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Abstract. In this paper, a new class of generalized separation axioms (briefly,
g-Tg-separation axioms) whose elements are called g-Tg,K, g-Tg,F, g-Tg,H,
g-Tg,R, g-Tg,N-axioms is defined in terms of generalized sets (briefly, g-Tg-sets)
in generalized topological spaces (briefly, Tg-spaces) and the properties and
characterizations of a Tg-space endowed with each such g-Tg,K, g-Tg,F, g-Tg,H,
g-Tg,R, g-Tg,N-axioms are discussed. The study shows that g-Tg,F-axiom im-
plies g-Tg,K-axiom, g-Tg,H-axiom implies g-Tg,F-axiom, g-Tg,R-axiom implies
g-Tg,H-axiom, and g-Tg,N-axiom implies g-Tg,R-axiom. Considering the Tg,K,
Tg,F, Tg,H, Tg,R, Tg,N-axioms as their analogues but defined in terms of cor-
responding elements belonging to the class of open, closed, semi-open, semi-
closed, preopen, preclosed, semi-preopen, and semi-preclosed sets, the study
also shows that the statement Tg,α-axiom implies g-Tg,α-axiom holds for each
α ∈ {K,F,H,R,N}. Diagrams expose the various implications amongst the
classes presented here and in the literature, and a nice application supports
the overall theory.

1. Introduction

Whether it concerns the theory of T -spaces or Tg-spaces, the idea of adding a
Tα or a g-Tα-axiom1 (with α = 0, 1, 2, . . .) to the axioms for a T -space T = (Ω, T )
to obtain a T (α)-space T(α) =

(
Ω, T (α)

)
or a g-T (α)-space g-T(α) =

(
Ω, g-T (α)

)
or,

the idea of adding a Tg,α or a g-Tg,α-axiom (with α = 0, 1, 2, . . .) to the axioms
for a Tg-space Tg = (Ω, Tg) to obtain a T (α)

g -space T
(α)
g =

(
Ω, T (α)

g

)
or a g-T (α)

g -
space g-T(α)

g =
(
Ω, g-Tg(α)

)
has never played little role in Generalized Topology and

Abstract Analysis [1, 2, 3]. Because the defining attributes of a T -space in terms
of a collection of T -open or g-T -open sets or a Tg-space in terms of a collection

Date: Received: 2021-07-25; Accepted: 2022-03-01.
2000 Mathematics Subject Classification. 54A05; 54D10, 54D15.
Key words and phrases. Generalized topological space, Generalized separation axioms, Gener-

alized sets.
1Notes to the reader: The notations Tα-axiom and g-Tα-axiom (with α = 0, 1, 2, . . .),

founded upon the notions of T -open and g-T -open sets, respectively, designate an ordinary and
a generalized separation axioms for a T -space T = (Ω, T ); the notations Tg,α-axiom and g-Tg,α-
axiom (with α = 0, 1, 2, . . .), founded upon Tg-open and g-Tg-open sets, respectively, designate
an ordinary and a generalized separation axioms for a Tg-space Tg = (Ω, Tg).

1
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2 M. I. KHODABOCUS AND N. UL-. H. SOOKIA

of Tg-open or g-Tg-open sets, respectively, does little to guarantee that the points
in the T -space T or the Tg-space Tg are somehow distinct or far apart. The more
types and categories of Tα or g-Tα-axioms or g-Tα or g-Tg,α-axioms (with α = 0,
1, 2, . . .) are added to the axioms for a T -space or a Tg-space, respectively, the
greater the role they will play in any topological endeavours [4, 5, 6, 7, 8]. For
instance, for a sequence

⟨
g-Tg,α, g-Tg,β , g-Tg,γ

⟩
(with α, β, γ = 0, 1, 2, . . .), the

g-Tg,α, g-Tg,β and g-Tg,γ-axioms can be arranged in increasing order of strength
in the sense that g-Tg,γ implies g-Tg,β and the latter implies g-Tg,α.

In the literature of T -spaces and Tg-spaces, respectively, several classes of Tα,
g-Tα-axioms, founded upon the concepts of T , g-T -open sets, and Tg,α, g-Tg,α-
axioms (with α = 0, 1, 2, . . .), founded upon the concepts of Tg, g-Tg-open sets,
have been introduced and studied [9, 10, 11, 12, 13, 14, 15, 16]. The Tα-axioms
called TKolmogorov, TFrchet, THausdorff , TRegular, and TNormal-axioms (shortly, TK,
TF, TH, TR, and TN), founded upon the concepts of T -open, closed sets, are
four classical examples, among others, which have gained extensive studies [17].
The g-Tα-axioms called generalized Tα, Sβ-axioms (with α = 0, 1, 2; β = 1, 2),
founded upon g-T -open sets instead of T -open sets, are five examples of generalized
Tα-axioms which have been discussed in the paper of [18]; the g-Tg,α-axioms called
generalized Tα

8
-axioms (with α = 2, 3, 4), founded upon g-Tg-open sets instead

of Tg-open sets, are three examples of generalized Tg,α-axioms which have been
introduced and studied by [19]. Several other classes of Tα, g-Tα-axioms for T -
spaces and Tg,α, g-Tg,α-axioms for Tg-spaces (with α = 0, 1, 2, . . .) have also been
introduced and discussed in many papers [20, 21, 15, 3, 22, 23].

In view of the above references, we remark that the quintuple sequence
⟨
Tα

⟩
α∈Λ

,
where Λ =

{
K,F,H,R,N

}
, is based on the notions of T -open, closed sets. From this

remark and the conclusion drawn by [18], it is no error to state that
⟨
g-Tα

⟩
α∈Λ

are based on the notions of g-T -open, closed sets;
⟨
Tg,α

⟩
α∈Λ

on the notions of
Tg-open, closed sets, and

⟨
g-Tg,α

⟩
α∈Λ

on the notions of g-Tg-open, closed sets.
Thus, the idea of adding a quintuple sequence

⟨
g-Tg,α

⟩
α∈Λ

of g-Tg,α-axioms (with
Λ =

{
K,F,H,R,N

}
), founded upon a new class of g-Tg-open, closed sets, to the

axioms for a Tg-space Tg = (Ω, Tg) to obtain a corresponding sequence
⟨
g-T(α)

g =(
Ω, g-Tg(α)

)⟩
α∈Λ

of g-T (α)
g -spaces might be an interesting subject of inquiry.

Hitherto, the introduction of several types of Tα and g-Tα-axioms in T -spaces
and Tg,α and g-Tg,α-axioms (with α = 0, 1, 2, . . .) in Tg-spaces have contributed
extensively to the geometrical specifications of T -spaces and Tg-spaces. However,
despite these contributions not a single work has been devoted to the generalization
of the sequence

⟨
Tα

⟩
α∈Λ

in terms of the notions of g-T -open, closed sets. With
this view in mind, the idea therefore suggests itself, of introducing the generalized
versions of the Kolmogorov, Fréchet, Hausdorff, Regular and Normal separation
axioms in terms of the notions of g-T -open, closed sets in a Tg-space, adequate for
the obtention of g-T g-spaces in this direction.

In this paper, we attempt to make a contribution to such a development by
introducing a new theory, called Theory of g-Tg-Separation Axioms, in which it
is presented the generalized version of the sequence

⟨
Tα

⟩
α∈Λ

in terms of the no-
tions of g-T -open, closed sets, discussing the fundamental properties and giving
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characterizations of its elements, on this ground and with respect to existing works
[?, 14].

The paper is organised as follows: In Sect. 2, preliminary notions are described
in Sect. 2.1 and the main results of the g-Tg,α-axioms in a Tg-space are reported
in Sect. 3. In Sect. 4, the establishment of the various relationships between
these g-Tg,α-axioms are discussed in Sect. 4.1. To support the work, a nice
application of the g-Tg,α-axioms in a Tg-space is presented in Sect. 4.2. Finally,
Sect. 5 provides concluding remarks and future directions of the g-Tg,α-axioms in
a Tg-space.

2. Theory

2.1. Preliminaries. Though foreign terms are neatly defined in [30], we thought
it necessary to recall some basic definitions and notations of most essential concepts
presented in [30].

The set U represents the universe of discourse, fixed within the framework of
the theory of g-Tg-separation axioms and containing as elements all sets (T , g-T ,
T, g-T-sets; Tg, g-Tg, Tg, g-Tg-sets) considered in this theory, and I0n

def
=

{
ν ∈

N0 : ν ≤ n
}

; index sets I0∞, I∗n, I∗∞ are defined in an analogous way. Granted
Ω ⊂ U, P (Ω)

def
=

{
Og,ν : Og,ν ⊆ Ω

}
denotes the family of all subsets Og,1,

Og,2, . . ., of Ω. A one-valued map of the type Tg : P (Ω) −→ P (Ω) satisfying
Tg (∅) = ∅, Tg (Og) ⊆ Og, and Tg

(∪
ν∈I∗

∞
Og,ν

)
=

∪
ν∈I∗

∞
Tg (Og,ν) is called a g-

topology on Ω, and the structure Tg
def
= (Ω, Tg) is called a Tg-space, on which a

quintuple sequence
⟨
g-Tg,α

⟩
α∈Λ

of g-Tg,α-axioms (with Λ =
{
K,F,H,R,N

}
) will

be discussed [24, 25, 26].
The operator clg : P (Ω) −→ P (Ω) carrying each Tg-set Sg ⊂ Tg,Ω into its

closure clg (Sg) = Tg − intg (Tg \ Sg) ⊂ Tg is termed a g-closure operator and the
operator intg : P (Ω) −→ P (Ω) carrying each Tg-set Sg ⊂ Tg into its interior
intg (Sg) = Tg− clg (Tg \ Sg) ⊂ Tg is called a g-interior operator. Let { : P (Ω) −→
P (Ω) denotes the absolute complement with respect to the underlying set Ω ⊂ U,
and let Sg ⊂ Tg be any Tg-set. The classes

Tg
def
=

{
Og ⊂ Tg : Og ∈ Tg

}
,

¬Tg
def
=

{
Kg ⊂ Tg : {Λ (Kg) ∈ Tg

}
,(2.1)

respectively, denote the classes of all Tg-open and Tg-closed sets relative to the
g-topology Tg, and the classes

Csub
Tg

[Sg]
def
=

{
Og ∈ Tg : Og ⊆ Sg

}
,

Csup
¬Tg,

[Sg]
def
=

{
Kg ∈ ¬Tg : Kg ⊇ Sg

}
,(2.2)

respectively, denote the classes of Tg-open subsets and Tg-closed supersets (comple-
ments of the Tg-open subsets) of the Tg-set Sg ⊂ Tg relative to the g-topology Tg.
To this end, the g-closure and the g-interior of a Tg-set Sg ⊂ Tg in a Tg-space [27]
define themselves as

intg (Sg)
def
=

∪
Og∈Csub

Tg
[Sg]

Og, clg (Sg)
def
=

∩
Kg∈Csup

¬Tg
[Sg]

Kg.(2.3)
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Throughout this paper, the composition operators clg ◦ intg (·), intg ◦ clg (·), and
clg ◦ intg ◦ clg (·), respectively, stand for the functionals clg (intg (·)), intg (clg (·)),
and clg (intg (clg (·))); other composition operators are defined similarly. Further-
more, the backslash Tg \ Sg refers to the set-theoretic difference Tg − Sg. The
mapping opg : P (Ω) −→ P (Ω) is called a g-operation on P (Ω) if the following
statements hold:

∀Sg ∈ P (Ω) \
{
∅
}
, ∃ (Og,Kg) ∈ Tg \

{
∅
}
× ¬Tg \

{
∅
}
:(

opg (∅) = ∅
)
∨
(
¬ opg (∅) = ∅

)
,
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
,(2.4)

where ¬ opg : P (Ω) −→ P (Ω) is called the ”complementary g-operation” on P (Ω)

and, for all Tg-sets Sg, Sg,ν , Sg,µ ∈ P (Ω) \
{
∅
}

, the following axioms are satisfied:
• Ax. i.

(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
,

• Ax. ii.
(
opg (Sg) ⊆ opg ◦ opg (Og)

)
∨
(
¬ opg (Sg) ⊇ ¬ opg ◦¬ opg (Kg)

)
,

• Ax. iii.
(
Sg,ν ⊆ Sg,µ −→ opg (Og,ν) ⊆ opg (Og,µ)

)
∨
(
Sg,µ ⊆ Sg,ν ←−

¬ opg (Kg,µ) ⊇ ¬ opg (Kg,ν)
)
,

• Ax. iv.
(
opg

(∪
σ=ν,µ Sg,σ

)
⊆

∪
σ=ν,µ opg (Og,σ)

)
∨
(
¬ opg

(∪
σ=ν,µ Sg,σ

)
⊇∪

σ=ν,µ ¬ opg (Kg,σ)
)
,

for some Tg-open sets Og, Og,ν , Og,µ ∈ Tg \
{
∅
}

and Tg-closed sets Kg, Kg,ν ,
Kg,µ ∈ ¬Tg [28, 29]. The class Lg

[
Ω
]
= Lω

g

[
Ω
]
× Lκ

g

[
Ω
]
, where

Lg

[
Ω
] def
=

{
opg,νµ (·) =

(
opg,ν (·) ,¬ opg,µ (·)

)
: (ν, µ) ∈ I03 × I03

}
(2.5)

in the Tg-space Tg, stands for the class of all possible g-operators and their com-
plementary g-operators in the Tg-space Tg. Its elements are defined as:

opg (·) ∈ Lω
g

[
Ω
] def
=

{
opg,0 (·) , opg,1 (·) , opg,2 (·) , opg,3 (·)

}
=

{
intg (·) , clg ◦ intg (·) , intg ◦ clg (·) , clg ◦ intg ◦ clg (·)

}
;

¬ opg (·) ∈ Lκ
g

[
Ω
] def
=

{
¬ opg,0 (·) , ¬ opg,1 (·) , ¬ opg,2 (·) , ¬ opg,3 (·)

}
=

{
clg (·) , intg ◦ clg (·) , clg ◦ intg (·) , intg ◦ clg ◦ intg (·)

}
.(2.6)

A Tg-set Sg ⊂ Tg in a Tg-space is called a g-Tg-set if and only if there exist a pair
(Og,Kg) ∈ Tg×¬Tg of Tg-open and Tg-closed sets, and a g-operator opg (·) ∈ Lg

[
Ω
]

such that the following statement holds:

(∃ξ)
[
(ξ ∈ Sg) ∧

((
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

))]
.(2.7)

The g-Tg-set Sg ⊂ Tg is said to be of category ν if and only if it belongs to the
following class of g-ν-Tg-sets:

g-ν-S
[
Tg

] def
=

{
Sg ⊂ Tg :

(
∃Og,Kg,opg,ν (·)

)
[(
Sg ⊆ opg,ν (Og)

)
∨
(
Sg ⊇ ¬ opg,ν (Kg)

)]}
.(2.8)

It is called a g-ν-Tg-open set if it satisfies the first property in g-ν-S
[
Tg

]
and a

g-ν-Tg-closed set if it satisfies the second property in g-ν-S
[
Tg

]
. The classes of
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g-ν-Tg-open and g-ν-Tg-closed sets, respectively, are defined by

g-ν-O
[
Tg

] def
=

{
Sg ⊂ Tg :

(
∃Og,opg,ν (·)

) [
Sg ⊆ opg,ν (Og)

]}
,

g-ν-K
[
Tg

] def
=

{
Sg ⊂ Tg :

(
∃Kg,opg,ν (·)

) [
Sg ⊇ ¬ opg,ν (Kg)

]}
.

(2.9)
From these classes, the following relation holds:

g-S
[
Tg

]
=

∪
ν∈I0

3
g-ν-S

[
Tg

]
=

∪
ν∈I0

3

(
g-ν-O

[
Tg

]
∪ g-ν-K

[
Tg

])
=

(∪
ν∈I0

3
g-ν-O

[
Tg

])
∪
(∪

ν∈I0
3
g-ν-K

[
Tg

])
= g-O

[
Tg

]
∪ g-K

[
Tg

]
.(2.10)

When the subscript g are omitted in almost all symbols of the above definitions,
very similar definitions are derived but in a T -space.

