohner; bohner@mst.edu
DOI: 10.33205/cma.1055356
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from those of a related ordinary differential equation

(ru′)′(t) + q(t)u(t) = 0.

In this paper, we will rewrite (1.1) in noncanonical form equivalently as an equation in canon-
ical form, then apply the results established by Jozef Džurina in [10] to the obtained equation
in canonical form, thus establishing new results for our equation (1.1) in noncanonical form.

Section 2 contains some preliminary results, the main results are presented in Section 3, and
two illustrative examples are offered in Section 4.

2. PRELIMINARY RESULTS

Throughout, without loss of generality, considering nonoscillatory solutions of (1.1), we re-
strict our attention to the positive case, since the negative case is similar.

Lemma 2.1. We have

(2.1) (µ1η
′)′ =

1

Ω

(
µ1Ω2

( η
Ω

)′)′

.

Proof. A straightforward calculation shows that

1

Ω

(
µ1Ω2

( η
Ω

)′)′

=
1

Ω

(
µ1Ω2 η

′Ω− ηΩ′

Ω2

)′

=
1

Ω

(
µ1

(
η′Ω− η

(
− 1

µ1

)))′

=
1

Ω
(µ1η

′Ω + η)
′

=
1

Ω
(Ω(µ1η

′)′ + µ1η
′Ω′ + η′)

=(µ1η
′)′ +

1

Ω

(
µ1η

′
(
− 1

µ1

)
+ η′

)
=(µ1η

′)′,

completing the proof. �

Lemma 2.2. Equation (1.1) can be written in the equivalent canonical form as

(2.2) (µz′)′(t) + f(t)z(σ(t)) = 0

where
µ = µ1Ω2, z =

η

Ω
, and f = Ω(Ω ◦ σ)f1.

Proof. The equivalence of (1.1) and (2.2) follows from Lemma 2.1. Moreover, since∫ ∞

t0

dt

µ1(t)Ω2(t)
= lim
t→∞

1

Ω(t)
− 1

Ω(t0)
=∞,

(2.2) is in canonical form. �

Corollary 2.1. The noncanonical differential equation (1.1) has an eventually positive solution if and
only if the canonical equation (2.2) has an eventually positive solution.
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From Corollary 2.1, it is clear that the investigation of oscillation of (1.1) is reduced to that of
(2.2), and therefore, we deal with only one class of an eventually positive solution, namely,

(2.3) z(t) > 0, µ(t)z′(t) > 0 and (µ(t)z′(t))′ < 0

for t ≥ t1 ≥ t0, see [10, Lemma 2.1]. Define

w(t) =

∫ t

t0

ds

µ(s)
.

Now, we state a basic oscillation result given in [10, 18], which will be improved in the next
section.

Theorem 2.1. Assume that there exists a constant δ such that

(2.4) w(t)

∫ ∞

t

f(s)ds ≥ δ > 1

4

eventually. Then (2.2) is oscillatory.

3. OSCILLATION RESULTS

In this section, we obtain results for (1.1) by applying results from [10] to the equivalent
equation (2.2). If the condition (2.4) fails to hold (δ ≤ 1/4), then we can derive a new oscillation
criterion using the constant δ.

Theorem 3.2. Let η be a positive solution of (1.1) and suppose

(3.1) w(t)

∫ ∞

t

f(s)ds ≥ δ > 0

eventually. Then
η(t)

Ω(t)wδ(t)

is increasing eventually.

Proof. Let η > 0 be a solution of (1.1). By Lemma 2.2, z > 0 is a solution of (2.2) satisfying (2.3).
Hence, the assumption [10, (3.1) of Theorem 3.1] is satisfied, and therefore the conclusion of
[10, Theorem 3.1] holds, which says that z/wδ is strictly increasing, completing the proof. �

Next, we present a new comparison result.

Theorem 3.3. Let (3.1) hold. If the differential equation

(3.2) (µz′)′(t) +

(
w(σ(t))

w(t)

)δ
f(t)z(t) = 0

is oscillatory, then so is (1.1).

Proof. Since [10, assumption (E2) of Theorem 3.3] is satisfied, (2.2) is oscillatory, and then so is
(1.1). �

Using any criterion for the oscillation of (3.2), we immediately obtain an oscillation result
for (1.1).

Theorem 3.4. Let (3.1) hold. If there exists a constant δ1 such that

(3.3) w(t)

∫ ∞

t

(
w(σ(s))

w(s)

)δ
f(s)ds ≥ δ1 >

1

4

eventually, then (1.1) is oscillatory.
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Proof. Use [10, Theorem 3.4] to complete the proof. �

If the condition (3.3) fails to hold (δ1 ≤ 1/4), then we can derive a new oscillation criterion
using the constant δ1.

Theorem 3.5. Let (3.1) hold. Assume that η is a positive solution of (1.1) and

w(t)

∫ ∞

t

(
w(σ(s))

w(s)

)δ
f(s)ds ≥ δ1 > 0

eventually. Then
η(t)

Ω(t)wδ1(t)

is increasing eventually.

Proof. Use [10, Theorem 3.8] to complete the proof. �

Theorem 3.6. Let (3.1) and (3.3) hold. If the differential equation

(3.4) (µz′)′(t) +

(
w(σ(t))

w(t)

)δ1
f(t)z(t) = 0

is oscillatory, then so is (1.1).

Theorem 3.7. Let (3.1) and (3.3) hold. If there exists a constant δ2 such that

(3.5) w(t)

∫ ∞

t

(
w(σ(s))

w(s)

)δ1
f(s)ds ≥ δ2 >

1

4

eventually, then (1.1) is oscillatory.

The proofs of Theorems 3.6 and 3.7 follow from [10, Theorems 3.9 and 3.10].
For convenience, let us use the additional condition that there is a positive constant β such

that

(3.6)
w(σ(t))

w(t)
≥ β > 1

eventually. Thus, in view of (3.1), conditions (3.3) and (3.5) can be written in simpler forms as

δ1 =βδδ >
1

4
,

δ2 =βδ1δ >
1

4
,

respectively. Repeating the above process, we have the increasing sequence {δn} defined by

δ0 =δ,

δn+1 =βδnδ.

Now as in [10, Theorem 3.12], one can generalize the oscillation criteria obtained in Theorems
3.4 and 3.7.

Theorem 3.8. Let (3.1) and (3.6) hold. If there exists n ∈ N such that δj ≤ 1/4 for j = 0, 1, 2, . . . , n−1
and

δn >
1

4
,

then (1.1) is oscillatory.
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4. EXAMPLES

We support the obtained results with some examples.

Example 4.1. Consider the second-order advanced differential equation

(4.1) (t2η′(t))′ + aλη(λt) = 0, t ≥ 1,

where a > 0. Here µ1(t) = t2, f1(t) = aλ, σ(t) = λt, λ > 1. A simple calculation shows that

Ω(t) =
1

t
, µ(t) = 1, w(t) = t, f(t) =

a

t2
.

The transformed canonical equation is

z′′(t) +
a

t2
z(λt) = 0.

Condition (3.1) clearly holds, and (3.3) becomes

aλδ >
1

4
.

Now δ = a, and by Theorem 3.4, (4.1) is oscillatory provided

aλa >
1

4
.

For example, if a = 1
5 , then we see that λ ≥ 3.052, and for λ = 1.8, we need a ≥ 0.22.

Example 4.2. Consider the second-order advanced differential equation

(4.2) (t2η′(t))′ + 0.35742η(1.61t) = 0.

The transformed canonical equation is

z′′(t) +
0.222

t2
z(1.61t) = 0.

For (4.2), δ0 = 0.222 and λ = 1.61. A simple calculation shows that

δ1 = 0.2468 and δ2 = 0.24968.

Therefore, Theorems 3.4 and 3.7 fail for (4.2). But

δ3 = 0.25003 >
1

4

and Theorem 3.8 implies the oscillation of (4.2). However, it is easy to see that [5, Theorems 3, 5, 6], [8,
Theorems 3.3, 3.4, and Corollary 4.4] and [4, Theorem 2] do not get oscillation of (4.2). Thus, our result
improve these results.

5. CONCLUSION

In this paper, we derive oscillation criteria for the noncanonical equation (1.1) by transform-
ing it to the canonical equation (2.2), and then we use the comparison technique available for
the canonical equation (2.2) to get new oscillation criteria for the studied equation (1.1). Our
oscillation criteria improve [5, Theorems 3, 5, 6], [8, Theorems 3.3, 3.4 and Corollary 4.4] and
[4, Theorem 2] for the special case α = β = 1. Finally, the results obtained in [10] cannot be
applied to (4.1) and (4.2) since they are of noncanonical type.
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Padua points and “fake” nodes for polynomial approximation:
old, new and open problems

STEFANO DE MARCHI*

ABSTRACT. Padua points, discovered in 2005 at the University of Padua, are the first set of points on the square
[−1, 1]2 that are explicitly known, unisolvent for total degree polynomial interpolation and with Lebesgue constant
increasing like log2(n) of the degree. One of the key features of the Padua points is that they lie on a particular Lissajous
curve. Other important properties of Padua points are

(1) in two dimensions, Padua points are a WAM for interpolation and for extracting approximate Fekete points and
discrete Leja sequences.

(2) in three dimensions, Padua points can be used for constructing tensor product WAMs on different compacts.
Unfortunately, their extension to higher dimensions is still the biggest open problem.

The concept of mapped bases has been widely studied (cf. e.g. [35] and references therein), which turns out to
be equivalent to map the interpolating nodes and then construct the approximant in the classical form without the
need of resampling. The mapping technique is general, in the sense that works with any basis and can be applied
to continuous, piecewise or discontinuous functions or even images. All the proposed methods show convergence to
the interpolant provided that the function is resampled at the mapped nodes. In applications, this is often physically
unfeasible. An effective method for interpolating via mapped bases in the multivariate setting, referred as Fake Nodes
Approach (FNA), has been presented in [37]. In this paper, some interesting connection of the FNA with Padua points
and “families of relatives nodes”, that can be used as “fake nodes” for multivariate approximation, are presented and
we conclude with some open problems.

Keywords: Padua points, Lissajous curves and points, mapped polynomial basis.

2020 Mathematics Subject Classification: 41A17, 41A63.

1. Introduction

Let Pn(R) be the space of the univariate polynomials of total degree ≤ n on R and C(R) the linear
space of continuous functions on R. Further, for the basis of monomialsM = {1, x, x2, . . . , xn} and a set
X = {x0, . . . , xn} of n + 1 distinct points, we denote by

(1.1) Vdm(X;M) =
∏
i< j

(xi − x j)

the corresponding Vandermonde determinant which plays an important role for the unisolvency of a
given set of points.

The classical univariate interpolation problem of f by polynomials of degree n can be stated as fol-
lows.

Problem 1. Let K be a closed and bounded interval of R. Consider X a set of n + 1 pairwise distinct
points of K, the values { f (xi), i = 0, . . . , n} and the basis of monomials M = {1, x, . . . , xn}. Find the

Received: 08.02.2022; Accepted: 01.03.2022; Published Online: 03.03.2022
*Corresponding author: Stefano De Marchi; stefano.demarchi@unipd.it
DOI: 10.33205/cma.1070020
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polynomial pn =
∑n

k=0 ak xk, so that

pn(xi) = f (xi), i = 0, . . . , n.

Being xi , x j, i , j, pn is unique because Vdm(X;M) , 0. Using the Lagrange basis L = {li, i =

0, ..., n} with

li(x) =

n∏
i=0,i, j

x − x j

xi − x j
=

Vdm(Xi;M)
Vdm(X;M)

,

where Xi is the set X in which we substitute xi with x, we can then write

(1.2) pn(x) =

n∑
i=0

li(x) f (xi), x ∈ K.

