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Selçuk University, Türkiye

Metin Turgay
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Research Article

Equilibria for abstract economies in Hausdorff topological
vector spaces

Dedicated to Professor Anthony To-Ming Lau with much admiration.

DONAL O’REGAN*

ABSTRACT. In this paper using new fixed point results of the author, we establish a variety of existence results for
equilibria for abstract economies.

Keywords: Fixed points, equilibria, abstract economies.

2020 Mathematics Subject Classification: 47H04, 47H10, 47N10, 90A14.

1. INTRODUCTION

Using strategy sets with constraint and preference correspondences defined on subsets of
Hausdorff topological vector spaces, we present in this paper a variety of equilibrium results
for abstract economies. These equilibrium results are deduced from recent fixed point results
in the literature (see [8, 9, 10]) and our theory improves and generalizes corresponding results
in the literature (see [1, 4, 5, 6, 11, 12] and the references therein).

Now, we recall some fixed point results [8, 9, 10] in the literature. First, we recall the follow-
ing notions from the literature. For a subsetK of a topological spaceX , we denote byCovX(K)
the directed set of all coverings of K by open sets of X (usually we write Cov(K) = CovX(K)).
Given two maps F, G : X → 2Y (here 2Y denotes the family of nonempty subsets of Y ) and
α ∈ Cov(Y ), F and G are said to be α–close if for any x ∈ X there exists Ux ∈ α, y ∈ F (x) ∩ Ux
and w ∈ G(x) ∩ Ux.

Let Q be a class of topological spaces. A space Y is an extension space for Q (written Y ∈
ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed, any continuous function f0 : K → Y
extends to a continuous function f : X → Y . A space Y is an approximate extension space for
Q (written Y ∈ AES(Q)) if for any α ∈ Cov(Y ) and any pair (X,K) in Q with K ⊆ X closed,
and any continuous function f0 : K → Y there exists a continuous function f : X → Y such
that f |K is α–close to f0.

Let V be a subset of a Hausdorff topological vector space E. Then, we say V is Schauder
admissible if for every compact subset K of V and every covering α ∈ CovV (K) there exists a
continuous functions πα : K → V such that

(i). πα and i : K → V are α–close,
(ii). πα(K) is contained in a subset C ⊆ V with C ∈ AES (compact).
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X is said to be q– Schauder admissible if any nonempty compact convex subset Ω of X is
Schauder admissible.

An upper semicontinuous map φ : X → CK(Y ) is said to Kakutani (and we write φ ∈
Kak(X,Y )); here CK(Y ) denotes the family of nonempty, convex, compact subsets of Y .

Theorem 1.1. Let I be an index set and {Xi}i∈I be a family of sets each in a Hausdorff topological vector
space Ei. For each i ∈ I , let Ki be a nonempty compact subset of Xi and suppose Fi : X ≡

∏
i∈I Xi →

Ki is upper semicontinuous with nonempty convex compact values (i.e. Fi ∈ Kak(X,Ki)). Also
assume K ≡

∏
i∈I Ki is a Schauder admissible subset of the Hausdorff topological vector space E ≡∏

i∈I Ei. Then, there exists a x ∈ K with xi ∈ Fi(x) for i ∈ I (here xi is the projection of x on Xi).

Remark 1.1. One could repace K a Schauder admissible subset of E in Theorem 1.1 (and the other
results in this paper) with other admissible subsets of E described in [7].

Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y2 and G a multi-
function. We say G ∈ DKT (Z,W ) [2] if W is convex and there exists a map S : Z → W with
co (S(x)) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and the fibre S−1(w) = {z ∈ Z : w ∈ S(z)}
is open (in Z) for each w ∈W .

Theorem 1.2. Let I be an index set and {Xi}i∈I be a family of convex sets each in a Hausdorff topo-
logical vector space Ei. For each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and Fi ∈ DKT (X,Xi).

In addition assume for each i ∈ I there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Also
suppose X is a q–Schauder admissible subset of the Hausdorff topological vector space E =

∏
i∈I Ei.

Then, there exists a x ∈ X with xi ∈ Fi(x) for i ∈ I .

Remark 1.2. If I is a finite set, then the assumption that ”X is a q–Schauder admissible subset of
the Hausdorff topological vector space E” can be removed. In fact we have: Let {Xi}Ni=1 be a family
of convex sets each in a Hausdorff topological vector space Ei. For each i ∈ {1, ..., N} suppose Fi :

X ≡
∏N
i=1Xi → Xi and Fi ∈ DKT (X,Xi). In addition assume for each i ∈ {1, ..., N} there exists

a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Then, there exists a x ∈ X with xi ∈ Fi(x) for
i ∈ {1, ..., N}.

Let Z andW be subsets of Hausdorff topological vector spaces Y1 and Y2 and F a multifunc-
tion. We say F ∈ HLPY (Z,W ) [3, 4] if W is convex and there exists a map S : Z → W with
co (S(x)) ⊆ F (x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and Z =

⋃
{ int S−1(w) : w ∈ W}; here

S−1(w) = {z ∈ Z : w ∈ S(z)}.

Theorem 1.3. Let I be an index set and {Xi}i∈I be a family of convex sets each in a Hausdorff topo-
logical vector space Ei. For each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and Fi ∈ HLPY (X,Xi).

In addition assume for each i ∈ I there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Also
suppose X is a q–Schauder admissible subset of the Hausdorff topological vector space E =

∏
i∈I Ei.

Then, there exists a x ∈ X with xi ∈ Fi(x) for i ∈ I .

Remark 1.3. If I is a finite set, then the assumption that “X is a q–Schauder admissible subset of the
Hausdorff topological vector space E" can be removed. In fact we have: Let {Xi}Ni=1 be a family of
convex sets each in a Hausdorff topological vector space Ei. For each i ∈ {1, ..., N} suppose Fi : X ≡∏N
i=1Xi → Xi and Fi ∈ HLPY (X,Xi). In addition assume for each i ∈ {1, ..., N} there exists a

convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Then, there exists a x ∈ X with xi ∈ Fi(x) for
i ∈ {1, ..., N}.

We now state a result from the literature [11] which will be used in Section 2.
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Theorem 1.4. Let X and Y be two topological spaces and A an open subset of X . Suppose F1 : X →
2Y , F2 : A→ 2Y (here 2Y denotes the family of nonempty subsets of Y ) are upper semicontinuous such
that F2(x) ⊂ F1(x) for all x ∈ A. Then, the map F : X → 2Y defined by

F (x) =

{
F1(x), x /∈ A
F2(x), x ∈ A

is upper semicontinuous.

2. ABSTRACT ECONOMY RESULTS

Let I be the set of agents and we describe the abstract economy as Γ = (Xi, Ai, Bi, Pi)i∈I ,
where Ai, Bi : X ≡

∏
i∈I Xi → 2Ei are constraint correspondences, Pi : X → 2Ei is a pref-

erence correspondence and Xi is a choice (or strategy) set which is a subset of a Hausdorff
topological vector space Ei. We are interested in finding an equilibrium point for Γ i.e. a point
x ∈ X with xi ∈ Bi(x) and coAi(x) ∩ co Pi(x) = ∅ (or xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅) for
i ∈ I .

Theorem 2.5. Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy with {Xi}i∈I a family of nonempty
sets each in a Hausdorff topological vector spaceEi (here I is an index set). For each i ∈ I , letAi, Bi, Pi :
X ≡

∏
i∈I Xi → 2Ei and assume the following conditions are satisfied:

(2.1) Ui = {x ∈ X : coAi(x) ∩ co Pi(x) 6= ∅} is paracompact and open in X

(2.2) cl Bi(≡ Bi) : X → CK(Ei) is upper semicontinuous

(2.3)
{

there exists a nonempty compact subset Ki of Xi with Bi : X → CK(Ki)
and K ≡

∏
i∈I Ki is a Schauder admissible subset of E ≡

∏
i∈I Ei

and

(2.4) xi /∈ coAi(x) ∩ co Pi(x) if x ∈ Ui; here xi is the projection of x on Ei.

For i ∈ I and x ∈ X , let Hi(x) = coAi(x) ∩ co Pi(x) and suppose

(2.5) Hi(x) ⊆ Bi(x) for x ∈ Ui
and

(2.6)
{

there exists a Si : Ui → 2Ei with co Si(x) ⊆ Hi(x) for x ∈ Ui
and S−1i (y) is open (in Ui) for each y ∈ Ei.

Then there exists a x ∈ X with for each i ∈ I , we have xi ∈ Bi(x) and coAi(x) ∩ co Pi(x) = ∅.

Proof. Note for each i ∈ I from (2.6), we have Hi ∈ DKT (Ui, Ei) so from [2] there exists a
continuous (single valued) selection fi : Ui → Ei of Hi with fi(x) ∈ co (Si(x)) ⊆ Hi(x) for
x ∈ Ui. For each i ∈ I , let

Gi(x) =

{
fi(x), x ∈ Ui
Bi(x), x /∈ Ui

.

Note for each i ∈ I that {fi(x)} ⊆ co (Si(x)) ⊆ Hi(x) ⊆ Bi(x) (see (2.5)) if x ∈ Ui, so Theorem
1.4 guarantees that Gi : X → CK(Ei) is upper semicontinuous. Also for each i ∈ I , we have
Gi(x) ⊆ Bi(x) ⊆ Ki for x ∈ X so Gi ∈ Kak(X,Ki). Now, Theorem 1.1 guarantees a x ∈ K
with xi ∈ Gi(x) for i ∈ I . If x ∈ Ui for some i ∈ I , then xi = fi(x) ∈ Hi(x) = coAi(x)∩ co Pi(x),
which contradicts (2.4). Thus for each i ∈ I , we must have x /∈ Ui and then we have xi ∈ Bi(x)
and coAi(x) ∩ co Pi(x) = ∅. �



Equilibria for abstract economies in Hausdorff topological vector spaces 57

Remark 2.4.
(i). If i ∈ I and H−1i (y) is open (in X) for each y ∈ Ei, then Ui in (2.1) is automatically open in

X . This is immediate once one notices that Ui = ∪y∈Ei
H−1i (y).

(ii). Of course there are other obvious analogues of Theorem 2.5 if the assumptions on coAi ∩ co Pi
are replaced by assumptions on coAi ∩ Pi or coAi ∩ Pi or coAi ∩ co Pi or coAi ∩ co Pi or
Ai ∩ co Pi or Ai ∩ co Pi or Ai ∩ Pi or coAi ∩ co Pi and the assumptions on Bi are replaced by
assumptions on Bi.

Remark 2.5. For each i ∈ I suppose there exists a map Si : X → Ei (which may have empty values)
with co Si(x) ⊆ Hi(x) for x ∈ X , the fibres S−1i (y) are open (in X) for each y ∈ Ei and also assume
if x ∈ Ui, then Si(x) 6= ∅. Then, (2.6) holds with Si replaced by Si|Ui

. Let S?i denote Si|Ui
. For i ∈ I

note S?i : Ui → 2Ei , co S?i (x) ⊆ Hi(x) for x ∈ Ui and for y ∈ Ei note

(S?i )−1(y) = {x ∈ Ui : y ∈ S?i (x)} = {x ∈ X : y ∈ Si(x)} ∩ Ui = S−1i (y) ∩ Ui,

so (S?i )−1(y) which is open in Ui.

Theorem 2.6. Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy with {Xi}i∈I a family of nonempty
sets each in a Hausdorff topological vector space Ei (here I is an index set). For each i ∈ I , let
Ai, Bi, Pi : X ≡

∏
i∈I Xi → 2Ei and assume (2.1), (2.2), (2.3) and (2.4) hold. For i ∈ I and

x ∈ X , let Hi(x) = coAi(x) ∩ co Pi(x) and suppose (2.5) holds. In addition for each i ∈ I assume

(2.7)
{

there exists a Si : Ui → 2Ei with co Si(x) ⊆ Hi(x) for x ∈ Ui
and Ui =

⋃
{ intUi

S−1i (w) : w ∈ Ei}
.

Then there exists a x ∈ X with for each i ∈ I we have xi ∈ Bi(x) and coAi(x) ∩ co Pi(x) = ∅.

Proof. Note for each i ∈ I from (2.7), we have Hi ∈ HLPY (Ui, Ei) so from [4] there exists a
continuous (single valued) selection fi : Ui → Ei of Hi with fi(x) ∈ co(Si(x)) ⊆ Hi(x) for
x ∈ Ui. Let Gi for i ∈ I be as in Theorem 2.5 and the same reasoning guarantees a x ∈ K with
xi ∈ Gi(x) for i ∈ I . �

Remark 2.6. For each i ∈ I suppose there exists a map Si : X → Ei (which may have empty values)
with co Si(x) ⊆ Hi(x) for x ∈ X , X =

⋃
{ intX S−1i (w) : w ∈ Ei} and also assume if x ∈ Ui,

then Si(x) 6= ∅. Then, (2.7) holds with Si replaced by Si|Ui . Let S?i denote Si|Ui . For i ∈ I note
S?i : Ui → 2Ei , co S?i (x) ⊆ Hi(x) for x ∈ Ui and now we show Ui =

⋃
{ intUi

(S?i )−1(w) : w ∈ Ei}.
To see this notice

Ui = Ui ∩X = Ui ∩
(⋃
{ intX S−1i (w) : w ∈ Ei}

)
=
⋃
{Ui ∩ intX S−1i (w) : w ∈ Ei},

so Ui ⊆
⋃
{ intUi

(S?i )−1(w) : w ∈ Ei} since for each w ∈ Ei, we have that Ui ∩ intX S
−1
i (w)

is open in Ui. On the other hand clearly
⋃
{ intUi

(S?i )−1(w) : w ∈ Ei} ⊆ Ui so as a result Ui =⋃
{ intUi

(S?i )−1(w) : w ∈ Ei}.

Theorem 2.7. Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy with {Xi}i∈I a family of nonempty
convex sets each in a Hausdorff topological vector space Ei (here I is an index set). For each i ∈ I , let
Ai, Bi, Pi : X ≡

∏
i∈I Xi → 2Ei and assume the following conditions are satisfied:

(2.8) co(Ai(x)) ⊆ Bi(x) for x ∈ X,

(2.9) xi /∈ Bi(x) ∩ co Pi(x) if x ∈ X and Ai(x) ∩ Pi(x) 6= ∅,

(2.10)
{

there exists a nonempty convex compact subset Ki of Xi

with Bi(X) ⊆ Ki ⊆ Xi
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and

(2.11)
{

for each yi ∈ Xi the set
[
(co Pi)

−1(yi) ∪Mi

]
∩A−1i (yi)

is open in X (here Mi = {x ∈ X : Ai(x) ∩ Pi(x) = ∅}) .

Finally, assume X is a q–Schauder admissible subset of E =
∏
i∈I Ei. Then there exists a x ∈ X with

for each i ∈ I , we have xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅.

Proof. For each i ∈ I , let Ni = {x ∈ X : Ai(x) ∩ Pi(x) 6= ∅} and for each x ∈ X let

I(x) = {i ∈ I : Ai(x) ∩ Pi(x) 6= ∅}.
For each i ∈ I , let Fi, Gi : X → 2Xi be given by

Fi(x) =

{
Ai(x) ∩ co Pi(x), i ∈ I(x)
Ai(x), i /∈ I(x)

and

Gi(x) =

{
Bi(x) ∩ co Pi(x) , i ∈ I(x)
Bi(x) , i /∈ I(x)

.

Fix i ∈ I . Note from (2.8) that co Fi(x) ⊆ Gi(x) for x ∈ X (and note Fi(x) 6= ∅ for x ∈ X). Also
note for each yi ∈ Xi, we have

F−1i (yi) = {x ∈ X : yi ∈ Fi(x)}
= {x ∈ Ni : yi ∈ Ai(x) ∩ co Pi(x)} ∪ {x ∈Mi : yi ∈ Ai(x)}
=
{[

(co Pi)
−1(yi) ∩A−1i (yi)

]
∩Ni

}
∪
{
A−1i (yi) ∩Mi

}
=
[
(co Pi)

−1(yi) ∩A−1i (yi)
]
∪
[
A−1i (yi) ∩Mi

]
=
[
(co Pi)

−1(yi) ∪Mi

]
∩A−1i (yi)

which (see (2.11)) is open in X . Thus for each i ∈ I , we have Gi ∈ DKT (X,Xi) and also from
(2.10) note Gi(X) ⊆ Ki ⊆ Xi. Now, Theorem 1.2 guarantees a x ∈ K with xi ∈ Gi(x) for
i ∈ I . Note if i ∈ I(x) for some i ∈ I then Ai(x) ∩ Pi(x) 6= ∅ and xi ∈ Bi(x) ∩ co Pi(x), which
contradicts (2.9). Thus i /∈ I(x) for all i ∈ I . Consequently, xi ∈ Bi(x) and Ai(x)∩Pi(x) = ∅ for
all i ∈ I . �

Remark 2.7. In Theorem 2.7 if I is a finite set, then the assumption that “X is a q–Schauder admissible
subset of the Hausdorff topological vector space E" can be removed (see Remark 1.2).

Theorem 2.8. Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy with {Xi}i∈I a family of nonempty
convex sets each in a Hausdorff topological vector space Ei (here I is an index set). For each i ∈ I , let
Ai, Bi, Pi : X ≡

∏
i∈I Xi → 2Ei and assume (2.8), (2.9) and (2.10) hold. Also suppose X is a q–

Schauder admissible subset of E =
∏
i∈I Ei. For each x ∈ X , let I(x) = {i ∈ I : Ai(x)∩Pi(x) 6= ∅}

and for each i ∈ I , let

Fi(x) =

{
Ai(x) ∩ co Pi(x), i ∈ I(x)
Ai(x), i /∈ I(x)

and assume that

(2.12) X = ∪{ int F−1i (w) : w ∈ Xi}.
Then there exists a x ∈ X with for each i ∈ I , we have xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅.

Proof. Let Ni and Gi be as in Theorem 2.7. For i ∈ I note Fi(x) 6= ∅ and co Fi(x) ⊆ Gi(x) for
x ∈ X and X = ∪{ int F−1i (w) : w ∈ Xi}. Thus for each i ∈ I , we have Gi ∈ HLPY (X,Xi)
and also from (2.10) note Gi(X) ⊆ Ki ⊆ Xi. Now, Theorem 1.3 guarantees a x ∈ K with
xi ∈ Gi(x) for i ∈ I and the reasoning in Theorem 2.7 guarantees the result. �
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Remark 2.8. In Theorem 2.8 if I is a finite set, then the assumption that “X is a q–Schauder admissible
subset of the Hausdorff topological vector space E" can be removed (see Remark 1.3).
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1. INTRODUCTION

Let H be an Euclidean space with inner product 〈·; ·〉 : H ×H → C, N0 = N ∪ {0}, m ∈ N0,
n;m = [n;m] ∩ N0 and n;m = ∅ if n > m. Suppose that a certain linear operator A : H →
H has a countable set of simple eigenvalues {λk : k ∈ N} and a corresponding system of
eigenvectors {ψk : k ∈ N} that is complete and minimal after removing, for example, the
first m ∈ N members, or the adjoint operator of A has no eigenvalues. Such operators arise
naturally in the study of some boundary value problems (see, for example, [3, 4, 10, 14, 16]
and the reference therein), for instance, in the study of boundary value problems for Bessel’s
equation (see [8, 12, 13, 18, 19, 25, 26]). The problem is how to find a biorthogonal system
(Un : n ∈ N\1;m). Such a biorthogonal system will be found if we can find the vectors Un such
that 〈ψk;Un〉 = 0 for all k ∈ N\1;m and n ∈ N\1;m.