A T-set S ⊂ T in a T -space is called a g-T-set if and only if there exists a pair
(O,K) ∈ T ×¬T of T -open and T -closed sets, and an operator op (·) ∈ L

[
Ω
]

such
that the following statement holds:

(∃ξ)
[
(ξ ∈ S) ∧

(
(S ⊆ op (O)) ∨ (S ⊇ ¬ op (K))

)]
.(2.11)

The g-T-set S ⊂ T is said to be of category ν if and only if it belongs to the
following class of g-ν-T -sets:

g-ν-S
[
T
] def
=

{
S ⊂ T : (∃O,K,opν (·))[
(S ⊆ opν (O)) ∨ (S ⊇ ¬ opν (K))

]}
.(2.12)

It is called a g-ν-T-open set if it satisfies the first property in g-ν-S
[
T
]

and a g-ν-T-
closed set if it satisfies the second property in g-ν-S

[
T
]
. The classes of g-ν-T-open

and g-ν-T-closed sets, respectively, are defined by

g-ν-O
[
T
] def

=
{
S ⊂ T : (∃O,opν (·))

[
S ⊆ opν (O)

]}
,

g-ν-K
[
T
] def

=
{
S ⊂ T : (∃K,opν (·))

[
S ⊇ ¬ opν (K)

]}
.(2.13)

The following relations are immediate consequences of the above definitions:
g-S

[
T
]

=
∪

ν∈I0
3
g-ν-S

[
T
]

=
∪

ν∈I0
3

(
g-ν-O

[
T
]
∪ g-ν-K

[
T
])

=
(∪

ν∈I0
3
g-ν-O

[
T
])
∪
(∪

ν∈I0
3
g-ν-K

[
T
])

= g-O
[
T
]
∪ g-K

[
T
]
.(2.14)

The classes O [Tg] and K [Tg] denote the families of Tg-open and Tg-closed sets,
respectively, in Tg, with S [Tg] = O [Tg]∪K [Tg]; the classes O [T] and K [T] denote
the families of T-open and T-closed sets, respectively, in T, with S [T] = O [T]∪K [T].

In regard to the above descriptions, by a g-Tg-open set and a g-Tg-closed set are
meant a Tg-open set Og ∈ Tg and a Tg-closed set Kg ∈ ¬Tg satisfying Og ⊆ opg (Og)
and Kg ⊇ ¬ opg (Kg), respectively. Likewise, by a g-Tg-open set of category ν and
a g-Tg-closed set of category ν are meant a Tg-open set Og ∈ Tg and a Tg-closed



6 M. I. KHODABOCUS AND N. UL-. H. SOOKIA

set Kg ∈ ¬Tg satisfying Og ⊆ opg,ν (Og) and Kg ⊇ ¬ opg,ν (Kg), respectively; g-Tg-
sets of category ν will be called g-ν-Tg-sets. We are now in a position to present
a carefully chosen set of terms used in the theory of g-Tg-separation axioms in
Tg-spaces.

Agreed to let
⟨
g-Tg,α

⟩
α∈Λ

denote a sequence of g-Tg,α-axioms, indexed by the
set Λ

def
=

{
K,F,H,R,N

}
, throughout the present paper, the sequence

⟨
g-T(α)

g =(
Ω, g-T (α)

g

)⟩
α∈Λ

will stand for the resulting sequence of g-T (α)
g -spaces, obtained

after endowing a Tg-space Tg =
(
Ω, Tg

)
with

⟨
g-Tg,α

⟩
α∈Λ

. Hence, the definition
follows.
Definition 2.1 (g-T (α)

g -Space). A Tg-space Tg = (Ω, Tg) endowed with a g-Tg,α-
axiom is called a g-T (α)

g -space g-T(α)
g

def
=

(
Ω, g-T (α)

g

)
.

The elements of
⟨
g-Tg,α

⟩
α∈Λ

concern the separation of points, points from g-Tg-
open sets, and g-Tg-open sets from each other. They are nicely discussed through
the notions of pairwise disjoint points and g-T g-sets in a Tg-space Tg. We let
(Og,ξ,Kg,ξ) ∈ Tg × ¬Tg denote a pair of Tg-open and Tg-closed sets containing the
point ξ ∈ Tg and let

(
Og,Sg

,Kg,Sg

)
∈ Tg × ¬Tg denote either a pair of Tg-open

and Tg-closed subsets or supersets of the set Sg ∈ Tg, and consider the following
definition.
Definition 2.2 (ξ, Sg-Pairwise Disjoint). Let Tg = (Ω, Tg) be a Tg-space. For
some σ ≥ 0 and Sg ⊇ ∅, the families

g-FP [σ]
def
=

{
(ξ, ζ) ∈ Tg × Tg : Ng (ξ, ζ) ≥ σ

}
,

g-ν-FO [Sg]
def
=

{
(Og,ξ,Og,ζ) ∈ Tg × Tg :

∩
λ=ξ,ζ opg,ν

(
Og,λ

)
⊆ Sg

}
,

g-ν-FK [Sg]
def
=

{
(Kg,ξ,Kg,ζ) ∈ ¬Tg × ¬Tg : Sg ⊇

∩
λ=ξ,ζ¬ opg,ν

(
Kg,λ

)}
,

(2.15)
respectively, denote the collections of pairwise points, and g-T g-open and g-T g-
closed sets of category ν in Tg. They form the collections of pairwise distinct points,
and pairwise disjoint g-T g-open and g-T g-closed sets of category ν whenever σ > 0
and Sg = ∅, respectively.

Granted g-FP [σ], g-ν-FO [Sg], and g-ν-FK [Sg], the elements of
⟨
g-ν-Tg,α

⟩
α∈Λ

may well be stated as thus:
Definition 2.3 (

⟨
g-ν-Tg,α

⟩
α∈Λ

-Axioms). Let Tg = (Ω, Tg) be a Tg-space and sup-
pose g-FP [σ], and g-ν-FO [Sg] ⊆ Tg × Tg and g-ν-FK [Sg] ⊆ ¬Tg × ¬Tg be given,
where σ ≥ 0 and Sg ⊇ ∅. Then:

• i. g-ν-Tg,K-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0], there exists a pair
(Og,ξ,Og,ζ) ∈ g-ν-FO

[
Sg ⊃ ∅

]
such that:[(

ξ ∈ opg,ν
(
Og,ξ

))
∧
(
ζ /∈ opg,ν

(
Og,ξ

))]
∨
[(
ξ /∈ opg,ν

(
Og,ζ

))
∧
(
ζ ∈ opg,ν

(
Og,ζ

))]
.(2.16)

• ii. g-ν-Tg,F-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0], there exists a pair
(Og,ξ,Og,ζ) ∈ g-ν-FO

[
Sg ⊃ ∅

]
such that:[

(ξ, ζ) ∈ λ=ξ,ζ opg,ν (Og,λ)
]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ opg,ν (Og,λ)

]
.(2.17)



THEORY OF GENERALIZED SEPARATION AXIOMS 7

• iii. g-ν-Tg,H-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0], there exists a pair
(Og,ξ,Og,ζ) ∈ g-ν-FO

[
∅
]

such that:[
ξ ∈ opg,ν (Og,ξ)

]
∧
[
ζ ∈ opg,ν (Og,ζ)

]
.(2.18)

• iv. g-ν-Tg,R-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈
g-ν-FK

[
∅
]

such that (ζ, ξ) /∈ (Kg,ξ,Kg,ζ), there exists a pair (Og,ξ,Og,ζ) ∈
g-ν-FO

[
∅
]

such that:[(
¬ opg,ν (Kg,ξ) ⊂ opg,ν (Og,ξ)

)
∧
(
ζ ∈ opg,ν (Og,ζ)

)]
∨
[(
¬ opg,ν (Kg,ζ)

⊂ opg,ν (Og,ζ)
)
∧
(
ξ ∈ opg,ν (Og,ξ)

)]
.(2.19)

• v. g-ν-Tg,N-Axiom: For every (Kg,ξ,Kg,ζ) ∈ g-ν-FK [∅], there exists a pair
(Og,ξ,Og,ζ) ∈ g-ν-FO [∅] such that:[
opg,ν (Og,ξ) ⊃ ¬ opg,ν (Kg,ξ)

]
∧
[
opg,ν (Og,ζ) ⊃ ¬ opg,ν (Kg,ζ)

]
.(2.20)

Granted
⟨
g-ν-Tg,α

⟩
α∈Λ

, we form
⟨
g-Tg,α

⟩
α∈Λ

def
=

⟨∨
ν∈I0

3
g-ν-Tg,α

⟩
α∈Λ

, and de-
fine the g-Tg,K, g-Tg,F, g-Tg,H, g-Tg,R, and g-Tg,N-axioms as thus.

Definition 2.4 (
⟨
g-Tg,α

⟩
α∈Λ

-Axioms). Let Tg = (Ω, Tg) be a Tg-space and let
g-FP [σ], g-FO [Sg] =

∪
ν∈I0

3
g-ν-FO [Sg] ⊆ Tg × Tg, g-FK [Sg] =

∪
ν∈I0

3
g-ν-FK [Sg]

⊆ ¬Tg × ¬Tg be given, where σ ≥ 0 and Sg ⊇ ∅. Then:
• i. g-Tg,K-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈
g-FO

[
Sg ⊃ ∅

]
such that:[(

ξ ∈ opg
(
Og,ξ

))
∧
(
ζ /∈ opg

(
Og,ξ

))]
∨
[(
ξ /∈ opg

(
Og,ζ

))
∧
(
ζ ∈ opg

(
Og,ζ

))]
.(2.21)

• ii. g-Tg,F-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0], there exists a pair
(Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[

(ξ, ζ) ∈ λ=ξ,ζ opg (Og,λ)
]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ opg (Og,λ)

]
.(2.22)

• iii. g-Tg,H-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0], there exists a pair
(Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[
ξ ∈ opg (Og,ξ)

]
∧
[
ζ ∈ opg (Og,ζ)

]
.(2.23)

• iv. g-Tg,R-Axiom: For every (ξ, ζ) ∈ g-FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈
g-FK

[
∅
]

such that (ζ, ξ) /∈ (Kg,ξ,Kg,ζ), there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
ζ ∈ opg (Og,ζ)

)]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ ∈ opg (Og,ξ)

)]
.(2.24)

• v. g-Tg,N-Axiom: For every (Kg,ξ,Kg,ζ) ∈ g-FK [∅], there exists a pair
(Og,ξ,Og,ζ) ∈ g-FO [∅] such that:[

opg (Og,ξ) ⊃ ¬ opg (Kg,ξ)
]
∧
[
opg (Og,ζ) ⊃ ¬ opg (Kg,ζ)

]
.(2.25)

In the following sections, the main results of the theory of g-Tg-maps are pre-
sented.
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3. Main Results

A necessary and sufficient condition for a Tg-space Tg =
(
Ω, Tg

)
to be a g-T (K)

g -
space g-T(K)

g =
(
Ω, g-T (K)

g

)
may be given in terms of the complementary g-operator

¬ opg : P (Ω) −→ P (Ω) and any pairs ({ξ} , {ζ}) ⊂ Tg × Tg of unit sets.

Theorem 3.1. A Tg-space Tg =
(
Ω, Tg

)
is said to be a g-T (K)

g -space g-T(K)
g =(

Ω, g-T (K)
g

)
if and only if the following condition holds:
¬ opg ({ξ}) ̸= ¬ opg ({ζ}) ∀ (ξ, ζ) ∈ g-FP [σ > 0] .(3.1)

Proof. Necessity. Let the Tg-space Tg be a g-T (K)
g -space g-T(K)

g . Then, for every
(ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[(

ξ ∈ opg
(
Og,ξ

))
∧
(
ζ /∈ opg

(
Og,ξ

))]
∨
[(
ξ /∈ opg

(
Og,ζ

))
∧
(
ζ ∈ opg

(
Og,ζ

))]
.

Consequently,[(
ξ /∈ {

(
opg

(
Og,ξ

)))
∧
(
ζ ∈ {

(
opg

(
Og,ξ

)))]
∨
[(
ξ ∈ {

(
opg

(
Og,ζ

)))
∧
(
ζ /∈ {

(
opg

(
Og,ζ

)))]
,

implying {
(
opg

(
Og,ξ

))
, {

(
opg

(
Og,ζ

))
∈ g-K

[
Tg

]
, respectively, are g-Tg-closed sets

containing ζ ∈ Tg and ξ ∈ Tg. Thus, there exists (Kg,ξ,Kg,ζ) ∈ ¬Tg × ¬Tg such
that {

(
opg

(
Og,ξ

))
⊇ ¬ opg

(
Kg,ζ

)
and {

(
opg

(
Og,ζ

))
⊇ ¬ opg

(
Kg,ξ

)
. But, for every

λ ∈ {ξ, ζ}, { ({λ}) ⊇ {
(
opg ({λ})

)
⊇ {

(
opg

(
Og,λ

))
and ¬ opg

(
Kg,λ

)
⊇ ¬ opg ({λ}).

Therefore, { ({ξ}) ⊇ ¬ opg ({ζ}) and { ({ζ}) ⊇ ¬ opg ({ξ}). Since, { ({ξ}) ̸= { ({ζ}),
it follows that ¬ opg ({ξ}) ̸= ¬ opg ({ζ}).

Sufficiency. Conversely, suppose the condition ¬ opg ({ξ}) ̸= ¬ opg ({ζ}) holds
for every (ξ, ζ) ∈ g-FP [σ > 0]. Then there exists η ∈ Tg such that[(

η ∈ ¬ opg ({ξ})
)
∧
(
η /∈ ¬ opg

(
{ζ}

))]
∨
[(
η /∈ ¬ opg

(
{ξ}

))
∧
(
η ∈ ¬ opg ({ζ})

)]
.

If
[
ξ ∈ ¬ opg ({ζ})

]
∧
[
ζ ∈ ¬ opg

(
{ξ}

)]
, then[

¬ opg ({ξ}) ⊆ ¬ opg ({ζ})
]
∧
[
¬ opg ({ζ}) ⊆ ¬ opg ({ξ})

]
.

Consequently,[(
η ∈ ¬ opg ({ζ})

)
∧
(
η /∈ ¬ opg

(
{ζ}

))]
∨
[(
η /∈ ¬ opg

(
{ξ}

))
∧
(
η ∈ ¬ opg ({ξ})

)]
.

This is a contradiction; hence,
[
ξ /∈ ¬ opg ({ζ})

]
∧
[
ζ /∈ ¬ opg

(
{ξ}

)]
, implying[

ξ ∈ {
(
¬ opg ({ζ})

)]
∧
[
ζ ∈ {

(
¬ opg

(
{ξ}

))]
.

Since {
(
¬ opg ({ζ})

)
, {

(
¬ opg

(
{ξ}

))
∈ g-O

[
Tg

]
, respectively, are g-Tg-open sets

containing ξ ∈ Tg and ζ ∈ Tg, there exists (Og,ξ,Og,ζ) ∈ Tg × Tg such that
{
(
¬ opg ({ζ})

)
⊆ opg

(
Og,ξ

)
and {

(
¬ opg ({ξ})

)
⊆ opg

(
Og,ζ

)
. Hence, for every

(ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[(

ξ ∈ opg
(
Og,ξ

))
∧
(
ζ /∈ opg

(
Og,ξ

))]
∨
[(
ξ /∈ opg

(
Og,ζ

))
∧
(
ζ ∈ opg

(
Og,ζ

))]
.
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Therefore, Tg =
(
Ω, Tg

)
is a g-T (K)

g -space g-T(K)
g =

(
Ω, g-T (K)

g

)
; this completes the

proof of the theorem. �

A necessary and sufficient condition for a Tg-space Tg =
(
Ω, Tg

)
to be a g-T (F)

g -
space g-T(F)

g =
(
Ω, g-T (F)

g

)
may be given in terms of the complementary g-operator

¬ opg : P (Ω) −→ P (Ω) and a unit set {ξ} ⊂ Tg.

Theorem 3.2. A Tg-space Tg =
(
Ω, Tg

)
is said to be a g-T (F)

g -space g-T(F)
g =(

Ω, g-T (F)
g

)
if and only if the following condition holds:

{ξ} ⊇ ¬ opg ({ξ}) ∀ξ ∈ Tg.(3.2)

Proof. Necessity. Let the Tg-space Tg be a g-T (F)
g -space g-T(F)

g . Then, for every
(ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[

(ξ, ζ) ∈ λ=ξ,ζ opg (Og,λ)
]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ opg (Og,λ)

]
.

Consequently,[
(ξ, ζ) /∈ λ=ξ,ζ{

(
opg (Og,λ)

)]
∧
[
(ξ, ζ) ∈ λ=ζ,ξ{

(
opg (Og,λ)

)]
.

Since, for every λ ∈ {ξ, ζ}, {
(
opg (Og,λ)

)
∈ g-K

[
Tg

]
is a g-Tg-closed set, there exists

(Kg,ξ,Kg,ζ) ∈ ¬Tg×¬Tg such that {
(
opg (Og,ξ)

)
⊇ ¬ opg (Kg,ζ) and {

(
opg (Og,ζ)

)
⊇

¬ opg (Kg,ξ). But, for every λ ∈ {ξ, ζ}, ¬ opg
(
Kg,λ

)
⊇ ¬ opg ({λ}). Therefore[

(ξ, ζ) ∈ λ=ξ,ζ¬ opg ({λ})
]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ¬ opg ({λ})

]
.

Hence, for every ξ ∈ Tg, {ξ} ⊇ ¬ opg ({ξ}).
Sufficiency. Conversely, suppose the condition {ξ} ⊇ ¬ opg ({ξ}) holds for every

ξ ∈ Tg. Let (ξ, ζ) ∈ Tg × Tg such that ξ ̸= ζ. Then[
(ξ, ζ) /∈ λ=ξ,ζ{

(
{λ}

)]
∧
[
(ξ, ζ) ∈ λ=ζ,ξ{

(
{λ}

)]
.