This process generates an interpolation error en(x) = | f (x) − pn(x)|, x ∈ K or in norm En = ‖ f − pn‖∞.
Using the Lagrange form (1.2) of the interpolant, we can bound this error by

(1.3) En ≤ (1 + Λn)E∗n

with Λn = sup
x∈K

n∑
i=0

|li(x)| the Lebesgue constant which depends on n and on the node set X. As well-

known, Λn represents the sup-norm of the linear operator (cf. e.g. [26]) L : C(R) → Pn(R), L f =
n∑

i=0

f (xi)li, where E∗n is the error of best-uniform approximation that is E∗n := inf
pn∈Pn(R)

En( f ).

In the one dimensional case we know
• Λn ≈ 2n when the set X is made of equally spaced points of K (or even worse when X are

randomly chosen);
• Λn ≈ log(n) when X is made of Chebyshev-like points of K.

We call Chebyshev-like points, those points that have the so-called arccos-distribution which character-
izes for instance the Chebyshev-Gauss-Lobatto points (or Chebyshev extrema){

xk = − cos
(

kπ
n

)
, k = 0, ..., n

}
and all zeros of orthogonal polynomials on a finite interval with respect to some positive measure. All
these points are near-optimal in the sense that their Lebesgue constant grows logarithmically with respect
to the degree n. Two other important sets of points are Fekete points and Leja sequences (cf. e.g. [32])
whose definition and properties will be discussed later on in the paper.

Fundamental question: Are there quasi-optimal interpolation nodes explicitly known in the multi-
variate setting for polynomial interpolation of total degree?

The answer is partially negative, except for some known cases and in small dimensions (see also the
seminal paper by L. Bos [5]).

The previous question was the spring which pushed us in studying new families of near-optimal
points, starting from the square [−1, 1]2, being the square a simple domain, intrinsically tensorial, easy
to be mapped to other domains (see [23]).

There are then many other questions and many more open problems, in this paper we present the
answers to the following that were the main reasons why we discovered the Padua points on the square
Ω = [−1, 1]2.

• We looked for well-distributed nodes. We found various nodal sets for polynomial interpolation
of even degree n in the square Ω, which turned out to be equidistributed with respect to the
Dubiner metric [45] and which show near-optimal Lebesgue constant growth [20].
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• We also required efficient interpolant evaluation: the interpolant should be constructed without
solving the Vandermonde system whose complexity is O(N3), for each pointwise evaluation,
with N =

(
n+2

2

)
the dimension of the bivariate polynomials of total degree ≤ n. Moreover, we

looked for closed formulae.
• We required efficient cubature formulas: in particular a fast computation of cubature weights for

non-tensorial cubature formulae.
The last two points were inspired by the rule of 10 claimed by Nick L. Trefethen in [60] (also in a talk
given in 2009 at the Dolomites Workshops in Alba di Canazei): a good implementation should last for
10 seconds, have a 10 digits precision and does not consist of more than 10 lines of executable code.

In section 2, we start by introducing the Dubiner metric and which is the one we used for the square.
Then, in section 3 we recall the construction of the Padua points, their properties and outline some
open problems. Section 4 is devoted to the description of the problem of approximating discontinuous
functions, which was the main reason of studying the “fake" nodes. In Section 5, we then introduce
the idea of the “fake” nodes approach and its equivalence with the mapping polynomial basis. Also in
this section we outline some open problems and possible future developments. We finally conclude in
Section 6.

As a final note, many of the figures are taken from the papers cited in the bibliography of which I am
a co-author and that can be reproduced with the Matlab codes freely available online.

2. From Dubiner metric to Padua points

In his seminal paper [45], M. Dubiner introduced what we call the Dubiner metric which in [−1, 1]
corresponds to the arccosine distance between two points:

(2.4) µ[−1,1](x, y) = | arccos(x) − arccos(y)|, ∀x, y ∈ [−1, 1].

By using the Van der Corput-Schaake inequality for trigonometric polynomials T (θ) of degree m and
|T (θ)| ≤ 1, that is,

(2.5) |T ′(θ)| ≤ m
√

1 − T 2(θ)

we want to show that the Dubiner metric is

(2.6) µ[−1,1](x, y) := sup
‖P‖∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))|

with P ∈ Pn([−1, 1]). Firstly, inequality (2.5) is equivalent to

(2.7)
∣∣∣∣∣ d
dθ

arccos(T (θ))
∣∣∣∣∣ ≤ m.

The following result then holds.

Lemma 2.1. Take x, y ∈ [−1, 1] and P ∈ Pm([−1, 1]), then

| arccos(x) − arccos(y)| = sup
‖P‖∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))|.

Proof. Letting T (θ) = P(cos(θ)) and x = cos(θx), y = cos(θy). By using (2.7), we get

| arccos(T (θx)) − arccos(T (θy))| =
∫ θy

θx

∣∣∣∣∣ d
dθ

arccos(T (θ))
∣∣∣∣∣ dθ ≤ ∫ θy

θx

mdθ ≤ m|θx − θy|.

But arccos(x) = θx, arccos(y) = θy giving

| arccos(T (θx)) − arccos(T (θy))| ≤ m| arccos(x) − arccos(y)|
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and
sup

‖P‖∞,[−1,1]≤1

1
m
| arccos(P(x)) − arccos(P(y))| = | arccos(x) − arccos(y)|.

This concludes the proof. �

This metric generalizes to compact sets Ω ⊂ Rd, d > 1 (see e.g. [32]):

µΩ(x, y) := sup
‖P‖∞,Ω≤1

1
m
| arccos(P(x)) − arccos(P(y))|.

This metric is important because there is an interesting unproved conjecture quoted in [20]:

Conjecture 1. Nearly optimal interpolation points on a compact Ω ⊂ Rd are asymptotically equidis-
tributed with respect to the Dubiner metric on Ω.

Hence, once we know the Dubiner metric on a compact Ω, we have at least a method for producing
"good" interpolation points.

For d = 2, let x = (x1, x2), y = (y1, y2)
• Dubiner metric on the square, S = [−1, 1]2:

(2.8) µS (x, y) = max{| arccos(x1) − arccos(y1)|, | arccos(x2) − arccos(y2)|}.

• Dubiner metric on the disk, D = {|x| ≤ 1}:

(2.9) µD(x, y) =

∣∣∣∣∣arccos
(
x1y1 + x2y2 +

√
1 − x2

1 − x2
2

√
1 − y2

1 − y2
2

)∣∣∣∣∣ .
As an example, by using the previous definition of the Dubiner metric on the square, we can extract

points from a discretization of the square itself. In Fig. 1, we show 496 Dubiner nodes (corresponding
on taking n = 30), Random and Euclidean points as well as their Lebesgue constants. Notice that the

Figure 1. Left: Dubiner points. Right: Lebesgue constants growth.

Euclidean points, are Leja-like points, given by max
x∈Ω

min
y∈Xn
‖x − y‖2. There is a tight connection with the

Morrow-Patterson (MP)-points (see [63]) which are a set of N =

(
n + 2

2

)
= dim(P2

n) points in the square

[−1, 1]2, equidistributed with respect to the Dubiner metric (2.8). To be more precise, let n be a positive
even integer, the MP-points are given by the following

xm = cos
( mπ
n + 2

)
, yk =


cos

(
2kπ
n+3

)
, if m odd

cos
(

(2k−1)π
n+3

)
, if m even
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1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1 and are unisolvent for the total degree interpolation problem.
The interest of these points where noticed by Len Bos who showed, in an unpublished note, that their

Lebesgue constant grows polynomially in n and ΛMP = O(n6). Later on, in [39] we showed, by using
(the reciprocal of) Christoffel functions for estimating the Lebesgue constant of the hyperinterpolation
operator on various 2-dimensional domains, that indeed ΛMP = O(n3). Numerically, we actually found
a growth of O(n2). So this is an open problem to show that the ΛMP = O(n2).

Brutman introduced the so-called extended Chebyshev points [17].

T̃n =

{
x̃k = −

1
γn

cos
(

(2k − 1)π
2n

)
, k = 1, ..., n

}
,

where γn = cos
(
π
2n

)
, that is the set of Chebyshev points stretched to the boundary of the interval.

Similarly, we can define the Extended Morrow-Patterson points (EMP) as the points

xEMP
m =

1
αn

xMP
m , yEMP

k =
1
βn

yMP
k ,

αn = cos(π/(n + 2)), βn = cos(π/(n + 3)).
Note: Both MP and the EMP points are equally distributed with respect to Dubiner metric on the

square [−1, 1]2 and unisolvent for polynomial interpolation of degree n on the square [−1, 1]2 (see [20]).
The Padua points (PD) are modified Morrow-Patterson points and were discovered “miraculously” in
summer 2003, by Len Bos, Shayne Waldron, Marco Vianello and myself. They are the points in the
square [−1, 1]2 with coordinates

xPD
m = cos

(
(m − 1)π

n

)
, yPD

k =


cos

(
(2k−1)π

n+1

)
, if m odd

cos
(

2(k−1)π
n+1

)
, if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1, N =

(
n + 2

2

)
.

We recall here some fundamental properties proved in [8].
• The PD points are equispaced with respect to Dubiner metric µS on [−1, 1]2.
• The interior points are the MP points of degree n − 2 while the boundary points are “natural”

points of the grid. In Fig. 2 to the left, we show the set of Padua points for n = 8 as well as the
MP and EMP.

• There are 4 families of PD points obtained by taking rotations of 90 degrees: clockwise for even
degrees and counterclockwise for odd degrees.

• The Lebesgue constant of the Padua points has optimal growth (see Fig. 2, right)

(2.10) Λ(PDn) = O((log n)2).

As a final note, their construction can be obtained in this simple way. Consider the n + 1 Chebyshev-
Lobatto points on [−1, 1]

Cn+1 =

{
zn

j = cos
(

( j − 1)π
n

)
, j = 1, . . . , n + 1

}
and the two subsets of points with O=odd and E=even indexes

CO
n+1 =

{
zn

j , j = 1, . . . , n + 1, j odd
}
,

CE
n+1 =

{
zn

j , j = 1, . . . , n + 1, j even
}
.

Then, the Padua points of degree n are the set

PDn = CO
n+1 ×CE

n+2 ∪CE
n+1 ×CO

n+2 ⊂ Cn+1 ×Cn+2.
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As a nice and interesting observation, the Padua points lie on n concentric squares with sides at the
zeros of Un and Un−1 (the inner) except the external and the center [29]. With Uk we indicate the classical
orthogonal Chebyshev polynomials of second kind, see also Fig. 3.

3. Padua points: generating curve, WAMs, applications and open problems

There exists an alternative construction consisting of the self-intersections and boundary contacts of
the parametric and periodic curve, called generating curve:

γ(t) = (− cos((n + 1)t)︸         ︷︷         ︸
Tn+1(t)

,− cos(nt)︸ ︷︷ ︸
Tn(t)

), t ∈ [0, π].

For instance, in the figure below we display the curve γ(t) for n = 4. The generating curve γ(t) turns
out to be a Lissajous curve. In particular, it is an algebraic curve such that Tn+1(x) = Tn(y) (for the first
family!). Being a Lissajous curve, we recall some important properties of these curves

• Their implicit equations can be found by using Chebyshev polynomials. Chebyshev polynomials
are indeed Lissajous curves (cf. [62]).