Finding such biorthogonal systems often faces certain difficulties (see [3, 4, 8, 12, 13, 18, 19,
25, 26]). Sometimes, in the case of simple eigenvalues, such vectors Un can be found by using
a notion of a set of generalized eigenvectors which we propose in this paper (see Section 2).
There are different methods to introduce the generalized eigenvectors with access to a wider
space (for details, see [2, 3, 4, 5, 9]). The peculiarity of our interpretation of a set of generalized
eigenvectors of a linear operator B : H → H with domain D(B) is that the generalized eigen-
vectors belong toH and the difference of eigenvectors belong toD(B). We show an example of
a linear differential operator Bν : Hν → Hν in some Hilbert spaceHν that has no eigenvectors,
but has the generalized eigenvectors (see Section 3). In Sections 4 and 5, we will prove that
this operator, Bν , is formally adjoint to Bessel-type differential operators Ãν : Hν → Hν and
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Aν : Hν → Hν whose systems of canonical eigenvectors are over-complete. We also inves-
tigate the basic properties (completeness, minimality, basicity) of the systems of generalized
eigenvectors of an operator Bν .

The introduced notions of the sets of generalized eigenvalues and eigenvectors probably are
of interest in some sense for spectral theory.

2. GENERALIZED EIGENVECTORS

Let Ω ⊆ N be some non-empty set.

Definition 2.1. The set M(B) = {µj : j ∈ Ω} is called a set of generalized eigenvalues of a linear
operator B : H → H with domain D(B) in a vector (linear) space H if there exists a set U(B) = {Uj :
j ∈ Ω} of nonzero elements Uj ∈ H such that Un − Uk ∈ D(B) and B(Un − Uk) = µnUn − µkUk
for every n ∈ Ω and k ∈ Ω. In this case, the set U(B) is called a set of generalized eigenvectors of an
operator B.

We say that an operator B : H → H is a formally adjoint of an operator A : H → H in a
Euclidean spaceH with inner product 〈·; ·〉 : H×H → C, if 〈Aψ;u〉 = 〈ψ;Bu〉 for all ψ ∈ D(A)
and u ∈ D(B).

Theorem 2.1. Suppose thatA : H → H be a linear operator with domainD(A) in a Euclidean spaceH
with inner product 〈·; ·〉 : H×H → C having a set of eigenvalues {λj : j ∈ Ω} and a set of eigenvectors
{ψj : j ∈ Ω}. Let each µj = λj be a generalized eigenvalue of an operator B : H → H that is a
formally adjoint of A, and let {Uj : j ∈ Ω} be a set of generalized eigenvectors of B. Then 〈ψk;Un〉 = 0
if λk 6= λn.

Proof. Indeed,

λk〈ψk;Un〉 = λk〈ψk;Un − Uk〉+ λk〈ψk;Uk〉 = 〈Aψk;Un − Uk〉+ λk〈ψk;Uk〉
= 〈ψk;B(Un − Uk)〉+ λk〈ψk;Uk〉 = 〈ψk;µnUn − µkUk〉+ λk〈ψk;Uk〉
= 〈ψk;µnUn〉 − 〈ψk;µkUk〉+ λk〈ψk;Uk〉 = 〈ψk;µnUn〉
= λn〈ψk;Un〉,

whence the theorem follows. Theorem 2.1 is proved. �

A linear operator can has several sets of generalized eigenvalues. The union of two such sets
may not be a set of generalized eigenvalues. Every set of eigenvalues is a set of generalized
eigenvalues. If for some b ∈ H and each j ∈ Ω, and the numbers µj , the equationB(u) = µju+b
has a nonzero solution uj ∈ D(B), then the set M(B) = {µj : j ∈ Ω} is a set of generalized
eigenvalues of an operator B : H → H. If D(B) = H and the set M(B) = {µj : j ∈ Ω} is a
set of generalized eigenvalues of an operator B : H → H, then there exists b ∈ H such that
for every k ∈ Ω the equation B(u) = µku + b has a nonzero solution uk ∈ H. In this case,
b = B(Un) − µnUn and n ∈ Ω is arbitrary. If D(B) 6= H, then a linear operator B : H → H can
has generalized eigenvectors of other kinds.

Definition 2.2. Let m ∈ N0 and Ω = N\1;m. The set M(B) = {µj : j ∈ Ω} of generalized
eigenvalues of a linear operator B : H → H is called a set of generalized eigenvalues of width m (with
respect to an operator B̂) if there exists a vector space Ĥ and a linear operator B̂ : Ĥ → Ĥ with domain
D(B̂) that has a countable set of eigenvalues {µk : k ∈ N} and a set of eigenvectors {ûk : k ∈ N} such
that Ĥ ∩ H 6= ∅, Un − Uk ∈ D(B̂), B(Un − Uk) = B̂(Un − Uk) for any n ∈ Ω and k ∈ Ω, and

Us := ûs +
∑
i∈1;m

ωi,sûi ∈ H, ωi,s := (µs − µi)−1, s ∈ Ω.
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In this case, the set U(B) = {Uj : j ∈ Ω} is called a set of generalized eigenvectors of width m.

Theorem 2.2. Assume that m ∈ N0, Ω = N\1;m, B : H → H be a linear operator in a vector space
H, and {Uj : j ∈ Ω} be some set of nonzero elements of the spaceH. Let there exist a vector space Ĥ and
a linear operator B̂ : Ĥ → Ĥ with a countable set of eigenvalues {µk : k ∈ N} and a set of eigenvectors
{ûk : k ∈ N} satisfying Ĥ ∩ H 6= ∅,

Us := ûs +
∑
i∈1;m

1

µs − µi
ûi ∈ H, s ∈ Ω,

and Un − Uk ∈ D(B̂), B(Un − Uk) = B̂(Un − Uk) for every n ∈ Ω and k ∈ Ω. Then M(B) = {µj :
j ∈ Ω} is a set of generalized eigenvalues of width m of an operator B, and U(B) = {Uj : j ∈ Ω} is a
set of generalized eigenvectors of width m.

Proof. Indeed, we have

B(Un − Uk) = B̂(Un − Uk)

= µnûn +
∑
i∈1;m

µi
µn − µi

ûi − µkûk −
∑
i∈1;m

µi
µk − µi

ûi

= µn

ûn +
∑
i∈1;m

1

µn − µi
ûi

− µk
ûk +

∑
i∈1;m

1

µk − µi
ûi


+
∑
i∈1;m

µk − µi
µk − µi

ûi +
∑
i∈1;m

µi − µn
µn − µi

ûi

= µnUn − µkUk.

Theorem 2.2 is proved. �

Remark 2.1. Due to Theorem 2.2, if Uk and Un are the generalized eigenvectors of width m of an
operator B : H → H, then∑

i∈1;m

((ωi,n − ωi,k)µiûi − (ωi,nµn − ωi,kµk)ûi) = 0

for every k ∈ Ω and n ∈ Ω, because

B(Un − Uk) = B̂(Un − Uk)

= B̂

ûn +
∑
i∈1;m

ωi,nûi − ûk −
∑
i∈1;m

ωi,kûi


= µnûn − µkûk +

∑
i∈1;m

(ωi,n − ωi,k)µiûi,

µnUn − µkUk = µn

ûn +
∑
i∈1;m

ωi,nûi

− µk
ûk +

∑
i∈1;m

ωi,kûi

 .

Theorems 2.1 and 2.2 indicate the method of finding a biorthogonal system that can be used
in certain cases. In this paper, for illustrative purposes, we shall prove that there exists an
operator Bν : Hν → Hν in some Hilbert spaceHν that has no eigenvalues, but has generalized
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eigenvalues and corresponding eigenvectors of width m ∈ {0; 1; 2} (see Theorem 3.3). We also
study the properties of this operator Bν (see Theorems 4.4 and 5.5).

To prove Theorems 3.3, 4.4 and 5.5, we need some preliminaries.

3. OPERATOR Bν

Let C(∆) be a vector space of continuous functions f : ∆ → C on the interval ∆ ⊂ C, and
C(k)(∆) be a set of functions f ∈ C(∆) with f (k) ∈ C(∆). Let α ∈ R and L2((0; 1);xαdx)
be the space of measurable functions f : (0; 1) → C such that tα/2f(t) ∈ L2(0; 1); the inner
product and the norm in L2((0; 1);xαdx) are given by 〈f1; f2〉 =

∫ 1

0
tαf1(t)f2(t) dt and ‖f‖ =√∫ 1

0
tα|f(t)|2 dt, respectively. Let also

Jν(x) =

∞∑
k=0

(−1)k(x/2)ν+2k

k!Γ(ν + k + 1)

be a Bessel function of the first kind of index ν ∈ R, where Γ is the gamma function. The
function Jν is a solution (see, for instance, [1, 17, 27]) of the equation y′′+y′/x+(1−ν2/x2)y = 0,
the function y(x) = Jν(xs) is a solution of the equation −y′′ − y′/x + yν2/x2 = s2y, and the
functions y(x) =

√
xsJ±ν(xs) satisfy the equation

−y′′ + ν2 − 1/4

x2
y = s2y.

For ν > −1, the function Jν has (see [1, p. 59], [17, p. 350], [27, p. 483]) an infinite set {s̃k : k ∈ Z}
of real zeros, among them s̃k, k ∈ N, are the positive zeros and s̃−k := −s̃k, k ∈ N, are the
negative zeros. All zeros are simple except, perhaps, the zero s̃0 = 0. For ν > 1, the function
J−ν has (see [1, p. 59], [27, p. 483]) an infinity of real zeros and also 2[ν] pairwise conjugate
complex zeros, among them two pure imaginary zeros when [ν] is an odd integer. Let sk,
k ∈ N, be the zeros of the function J−ν for which Im sk > 0 if sk ∈ C or sk > 0 if sk ∈ R.

Let ν = l + 1/2 with l ∈ N, Hν := L2((0; 1);x2ν−1dx) and Bν is the operator generated by
the formal differential operator

`∗ν(u) := −u′′ − 2(2ν − 1)
1

x
u′ − 3((ν − 1)2 − 1/4)

1

x2
u

with domainD(Bν) consisting of all functions u ∈ C(2)(0; 1] satisfying the boundary conditions

(3.1) u(x) = O(x−ν+5/2), x→ 0+,

(3.2) u(1) = 0,

and the asymptotic equality (3.1) can be twice differentiated termwise. Then `∗ν(u) = O(x−ν+1/2)

as x → 0+, and Bν(u) ∈ Hν if u ∈ D(Bν). Let also Ĥ = C(0; 1] and B̂ν is the operator gen-
erated by the formal differential operator `∗ν(u) with domain D(B̂ν) consisting of all functions
u ∈ C(2)(0; 1] satisfying the boundary condition (3.2). Then B̂ν(u) ∈ Ĥ if u ∈ D(B̂ν).

In this section, we shall prove the following theorem.

Theorem 3.3. Let l ∈ N and ν = l + 1/2. Then the operator Bν has no eigenvalues. In this case,
M̃(Bν) = {µ̃k : k ∈ N}, µ̃k = s̃2k, where s̃k are the zeros of Jν , is the set of generalized eigenvalues of
width m = 0 of an operator Bν that corresponds to the operator B̂ν , and

Ũk,ν(x) :=

√
xs̃kJν(xs̃k)

s̃
ν+1/2
k x2ν−1

, k ∈ N
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are the generalized eigenfunctions of width m = 0 of the operator Bν . Besides, the set M(B3/2) = {µk :

k ∈ N \ {1}}, µk = s2k, where sk are the zeros of J−ν , is a set of generalized eigenvalues of width m = 1

of the operator B3/2 which correspond to the operator B̂3/2, and

Uk,3/2(x) :=
sk
√
xskJ−3/2(xsk)− s1

√
xs1J−3/2(xs1)

x2(s21 − s2k)
, k ∈ N \ {1}

are the generalized eigenfunctions of width m = 1 of B3/2. In addition, the set M(B5/2) = {µk :

k ∈ N \ {1; 2}}, µk = s2k, is a set of generalized eigenvalues of width m = 2 of an operator B5/2 that
corresponds to the operator B̂5/2, and

Uk,5/2(x) :=
s2k
√
xskJ−5/2(xsk)− s21

√
xs1J−5/2(xs1)

x4(s2k − s21)

−
s2k
√
xskJ−5/2(xsk)− s22

√
xs2J−5/2(xs2)

x4(s2k − s22)
, k ∈ N \ {1; 2}

are the generalized eigenfunctions of width m = 2 of the operator B5/2.

To prove Theorem 3.3, we need some auxiliary lemmas.

Lemma 3.1. Let l ∈ N and ν = l + 1/2. Then the operator Bν has no eigenvalues.

Proof. In fact, in the case s = 0, the functions u1(x) = x−ν+3/2 and u2(x) = x−3ν+3/2 are the
linearly independent solutions of the equation u′′ + 2(2ν − 1)x−1u′ + 3((ν − 1)2 − 1/4)x−2u =
−s2u. In the case s 6= 0, the linearly independent solutions of this equation are the functions
v1(x) = x−2ν+1

√
xsJν(xs) and v2(x) = x−2ν+1

√
xsJ−ν(xs). Using relation (see [15, p. 226], [17,

p. 346], [27, p. 43])

Jν(x) =
xν

2νΓ(ν + 1)
+O(xν+2), x→ 0,

we obtain

(3.3)
√
xsJν(xs)

x2ν−1
=

sν+1/2

2νΓ(ν + 1)
x−ν+3/2 +O(x−ν+7/2), x→ 0+,

(3.4)
√
xsJ−ν(xs)

x2ν−1
=
∑
k∈0;ν

(−1)ks−ν+2k+1/2x−3ν+2k+3/2

2−ν+2kk!Γ(−ν + k + 1)
+O(x−3ν+2[ν]+7/2), x→ 0 + .

In view of this, every nonzero linear combination of these functions cannot satisfy (3.1), and
hence this operator has no eigenfunctions. Lemma 3.1 is proved. �

Let l ∈ N, ν = l + 1/2, Ĥ = C(0; 1] and B̂ν is the operator generated by the formal differen-
tial operator `∗ν(u) with domain D(B̂ν) consisting of all functions u ∈ C(2)(0; 1] satisfying the
boundary condition (3.2). Then B̂ν(u) ∈ Ĥ if u ∈ D(B̂ν).

Lemma 3.2. Let l ∈ N and ν = l + 1/2. Then M̃(Bν) = {µ̃k : k ∈ N}, µ̃k = s̃2k, where s̃k are the
zeros of Jν , is the set of generalized eigenvalues of width m = 0 of an operator Bν which correspond to
the operator B̂ν , and Ũk,ν(x), k ∈ N, are the generalized eigenfunctions of width m = 0 of Bν .

Proof. Indeed, the numbers µ̃k = s̃2k are the eigenvalues of the operator B̂ν , and ûk,ν(x) =

Ũk,ν(x) = s̃
−ν−1/2
k x−2ν+1

√
xs̃kJν(xs̃k) are the eigenfunctions of this operator. Further, Ũk,ν ∈

Hν , by using (3.3)

Ũk,ν(x) =
1

2νΓ(ν + 1)
x−ν+3/2 +O(x−ν+7/2), x→ 0 + .
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Besides,
Ũk,ν(x)− Ũn,ν(x) = O(x−ν+7/2) = O(x−ν+5/2), x→ 0 + .

Therefore, Ũk,ν − Ũn,ν ∈ D(Bν) and Ũk,ν − Ũn,ν ∈ D(B̂ν). In addition,

Bν(Ũk,ν − Ũn,ν) = B̂ν(Ũk,ν − Ũn,ν) = `∗ν(ûk,ν − ûn,ν) = s̃2kûk,ν − s̃2nûn,ν = s̃2kŨk,ν − s̃2nŨn,ν .

Hence, M̃(Bν) = {µ̃k : k ∈ N} is a set of generalized eigenvalues of width m = 0 of the
operator Bν , and Ũ(Bν) = {Ũk,ν : k ∈ N} is the set of generalized eigenfunctions of width
m = 0. Lemma 3.2 is proved. �

Lemma 3.3. Let sk, k ∈ N be the zeros of the function J−ν . Then M(B3/2) = {µk : k ∈ N \ {1}},
µk = s2k, is a set of generalized eigenvalues of width m = 1 of the operator B3/2 which correspond to the
operator B̂3/2, and Uk,3/2(x), k ∈ N \ {1}, are the generalized eigenfunctions of width m = 1 of B3/2.

Proof. Indeed, the numbers µk = s2k are the eigenvalues of the operator B̂3/2, and the functions
ûk,3/2(x) = x−2(s21 − s2k)−1sk

√
xskJ−3/2(xsk), k 6= 1, and û1,3/2(x) = x−2s1

√
xs1J−3/2(xs1) are

their corresponding eigenfunctions. Moreover, Uk,3/2(x) = ûk,3/2(x) + ω1,kû1,3/2(x) if ω1,k =

(s2k − s21)−1. Using (3.4), we obtain

Uk,3/2(x) =
1√
2πx

+O(x), x→ 0 + .

Therefore, Uk,3/2 ∈ H3/2. Besides, Uk,3/2(x) − Un,3/2(x) = O(x) as x → 0+. Hence, Uk,3/2 −
Un,3/2 ∈ D(B3/2), Uk,3/2 − Un,3/2 ∈ D(B̂3/2), and

B3/2(Uk,3/2 − Un,3/2) = B̂3/2(Uk,3/2 − Un,3/2)

= `∗3/2(Uk,3/2 − Un,3/2)

= `∗3/2(ûk,3/2 + ω1,kû1,3/2 − ûn,3/2 − ω1,nû1,3/2)

= s2kûk,3/2 + ω1,ks
2
1û1,3/2 − s2nûn,3/2 − ω1,ns

2
1û1,3/2

= s2k(ûk,3/2 + ω1,kû1,3/2)− s2n(ûn,3/2 + ω1,nû1,3/2)

+ (s21(ω1,k − ω1,n)− (ω1,ks
2
k − ω1,ns

2
n))û1,3/2

= s2kUk,3/2 − s2nUn,3/2.

Thus, M(B3/2) = {µk : k ∈ N \ {1}} is the set of generalized eigenvalues of the operator B3/2,
and U(B3/2) = {Uk,3/2 : k ∈ N \ {1}} is a set of generalized eigenfunctions of width m = 1.
Lemma 3.3 is proved. �

Lemma 3.4. Let sk, k ∈ N, be the zeros of the function J−ν . Then M(B5/2) = {µk : k ∈ N \ {1; 2}},
µk = s2k, is a set of generalized eigenvalues of width m = 2 of an operator B5/2 which corresponds to
the operator B̂5/2, and Uk,5/2(x), k ∈ N \ {1; 2}, are the generalized eigenfunctions of width m = 2 of
B5/2.

Proof. In fact, the numbers µk = s2k are the eigenvalues of the operator B̂5/2, and the functions

ûk,5/2(x) =
s2k(s21 − s22)

√
xskJ−5/2(xsk)

x4(s2k − s21)(s2k − s22)
, k ∈ N \ {1; 2},

û1,5/2(x) = −x−4s21
√
xs1J−5/2(xs1) and û2,5/2(x) = x−4s22

√
xs2J−5/2(xs2) are their corre-

sponding eigenfunctions. Moreover, Uk,5/2(x) = ûk,5/2(x) + ω1,kû1,5/2(x) + ω2,kû2,5/2(x) if
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ωi,k = (s2k − s2i )−1, i ∈ {1; 2}. Using (3.4), we get

Uk,5/2(x) =
s21 − s22
4
√

2πx2
+O(1), x→ 0 + .