But, for every λ ∈ {ξ, ζ}, {
(
{λ}

)
⊆ {

(
¬ opg ({λ})

)
, and {

(
¬ opg ({λ})

)
∈ g-O

[
Tg

]
is

a g-Tg-open set. Thus, there exists (Og,ξ,Og,ζ) ∈ Tg×Tg such that {
(
¬ opg ({ξ})

)
⊆

opg (Og,ζ) and {
(
¬ opg ({ζ})

)
⊆ opg (Og,ξ). By substitution, it thus follows that,

for every (ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[

(ξ, ζ) ∈ λ=ξ,ζ opg (Og,λ)
]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ opg (Og,λ)

]
.

Therefore, Tg =
(
Ω, Tg

)
is a g-T (F)

g -space g-T(F)
g =

(
Ω, g-T (F)

g

)
; this completes the

proof of the theorem. �

Proposition 1. If Tg = (Ω, Tg) is a g-T (F)
g -space g-T(F)

g =
(
Ω, g-T (F)

g

)
, then it is

a g-T (K)
g -space g-T(K)

g =
(
Ω, g-T (K)

g

)
.

Proof. Let Tg = (Ω, Tg) be a g-T (F)
g -space g-T(F)

g =
(
Ω, g-T (F)

g

)
. Then, for every

(ξ, ζ) ∈ g-FP [σ > 0], there exists a pair (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[

(ξ, ζ) ∈ λ=ξ,ζ opg (Og,λ)
]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ opg (Og,λ)

]
.

Set P (ξ, ζ) =
(
ξ ∈ opg

(
Og,ξ

))
∧
(
ζ /∈ opg

(
Og,ξ

))
. Then, the above logical statement

is equivalent to P (ξ, ζ) ∧ P (ζ, ξ). But, logically,
P (ξ, ζ) ∨ P (ζ, ξ) = P (ξ, ζ) ∨ P (ζ, ξ) ∨

(
P (ξ, ζ) ∧ P (ζ, ξ)

)
.
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Consequently, P (ξ, ζ) ∨ P (ζ, ξ) ←− P (ξ, ζ) ∧ P (ζ, ξ), from which it then follows
that, if Tg = (Ω, Tg) is a g-T (F)

g -space g-T(F)
g =

(
Ω, g-T (F)

g

)
, then for every (ξ, ζ) ∈

g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such that:[(

ξ ∈ opg
(
Og,ξ

))
∧
(
ζ /∈ opg

(
Og,ξ

))]
∨
[(
ξ /∈ opg

(
Og,ζ

))
∧
(
ζ ∈ opg

(
Og,ζ

))]
,

the logical statement characterising Tg = (Ω, Tg) as a g-T (K)
g -space g-T(K)

g =(
Ω, g-T (K)

g

)
. �

A necessary and sufficient condition for a Tg-space Tg =
(
Ω, Tg

)
to be a g-T (H)

g -
space g-T(H)

g =
(
Ω, g-T (H)

g

)
may be given in terms of the g-operator opg : P (Ω) −→

P (Ω), a unit set {ξ} ⊂ Tg, and Tg-closed sets.

Theorem 3.3. A Tg-space Tg =
(
Ω, Tg

)
is said to be a g-T (H)

g -space g-T(H)
g =(

Ω, g-T (H)
g

)
if and only if the following conditions hold:

{ξ} =
∩

Kg,ζ∈¬Tg

¬ opg (Kg,ζ) ∀ξ ∈ Tg.(3.3)

Proof. Necessity. Let the Tg-space Tg be a g-T (H)
g -space g-T(H)

g . Then, for every
(ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[
ξ ∈ opg (Og,ξ)

]
∧
[
ζ ∈ opg (Og,ζ)

]
.

Consequently, [
ξ /∈ {

(
opg (Og,ξ)

)]
∧
[
ζ /∈ {

(
opg (Og,ζ)

)]
.

But, for every λ ∈ {ξ, ζ}, {
(
opg (Og,λ)

)
∈ g-K

[
Tg

]
is a g-Tg-closed set. Con-

sequently, there exists a pair (Kg,ξ,Kg,ζ) ∈ ¬Tg × ¬Tg such that the relations
{
(
opg (Og,ξ)

)
⊇ ¬ opg (Kg,ζ) and {

(
opg (Og,ζ)

)
⊇ ¬ opg (Kg,ξ) hold true. There-

fore, the relations ξ ∈ {
(
{ζ}

)
⊇ ¬ opg

(
{ξ}

)
and ζ ∈ {

(
{ξ}

)
⊇ ¬ opg

(
{ζ}

)
are true

for all (ξ, ζ) ∈ Tg × Tg. But, {
(
{ξ}

)
=

∪
Og,ζ∈Tg

opg (Og,ζ) and hence,

{ξ} = {
(
{
(
{ξ}

))
=

∩
Og,ζ∈Tg

{
(
opg (Og,ζ)

)
=

∩
Kg,ζ∈¬Tg

¬ opg (Kg,ζ) ∀ξ ∈ Tg.

Sufficiency. Conversely, suppose {ξ} =
∩

Kg,ζ∈¬Tg
¬ opg (Kg,ζ) holds for all ξ ∈ Tg.

Then, there exists a Kg,ξ ∈ ¬Tg such that ζ /∈ ¬ opg (Kg,ξ). Since ¬ opg (Kg,ξ) ∈
g-K

[
Tg

]
is a g-Tg-closed set, there exists a g-Tg-open set opg (Og,ξ) ∈ g-O

[
Tg

]
such

that ξ ∈ opg (Og,ξ) ⊆ ¬ opg (Kg,ξ). But, since {
(
¬ opg (Kg,ξ)

)
∈ g-O

[
Tg

]
is a g-Tg-

open set containing ζ ∈ Tg, it follows that opg (Og,ξ), {
(
¬ opg (Kg,ξ)

)
∈ g-O

[
Tg

]
are disjoint g-Tg-open sets. Thus, for every (ξ, ζ) ∈ g-FP [σ > 0], there exists
(Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[
ξ ∈ opg (Og,ξ)

]
∧
[
ζ ∈ opg (Og,ζ)

]
.

Therefore, Tg =
(
Ω, Tg

)
is a g-T (H)

g -space g-T(H)
g =

(
Ω, g-T (H)

g

)
; this completes the

proof of the theorem. �

Proposition 2. If Tg = (Ω, Tg) is a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
, then it is

a g-T (F)
g -space g-T(F)

g =
(
Ω, g-T (F)

g

)
.
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Proof. Let Tg = (Ω, Tg) be a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
. Then, for every

(ξ, ζ) ∈ g-FP [σ > 0], there exists a pair (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that
[
ξ ∈

opg (Og,ξ)
]
∧
[
ζ ∈ opg (Og,ζ)

]
. But since (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]
⊂ g-FO

[
Sg ⊃ ∅

]
and [

ξ ∈ opg (Og,ξ)
]
∧
[
ζ ∈ opg (Og,ζ)

]
⇔

[(
ξ ∈ opg

(
Og,ξ

))
∧
(
ζ ∈ opg

(
Og,ζ

))]
∧
[(
ξ /∈ opg

(
Og,ζ

))
∧
(
ζ /∈ opg

(
Og,ξ

))]
,

it follows that, if Tg = (Ω, Tg) is a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
, then for

every (ξ, ζ) ∈ g-FP [σ > 0], there exists a pair (Og,ξ,Og,ζ) ∈ g-FO

[
Sg ⊃ ∅

]
such

that: [
(ξ, ζ) ∈ λ=ξ,ζ opg (Og,λ)

]
∧
[
(ξ, ζ) /∈ λ=ζ,ξ opg (Og,λ)

]
.

Hence, if Tg = (Ω, Tg) is a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
, then it is a g-T (F)

g -
space g-T(F)

g =
(
Ω, g-T (F)

g

)
. �

A necessary and sufficient condition for a Tg-space Tg =
(
Ω, Tg

)
to be a g-T (R)

g -
space g-T(R)

g =
(
Ω, g-T (R)

g

)
may be given in terms of the g-operator opg : P (Ω) −→

P (Ω), a Tg-closed set Sg ⊂ Tg, and Tg-closed neighbourhood sets.

Theorem 3.4. A Tg-space Tg =
(
Ω, Tg

)
is said to be a g-T (R)

g -space g-T(R)
g =(

Ω, g-T (R)
g

)
if and only if the following condition holds:

Sg =
∩

Kg,Sg∈¬Tg

¬ opg
(
Kg,Sg

)
∀Sg ∈ g-K

[
Tg

]
.(3.4)

Proof. Necessity. Let the Tg-space Tg be a g-T (R)
g -space g-T(R)

g . Then, for every
(ξ, ζ) ∈ g-FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈ g-FK

[
∅
]

such that (ζ, ξ) /∈ (Kg,ξ,Kg,ζ),
there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
ζ ∈ opg (Og,ζ)

)]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ ∈ opg (Og,ξ)

)]
.

Consequently,[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
ζ /∈ {

(
opg (Og,ζ)

))]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ /∈ {

(
opg (Og,ξ)

))]
.

But, for every λ ∈ {ξ, ζ}, {
(
opg (Og,λ)

)
∈ g-K

[
Tg

]
is a g-Tg-closed set. Con-

sequently, there exists
(
Kg,Rg

,Kg,Sg

)
∈ ¬Tg × ¬Tg such that {

(
opg (Og,ξ)

)
⊇

¬ opg
(
Kg,Rg

)
and {

(
opg (Og,ζ)

)
⊇ ¬ opg

(
Kg,Sg

)
. Therefore[(

¬ opg (Kg,ξ) ⊂ opg (Og,ξ)
)
∧
(
ζ /∈ ¬ opg

(
Kg,Sg

))]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ /∈ ¬ opg

(
Kg,Rg

))]
.

By virtue of this logical statement, it consequently follows that[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
¬ opg (Kg,ξ) ⊇ ¬ opg

(
Kg,Sg

))]
∨
[(
¬ opg (Kg,ζ) ⊂ opg (Og,ζ)

)
∧
(
¬ opg (Kg,ξ) ⊇ ¬ opg

(
Kg,Rg

))]
,
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and, consequently, [
¬ opg

(
Kg,Sg

)
⊆ ¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

]
∨
[
¬ opg

(
Kg,Rg

)
⊆ ¬ opg (Kg,ζ) ⊂ opg (Og,ζ)

]
,

But, for any Sg ⊂ Tg, ¬ opg
(
Kg,Sg

)
⊇ Sg. Consequently,[

Sg ⊆ ¬ opg
(
Kg,Sg

)
⊆ ¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

]
∨
[
Rg ⊆ ¬ opg

(
Kg,Rg

)
⊆ ¬ opg (Kg,ζ) ⊂ opg (Og,ζ)

]
,

Hence, Sg =
∩

Kg,Sg∈¬Tg
¬ opg

(
Kg,Sg

)
for all Sg ⊂ Tg.

Sufficiency. Conversely, suppose Sg =
∩

Kg,Sg∈¬Tg
¬ opg

(
Kg,Sg

)
holds for all

Sg ⊂ Tg, let ξ /∈ Sg. Then, Sg ⊆ ¬ opg
(
Kg,Sg

)
for every Tg-closed neighbour-

hood set Kg,Sg
∈ ¬Tg satisfying Sg ⊆ Kg,Sg

. Therefore, there exists a Tg-closed
neighbourhood set Kg,Sg

∈ ¬Tg such that ξ /∈ Kg,Sg
. But, since Kg,Sg

∈ ¬Tg is
a Tg-closed neighbourhood set, there exists a Tg-open set Og,Sg

∈ Tg such that
Sg ⊂ opg

(
Og,Sg

)
⊂ ¬ opg

(
Kg,Sg

)
, and {

(
Sg

)
⊃ {

(
opg

(
Og,Sg

))
⊃ {

(
¬ opg

(
Kg,Sg

))
.

Because ξ ∈ {
(
¬ opg

(
Kg,Sg

))
and ξ ∈ {

(
opg

(
Og,Sg

))
, it follows that opg

(
Og,Sg

)
∩

{
(
¬ opg

(
Kg,Sg

))
= ∅ and {

(
opg

(
Og,Sg

))
∩ ¬ opg

(
Kg,Sg

)
= ∅, respectively. In

other words, for every (ξ, ζ) ∈ g-FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈ g-FK

[
∅
]

such that
(ζ, ξ) /∈ (Kg,ξ,Kg,ζ), there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
ζ ∈ opg (Og,ζ)

)]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ ∈ opg (Og,ξ)

)]
.

Therefore, Tg =
(
Ω, Tg

)
is a g-T (R)

g -space g-T(R)
g =

(
Ω, g-T (R)

g

)
; this completes the

proof of the theorem. �

Proposition 3. If Tg = (Ω, Tg) is a g-T (R)
g -space g-T(R)

g =
(
Ω, g-T (R)

g

)
, then it is

a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
.

Proof. Let Tg = (Ω, Tg) be a g-T (R)
g -space g-T(R)

g =
(
Ω, g-T (R)

g

)
. Then, for every

(ξ, ζ) ∈ g-FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈ g-FK

[
∅
]

such that (ζ, ξ) /∈ (Kg,ξ,Kg,ζ),
there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
ζ ∈ opg (Og,ζ)

)]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ ∈ opg (Og,ξ)

)]
.

Set Q(ξ) =
(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
, R(ζ) =

(
ζ ∈ opg (Og,ζ)

)
, and P (ξ, ζ) =

Q (ξ) ∧ R(ζ). Then, the above logical statement is equivalent to P (ξ, ζ) ∨ P (ζ, ξ).
But since λ ∈ ¬ opg (Kg,λ) for every λ {ξ, ζ}, it consequently follows that R(λ)←−
Q(λ) for every λ {ξ, ζ}. Therefore R(ξ) ∧ R(ζ)←− P (ξ, ζ). Because associativity
with respect to ∧ holds, it then follows that

P (ξ, ζ) ∨ P (ζ, ξ) −→ [R (ξ) ∧ R(ζ)] ∨ [R (ζ) ∧ R(ξ)] = R (ξ) ∧ R(ζ) .

Hence, for every (ξ, ζ) ∈ g-FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[
ξ ∈ opg (Og,ξ)

]
∧
[
ζ ∈ opg (Og,ζ)

]
.

This proves that, if Tg = (Ω, Tg) is a g-T (R)
g -space g-T(R)

g =
(
Ω, g-T (R)

g

)
, then it is

a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
. �
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A necessary and sufficient condition for a Tg-space Tg =
(
Ω, Tg

)
to be a g-T (N)

g -
space g-T(N)

g =
(
Ω, g-T (N)

g

)
may be given in terms of the g-operator opg : P (Ω) −→

P (Ω), a Tg-closed set Sg ⊂ Tg, Tg-open sets, and a Tg-closed set.

Theorem 3.5. A Tg-space Tg =
(
Ω, Tg

)
is said to be a g-T (N)

g -space g-T(N)
g =(

Ω, g-T (N)
g

)
if and only if the following condition holds:

Sg ⊂ opg
(
Ôg,Sg

)
⊂ ¬ opg

(
K̂g,Sg

)
⊂ opg

(
Og,Sg

)
∀Sg ∈ g-K

[
Tg

]
.(3.5)

Proof. Necessity. Let the Tg-space Tg be a g-T (N)
g -space g-T(N)

g and, let Sg ∈
g-K

[
Tg

]
and Og,Sg

∈ Tg, respectively, be a g-Tg-closed set and a Tg-open neigh-
bourhood set of Sg. Then, Tg is a g-T (N)

g -space g-T(N)
g implies that, for every

(Kg,ξ,Kg,ζ) ∈ g-FK [∅], there exists (Og,ξ,Og,ζ) ∈ g-FO [∅] such that:[
opg (Og,ξ) ⊃ ¬ opg (Kg,ξ)

]
∧
[
opg (Og,ζ) ⊃ ¬ opg (Kg,ζ)

]
.

Clearly, {
(
opg (Og,ξ)

)
∩¬ opg (Kg,ξ) = ∅ for any ξ ∈ Tg. The relation Sg ∈ g-K

[
Tg

]
implies that there exists a K̂g,ξ ∈ ¬Tg such that Sg ⊇ ¬ opg

(
K̂g,ξ

)
and, Og,Sg

∈ Tg
is a Tg-open neighbourhood set of Sg implies that there exists

(
Ôg,Sg

, K̂g,Sg

)
∈

Tg × ¬Tg such that Og,Sg
⊆ opg

(
Ôg,Sg

)
⊂ ¬ opg

(
K̂g,Sg

)
. But, Sg ⊂ Og,Sg

and, for
some Ôg,ξ ∈ ¬Tg, the relation ¬ opg

(
K̂g,Sg

)
⊂ opg

(
Ôg,ξ

)
holds in a g-T (N)

g -space
g-T(N)

g . Hence,

¬ opg
(
K̂g,ξ

)
⊆ Sg ⊂ opg

(
Ôg,Sg

)
⊂ ¬ opg

(
K̂g,Sg

)
⊂ opg

(
Ôg,ξ

)
for all Sg ∈ g-K

[
Tg

]
. At this stage, it suffices to set Ôg,ξ ⊆ Og,Sg

and the result
follows.