• Lissajous curves are planar parametric curves studied by the astronomer Nathaniel Bowditch
(1815) and later on by the mathematician Jules A. Lissajous (1857). They can be written in a
general form as

γ(t) = (Ax cos(ωxt + αx), Ay sin(ωyt + αy)),
where Ax, Ay are amplitudes, ωx, ωy are pulsations and αx, αy are phases.

Figure 2. Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the
corresponding Lebesgue constants.

Figure 3. Padua for n = 6 are distributed on n concentric squares with sides at the
zeros of Un and Un−1 (the inner) except the external and the center (just a dot!).
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Figure 4. PD4 on the generating curve and the two grids (with different colors).

In two dimensions, there is an interesting general definition described in [46].

Definition 3.1.
γn
κ,u(t) =

( u1 cos(n2t − κ1π/(2n1))
u2 cos(n1t − κ2π/(2n2))

)
, t ∈ [0, 2π],

with n = (n1, n2) ∈ N2, κ = (κ1, κ2) ∈ R2 and u = (u1, u2) ∈ {−1, 1}2. The values n1, n2 are called
frequencies (like for the pendulum) and u reflection parameter.

It is nice and also quite instructive to see how Lissajous curves can be constructed by playing with the
sand pendulum (see the video https://www.youtube.com/watch?v=7f16hAs1FB4).

The construction in the square [−1, 1]2 goes as follows. Let n = (n1, n2) with n1, n2 ∈ N relatively
primes. Then, we may consider the curves γn

ε : [0, 2π]→ [−1, 1]2

(3.11) γn
ε (t) := γn

(0,ε−1),1(t) =

( cos(n2t)
cos(n1t + (ε − 1)π/(2n2))

)
with ε ∈ {1, 2} and fixed reflection parameter 1 = (1, 1).

Figure 5. Left: Padua points, Right: Lissajous points. Both sets are relative to degree
n = (6, 7), as used in (3.11).

Two special cases, whose details are discussed in [46], allow to classify Lissajous curves on the square
in two main families.

• For ε = 1, that is γn
1 (t), is called a degenerate curve.

• For ε = 2, that is γn
2 (t), is called non-degenerate curve.

https://www.youtube.com/watch?v=7f16hAs1FB4
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The Padua points curve is then a degenerate Lissajous curve, being two points of the curve at two con-
secutive corners of the square. Moreover, the degenerate Lissajous curve are π-periodic, while the non-
degenerate are 2π periodic.

In Figure 5, we have displayed PD6 and Lis6,7. In particular the generating curves and the cardinalities
are as follows:

γPD
n,n+1 = (cos(nt), cos((n + 1)t), #PDn = (n + 2)(n + 1)/2

γLis
n1,n2

=

(
cos(n2t), cos(n1t +

π

2n2
)
)
, #Lisn1,n2 = 2n1n2 + n1 + n2.

This shows that the Padua points are a unisolvent set for the total degree interpolation problem. While
the Lissajous points can be used for polynomial interpolation, not of total degree, and they guarantee
stability (slow growth of the Lebesgue constant).

The more general topic of multivariate polynomial approximation on Lissajous Curves turned out to
be of interest in the emerging field of Magnetic Particle Imaging (MPI) (see, e.g., some recent publica-
tions and the activities of the scientific network MathMPI). Lissajous sampling seems to be relevant also
in the field of Atomic Force Microscopy (AFM).

3.1. Padua points are WAM (Weakly Admissible Meshes). In the field of multivariate polynomial
approximation, the notion of polynomial mesh has recently emerged as a significant concept. Originally
introduced in the seminal paper [25], it has been studied in several subsequent papers, from both the the-
oretical and the computational point of view, interpolation and extracting Fekete points on 2d domains
(cf. [14, 9, 12] and references therein). Moreover, approximate Fekete-like points extracted from poly-
nomial meshes have begun to play a role in the framework of high-order methods for PDEs (cf., e.g.,
[83]).

We simply recall, that a polynomial Weakly Admissible Mesh (WAM) is a sequence of discrete subsets
{An} of a polynomial determining (i.e. polynomial vanishing there vanish everywhere) compact set K ⊂
Rd such that the inequality

(3.12) ‖p‖k ≤ C(An)‖p‖An , ∀p ∈ Pd
n

holds, where both the card(An) ≥ dim(Pd
n) = O(nd) and C(An) are bounded by nd. Notice that ‖ f ‖X is

the sup-norm of a function f bounded on the (discrete or continuous) set X. Properties of WAMs and
various examples in one and two dimensional domains, are described in [41]. Hence, once we know a
WAM, the computation of discrete estremal sets, can be done by numerical linear algebra techniques by
using greedy algorithms. The interested reader can refer to [13, 12].

The following lemma is the fundamental result for the construction of WAMs by using tensor product
strategies.

Lemma 3.2. Let p ∈ P1
n be a univariate algebraic polynomial, and Cn, C̃n the Chebyshev and Chebyshev-

Lobatto nodal sets, respectively. Let t ∈ T1
n be a univariate trigonometric polynomial, and Θn the angular

nodal set

Θn(α, β) = φω(C̃2n) +
α + β

2
⊂ (α, β), ω =

β − α

2
≤ π,

where φω(r) = 2 arcsin(sin ω
2 r), r ∈ [−1, 1]. Then, the following polynomial inequalities hold

‖p‖[a,b] ≤ cn‖p‖Cn(3.13)
‖p‖[a,b] ≤ cn‖p‖C̃n

(3.14)
‖t‖[α,β] ≤ c2n‖t‖Θn(3.15)

with cn = 1 + 2
π

log(n + 1).
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Padua points can be used in 3-dimensional tensor product WAMs on different domains [43]. Knowing
a WAM on a planar compact, say Ω, we can construct 3-dimensional WAMs for cones with base Ω and
vertex y, which consists of all the segments connecting y with a point on Ω. Similarly the construction
can be done for pyramids (which are cones with polygonal base) and truncated cones. The last is obtained
by cutting the cone with a plane parallel to the base. We can also construct 3-dimensional WAMs for
solid of rotation with cross section Ω and external axis r. The WAMs is then obtained by rotation of Ω

by a given angle ≤ 2π, around a coplanar line r.
For instance in Fig. 6, we show on the left the WAMs for a pyramid obtained by the tensor product

of Padua points of degree 10 on the base and Chebyshev-Lobatto points along the z-axis, on the right
the WAM on a portion of the torus with circular base. In both sets we have highlighted the approximate
Fekete points extracted from the WAM by the greedy algorithm described in [13].

Figure 6. 3-dimensional WAMs obtained by using the Padua points.

3.2. Some recent applications of the Padua points. Lagrange interpolation at the Padua points has
been recently used in several scientific and technological applications.

• Computational Chemistry (the Fun2D subroutine of the CP2K simulation package for Molecular
Dynamics, https://www.cp2k.org/),

• Image Processing (algorithms for image retrieval by colour indexing),
• Materials Science (Modelling of Composite Layered Materials, [69]),
• Mathematical Statistics (Copula Density Estimation, [67]),
• Quantum Physics (Quantum State Tomography [59]),
• Padua points for solving PDEs with radial basis functions methods [58].

Padua points have been included in the Chebfun2 package (whose features have been described in the
book [60]). The Padua points can be obtained simply specifying the degree n: x=paduapts(n). For
more details, see the web page http://www.chebfun.org/examples/geom/Lissajous.html

• Software: www.math.unipd.it/~marcov/CAApadua.html, J. Burkardt https://people.
sc.fsu.edu/~jburkardt/m_src/padua/padua.html

• Scholar citations (to the date): about 7140.

3.3. Some open problems.
(1) We do not know the Padua points on [−1, 1]d, d ≥ 3.

https://www.cp2k.org/
http://www.chebfun.org/examples/geom/Lissajous.html
www.math.unipd.it/~marcov/CAApadua.html
https://people.sc.fsu.edu/~jburkardt/m_src/padua/padua.html
https://people.sc.fsu.edu/~jburkardt/m_src/padua/padua.html
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(2) The Lebesgue function has its maxima in the corners, where there are no Padua points (see Fig.
7 that displays the Lebesgue function and its maximum at the corner points).

(3) The Vandermonde determinant associated to the Padua and Padua-like points has variables that
separate. Using a notation similar to (1.1), for a point set A = {a1, ..., aN} ∈ [−1, 1]2 and a basis
B = {b1, . . . , bN}, we may construct the Vandermonde matrix

V(A;B) = (bi(a j))N
i, j=1,

where the i-th row of V consists of i-th polynomial of the basis B evaluated at all points. For
Padua-like points N =

(
n+2

2

)
and we denote with Vdm(A;B) the corresponding determinant.

Using the standard monomial basis of Pn(R2),

Bn = {xαyβ, | α + β ≤ n},

the tensor product basis
Tn = {xαyβ, | max(α, β) ≤ n}

and the univariate polynomials

a(x) :=
n/2∏
i=0

(x − x2i+1)

b(y) :=
n/2∏
j=0

(y − y2 j+1),

another basis for Pn(R2) is

(3.16) B′ = a(x)Bn/2−1 ∪ b(y)Bn/2−1 ∪ Tn

such that Vdm(A;Bn) = ±Vdm(A;B′n) being the transition matrix diagonal with 1 on the di-
agonal. This construction allowed to manipulate the Vandermonde matrix splitting it along the
even and odd grids of the Padua-like points, providing an unexpected commutative property of
the Vandermonde determinant associated to each direction. The claim in [11, Lemma 1] had a
"gap". After some years, the Lemma was completely proved [42]. Moreover, we noticed that
this "commutative" property of the Vandermonde determinant associated to Padua-like points,
holds for general functions and general rectangular grids [31].

0 100 200 300 400 500 600 700
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Figure 7. Padua points for n = 25 and its Lebesgue function. On the right the profile
in 1d of the function.
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4. Approximation of discontinuous functions

In this section, we deal with an important problem in data analysis, that is the reconstruction of func-
tions with discontinuities or with jumps. The approach we describe is the mapping bases technique
which turns out to be equivalent to the “fake” nodes approach [35, 37]. We recall that general ap-
proaches to overtake unavoidable reconstruction instabilities around the discontinuities are based on a
clever choice of interpolation points before and after the jumps (cf. e.g. [33]), rational approximation (cf.
e.g. [54, 4]), sinc-approx, filtering (cf. e.g. [36]). This list is not complete, but shows the wide interest
to the topic. In particular, in image analysis in medicine (Computerized Tomography (CT), Magnetic
Resonance (MR), and their variants (SPECT, fMRI)) or the above mentioned Magnetic Particle Imaging
(MPI) or in geosciences, where satellite images are used to analyzed ground characteristics (humidity,
temperature, water distribution and so on), often the images need to be geometrically aligned, registered
or simply reconstructed by sampling them properly. In Figs. 8 and 9, we show some images connected
to these applications.

Figure 8. Discontinous functions in 1d and 2d.

• Interpolation by polynomials and rational functions of discontinuous functions is historically
well-studied. Two related well-known phenomena are the Runge and Gibbs effects [71, 51].
In both cases, unwanted oscillations appears near the boundary of the domain or close to the
discontinuities, respectively.

Figure 9. Left: the Shepp-Logan phantom used in medicine for testing. Center: an
MPI acquisition reconstructed by Gaussian kernels. Right: RBF reconstruction of the
soil of Portugal.
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• More recently, interpolation by kernels, mainly radial basis functions has become a powerful
tool for high-dimensional scattered data problems [52, 80, 18] and application to the solution of
PDES [55], machine learning [72, 48], image registration and many other more.