Therefore, Uk ∈ H5/2. Furthermore, Uk,5/2(x) − Un,5/2(x) = O(1) as x → 0+. Hence, Uk,5/2 −
Un,5/2 ∈ D(B5/2), Uk,5/2 − Un,5/2 ∈ D(B̂5/2) and

B5/2(Uk,5/2 − Un,5/2) = B̂5/2(Uk,5/2 − Un,5/2)

= `∗5/2(Uk,5/2 − Un,5/2)

= `∗5/2(ûk,5/2 + ω1,kû1,5/2 + ω2,kû2,5/2 − ûn,5/2 − ω1,nû1,5/2 − ω2,nû2,5/2)

= s2kûk,5/2 + ω1,ks
2
1û1,5/2 + ω2,ks

2
2û2,5/2 − s2nûn,5/2 − ω1,ns

2
1û1,5/2 − ω2,ns

2
2û2,5/2

= s2k(ûk,5/2 + ω1,kû1,5/2 + ω2,kû2,5/2)− s2n(ûn,5/2 + ω1,nû1,5/2 + ω2,nû2,5/2)

+ (s21(ω1,k − ω1,n)− (ω1,ks
2
k − ω1,ns

2
n))û1,5/2 + (s22(ω2,k − ω2,n)

− (ω2,ks
2
k − ω2,ns

2
n))û2,5/2

= s2kUk,5/2 − s2nUn,5/2.

Thus, M(B5/2) is the set of generalized eigenvalues of an operator B5/2, and Uk,5/2 are the
generalized eigenfunctions of width m = 2. Lemma 3.4 is proved. �

Remark 3.2. Uk,ν − Ũn,ν /∈ D(Bν) if ν = 3/2 or ν = 5/2. Lemmas 3.2–3.4 are leaving aside the
existence of other sets of generalized eigenvalues. We have not been able to extend Lemma 3.4 to an
arbitrary ν = l + 1/2 with l ∈ N.

Theorem 3.3 is an immediate consequence of Lemmas 3.1–3.4.

4. OPERATOR Ãν AND APPROXIMATION PROPERTIES OF THE SYSTEM (Ũk : k ∈ N)

LetH be a Hilbert space andH∗ its dual space, i.e., the space of linear continuous functionals
on H. The system of elements (ek : k ∈ N) is called complete ([11, p. 4258]) in H if span (ek :
k ∈ N) = H. The system of elements (ek : k ∈ N

)
is said to be minimal ([11, p. 4258]) in H if

ek0 /∈ span (ek : k ∈ N \ {k0}) for each k0 ∈ N. The system (ek : k ∈ N) is called ([11, p. 4258]) a
basis for the space H if, for every f ∈ H, there exists a unique series with respect to the system

(ek : k ∈ N) which converges to f (in H): f =
∞∑
k=1

dkek, dk ∈ C. Minimality of the system

(ek : k ∈ N) in H is equivalent (see [11, p. 4258]) to the existence of the system of conjugate
functionals (fk : k ∈ N) ∈ H∗, i.e., fk(en) = δkn, where δkn is the Kronecker delta. The system
(fk : k ∈ N) is also called a biorthogonal system with respect to the system (ek : k ∈ N). A system
(ek : k ∈ N) is said to be uniformly minimal ([11, p. 4258]) in H if there exists δ > 0 such that for
every n ∈ N the distance of en to the closure of the linear span of the system (ek : k ∈ N\{n}) is
greater than δ‖un‖. A complete system (ek : k ∈ N) that has a biorthogonal system (fk : k ∈ N)
is uniformly minimal if and only if (see [11, p. 4258])

lim sup
k→∞

‖ek‖2‖fk‖2 < +∞.

Every basis is uniformly minimal system (see [11, p. 4258]).
Let ν = l + 1/2 with l ∈ N, Hν = L2((0; 1);x2ν−1dx), and Ãν is the operator generated by

the formal differential operator `ν(ψ) := −ψ′′ + (ν2 − 1/4)x−2ψ with domain D(Ãν) consisting
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of those functions ψ ∈ C(2)[0; 1] which satisfy the boundary conditions ψ(0) = ψ(1) = 0. Then
`ν(ψ) = O(x−1) as x→ 0+, and Ãν(ψ) ∈ Hν if ψ ∈ D(Ãν).

In this section, we prove that the operator Bν : Hν → Hν is formally adjoint in Hν of an
operator Ãν : Hν → Hν . We also investigate completeness, minimality and basicity of the
system (Ũk : k ∈ N) of generalized eigenfunctions of width m = 0 of a operator Bν .

Lemma 4.5. Let l ∈ N and ν = l+ 1/2. Then, the operator Bν is formally adjoint in Hν of an operator
Ãν .

Proof. Let a0 = (ν2 − 1/4)x2ν−3, a2 = −x2ν−1 and ˜̀ν(ψ) = a2ψ
′′ + a0ψ. Then ˜̀∗ν(u) = (a2u)′′ +

a0u is formally adjoint operator of the operator ˜̀ν(ψ) (see [9, p. 97]). Moreover, ˜̀ν(ψ) =

−x2ν−1ψ′′+(ν2−1/4)x2ν−3ψ = x2ν−1`ν(ψ) and ˜̀∗ν(u) = a2u
′′+2a′2u

′+(a0+a′′2)u = −x2ν−1u′′−
2(2ν−1)x2ν−2u′−3((ν−1)2−1/4)x2ν−3u = x2ν−1`∗ν(u). Furthermore, according to the Lagrange
identity (see [9, p. 97]), for every ψ ∈ D(Ãν) and u ∈ D(Bν),

x2ν−1(`ν(ψ)u− ψ`∗ν(u)) = ˜̀
ν(ψ)u− ψ˜̀∗ν(u)

=
d

dx
((a2ψ

′ − ψa′2)u− ψa2u′)

=
d

dx
((−xψ′ + (2ν − 1)ψ)x2ν−2u+ x2ν−1ψu′).

(4.5)

Hence, ∫ 1

0

x2ν−1`ν(ψ)u dx =

∫ 1

0

x2ν−1ψ`∗ν(u) dx.

Lemma 4.5 is proved. �

Lemma 4.6 ([21, 6, 7]). Let l ∈ N and ν = l + 1/2. Then the system (Ũk,ν : k ∈ N), Ũk,ν(x) =

s̃
−ν−1/2
k x−2ν+1

√
xs̃kJν(xs̃k) is complete in the space H̃ν := L2((0; 1);x4ν−4dx).

Lemma 4.7. Let l ∈ N and ν = l + 1/2. Then, the system (Ũk,ν : k ∈ N) in the space Hν has a
biorthogonal system (γ̃k,ν : k ∈ N) that is formed by the functions

γ̃k,ν(x) :=
2s̃
ν−1/2
k

J2
ν+1(s̃k)

√
xs̃kJν(xs̃k).

The system (γ̃k,ν : k ∈ N) is a system of eigenfunctions of an operator Ãν which correspond to their
eigenvalues µ̃k = s̃2k, where s̃k are the zeros of Jν .

Proof. Since (see [17, p. 347], [27, p. 482])∫ 1

0

xJν(xs̃k)Jν(xs̃n) dx =

{
1

2
J2
ν+1(s̃n), k = n,

0, k 6= n,

it follows that∫ 1

0

x2ν−1Ũk,ν(x)γ̃n,ν(x) dx =
2
√
s̃ks̃ns̃

ν−1/2
n

s̃
ν+1/2
k J2

ν+1(s̃n)

∫ 1

0

xJν(xs̃k)Jν(xs̃n) dx

=

{
1, k = n,
0, k 6= n.
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Furthermore, since `ν(γ̃k,ν) = s̃2kγ̃k,ν and Jν(x) = O(xν) as x → 0, we conclude that the num-
bers µ̃k = s̃2k are the eigenvalues of an operator Ãν , and γ̃k,ν(x), k ∈ N are the corresponding
eigenfunctions of this operator. Lemma 4.7 is proved. �

Lemma 4.8. Let l ∈ N and ν = l + 1/2. Then, the system (γ̃k,ν : k ∈ N) is complete in the spaceHν .

Proof. Assume the contrary. Then, according to the Hahn-Banach theorem ([11, p. 4258]), there
exists a nonzero function h ∈ Hν such that

2s̃
ν−1/2
k

J2
ν+1(s̃k)

∫ 1

0

x2ν−1
√
xs̃kJν(xs̃k)h(x) dx = 0, k ∈ N.

Let q(x) = x2ν−1h(x). Then q ∈ L2(0; 1) and, therefore, the system (γ̃k,ν : k ∈ N) is incom-
plete in the space L2(0; 1). We have a contradiction, because it is well known that the system
(
√
xJν(xs̃k) : k ∈ N) is complete in L2(0; 1) (see [15, p. 223], [17, p. 357]). Thus, the system

(γ̃k,ν : k ∈ N) is complete inHν . Lemma 4.8 is proved. �

We remark that Lemma 4.7 also follows from Lemmas 4.5, 4.8, 3.2 and Theorem 2.1.

Lemma 4.9. Let l ∈ N and ν = l+ 1/2. Then, the system (γ̃k,ν : k ∈ N) is not a basis in the spaceHν .

Proof. Using relations (see [15, p. 226], [17, pp. 346, 352], [27, pp. 43, 618])

Jν(x) =

√
2

πx
cos
(
x− π

2
ν − π

4

)
+O

(
x−3/2

)
, x→∞,

Jν(x) = O(xν), x→ 0, s̃k = πk +
πν

2
− π

4
+O(k−1)

and
|
√
s̃kJν+1(s̃k)| =

√
2/π(1 +O(k−1)) as k →∞,

we get

‖Ũk,ν‖2Hν‖γ̃k,ν‖2Hν =
4

J4
ν+1(s̃k)

∫ 1

0

x|Jν(xs̃k)|2 dx
∫ 1

0

x2ν |Jν(xs̃k)|2 dx

=
O(s̃4νk )

J4
ν+1(s̃k)

= O(s̃4ν+2
k ) −→ +∞, k →∞.

Hence, the system (γ̃k,ν : k ∈ N) is not uniformly minimal in the space Hν and therefore is not
a basis in this space. �

From Lemmas 4.5–4.9, we obtain the following assertion.

Theorem 4.4. Let l ∈ N and ν = l + 1/2. Then, the system (Ũk,ν : k ∈ N) of the generalized
eigenfunctions of width m = 0 of an operator Bν is complete in the space H̃ν and minimal in Hν .
Moreover, the operator Bν is formally adjoint in Hν of an operator Ãν : Hν → Hν which has a
complete and minimal system of eigenfunctions (γ̃k,ν : k ∈ N) such that is not a basis inHν .

Remark 4.3. Basis properties (completeness, minimality, basicity) of more general systems (Θk,ν,p :

k ∈ N) with Θk,ν,p(x) = x−p−1
√
xs̃kJν(xs̃k) in the space L2((0; 1);x2pdx), where ν ≥ 1/2, p ∈ R

and (s̃k)k∈N is a sequence of distinct nonzero complex numbers, have been studied in [6, 7, 20, 21, 22,
23, 24].
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5. OPERATOR Aν

Let ν = l+ 1/2 with l ∈ N,Hν = L2((0; 1);x2ν−1dx), and Aν is the operator generated by the
formal differential operator `ν(ψ) and the boundary conditions

(5.6) ψ(1) = 0,

(5.7) ψ(x) =
∑
j∈0;ν

cjx
−ν+2j+1/2 + o(xν+1/2), x→ 0+

for some constants cj ∈ C, j ∈ 0; ν. Suppose that the domain D(Aν) consists of those functions
ψ ∈ C(2)(0; 1] that satisfy these boundary conditions and the asymptotic equality (5.7) can be
twice differentiated termwise. Then `ν(ψ) = 4c1(−1 + ν)x−ν+1/2 + o(x−ν+1/2) + o(xν−3/2) =

O(x−ν+1/2) as x→ 0+, and Aν(ψ) ∈ Hν if ψ ∈ D(Aν).
In this section, we show that the operator Bν : Hν → Hν is formally adjoint in Hν of an

operator Aν : Hν → Hν whose systems of canonical eigenfunctions are over-complete. We also
remark about basis properties of the systems of generalized eigenfunctions of width m ∈ {1; 2}
of an operator Bν .

Lemma 5.10 ([26]). Let l ∈ N and ν = l + 1/2. The operator Aν has a finite set {µk : k ∈ N}
of eigenvalues, where µk = s2k and sk are the zeros of the function J−ν . Moreover, the functions
ψk,ν(x) := s

ν−1/2
k

√
xskJ−ν(xsk), k ∈ N, are the eigenfunctions of this operator.

Lemma 5.11 ([13]). Let l ∈ N and ν = l + 1/2. Then, the system (ψk,ν : k ∈ N \ {1; 2; . . . ; l}) is
complete inHν .

Lemma 5.12. Let l ∈ N and ν = l+ 1/2. The operator Bν is formally adjoint inHν of an operator Aν .

Proof. Using relations (3.1), (3.2), (5.6), (5.7) and

ψ′(x) =
∑
j∈0;ν

cj(−ν + 2j + 1/2)x−ν+2j−1/2 + o(xν−1/2), x→ 0+,

from (4.5), it follows that ∫ 1

0

x2ν−1`ν(ψ)u dx =

∫ 1

0

x2ν−1ψ`∗ν(u) dx.

Lemma 5.12 is proved. �

Remark 5.4. From Lemmas 3.3, 5.10, 5.12 and Theorem 2.1, it follows that 〈ψk,3/2;Un,3/2〉 = 0, if k 6=
n, k ∈ N\{1} and n ∈ N\{1}. By direct calculations, we get 〈ψn,3/2;Un,3/2〉 = 1 (see also [18, 19, 25]).
Lemma 5.11 implies that the system (ψk,3/2 : k ∈ N \ {1}) is complete in the space H3/2. Moreover,
in [25, 26] the authors proved that this system is minimal and is not a basis in H3/2. Furthermore, the
biorthogonal system is formed by the functions gk,3/2(x) = πs−4k (1 + s2k)(s21 − s2k)Uk,3/2(x). In [19],
it was shown that the system (gk,3/2 : k ∈ N \ {1}) is also complete in H3/2. In addition, in [19] it
has been established that the system (Uk,3/2 : k ∈ N \ {1}) has in the spaceH3/2 a biorthogonal system
(γk,3/2 : k ∈ N \ {1}) that is formed by the functions γk,3/2(x) = πs−4k (1 + s2k)(s21 − s2k)ψk,3/2(x).
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Since sk = πk − 1
πk + o(k−3) as k →∞ (see [1, 27]), and

‖Uk,3/2‖2H3/2‖γk,3/2‖2H3/2

=
π2(1 + s2k)2

s9k

∫ sk

0

|t
√
tJ−3/2(t)|2 dt

∫ 1

0

|sk
√
tskJ−3/2(tsk)− s1

√
ts1J−3/2(ts1)|2

t2
dt

=
π(1 + s2k)2

9s3k
(1 + o(1)) −→ +∞, k →∞,

the system (Uk,3/2 : k ∈ N \ {1}) is not uniformly minimal in H3/2 and, hence, is not a basis in this
space. Lemma 5.11 implies that the system (ψk,5/2 : k ∈ N\{1; 2}) is complete in the spaceH5/2. From
Lemmas 3.4, 5.10, 5.12 and Theorem 2.1, it follows that 〈ψk,5/2;Un,5/2〉 = 0 if k 6= n, k ∈ N \ {1; 2}
and n ∈ N \ {1; 2}. In [12], it was proven by some other method that the system (ψk,5/2 : k ∈ N) has in
H5/2 a biorthogonal system (Uk,5/2 : k ∈ N \ {1; 2}). However, the problem of finding a biorthogonal
system (Uk,ν : k ∈ N \ {1; 2; . . . ; l}) to the system (ψk,ν : k ∈ N \ {1; 2; . . . ; l}) for an arbitrary
ν = l + 1/2 with l ∈ N \ {1; 2} remains open.

From Lemmas 5.10–5.12 and Remark 5.4, we obtain the following statement.

Theorem 5.5. Let l ∈ N and ν = l + 1/2. Then the system (Uk,3/2 : k ∈ N \ {1}) of the generalized
eigenfunctions of width m = 1 of an operator B3/2 is complete, minimal and is not a basis in the space
H3/2. The biorthogonal system (γk,3/2 : k ∈ N \ {1}) also is complete in H3/2. Furthermore, the
system (Uk,5/2 : k ∈ N \ {1; 2}) of the generalized eigenfunctions of width m = 2 of an operator B5/2

is minimal in the spaceH5/2, and its biorthogonal system (ψk,5/2 : k ∈ N \ {1; 2}) is complete inH5/2.
Moreover, the operator Bν is also formally adjoint in Hν of an operator Aν : Hν → Hν whose system
of eigenfunctions (ψk,ν : k ∈ N) is complete after removing a finite number of eigenfunctions, i.e., the
system (ψk,ν : k ∈ N \ {1; 2; . . . ; l}) is complete inHν .

Remark 5.5. Let f ∈ H3/2 and dk =
∫ 1

0
t2f(t)gk,3/2(t) dt. Since the system (gk,3/2 : k ∈ N \ {1}) is

complete in the spaceH3/2, the numbers dk determine the function f ∈ H3/2 uniquely. But, the series
∞∑
k=2

dkψk,3/2(x), ψk,3/2(x) = sk
√
xskJ−3/2(xsk)

does not converge for each function f ∈ H3/2 in H3/2 to the function f . We do not know whether
it converges in some sense, for example, whether a given series converges in H3/2 to f in the sense of
Cesàro. Similar questions arise for the other series that can be constructed by using the above considered
biorthogonal systems.

6. CONCLUDING REMARKS

In this paper, the notions of a set of generalized eigenvalues and a set of generalized eigen-
vectors of a linear operator in an Euclidean space are introduced. A method is described to
find a biorthogonal system of a subsystem of eigenvectors of linear operators in a Hilbert space
whose systems of canonical eigenvectors are over-complete. This is illustrated by an example of
a linear differential operator that is formally adjoint to Bessel-type differential operators. Also,
basic properties of the systems of generalized eigenvectors of those differential operators are
studied. Those results can be used for the investigations in spectral theory and nonharmonic
analysis.

Remark that there are other points of view on how to study similar problems (see, for exam-
ple, [2, 3, 4, 5, 9, 10, 16] and the bibliography in them).
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Approximating sums by integrals only: multiple sums and
sums over lattice polytopes
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ABSTRACT. The Euler–Maclaurin (EM) summation formula is used in many theoretical studies and numerical cal-
culations. It approximates the sum

∑n−1
k=0 f(k) of values of a function f by a linear combination of a corresponding

integral of f and values of its higher-order derivatives f (j). An alternative (Alt) summation formula was presented by
the author, which approximates the sum by a linear combination of integrals only, without using derivatives of f . It was
shown that the Alt formula will in most cases outperform the EM formula. In the present paper, a multiple-sum/multi-
index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series
and to sums over the integral points of integral lattice polytopes.

Keywords: Euler–Maclaurin summation formula, alternative summation formula, multiple sums, multi-index series,
approximation, lattice polytopes.
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1. INTRODUCTION

The Euler–Maclaurin (EM) summation formula can be written as follows (see e.g. [16]):

(1.1)
n−1∑
k=0

f(k) ≈
∫ n−1

0

dx f(x) +
f(n− 1) + f(0)

2
+

m∑
j=1

B2j

(2j)!
[f (2j−1)(n− 1)− f (2j−1)(0)],

where f : R→ R is a smooth enough function,Bj is the j-th Bernoulli number, and n andm are
natural numbers. The EM approximation is exact when f is a polynomial of degree < 2m+ 1.

The EM formula has been used in a large number of theoretical studies and numerical cal-
culations.

Clearly, to use the EM formula in a theoretical or computational study, one will usually need
to have an antiderivative F of f and the derivatives f (2j−1) for j = 1, . . . ,m in tractable or,
respectively, computable form.