Sufficiency. Conversely, suppose the following relation holds:
Sg ⊂ opg

(
Ôg,Sg

)
⊂ ¬ opg

(
K̂g,Sg

)
⊂ opg

(
Og,Sg

)
∀Sg ∈ g-K

[
Tg

]
.

Then, its complementary reads
{
(
Sg

)
⊃ {

(
opg

(
Ôg,Sg

))
⊃ {

(
¬ opg

(
K̂g,Sg

))
⊃ {

(
opg

(
Og,Sg

))
,

where {
(
Sg

)
, {

(
¬ opg

(
K̂g,Sg

))
∈ g-O

[
Tg

]
are g-Tg-open sets and, {

(
opg

(
Ôg,Sg

))
,

{
(
opg

(
Og,Sg

))
∈ g-K

[
Tg

]
are g-Tg-closed sets. Thus, Sg ∩ {

(
opg

(
Og,Sg

))
= ∅ for

any Sg ∈ g-K
[
Tg

]
. But since the relation Sg ⊇ ¬ opg (Kg,ξ) holds for some Kg,ξ ∈

¬Tg, it consequently follows that {
(
opg

(
Og,Sg

))
⊂ {

(
Sg

)
⊆ {

(
¬ opg

(
Kg,ξ

))
which,

in turn, implies opg
(
Og,Sg

)
⊃ Sg ⊇ ¬ opg

(
Kg,ξ

)
. Thus, for every (Kg,ξ,Kg,ζ) ∈

g-FK [∅], there exists (Og,ξ,Og,ζ) ∈ g-FO [∅] such that:[
opg (Og,ξ) ⊃ ¬ opg (Kg,ξ)

]
∧
[
opg (Og,ζ) ⊃ ¬ opg (Kg,ζ)

]
.

Therefore, Tg =
(
Ω, Tg

)
is a g-T (N)

g -space g-T(N)
g =

(
Ω, g-T (N)

g

)
; this completes the

proof of the theorem. �

Proposition 4. If Tg = (Ω, Tg) is a g-T (N)
g -space g-T(N)

g =
(
Ω, g-T (N)

g

)
, then it is

a g-T (R)
g -space g-T(R)

g =
(
Ω, g-T (R)

g

)
.

Proof. Let Tg = (Ω, Tg) be a g-T (N)
g -space g-T(N)

g =
(
Ω, g-T (N)

g

)
. Then, for every

(Kg,ξ,Kg,ζ) ∈ g-FK [∅], there exists (Og,ξ,Og,ζ) ∈ g-FO [∅] such that:[
opg (Og,ξ) ⊃ ¬ opg (Kg,ξ)

]
∧
[
opg (Og,ζ) ⊃ ¬ opg (Kg,ζ)

]
.
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Set Q(ξ) =
(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
and R(ξ) =

(
ξ ∈ opg (Og,ξ)

)
so that the

above logical statement now reads Q(ξ)∧Q(ζ). Then, since (Kg,ξ,Kg,ζ) ∈ g-FK [∅],
Q(ξ) ∧ R(ζ)←− Q(ξ) and Q(ζ) ∧ R(ξ)←− Q(ζ) hold. Consequently,[

Q(ξ) ∧ R(ζ)
]
∧
[
Q(ζ) ∧ R(ξ)

]
←− Q(ξ) ∧Q(ζ) .

But [
Q(ξ) ∧ R(ζ)

]
∨
[
Q(ζ) ∧ R(ξ)

]
←−

[
Q(ξ) ∧ R(ζ)

]
∧
[
Q(ζ) ∧ R(ξ)

]
,

and, therefore,[
Q(ξ) ∧ R(ζ)

]
∨
[
Q(ζ) ∧ R(ξ)

]
←− Q(ξ) ∧Q(ζ) .

Thus, for every (ξ, ζ) ∈ g-FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈ g-FK

[
∅
]

such that (ζ, ξ) /∈
(Kg,ξ,Kg,ζ), there exists (Og,ξ,Og,ζ) ∈ g-FO

[
∅
]

such that:[(
¬ opg (Kg,ξ) ⊂ opg (Og,ξ)

)
∧
(
ζ ∈ opg (Og,ζ)

)]
∨
[(
¬ opg (Kg,ζ)

⊂ opg (Og,ζ)
)
∧
(
ξ ∈ opg (Og,ξ)

)]
.

This proves that, if Tg = (Ω, Tg) is a g-T (N)
g -space g-T(N)

g =
(
Ω, g-T (N)

g

)
, then it is

a g-T (R)
g -space g-T(R)

g =
(
Ω, g-T (R)

g

)
. �

By virtue of the above propositions, every g-T (H)
g -space is a g-T (F)

g -space, and
hence, a g-T (K)

g -space. Also, every g-T (N)
g -space is a g-T (R)

g -space, and hence,
a g-T (H)

g -space. But, the converse of both statements are untrue, and thus, the
corollary follows. If

⟨
g-T(α)

g =
(
Ω, g-T (α)

g

)⟩
α∈Λ

, Λ =
{
K,F,H,R,N

}
, denotes a

sequence of g-T (α)
g -spaces, obtained after endowing a Tg-space Tg =

(
Ω, Tg

)
with

the sequence of g-Tg,α-axioms
⟨
g-Tg,α

⟩
α∈Λ

, then the following relations hold:

• i. T
(K)
g ⊆ T

(F)
g ⊆ T

(H)
g ⊆ T

(R)
g ⊆ T

(N)
g .

• ii. g-Tg,N ⇒ g-Tg,R ⇒ g-Tg,H ⇒ g-Tg,F ⇒ g-Tg,K.

4. Discussion

4.1. Categorical Classifications. Having adopted a categorical approach in the
classifications of the g-Tg,α-axioms, α ∈ Λ =

{
K,F,H,R,N

}
, in the Tg-space Tg,

the aims here are, to establish the various relationships amongst the elements of
the sequence

⟨
g-Tg,α

⟩
α∈Λ

and, to illustrate them through diagrams.
We have seen that, both the g-Tg,N, g-Tg,R-axioms imply the g-Tg,K, g-Tg,F-

axioms and, on the other hand, the g-Tg,N-axiom implies the g-Tg,R-axiom and the
g-Tg,H-axiom implies the g-Tg,F-axioms. The separation axioms diagram presented
in Figs 1 illustrates these implications.

We called the elements of the sequence
⟨
g-Tg,α

⟩
α∈Λ

g-Tg,α-axioms. To this end
it does make sense to call those of

⟨
Tg,α

⟩
α∈Λ

Tg,α-axioms. Thus, in a Tg-space
Tg = (Ω, Tg),

⟨
Tg,α

⟩
α∈Λ

stands for a sequence of separation axioms in the ordinary
sense while

⟨
g-Tg,α

⟩
α∈Λ

stands for its analogue but in the generalized sense, just
as, in a T -space T = (Ω, T ),

⟨
Tα

⟩
α∈Λ

stands for a sequence of separation axioms in
the ordinary sense while

⟨
g-Tα

⟩
α∈Λ

stands for its analogue but in the generalized
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g-Tg,K

g-Tg,F g-Tg,H

g-Tg,N
g-Tg,R

Tg,K

Tg,FTg,H

Tg,NTg,R

Figure 1. Relationships: Separation axioms diagram.

sense. Let FP [σ] = g-FP [σ] and set

FO [Sg]
def
=

{
(Og,ξ,Og,ζ) ∈ Tg × Tg :

∩
λ=ξ,ζOg,λ ⊆ Sg

}
,

FK [Sg]
def
=

{
(Kg,ξ,Kg,ζ) ∈ ¬Tg × ¬Tg : Sg ⊇

∩
λ=ξ,ζKg,λ

}
,(4.1)

where σ ≥ 0 and Sg ⊇ ∅. Then, the notions of Tg,K, Tg,F, Tg,H, Tg,R, and Tg,N-
axioms in a Tg-space Tg = (Ω, Tg) may well be defined as follows:

• i. Tg,K-Axiom: For every (ξ, ζ) ∈ FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈
FO

[
Sg ⊃ ∅

]
such that:[

(ξ ∈ Og,ξ) ∧ (ζ /∈ Og,ξ)
]
∨
[
(ξ /∈ Og,ζ) ∧ (ζ ∈ Og,ζ)

]
(4.2)

• ii. Tg,F-Axiom: For every (ξ, ζ) ∈ FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈
FO

[
Sg ⊃ ∅

]
such that:[

(ξ, ζ) ∈ λ=ξ,ζOg,λ

]
∧
[
(ξ, ζ) /∈ λ=ζ,ξOg,λ

]
.(4.3)
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• iii. Tg,H-Axiom: For every (ξ, ζ) ∈ FP [σ > 0], there exists (Og,ξ,Og,ζ) ∈
FO

[
∅
]

such that: [
ξ ∈ Og,ξ

]
∧
[
ζ ∈ Og,ζ

]
.(4.4)

• iv. Tg,R-Axiom: For every (ξ, ζ) ∈ FP [σ > 0] and (Kg,ξ,Kg,ζ) ∈ FK

[
∅
]

such that (ζ, ξ) /∈ (Kg,ξ,Kg,ζ), there exists (Og,ξ,Og,ζ) ∈ FO

[
∅
]

such that:[(
Kg,ξ ⊂ Og,ξ

)
∧
(
ζ ∈ Og,ζ

)]
∨
[(
Kg,ζ ⊂ Og,ζ

)
∧
(
ξ ∈ Og,ξ

)]
.(4.5)

• v. Tg,N-Axiom: For every (Kg,ξ,Kg,ζ) ∈ FK [∅], there exists (Og,ξ,Og,ζ) ∈
FO [∅] such that:[

Og,ξ ⊃ Kg,ξ

]
∧
[
Og,ζ ⊃ Kg,ζ

]
.(4.6)

By virtue of the relations Og,λ ⊆ opg (Og,λ) and Kg,λ ⊇ ¬ opg (Kg,λ) for every
(Og,λ,Kg,λ, λ) ∈ Tg × ¬Tg × {ξ, ζ}, these implications follow: g-Tg,K ←− Tg,K,
g-Tg,F ←− Tg,F, g-Tg,H ←− Tg,H, g-Tg,R ←− Tg,R, and g-Tg,N ←− Tg,N. When
the statements preceding the above definitions are taken into account, another
separation axioms diagram is obtained. In Fig. 2, we have illustrated the various
relationships amongst the elements of

⟨
g-Tg,α

⟩
α∈Λ

and
⟨
Tg,α

⟩
α∈Λ

. It is interesting
to present a third separation axioms diagram illustrating both the implications and
the categorical classifications of the elements of

⟨
g-ν-Tg,α

⟩
α∈Λ

, where ν ∈ I03 .

g-Tg,Fg-Tg,Rg-Tg,N g-Tg,K

Tg,H Tg,FTg,RTg,N Tg,K

g-Tg,H

Figure 2. Relationships: Separation axioms diagram.

For every fixed ν ∈ I03 , it is immediate that the implications g-ν-Tg,K ←−
g-ν-Tg,F, g-ν-Tg,F ←− g-ν-Tg,H, g-ν-Tg,H ←− g-ν-Tg,R, and g-ν-Tg,R ←− g-ν-Tg,N

hold. On the other hand, we saw in the first part of our works, on the theory of
g-Tg-sets, that

opg,0 (Sg) ⊆ opg,1 (Sg) ⊆ opg,3 (Sg) ⊇ opg,2 (Sg) ∀Sg ⊂ Tg,

¬ opg,0 (Sg) ⊇ ¬ opg,1 (Sg) ⊇ ¬ opg,3 (Sg) ⊆ ¬ opg,2 (Sg) ,(4.7)

as a consequence of the definitions of the g-operators opg,ν , ¬ opg,ν : P (Ω) −→
P (Ω). Hence, it results that, for every α ∈ Λ, g-0-Tg,α −→ g-1-Tg,α −→ g-3-Tg,α

and g-3-Tg,α ←− g-2-Tg,α. When these properties are taken into consideration,
the resulting separation axioms diagram so obtained is that presented in Fig. 3.
It is reasonable to call them g-Tg,α-axioms of type α and of category ν, where
(α, ν) ∈ Λ× I03 .

In order to exemplify the concept of g-Tg,α-axiom of type α and of category ν,
where (α, ν) ∈ Λ× I03 , a nice application is presented in the following section.
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g-2-Tg,Kg-1-Tg,Kg-0-Tg,K

g-3-Tg,F g-2-Tg,Fg-1-Tg,Fg-0-Tg,F

g-3-Tg,K

g-3-Tg,H g-3-Tg,Hg-1-Tg,Hg-0-Tg,H

g-3-Tg,R g-2-Tg,Rg-1-Tg,Rg-0-Tg,R

g-3-Tg,N g-2-Tg,Ng-1-Tg,Ng-0-Tg,N

Figure 3. Relationships: Separation axiom diagram.

4.2. A Nice Application. Focusing on the fundamental notions of the sequence⟨
g-Tg,α

⟩
α∈Λ

of g-Tg,α-axioms, Λ =
{
K,F,H,R,N

}
, in a Tg-space, founded upon

the class of g-Tg-open sets, we shall now present a nice application. Let Ω =
{
ξν :

ν ∈ I∗3
}

denotes the underlying set and consider the Tg-space Tg = (Ω, Tg), where

Tg (Ω) =
{
∅,
{
ξ1
}
,
{
ξ2
}
,
{
ξ3
}
,
{
ξ1, ξ2

}
,
{
ξ1, ξ3

}
,
{
ξ2, ξ3

}
,Ω

}
=

{
Og,1,Og,2,Og,3,Og,4,Og,5,Og,6,Og,7,Og,8

}
,(4.8)

¬Tg (Ω) =
{
Ω,

{
ξ2, ξ3

}
,
{
ξ1, ξ3

}
,
{
ξ1, ξ2

}
,
{
ξ3
}
,
{
ξ2
}
,
{
ξ1
}
, ∅}

=
{
Kg,1,Kg,2,Kg,3,Kg,4,Kg,5,Kg,6,Kg,7,Kg,8

}
,(4.9)

respectively, stand for the classes of Tg-open and Tg-closed sets. In both settings, the
Tg-open, closed sets occupying the νth position corresponds to Og,ν , Kg,ν , ν ∈ I∗8 ,
respectively, as is easily understood. Since conditions Tg (∅) = ∅, Tg (Og,ν) ⊆ Og,ν

for every ν ∈ I∗8 , and Tg
(∪

ν∈I∗
8
Og,ν

)
=

∪
ν∈I∗

8
Tg (Og,ν) are satisfied, it is clear

that the one-valued map Tg : P (Ω) −→ P
({

ξν : ν ∈ I∗8
})

is a g-topology. After
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computing the elements of the set
{
opg,ν (Og,ξα) : (α, ν) ∈ I∗8 × I03

}
, called g-Tg-

open sets, we obtain:

opg,ν (Og,ξα) ∈



{Og,2,Og,5,Og,6,Og,8} ∀ (α, ν) ∈ {1} × {0, 2} ,
{Og,3,Og,5,Og,7,Og,8} ∀ (α, ν) ∈ {2} × {0, 2} ,
{Og,4,Og,6,Og,7,Og,8} ∀ (α, ν) ∈ {3} × {0, 2} ,
{Kg,1,Kg,3,Kg,4,Kg,7} ∀ (α, ν) ∈ {1} × {1, 3} ,
{Kg,1,Kg,2,Kg,4,Kg,6} ∀ (α, ν) ∈ {2} × {1, 3} ,
{Kg,1,Kg,2,Kg,3,Kg,5} ∀ (α, ν) ∈ {3} × {1, 3} .

(4.10)

Similarly, the elements of
{
¬ opg,ν (Kg,ξα) : (α, ν) ∈ I∗8 × I03

}
, called g-Tg-closed

sets, are:

¬ opg,ν (Kg,ξα) ∈



{Kg,1,Kg,3,Kg,4,Kg,7} ∀ (α, ν) ∈ {1} × {0, 2} ,
{Kg,1,Kg,2,Kg,4,Kg,6} ∀ (α, ν) ∈ {2} × {0, 2} ,
{Kg,1,Kg,2,Kg,3,Kg,5} ∀ (α, ν) ∈ {3} × {0, 2} ,
{Og,2,Og,5,Og,6,Og,8} ∀ (α, ν) ∈ {1} × {1, 3} ,
{Og,3,Og,5,Og,7,Og,8} ∀ (α, ν) ∈ {2} × {1, 3} ,
{Og,4,Og,6,Og,7,Og,8} ∀ (α, ν) ∈ {3} × {1, 3} .