5. The Fake Nodes Approach (FNA)

We start observing three facts from which “fake” nodes ideas originated.

(1) In applications, samples are given. Resampling, which is often necessary, can be done at Cheby-
shev points, or by extracting mock Chebyshev points from the data, or finding good interpolation
points depending on applications (like Padua points, approximate Fekete points, discrete Leja
sequences, Lissajous points, (P, f , β)-greedy points, minimal energy points and so on). For more
details, see [35, 37].

(2) When the function has steep gradients, like f (x) = arctan(20x), x ∈ (−0.22, 0.22), its reconstruc-
tion gives rise to oscillations nearby the boundaries. This is a well-known fact from the Fourier
analysis of the coefficients of the corresponding series known as Gibbs phenomenon.

(3) For analytic functions on compact intervals, Adcock and Platte [1] investigated weighted least-
squares approximation of mapped polynomial basis via the Kosloff and Tal-Azer map [57]:

κα(x) =
sin(απx/2)
sin(απ/2)

, x ∈ [−1, 1], α ∈ (0, 1]

giving rise to the α-polynomial space

Pαn = {p ◦ κα, p ∈ Pn},

which corresponds to the space of trigonometric polynomials when α = 1 and the classical
polynomial space when α = 0 (which is excluded).

These observations are the main ingredients of the FNA which, as we shall see, is equivalent to a
polynomial mapping of the original polynomial space. We need some notations. Let S : Ω −→ Rd

be an injective map. The main idea behind the FNA, is that of constructing an interpolant R f ∈ B
S
N B

span{BS
1 , . . . , B

S
N} of the function f , so that

(5.17) R f (x) =

N∑
i=1

αS
i BS

i (x) =

N∑
i=1

αS
i Bi(S (x)) = Pg(S (x)),∀x ∈ Ω.

The function g has the property that g|S (XN ) = f|XN , that is, it assumes the same values of f at the mapped
interpolation points S (XN). Thus, having the mapped basis BS

N , the construction of the interpolant R f is
equivalent to build a classical interpolant Pg ∈ BN at the “fake” or mapped nodes S (XN). In what follows
we will use the words “fake” nodes, thinking of this mapping process.

Provided we have a unisolvent set of points for the given basis, XN = {x1, ..., xN}, and the correspond-
ing values f = { f (x1), . . . , f (xN)}, R f can be constructed by solving the linear system

(5.18) ASαS = f ,

where αS = (αS
1 , . . . , α

S
N)ᵀ, and

AS =


BS

1 (x1) . . . BS
1 (xN)

...
. . .

...
BS

N(x1) . . . BS
N(xN)

 .
Concerning the cardinal form of the mapped interpolant, we may state the following proposition.
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Proposition 5.1 (Cardinal form). Let XN = {xi, i = 1, . . . ,N} ⊆ Ω be a set of pairwise distinct data
points and let ui ∈ BN , i = 1, . . . ,N be the basis functions. Let S : Ω −→ Rd be an injective map.
The functions {u1, . . . , uN} are cardinal on S (Ω) for the “fake” nodes S (XN) if and only if the mapped
functions {u1 ◦ S , . . . , uN ◦ S } are cardinal for the original set of nodes XN .

The proof is trivial and comes immediately asking the cardinality property to the functions uS
i . Hence,

we can write the interpolant at the “fake” nodes in cardinal form:

(5.19) RS
f (x) = fᵀuS (x), x ∈ Ω,

where uS (x) = (uS
1 (x), . . . , uS

N(x))ᵀ.
The Lebesgue constant of the points mapped via RS

f is equivalent to that of the image Ω though S (see
[37] for details).

Proposition 5.2 (Equivalence of the Lebesgue constant). Let S : Ω −→ Rd be an injective map. Let
XN ⊆ Ω be a unisolvent set of nodes for the space BN , and uS

i ∈ B
S
N , i = 1, . . . ,N, be the associated

cardinal functions. Then, the Lebesgue constant ΛS (Ω) associated to the mapped nodes is

ΛS (Ω) = Λ(S (Ω)).

Remark 5.1. The proposition states that the interpolation at the mapped basis BS
N inherits the Lebesgue

constant of the “fake” nodes S (XN) over the ‘standard’ basis BN .

The Lebesgue constant, as well-known, represents the stability constant of the interpolation process.
For analyzing the stability, we thus study an interpolant of perturbed data f̃ (xi) sampled at xi, i =

1, . . . ,N, i.e. data affected by measurement errors.

Proposition 5.3 (Stability). Let S : Ω −→ Rd be an injective map and XN ⊆ Ω be a unisolvent set
of nodes for the space BN . Let f be the associated vector of function values and f̃ be the vector of
perturbed values. Let RS

f and RS
f̃

be the interpolant of the function values f and f̃ , respectively. Then,

||RS
f − RS

f̃
||∞,Ω ≤ ΛS (Ω) ‖ f − f̃‖∞,XN .

Proof. Taking into account that g|S (XN ) = f|XN and thus also g̃|S (XN ) = f̃|XN , we deduce that

||RS
f − RS

f̃
||∞,Ω = ||Pg − Pg̃||∞,S (Ω) = sup

x∈S (Ω)

∣∣∣∣∣ N∑
i=1

(gi(xi) − g̃i(xi)) ui(x)
∣∣∣∣∣

= sup
x∈Ω

∣∣∣∣∣ N∑
i=1

(gi(S (xi)) − g̃i(S (xi))) ui(S (x))
∣∣∣∣∣

≤ sup
x∈Ω

N∑
i=1

|ui(S (x))| |gi(S (xi)) − g̃i(S (xi))|

≤ sup
x∈Ω

N∑
i=1

|ui(S (x))| max
i=1,...,N

|gi(S (xi)) − g̃i(S (xi))|

= Λ(S (Ω)) max
i=1,...,N

∣∣∣ f (xi) − f̃i(xi)
∣∣∣

= ΛS (Ω) ‖ f − f̃‖∞,XN .

This concludes the proof. �

Consistently with Remark 5.1, the FNA approach also inherits the error of the classical approach, as
shown in the following proposition.
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Proposition 5.4 (Error bound inheritance). Letting S , XN , f and RS
f , as above. Then, for any given

function norm, we have
||RS

f − f ||Ω = ||Pg − g||S (Ω),

where g|S (XN ) = f|XN .

Proof. From (5.17), we know that RS
f = Pg ◦ S . Choosing g such that g ◦ S = f on Ω (this g exists being

S injective), we get
||RS

f − f ||Ω = ||Pg ◦ S − g ◦ S ||Ω = ||Pg − g||S (Ω),

which gives the claimed result. �

5.1. Mapped bases. As discussed above, let S : I → R be a given map. We are interested to the
function

(5.20) RS
n, f (x) := Pn,g(S (x)) =

n∑
i=0

ciS i(x)

for some g : S (I)→ R ∈ Cr(I) such that
g|S (Xn) = f|Xn .

RS
n, f ∈ span {S i = mi ◦ S , i = 0, . . . , n} is the interpolant at (Xn, Fn), that is no resampling is done. This

mapping construction is equivalent to the “fake” nodes approach.
• The mapped bases approach on I ask to “interpolate f on the set Xn via Rs

n, f in the function
space S n.”

• The FNA on S (I) ask to “interpolate g on the set S (Xn) via Pn,g in the polynomial space Mn.”

Remark 5.2. This approach is rather general, in the sense that we may use any space of linear inde-
pendent functions (polynomials, rational function, radial basis functions and so on). The only point to
clarify is the choice of the map S .

Problem 2. How can we find a suitable admissible map S for mitigating the Runge and Gibbs effects?

The map S should be taken so that the resulting set of “fake” nodes S (Xn) guarantees a stable inter-
polation process. A “natural” choice for a stable interpolation is to map Xn for example, to the set of
Chebyshev-Lobatto (CL) nodes on the interval I.

The following algorithms, S -Runge and S -Gibbs, provide a constructive solution to Problem 2.

Algorithm 1 (S-Runge).
Input: Xn,Cn. Note: Xn is ordered left-right, Cn are the CL nodes.
Core
• If x ∈ [xi, xi+1], for i ∈ {0, . . . , n − 1}, S is the (piecewise) linear map

S (x) = β1,i(x − xi) + β2,i,

where
β1,i =

ci+1 − ci

xi+1 − xi
, β2,i = ci.

Output: S (x).

For S -Gibbs, we need to identify the set of discontinuities

Dm :=
{
(ξi, di) | ξi ∈ (a, b), ξi < ξi+1, and di B | f (ξ+

i ) − f (ξ−i )|
}
, i = 0, . . . ,m

by an edge-detection algorithm. This can be done by well-known and stable techniques, such as the the
Canny algorithm described in [24] or, for irregularly samples signals and images, in [2]. When Radial
basis functions are used, the analysis of the coefficients of the interpolant, can give information on the
location of the discontinuities, as described in [70]. Recently, we proposed another approach to extract
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the location of the discontinuities through a segmentation method based on a classification algorithm
from machine learning (see [38]).

Algorithm 2 (S-Gibbs).
Inputs: Xn, Dm, x and k ∈ R+ .
Core
(a) αi B kdi, i = 0, . . . ,m.

(b) Letting Ai =
∑i

j=0 α j, define S as follows:

S (x) =

{
x, for x ∈ [a, ξ0[,
x + Ai, for x ∈ [ξi, ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

Output: S (x).

Remarks. Some comments are in order.
• Our strategy consists in constructing the map S in such a way that it sufficiently increases the gap

between the node right before and the one right after the discontinuities via the real parameters
αi.

• About the shifting parameter k > 0. We experimentally observed that its selection is not critical.
The resulting interpolation process is not sensitive to its choice, provided that it is sufficiently
large, i.e. in such a way that in the mapped space the so-constructed function g has no steep
gradients.

• The “fake” nodes mapping, S-Runge, enables one to obtain an interpolant on equispaced points
that may converge efficiently while avoiding Runge phenomenon. The connection worth to be
emphasized regards the application of this mapping on a polynomial basis. In particular, if we
consider the Chebychev polynomials of the first kind, that is

Tk(x) = cos(k arccos(x)), f or x ∈ [−1; 1], k ≥ 0,

then, it appears that applying the “fake” nodes mapping to Tk on a general interval [a, b],
provides a Fourier basis T̂k:

T̂k(x) = Tk(cos(π(x − a)/(b − a))) = cos(kπ(x − a)/(b − a)).

In other words, interpolating with the “fake” nodes mapping is equivalent to a particular de-
composition in Fourier series. It also means that one can make direct connections with several
tricks used e.g. by the software Chebfun [64] and easily find the series coefficients via an FFT.
An application of this idea has recently been explored in [56].

In Fig. 10, we plot the cardinal functions on 4 nodes (so cubics), at varying the location of the
discontinuity ξ and the shift parameter k. The cardinals become discontinuous at ξ. When ξ is not at the
center of the interval, they do not look anymore cubics.

5.2. Examples.

5.2.1. Runge phenomenon. The first example of the FNA deals with the interpolation of the Runge
function. We take I = [−5, 5], f1(x) = 1/(1 + x2), Xn: equally spaced. As evaluation points we consider
a set of 100 equally spaced points.

We computed the Relative Max Approximation Error (RMAE), that is

RMAE = max
z∈E

|Rs
n, f (z) − f (z)|

| f (z)|
,
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Figure 10. Left-right, up-down: the original cardinals on 4 nodes, the cardinals
around ξ = 0, k = 0 the cardinals around ξ = 0.2, k = 1,the cardinals around ξ = 0, k =

0.5.
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Figure 11. Interpolation at 13 points of f1. Using equispaced (left), CL (center) and
“fake” nodes (right). The original and reconstructed functions are plotted with contin-
uous red and dotted blue lines, respectively.