In [19], an alternative summation formula (Alt) was offered, which approximates the sum∑n−1
k=0 f(k) by a linear combination of values of an antiderivative F of f only, without using

values of any derivatives of f :

(1.2)
n−1∑
k=0

f(k) ≈
m−1∑
j=1−m

τm,1+|j|

∫ n−1/2−j/2

j/2−1/2
dx f(x),
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where f is again a smooth enough function, the coefficients τm,r are certain rational numbers
not depending on f and such that

∑m−1
j=1−m τm,1+|j| = 1, and n and m are natural numbers.

Similarly to the case of the EM formula, the Alt approximation is exact when f is a polynomial
of degree < 2m.

It was shown in [19] that the Alt formula should be usually expected to outperform the EM
one.

Extensions of the EM formula to the multiple sums, including sums over the integral points
of integral lattice polytopes, have been of significant interest; see e.g. [20, 8, 7, 13, 21, 14, 6, 3, 10,
22, 18, 4]. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula
will be given. The main result of this paper, Theorem 2.1, is then extended to sums over the
integral points of integral lattice polytopes as well.

The rest of this paper is organized as follows.
In Section 2, the multi-index Alt formula is stated, with discussion.
In Section 3, an application of the multi-index Alt formula to summing possibly divergent

multi-index series is given. A shift trick then allows one to make the remainder in the Alt
formula arbitrarily small.

In Section 4, the mentioned extension to sums over the integral points of integral lattice
polytopes is presented.

The necessary proofs are deferred to Section 5.
At the end of this introduction, let us fix notation to be used in the rest of the paper:
Suppose that p and m are natural numbers and f : Rp → R is a 2m-times continuously

differentiable function, with partial derivatives f (α), where α = (α1, . . . , αp) ∈ Zp+ and Z+ :=
Z ∩ [0,∞).

Generally, boldface letters will denote vectors in Rp, in Zp, or in Zp+, with the coordinates
denoted by the corresponding non-boldface letters with the indices: x = (x1, . . . , xp) ∈ Rp,
y = (y1, . . . , yp) ∈ Rp, u = (u1, . . . , up) ∈ Rp, v = (v1, . . . , vp) ∈ Rp, n = (n1, . . . , np) ∈ Zp+,
k = (k1, . . . , kp) ∈ Zp+, j = (j1, . . . , jp) ∈ Zp+, i = (i1, . . . , ip) ∈ Zp+, α = (α1, . . . , αp) ∈ Zp+,
and β = (β1, . . . , βp) ∈ Zp. Let I{A} denote the indicator of an assertion A; that is, I{A} := 1
if A is true and I{A} := 0 if A is false. Let ‖α‖ := ‖α‖1 = α1 + · · · + αp; α! := α1! · · ·αp!;
xα := xα1

1 · · ·x
αp
p ; |β| := (|β1|, . . . , |βp|); 1 := (1, . . . , 1) ∈ Zp+; 0 := 01; jv := (j1v1, . . . , jpvp);

j ≥ i
def⇐⇒ i ≤ j

def⇐⇒ ir ≤ jr for all r ∈ [p] := {1, . . . , p};

[u,v] :=

p∏
r=1

[ur, vr];∧x := x1 ∧ · · · ∧ xp;∨x := x1 ∨ · · · ∨ xp;

u ∧ v := (u1 ∧ v1, . . . , up ∧ vp); u ∨ v := (u1 ∨ v1, . . . , up ∨ vp);

k∑
i=j

:=
∑

i∈Zp
+ : j≤i≤k

;

∫ v

u

dx h(x) := (−1)
∑p

r=1 I{ur>vr}
∫
[u∧v,u∨v]

dx h(x);

∫ v

u

:=

∫ v

u

dx f(x).

Let Rp+ := [0,∞)p.

2. A MULTI-INDEX ALTERNATIVE (ALT) TO THE EM FORMULA

The following extension of [19, Theorem 3.1] to multiple sums is the main result of this
paper:
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Theorem 2.1. One has

(2.3)
n−1∑
k=0

f(k)
[

=

n1−1∑
k1=0

· · ·
np−1∑
kp=0

f(k1, . . . , kp)
]

= Am −Rm,

where

Am :=

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
=

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

−1+j/2−i
(2.4)

=

(m−1)1∑
β=(1−m)1

τm,1+|β|

∫ n−1/2−β/2

β/2−1/2
=

(m−1)1∑
β=(1−m)1

τm,1+|β|

∫ n−1/2−β/2

−1/2−β/2
(2.5)

=

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

∫ n−1/2−β/2

β/2−1/2
=

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

∫ n−1/2−β/2

−1/2−β/2
(2.6)

is the integral approximation to the sum
∑n−1

k=0 f(k),

(2.7) γm,j :=

p∏
r=1

γm,jr , γm,j := (−1)j−1
2

j

(
2m

m+ j

)/(2m

m

)
,

(2.8) τm,j :=

p∏
r=1

τm,jr , τm,j :=

bm/2−j/2c∑
β=0

γm,j+2β =

∞∑
β=0

γm,j+2β ,

and Rm is the remainder given by the formula

(2.9)

Rm :=
m

22m+p−1

×
∑

‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
dv vα

m1∑
j=1

γm,j j
α+1

n−1∑
k=0

f (α)(k + sjv/2).

The sum of all the coefficients of the integrals in each of the expressions (2.4), (2.5), and (2.6) of Am is

(2.10)
m1∑
j=1

γm,j

j−1∑
i=0

1 =

m1∑
j=1

γm,j j
1 =

(m−1)1∑
β=(1−m)1

τm,1+|β| = 1.

If M2m is a real number such that

(2.11)
∣∣∣ n−1∑
k=0

f (α)(k + u)
∣∣∣ ≤M2m for all α with ‖α‖ = 2m and all u ∈ (−m1/2,m1/2],

then the remainder Rm can be bounded as follows:

|Rm| ≤
M2m

22m

∑
‖α‖=2m

1

(α + 1)!

m1∑
j=1

|γm,j| jα+1(2.12)

≤M2m
1.0331(πm)(p+1)/2

(2m+ 1)!
(κpm)2m,(2.13)

where

(2.14) κ :=

√
Λ∗
4

= 0.27754 . . .
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and
Λ∗ := max

0<t<1
Λ(t) = 0.3081 . . . , Λ(t) := (1− t)t−1(1 + t)−1−tt2.

If m ≥ 2, then the factor 1.0331 in (2.13) can be replaced by 1.001.

Recall the convention that the sum of an empty family is 0. In particular, if ∧n = 0, then∑n−1
k=0 f(k) = 0 = Am = Rm.
Also, it is clear that Rm = 0 if the function f is any polynomial of degree at most 2m− 1.
One may note here that, in each of the formulas (2.4), (2.5), and (2.6), the first expression is a

linear combination of integrals of the form
∫ n−1+λ

−λ for some λ ∈ Rp with |λ| ≤ (m− 2)1/2. So,
provided that n ≥ (m−1)1, each of these integrals equals the Lebesgue integral of the function
f over the p-dimensional interval [−λ,n− 1 + λ], symmetric about the point (n− 1)/2.

In contrast, the second expression in each of the formulas (2.4), (2.5), and (2.6) is a linear
combination of integrals of the form

∫ n+λ

λ
for some λ ∈ Rp; so, each of these integrals equals

the Lebesgue integral of the function f over the p-dimensional interval [λ,n + λ], whose end-
points differ by the vector n. This observation holds whether the condition n ≥ (m− 1)1 holds
or not.

Remark 2.1. As in [19] in the special case of ordinary sums, here, instead of assuming that the function
f is real-valued, one may assume, more generally, that f takes values in any normed space. In particular,
one may allow f to take values in the q-dimensional complex space Cq , for any natural q. An advantage
of dealing with a vector-valued function (rather than separately with each of its coordinates) is that this
way one has to compute the coefficients – say τm,β in (2.6) – only once, for all the components of the
vector function. �

3. APPLICATION TO SUMMING (POSSIBLY DIVERGENT) MULTI-INDEX SERIES

Let us say that a function F : Rp → R is an antiderivative of the function f if

F (1) = f ;

that is, if F is differentiated once with respect to every one of the p arguments of the function F ,
then the result of this p-fold partial differentiation is the function f . It is assumed that this result
does not depend on the order of the arguments with respect to which the partial derivatives are
taken. Here and elsewhere in the paper, f and p are as set in Section 1. In particular, it follows
that the function f is continuous. Clearly, this notion of an antiderivative is a generalization of
the corresponding notion for functions on R.

For each set J ⊆ [p], let |J | denote the cardinality of J , and also let

1J := (I{1 ∈ J}, . . . , I{p ∈ J}).
In particular, 1[p] = 1 and 1∅ = 0.

Remark 3.2. A function F on Rp is an antiderivative of the function f if and only if one has a repre-
sentation of the form

F (x) =

∫ x

0

dy f(y) +

p∑
j=1

cj(x1, . . . , xj−1, xj+1, . . . , xp)

for all x = (x1, . . . , xp) ∈ Rp, where c1, . . . , cp are functions on Rp−1 such that, for each j ∈ {1, . . . , p}

and all (x1, . . . , xp) ∈ Rp, the mixed partial derivative
∂p−1cj(x1, . . . , xj−1, xj+1, . . . , xp)

∂x1 · · · ∂xj−1∂xj+1 · · · ∂xp
exists and

does not depend on the order of the arguments x1, . . . , xj−1, xj+1, . . . , xp with respect to which the
partial derivatives are taken.
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The “if” part of the above statement is obvious. The “only if” part of it follows from the multidimen-
sional version of the fundamental theorem of calculus to be given by Lemma 5.1 in Section 5 (take there
0 and x, respectively, in place of u and v in Lemma 5.1, and note that then F (v[p]) = F (v) = F (x)).

In particular, the function F on Rp given by the condition F (x) =
∫ x

0
dyf(y) for all x ∈ Rp

is clearly an antiderivative of f ; thus, there always exists an antiderivative of the function f – still
assuming, of course, that f is 2m-times continuously differentiable for some natural m; in fact, just the
continuity of f would be enough for the existence of an antiderivative of f . �

The alternative summation formula presented in Theorem 2.1 can be used for summing
(possibly divergent) multi-index series, as follows.

Theorem 3.2. Let m0 be a natural number, and suppose that m ≥ m0. Let F be any antiderivative of
f . Suppose that

(3.15) F (α)(x) −→
∨x→∞

0 for each α ∈ Zp+ with ‖α‖ = 2m0

and the series

(3.16)

∞1∑
k=0

f (α)(k + u) converges uniformly in u ∈ [−m1/2,m1/2]

for each α ∈ Zp+ with ‖α‖ = 2m,

in the sense that
∑n−1

k=0 f
(α)(k + u) converges uniformly as ∧n→∞. Then

(3.17)
Alt∑
k≥0

f(k) := lim
∧n→∞

( n−1∑
k=0

f(k)− Ãm0,F (n)
)

= (−1)pA∅m,F (0)−Rm,f (∞),

where (cf. (2.4), (2.5), and (2.6))

(3.18) Ãm,F (n) :=
∑
∅6=J⊆[p]

(−1)p−|J|AJm,F (n),

AJm,F (n) :=

m1∑
j=1

γm,j

j−1∑
i=0

F (n1J − 1 + j/2− i)(3.19)

=

(m−1)1∑
β=(1−m)1

τm,1+|β| F (n1J − 1/2− β/2)(3.20)

=

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

F (n1J − 1/2− β/2),(3.21)

and (cf. (2.9))

Rm,f (∞) :=
m

22m+p−1

×
∑

‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
dv vα

m1∑
j=1

γm,j j
α+1

∞1∑
k=0

f (α)(k + sjv/2).

If condition (2.11) holds for all n ∈ Zp+, then one can replace Rm in (2.12)–(2.13) by Rm,f (∞), so that

(3.22) |Rm,f (∞)| ≤M2m
1.0331(πm)(p+1)/2

(2m+ 1)!
(κpm)2m.
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Looking, say, at the expression of AJm,F (n) in (3.21), one may note that

(3.23) A∅m,F (0) = A∅m,F (n) = AJm,F (0) =

(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

F (β/2− 1/2)

for all n ∈ Zp+ and J ⊆ [p].

The limit
∑Alt

k≥0 f(k) in (3.17) may be referred to as the (generalized) sum of the possibly
divergent multi-index series

∑∞1
k=0 f(k) by means of the Alt formula (2.3).

Theorem 3.2 is a multi-index extension of Proposition 5.1 in [19].
To compute the generalized sum

∑Alt
k≥0 f(k) effectively, one has to ensure that the remainder

Rm,f (∞) can be made arbitrarily small. This can be done as follows.
For any function h : Rp → R and any c ∈ Rp, let hc denote the c-shift of h defined by the

formula

(3.24) hc(x) := h(x + c)

for all x ∈ Rp. Note that, if F is an antiderivative of f , then Fc is an antiderivative of fc.

Theorem 3.3. Suppose that the conditions of Theorem 3.2 hold. Take any c ∈ Zp+. Then

(3.25)
Alt∑
k≥0

f(k) =

c−1∑
k=0

f(k)− Ãm,F (c)−Rm,f,c(∞),

where

(3.26) Rm,f,c(∞) := −
∑
∅6=J⊆[p]

(−1)p−|J|Rm,fc1J
(∞)

(cf. (3.18)).

Under the conditions of Theorem 3.2, the remainderRm,f,c(∞) can be made arbitrarily small
by making ∧c large enough. The price to pay for this will be the need to compute a possibly
large partial sum

∑c−1
k=0 f(k) of the series.

Theorem 3.3 is a multi-index extension of Corollary 5.6 in [19].

Example 3.1. In Theorem 3.3, let p = 2 and take any 4-times continuously differentiable function
f : R2 → R such that

f(x, y) = (x+ y + 2) ln(x+ y + 2)

for real x, y ≥ 0. Such a function f exists, by Whitney’s theorem [24]; however, only the values of f
on [0,∞)2 will matter for the purposes of this example. Then it is straightforward to check by direct
differentiation that for an antiderivative F of f and all real x, y ≥ 0 one will have

F (x, y) = 1
6 (x+ y + 2)3 ln(x+ y + 2)− 5

12 (x+ 1)(y + 1)(x+ y + 2).

It is also straightforward to verify conditions (3.15) and (3.16) of Theorem 3.2 with m0 = m = 2.
It also follows that, for n = (n, n), the term Ãm,F (n) = Ã2,F

(
(n, n)

)
(defined in (3.18)) is expressed

as a linear combination of certain terms of the form P (n) ln(a + bn) or P (n), where P is polynomial
with real coefficients, a is a nonnegative real number, and b is a positive real number. Replacing, in
that expression for Ãm,F (n), every instance of ln(a+ bn) by its large-n asymptotics lnn+ ln b+ a

bn −
a2

2b2n2 + a3

3b3n3 +O( 1
n4 ), after some rather heavy algebra we find

Ãm,F (n) = Sn + δn,
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FIGURE 1. Graph
{

(n, sn − Sn) : n ∈ {1, . . . , 50}
}

where

(3.27) Sn := n3 ln
24/3 n

e5/6
+ n2 ln

4n√
e

+
5

6
n ln 2− 1

12
ln
en

2

and

(3.28) δn = O(1/n2).

Thus, by Theorem 3.3,

sn :=

n∑
k=1

n∑
l=1

(k + l) ln(k + l) = Sn + L+ rn,

where

L :=

Alt∑
k≥0

f(k) = lim
n→∞

(sn − Sn) ∈ R

and

(3.29) rn := δn +R2,f,(n,n)(∞) = O(1/n),

in view of (3.28), (3.26), (3.24), (3.22), (2.11), and (2.14); the universal positive real constant factor in
O(1/n) in (3.29) can be given explicitly. Note that the bound O(1/n) on the error term rn in (3.29)
can be improved to O(1/nm−1) by choosing the “approximation order” m in formula (3.25) to be any
natural number greater than 2; of course, then the expression for Sn in (3.27) will have to be replaced by
a more complicated expression.

The convergence of sn − Sn to the limit L is illustrated in Figure 1, which shows the discrete graph{
(n, sn − Sn) : n ∈ {1, . . . , 50}

}
. �
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4. APPLICATION TO SUMS OVER THE INTEGRAL POINTS OF INTEGRAL LATTICE POLYTOPES

Let P be an integral polytope in Rp, that is, the convex hull of a finite subset of Zp.
Suppose that P is of full dimension, p. Let V denote the set of all vertices (that is, extreme

points) of P .
By the main result of Haase [11], for each v ∈ V there exist a finite set Iv, a map Iv 3 i 7→

tv,i ∈ {0, 1}, a map Iv 3 i 7→ Av,i into the set of all nonsingular p × p matrices over Z, and a
map Iv 3 i 7→ Jv,i into the set of all subsets of the set [p] = {1, . . . , p} such that

(4.30) JP K =
∑
v∈V

∑
i∈Iv

(−1)tv,iJCv,iK,

where J·K denotes the indicator/characteristic function,

(4.31) Cv,i := v +Av,iR+
Jv,i

= {v +Av,ix : x ∈ R+
Jv,i
},

R+
J :=

∏
j∈[p]

R+
1−JJK(j) for J ⊆ [p],

and

R+
ε :=

{
(0,∞) if ε = 0,

[0,∞) if ε = 1

(so that the closure of Cv,i is a polyhedral cone, for each pair (v, i)). In the case when the
polytope P is simple, decomposition (4.30) was obtained earlier by Lawrence [17]. To extend
Lawrence’s result, Haase used virtual infinitesimal deformations of vertices of P , identified
with regular triangulations of the normal cones at the vertices.

Proposition 4.1. Let A be any nonsingular p× p matrix over Z, and let J be any subset of the set [p].
Then there exist a finite set I , a map I 3 i 7→ Ai into the set of all unimodular p× p matrices over Z,
and a map I 3 i 7→ Ji into the set of all subsets of the set [p] such that

(4.32) JAR+
J K =

∑
i∈I

JAiR+
Ji

K.

(Recall that a matrix is called unimodular if its determinant is 1 or −1.)

Thus, one can strengthen the statement on the decomposition (4.30) as follows:

Corollary 4.1. One may assume that all the matrices Av,i in (4.30)–(4.31) are unimodular.

A similar decomposition, but with polyhedral cones of lower dimensions, was obtained in
[5].

The following corollary is almost immediate from Theorem 2.1 and Corollary 4.1.

Corollary 4.2. Suppose that the function f is compactly supported. Then

(4.33)
∑

k∈P∩Zp

f(k) = Am(f, P )−Rm(f, P ),

where

Am(f, P ) :=

(m−1)1∑
β=(1−m)1

τm,1+|β|
∑
v∈V

(−1)tv
∑
i∈Iv

∫
Cv,i+Av,i(1Jv,i

−(1+β)/2)

dxf(x)(4.34)

is the integral approximation to the sum
∑

k∈P∩Zp

f(k) and Rm(f, P ) is the remainder given by the

formula
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Rm(f, P ) :=
m

22m+p−1

∑
‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
duuα Σm(su)

with

Σm(w) :=

m1∑
j=1

γm,j j
α+1

∑
v∈V

∑
i∈Iv

(−1)tv
∑
k≥0

g
(α)
v,i (k + 1Jv,i

+ jw/2)

and
gv,i(y) := f(v +Av,iy)

for y ∈ Rp. If M2m is a real number such that∣∣∣ ∑
v∈V

∑
i∈Iv

(−1)tv
∑
k≥0

g
(α)
v,i (k + u)

∣∣∣ ≤M2m whenever ‖α‖ = 2m and |u| ≤ (m2 + 1)1,

then

|Rm(f, P )| ≤M2m
1.0331(πm)(p+1)/2

(2m+ 1)!
(κpm)2m,

where κ is as in (2.14).