(4.11)

First, for every ν ∈ I03 , set Iopg,(ξα,ξβ)
=

∩
λ=α,β opg,ν (Og,ξλ) and Iclg,(ξα,ξβ)

=∩
λ=α,β ¬ opg,ν (Kg,ξλ). Next, for all (α, β, ν) ∈ I∗3 × I∗3 × I03 , calculate Iopg,(ξα,ξβ)

,
Iclg,(ξα,ξβ)

. Finally, for every (r, s) ∈ I∗8 × I∗8 , set Og,(r,s) = (Og,r,Og,s) and
Kg,(r,s) = (Kg,r,Kg,s). These procedures yield:

g-FP [σ > 0] =
∪

α∈I∗
3

{
(ξα, ξβ) : β ∈ I∗3 \ {α}

}
,

g-ν-FO [∅] =
{
Og,(3,2),Og,(3,6),Og,(4,2),Og,(4,3),

Og,(4,5),Og,(6,3),Og,(7,2)

}
,

g-ν-FK [∅] =
{
Kg,(2,7),Kg,(3,6),Kg,(5,4),Kg,(5,6),

Kg,(5,7),Kg,(6,3),Kg,(6,7)

}
,

g-ν-FO [Sg ⊃ ∅] =
{
Og,(r,s) : (r, s) ∈ I∗8 × I∗8

}
⊃ g-ν-FO [∅] ∀ν ∈ I03 ,

g-ν-FK [Sg ⊃ ∅] =
{
Kg,(r,s) : (r, s) ∈ I∗8 × I∗8

}
⊃ g-ν-FK [∅] .

(4.12)

We are now in a position to discuss the g-Tg,α-axioms, Λ =
{
K,F,H,R,N

}
.

Let Og,(p,q) ⊃ Kg,(r,s) stand for the relations Og,p ⊃ Kg,r and Og,q ⊃ Kg,s,
where Og,(p,q) ∈ g-ν-FO [∅] and Kg,(r,s) ∈ g-ν-FK [∅]. Further, for every ν ∈
I03 , let opg,ν

(
Og,(p,q)

)
⊃ ¬ opg,ν

(
Kg,(r,s)

)
stand for opg,ν

(
Og,p

)
⊃ ¬ opg,ν

(
Kg,r

)
,

opg,ν
(
Og,q

)
⊃ ¬ opg,ν

(
Kg,s

)
. Then, the following relations are easily checked:
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Og,(7,2) ⊃ Kg,(2,7); Og,(6,3) ⊃ Kg,(3,6); Og,(4,5) ⊃ Kg,(5,4); Og,(4,3) ⊃ Kg,(5,6);
Og,(4,2) ⊃ Kg,(5,7); Og,(3,6) ⊃ Kg,(6,3) and Og,(3,2) ⊃ Kg,(6,7). But, for every ν ∈ I03 ,
the relations Og,(p,q) ⊆ opg,ν

(
Og,(p,q)

)
and Kg,(r,s) ⊇ ¬ opg,ν

(
Kg,(r,s)

)
hold for

all (p, q) = (3, 2), (3, 6), (4, 2), (4, 3), (4, 5), (6, 3), (7, 2) and all (r, s) = (6, 7),
(6, 3), (5, 7), (5, 6), (5, 4), (3, 6), (2, 7). Combining these last two relations with
Og,(p,q) ⊃ Kg,(r,s), it follows that opg,ν

(
Og,(p,q)

)
⊃ ¬ opg,ν

(
Kg,(r,s)

)
. Hence, for

every Kg,(r,s) ∈ g-ν-FK [∅], there exists Og,(p,q) ∈ g-ν-FO [∅] such that:[
opg,ν (Og,p) ⊃ ¬ opg,ν (Kg,r)

]
∧
[
opg,ν (Og,q) ⊃ ¬ opg,ν (Kg,s)

]
.

This shows that Tg is a g-T (N)
g -space g-T(N)

g =
(
Ω, g-T (N)

g

)
.

Let (ξi, ξj) ∈ Kg,(r,s) mean ξi ∈ Kg,r and ξj ∈ Kg,s, where Kg,(r,s) ∈ g-ν-FK

[
∅
]
.

Then, the following results are easily checked: (ξ2, ξ1) ∈ Kg,(2,7), Kg,(6,3), Kg,(6,7)

and (ξ1, ξ2) /∈ Kg,(2,7), Kg,(6,3), Kg,(6,7); (ξ3, ξ1) ∈ Kg,(2,7), Kg,(5,4), Kg,(5,7) and
(ξ1, ξ3) /∈ Kg,(2,7), Kg,(5,4), Kg,(5,7); (ξ3, ξ2) ∈ Kg,(3,6), Kg,(5,4), Kg,(5,6) and (ξ2, ξ3) /∈
Kg,(3,6), Kg,(5,4), Kg,(5,6). But, Og,(7,2) ⊃ Kg,(2,7); Og,(6,3) ⊃ Kg,(3,6); Og,(4,5) ⊃
Kg,(5,4); Og,(4,3) ⊃ Kg,(5,6); Og,(4,2) ⊃ Kg,(5,7); Og,(3,6) ⊃ Kg,(6,3) and Og,(3,2) ⊃
Kg,(6,7). Furthermore, for every ν ∈ I03 , Og,(p,q) ⊆ opg,ν

(
Og,(p,q)

)
for all (p, q) =

(3, 2), (3, 6), (4, 2), (4, 3), (4, 5), (6, 3), (7, 2) and Kg,(r,s) ⊇ ¬ opg,ν
(
Kg,(r,s)

)
for all

(r, s) = (2, 7), (3, 6), (5, 4), (5, 6), (5, 7), (6, 3), (6, 7). Thus, for every (ξi, ξj) ∈
g-FP [σ > 0] and Kg,(r,s) ∈ g-ν-FK

[
∅
]

such that (ξj , ξi) /∈ Kg,(r,s), there exists
Og,(p,q) ∈ g-ν-FO

[
∅
]

such that:[(
¬ opg,ν (Kg,r) ⊂ opg,ν (Og,p)

)
∧
(
ζ ∈ opg,ν (Og,q)

)]
∨
[(
¬ opg,ν (Kg,s)

⊂ opg,ν (Og,q)
)
∧
(
ξ ∈ opg,ν (Og,p)

)]
.

This shows that Tg is a g-T (R)
g -space g-T(R)

g =
(
Ω, g-T (R)

g

)
.

Let (ξi, ξj) ∈ Og,(p,q) mean ξi ∈ Og,p and ξj ∈ Og,q, where Og,(p,q) ∈ g-ν-FO

[
∅
]
.

Then, the following relations are easily verified: (ξ2, ξ1) ∈ Og,(3,2), Og,(3,6), Og,(7,2)

and (ξ1, ξ2) /∈ Og,(3,2), Og,(3,6), Og,(7,2); (ξ3, ξ1) ∈ Og,(4,2), Og,(4,5), Og,(7,2) and
(ξ1, ξ3) /∈ Og,(4,2), Og,(4,5), Og,(7,2); (ξ3, ξ2) ∈ Og,(4,3), Og,(4,5), Og,(6,3) and (ξ2, ξ3) /∈
Og,(4,3), Og,(4,5), Og,(6,3). But, for every ν ∈ I03 , Og,(p,q) ⊆ opg,ν

(
Og,(p,q)

)
and

Og,(p,q) ∈ g-ν-FO [∅] for all (p, q) = (3, 2), (3, 6), (4, 2), (4, 3), (4, 5), (6, 3), (7, 2).
Thus, for every (ξi, ξj) ∈ g-FP [σ > 0], there exists Og,(p,q) ∈ g-ν-FO

[
∅
]

such that:[
ξi ∈ opg,ν (Og,p)

]
∧
[
ξj ∈ opg,ν (Og,q)

]
.

This shows that Tg is a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
.

Let (ξi, ξj) ∈ Og,(p,q) mean ξi ∈ Og,p, ξj ∈ Og,q, and (ξj , ξi) /∈ Og,(p,q), where
Og,(p,q) ∈ g-ν-FO

[
Sg ⊃ ∅

]
. Then, the following relations are easily verified:

(ξ1, ξ2) ∈ Og,(p,q) and (ξ2, ξ1) /∈ Og,(p,q) for all (p, q) = (2, 3), (2, 7), (6, 3), (6, 7);
(ξ1, ξ3) ∈ Og,(p,q) and (ξ3, ξ1) /∈ Og,(p,q) for all (p, q) = (2, 4), (2, 7), (5, 4), (5, 7);
(ξ2, ξ3) ∈ Og,(p,q) and (ξ3, ξ1) /∈ Og,(p,q) for all (p, q) = (3, 4), (3, 6), (5, 4), (5, 6).
But, Og,(p,q) ⊆ opg,ν

(
Og,(p,q)

)
for all (p, q) = (2, 3), (2, 4), (2, 7), (3, 4), (3, 6),

(5, 4), (5, 6), (5, 7), (6, 3), (6, 7). Hence, for every (ξi, ξj) ∈ g-FP [σ > 0], there
exists Og,(p,q) ∈ g-ν-FO

[
Sg ⊃ ∅

]
such that:[

(ξi, ξj) ∈ λ=p,q opg,ν (Og,λ)
]
∧
[
(ξi, ξj) /∈ λ=q,p opg,ν (Og,λ)

]
.

This shows that Tg is a g-T (F)
g -space g-T(F)

g =
(
Ω, g-T (F)

g

)
.
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Let (ξi, ξj) ∈ Og,(p,q) mean ξi ∈ Og,p and ξj /∈ Og,p, or ξi /∈ Og,p and ξj ∈ Og,q,
where Og,(p,q) ∈ g-ν-FO

[
Sg ⊃ ∅

]
. Then, the following relations are easily verified:

(ξ1, ξ2) ∈ Og,(2,3), Og,(2,7), Og,(6,3), Og,(6,7); (ξ1, ξ3) ∈ Og,(2,4), Og,(2,7), Og,(5,4),
Og,(5,7); (ξ2, ξ3) ∈ Og,(3,4), Og,(3,6), Og,(5,4), Og,(5,6). But, Og,(p,q) ⊆ opg,ν

(
Og,(p,q)

)
for all (p, q) = (2, 3), (2, 4), (2, 7), (3, 4), (3, 6), (5, 4), (5, 6), (5, 7), (6, 3), (6, 7).
Hence, for every (ξi, ξj) ∈ g-FP [σ > 0], there exists Og,(p,q) ∈ g-ν-FO

[
Sg ⊃ ∅

]
such

that: [(
ξi ∈ opg,ν

(
Og,p

))
∧
(
ξj /∈ opg,ν

(
Og,p

))]
∨
[(
ξi /∈ opg,ν

(
Og,q

))
∧
(
ξj ∈ opg,ν

(
Og,q

))]
.

This shows that Tg is a g-T (K)
g -space g-T(K)

g =
(
Ω, g-T (K)

g

)
.

The elements discussed in the preceding sections can be easily checked from this
nice application. In the next section, we provide concluding remarks and future
directions of the theory of g-Tg-separation axioms developed in the earlier sections.

5. Conclusion

In this paper, we developed a new theory, called Theory of g-Tg-Separation
Axioms. The theory is based on the Theory of g-Tg-Sets but not on the Theory
of g-Tg-Maps. In its own rights, the proposed theory has several advantages. The
very first advantage is that the theory holds equally well when (Ω, Tg) = (Ω, T )
and other characteristics adapted on this ground, in which case it might be called
Theory of g-T-Separation Axioms.

Thus, in a Tg-space the proposed theoretical framework categorises each element
of the quintuple sequence

⟨
g-Tg,α

⟩
α∈Λ

as g-Tg,α-axioms of type α and of categories
ν, where (α, ν) ∈ Λ × I03 and Λ =

{
K,F,H,R,N

}
and theorises the concepts in

a unified way; in a T -space it categorises each element of the quintuple sequence⟨
g-Tα

⟩
α∈Λ

as g-Tα-axioms of type α and of categories ν, where (α, ν) ∈ Λ×I03 and
Λ =

{
K,F,H,R,N

}
and theorises the concepts in a unified way.

Since the theory of g-Tg-separation Axioms has been based solely on theory of
g-Tg-sets, as pointed out above, it is an interesting topic for future research either to
develop the theory of g-Tg-separation axioms of mixed categories based on the afore-
mentioned theory or to develop it but based on the theory of g-Tg-maps. More pre-
cisely, either for some pair (ν, µ) ∈ I03 ×I03 such that ν ̸= µ, to develop the theory of
g-Tg-separation axioms based on the theory of g-Tg-open sets belonging to the class{
Og = Og,ν∪Og,µ : (Og,ν ,Og,µ) ∈ g-ν-O

[
Tg

]
×g-µ-O

[
Tg

]}
and the theory of g-Tg-

closed sets belonging to the class
{
Kg = Kg,ν ∪ Kg,µ : (Kg,ν ,Kg,µ) ∈ g-ν-K

[
Tg

]
×

g-µ-K
[
Tg

]}
in a Tg-space Tg or, to develop the theory of g-Tg-separation axioms

based on the theory of g-Tg-maps, called g- (TΛ,TΘ)-continuous maps, g- (TΛ,TΘ)-
irresolute maps and g- (TΛ,TΘ)-homeomorphism maps, where Λ, Θ ∈

{
Ω,Σ,Υ

}
,

between any two of such Tg-spaces Tg,Ω, Tg,Σ, and Tg,Υ. Such two theories are
what we thought would certainly be worth considering, and the discussion of this
paper ends here.
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Abstract. In this paper, a new family of t−error correcting perfect codes
over Hurwitz integers is presented. To obtain these perfect codes, the perfect

t−dominating sets over the circulant graphs are used. The codewords of such

perfect codes are generated by the elements of a subgroup of the considered
group.

1. Introduction

If a code satisfy the sphere-packing bound in any given metric, then the code
called perfect code. Perfect codes are important since perfect codes plays an im-
portance role in coding theory. The first perfect codes which were subspaces of
Zn2 were defined by Hamming in [4]. The first non-linear perfect 1−error correct-
ing binary code was constructed by Vasil’ev in [15]. Vasil’ev’s construction was
generalized to q−ary case by Lindström and independently Schönheim in [10, 14].
Group and non-group perfect codes which were not equal to any linear code were
given by Heden in [5]. Besides, perfect codes have been investigated with respect
to some other metrics such as the Lee metric, the Mannheim metric, the Lipschitz
metric. Some perfect codes with respect to the Lee metric introduced in [9]. Hu-
ber defined Mannheim metric, and presented perfect 1−Mannheim error correcting
codes (shortly OMEC) in the metric in [8]. The dimension of OMEC codes not
only n− 1, but also n− k (k > 1) were constructed by Güzeltepe and Heden in [3].
The Lipschitz metric was presented and some perfect codes over Lipschitz integers
were introduced with respect to the Lipschitz metric in [11, 12]. A generalization of
perfect Lee-error-correcting codes and perfect 1−error correcting Lipschitz weight
codes were presented by Heden and Güzeltepe in [6, 7].

The Hurwitz metric was introduced in [1, 3]. Besides, Güzeltepe constructed
linear codes over Hurwitz integers with respect to the Hurwitz metric for a Hurwitz
prime in [1]. These linear codes were not perfect.
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On the other hand, the common trait of the papers [1, 2, 3, 6] is that the perfect
codes were obtained by using a chosen prime over relevant structures. Unlike these
articles, we use only odd Hurwitz integers being product of distinct primes to
construct perfect codes over Hurwitz integers. The main idea in the presented paper
is inspired by the article [13]. In that paper [13], a method for defining new metrics
over two-dimension signal spaces and families of perfect codes of length one over
lattice constellations obtained by Gaussian integers and Eisenstein Jacobi integers
were presented by Mart́ınez et al. They mainly considered QAM-like signal spaces
and defined a new distance over QAM-like constellations imported from degree-four
circulant graphs whose nodes were labeled with Gaussian integers. By means of
these graphs, they constructed perfect t−correcting codes over Gaussian integers
with length one.

The rest of the paper is organized as follows. In Section 2, basic definitions and
theorems in Hurwitz integers are given. A connection between Circulant graph and
Hurwitz integers is obtained in Section 3. Perfect t−dominating sets is defined in
Section 4. Using these sets, perfect codes over Hurwitz integers are constructed
in that section. In terms of average energy and bandwidth occupancy, a simple
comparison between these perfect codes and some perfect codes given in literature
is presented in the last section.

2. On Hurwitz integers

In this section, we give some basic definitions and theorems which we need
throughout our study.

Definition 2.1 (see [3]). Hamilton Quaternions H (R) is the free R−module over
the symbols 1, i, j, k and the set of Hamilton Quaternions is defined as following:

H (R) = {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R} .
Here, 1 is the multiplicative identity. Morever,

(1) i2 = j2 = k2 = −1 and
(2) ij = −ji = k; jk = −kj = i; ki = −ik = j.
(3) If q = a0 + a1i + a2j + a3k is a quaternion, then its conjugate is denoted

by q∗ and q∗ = a0 − (a1i+ a2j + a3k) .
(4) The norm N (q) of q ∈ H (R) is N (q) = qq∗ = a20 + a21 + a22 + a23 and

N (q1q2) = N (q1)N (q2), that is, the norm N is a multiplicative norm.