5.2.2. Gibbs phenomenon. The second example deals with the Gibbs effect. We consider the discontin-
uous function below

f2(x) B



x2

10
, −5 ≤ x < − 3

2 ,

1
4

x +
19
8
, − 3

2 ≤ x < 5
2 ,

−
x3

30
+ 4, 5

2 ≤ x ≤ 5.



30 Stefano De Marchi

0 10 20 30 40
n + 1

10 3

10 2

10 1

100

101

102

103

104

105

RM
AE

Figure 12. The RMAE for the Runge function varying the number of nodes. The
results with equispaced, CL and “fake” nodes are represented by black circles, blue
stars and red dots, respectively.
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Figure 13. Lebesgue functions of equispaced (left), CL (center) and “fake” CL (right) nodes.

In this exampleD = {(−3/2, 1.775), (5/2, 0.479)}. As before, we compare:

a) the interpolating polynomial at equispaced points En and associated function values f2(En);
b) the interpolating polynomial at the CL nodes Cn in I and resampled function values f2(Cn);
c) the approximant built upon the polynomial interpolant at the “fake” nodes, S (En), and function

values related to the equispaced points f2(En). In this setting, we fix k = 50 and the map S of
the S -Gibbs algorithm.

5.3. Extensions. The mapped basis approach suggested many interesting applications. Here, we enu-
merate the most interesting ones and the corresponding references in which interested readers can refer
to.

• Quadrature weights of the “fake" Chebyshev-Lobatto nodes are those of the composite trape-
zoidal rule [34].

• In 2d and 3d, as we have already seen, we can extract approximate Fekete points on various
domains (disk, sphere, polygons, spherical caps, lunes, etc. ). With these points we can apply
the mapped basis approach for least-squares approximation [37]. In the 2d case, we have results
on the approximation of discontinuous functions on the square, using polynomial approximation
at the Padua points or tensor product meshes, see Figs. 17 and 18. It is interesting to see Fig.
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Figure 14. Interpolation at 20 points of the function f2 on [−5, 5], using equispaced
(left), CL nodes (center) and the discontinuous map (right). The nodes are represented
by stars, the original and reconstructed functions are plotted with continuous red and
dotted blue lines, respectively.
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Figure 15. The RMAE for the function f2 varying the number of nodes. The results
with equispaced, CL and “fake” nodes are represented by black circles, blue stars and
red dots respectively.
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Figure 16. Lebesgue functions of equispaced (left), CL (center) and “fake” nodes (right).
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18 where we show how to extract and map at the Padua points, fake Padua, starting from an
original grid.

• In higher dimensions, where Padua points are not known, we may sample the function at the
so-called Lissajous points or in the case of scattered data approximate by variably scaled dis-
continuous kernels [38].

• Extensions to rational interpolation/approximation: Floater-Hormann (FH) and trigonometric
FH (for periodic signals) interpolants and the AAA-approximation (see [4] and references therein).

• The original proposed S-Gibbs map suffers of a subtle instability when the interpolation is done
at equidistant nodes, a consequence of the Runge’s phenomenon. A new approach, termed
Gibbs-Runge-Avoiding Stable Polynomial Approximation (GRASPA) has been introduced in [33],
which allows to mitigate both Runge and Gibbs phenomena

• In multimodal medical imaging, it is a common practice to undersample the anatomically-
derived segmentation images to measure the mean activity of a co-acquired functional image.
This avoids the resampling-related Gibbs effect that would occur in oversampling the functional
image. It turns out that the FNA for image resampling it is designed to reduce the Gibbs effect
when oversampling the functional image. This has been proved by a tight error analysis in [66].

• Links: https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_algorithm_
without_resampling

Figure 17. Left: interpolation with PD60 of a function with a circular jump. Right:
the same by mapping circularly the PD points, and using least-squares fake-Padua.

5.4. Some open problems.

• As mentioned above, S-Runge and S-Gibbs have been improved in [33] via the GRASPA ap-
proach. Extension, at least to two dimensions, is needed.

• Recently two dimensional mock-Chebyshev points plus regression have been investigated [44].
Is this approach an alternative to the “fake” one?

• Error analysis and tight Lebesgue constant bounds should be investigated.

https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_algorithm_without_resampling
https://en.wikipedia.org/wiki/Runge%27s_phenomenon#S-Runge_algorithm_without_resampling
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Figure 18. Here n = 10. On the left the set X66 (represented by blue dots) is extracted
from a 11 × 12 equispaced grid (represented by both blue dots and red stars). The set
X66 (centre) is then mapped on the set of Padua points Pad66 via the mapping S (right).

6. Conclusions

In this paper, we have reviewed the most important facts concerning the Padua points and the mapped
bases approach for polynomial approximation of functions and data. We also outlined some open prob-
lems with the hope that some researcher can be interested in these topics and can propose a solution.
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(RITA), the thematic group on “Approximation Theory and Applications” of the Unione Matematica
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ABSTRACT. In Banach spaces, plenty of parameters have been considered: they are often defined by using pairs
of vectors. Rarely, they are defined by considering pairs of vectors which are orthogonal in the sense of Birkhoff and
James; in that case the study is often not easy. In fact, it can be difficult to identify pairs of orthogonal vectors; so to
calculate the value of these parameters, to compare them with the other parameters, to see if they have some stability
with respect to changes of the norm. In this paper, we shall do this for a couple of new parameters.
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1. INTRODUCTION

Let X be a real Banach space; we shall denote by SX (or simply by S, if no confusion can
arise) its unit sphere. As known, it is possible to consider in X several different notions of
orthogonality. The most popular and used seems to be the one suggested by Birkhoff and
James, that we shall consider here. We say that x is orthogonal to y, and we write x ⊥ y, if
||x|| ≤ ||x+ ty|| for every t ∈ R.
Considering parameters defined by using orthogonal pairs of vectors is not usual (and simple).
Among the few attempts done in this direction, we recall that for example I. Serb considered
the "orthogonal version" of a modulus of smoothness, indicating only "weak" results (see [6]
and the references therein). We give a simple example showing that parameters defined by
using orthogonal pairs can hardly be "stable".
Consider X as the space R2 with the maximum norm: for the vectors x = (1, 1) and y = (−1, 0)
we have x ⊥ y. Now, we "slightly" change the norm: for x = (x1, x2) we set ||x|| = (|x1|p +
|x2|p)1/p, with p "large"; then ||x||p is near to 1 but on SX only y′ = (1,−1) is such that x ⊥ ±y′
and only x′ = (0, 1) (∈ SX ) is such that ±x′ ⊥ y.
In this paper, we consider "orthogonal versions" of two deeply studied parameters. We prove
several facts, giving also new characterizations of uniformly nonsquare spaces; we show by
examples that our parameters have different behaviors with respect to the classical ones. We
underline how much the new parameters can differ from the corresponding classical ones;
everything is explained also by means of numerous examples.

2. OLD AND NEW PARAMETERS

The following parameters received much attention during the last decades (see for example
[3]) and are still studied in deep:
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J(X) = sup{min{||x− y||, ||x+ y||} : x, y ∈ SX} (James constant);

g(X) = inf{max{||x− y||, ||x+ y||} : x, y ∈ SX} (Schäffer constant).
As known, we always have: 1 ≤ g(X) ≤

√
2 ≤ J(X) ≤ 2 ; g(X)J(X) = 2. Also g(X) = J(X) =√

2 in Hilbert spaces. Recall the definition of uniformly non square spaces, (UNS) for short.
The space X is (UNS) when there exists ε > 0 such that for x, y ∈ SX either ||x− y|| < 2− ε or
||x+ y|| < 2− ε. Clearly:

(2.1) X is (UNS)⇐⇒ J(X) = 2⇐⇒ g(X) = 1.

We define now:

J⊥(X) = sup{min{||x− y||, ||x+ y||} : x, y ∈ SX , x ⊥ y};
g⊥(X) = inf{max{||x− y||, ||x+ y||} : x, y ∈ SX , x ⊥ y}.

Of course g(X) ≤ g⊥(X) and J⊥(X) ≤ J(X) always hold. Sometimes we shall simply write J ,
J⊥, g, g⊥ when it is clear which is the underlying space.
Note that J(X) = sup{J(Y ) : Y ⊂ X, dim(Y ) = 2}; and a similar remark applies for J⊥, g, g⊥.
This indicates that studying these parameters for 2-dimensional spaces (where some specific
pathologies can also arise) is essentially studying them in general.

3. STUDYING g⊥(X)

An equivalent formulation for (UNS) is the following: there exists ε > 0 such that for all
x, y ∈ SX either ||x− y|| > 1− ε or ||x+ y|| > 1− ε.
Also: reading the proof of [2, Theorem 3.2], we see that the following fact (based on orthogonal
vectors) is true:

X is not (UNS) if and only if there exist x, y ∈ SX , x ⊥ y, such that ||x± λy|| ≈ 1 with λ ≈ 2.

Next result gives a sharper result concerning orthogonal pairs.

Theorem 3.1. Let X be a real Banach space; assume that SX contains two points x, y such that

(3.2) ||x± y|| ≤ 1 + ε, ε ∈ [0, 1).

Then SX contains y′ such that: x ⊥ y′ and ||x± y′|| ≤ 1− ε2 + 2ε

1− ε
.

Proof. Let x, y as indicated; assume that x is not orthogonal to y, thus ε > 0 (otherwise there is
nothing to prove). Take a norm-one functional fx such that fx(x) = 1 and fx(y) 6= 0. Eventually
exchanging y and −y, we can assume that fx(y) > 0. Let y′ = αx + βy ∈ SX be such that
fx(y

′) = 0 (so x ⊥ y′). We have β 6= 0 (otherwise also α = 0 against y′ ∈ SX ). Again, we
can assume β > 0 (eventually exchanging y′ and −y′). Then: fx(y′) = α + βfx(y) = 0, so
α = −βfx(y) < 0. Also, 1 + fx(y) = fx(x+ y) ≤ ||x+ y|| ≤ 1 + ε, so 0 ≤ fx(y) ≤ ε. This implies
|α| ≤ βε. We have

1 = ||y′|| ≥ β − |α| ≥ β(1− ε)
thus

β ≤ 1

1− ε
;

1 = ||y′|| ≤ |α|+ β ≤ β(1 + ε)

so we have
1

1 + ε
≤ β ≤ 1

1− ε
.
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Therefore

||y − y′|| = ||y − αx− βy|| = ||αx+ (β − 1)y|| ≤ |α|+ |β − 1|.

If β ≥ 1, then

||y − y′|| ≤ |α|+ β − 1 ≤ β(ε+ 1)− 1 ≤ 2ε

1− ε
;

if β ≤ 1, then

||y − y′|| ≤ |α|+ 1− β ≤ β(ε− 1) + 1 ≤ ε− 1

1 + ε
+ 1 =

2ε

1 + ε
<

2ε

1− ε
.

So we obtain

||x− y′|| = ||x− y − y′ + y|| ≤ ||x− y||+ ||y − y′|| ≤ 1 + ε+
2ε

1− ε
;

||x+ y′|| = ||x+ y + y′ − y|| ≤ ||x+ y||+ ||y − y′|| ≤ 1 + ε+
2ε

1− ε
and so

||x± y′|| ≤ 1− ε2 + 2ε

1− ε
.