Indeed, for J ⊆ [p], let
Z+
J := Zp ∩ R+

J = Zp+ + 1J ,

where Z+ := Z ∩ [0,∞). Note that AZp = Zp for any unimodular matrix A over Z. Now
Corollary 4.2 follows by Corollary 4.1 and Theorem 2.1 because∑

k∈Cv,i∩Zp

f(k) =
∑

q∈Z+
Jv,i

f(v +Av,iq) =
∑
q≥0

f(v +Av,i(q + 1Jv,i
)) =

∑
q≥0

gv,i(q + 1Jv,i
)

and ∫
[−1/2−β/2,∞1)

dy gv,i(y + 1Jv,i) =

∫
Cv,i+Av,i(1Jv,i

−(1+β)/2)

dxf(x).

The expression for Am(f, P ) in (4.34) is based on the second expression for Am in (2.5); of
course, one can quite similarly use any one of the other 5 expressions in (2.4)–(2.6).

Notable differences between the Alt formula in Corollary 4.2 and the EM formula that is
the main result of [14] (Theorem 2 therein) include the following: (i) in [14, Theorem 2], the
summation is over all faces of the polytope P , whereas in (4.34) the corresponding summation
is only over the vertices of P and (ii) instead of the plain summation

∑
k∈P∩Zp f(k) in (4.33),

in the corresponding sum in [14] the summands f(k) are weighted (in accordance with the
dimension of the relative interior of the face given that k belongs to that relative interior).

Note also that [14, Theorem 2] is obtained for simple polytopes. In [3], this result was ex-
tended to allow more general weights, and then further generalized to non-simple polytopes
in [4].

The version of the EM formula for polytopes in [6] is given for polynomial functions f in
terms of differential operators of infinite order, with the summation over all faces of the poly-
tope.

It should be possible to extend Corollary 4.2 to the case when the function f is a so-called
symbol in the sense of Hörmander [12] – cf. [14, Theorem 3], as well as conditions (3.15) and
(3.16).

(
Recall that a function f ∈ C∞(Rp) is called a symbol of order N if for every α ∈ Zp+

there is a real constant Cα such that |f (α)(x)| ≤ Cα(1 + ‖x‖)N−‖α‖ for all x ∈ Rp; here, as
before, ‖ · ‖ := ‖ · ‖1.

)
One way to attack this goal could be to show that, for any α ∈ Zp+ such
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that α ≤ (m − 1)1, the essential support (except possibly for a set of Lebesgue measure 0) of
the function ∑

β : |β|=α

∑
v∈V

∑
i∈Iv

(−1)tv,i JCv,i +Av,i(1Jv,i − (1 + β)/2)K

is bounded, presumably being just a perturbed version of the indicator of the polytope P ; cf.
(4.34) and the equality in [14, formula (89)].

Moreover, in view of the results of Section 3, it appears not unlikely that Corollary 4.2 could
be extended to general polyhedral sets.

5. PROOFS

Proof of Theorem 2.1. Take any k (in Zp+) such that k ≤ n− 1 and consider the Taylor expansion

(5.35) f(x) =
∑

‖α‖≤2m−1

f (α)(k)

α!
uα +

∑
‖α‖=2m

2m

α!
uα

∫ 1

0

ds (1− s)2m−1f (α)(k + su)

for all x ∈ (k −m1/2, k + m1/2], where u := x − k. Integrating both sides of this identity in
x ∈ (k − j/2, k + j/2] (or, equivalently, in u ∈ (−j/2, j/2]) for each j (in Zp+) such that j ≤ m1,
then multiplying by γm,j, and then summing in j, one has

(5.36) Am,k = Sm,k +Rm,k,

where

Am,k :=

m1∑
j=1

γm,j

∫ k+j/2

k−j/2
dx f(x),(5.37)

Sm,k :=
∑

‖α‖≤m−1

f (2α)(k)

(2α + 1)! 22‖α‖

m1∑
j=1

γm,j j
2α+1,(5.38)

Rm,k :=
∑

‖α‖=2m

2m

α!

∫ 1

0

ds (1− s)2m−1
m1∑
j=1

γm,j

∫ j/2

−j/2
du uα f (α)(k + su)

=
∑

‖α‖=2m

2m

α!

∫ 1

0

ds (1− s)2m−1
m1∑
j=1

γm,j (j/2)α+1

∫ 1

−1
dv vα f (α)(k + sjv/2);(5.39)

the latter equality is obtained by the change of variables u = jv.
As noted before, in the special case p = 1 Theorem 2.1 turns into Theorem 3.1 of [19]. So,

without loss of generality (w.l.o.g.) p ≥ 2. Write

(5.40)
n−1∑
k=0

∫ k+j/2

k−j/2
dx f(x) =

n1−1∑
k1=0

· · ·
np−1∑
kp=0

∫ kp+jp/2

kp−jp/2
dxp · · ·

∫ k1+j1/2

k1−j1/2
dx1 f(x).
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In view of the multi-line display next after formula (7.7) in [19] (note, in particular, the penul-
timate expression there), the right-hand side of (5.40) can be rewritten as

n1−1∑
k1=0

· · ·
np−1−1∑
kp−1=0

jp−1∑
ip=0

∫ np−1+jp/2−ip

ip−jp/2
dxp

∫ kp−1+jp−1/2

kp−1−jp−1/2

dxp−1 · · ·
∫ k1+j1/2

k1−j1/2
dx1 f(x)

=

jp−1∑
ip=0

∫ np−1+jp/2−ip

ip−jp/2
dxp

n1−1∑
k1=0

· · ·
np−1−1∑
kp−1=0

∫ kp−1+jp−1/2

kp−1−jp−1/2

dxp−1 · · ·
∫ k1+j1/2

k1−j1/2
dx1 f(x)

...

=

jp−1∑
ip=0

∫ np−1+jp/2−ip

ip−jp/2
dxp · · ·

j1−1∑
i1=0

∫ n1−1+j1/2−i1

i1−j1/2
dx1 f(x).

So,

n−1∑
k=0

∫ k+j/2

k−j/2
dx f(x) =

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
dx f(x)

and hence, by (5.37),

(5.41)
n−1∑
k=0

Am,k =

m1∑
j=1

γm,j

n−1∑
k=0

∫ k+j/2

k−j/2
dx f(x) =

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
dx f(x) = Am.

Similarly, but using the last expression in the mentioned multi-line display next after formula
(7.7) in [19] rather than the penultimate expression there, we have

n−1∑
k=0

Am,k =

m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

−1+j/2−i
dx f(x).

In particular, it follows that the two double sums in (2.4) are the same.
Suppose now that some i and j in Zp+ and some β ∈ Zp are related by the condition β =

2i− j + 1. Then the condition 1 ≤ j ≤ m1 & 0 ≤ i ≤ j− 1 is equivalent to the condition

(1−m)1 ≤ β ≤ (m− 1)1 & 1 + |β| ≤ j ≤ m1 & (j− 1− |β|)/2 ∈ Zp+.

So,

(5.42)
m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

i−j/2
=

(m−1)1∑
β=(1−m)1

τ̃m,1+|β|

∫ n−1/2−β/2

β/2−1/2

and

(5.43)
m1∑
j=1

γm,j

j−1∑
i=0

∫ n−1+j/2−i

−1+j/2−i
=

(m−1)1∑
β=(1−m)1

τ̃m,1+|β|

∫ n−1/2−β/2

−1/2−β/2
,
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where

τ̃m,1+|β| :=

m1∑
j=1+|β|

γm,j I
{

(j− 1− |β|)/2 ∈ Zp+
}

=

m∑
j1=1+|β1|

· · ·
m∑

jp=1+|βp|

p∏
r=1

(
γm,jr I

{
(jr − 1− |βr|)/2 ∈ Z+

})
=

p∏
r=1

m∑
jr=1+|βr|

(
γm,jr I

{
(jr − 1− |βr|)/2 ∈ Z+

})
=

p∏
r=1

τm,1+|βr| = τm,1+|β|,

in view of (2.7) and (2.8).
Thus, by (5.42) and (5.43), the first double sum in (2.4) equals the first sum in (2.5), and the

second double sum in (2.4) equals the second sum in (2.5).
Also, it is obvious that the first sum in (2.6) equals the first sum in (2.5), and the second sum

in (2.6) equals the second sum in (2.5).
Next, for any α (in Zp+) with ‖α‖ ≤ m− 1,

(5.44)
m1∑
j=1

γm,j j
2α+1 =

m∑
j1=1

· · ·
m∑
jp=1

p∏
r=1

(
γm,jrj

2αr+1
r

)
=

p∏
r=1

m∑
j=1

γm,jj
2αr+1 = I{α = 0}

by formula (7.6) in [19]. So, by (5.38),

(5.45) Sm,k = f(k).

Also, the case α = 0 in (5.44) shows that the first two sums in (2.10), involving the γm,j’s,
are equal to 1. The second equality in (2.10) follows from the equality of the first sums in (2.4)
and (2.5) to each other by taking there n = m1 and f(x) ≡ I{(m/2 − 1)1 ≤ x ≤ m1/2}; then
each of the integrals in (2.4)–(2.6) equals 1.

By (5.39) and (2.9),

n−1∑
k=0

Rm,k = Rm.

So, (2.3) follows immediately from (5.36), (5.41), and (5.45).
In view of (2.9) and (2.11),

|Rm| ≤ R̃m := M2m
m

22m+p−1

∑
‖α‖=2m

1

α!

∫ 1

0

ds (1− s)2m−1
∫ 1

−1
dv |v|α

m1∑
j=1

|γm,j| jα+1.

Computing the integrals here, it is easy to check that R̃m equals the upper bound in (2.12). On
the other hand, using the multinomial formula, the definition of γm,j in (2.7), and the Hölder
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inequality
(∑p

r=1 |vrjr|
)2m

≤ p2m−1
∑p
r=1 |vrjr|2m, we see that

(5.46)

R̃m =
M2m

22m(2m)!

m1∑
j=1

|γm,j| j1
∫ 1

0

dv
∑

‖α‖=2m

(2m)!

α!
(vj)α

=
M2m

22m(2m)!

m1∑
j=1

|γm,j| j1
∫ 1

0

dv
( p∑
r=1

vrjr

)2m
≤M2mp

2m−1

22m(2m)!

( m∑
j1=1

· · ·
m∑
jp=1

|γm,j1 |j1 . . . |γm,jp |jp
) p∑
r=1

j2mr

∫ 1

0

v2mr dv

=
M2mp

2m

22m(2m+ 1)!

m∑
j=1

|γm,j |j2m+1
( m∑
j=1

|γm,j |j
)p−1

.

By Proposition 4.4 in [19],

(5.47)
m∑
j=1

|γm,j |j2m+1 ≤ 1.0331πΛm∗ m
2m+1,

and for m ≥ 2 the factor 1.0331 can be replaced by 1.001.
It follows from [23] that Γ(x+ 1)/Γ(x+ 1/2) >

√
x+ 1/π for real x > 0. For x = m ∈ N, this

inequality can be rewritten as 22m
/(

2m
m

)
<
√
πm+ 1. So, in view of (2.7),

(5.48)
m∑
j=1

|γm,j |j = 22m
/(2m

m

)
− 1 <

√
πm.

Collecting (5.46), (5.47), (5.48), and (2.14), we obtain (2.13).
Theorem 2.1 is now completely proved. �

To prove Theorem 3.2, we shall need the following multidimensional generalization of the
fundamental theorem of calculus (FTC).

Lemma 5.1. (Multidimensional FTC) Let F be any antiderivative of f . Take any u and v in Rp.
Then

(5.49)
∫ v

u

dxf(x) =
∑
J⊆[p]

(−1)p−|J|F (vJ),

where vJ := u1[p]\J + v1J = u + (v − u)1J .

For p = 2 and u ≤ v, formula (5.49) appears in the proof of Lemma 6.2 [9]; a version of it for
general p seems to be implicit on page 515 in [15]. Related formulas were given in [2, (III.1)]
and [1, Lemma 1]. The following simple proof – which is essentially just a p-fold application of
the one-dimensional FTC, plus some organizing – will be given here for readers’ convenience.

Proof of Lemma 5.1. This will be done by induction in p. For p = 1, (5.49) is the usual, one-
dimensional FTC. Suppose that p ≥ 2 and that (5.49) holds with p− 1 in place of p.

Introduce some notation, as follows. For x = (x1, . . . , xp−1, xp) ∈ Rp, let x̃ := (x1, . . . , xp−1),
and similarly define ũ and ṽ. Also, for any J ⊆ [p − 1], define ṽJ similarly to vJ , but based
on ũ and ṽ rather than on u and v. For any function h : Rp → R and any real xp, let hxp

denote the “cross-section” function from Rp−1 to R defined by the formula hxp
(x̃) := h(x),
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again for x = (x1, . . . , xp−1, xp) ∈ Rp. Note that, for each real xp, the function
(
F (1{p})

)
xp

is an
antiderivative of the function fxp

.
For real u and v, let ∆u,v := δv − δu, where δx is the Dirac measure at x. Consider the signed

product measures

∆u,v := ∆u1,v1 ⊗ · · · ⊗∆up,vp =
∑
J⊆[p]

(−1)p−|J|δvJ

and ∆̃u,v := ∆u1,v1 ⊗ · · · ⊗∆up−1,vp−1
, so that ∆u,v = ∆̃u,v ⊗∆up,vp .

Now, appropriately rewriting the right-hand side of (5.49) and then using the Fubini theo-
rem and the induction hypothesis, we have∑
J⊆[p]

(−1)p−|J|F (vJ) =

∫
Rp

d∆u,v F (rewriting)

=

∫
R

∆up,vp(dxp)

∫
Rp−1

d∆̃u,v Fxp (Fubini)

=

∫
R

∆up,vp(dxp)
∑

J⊆[p−1]

(−1)p−1−|J|Fxp
(ṽJ) (similar rewriting)

=
∑

J⊆[p−1]

(−1)p−1−|J|
∫
R

∆up,vp(dxp)Fxp(ṽJ)

=
∑

J⊆[p−1]

(−1)p−1−|J|
∫ vp

up

dxp
d

dxp
Fxp(ṽJ) (one-dimensional FTC)

=

∫ vp

up

dxp
∑

J⊆[p−1]

(−1)p−1−|J|
d

dxp
Fxp(ṽJ)

=

∫ vp

up

dxp
∑

J⊆[p−1]

(−1)p−1−|J|
(
F (1{p})

)
xp

(ṽJ)

=

∫ vp

up

dxp

∫ ṽ

ũ

dx̃ fxp
(x̃) (induction)

=

∫ v

u

dxf(x). (Fubini)

This completes the proof of Lemma 5.1. �

Proof of Theorem 3.2. Let

Rm,f (n) := Rm,

with Rm as defined in (2.9). Then, by (3.16),

(5.50) Rm,f (n) −→
∧n→∞

Rm,f (∞).

Let

(5.51) Am,F (n) :=
∑
J⊆[p]

(−1)p−|J|AJm,F (n) = Ãm,F (n) + (−1)pA∅m,F (n),
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in view of (3.18). By (2.3)–(2.4), Lemma 5.1, (5.51), and (3.19),

(5.52)

n−1∑
k=0

f(k)−Am0,F (n) +Rm,f (n)

=Am,F (n)−Am0,F (n)

=
∑
J⊆[p]

(−1)p−|J|
(
AJm,F (n)−AJm0,F (n)

)
=
∑
J⊆[p]

(−1)p−|J|
(
AJm,TJ

(n)−AJm0,TJ
(n) +AJm,F−TJ

(n)−AJm0,F−TJ
(n)
)
,

where TJ = TJ,n,m0,F is the Taylor polynomial of order 2m0 − 1 for the function F at the point
n1J − 1, so that

TJ(x) =
∑

‖α‖≤2m0−1

F (α)(n1J − 1)

α!
(x− n1J + 1)α

for x ∈ Rp.
Consider the monomial P (x) = xα of degree ‖α‖ ≤ 2m0 − 1, so that

P (x) =
∏p
r=1 Pr(x), where Pr(x) := xαr .

Take any r = 1, . . . , p and any J ⊆ [p], and let nr,J := nr I{r ∈ J}. Following the lines of the
proof of Proposition 5.1 in [19] for the case when f = P ′r and F = Pr, so that the polynomial T
therein coincides with F = Pr, we see from [19, (5.5) and (7.19)] that

m−1∑
β=1−m

τm,1+|β| Pr(n− 1/2− β/2) = Gm,Pr (n) = Gm0,Pr (n)

=

m0−1∑
β=1−m0

τm0,1+|β| Pr(n− 1/2− β/2)

for any n ∈ Z+. So, by (3.20) and (2.8),

AJm,P (n) =

(m−1)1∑
β=(1−m)1

τm,1+|β| P (n1J − 1/2− β/2)

=

(m−1)1∑
β=(1−m)1

p∏
r=1

(
τm,1+|βr| Pr(nr,J − 1/2− βr/2)

)
=

p∏
r=1

m−1∑
β=1−m

(
τm,1+|β| Pr(nr,J − 1/2− β/2)

)
=

p∏
r=1

m0−1∑
β=1−m0

(
τm0,1+|β| Pr(nr,J − 1/2− β/2)

)
= AJm0,P (n).

Since TJ is a polynomial of degree ≤ 2m0 − 1 and AJm,F (n) is linear in F , we conclude that

(5.53) AJm,TJ
(n)−AJm0,TJ

(n) = 0 for all J ⊆ [p].
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Further, the remainder (F−TJ)(n1J−1+u) at point n1J−1+u of the Taylor approximation
TJ of F at n1J − 1 equals (cf. (5.35))∑

‖α‖=2m0

2m0

α!
uα

∫ 1

0

ds (1− s)2m0−1F (α)(n1J − 1 + su),

which, by (3.15), goes to 0 as ∧n→∞ unless J = ∅. So, by (3.19),

AJm,F−TJ
(n) −→

∧n→∞
0 and AJm0,F−TJ

(n) −→
∧n→∞

0 unless J = ∅.

It follows now by (5.53), (3.23), the linearity of AJm,F in F , and (again) (5.53) that the limit of the
last expression in (5.52) as ∧n→∞ equals

(−1)p
(
A∅m,F−T∅(0)−A∅m0,F−T∅(0)

)
=(−1)p

(
A∅m,F (0)−A∅m0,F

(0)
)
− (−1)p

(
A∅m,T∅(0)−A∅m0,T∅

(0)
)

=(−1)p
(
A∅m,F (0)−A∅m0,F

(0)
)
.

Now (3.17) follows, in view of (5.50) and (the second equality in) (5.51).
Inequality (3.22) follows immediately from (2.11) and (2.12)–(2.13).
Formula (3.23) follows immediately from (3.21).
Theorem 3.2 is completely proved. �

Proof of Theorem 3.3. Note that
c−1∑
k=0

f(k) =
∑
k≥0

f(k) I{k ≤ c− 1}

=
∑
k≥0

f(k)

p∏
r=1

(
I{kr ≤ nr + cr − 1} − I{cr ≤ kr ≤ nr + cr − 1}

)
=
∑
k≥0

f(k)
∑
J⊆[p]

(−1)|J| I{kr ≤ nr + cr − 1 ∀r ∈ [p] \ J,

cr ≤ kr ≤ nr + cr − 1 ∀r ∈ J}

=
∑
J⊆[p]

(−1)|J|
n+c−1∑
k=c1J

f(k) =

n+c−1∑
k=0

f(k) +
∑
∅6=J⊆[p]

(−1)|J|
n+c−1∑
k=c1J

f(k).