Definition 2.2 (see [3]). The Lipschitz integers H(Z) is a subset of H (R) and is
defined as

H (Z) = {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ Z} .

Definition 2.3 (see [2]). The set of Hurwitz integers is the set H = H (Z) ∪
H
(
Z + 1

2

)
, that is,

H =
{
a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ Z ∨ a0, a1, a2, a3 ∈ Z + 1

2

}
=

{
a0+a1i+a2j+a3k

2 : a0, a1, a2, a3 ∈ Z, a0 ≡ a1 ≡ a2 ≡ a3 (mod 2)
}
.

Definition 2.4 (see [3]). If the norm of a Hurwitz integer q is an odd integer, then
the element q is called an odd Hurwitz integer. Similarly, if the norm of a Hurwitz
integer α is a prime integer, then the element α is called prime Hurwitz integer.
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In this study, we use only odd Hurwitz integers to construct perfect codes over
Hurwitz integers.

Definition 2.5. Let q1, q2 be two elements of Hurwitz integers H and let α be an
odd Hurwitz integer. If there exists β ∈ H such that q1 − q2 = αβ, then q1, q2 ∈ H
are left congruent modulo α and it is denoted as q1≡lq2 (mod α) .

Let Hα denotes the complete set of left coset representatives. In this situation,
the elements of Hα are not left congruent each other modulo α. Right congruent
can be defined like left congruent.

Theorem 2.6 (see [2]). If α is an odd Hurwitz prime, then the size of Hα is equal

to N(α)
2
.

Corollary 2.7. Let 0 6= α and β be in H and let β be a left-divisor of α. Then
the subgroup generated by the element β is denoted by 〈β〉 and the number of the

elements of the subgroup 〈β〉 is equal to N(α)
2/
N(β)

2.

Proof. Hα is an additive group and 〈β〉 is a subgroup of Hα. So, the proof is clear
from the Lagrange Theorem. �

3. Circulant graph and Hurwitz integers

In this section, a connection between circulant graph CN (j1, . . . , jm) and Hα is
given.

Definition 3.1. The distance β, γ ∈ Hα is defined as

dα(β, γ) = N(δ),

where δ = a0 + a1i + a2j + a3k denotes an element in the coset β − γ in Hα with
|a0|+ |a1|+ |a2|+ |a3| minimum. We also define the weight of β ∈ Hα as

wα = dα(β, 0).

There are 24 elements of weight one in Hurwitz integers H. These elements are
±1,±i,±j,±k and ± 1

2 ±
i
2 ±

j
2 ±

k
2 . From now on ε denotes the following set:{

±1,±i,±j,±k,±1

2
± i

2
± j

2
± k

2

}
.

By adding the elements of the set ε one by one to γ ∈ Hα, we determine the
elements at distance one from exactly γ.

Definition 3.2. Let 0 6= α ∈ H be an odd Hurwitz integer. If we take

(1) V = Hα is the set of vertices (nodes) and
(2) E = {(β, γ) ∈ V × V : dα (β, γ) = 1} is the set of edges,

then Gα (V,E) defines a graph generated by α.

Definition 3.3. (see [13]) A circulant graph with N vertices and jumps {j1, j2, · · · , jm} ,
where m < N/2, is an undirected graph in which each vertex n, 0 ≤ n ≤ N − 1,
is adjacent to all the vertices n ± ji, with 1 ≤ i ≤ m. We denote this graph as
CN (j1, j2, · · · , jm) .

Theorem 3.4. Let e1 ∈ {i, j, k} and let α = a0 + a1i + a2j + a3k = a0 + a1i +
(a2 + a3i)e1 ∈ H be an odd Hurwitz integer. Then CN(α)2 (j1, . . . , j12) and Gα are
isomorphic graphs.
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Figure 1. The graph G−1+2i+2j

In[4]:= A = CirculantGraph@81, 813, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24<D

EdgeCount@AD

GraphDiameter@AD

Out[4]=

Out[5]= 972

Out[6]= 3

Figure 2. The graph C81(13, . . . , 24)
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Proof. The edges of Gα and the edges of CN(α)2(j1, . . . , j12) are chosen as the
elements of Hα and the elements of ZN(α) × ZN(α), respectively. Therefore, it is
sufficient to prove that Hα and ZN(α) × ZN(α) are isomorphic groups. We now
consider the function

ψ : ZN(α) × ZN(α) → Hα
(q1, q2) 7→ (x1 + y1) i+ (x2 + y2) e1 ( mod α) ,

where x1, y1, x2, y2 ∈ ZN(α), q1 = a0x1 +a1y1, q2 = a2x2 +a3y2 (mod N(α)). The
function ψ is a bijective function. The bases of these groups Hα and ZN(α)×ZN(α)

are e2, e3 ∈ {1, i, j, k} and {(1, 0) , (0, 1)}, respectively. Hence we get ψ ((1, 0)) =
e2, ψ ((0, 1)) = e3, where ψ ((x, y)) = β1e2 + β2e3 (mod α), x, y ∈ ZN(α) and
β1, β2 ∈ Hα. Hence, the proof is completed.

�

Example 3.5. Let α = −1 + 2i+ 2j. Fig. 1 shows the graph Hα and Fig. 2 shows
the graph C81(13, . . . , 24). The vertexes given in Fig. 1 shows one twelfth of all
vertexes. The diameter of these graphs is 3. This shows that the distance between
0 and the elements of Hα is less than or equal to 3, that is, N(q) ≤ 3 for all q ∈ Hα.

4. Perfect t−Dominating Sets and Perfect Codes Over the Hurwitz
Integers

In this paper, we study on arbitrary parameter t, give conditions for the existence
of perfect t−dominating sets.

Proposition 1. If α is a Hurwitz integer and ρ1, ρ2 ∈ ε then the norm N(α) is
equal to the norm N(ρ1αρ2).

Proof. Recall that the norm N is a multiplicative norm and N(ρ1) = N(ρ2) = 1
since ρ1, ρ2 ∈ ε . Hence, we have

N (ρ1αρ2) = N (ρ1)N (α)N (ρ2) = N (α) .

�

It is clear that if α1, · · · , αr are odd Hurwitz integers then α1 . . . αr is an odd
Hurwitz integer.

Proposition 2. Let α be an odd Hurwitz integer and let β1, β2 ∈ H. If

β1 = β2 (mod α) ,

then
ρ1β1ρ2 = ρ1β2ρ2 (mod ρ1αρ2 ) .

Proof. If β1 = β2 (mod α), then we get

β2 = β1 + αδ, δ ∈ H.
Multiplying left sides of the above equation by ρ1 and right sides by ρ2, we obtain

ρ1β2ρ2 = ρ1 (β1 + αδ) ρ2 = ρ1β1ρ2 + ρ1 (αδ) ρ2
= ρ1β1ρ2 + ρ1

(
α
(
ρ2ρ

−1
2

)
δ
)
ρ2

= ρ1β1ρ2 + ρ1 (αρ2)
(
ρ−1
2 δρ2

)
= ρ1β1ρ2 + (ρ1αρ2) δ1.

This shows that
ρ1β1ρ2 = ρ1β2ρ2 (mod ρ1αρ2 ) .

�
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The proof of next proposition is straightforward from the proof of Prop. 2.

Proposition 3. Let α be an odd Hurwitz integer. If the set {ε1, ε2, · · · , εn} is a
partition of Hα then the set {ρ1ε1ρ2 , ρ1ε2ρ2, · · · , ρ1εnρ2} becomes a partition of
Hρ1αρ2 .

The proof of next lemma is straightforward from Prop. 3.

Lemma 4.1. Gα1
∼= Gα2

if there exist ρ1, ρ2 ∈ ε such that α1 = ρ1α2ρ2, where
α1, α2 ∈ H.

Definition 4.2. Let α be a Hurwitz integer. A sphere (ball) centered at γ with
radius t in Gα is defined as

Bt (γ) = {β ∈ Hα : dα (β, γ) ≤ t} ,
where t ∈ N. If q ∈ Hα is in the Bt (γ) , then it is said that the vertex q is
t−dominated by the vertex γ.

We give the following definition as in [13].

Definition 4.3. Let a vertex subset S ⊂ Gα and t ∈ Z+. If every vertex of Gα is
t−dominated by a unique vertex in S, then S is called a perfect t−dominating set.

Example 4.4. For α = 1 + 3i+ 2j+ k and γ = −2j− k, the set of B1 (−2j − k) =
{β ∈ H1+3i+2j+k : d1+3i+2j+k (β,−2j − k) ≤ 1} is a sphere centered at −2j − k
with radius 1 in H1+3i+2j+k.

If t = 0, then d1+3i+2j+k (β,−2j − k) = 0. Hence, we get β = −2j − k and −2j−
k ∈ B1 (−2j − k) .

If t = 1, then d1+3i+2j+k (β,−2j − k) = 1. So, we add all of the elemets of weight
one to γ = −2j − k in an effort to determine 1−dominating set of γ = −2j − k.

For −1: β = (−2j − k)−1 = −1−2j−k ≡ 1
2−

i
2 + j

2 + 3k
2 (mod 1 + 3i+ 2j + k) .

Then we get 1
2 −

i
2 + j

2 + 3k
2 ∈ B1 (−2j − k) .

For 1: β = (−2j − k) + 1 = 1−2j−k ≡ − 1
2 + i

2 + 3j
2 −

k
2 (mod 1 + 3i+ 2j + k) .

Then we get − 1
2 + i

2 + 3j
2 −

k
2 ∈ B1 (−2j − k) .

By processing similar technique for 24 elements of weight one, we obtain 1−dominating
set of γ = −2j − k ∈ Hα as

B1 (−2j − k) =
{
−2j − k,− 1

2 + i
2 + 3j

2 −
k
2 ,

1
2 −

i
2 + j

2 + 3k
2 ,

3
2 + i

2 + j
2 + 3k

2 , 1 + 2i,

−j − k,− 3
2 + i

2 + j
2 −

k
2 ,−2j, 32 −

i
2 + j

2 + k
2 ,

1
2 + i

2 −
3j
2 −

k
2 ,

− 1
2 + i

2 −
3j
2 −

k
2 ,

1
2 −

i
2 −

3j
2 −

k
2 ,−1 + i+ j, 12 + i

2 −
3j
2 −

3k
2 ,

− 1
2 −

i
2 −

3j
2 −

k
2 ,

1
2 −

3i
2 + j

2 −
3k
2 , 1 + j + k,−1 + j, 12 −

i
2 −

3j
2 −

3k
2 ,

−1 + i+ j − k,−2 + j, 1− i+ j + k, 1 + k,−1 + j − k, 1− i+ k} .

Theorem 4.5. (1) If 0 6= β ∈ Hα, N (β) = 5 and β |α , then the set of the
subgroup 〈β〉 generated by β is a perfect 1−dominating set in Gα.

(2) If 0 6= β ∈ Hα, N (β) = 7 and β |α , then the set of the subgroup 〈β〉
generated by β is a perfect 2−dominating set in Gα.

Proof. 1. Let N(β) = 5 and β |α We prove that dα (σ, τ) ≥ 3 for all σ, τ ∈ 〈β〉 , σ 6=
τ . Since σ and τ are the elements of 〈β〉, there are δ1, δ2 in Hα such that σ = βδ1
and τ = βδ2. Thus, we have

dα (σ, τ) = dα (σ − τ, 0) = dα (βδ1 − βδ2, 0) = dα (βγ, 0) ,
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where γ = δ1 − δ2(modα). Let us assume that

dα (σ, τ) = dα (βγ, 0) < 3.

In this situation, there is an element q in Hα such that βγ is equal to q modulo α,
that is, q = βγ (modα). According to Def. 6, we get

dα (σ, τ) = dα (σ − τ, 0) = dα(βγ, 0) = N(q) < 3.

Since q = βγ (modα) and β is a left divisor of α, we get

βγ = q + αγ1, α = βγ2,

respectively, for some γ,γ2 ∈ H. Thus, we obtain

βγ = q + αγ1 = q + (βγ2) γ1 = q + β (γ2γ1)
⇒ q = β (γ − γ2γ1)

and

N (γ − γ2γ1) =
N (q)

N (β)
.

But, this is contradict to the definition of the norm since N(β) = 5, N(q) < 3, so,

N (γ − γ2γ1) = N(q)
N(β) /∈ Z. Hence, the proof is completed.

�

Here, note that σ 6= τ , so, N(q) 6= 0. A similar proof can be obtained for the
case 2.

Theorem 4.6. Let us assume that there is a Hurwitz integer β and let N(β)2

denotes the number of Hurwitz integers which the norm of these integers is less
than or equal to t. In this situation, there exists a perfect t−dominating set in Hα
if there exists a prime p such that the norm of β is equal to p.

It is well known that there is a natural way of defining perfect error-correcting
group codes with length one by means of perfect dominating sets over known graphs.
Some examples associated with this topic can be seen in [13].

We use Mathematica software program to determine the codes given in this
paper. As an illustration, we give the following algorithm in Fig. 5 for getting
perfect 1−dominating set. In that algorithm, we take α = 1 + 3i + 2j + k and
β = 2 + i. The first column of the table ”K”, one can see the table ”K” when the
program runs, denotes the elements of Hα, the second column denotes the elements
which dominated by the elements of 〈β〉, the set ”SW1” denotes the set E ∪ {0},
the set ”B1γ” denotes Hurwitz integers which the norm between γ ∈ 〈β〉 and these
elements is 1. Note that any Hurwitz integer a0 + a1i + a2j + a3k is shown as
Quaternion[a0, a1, a2, a3] in Mathematica. We don’t show the outputs since they
takes up too much space in the paper.

Fig. 4 shows the graph C225(13, 14, . . . , 24) which it is isomorphic to the graph
given in Fig. 3. The diameter of the graph C225(13, 14, . . . , 24) is 5. Using the
technic presented in this paper, one can construct a code that the minimum distance
of the code is less than or equal to 5. The graph immediately gives the minimum
distance of a code presented in this paper.

Fig. 3 shows representation of the Hurwitz graph generated by α = 1 + 3i+ 2j + k.
In the figure, points labeled red denotes the set 〈β〉. Note all vertexes are not given
in the figure. The vertexes given in the figure shows one twelfth of all vertexes.
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Figure 3. A representation of the Hurwitz graph generated by
α = 1 + 3i+ 2j + k

Table I: Some perfect code parameters

α β t
1 + 2i− 3j + k i− 2k 1

− 5
2 + 5i

2 + 3j
2 + k

2
3
2 + i

2 + 3j
2 + k

2 1

− 3
2 + i

2 −
5j
2 + 7k

2
1
2 + i

2 + j
2 + 5k

2 2
3
2 + 5i

2 + 9j
2 + 5k

2
3
2 + 3i

2 + 3j
2 + k

2 2
3 + 4i+ 3j + k 2 + i+ j + k 2
−4 + 5i+ 5j + 5k 1 + 2i+ 2j + 2k 4

Also, we give some perfect t−dominating sets, which directly are perfect codes
at Table I.

5. Some Comparisons

In this section, we compare codes given in the present paper and some codes
given in literature in terms of average energy and bandwidth occupancy. Firstly,
we give a comparison associated with average energy. The average energy calculated
as:

Eavg =
1

M

M−1∑
r=0

|qr|2,
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In[1]:= A = CirculantGraph@15^2, 813, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24<D
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Figure 4. The graph C225(13, 14, . . . , 24)
.

where qr is in signal space and it has a magnitude (distance from the origin) of

|qr| =
√
q2r,0 + q2r,1 + q2r,2 + q2r,3 and M denotes the number of the constellation.

Table II: Average Energy Comparison

α N(α) Base group Number of constellation Eavg
2 + i 5 Z[i]2+i 5 0.8
2 + i 5 H2+i 25 0.96
3 + 4i 25 Z[i]3+4i 25 4.16

15 1 + 3i+ 2j + k H1+3i+2j+k 225 3.27
3 + 4i 25 H3+4i 625 5.30
3 + 4i 25 Z[i]23+4i 625 8.32

Table II shows that the average energy of codes over Hurwitz integers is better
than the average energy of codes over Gaussian integers.

Secondly, we compare codes in terms of bandwidth occupancy. One of the most
important parameter of analog/digital communication systems is bandwidth. So
far, various modulation and coding techniques are developed to provide bandwidth
efficiency. As we know from the communication theory, to attain the equal channel
capacity required bandwidth must be higher when the codeword number increases
[16, 17]. Bandwidth occupancy BW is calculates as

BW =
Ca

log (1 + SNR)
,

where Ca and SNR denote the channel capacity and signal-to-noise ratio, respec-
tively. The BW of codes over Hurwitz integers is better than the BW of codes over
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Figure 5. Perfect 1−dominating set
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Gaussian integers since the number of codewords in a code over Hurwitz integers
is equal to square of the number of the codewords in a code over Gaussian integers
for the same integer N(α) and the same length n. For example, a code C has
625 codewords in Hurwitz integers while a code C has 25 codewords in Gaussian
integers for the same integer N(α) = 25, α = 3 + 4i, and the same length n = 1.