Note that the last function of ε ∈ [0, 1) is increasing. �

By using Theorem 3.1, we can prove the following result:

Theorem 3.2. Fon any space X , we have

(3.3) g⊥(X) ≤ −g
2(X) + 4g(X)− 2

2− g(X)
.

In particular, g⊥(X) = 1 characterizes non (UNS) spaces (in fact g⊥(X) = 1 if and only if g(X) = 1
since 1 ≤ g(X) ≤ g⊥(X) always).

Proof. Take ε > g(X)− 1: thus SX contains pair x, y satisfying (3.2). According to Theorem 3.1
we have

g⊥(X) ≤ 1− ε2 + 2ε

1− ε
.

Since this is true for all ε > g(X)− 1, we obtain

g⊥(X) ≤ 1− (g(X)− 1)2 + 2(g(X)− 1)

1− (g(X)− 1)
=
−g2(X) + 4g(X)− 2

2− g(X)
.

�

In the last theorem, the majorizing function (of g(X)) is increasing.
We note that Theorem 3.2 gives an estimate that is not very sharp in general; for example if

X is a Hilbert space then g⊥(X) = g(X) =
√
2 but that estimate gives g⊥(X) ≤ 2

√
2; on the

contrary that estimate is "fine" if g(X) ≈ 1.
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4. STUDYING J⊥(X)

We start with a remark concerning g(X) and J(X).

Remark 4.1. It is not difficult to see that

J(X) = sup{min{||x− y||, ||x+ y||} : x, y ∈ SX ; ||x− y|| = ||x+ y||};

g(X) = inf{max{||x− y||, ||x+ y||} : x, y ∈ SX ; ||x− y|| = ||x+ y||} .

Proof. : See for example [5] for this and a general discussion of this. �

We prove now a result related to J(X) and J⊥(X) .

Theorem 4.3. In any space X , we have

(4.4) J⊥(X) ≥ 2J(X)− 2 .

In particular J(X) = 2 implies (so it is equivalent to) J⊥(X) = 2, and this condition is equivalent to
X being not (UNS).

Proof. According to Remark 4.1, given ε > 0 there exist x, y ∈ SX such that ||x−y|| = ||x+y|| =
β for some β ∈ (J(X) − ε, J(X) ). Set f(t) = ||x + ty||: this is a convex, 1-Lipschitz function
and f(0) = 1 < β = f(1) = f(−1). Let t0 ∈ (−1, 1) a point, where the function f attains
its minimum α ∈ (0, 1]. This means that x + t0y ⊥ y. We can suppose t0 > 0 (eventually
exchanging y and−y); if t0 = 0 then there is nothing to prove. Also, by considering the slope of
f in [0, 1] and the fact that f is 1-Lipschitz, we have β−α+1−α = f(1)−f(to)+f(0)−f(t0) ≤ 1,
so α ≥ β/2. Set z = (x+ t0y)/α (so z ∈ SX ; ||z − (x+ toy)|| = 1− α; z ⊥ y). We have

||z+y|| = ||z−(x+t0y)+(x+t0y)+y|| ≥ ||x+(t0+1)y||−(1−α) = f(t0+1)−1+α ≥ β − αt0
1− t0

−1+α.

Hence, ||z + y|| ≥ β − 1 + α+ t0(1− 2α)

1− t0
. Since J(X) ≥

√
2 we can assume β > 4/3; α ≥ β/2

implies β − 1 + α ≥ 3
2β − 1; 1− 2α ≥ −1 implies

||z + y|| ≥ (3/2)β − 1− t0
1− t0

>
3

2
β − 1 .

Considering the average slope of f in [t0, 1], we have β−α
1−t0 ≤ 1, so t0 ≤ 1 + α − β. Then, we

have f(t0 − 1) = ||x+ t0y − y|| ≥ β − t0 ≥ 2β − α− 1. Therefore

||z − y|| = ||z − (x+ t0y) + (x+ t0y)− y|| ≥ f(t0 − 1)− 1 + α ≥ 2(β − 1).

Since 2(β − 1) ≤ 3
2β − 1 (in fact β ≤ 2), we obtain

J⊥(X) ≥ min{2(β − 1);
3

2
β − 1} = 2(β − 1).

But we can choose ε > 0 arbitrarily small, so β can be arbitrarily near to J(X). Then, we obtain
the result. �

We note that the inequality (4.4) is "fine" if J(X) ≈ 2, but it is not sharp in general: for exam-
ple in Hilbert spaces it only gives J⊥(X) ≥ 2(

√
2−1); it gives J⊥(X) ≥

√
2 if J(X) ≥ 1+1/

√
2.

Of course g(X) = g⊥(X) and/or J(X) = J⊥(X) when g(X) and/or J(X) is realized by orthog-
onal pairs x, y ∈ SX .
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5. EXAMPLES

In this section, we collect several examples of 2-dimensional spaces, where we compute the
values of our parameters. We recall (see [3]) that the value of J(X) depends on the modulus of
convexity, defined for ε ∈ [0, 2] in this way:

δX(ε) = inf{1− ||x+ y||
2

: x, y ∈ SX ; ||x− y|| ≥ ε}.

Namely, we have
J(X) = sup{ε > 0 : ε ≤ 2− δX(ε)}.

Thus if J(X) < 2, we have J(X) = 2− 2δX(J(X)). Computing the values of g⊥(X) and J⊥(X)
is often not very simple: in many cases the calculation is not difficult but rather tedious; due
also to this we shall not give all details here. We shall use these examples later, to clearify the
behaviour of our parameters and to see which properties of g(X) and J(X) remain true for
g⊥(X) and J⊥(X).

Example 5.1. Consider X = R2 with the norm determined by a regular hexagon whose vertices are
(±1, 0); (±1,±1); (0,±1). In other words the norm in X is given by

||(x, y)|| =

{
max{|x|, |y|}, xy ≥ 0

|x|+ |y|, xy < 0.

As known, for this space we have δ(ε) = max{0, (ε − 1)/2}. So, J(X) = 3/2 and g(X) = 4/3. We
can see that g⊥(X) = 3/2 (achieved when x = (0, 1); y = (1, 1/2)). Therefore J⊥(X) ≤ J(X) = 3/2;
for x = (1/2,−1/2) and y = (1, 1), x, y ∈ SX , x ⊥ y we obtain J⊥(X) = 3/2.

Example 5.2. Let X = R2 endowed with the norm determined by a different hexagon whose vertices
are (±1, 0); (∓1,±1); (±1/2,±1). Concerning the modulus of convexity in this space, we have

δX(ε) =

{
0, ε ≤ 3/2

(1/2)ε− (3/4), 3/2 < ε ≤ 2.

This implies J(X) = 7/4 so, g(X) = 8/7. Concerning our parameters, we have J⊥(X) = 5/3
(achieved, for example, for x = (−1/4, 1), y = (1, 0) ); g⊥(X) = 5/4 (achieved, for example, for
x = (−1, 1), y = (2/3, 2/3)).

Example 5.3. Let X = R2 endowed with the norm determined by a regular octagon whose vertices are
(±(
√
2− 1),±1), (±(1−

√
2),±1), (±1, ±(

√
2− 1) ), (±1, ±(1−

√
2) ). Thus,

||(x, y)|| = min
{
max{|x|, |y|}, |x|+ |y|√

2

}
.

As known, in this case we have g(X) = J(X) =
√
2 (consider for example (1/

√
2, 1/

√
2) and

(−1/
√
2, 1/

√
2); but we observe that (1/

√
2, 1/

√
2) ⊥ (−1/

√
2, 1/

√
2) and so we have also g⊥(X) =

J⊥(X) =
√
2.

Example 5.4. Let X = R2 endowed with the norm defined by

||(x, y)|| =

{√
x2 + y2, xy ≥ 0

|x|+ |y|, xy < 0.

We have (see for example [4, p. 280]) J(X) =
√

8/3. Therefore, g(X) =
√
3/2. Concerning J⊥(X)

(in this case the calculation is non trivial), it is slightly smaller than J(X).
In fact, J⊥(X) ≈ 1, 626 achieved by (1, 0) and (a,

√
1− a2) with a ≈ 0, 321; or by (0, 1) and

(a,
√
1− a2) with a ≈ 0.948.
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Example 5.5. Let X = R2 endowed with the norm defined by

||(x, y)|| =

{√
x2 + y2, xy ≥ 0

max{|x|, |y|}, xy < 0.

As known, J(X) = 1 +
√
2/2 ; g(X) = 4 − 2

√
2. J(X) is achieved by (−1, 1), (1/

√
2, 1/
√
2), and

(−1, 1) ⊥ (1/
√
2, 1/
√
2). So, J⊥(X) = J(X). g(X) is not achieved by an orthogonal pair: we should

take (1,−α), (α, 1) with α = 3 −
√
8 and so ||x ± y|| = 1 + α. We obtain g⊥(X) = 5/4 with the

orthogonal pair (−1/2, 1) and (1, 0). We note that g⊥(X) J⊥(X) > 2.

Example 5.6. Let X = R2 endowed with the norm lp

||(x, y)|| =


(|x|p + |y|p)1/p, p ≥ 1

max{|x|, |y|}, p = +∞.

For p ∈ {1,+∞}, X is not (UNS). So, J(X) = J⊥(X) = 2, g(X) = g⊥(X) = 1. Other-
wise (see [3]) by using for example the modulus of convexity, we obtain J(X) = max{21/p, 21−1/p}
and g(X) = min{21/p, 21−1/p}. Directly these values can be obtained by using Clarkson’s inequal-
ity and (respectively) the following pairs of orthogonal vectors: (0, 1), (1, 0) and (1/21/p, 1/21/p),
(−1/21/p, 1/21/p). Thus, we have J(X) = J⊥(X) and g(X) = g⊥(X).

Example 5.7. Let X = R2 endowed with the norm defined by

||(x, y)|| =

{
(|x|3 + |y|3)1/3, xy ≥ 0

|x|+ |y|, xy < 0.

According to [7], we have J(X) ≈ 1.5573 and g(X) = 2/J(X) ≈ 1.2843. For our parameters, we
have J⊥(X) = J(X); g⊥(X) ≈ 1.2987 > g(X). The calculations are not simple. We only indicate
here how the modulus of continuity behaves. Clearly δX(ε) = 0 if ε ≤ 21/3. For ε > 21/3, the graph
of δX is formed by two segments intersecting (approximately) at (1.55, 0.23) (the other extremes being
(1.26, 0) and (2, 0.23) ).

6. COMPARISON OF OUR PARAMETERS WITH THE OLD ONES

We collect a few properties concerning with the parameters g(X) and J(X). We always have

(6.5) 1 ≤ g(X) ≤ J(X) ≤ 2,

(6.6) g(X) J(X) = 2,

(6.7) g(X) =
√
2 ⇐⇒ J(X) =

√
2⇐⇒ g(X) = J(X)⇐⇒ g(X) = J(X) =

√
2,

(6.8) X is (UNS)⇐⇒ J(X) < 2⇐⇒ g(X) > 1,

(6.9) g(X) = J(X) =
√
2 if X is Hilbert;

the converse of the last statement is true if dim(X) >2, but not in general: see Example 5.3.

(6.10) It may happen that J(X) 6= J(X∗), g(X) 6= g(X∗).

Concerning (6.10), we can consider Example 5.4 and Example 5.5, namely X = R2 endowed
with the norm defined by

||(x, y)|| =

{√
x2 + y2, xy ≥ 0

|x|+ |y|, xy < 0
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and then X∗ = R2 endowed with the norm defined by

||(x, y)|| =

{√
x2 + y2, xy ≥ 0

max{|x|, |y|}, xy < 0.