Hence,

(5.54)

n+c−1∑
k=0

f(k)− Ãm0,F (n + c)

=

c−1∑
k=0

f(k)−
∑
∅6=J⊆[p]

(−1)|J|
n+c−1∑
k=c1J

f(k)− Ãm0,F (n + c)

=

c−1∑
k=0

f(k)−
∑
∅6=J⊆[p]

(−1)|J|
( n+c−c1J−1∑

k=0

fc1J
(k)− Ãm0,Fc1J

(n + c− c1J)
)

+R,

where
R := −

∑
∅6=J⊆[p]

(−1)|J|Ãm0,Fc1J
(n + c− c1J)− Ãm0,F (n + c).
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By Lemma 5.1 with F = 1 (and f = 0),

(5.55)
∑
J⊆[p]

(−1)|J| = 0 and hence
∑
∅6=J⊆[p]

(−1)|J| = −1.

Therefore and in view of (3.18) and (3.20),

R =
∑
∅6=J⊆[p]

(−1)|J|RJ ,

where

RJ :=Ãm0,F (n + c)− Ãm0,Fc1J
(n + c− c1J) =

(m−1)1∑
β=(1−m)1

τm,1+|β|RJ,β,

RJ,β :=
∑

∅6=K⊆[p]

(−1)p−|K|
[
H
(
(n + c)1K

)
−H

(
c1J + (n + c− c1J)1K

)]
,

and H(x) := F (x− 1/2− β/2). Thus,

(5.56) R =

(m−1)1∑
β=(1−m)1

τm,1+|β|
∑

∅6=K⊆[p]

(−1)p−|K|Rβ,K ,

where

(5.57)

Rβ,K :=
∑
∅6=J⊆[p]

(−1)|J|
[
H
(
(n + c)1K

)
−H

(
c1J + (n + c− c1J)1K

)]
=

∑
∅6=J⊆[p]

(−1)|J|
[
H
(
(n + c)1K

)
−H

(
(n + c)1K + c1J\K

)]
=
∑
L∈LK

[
H
(
(n + c)1K

)
−H

(
(n + c)1K + c1L

)] ∑
J∈JK,L

(−1)|J|,

LK := {L : L ⊆ [p], L 6= ∅, L ∩K = ∅}, JK,L := {J : ∅ 6= J ⊆ [p], J \K = L}.

For any K ⊆ [p] and any L ∈ LK , the map J 7→ IJ := J ∩ K is a bijection of the set JK,L
onto the set {I : I ⊆ K}, and for any J ∈ JK,L the set J is the disjoint union of the sets IJ
and L, so that |J | = |IJ | + |L|. It follows by (5.55) that for any K ⊆ [p] and any L ∈ LK one
has

∑
J∈JK,L

(−1)|J| =
∑
I⊆K(−1)|I|(−1)|L| = 0. Looking back at (5.57) and (5.56), we see that

R = 0.
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Letting now ∧n → ∞ and recalling (5.54), (3.17), the definition (3.26) of Rm,f,c(∞), and
formulas (3.23), (3.21), and (3.18), we have

Alt∑
k≥0

f(k)−
c−1∑
k=0

f(k)

=−
∑
∅6=J⊆[p]

(−1)|J|
Alt∑
k≥0

fc1J
(k)

=−
∑
∅6=J⊆[p]

(−1)|J|
[
(−1)pA∅m,Fc1J

(0)−Rm,fc1J
(∞)

]

=−Rm,f,c(∞)−
∑
∅6=J⊆[p]

(−1)p−|J|
(m−1)1∑
α=0

τm,1+α

∑
β : |β|=α

F (c1J + β/2− 1/2)

=−Rm,f,c(∞)− Ãm,F (c),

which completes the proof of Theorem 3.3. �

Proof of Proposition 4.1. Let a1, . . . ,ap denote the columns of the matrix A, so that ai ∈ Zp for
each i ∈ [p] and

C := AR+
J =

∑
i∈[p]

R+
εiai, where εi := 1− JJK(i).

If the matrix A is unimodular, there is nothing to prove. So, w.l.o.g., |detA| ≥ 2. Then there
is a vector w ∈ Zp \ {0} such that

(5.58) w = w1a1 + · · ·+ wpap

for some real numbers w1, . . . , wp in the interval [0, 1) (in fact, there are exactly |detA| − 1 such
vectors w). Thus, w.l.o.g. for some k ∈ [p] one has

(5.59) wj > 0 for j ∈ [k] and wj = 0 for j ∈ [p] \ [k].

For each i ∈ [k], let Ai be the (integral) matrix obtained from the matrix A by replacing its i-th
column, ai, by w; then detAi = wi detA and hence

(5.60) 0 < |detAi| < |detA|.

We shall see that (4.32) holds with I = [k], the matrices Ai just defined, and some subsets
J1, . . . , Jk of the set [p].

Then, repeating the step described in the last paragraph – for each of the matricesA1, . . . , Ak
in place of A, in view of (5.60) we shall eventually obtain (4.32) with unimodular p×p matrices
Ai over Z, as required. This step relies mainly on the following combinatorial lemma.

Lemma 5.2. Let a1, . . . ,ap, C, w, and k be as described above. For each i ∈ [k], let

(5.61) Ci := R+
εiiw +

∑
j∈[p]\{i}

R+
εijaj ,

where the εij ’s are any numbers in the set {0, 1} satisfying the following conditions:
(i) εij = εj for i ∈ [k] and j ∈ [p] \ [k];

(ii) εii = εi for i ∈ [k];
(iii) εij + εji = 1 for any distinct i and j in [k];
(iv) for each i ∈ [k], the condition εi = 1 implies εij ≤ εj for all j ∈ [k];
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(v) for each nonempty subset J of the set [k], there is some i ∈ J such that for all j ∈ J \ {i} one has
εij = 1.

Then

(5.62) JCK =
∑
i∈[k]

JCiK.

We also have

Lemma 5.3. Take any ε1, . . . , εp in {0, 1} and any k ∈ [p]. Then there exist numbers εij in the set
{0, 1} satisfying all the conditions (i)–(v) in Lemma 5.2.

We shall prove these two lemmas in a moment.
Letting now Ji = {j ∈ [p] : εij = 0} for each i ∈ [k] (so that εij = 1− JJiK(j) for all i ∈ [k] and

j ∈ [p]), we will have Ci = AiR+
Ji

for i ∈ [k], which will complete the step described in the para-
graph containing formulas (5.58)–(5.60). Thus, to complete the entire proof of Proposition 4.1,
it remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. Take any x ∈ Rp. Let (y1, . . . , yp) = (y1(x), . . . , yp(x)) denote the p-tuple of
the coordinates of the vector x in the basis (a1, . . . ,ap) of Rp, so that

(5.63) x =
∑
j∈[p]

yjaj .

Also, for each i ∈ [k], let (yi1, . . . , yip) = (yi1(x), . . . , yip(x)) denote the p-tuple of the coordi-
nates of the vector x in the basis (a1, . . . ,ai−1,w,ai+1, . . . ,ap) of Rp, so that

x = yiiw +
∑

j∈[p]\{i}

yijaj = yiiwiai +
∑

j∈[p]\{i}

(yiiwj + yij)aj .

In view of (5.58) and (5.59),

(5.64) yij = yj for i ∈ [k], j ∈ [p] \ [k].

As for i and j in [k], we have yi = yiiwi and yj = yiiwj + yij = yi
wi
wj + yij if j 6= i, which can

be rewritten as

(5.65) ∀(i, j) ∈ [k]× [k]
(
yiiwi = yi and j 6= i =⇒ yij

wj
= rj − ri

)
,

where
rj := rj(x) :=

yj
wj
.

Note that (5.62) means precisely that C is the disjoint union of the Ci’s. Thus, the proof of
Lemma 5.2 will be completed in the following three steps.

Step 1: checking that Ci ⊆ C for each i ∈ [k]. Take indeed any i ∈ [k], and then take any
x ∈ Ci, so that, by (5.61), yij ∈ R+

εij for all j ∈ [p]. Then yii ∈ R+
εii = R+

εi by condition (ii)
of Lemma 5.2 and hence yi = yiiwi ∈ R+

εi . Also, by (5.64) and condition (i) of Lemma 5.2,
yj = yij ∈ R+

εij = R+
εj for j ∈ [p] \ [k].

If yi > 0, then yj = yi
wi
wj + yij > yij ≥ 0 for all j ∈ [k] \ {i}, whence yj > 0 for all j ∈ [k]. So,

by (5.63), x ∈
∑
j∈[k] R

+
0 aj +

∑
j∈[p]\[k] R+

εjaj ⊆
∑
j∈[p] R+

εjaj = C.
If now yi = 0, then the mentioned condition yi ∈ R+

εi implies εi = 1. So, by condition
(iv) of Lemma 5.2, for all j ∈ [k] we have εij ≤ εj and hence R+

εij ⊆ R+
εj , which yields yj =

yi
wi
wj + yij = yij ∈ R+

εij ⊆ R+
εj . So, in this case as well, x ∈ C.
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Step 2: checking that the Ci’s are disjoint. Take any distinct i and j in [k], and then take
any x ∈ Ci ∩ Cj . Then yij ∈ R+

εij , whence, by (5.65), rj − ri = yij/wj ∈ R+
εij . Similarly,

ri − rj ∈ R+
εji , that is, rj − ri ∈ −R+

εji = R \ R+
εij , by condition (iii) of Lemma 5.2. Thus,

rj − ri ∈ R+
εij ∩

(
R \ R+

εij

)
= ∅, which is a contradiction.

Step 3: checking that C ⊆
⋃
i∈[k] Ci. Take any x ∈ C, so that yj ∈ R+

εj for all j ∈ [p]. Let

Jx := {i ∈ [k] : ri(x) ≤ rj(x) ∀j ∈ [k]}.

Then, by (5.65), yij ≥ 0 for all i ∈ Jx and j ∈ [k]. Moreover, rj(x) > ri(x) for all i ∈ Jx and
j ∈ [k] \ Jx.

So, again by (5.65), for all i ∈ Jx and j ∈ [k] \ Jx we have yij > 0, so that yij ∈ R+
0 ⊆ R+

εij .
Note that Jx 6= ∅. So, by condition (v) of Lemma 5.2, there is some ix ∈ Jx such that for all
j ∈ Jx \ {ix} one has εixj = 1, so that yixj ∈ R+

εixj
. Thus, yixj ∈ R+

εixj
for all j ∈ [k] \ {ix}. Also,

yixix ∈ R+
εixix

– in view of the first equality in (5.65), the condition yi ∈ R+
εi for all i ∈ [p], and

condition (ii) of Lemma 5.2. Moreover, yixj ∈ R+
εixj

for all j ∈ [p] \ [k] – in view of (5.64), the
condition yj ∈ R+

εj for all j ∈ [p], and condition (i) of Lemma 5.2. We conclude that yixj ∈ R+
εixj

for all j ∈ [p], that is, x ∈ Cix ⊆
⋃
i∈[k] Ci.

Lemma 5.2 is now proved. �

Proof of Lemma 5.3. For i ∈ [k] and j ∈ [p] \ [k], let εij := εj , in accordance with condition (i) of
Lemma 5.2.

Similarly, let εii := εi for i ∈ [k], in accordance with condition (ii) of Lemma 5.2.
Next, w.l.o.g. εj is nondecreasing in j ∈ [k]. Let then εij := 1 and εji := 0 for all i and j in [k]

with i < j.
It is now straightforward to check that all the conditions (i)–(v) in Lemma 5.2 hold. In par-

ticular, concerning condition (iv), note that, if εi = 1 and εij = 1 for some distinct i and j in [k],
then i < j and hence 1 = εi ≤ εj , so that εj = 1. Concerning condition (v), for each nonempty
subset J of the set [k], let i := min J ; then for all j ∈ J \ {i} one has i < j and hence εij = 1.
Lemma 5.3 is now proved. �

The entire proof of Proposition 4.1 is thus complete. �
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1. INTRODUCTION AND NOTATION

This paper originated when one of the authors (N.O.) came across the article [3]. The explicit
formulas in [3] were interesting, but we could not concur with the overall framework in which
they had been derived. The calculations in [3] are based on van der Corput’s “neutrix calculus”,
see [1], a way of evaluating divergent integrals, which was inspired by Hadamard’s method.
This “technique of neglecting appropriately defined infinite quantities”, see [12, p. 984] , pro-
duces numbers, not distributions. Accordingly, the results in [3] represent the incomplete beta
function only on the open interval (0, 1) and do not furnish a distribution on R. So we thought
that it might be reasonable to reconsider the calculations in [3] from the nowadays generally
adopted viewpoint of distribution theory.

Let us mention that regularizations in Hadamard’s sense but employing L. Schwartz’ theory
of distributions were investigated in [9, pp. 15–19], for three kinds of distributions.

Classically, the incomplete beta function is defined by the integral

Bλ,µ(x) =

∫ x

0

tλ−1(1− t)µ−1 dt, 0 ≤ x ≤ 1, Reλ > 0, Reµ > 0,

see [4, Equ. 8.931]. The goal of the article [3] as well as of this paper consists in defining and
evaluating Bλ,µ and its partial derivatives with respect to λ and µ at the “singular values”, i.e.,
if λ ∈ −N0 or µ ∈ −N0.

In Section 2, we define Bλ,µ as distributions depending analytically on (λ, µ) ∈ C2. At the
poles, e.g. if λ = −k ∈ −N0, we set B−k,µ = Pfλ=−k Bλ,µ, i.e., B−k,µ is defined as the finite
part of the Laurent series of Bλ,µ about λ = −k. The procedure of embedding a function into
a family of distributions which depend analytically on a parameter goes back to M. Riesz, see
[14, pp. 31, 32], L. Schwartz, see [15, p. 39], and J. Dieudonné, see [2, pp. 260–262]. With respect
to distribution-valued analytic or meromorphic functions, we refer the reader also to [10].
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In Section 3, we collect some algebraic reduction formulas, which show that our task can be
reduced to evaluatingB, ∂λB, ∂µB if λ or µ are 1. This is eventually done forB in Section 4 and
for ∂λB, ∂µB in Section 5, respectively.

Let us introduce some notation. As usual, an empty series, as, e.g., in
∑0
j=1 cj , sums to zero.

N and N0 denote the sets of positive and of non-negative integers, respectively. We employ the
standard notation for the distribution spaces D′, E ′, the dual spaces of the spaces D, E of “test
functions” and of C∞ functions, respectively, see [15, 6, 11]. For the evaluation of a distribution
T on a test function φ, we use angle brackets, i.e., 〈φ, T 〉. In this paper, all distributions are on
the real axis R, i.e., they belong toD′(R), but usually depend meromorphically on the complex
variables λ, µ. Differentiation with respect to x is denoted by the apostrophe, differentiation
with respect to λ, µ by ∂λ, ∂µ or ∂/∂λ, ∂/∂µ or ∂1, ∂2.

The Heaviside function is denoted by Y, see [15, p. 36]. We write δ for the delta distribution
with support in 0, i.e., δ = Y ′, and δ1 for the delta distribution with support in 1, i.e., δ1 =
Y (x − 1)′. The letter ψ denotes the logarithmic derivative Γ′/Γ of the gamma function and L2

denotes the dilogarithm, i.e., L2(0) = 0 and

L2(x) =

∫ 1

0

C
log t

t− x−1
dt, x ∈ R \ {0},

see [5, Section 323].

2. DEFINITION OF THE INCOMPLETE BETA FUNCTION

Let us first recall some facts concerning the distribution xλ+ = Y (x)xλ, see [6, Section 3.2,
p. 68], , [11, Exs. 1.3.9, 1.4.8, pp. 32, 49]. If λ ∈ C with Reλ > −1, then xλ+ is a locally integrable
function on R and hence belongs to D′(R). The function

{λ ∈ C; Reλ > −1} −→ D′(R) : λ 7−→ xλ+

is analytic and can analytically be extended to C \ (−N). This extension, which is also denoted
by xλ+, is meromorphic on C and has simple poles on −N with the residues

Res
λ=−k−1

xλ+ = (−1)kδ(k)/k!

for k ∈ N0. For abbreviation, we also set

x−k+ = Pf
λ=−k

xλ+ if k ∈ N.

In [13, pp. 11, 12], the distributions xλ+ are called Hadamard kernels.
Note that x ·xλ+ = xλ+1

+ holds for each λ ∈ C. In contrast, the differentiation formula (xλ+)′ =

λxλ−1+ is valid for λ ∈ C \ (−N0) by analytic continuation, but at λ = −k, k ∈ N0, we obtain

(x−k+ )′ = Pf
λ=−k

(xλ+)′ = Pf
λ=−k

λxλ−1+

= Pf
λ=−k

[(λ+ k)xλ−1+ − kxλ−1+ ]

= lim
λ→−k

(λ+ k)xλ−1+ − kx−k−1+

= Res
λ=−k

xλ−1+ − kx−k−1+

=
(−1)kδ(k)

k!
− kx−k−1+ ,

see also [15, Equ. (II, 2; 28), p. 42], [7, p. 151, Remark], [6, Equ. (3.2.2)′′, p. 69], , [11, p. 50].
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By differentiation with respect to λ,we obtain the distribution-valued function λ 7→ ∂λ(xλ+) =

xλ+ log x,which is meromorphic in λwith double poles on−N.As above we define x−k+ log x :=

Pfλ=−k x
λ
+ log x for k ∈ −N and similarly for the higher derivatives with respect to λ. Hence

the Laurent series of xλ+ about the pole λ = −k, k ∈ N, is given by

(2.1) xλ+ =
(−1)k−1δ(k−1)

(k − 1)!(λ+ k)
+

∞∑
j=0

x−k+ logj x

j!
(λ+ k)j , 0 < |λ+ k| < 1.

(In fact, Pfλ=−k ∂
j
λx

λ
+ = Pfλ=−k x

λ
+ logj x = x−k+ logj x for j ∈ N0.)

Now we are prepared for giving a distributional definition of the incomplete beta function.

Definition 2.1. For λ, µ ∈ C, we call Sλ,µ = xλ−1+ · (1 − x)µ−1+ ∈ E ′(R) the M. Riesz kernels of the
incomplete beta function and Bλ,µ = Y ∗ Sλ,µ ∈ D′(R) the incomplete (Eulerian) beta function.

Note that the multiplication of the two distributional factors xλ−1+ and (1 − x)µ−1+ of Sλ,µ is
well-defined since their respective singular supports {0} and {1} are disjoint, see [6, Thm. 8.2.10,
p. 267]. We also observe that Bλ,µ is uniquely determined by the two conditions

(i)B′λ,µ = Sλ,µ and (ii) suppBλ,µ ⊂ [0,∞).

According to the above, the function (λ, µ) 7→ Sλ,µ is analytic for λ, µ ∈ C \ (−N0). There-
fore the same holds true for Bλ,µ and its derivatives (∂1B)λ,µ = ∂Bλ,µ/∂λ and (∂2B)λ,µ =
∂Bλ,µ/∂µ. As before, we abbreviate

(∂1B)−k,µ := Pf
λ=−k

(∂1B)λ,µ

and
(∂1B)−k,−l := Pf

λ=−k
Pf
µ=−l

(∂1B)λ,µ if k, l ∈ N0, µ ∈ C \ (−N0),

and similarly for ∂2B. As related in Section 1, we aim at calculating explicitly Bk,l, (∂1B)k,l,
(∂2B)k,l for the singular values, i.e., if k, l ∈ Z and [k ∈ −N0 or l ∈ −N0].