6. Conclusion

The paper devotes a new family of t−error correcting perfect codes over Hurwitz
integers. Using perfect t−dominating sets over the circulant graphs, these perfect
codes are constructed. Codes given in the present paper and some codes given in
literature in terms of average energy and bandwidth occupancy are compared. It
is shows that the average energy of codes over Hurwitz integers is better than the
average energy of codes over Gaussian integers.
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Abstract. In this paper, we examine a view on fixed point with near soft
mapping. First, we study the relationship between. soft mapping and almost

smooth mapping. Also, the notion of near soft point, near soft mappings, a

different approach to the study of near soft topological spaces. Shows how
a near soft fixed point is derived from near soft topological spaces. Finally,

many cases such as conservation of near soft compact topological spaces under

near soft continuous mapping have been obtained.

1. Introduction

Near sets is a concept given by Peters [4] who deals with the proximity of objects.
Here it causes the sample objects to be divided by the feature selection. The
nearness of sets foundation on object definitions can be seen by introducing the
near approximation space and finding nearby sets there.

The soft set concept, another concept proposed by Molodtsov [5], has been stud-
ied by many scientists [2, 6, 7, 8, 9, 10]. The soft sets and soft topological spaces
and some of their related concepts have studied by Shabir and Hussain in [1, 2].
Wardowski [14], studied on a fixed points of soft mapping. The notion of near soft
set emerges by considering the soft sets approximation and the near set theory as
a common concept. Tasbozan [3] introduce the soft topology and sets based on a
nearness approximation space. And many studies have been conducted on this sub-
ject [13, 11, 12]. The aim of this article is to create different concepts on nearness
approximation space. In this study, we create the near soft point notion of near
soft set and near soft mapping. These new concepts are explained with examples.
The notions of near soft point, near soft topological space are described and their
basic properties are explored with the help of examples. New definitions and the-
orems about near soft continuous mapping and near soft compactness have been
obtained. Also, discuss the contrasting image and properties of an image in near
soft mapping, based on the presented near soft element concept. In the last part
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of this study, a near soft compact Hausdorff topological space, near soft mapping,
and a new fixed point result were created.

2. Near Soft Sets and Near Soft Topology

Definition 2.1. Let (O,F ,∼Br, Nr, υNr ) be a nearness approximation space(NAS)
and σ = (F,B) be a soft set(SS) over O .
Nr∗((F,B)) = (Nr∗(F (φ) = ∪{x ∈ O : [x]Br ⊆ F (φ)}, B)) and

N∗r ((F,B)) = (N∗r (F (φ) = ∪{x ∈ O : [x]Br ∩ F (φ) 6= ∅}, B)) are lower and upper
near approximation operators. The SS Nr((F,B)) with BndNr(B)((F,B)) > 0
called a near soft set(NSS) [3].

Definition 2.2. LetO be an initial universe set, E be the universe set of parameters
and A,B ⊆ E

(1) (F,A) is called a relative null NSS if F (φ) = ∅, ∀c ∈ A.
(2) (G,B) is called a relative whole NSS if G(φ) = O, ∀φ ∈ B. [3]

Definition 2.3. (F,A)c = (F c, A) NSS is a complement of (F,A) if F c(φ) =
O − F (φ) ∀φ ∈ A [3].

Definition 2.4. Let (F,B) be a NSS over O and τ be the collection of near soft
subsets NSs of O, if if the following are provided

i): (∅, B), (O, B) ∈ τ
ii): (F1, B), (F2, B) ∈ τ then (F1, B) ∩ (F2, B) ∈ τ
iii): (Fi, B),∀φ ∈ B then ∪

i
(Fi, B) ∈ τ

Then (O, τ, B) is a near soft topological space(NSTS) [3].

Definition 2.5. Let (O, τ, B) be a NSTS over O, then the members of τ are said
to be near soft open sets (NSOS) in O. If its complement is open and a member
of τ then a NSs of (O, τ, B) is called near soft closed(NSC).

Definition 2.6. Let (F,B) be a NSS over O. If for the element φ ∈ B, F (φ) = {x}
and F (φ

′
) = ∅, ∀φ′ ∈ B−{φ} then NSS (F,B) is a near soft point (NSP ), denoted

by (x, φ).

Proposition 1. Let (O, τ, B) be a NSTS over O, then the collection τφ = {F (φ) :
(F,B) ∈ τ} for each φ ∈ B, defines a topology on O.

Definition 2.7. Let (O, τ, B) be a NSTS over O and (F,B) be a NSS over O
. Then the near soft closure (F,B)c is the intersection of all NSC super sets of
(F,B).

Definition 2.8. Let (O, τ, B) be a NSTS over O and (F,B) be a NSS over O.
Then the near soft interior (F,B)◦ is the collection of all NSOS of (F,B).

Example 2.9. O = {x1, x2, x3}, B = {φ1, φ2} ⊆ F be denote a set of objects and
a set of parameters respectively. Let (F,B) be a SS defined by (F,B) = {(φ2, x2)}.
Then σ = (F,B) is a NSS with r = 1.

[x1]φ1 = {x1, x2}, [x2]φ2 = {x2}
[x3]φ1 = {x3}, [x1]φ2 = {x1, x3}

Then N∗(σ) = N∗(F (φ), B) = (F∗(φ), B) = {(φ2, {x2})} ,N∗(σ) = N∗(F (φ), B) =
(F,B) and BndN (σ) ≥ 0.Thus (F,B) is a NSS.



38 H. TASBOZAN

Then σ = (F,B) is a NSS with r = 2.

[x1]φ1,φ2
= {x1}, [x2]φ1,φ2

= {x2}, [x3]φ1,φ2
= {x3}

N∗(σ) = N∗(σ) = (F,B).Thus (F,B) is a NSS. Also φ2 ∈ B,F (φ2) = {x2} and
φ′2 ∈ B − {φ2}, F (φ′2) = ∅. Thus (F,B) is a NSP and denote (x2, φ2) or (x2)φ2 .

Definition 2.10. Let (O, τ, B) be a NSTS over O . If there exists a NSOS
(G,B) such that (xφ, B) ∈ (G,B) ⊂ (F,B) then a NSS (F,B) in (O, τ, B) is a
near soft neighbourhood of the NSP (xφ, B) ∈ (F,B) .

3. Near Soft Compactness, Near Soft Mapping and Its Fixed Points

In this section, we will give some definitions using NSP .

Definition 3.1. Let (O, τ, B) be a NSTS and x, y ∈ O such that x 6= y. (O, τ, B)
is a near soft Hausdorff space(NSHS) if for each NSOS (F,D), (G,C) ∈ (O, B)
such that x ∈ (F,D) , y ∈ (G,C) and (F,D) ∩(G,C) = ∅. Similarly for each
NSP (xφ, B), (yφ′ , B) ∈ (O, B) such that (xφ, B) 6= (yφ′ , B) there are NSOS

(F1, B), (F2, B) ⊂ (O, B) so that (xφ, B) ∈ (F1, B), (yφ′ , B) ∈ (F2, B) and (F1, B)∩
(F2, B) = (∅, B).

Definition 3.2. Two NSS (F,B) and (G,B) in (O, B) are near soft disjoint de-
noted by (F,B) ∩ (G,B) = (∅, B), if F (φ) ∩ G(φ) = ∅, ∀φ ∈ B.

Definition 3.3. Two NSP (xφ, B) and (yφ′ , B) over a common universe O are

distinct, written (x, φ) 6= (y, φ
′
) if there corresponding NSS (F,B) and (G,B) are

disjoint.

Definition 3.4. Let (O, τ, B) be a NSTS and a NSS (V,B) ⊆ (O, B) is near soft
open ⇔ for each a NSS (W,B) ∈ τ which α ∈ (W,B) ⊆ (V,B).

Definition 3.5. Let (O, τ, B) be a NSTS and G ⊆ O. The near soft topology
(NST ) on (G,B) incited by the NST τ is the family τG of the NSs of G of the
shape τG = {V ∩G : V ∈ τ}. Thus (G, τG, B) is a near soft topological subspace of
(O, τ, B).

Definition 3.6. Let (O, τ, B) be a NSTS and C ⊆ O. If (C,B) ⊆ ∪
i∈I

(Vi, B)
then {Vi}i∈I ⊆ τ is a NSO cover of (C,B).

Definition 3.7. If for each NSO cover {Vi}i∈I of (C,B) there exists i1, i2, ..., ik ∈
I, k ∈ N such that (C,B) ⊆ ∪ k

n=1(Vin, B) then (C, τ,B) is a near soft compact
space (NSCoS).

Definition 3.8. Let (O, τ, B) be a NSTS and C ⊆ O. If the (G, τG, B) is NSCoS
then the (G,B) NSS is compact in (O, τ, B).

Definition 3.9. Let (O, τ, B) be a NSHS. Then every NSCo set in (O, τ, B) is
NSC in (O, τ, B) .

Proof. Let (C,B) be a NSCo set in (O, τ, B) and x ∈ C ′
. For every y ∈ C let x, y ∈

O and x ∈ (F,D), y ∈ (G,P ), (F,D), (G,P ) ∈ (O, B) such that (F,D)∩(G,P ) = ∅.
From the near soft compactness of (C,B) there exists y1, y2, ..., yk ∈ (C,B) such
that (C,B) ⊆ (G1, P ) ∪ ... ∪ (Gk, C). Denote (F,D) = (F1, D) ∪ ... ∪ (Fk, D) and
(G1, P ) ∪ ... ∪ (Gk, C) = (G,P ) then F ∩ G = ∅ and thus F ∩ C = ∅ , which

x ∈ F ⊆ C ′
thus (C,B) is NSC. �
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Definition 3.10. NS(O, B) denotes the family of all NSS over (O, B). Let
(F,A), (G,C) ∈ NS(O, B), A,C ⊆ B. The near soft cartesian product (F,A) ×
(G,C) is a NSS on (O, B)× (O, B) such that (F,A)× (G,C) = {((φ1, φ2), F (φ1)×
G(φ2)) : φ1, φ2 ∈ B}

Definition 3.11. A near soft relation(NSR) from (F,A) to (G,C)is a NSS (R,B)
, R ⊆ (F,A)× (G,C) with

(R,B) = {((φ1, φ2),O(φ1)×O(φ2)) : φ1, φ2 ∈ B,O(φ1) ⊆ F (φ1),O(φ2) ⊆ G(φ1)}
If ((φ1, φ2),O(φ1)×O(φ2)) ∈ (R,B) then (φ1,O(φ1)R(φ2,O(φ2)).

Definition 3.12. Let (F,A), (G,C) ∈ NS(O, B). If the following conditions sat-
isfied then a NSR f ⊆ (F,A)× (G,C) is a NSM denoted by f : (F,A)→ (G,C);

(1) For each NSP α = (xe, A) ∈ (F,A) there exists only one NSP β =
(f(x)e, A) ∈ (G,C) such that f(α) = β or αfβ.

(2) For each empty NSP α ∈ (F,A), f(α) is an empty NSP of (G,C) .

Definition 3.13. Let (F,A), (G,C) ∈ NS(O, B) and f : (F,A) → (G,C) be a
NSM .

(1) The view ofX ⊆ F under (NSM) f is theNSS of (f(X), C) = (∪α∈Xf(α), C)
and for each NSM (f(∅), B) = (∅, B).

(2) The inverse of Y ⊆ G under NSM f is the NSS of (f−1(Y ), A) = (∪{{α} :
α ∈ (F,A), f(α) ∈ (Y,C)}, B) .

Definition 3.14. Let (F,B), (G,B) ∈ NS(O, B). (W,B), (W1, B), (W2, B) ⊆
(F,B) ,(Z,B), (Z1, B), (Z2, B) ⊆ (G,B) and let f : (F,B)→ (G,B) be a (NSM).
Then the following hold:

(1) W1 ⊆W2 ⇒ f(W1) ⊆ f(W2)
(2) Z1 ⊆ Z2 ⇒ f−1(Z1) ⊆ f−1(Z2)
(3) W ⊆ f−1(f(W ))
(4) f(f−1(Z)) ⊆ Z
(5) f(W1 ∪W2) = f(W1) ∪ f(W2)
(6) f(W1 ∩W2) ⊆ f(W1) ∩ f(W2)
(7) f−1(Z1 ∪ Z2) = f−1(Z1) ∪ f−1(Z2)
(8) f−1(Z1 ∩ Z2) = f−1(Z1) ∩ f−1(Z2)

Definition 3.15. Let (F, τ,B), (G, υ,B) be a NSTS and f : (F,B) → (G,B) be
a NSM . If ∀V ∈ υ, f−1(V ) ∈ τ then f is a near soft continuous mapping and
denoted by NSCM .

Definition 3.16. Let (g, h) : (F,B) → (G,B′) be a NSM . A NSM (g, h) is an
injective, surjective and bijective if g, h are both injective, surjective and bijective,
respectively.

Definition 3.17. Let (Ok, τ, B) and (Ol, τ, B) be two NSTS. f : (Ok, τ, B) →
(Ol, τ, B) be a mapping. For each near soft neighbourhood (H,B) of (f(x)φ, B),
if there exists a near soft neighbourhood f((F,B)) ⊂ (H,B) then f is a NSCM
(xφ, B). If f is NSCM for all (xφ, B), then f is called NSCM .

Definition 3.18. Let (O1, τ, B) and (O2, τ, B) be two NSTS. f : O1 → O2 be a
mapping. O1 is near soft homeomorphic to O2 if f is a bijection, NSC and f−1 is
a near soft homeomorphism.



40 H. TASBOZAN

Example 3.19. O = {x1, x2, x3}, B = {φ1, φ2} ⊆ F . Let (F,B) be a NSS defined
by (F,B) = {(φ2, {x1, x2}), (φ2, {x2, x3})}. Then σ = (F,B) is a NSS with

[x1]φ1
= {x1, x2}, [x2]φ2

= {x2}
[x3]φ1

= {x3}, [x1]φ2
= {x1, x3}

. And think τ of NSSs of (F,B);

τ = {∅, (φ2, {x2}), (F,B), {(φ1, {x1, x2}), (φ2, {x2})}}

Then (F, τ) is a NSTS. Now taking a NSM f : (F,B)→ (F,B) as follows:

f(φ1, ∅) = (φ2, ∅), f(φ2, {x2}) = (φ2, {x2})
f(φ2, ∅) = (φ1, ∅), f(φ1, {x1, x2}) = (φ1, {x1, x2})
f(φ3, ∅) = (φ3, ∅), f(F,B) = (F,B)

Then f−1(v) ∈ τ,∀v ∈ τ then f is a NSCM .

Proposition 2. Let (C, τ,B) be a NSCoTS and let f : (C,B)→ (C,B) (NSCM).
Then f(C) is a (NSCo) in (C, τ,B).

Proof. Let {Vi}i∈I ⊆ τ which f(C) ⊆ ∪i∈IVi. From the near soft continuity of
f, {f−1(Vi)}i∈I is a family of (NSOS). Then C ⊆ f−1(f(C)) ⊆ f−1(∪i∈IVi) =
∪i∈If−1(Vi) and from NSCo of C there exists i1, i2, ..., ik ∈ I, k ∈ N which

C ⊆ f−1(Vi1) ∪ f−1(Vi2) ∪ ... ∪ f−1(Vik)

f(C) ⊆ (Vi1) ∪ (Vi2) ∪ ... ∪ (Vik)

Thus f(C) is a NSCo. �

Definition 3.20. Let (F,B) be a NSS and f : (F,B) → (F,B) be a NSM . If
f(α) = α then a NSP α ∈ (F,B) is a fixed point of f.

Theorem 3.21. Let (C, τ) be a NSCoHTS and let f : (C,B) → (C,B) be a
NSCM such that:

(1) for each nonempty NSP α ∈ (C,B), f(α) is a nonempty NSP of (C,B),
(2) If f(X,B) = (X,B)then only one nonempty NSP α ∈ (C,B) which f(α) =

α, for each NSC set (X,B) ⊆ (C,B).

Example 3.22. Let f : (F,B)→ (F,B) be a NSM defined in example 35. Then
the NSP (φ2, {x2}), (φ3, ∅), (φ1, {x1, x2}) are fixed points of f.

4. Conclusions

In this study, we describe the notion of NSM and its fixed point. In the near soft
topological space, we tried to create a fixed point structure with near soft mapping,
which we created based on the concept of near soft point. Expressions explaining
these concepts and showing the necessity of some assumptions are presented. With
a different approach to the near soft cluster, it will facilitate the solution of many
problems and will help new studies.
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Abstract. The aim of the article is the presentation of certain extensions of

the famous Fuglede-Putnam Theorem on the class of p-w-hyponormal opera-
tors, which generalize some results proved by authors in [10].