Since X is reflexive, we see that passing to the dual the value of these parameters can both
increase or decrease.

The examples we have described in the previous section show that some of these properties
fail for g⊥(X) and J⊥(X). Now, we list the situation with some details.

(6.11) 1 ≤ g(X) ≤ g⊥(X) ≤ J⊥(X) ≤ J(X) ≤ 2.

This chain of inequalities strengthens (6.5); the only non trivial is the central one.
The proof is based on the following result (see [1, Theorem 6.6]).

Theorem 6.4. In every 2-dimensional normed plane, there exist x, y ∈ SX such that x ⊥ y and
||x− y|| = ||x+ y|| .
Theorem 6.5. In any space X , we have g⊥(X) ≤ J⊥(X).

Proof. It is enough to prove this for 2-dimensional X . Set for x ∈ SX
α⊥(x) = inf

{
max{||x± y||} : x ⊥ y; y ∈ SX

}
and

β⊥(x) = sup{min{||x± y||} : x ⊥ y; y ∈ SX}.
Of course g⊥(X) = inf{α⊥(x) : x ∈ SX} and J⊥(X) = sup{β⊥(x) : x ∈ SX}.
According to the Theorem 6.4, if dim(X) = 2, then there is a pair x0, y0 ∈ SX such that x0 ⊥ y0
and ||x0 − y0|| = ||x0 + y0|| = k. So, we have α⊥(x0) ≤ k ≤ β⊥(x0). Thus,

g⊥(X) ≤ α⊥(x0) ≤ k ≤ β⊥(x0) ≤ J⊥(X).

�

We note that given two different spaces X,Y we always have g(X) ≤ J(Y ), but our exam-
ples show that instead we can have g⊥(X) > J⊥(Y ).

(6.6): The analogue of (6.6) is not true for our parameters: for example, we have g⊥(X)J⊥(X) >
2 in Example 5.1.

(6.7): Example 5.2 shows that both g(X) 6= g⊥(X) and J(X) 6= J⊥(X) are possible.
(6.8) According to Theorem 3.2 and Theorem 4.3, we see that this result extends to g⊥(X)

and J⊥(X) giving new characterizations of (UNS) spaces.
(6.9) g(X) = J(X) =

√
2 implies g⊥(X) = J⊥(X) =

√
2, so this does not imply that X is

Hilbertian (see Example 5.3).
(6.10) We already noticed that the same results hold for our parameters.

7. BOUNDS CONCERNING THE NEW PARAMETERS

We know (see Example 5.2) that we can have g⊥(X) = 3/2 >
√
2. We can ask how large

g⊥(X) can be in general. Note that g(X) ≤ g⊥(X) ≤ J⊥(X) ≤ J(X) = 2/g(X), thus we have

(7.12) g(X) g⊥(X) ≤ 2 , J(X) J⊥(X) ≥ 2.

Consider the first inequality; in general it only gives g(X) ≤
√
2; it says that g(X) =

√
2 implies

g⊥(X) =
√
2. So, the equality (we already noticed this) holds. We know (Theorem 3.2) that

g⊥(X) ≤ −g
2(X) + 4g(X)− 2

2− g(X)
.
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The function on the right side increases with g ∈ [1,
√
2]. Since also g⊥(X) ≤ 2/g(X) (the

majorizing function is decreasing with g), we compute when we have

−g2(X) + 4g(X)− 2

2− g(X)
= 2/g(X) .

This happens for g(X) ≈ 1.194 and from this, we obtain g⊥(X) ≤ a ≈ 1.675. We can also
estimate

g⊥(X)− g(X) ≤ min
{2g(X)− 2

2− g(X)
;

2

g(X)
− g(X)

}
;

again we have
2g(X)− 2

2− g(X)
=

2

g(X)
− g(X)

if and only if g(X) ≈ 1.194. So, g⊥(X)− g(X) ≤ b ≈ 0.481.
Consider now J⊥(X). According to Theorem 4.3, we have

J⊥(X) ≥ 2J(X)− 2 ;

but also
J⊥(X) ≥ 2

J(X)
.

The first minorizing function is increasing and the second is decreasing. Moreover,

2J(X)− 2 =
2

J(X)

exactly for

J(X) =
1 +
√
5

2
;

so we have
J⊥(X) ≥

√
5− 1.

Also,

J(X)− J⊥(X) ≤ min
{
J(X)− (2J(X)− 2) ; J(X)− 2

J(X)

}
and since the two majorizing functions coincide for J(X) = 1+

√
5

2 , we obtain

J(X)− J⊥(X) ≤ 3−
√
5

2
≈ 0.382.

Also the estimates given in this section seem to be not so sharp; in fact for example J⊥(X) ≥
2J(X) − 2 implies J⊥(X) ≥

√
2 if J(X) ≥ 1 + 1/

√
2, but in our examples we have always

J⊥(X) ≥
√
2.
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On matching distance between eigenvalues of unbounded
operators
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ABSTRACT. Let A and Ã be linear operators on a Banach space having compact resolvents, and let λk(A) and
λk(Ã) (k = 1, 2, ...) be the eigenvalues taken with their algebraic multiplicities of A and Ã, respectively. Under some
conditions, we derive a bound for the quantity

md(A, Ã) := inf
π

sup
k=1,2,...

|λπ(k)(Ã)− λk(A)|,

where π is taken over all permutations of the set of all positive integers. That quantity is called the matching optimal
distance between the eigenvalues of A and Ã. Applications of the obtained bound to matrix differential operators are
also discussed.

Keywords: Banach space, perturbations of eigenvalues, matching distance, differential operator, tensor product of
Hilbert spaces.
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1. INTRODUCTION

Let X be a Banach space with the unit operator I = IX and norm ‖.‖. For a linear operator
B, σ(B) denotes the spectrum, B−1 is the inverse operator, Rz(B) = (B − zI)−1 (z 6∈ σ(B)) is
the resolvent, ‖B‖ is the operator norm, if B is bounded; B∗ is the adjoint operator, D(B) is the
domain and

d(B, z) := inf
s∈σ(B)

|s− z|, z ∈ C.

Throughout this paper, A and Ã are linear operators on X having compact resolvents. So A
and Ã can have root vectors and all their eigenspaces are finite dimensional.

Let λk(A) and λk(Ã) (k = 1, 2, ...) be the eigenvalues of A and Ã, respectively, enumerated
with their algebraic multiplicities taken into account. Introduce the following quantity (called
the matching optimal distance between the eigenvalues of A and Ã):

md(A, Ã) := inf
π

sup
i=1,2,...

|λπ(i)(Ã)− λi(A)|,

where π is taken over all permutations of the set of all positive integers.
Our definition of md(A, Ã) is a natural generalization of the well-known definition from the

perturbation theory of finite matrices [19, p. 167].
The present paper is devoted to estimating md(A, Ã). The perturbation theory of opera-

tors is very rich. The classical results are presented in the book [15], the recent results can be
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found in [1]-[5], [7, 8, 9], [11], [12, 13, 14, 18] and references, which are given therein, but to the
best of our knowledge, the matching optimal distance for infinite dimensional operators was
not investigated in the available literature although it is important for the localization of the
spectrum.

Below we suggest a bound for md(A, Ã) assuming that

(1.1) D(A) = D(Ã) and q := ‖A− Ã‖ <∞.

As a particular case, we consider a class of operators on the tensor product of a Hilbert space
and a finite dimensional one. We also discuss applications of our results to matrix differential
operators.

2. OPERATORS ON A BANACH SPACE

In the sequel, by λ̂k(A) (k = 1, 2, ...), we denote the distinct eigenvalues of A and assume
that

r0(A) := inf
j 6=k;j,k=1,2,...

|λ̂k(A)− λ̂j(A)|
2

> 0.

Since A has a compact resolvent, if σ(A) does not contain limit points, one can wait that this
condition holds. If σ(A) contains limit points, then r0(A) = 0.

Put rj := inf
k 6=j

|λ̂k(A)−λ̂j(A)|
2 , j = 1, 2, ...,

Ω(c, r) := {z ∈ C : |z − c| < r}, c ∈ C, r > 0

and
C(c, r) := {z ∈ C : |z − c| = r}, c ∈ C, r > 0.

By νk(A), we denote the algebraic multiplicity of each λ̂k(A).

Lemma 2.1. Let conditions (1.1) hold and for an integer j and a positive number r̂j ≤ rj , let

(2.2) q sup
z∈C(λ̂j(A),r̂j)

‖Rz(A)‖ < 1.

Then, Ã has in Ω(λ̂j(A), rj) eigenvalues whose total algebraic multiplicity is equal to νj(A).

Proof. This result is a particular case of the well-known one [15, Theorem IV.3.18]. �

Assume that

(2.3) ‖Rλ(A)‖ ≤ φ(1/d(A, λ)), for all λ 6∈ σ(A),

where φ(x) is a continuous monotonically increasing non-negative function of a non-negative
variable x, such that φ(0) = 0 and φ(∞) =∞.

Let conditions (1.1) and (2.3) hold, and let there be a positive number r̂0 ≤ r0(A), such that

(2.4) qφ(1/r̂0) < 1.

Then, σ(Ã) lies in the set ∪∞j=1Ω(λ̂j(A), r̂0). Indeed, assume that an eigenvalue λ̃ of Ã does not
belong to this set. Then for the eigenvalue λ̂j(A) ofA nearest to λ̃, we have t = |λ̃− λ̂j(A)| ≥ r̂j .
Thus

q‖Rλ̃(A)‖ ≤ qφ(1/t) ≤ qφ(1/r̂0) < 1.

According to [15, Theorem IV.1.16], λ̃ 6∈ σ(Ã). Hence, due to Lemma 2.1, we arrive at the
following result.
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Corollary 2.1. Let conditions (1.1) and (2.3) hold, and let there be a positive number r̂0 ≤ r0(A),
such that inequality (2.4) is fulfilled. Then, σ(Ã) lies in the set ∪∞j=1Ω(λ̂j(A), r̂0). Moreover, in each
Ω(λ̂j(A), r̂0) (j = 1, 2, ...) operator Ã has the eigenvalues, whose total algebraic multiplicity is equal to
νj(A), and therefore md(A, Ã) ≤ r̂0.

Denote by x(q) the unique positive root of the equation

(2.5) qφ(1/z) = 1.

Theorem 2.1. Let conditions (1.1) and (2.3) hold, and let x(q) < r0(A). Then

σ(Ã) ⊂ ∪∞j=1Ω(λ̂j(A), x(q)).

Moreover, the total algebraic multiplicity of the eigenvalues of Ã, lying in each Ω(λ̂j(A), x(q)) (j =

1, 2, ...) is equal to the algebraic multiplicity νj(A) of λ̂j(A), and consequently md(A, Ã) ≤ x(q).

Proof. Since φ is an increasing function, for any r̂0 ∈ (x(q), r0(A)), we have

qφ(1/r̂0) < qφ(1/x(q)) = 1.