3. ALGEBRAIC REDUCTION FORMULAS

The trivial identity

Sλ,µ = 1 · Sλ,µ = (x+ 1− x) · Sλ,µ = Sλ+1,µ + Sλ,µ+1

leads to representations of Sk,l, k, l ∈ Z, by Sj,1 and S1,j , j ∈ Z. By convolution with Y
and by differentiation with respect to λ and µ, we obtain similar representation formulas for
Bk,l, (∂1B)k,l and (∂2B)k,l, respectively.

Lemma 3.1. Let λ, µ ∈ C and k, l ∈ N0. Then the following holds:

(3.2) Sλ,µ+l =

l∑
j=0

(
l

j

)
(−1)jSλ+j,µ;

(3.3) Sλ−k,µ−l =

k∑
j=0

(
k + l − j

l

)
Sλ−j,µ+1 +

l∑
j=0

(
k + l − j

k

)
Sλ+1,µ−j

and for k < l we have

(3.4) Sλ−k,µ+l =

k∑
j=0

(
l − 1

j

)
(−1)jSλ−k+j,µ+1 + (−1)k+1

l−k−1∑
j=1

(
l − j − 1

k

)
Sλ+1,µ+j .
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The corresponding formulas hold likewise if S is replaced throughout by B = Y ∗S, by ∂1B, or by ∂2B,
respectively.

Proof. Equation (3.2) follows directly from the binomial formula:

Sλ,µ+l = xλ−1+ (1− x)µ+l−1+ = Sλ,µ · (1− x)l

= Sλ,µ ·
l∑

j=0

(
l

j

)
(−1)jxj

=

l∑
j=0

(
l

j

)
(−1)jSλ+j,µ.

Formula (3.3) follows similarly by using the polynomial identity

(3.5) 1 =

k∑
j=0

(
k + l − j

l

)
xk−j(1− x)l+1 +

l∑
j=0

(
k + l − j

k

)
xk+1(1− x)l−j .

For completeness, let us indicate shortly how the identity (3.5) is derived from a Mittag-Leffler
expansion. In fact, in the representation

z−k−1(1− z)−l−1 =

k∑
j=0

cjz
−j−1 +

l∑
j=0

dj(1− z)−j−1, z ∈ C \ {0, 1},

the coefficients cj can be determined from the Laurent expansion

z−k−1(1− z)−l−1 =

∞∑
n=0

(
−l − 1

n

)
(−1)nzn−k−1, 0 < |z| < 1,

i.e.,

n = k − j and cj =

(
−l − 1

k − j

)
(−1)k−j =

(
k + l − j

l

)
, j = 0, . . . , k,

and similarly for dj , j = 0, . . . , l.
Equation (3.4) follows in the same way by using the polynomial identity

(1− x)l−1 =

k∑
j=0

(
l − 1

j

)
(−1)jxj + (−1)k+1

l−k−1∑
j=1

(
l − j − 1

k

)
xk+1(1− x)j−1.

This can be shown by first replacing x by 1−x and then employing the Mittag-Leffler expansion
of zl−1(1− z)−k−1 with respect to the poles 0 and∞. �

Remark 3.1. Let us illustrate how the formulas (3.2), (3.3) and (3.4) are applied in order to reduce the
singular values Bk,l to Bj,1 and B1,j , j, k, l ∈ Z. E.g., setting λ = µ = k = l = 0 in formula (3.3)
yields the equation B0,0 = B0,1 + B1,0. Instead, if l ∈ N and if we set λ = 0, µ = 1 and replace l by
l − 1, then formula (3.2) implies

(3.6) B0,l =

l−1∑
j=0

(
l − 1

j

)
(−1)jBj,1, l ∈ N.

Note that formula (3.4) leads to a different representation by setting λ = k = µ = 0 :

(3.7) B0,l = B0,1 −
l−1∑
j=1

B1,j , l ∈ N.
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The formulas (3.6) and (3.7) coincide in the cases l = 1 and l = 2, but yield different representations for
l ≥ 3. E.g.,

B0,3 = B0,1 − 2B1,1 +B2,1 = B0,1 −B1,1 −B1,2.

(The last equation amounts to B2,1 = B1,1 −B1,2.)

Let us finally investigate howBλ,µ andBµ,λ are connected. For this we extend the definition
of the complete beta function or, as it is also called, the Eulerian integral of the first kind

B(λ, µ) =

∫ 1

0

xλ−1(1− x)µ−1 dx, λ, µ ∈ C, Reλ > 0, Reµ > 0,

first, as usual, to [C \ (−N0)]2 by analytic continuation, i.e.,

B(λ, µ) =
Γ(λ)Γ(µ)

Γ(λ+ µ)
, λ, µ ∈ C \ (−N0),

and then to the singular values in −N0 by taking the finite part with respect to λ and µ. This
implies that B(λ, µ) = 〈1, Sλ,µ〉 and Bλ,µ(x) = B(λ, µ) hold for x > 1 and for each (λ, µ) ∈ C2.

Lemma 3.2. For λ, µ ∈ C, we have Bµ,λ(x) = B(λ, µ)−Bλ,µ(1− x).

Proof. If f, g ∈ D(R), then

f(−x) ∗ g(1− x) =

∫
f(−t)g(1− (x− t)) dt

=

∫
f(s)g(1− x− s) ds

= (f ∗ g)(1− x)

and this formula holds by density whenever two distributions are convolvable. Hence

Bµ,λ = Y ∗ Sµ,λ = (1− Y (−x)) ∗ Sµ,λ
= 〈1, Sµ,λ〉 − Y (−x) ∗ Sλ,µ(1− x)

= B(µ, λ)− (Y ∗ Sλ,µ)(1− x)

= B(λ, µ)−Bλ,µ(1− x).

�

Let us yet give formulas for the finite parts of the complete beta function B(λ, µ) at the
singular points.

Lemma 3.3. For k, l ∈ N0 and µ ∈ C \ Z, we have

(3.8) B(−k, µ) = (−1)k
(
µ− 1

k

)[
ψ(k + 1)− ψ(µ− k)

]
;

(3.9) B(−k, l) =


(−1)k

(
l − 1

k

)[ k∑
j=1

1

j
−
l−k−1∑
j=1

1

j

]
: l > k,

(−1)l

l
·
(
k

l

)−1
: 1 ≤ l ≤ k;

(3.10) B(−k,−l) = −
(
k + l

k

)[ k+l∑
j=k+1

1

j
+

k+l∑
j=l+1

1

j

]
.
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Proof. We first calculate

(3.11) Res
λ=−k

Γ(λ) = Res
λ=−k

Γ(λ+ k + 1)

λ(λ+ 1) · · · (λ+ k)
=

(−1)k

k!
,

see [8, Section 13.1.4, p. 156], and

(3.12)

Pf
λ=−k

Γ(λ) = Pf
λ=−k

Γ(λ+ k + 1)

λ(λ+ 1) · · · (λ+ k)

= ∂λ

( Γ(λ+ k + 1)

λ(λ+ 1) · · · (λ+ k − 1)

)∣∣∣∣
λ=−k

=
(−1)k

k!

(
ψ(1) +

k∑
j=1

1

j

)
=

(−1)kψ(k + 1)

k!
,

see [10, p. 65]. This furnishes

B(−k, µ) = Pf
λ=−k

Γ(λ)Γ(µ)

Γ(λ+ µ)

= Pf
λ=−k

Γ(λ) · Γ(µ)

Γ(µ− k)
+ Res
λ=−k

Γ(λ) · ∂λ
( Γ(µ)

Γ(λ+ µ)

)∣∣∣∣
λ=−k

= (−1)k
(
µ− 1

k

)[
ψ(k + 1)− ψ(µ− k)

]
and hence formula (3.8).

If l > k and if we set µ = l in formula (3.8), then we immediately obtain the first equation in
(3.9) due to ψ(n+ 1) = ψ(1) +

∑n
j=1 j

−1 for n ∈ N0, see [4, Equ. 8.365.3]. On the other hand, if
1 ≤ l ≤ k, then

ψ(µ− k) = ψ(µ− l + 1)−
k∑
j=l

1

µ− j
,

see [4, Equ. 8.365.3], and this implies

B(−k, l) = lim
µ→l

(−1)k
(
µ− 1

k

)[
ψ(k + 1)− ψ(µ− k)

]
= (−1)l

(l − 1)!(k − l)!
k!

=
(−1)l

l

(
k

l

)−1
,

i.e., the second equation in formula (3.9).
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Finally, we obtain

B(−k,−l) = (−1)k Pf
µ=−l

(
µ− 1

k

)[
ψ(k + 1)− ψ(µ+ l + 1) +

k+l∑
j=0

1

µ− k + j

]

= (−1)k
(
−l − 1

k

)[
ψ(k + 1)− ψ(1) +

k+l−1∑
j=0

1

−k − l + j

]
+ (−1)k∂µ

(
µ− 1

k

)∣∣∣∣
µ=−l

= −
(
k + l

k

)[ k+l∑
j=k+1

1

j
+

k+l∑
j=l+1

1

j

]
.

�

4. THE SINGULAR VALUES OF THE INCOMPLETE BETA FUNCTION

As explained in Section 3, we can reduce the general case of calculating Bk,l, k, l ∈ Z, to the
particular cases of Bj,1 and B1,j , j ∈ Z.

Proposition 4.1. For λ, µ ∈ C \ (−N0) and j ∈ N, the following holds:

(4.13) Bλ,1 =
1

λ

[
Y (1− x)xλ+ + Y (x− 1)

]
, B1,µ =

Y (x)

µ

[
1− (1− x)µ+

]
;

(4.14) B0,1 = Y (x)Y (1− x) log x, B1,0 = −Y (x)Y (1− x) log(1− x);

(4.15) B−j,1 = −1

j

[
Y (1− x)x−j+ + Y (x− 1)

]
+

(−1)jδ(j−1)

j · j!
;

(4.16) B1,−j =
Y (x)

j

[
(1− x)−j+ − 1

]
+
δ
(j−1)
1

j · j!
.

Proof. For λ ∈ C with Reλ > 0, we have

Bλ,1(x) = Y (x)

∫ x

0

Y (1− t)tλ−1 dt =
1

λ

[
Y (1− x)xλ+ + Y (x− 1)

]
.

By analytic continuation, the last expression represents Bλ,1 for all λ ∈ C \ (−N0).
For the remaining cases, we use the following formula, which is familiar in the context of

complex analysis:

(4.17) Pf
λ=λ0

(fλ · Tλ) = Res
λ=λ0

fλ · Pf
λ=λ0

∂λTλ + Pf
λ=λ0

fλ · Pf
λ=λ0

Tλ + Pf
λ=λ0

∂λfλ · Res
λ=λ0

Tλ.

Here fλ is an analytic C∞(R)-valued function for 0 < |λ− λ0| < ε and Tλ is an analytic D′(R)-
valued function for 0 < |λ − λ0| < ε, ε > 0, and both fλ and Tλ have at most a simple pole in
λ0, see [10, Prop. 1.6.3, p. 28].

Hence

B0,1 = Pf
λ=0

1

λ

[
Y (1− x)xλ+ + Y (x− 1)

]
=

∂

∂λ

[
Y (1− x)xλ+ + Y (x− 1)

]∣∣
λ=0

= Y (x)Y (1− x) log x
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and

B−j,1 = −1

j
Pf
λ=−j

[
Y (1− x)xλ+ + Y (x− 1)

]
− 1

j2
Y (1− x) Res

λ=−j
xλ+

= −1

j

[
Y (1− x)x−j+ + Y (x− 1)

]
+

(−1)jδ(j−1)

j · j!
.

The formulas for B1,µ, B1,0 and B1,−j then follow from Lemma 3.2. �

Example 4.1. Let us calculate here B0,n for n ∈ Z. If n = l ∈ N, then we use formula (3.7) and obtain
from Proposition 4.1 that

B0,l = B0,1 −
l−1∑
j=1

B1,j = Y (x)Y (1− x) log x−
l−1∑
j=1

Y (x)

j

[
1− (1− x)j+

]
.

If n = −l ∈ −N0, we set λ = k = µ = 0 in formula (3.3) and conclude from Equations (4.14) and
(4.16) in Proposition 4.1 that

(4.18)

B0,−l = B0,1 +

l∑
j=0

B1,−j

= Y (x)Y (1− x) log
( x

1− x

)
+

l∑
j=1

{Y (x)

j

[
(1− x)−j+ − 1

]
+
δ
(j−1)
1

j · j!

}
, l ∈ N0.

In the open interval (0, 1), Equation (4.18) coincides with the expression given in Thm. 2.1 in [3,
p. 5]. Note that the calculation in this paper is based on van der Corput’s neutrix method, which
does not produce a distribution but rather represents B0,−l as a function outside its singular support.
Similarly, formulas (1), (2), (3) in [3, pp. 4, 5], also follow from Lemma 3.1 and Proposition 4.1 or from
the above by Lemma 3.2.

More generally, formula (3.3) yields a representation of B−k,−l, k, l ∈ N0, which, on the basis of van
der Corput’s method, is considered in [12, p. 990].

5. ON THE SINGULAR VALUES OF THE PARTIAL DERIVATIVES OF THE INCOMPLETE BETA
FUNCTION

As indicated above, we denote ∂Bλ,µ/∂λ by ∂1B and similarly for ∂2B. Motivated by the
calculations in [3], let us derive formulas for (∂1B)1,j and (∂1B)j,1, j ∈ Z. Lemma 3.1 then
immediately yields representations of ∂1B at the singular values (k, l) ∈ Z2, k ≤ 0 or l ≤ 0.
Furthermore, we conclude from Lemma 3.2 that

(5.19)

(∂2B)λ,µ =
∂Bλ,µ
∂µ

=
∂B(λ, µ)

∂µ
− ∂Bµ,λ(1− x)

∂µ

=
∂B(λ, µ)

∂µ
− (∂1B)µ,λ(1− x),

and hence the derivative ∂2B can be expressed by ∂1B.

Proposition 5.2. For λ, µ ∈ C \ (−N0) and k, l ∈ N, the following holds:

(5.20) (∂1B)λ,1 = λ−1Y (1− x)xλ+ log x− λ−2
[
Y (1− x)xλ+ + Y (x− 1)

]
;

(5.21) (∂1B)0,1 = 1
2Y (x)Y (1− x) log2 x;
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(5.22) (∂1B)−k,1 = −Y (1−x)
k x−k+ log x− x−k

+ Y (1−x)+Y (x−1)
k2 + (−1)kδ(k−1)

k2·k! ;

(5.23) (∂1B)1,µ = −µ−1Y (x) log x · (1− x)µ+ + µ−1B0,µ+1;

(5.24)
(∂1B)1,0 = −Y (x)Y (1− x)

[
log x log(1− x) + L2(x)

]
− Y (x− 1)

π2

6

= Y (x)
[
Y (1− x)L2(1− x)− π2

6

]
.

(5.25)

l(∂1B)1,−l = Y (x) log x · (1− x)−l+ − Y (x)Y (1− x) log
( x

1− x

)
− 1

l
Y (x− 1)−

l−1∑
j=1

Y (x)

j

{[
(1− x)−j+ − 1

]
+

l δ
(j−1)
1

(l − j) · j!

}
.

Proof. Formula (5.20) follows immediately from the first equation in formula (4.13) by differ-
entiation with respect to λ.

By taking the finite part at λ = 0, we infer

(∂1B)0,1 = Pf
λ=0

1

λ
Y (1− x)xλ+ log x− Pf

λ=0

1

λ2
Y (1− x)xλ+

=
∂

∂λ

[
Y (1− x)xλ+ log x

]∣∣
λ=0
− 1

2

∂2

∂λ2
[
Y (1− x)xλ+

]∣∣
λ=0

=
1

2
Y (x)Y (1− x) log2 x

and hence we obtain formula (5.21).
In order to calculate the finite part of (∂1B)λ,1 at λ = −k ∈ −N, let us first derive the Laurent

series of xλ+ log x about λ = −k from that of xλ+, i.e. formula (2.1), by differentiation with respect
to λ :

xλ+ log x =
(−1)kδ(k−1)

(k − 1)!(λ+ k)2
+

∞∑
j=0

x−k+ logj+1 x

j!
(λ+ k)j , 0 < |λ+ k| < 1.

Hence Resλ=−k x
λ
+ log x = 0 and we conclude that

(∂1B)−k,1 = Pf
λ=−k

{ 1

λ
Y (1− x)xλ+ log x− 1

λ2
[
Y (1− x)xλ+ + Y (x− 1)

]}
= −1

k
Y (1− x)x−k+ log x− 1

k2
[
Y (1− x)x−k+ + Y (x− 1)

]
+

1

2

∂2λ−1

∂λ2

∣∣∣
λ=−k

· (−1)kδ(k−1)

(k − 1)!
− ∂λ−2

∂λ

∣∣∣
λ=−k

· Res
λ=−k

Y (1− x)xλ+

= −1

k
Y (1− x)x−k+ log x− 1

k2
[
Y (1− x)x−k+ + Y (x− 1)

]
+

(−1)kδ(k−1)

k2 · k!
.

This furnishes formula (5.22).
Since µ ∈ C \ (−N0), we have

− 1

µ

d
dx

(1− x)µ+ = (1− x)µ−1+

and hence
d

dx

[
− 1

µ
Y (x) log x · (1− x)µ+

]
= Y (x) log x · (1− x)µ−1+ − 1

µ
x−1+ (1− x)µ+.
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Thus (∂1S)1,µ = Y (x) log x · (1 − x)µ−1 is the derivative of the distribution −µ−1Y (x) log x ·
(1 − x)µ+ + µ−1B0,µ+1 and this distribution has its support in the positive half-axis [0,∞) and
coincides therefore with (∂1B)1,µ. This implies formula (5.23).

Evaluating the finite part of (∂1B)1,µ at µ = 0 in formula (5.23) yields

(∂1B)1,0 = Pf
µ=0

(∂1B)1,µ = − ∂

∂µ
Y (x) log x · (1− x)µ+

∣∣
µ=0

+
∂B0,µ+1

∂µ

∣∣∣∣
µ=0

= −Y (x)Y (1− x) log x log(1− x) + Y (x)

∫ x

0

Y (1− t) log(1− t)dt
t

= −Y (x)Y (1− x)
[
log x log(1− x) + L2(x)

]
− Y (x− 1)L2(1),

see [5, Equ. 323.3a]. Due to L2(1) = π2

6 , this gives the first equation in formula (5.24). On the
other hand, a direct calculation yields the following:

(∂1B)1,0 = Y (x)

∫ x

0

Y (1− t)(1− t)−1 log tdt

= Y (x)

∫ 1

1−x
Y (t) log(1− t)dt

t

= Y (x)
[
Y (1− x)L2(1− x)− L2(1)

]
.

Of course, these two representations of (∂1B)1,0 must and do coincide as can be seen from [5,
Equ. 323.3g].

Let us finally calculate (∂1B)1,−l for l ∈ N. From formula (5.23), we obtain

(∂1B)1,−l = Pf
µ=−l

(∂1B)1,µ

= Y (x)l−1 log x · (1− x)−l+ + Y (x)l−2 log x · Res
µ=−l

(1− x)µ+ − l−1B0,1−l − l−2 Res
µ=−l

B0,µ+1.

Furthermore,

Res
µ=−l

(1− x)µ+ =
(

Res
µ=−l

xµ+

)
(1− x) =

(−1)l−1δ(l−1)(1− x)

(l − 1)!
=

δ
(l−1)
1

(l − 1)!
,

and, for a function f which is differentiable at 1 and m ∈ N0, we have

f · δ(m)
1 =

m∑
j=0

(
m

j

)
(−1)m−jf (m−j)(1) δ

(j)
1

and hence

(log x) · Res
µ=−l

(1− x)µ+ = −
l−2∑
j=0

δ
(j)
1

(l − j − 1) · j!
.