1. Introduction and Preliminaries

Throughout this work, B(H) denotes the Banach algebra of bounded linear
operators on a complex separable Hilbert space H. By ker(T ) and ran(T ) respec-
tively, we mean the null space and the range of an operator T ∈ B(H). Given
T, S ∈ B(H), the generalized derivation δT,S induced by T and S is defined for all
X ∈ B(H) by δT,S(X) = TX −XS. Recall that T is said to be normal if T com-
mutes with its adjoint T ?. The well-known Fuglede-Putnam Theorem states that
ker(δT,S) ⊂ ker(δT?,S?) whenever T and S are normal operators, see [5, 6, 7] and [15]
where several generalizations of this result are given for operators T and S belonging
to some classes of non normal operators. For 0 < p ≤ 1, an operator T ∈ B(H) is

said to be p-hyponormal if |T |2p−|T ?|2p ≥ 0, where |T | = (T ?T )
1
2 is the module of

T. A 1-hyponormal operator is hyponormal and 1
2 -hyponormal is semi-hyponormal.

Reader can find many interesting spectral properties of this class in [1, 2, 12, 15]. In

[1], it is defined the Aluthge transform of an operator T = U |T | by T̃ = |T |
1
2 U |T |

1
2 ,

and in [2], it is shown that if T is p-hyponormal, then T̃ is (p+ 1
2 )-hyponormal for

0 < p ≤ 1
2 and hyponormal for 1

2 ≤ p ≤ 1. Also, T is said to be log-hyponormal
if T is invertible and log(T ?T ) ≥ log(TT ?). The operator T ∈ B(H) is said to be
dominant if ran(T − λ) ⊂ ran(T − λ)? for each λ in the spectrum σ(T ) of T. Also,
if there exists M > 0 such that (T − λ)(T − λ)? ≤ M(T − λ)?(T − λ) for each
λ ∈ σ(T ), then T is said to be M -hyponormal. Clearly,

Hyponormal ⊂M -hyponormal ⊂ dominant
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In [15], it is presented an example of an M -hyponormal operator that is not hy-

ponormal. An operator T is said to be w-hyponormal if
∣∣∣T̃ ∣∣∣ ≥ |T | ≥ ∣∣∣T̃ ?∣∣∣ [2, 4, 8].

Useful results of the class of w-hyponormal operators are presented in [2, 8, 9], and
it was proved that it contains the class of p-hyponormal operators. The following
inclusions hold

Hyponormal ⊂ p-hyponormal ⊂ w-hyponormal

The operator T is said to be p-w-hyponormal for certain 0 < p ≤ 1, if∣∣∣T̃ ∣∣∣p ≥ |T |p ≥ ∣∣∣T̃ ?∣∣∣p
[10, 16]. A 1-w-hyponormal is w-hyponormal, and w-hyponormal operators are
evidently p-w-hyponormal. In this article, we’ll extend the Fuglede-Putnam the-
orem for p-w-hyponormal with p-hyponormal operators or with log-hyponormal
operators. Other spectral related results are also added.

2. Known Results

The following known results will be needed for the rest of the paper.

Lemma 2.1. [13] Let T be in B(H) and S be in B(K). The following assertions
are equivalent

1. The pair (T, S) satisfies the Fuglede-Putnam theorem.

2. If TX = XS for some X in B(K,H), then ran(X) reduces T , (ker(X))⊥

reduces S, and restrictions T
∣∣∣ran(X) , S

∣∣(ker(X))⊥ are unitarily equiva-

lent normal operators.

Lemma 2.2. [2] Let T ∈ B(H) be a w-hyponormal operator and let M ⊂ H be an
invariant subspace under T . Then T |M is w-hyponormal.

Lemma 2.3. [2] Let T ∈ B(H) be a w-hyponormal operator. Then T̃ is semi-
hyponormal.

Lemma 2.4. [1] If T is a p-hyponormal operator, then T̃ is (p + 1
2 )-hyponormal

for 0 < p ≤ 1
2 and hyponormal for 1

2 ≤ p ≤ 1.

Lemma 2.5. [16] Let T ∈ B(H) be p-w-hyponormal, and let M ⊂ H be a T -
invariant subspace. Then T |M is p-w-hyponormal.

Lemma 2.6. [16] Let T ∈ B(H) be a p-w-hyponormal operator. Then T̃ is p
2 -

hyponormal.

3. Main results

The familiar Fuglede-Putnam Theorem asserts that for normal operators T and S
on H, equation δT,S(X) = 0 implies δT?,S?(X) = 0 for all X in B(H). Extensions
of this result for certain classes of non normal operators are presented in many
papers, see [5, 6] and [7]. Authors in [11] showed that this result remains true for
an M -hyponormal operator T and a dominant operator S.

The following result gives an extension of the Fuglede-Putnam property for M -
hyponormal and p-hyponormal operators.
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Proposition 1. For anM -hyponormal operator T and for a p-hyponormal operator
S? in B(H), ker(δT,S) ⊂ ker(δT?,S?).

Proof. Due to [7] and since an M -hyponormal operator is dominant, the pair (T, S)
satisfies the Fuglede-Putnam property. �

Theorem 3.1. Let T be M -hyponormal and let S? be w-hyponormal operators in
B(H). Then, δT,S(X) = 0 entails δT?,S?(X) = 0 for all X in B(H). Moreover,

ran(X) reduces T, (ker(X))⊥reduces S and restrictions T
∣∣∣ran(X) , S

∣∣(ker(X))⊥

are unitarily equivalent normal operators.

Proof. Subspaces ran(X) and (ker(X))⊥ are invariant for T and S respectively
since δT,S(X) = 0. Then, we can write

T =

(
T1 T2
0 T3

)
, S =

(
S1 0
S2 S3

)
and X =

(
X1 0
0 0

)
: H2 −→ H1

under the decompositions

H = H1 = ran(X)⊕ ran(X)⊥

H = H2 = (kerX)⊥ ⊕ kerX

From δT,S(X) = 0 we get

(3.1) T1X1 = X1S1

where T1 isM -hyponormal, and S1 is w-hyponormal by Lemma 2.2. Let S1 = U |S1|
be the polar decomposition of T1. Since U |S1| = |S∗1 |U , equality (3.1) can be writen

(3.2) T1X1 = X1 |S?1 |U

Multiplying the two sides of (3.2) at right by |S?1 |
1
2 , we obtain

T1(X1 |S?1 |
1
2 ) = X1 |S?1 |U |S?1 |

1
2 = (X1 |S?1 |

1
2 )S̃?1

The Aluthge transform S̃?1 of S?1 is semi-hyponormal by Lemma 2.3. Hence, the

pair (T1, S̃?1 ) satisfies the Fuglede-Putnam property by Proposition 1. Thus, restric-

tions T1

∣∣∣∣∣ran(X1|S?
1 |

1
2 )

and S̃?1

∣∣∣∣
(ker((X1|S?

1 |
1
2 )⊥

are equivalent normal operators by

Lemma 2.1. Since X1 is quasiaffinity, i.e., one-to-one with dense range, and |S∗1 |
1
2

is injective,

ran(X1 |S?1 |
1
2 ) = ranX1 = ranX

and

ker(X1 |S?1 |
1
2 ) = kerX1 = kerX

Thus, S̃?1 is normal and then S1 is normal by [15]. The operator S? isM -hyponormal
and its restriction S?1 on (kerX)⊥ is normal. Consequently, kerX reduces S?. Hence
S2 = 0.

Similarly, T is M hyponormal, and its restriction T1 on ranX is normal. Then,
ranX reduces T . Thus T2 = 0. Since the pair (T1, S1) satisfies the Fuglede-Putnam
theorem, T ?1X1 = X1S

?
1 . Finally T ?X = XS?. �
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Theorem 3.2. Let T be a p-w-hyponormal operator in B(H). If |T | is invertible,
then for all λ /∈ σ(T )

i.

∥∥∥∥∥
∣∣∣∣˜̃T ∣∣∣∣ 12 ∣∣∣T̃ ∣∣∣ 12 |T | 12 (T − λ)−1 |T |−

1
2

∣∣∣T̃ ∣∣∣− 1
2

∣∣∣∣˜̃T ∣∣∣∣− 1
2

∥∥∥∥∥ ≤ 1
dist(λ,σ(T ))

ii.
∥∥T−1∥∥ ≤ 1

min(|λ|,λ∈σ(T ))

Proof. i. T̃ is p
2 -hyponormal by Lemma 2.6, and 0 < p

2 ≤
1
2 . Since σ(T ) = σ(T̃ ) by

[3], ∥∥∥∥∥
∣∣∣∣˜̃T ∣∣∣∣ 12 ∣∣∣T̃ ∣∣∣ 12 (T̃ − λ)−1

∣∣∣T̃ ∣∣∣− 1
2

∣∣∣∣˜̃T ∣∣∣∣− 1
2

∥∥∥∥∥ ≤ 1

dist(λ, σ(T ))

for λ /∈ σ(T ) by [1]. The proof derives then from the fact that

(T̃ − λ)−1 = |T |
1
2 (T − λ)−1 |T |−

1
2

ii. Since
∥∥∥T̃∥∥∥ ≤ ‖T‖ for an arbitary operator T in B(H),

∥∥T−1∥∥ ≤ ∥∥∥T̃−1∥∥∥ =
1

min(|λ| , λ ∈ σ(T̃ ))
=

1

min(|λ| , λ ∈ σ(T ))

�

As a consequence of the previous result, and since the Aluthge transform of
a log-hyponormal operator is semi-hyponormal [14], we can then state the fol-
lowing generalization of the Fuglede-Putnam’s Theorem for p-w-hyponormal with
log-hyponormal operators as follows

Theorem 3.3. The Fuglede-Putnam Theorem holds for a p-w-hyponormal operator
T ∈ B(H) with kerT ⊂ kerT ?, and a p-hyponormal operator S? ∈ B(H).

Proof. Let

T =

(
T1 0
0 0

)
, S =

(
S1 0
0 0

)
and X =

(
X1 X2

X3 X4

)
according to the decompositions

H = H1 = (kerT )
⊥ ⊕ (kerT )

H = H2 = (kerS?)
⊥ ⊕ (kerS?)

From equation TX = XS, we get

(3.3) T1X1 = X1S1

and T1X2 = X3S1 = 0. Since T1 and S1 are one-to-one, X2 = X3 = 0. T1 is a
one-to-one p-w-hyponormal operator by Lemma 2.3, and S?1 is p-hyponormal. Let
T1 = U |T1| be the polar decomposition of T1. Equation (3.3) can be written

(3.4) U |T1|X1 = X1S1

Multiplying the two sides of (3.4) on the left by |T1|
1
2 we get

|T1|
1
2 U |T1|

1
2 |T1|

1
2 X1 = |T1|

1
2 X1S1
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So T̃1(|T1|
1
2 X1) = (|T1|

1
2 X1)S1. The Aluthge transform T̃1 of T1 is p

2 -hyponormal

by Lemma 2.6, and S?1 is p-hyponormal. By [5], the pair (T̃1, S1) satisfies the
Fuglede-Putnam Theorem. Thus,

T̃1
∗
(|T1|

1
2 X1) = (|T1|

1
2 X1)S?1

Consequently, restrictions T̃1

∣∣∣∣ran(|T1|
1
2X1)

and S1

∣∣∣
(ker(|T1|

1
2X1)⊥

are unitarily equiv-

alent normal operators by Lemma 2.1. Since the operator |T1|
1
2 and X1 are one-to-

one, the operator |T1|
1
2 X1 so is. Thus

(ker(|T1|
1
2 X1))⊥ = {0}⊥ = (kerX1)⊥ = (kerX)⊥

And

ran(
∣∣∣T̃1∣∣∣ 12 X1) = (ker |T1|

1
2 X1)⊥ = {0}⊥ = ran(X1) = ran(X)

Thus, T̃1 is a normal operator. The operator T1 so is by [15]. Therefore, ran(X)
reduces T1 by Lemma 2.1, and (kerX1)⊥ reduces S?1 by [17]. Since T1 is normal,
and S?1 is p-hyponormal, the Fuglede-Putnam property holds for the pair (T1, S1).
Thus, T ?1X1 = X1S

?
1 and then, T ?X = XS?. �

Corollary 3.4. The pair (T, S) satisfies the Fuglede-Putnam Theorem if T is a
p-hyponormal operator and S? is a p-w-hyponormal with kerS ⊂ kerS?.

Proof. TX = XS for some X in B(H). Put A = S?, B = T ? and C = X?. Then,
B?C? = C?A?. Hence, AC = CB, where A is an injective p-w-hyponormal or a
p-w-hyponormal with kerA ⊂ kerA?, and B? is p-hyponormal. By the previous
result, A?C = CB∗. Thus, SX? = X?T. Consequently, T ?X = XS?. �

Theorem 3.5. δ(T,S) ⊂ δ(T?,S?) for a p-w-hyponormal operator T with kerT ⊂
kerT ?, and a log-hyponormal operator S?.

We need the following property of log-hyponormal operators for the proof.

Lemma 3.6. [15] Let T ∈ B(H) be a log-hyponormal operator and let M ⊂ H be
a T -invariant closed subspace. Then, the restriction T |M is log-hyponormal.

Proof. ( of Theorem 3.5) Let’s consider the decompositions

H = H1 = (kerT )
⊥ ⊕ (kerT )

H = H2 = (kerS?)
⊥ ⊕ (kerS?)

Then

T =

(
T1 0
0 0

)
, S =

(
S1 0
0 0

)
and X =

(
X1 X2

X3 X4

)
From equation δT,S(X) = 0, we get

(3.5) δT1,S1
(X1) = 0
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and T1X2 = X3S1 = 0. Since T1 and S1 are one-to-one, X2 = X3 = 0. T1 is a
one-to-one p-w-hyponormal operator by Lemma 2.6, and S?1 is an injective log-
hyponormal by Lemma 3.6. Let S1 = U |S1| be the polar decomposition of S1.
Since S1 = |S?1 |U, equation (3.5) can be written

(3.6) T1X1 = X1 |S?1 |U

Multiplying the two sides of (3.6) at right by |S?1 |
1
2 we get

T1(X1 |S?1 |
1
2 ) = (X1 |S?1 |

1
2 ) |S?1 |

1
2 U |S?1 |

1
2 = (X1 |S?1 |

1
2 )S̃?1

T1 is p-w-hyponormal, and the Aluthge transform S̃?1 of S?1 is 1
2 -hyponormal by [14].

By Theorem 3.3, the Fuglede-Putnam’s Theorem holds for the pair (T1, S̃?1 ). Hence,

T ?1 (X1 |S?1 |
1
2 ) = (X1 |S?1 |

1
2 )S̃?1

?
. Furthermore, and by Lemma 2.1, T1

∣∣∣∣∣ran(X1|S?
1 |

1
2 )

and S̃?1

∣∣∣∣(ker(X1|S?
1 |

1
2 )⊥

are unitarily equivalent normal operators. Since the operator

|S?1 |
1
2 and X1 are one-to-one, the operator X1 |S?1 |

1
2 so is. The rest of proof is similar

to Theorem 3.1. �

Corollary 3.7. Let T ∈ B(H) be a pure log-hyponormal operator, and let S∗ ∈
B(H) be a p-w-hyponormal with kerS ⊂ kerS∗. Then, equation TX = XS implies
X = 0.

Proof. By Theorem 3.3, equations TX = XS and T ?X = XS? hold. Hence,

restriction T
∣∣∣(ran(X) is a normal operator by Lemma 2.1, which contradicts the

hypotheses that T is pure. Thus, X = 0. �

Corollary 3.8. An invertible p-w-hyponormal operator T ∈ B(H) is normal if and
only if it is log-hyponormal.

Proof. Put T = X = S in the previous Theorem. �

In [9, Lemma 7], it is shown that if T is w-hyponormal with kerT ⊂ kerT ? and
S is normal, and if X ∈ B(H) has dense range such that TX = XS, then T is
normal. We give now, an extension of this result for a p-w-hyponormal operator as
follows

Lemma 3.9. Let T ∈ B(H) be a p-w-hyponormal operator with kerT ⊂ kerT ?,
and let S be normal. If TX = XS for some X ∈ B(H) with dense range, then T
is normal.

Proof. The pair (T, S) verifies the Fuglede-Putnam property by Theorem 3.2. Then,

by Lemma 2.1, the restriction T
∣∣∣(ran(X) is a normal operator. This achieves the

proof since ran(X) = H. �

Corollary 3.10. Let T, S? ∈ B(H) be p-w-hyponormal operators with kerT ⊂
kerT ?, and kerS ⊂ kerS?. If TX = XS and SY = Y T for certain X,Y ∈ B(H)
with dense ranges, then T and S are normal.
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4. Conclusion

In this paper, are shown some versions of Fuglede-Putnam Theorem on classes of
p-w-hyponormal operators with log-hyponormal and with p-hyponormal opertaors.
Some spectral results in [16] on w-hyponormal operators are also extended to p-w-
hyponormal operators.
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