So, inequality (2.4) is fulfilled. Now, making use of Corollary 2.1, we arrive at the required
result. �

3. OPERATORS ON THE TENSOR PRODUCT OF A HILBERT SPACE AND A FINITE DIMENSIONAL
ONE

Throughout this section, E is a separable Hilbert space with a scalar product 〈., .〉E and the
norm ‖.‖E =

√
〈., .〉E , Cn is the n-dimensional complex Euclidean space with a scalar product

〈., .〉n and the Euclidean norm ‖.‖n =
√
〈., .〉n. Recall the definition of the tensor product

H = E ⊗ Cn of E and Cn. To this end, consider the collection of all formal finite sums of the
form

u =
∑
j

yj ⊗ hj (yj ∈ E , hj ∈ Cn)

with the understanding that

λ(y ⊗ h) = (λy)⊗ h = y ⊗ (λh), (y + y1)⊗ h = y ⊗ h+ y1 ⊗ h,

y ⊗ (h+ h1) = y ⊗ h+ y ⊗ h1, y, y1 ∈ E ; h, h1 ∈ Cn; λ ∈ C.
On that collection define the scalar product as

〈h⊗ y, h1 ⊗ y1〉H = 〈y, y1〉E 〈h, h1〉n, y, y1 ∈ E ;h, h1 ∈ Cn

and the cross norm is defined by ‖.‖H =
√
〈., .〉H. Then, H is the completion of the considered

collection in the norm ‖.‖H. Besides, IH, IE and In are the unit operators in H, E and Cn,
respectively. From the theory of tensor products, we need only elementary facts which can be
found in [6].

Note that the class of operators with compact resolvents is closed under taking the tensor
product.

Everywhere below M is an n × n-matrix and S is a normal operator on E with a compact
resolvent. We will consider perturbations of the operator

(3.6) A = S ⊗ In + IE ⊗M.
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Let λ̂k(M) (k = 1, ...,m ≤ n) be the distinct eigenvalues of M with the algebraic multiplicities
νk(M) : λ̂k(M) 6= λ̂j(M) (j 6= k) and λ̂j(S) (j = 1, 2, ...) be the distinct eigenvalues of S with
multiplicities νj(S) :

S =

∞∑
j=1

λ̂j(S)Pj ,

where Pj are the (mutually orthogonal and finite dimensional) eigen-projections of S. Since

IE =

∞∑
k=1

Pk,

we have

A =

∞∑
k=1

λ̂k(S)Pk ⊗ In +M ⊗ IE =

∞∑
k=1

Pk ⊗ (λ̂k(S)In +M).

Hence

(A− zIH)−1 =

∞∑
k=1

Pk ⊗ ((λ̂k(S)− z)In +M)−1

and therefore,

(3.7) ‖(A− zIH)−1‖ = sup
k
‖((λ̂k(S)− z)In +M)−1‖n.

Here and below, ‖C‖n means the spectral matrix norm (the operator norm with respect to the
Euclidean vector norm) of a matrix C.

Any eigenvalue of A can be written as

λ̂jk(A) = λ̂j(S) + λ̂k(M), j = 1, 2...; k = 1, ...,m.

Assume that
r0(A) = inf{|λ̂j(S) + λ̂k(M)− λ̂j1(S)− λ̂k1(M)| :

(3.8) j 6= j1, k 6= k1; j, j1 = 1, 2, ...; k1, k = 1, ...,m} > 0.

Denote by ‖M‖F the Frobenius norm ofM : ‖M‖F := (trace M∗M)1/2. The following quantity
plays an essential role hereafter:

g(M) := [‖M‖2F −
m∑
k=1

νk(M)|λ̂k(M)|2]1/2.

The following properties of g(M) are checked in [10, Section 3.1]. If M is normal, then g(M) =
0. In addition,

(3.9) g(eitM + zIn) = g(M), t ∈ R; z ∈ C

and
g2(M) ≤ 2‖MI‖2F (MI = (M −M∗)/2i), and g2(M) ≤ ‖M‖2F − |trace M2|.

Due to [10, Theorem 3.2], for any n× n-matrix M , one has

(3.10) ‖Rλ(M)‖n ≤
n−1∑
k=0

gk(M)√
k!dk+1(M,λ)

, λ 6∈ σ(M).

This inequality is sharp: if M is normal, then g(M) = 0 and with 00 = 1 (3.10) is attained:
‖Rλ(M)‖n = 1

d(M,λ) .
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According to (3.7) and (3.10),

‖(A− zIH)−1‖H ≤ sup
j
‖((λ̂j(S)− z)In +M)−1‖n

≤ sup
j

n−1∑
k=0

gk(M)√
k!dk+1(M, z − λ̂j(S))

, z − λ̂j(S) 6∈ σ(M).

But
d(M, z − λ̂j(S)) ≥ inf

j,k
|z − λ̂jk(A)| = d(z,A).

Thus

(3.11) ‖(A− zIH)−1‖H ≤
n−1∑
k=0

gk(M)√
k!dk+1(A, z)

, z 6∈ σ(A).

So, we can take

φ(x) =

n−1∑
k=0

gk(M)xk+1

√
k!

.

Besides, equation (2.5) has the form

q

n−1∑
k=0

gk(M)

zk+1
√
k!

= 1.

This equation is equivalent to the equation

(3.12) zn = q

n−1∑
k=0

gk(A)√
k!

zn−k−1.

Now, Theorem 2.1 implies

Theorem 3.2. Let A be defined by (3.6), condition (3.8) hold and Ã be a closed operator onH satisfying
conditions (1.1). Let the unique positive root y(M, q) of (3.12) satisfy the inequality y(M, q) < r0(A),
where r0(A) is defined by (3.8). Then, md(A, Ã) ≤ y(A, q).

If M is normal, then g(M) = 0 and with 00 = 1, we have y(M, q) = q. Theorem 2.1 gives us
the inequality md(A, Ã) ≤ q, provided q < r0(A).

Now, let M be non-normal: g(M) 6= 0. Substitute z = g(M)w into (3.12). We obtain the
equation

(3.13) wn =
q

g(A)

n−1∑
k=0

1√
k!
wn−k−1.

Put

pn =

n−1∑
j=0

1√
k!
.

Due to [10, Lemma 3.17], the unique positive root w0 of equation (3.13) satisfies the inequality

w0 ≤
{ qpn

g(A) if qpn > g(A),

(qpn/g(A))1/n if qpn ≤ g(A).

But y(A, q) = w0g(A). This implies y(M, q) ≤ η(M, q), where

η(M, q) =

{
qpn if qpn > g(M),
g1−1/n(M)(qpn)1/n if qpn ≤ g(M).
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Now, Theorem 3.2 yields

Corollary 3.2. Let A be defined by (3.6), condition (3.8) hold and Ã be a closed operator on H, such
that (1.1) holds. If, in addition, η(M, q) < r0(A), then md(A, Ã) ≤ η(M, q).

Theorem 3.2 is based on the estimate (3.10). IfM is diagonalizable, i.e. there is a nonsingular
matrix W , such that W−1MW is a normal matrix, then

‖Rλ(M)‖ ≤ κ

d(M,λ)
,

where
κ = ‖W−1‖n‖W‖n, λ 6∈ σ(M).

According to (3.7), we obtain

‖Rλ(A)‖ ≤ κ

d(A, λ)
, λ 6∈ σ(A).

Equation (2.5) in the considered case takes the form qκ/z = 1 and thus x(q) = qκ. So, if M is
diagonalizable, then Theorem 2.1 implies

(3.14) md(A, Ã) ≤ qκ provided qκ < r0(A).

Some bounds for κ can be found, in particular, in [10, p.105].

4. DIFFERENTIAL OPERATORS WITH MATRIX COEFFICIENTS

Let L2
n = L2([0, 1],Cn) be the space of functions defined on [0, 1], with values in Cn and the

scalar product

〈f, h〉L2
n

=

∫ 1

0

〈f(x), h(x)〉ndx, f, h ∈ L2
n.

Let C(x) be an n× n-matrix continuously dependent on x. Consider the operators

(4.15) Ã = − d2

dx2
+ C(x)

and

(4.16) A = − d2

dx2
+M, x ∈ (0, 1)

with a constant n× n-matrix M and the domain

D(A) = D(Ã) = {u ∈ L2
n : u

′′
∈ L2

n : u(0) = u(1) = 0}.

For instance, one can take M = C(0) or M =
∫ 1

0
C(x)dx. Clearly,

q = ‖A− Ã‖L2
n
≤ sup

x
‖C(x)−M‖n.

Here, ‖A− Ã‖L2
n

is the operator norm in L2
n of A− Ã.

We haveL2
n = L2(0, 1)⊗Cn, whereL2(0, 1) is the standard complex space of scalar functions.

On D(S) = H2
0 (0, 1), i.e. on

D(S) = {u ∈ L2(0, 1) : u
′′
∈ L2(0, 1) : u(0) = u(1) = 0},

put S := − d2

dx2 . Since λ̂j(S) = π2j2 (j = 1, 2, ...) with νj(S) = 1, σ(A) consists of the eigenvalues
λjk(A) = π2j2 + λ̂k(M) (j = 1, 2, ... ; k = 1, ...,m), and the algebraic multiplicity of λ̂jk(A) is
equal to νk(M). Let

δ(M) := inf{|π2(j2 − j21) + λ̂k(M)− λ̂k1(M)| :
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j 6= j1, k1 6= k; j, j1 = 1, 2, ...; k, k1 = 1, ...,m} > 0.

Then, r0(A) = δ(M) > 0. Now, Corollary 3.2 yields

Corollary 4.3. Let Ã and A be defined by (4.16) and (4.15), δ(M) > 0 and η(M, q) < δ(M). Then,
md(A, Ã) ≤ η(M, q).

In particular, from this corollary, it follows that

σ(Ã) ⊂
⋃

j=1,2,...; k=1,...,m

Ω(π2j2 + λ̂k(M), η(M, q)),

provided η(M, q) < δ(M). If M is diagonalizable, then one can apply inequality (3.14).
For the recent results on the spectra of differential operators see, for instance, the works

[16, 17, 20] and the references given therein.

5. ELLIPTIC OPERATORS

Let ω = [0, 1]2 and L2(ω) be the space of complex-valued functions defined on ω, with the
scalar product

〈f, h〉L2(ω) =

∫ 1

0

∫ 1

0

f(x, y)h(x, y)dxdy, f, h ∈ L2(ω).

Let c(x, y) be a complex continuous function and

R :=
∂2

∂x2
+ a

∂2

∂y2
, 0 ≤ x, y ≤ 1, a ∈ C.

Consider the operators A and Ã defined by

(5.17) (Ãf)(x, y) = (Rf)(x, y) + c(x, y)f(x, y)

and

(5.18) (Af)(x, y) = (Rf)(x, y) + c0f(x, y), x, y ∈ (0, 1), f ∈ D(A)

with a constant c0 ∈ C and the domain

D(A) = {u ∈ L2(ω) : Ru ∈ L2(ω) : u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0; 0 ≤ x, y ≤ 1}.
Clearly,

q = ‖A− Ã‖L2(ω) ≤ sup
x,y
|c(x, y)− c0|.

Here, ‖A − Ã‖L2(ω) is the operator norm in L2(ω) of A − Ã. The eigenfunctions of A are
sin(πjx) sin(πky) and σ(A) consists of the simple eigenvalues λjk(A) = π2(j2 + ak2) + c0
(j, k = 1, 2, ...). Assume that

δ(R) := inf{|π2(j2 + ak2 − j21 − ak21)| : j1 6= j, k1 6= k; j, j1, k, k1 = 1, 2, ...} > 0.

Then, r0(A) = δ(R) > 0. For example, if a is imaginary, then δ(R) ≥ 3π2(1 + |a|). Omitting
simple calculations, under consideration, we obtain

‖(A− λI)−1‖L2(ω) ≤
1

d(A, λ)
.

Now, Theorem 2.1 yields

Corollary 5.4. Let Ã and A be defined by (5.17) and (5.18), and δ(R)>q. Then, md(A, Ã) ≤ q.

Similarly, making use of Corollary 3.2, one can consider elliptic operators with matrix coef-
ficients.
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