From formula (4.18), we infer that

B0,1−l = Y (x)Y (1− x) log
( x

1− x

)
+

l−1∑
j=1

{Y (x)

j

[
(1− x)−j+ − 1

]
+
δ
(j−1)
1

j · j!

}
.

In order to evaluate the residue Resµ=−lB0,µ+1, we note that

Res
µ=−l

S0,µ+1 = Res
µ=−l

x−1+ (1− x)µ+ = x−1 · δ
(l−1)
1

(l − 1)!
=

l−1∑
j=0

δ
(j)
1

j!
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and thus

Res
µ=−l

B0,µ+1 = Y ∗ Res
µ=−l

S0,µ+1 = Y (x− 1) +

l−2∑
j=0

δ
(j)
1

(j + 1)!
.

Collecting terms we arrive at formula (5.25). The proof is complete. �

Remark 5.2. From formula (5.25) in Proposition 5.2, we conclude that

(5.26) (∂1B)1,−l(x) = − 1

l2
+

1

l

l−1∑
j=1

1

j
, l ∈ N, x > 1.

Let us check this equation by replacing log x by its Taylor series about 1. If l ∈ N and x > 1, then

(5.27)

(∂1B)1,−l(x) = 〈1, (∂1S)1,−l〉

= 〈1, Y (x) log x · (1− x)−l−1+ 〉

= 〈1,−
∞∑
j=1

j−1Y (x)(1− x)j−l−1+ 〉

= −〈1,
∞∑
j=1

j−1S1,j−l〉.

(In fact, these series converge in E ′(R).) For Reµ > 0, we have

〈1, S1,µ〉 = 〈1, Sµ,1〉 =

∫ 1

0

xµ−1 dx =
1

µ

and hence
〈1, S1,0〉 = 0 and 〈1, S1,l〉 = l−1 for l ∈ Z \ {0}

by analytic continuation and taking finite parts. Therefore Equation (5.27) implies

(∂1B)1,−l(x) = −
∞∑

j=1, j 6=l

1

j(j − l)

= −1

l

∞∑
j=1, j 6=l

( 1

j − l
− 1

j

)

= −1

l

(1

l
−

l−1∑
j=1

1

j

)
, l ∈ N, x > 1.

in accordance with the result in formula (5.26).

Remark 5.3. In the open interval (0, 1), the representation of (∂1B)1,−l in formula (5.25) coincides
with [3, Thm. 2.2, p. 6]. Similarly, the formulas for (∂2B)−k,1 and for (∂2B)−k,l, k, l ∈ N, in [3,
Thms. 2.3, 2.4, pp. 6, 7], follow from Equation (5.19), Lemma 3.1 and Proposition 5.2.
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1. INTRODUCTION

Let Tn be the family of all trigonometric polynomial of degree non greater than n and C2π

the space of 2π-periodic continuous functions f with the norm ‖f‖ = sup{|f(x)| : x ∈ [−π, π]}.
We denote by Cr2π the space of r-times continuously differentiable functions. For f ∈ Cr2π we
set Drf = f (r).

For f ∈ C2π , r ∈ N and t > 0, the modulus of smoothness of order r is defined by

ωr(f, t) = sup
0<h≤t

‖∆r
hf‖, where ∆r

hf(x) =

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ kh).

For the approximation of continuous periodic functions several convolution operators have
been used. From the computational point of view, it is more useful to work with operators
defined discretely (they are given in terms of a finite family of values of the functions). Some
authors have employed Riemann sums to replace the integrals in the convolution by discrete
sums (see [1]).

For r ∈ N and k ∈ Z, throughout the paper we set

xr,k =
2kπ

(r + 1)
.

The Dirichlet kernel is given by (see [3, p. 42])

(1.1) Dn(x) = 1 + 2

n∑
k=1

cos(kx) =
sin((2n+ 1)x/2)

sin(x/2)
, x 6= 2jπ, j ∈ Z,

and Dn(x) = 2n+ 1, x = 2jπ, j ∈ Z. We also set

Dn(x) =
1

2n+ 1
Dn(x)
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for the normalized Dirichlet kernel. It follows from (1.1) that |Dn(x)| ≤ 2n + 1 and equality
holds if x = 0. That is the reason why we prefer the normalization given by Dn(x).

For f ∈ C2π the interpolating polynomial of degree n at the equidistant points x2n,k can be
written as

(1.2) Ln(f, x) =

2n∑
k=0

Dn(x− x2n,k)f(x2n,k).

The operator Ln is a Riemann sum approximation of the partial sum of the Fourier series of f
given by

1

2π

∫ π

−π
f(t)Dn(x− t)dx.

Notice that for 0 ≤ j < k ≤ 2n

Dn(x2n,j − x2n,k) =
1

2n+ 1

sin((j − k)π)

sin((j − k)π/(2n+ 1))
= 0.

Since for every i ∈ N, Din(0) = 1, each operator

Ln,i(f, x) =

2n∑
k=0

Din(x− x2n,k)f(x2n,k),

interpolates the function f at the points x2n,k. It is clear that the new polynomials are of degree

non greater than ni. Moreover, if the real numbers a1, a2, . . . , am satisfy
m∑
i=1

ai = 1, then the

linear combination

(1.3) Mnm(f, x) =

m∑
i=1

aiLn,i(f, x)

provides an interpolation process. The operatorsMnm are useful when we want to approxi-
mate properties better than the one provided by Ln,1.

For instance, Kis and Vértesi studied in [9] the operators

K4n(f, x) = 4L2n,3(f, x)− 3L2n,4(f, x),

while the arguments given by Saxena and Srivastava in [7] can be used to consider the opera-
tors

S6n(f, x) =
25

3
L2n,4(f, x)− 32

3
L2n,5(f, x) +

10

3
L2n,6(f, x).

In [7] only a modification to non-periodic was included. Notice that, in both cases, the sum of
the coefficients is one. Thus, they are interpolating operators of the form (1.3).

It was proved in [9] that there exists a constant C such that, for each f ∈ C2π and n ∈ N,

(1.4) ‖f −K4n(f)‖ ≤ Cω
(
f,

1

n

)
.

Another approach to improve the rate of convergence of a linear approximation process
considers iterative combinations. For instance, for a linear operator L : C2π → Tn, we construct
the new operator

L̃(f) = 2L(f)− L2(f),

where L2(f) = L(L(f)). But, for linear interpolation operators this approach is not useful. In
particular, if Ln is given by (1.2), then L2

n(f) = Ln(f). We can avoid this inconvenience by
using other Riemann sums in the discretization of a convolution operator.
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For n,m ∈ N and f ∈ C2π , in this paper we study the polynomial operators defined by

(1.5) Mmn,2(f, x) =
1

(2n+ 1)(mn+ 1)

mn∑
k=0

f(xmn,k)D2
n(x− xmn,k),

(1.6) Mmn,3(f, x) =
1

(3n2 + 3n+ 1)

1

(mn+ 1)

mn∑
k=0

f(xmn,k)D3
n(x− xmn,k),

and

(1.7) Q3n(f, x) = Cn

4n∑
k=0

f(x4n,k)
(
D2
n(x− x4n,k) +D3

n(x− x4n,k)
)
,

where

Cn =
(2n+ 1)3

(7n2 + 7n+ 2)(4n+ 1)
.

We will prove in Section 5 that

(1.8) ‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 14ω2

(
f,

2π

n+ 1

)
.

There are some differences between (1.4) and (1.8). Our polynomials are of a lower degree and
the rate of convergence is given in terms of the second order modulus of smoothness, but we
need more nodes.

Since, for m ∈ N, Dm
n is an even trigonometric polynomial of degree nm, there are unique

real numbers %n,m(i), 0 ≤ i ≤ mn, such that

(1.9) Dm
n (x) =

mn∑
i=0

%n,m(i) cos(ix).

In particular, for 1 ≤ i ≤ mn,

(1.10) %n,m(i) =
1

π

∫ π

−π
Dm
n (x) cos(ix)dx.

For our approach we need explicit expressions of the coefficients %n,2(i) and %n,3(i), but only
for 0 ≤ i ≤ n. This will be accomplished in Section 3. In Section 4 we study the behavior of
the operators (1.5) and (1.6) for polynomials of lower degree. The main results are presented in
Section 5. Finally, in the last section we investigate the case of approximation of non-periodic
functions.

A strong converse result, as well as the saturation class, will be given in the second part of
the paper.

2. AUXILIARY RESULTS

Recall that the Fejér kernel is defined by (see [3, p. 43])

Fn(x) =
1

n+ 1

n∑
k=0

Dk(x) = 1 + 2

n∑
k=1

(
1− k

n+ 1

)
cos(kx).

If sin(x/2) 6= 0, then

(2.11) Fn(x) =
1

(n+ 1)

( sin((n+ 1)x/2)

sin(x/2)

)2
.
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For f ∈ C2π the associated Fejér operator is defined by

σn(f, x) =
1

2π

∫ π

−π
f(x+ t)Fn(t)dt.

Lemma 2.1. If g ∈ C1
2π and n ∈ N, then D(σn(f)) = σn(Df).

Proof. It is known that (see [3, Proposition 1.1.14]) if g ∈ C2π and f ∈ C1
2π , then f ∗ g ∈ C1

2π and
D(f ∗ g) = (g ∗D(f)). �

The following quadrature formula is known.

Proposition 2.1. ([5, p. 20]) If x ∈ R, n ∈ N and T ∈ Tn, then

1

2π

∫ π

−π
T (t)dt =

1

n+ 1

n∑
k=0

T
(
x+

2kπ

n+ 1

)
.

If

(2.12) T (x) = a0 +

n∑
j=1

(aj cos(jx) + bj sin(jx) =

n∑
j=0

Aj(T, x),

the conjugate of T is given by T̃ (x) =
∑n
j=1(−bj cos(jx) + aj sin(jx)). Simple equations related

with the conjugate polynomials are presented in Lemma 2.2.

Lemma 2.2. If T ∈ Tn is given by (2.12) and W = DT̃ , then

DT̃ =

n∑
j=1

jAj(T ), D2T = −
n∑
j=1

j2Aj(T ),

DW̃ = −D2(T ) and D(D̃2T ) = D3T̃ .

Lemma 2.3. If n ∈ N, σn is the Fejér operator and T ∈ Tn, then

(I − σn)T =
1

(n+ 1)
DT̃ and D3T̃ = (n+ 1)(I − σn)(D2T ).

Proof. The first equation is well known (for instance see [2]). For the second one we write

(I − σn)(D2T ) =
1

(n+ 1)
D(D̃2T ) =

1

(n+ 1)
D3T̃ ,

where we use Lemma 2.2. �

Theorem 2.1 (Stechkin, [8]). If r, n ∈ N and T ∈ Tn, then

(2.13) ‖DrT‖ ≤
( n

2 sin(nh/2)

)r
‖∆r

hT‖

for any h ∈ (0, 2π/n).

We will use the Stechkin theorem in a more convenient form for our purposes.

Proposition 2.2. If r, n ∈ N, f ∈ C2π , and T ∈ Tn, then

(2.14)
1

nr
‖DrT‖ ≤ 1

2r
ωr

(
f,
π

n

)
+ ‖f − Tn‖ .

Proof. It follows directly from Theorem 2.1 with h = π/n and the inequality ‖∆r
hT‖ ≤ 2r‖f −

T‖+ ‖∆r
hf‖. �
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We will use Proposition 2.2 in the case when T is the polynomial of the best approximation
for f in Tn. It is known that, for every f ∈ C2π and n ∈ N0, there exists an unique polynomial
T ∈ Tn (called the polynomial of the best approximation) such that

En(f) = inf
Tn∈Tn

‖Tn − f‖ = ‖T − f‖.

Proposition 2.3. If f ∈ C2π , T ∈ Tn and En(f) = ‖T − f‖, then

‖D2T‖ ≤ n2
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
,

‖D4T‖ ≤ n4
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
,

and

‖D3T̃‖ ≤ 2n2(n+ 1)
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
.

Proof. It follows from Proposition 2.2 that

‖D2T‖ ≤ n2
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
‖D4T‖ ≤ n4

( 1

24
ω4

(
f,
π

n

)
+ En(f)

)
≤ n4

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
,

because ω4(f, t) ≤ 4ω2(f, t). The last inequality is a consequence of Lemma 2.3. In fact

‖D3T̃‖ = (n+ 1)‖(I − σn)(D2T )‖ ≤ 2(n+ 1)‖D2T‖.

�

3. EXPANSION OF DIRICHLET KERNELS

Proposition 3.4. For each n ∈ N, one has

D2
n(x) = 2n+ 1 + 2

2n∑
k=1

(2n+ 1− k) cos(kx).

That is, %n,2(0) = 2n+ 1 and %n,2(j) = 2(2n+ 1− j), for 1 ≤ j ≤ 2n (see (1.9)).

Proof. The computation of D2
n is simple, because taking into account (1.1) and (2.11) one has

(for sin(x/2) 6= 0)

D2
n(x)

2n+ 1
=

sin2((2n+ 1)x/2)

(2n+ 1) sin2(x/2)
= F2n(x) = 1 + 2

n∑
k=1

(
1− k

2n+ 1

)
cos(kx).

�

For D3
n we need some preparatory computations.

Lemma 3.4. For each n, k ∈ N,

cos(kx)Dn(x) =


n+k∑
i=1

cos(ix) +
n−k∑
i=0

cos(ix), if 1 ≤ k ≤ n
n+k∑
i=k−n

cos(ix), if k > n.
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Proof. If k ≤ n,

cos(kx)Dn(x) = cos(kx) + 2

n∑
j=1

cos(kx) cos(jx)

= cos(kx) +

n∑
j=1

(cos((k + j)x) + cos((k − j)x))

= cos(kx) +

n+k∑
i=k+1

cos(ix) +

k−1∑
i=1

cos(ix) +

n−k∑
i=0

cos(ix)

=

n+k∑
i=1

cos(ix) +

n−k∑
i=0

cos(ix).

If k > n, then

cos(kx)Dn(x) =

n+k∑
i=k

cos(ix) +

n∑
j=1

cos((k − j)x)

=

n+k∑
i=k

cos(ix) +

k−1∑
i=k−n

cos(ix) =

n+k∑
i=k−n

cos(ix).

�

Proposition 3.5. If n ∈ N, n ≥ 3, and D3
n is given as in (1.9), then

%n,3(0) = 3n2 + 3n+ 1,

and
%n,3(i) = 2(3n2 + 3n+ 1− i2), for 1 ≤ i ≤ n.

Proof. Let Πn : T3n → Tn be the projection given by (see (2.12))

Πn(T ) = Πn

( 3n∑
j=0

Aj(T, x)
)

=

n∑
j=0

Aj(T, x).

In this proof (for a fixed n) we denote %(k) = %n,2(k) and consider the expansion ofD2
n given

in Proposition 3.4. Hence

D3
n(x) = (D2

n(x))Dn(x) =
( 2n∑
k=0

%(k) cos(kx)
)
Dn(x)

= %(0)Dn(x) +Dn(x)

n∑
k=1

%(k) cos(kx) +Dn(x)

2n∑
k=n+1

%(k) cos(kx)

= A1(x) +A2(x) +A3(x).

For A2(x) one has

1

2π

∫ π

−π
A2(x)dx =

1

2π

n∑
k=1

%(k)

∫ π

−π
Dn(x) cos(kx)dx

=
1

2π

n∑
k=1

%(k)

∫ π

−π

(
cos(kx) + 2

n∑
i=1

cos(ix) cos(kx)
)
dx =

n∑
k=1

%(k),
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and, for 1 ≤ j ≤ n, taking into account Lemma 3.4,

1

π

∫ π

−π
A2(x) cos(jx)dx =

1

π

∫ π

−π

n∑
k=1

%(k)
( n+k∑
i=1

cos(ix) +

n−k∑
i=0

cos(ix)
)

cos(jx)dx

=
1

π

∫ π

−π

(
cos2(jx)

n∑
k=1

%(k) + cos(jx)

n−1∑
i=0

cos(ix)
( n−i∑
k=1

%(k)
)
dx.

Hence

Πn(A2)(x) =

n∑
k=1

%(k) +

n−1∑
j=1

( n∑
k=1

%(k) +

n−j∑
k=1

%(k)
)

cos(jx) + cos(nx)

n∑
k=1

%(k).

For j = 0,

1

2π

∫ π

−π
A3(x)dx =

1

2π

∫ π

−π
Dn(x)

2n∑
k=n+1

%(k) cos(kx)dx = 0,

and, for 1 ≤ j ≤ n,

1

π

∫ π

−π
A3(x) cos(jx)dx =

1

π

∫ π

−π

(
Dn(x)

2n∑
k=n+1

%(k) cos(kx)
)

cos(jx)dx

=
1

π

∫ π

−π

( 2n∑
k=n+1

%(k)
( n+k∑
i=k−n

cos(ix)
))

cos(jx)dx

=
1

π

∫ π

−π

( n∑
i=1

cos(ix)
( n+i∑
k=n+1

%(k)
))

cos(jx)dx

=
1

π

∫ π

−π

( n+j∑
k=n+1

%(k)
)

cos2(jx)dx =

n+j∑
k=n+1

%(k).

Hence

Πn(A3)(x) =

n∑
j=1

( n+j∑
k=n+1

%(k)
)

cos(jx).

Therefore

Πn(D3
n)(x) =

n∑
k=0

%(k) +

n−1∑
j=1

( n∑
k=0

%(k) +

n−j∑
k=0

%(k) +

n+j∑
k=n+1

%(k)
)

cos(jx)

+
(

2%(0) +

n∑
k=1

%(k) +

2n∑
k=n+1

%(k)
)

cos(nx)

= 3n2 + 3n+ 1 + 2

n∑
j=1

(3n2 + 3n+ 1− j2) cos(jx).

�
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4. THE OPERATORS Mmn,2 , Mmn,3 AND POLYNOMIALS OF LOWER DEGREE

In order to proof the estimate announced in (1.8) we follow a method used in [2]. In parti-
cular, for T ∈ Tn, in Proposition 5.9 we will find a representation of Q3n(T ) in terms of the
some derivatives of the polynomials.

As Proposition 4.6 shows, the operators Mmn,2(f) reproduce the constant functions. But,
unfortunately, they are not uniformly bounded. Moreover, if we increase the number of points
of interpolation the result does not change. That is the reason why we consider only m = 3 for
the operators Q3n.

Proposition 4.6. If m > 2, T ∈ Tn and Mmn,2 is defined by (1.5), then

Mmn,2(T, x) = T (x)− 1

(2n+ 1)
DT̃ (x).

Proof. If Tn ∈ Tn, then TnD2
n ∈ T3n and, taking into account Proposition 2.1, one has

mn∑
k=0

T (xmn,k)

(mn+ 1)
D2
n(x− xmn,k) =

1

2π

∫ π

−π
Tn(t)D2

n(x− t)dt =
1

2π

∫ π

−π
Tn(x+ t)D2

n(t)dt.

If T is written as in (2.12), then

1

(2n+ 1)(mn+ 1)

mn∑
k=0

T (xmn,k)D2
n(x− xmn,k)

=
a0

(2n+ 1)

1

2π

∫ π

−π
D2
n(t)dt+

n∑
j=1

1

2π

∫ π

−π

Aj(T, x)

(2n+ 1)
cos(jt)D2

n(t)dt

=a0 +

n∑
j=1

1

2π

Aj(T, x)

(2n+ 1)

∫ π

−π
2(2n+ 1− j) cos2(jt)dt

=a0 +
1

(2n+ 1)

n∑
j=1

Aj(T, x)(2n+ 1− j)

=T (x)− 1

(2n+ 1)

n∑
j=1

jAj(T, x)

=T (x)− 1

(2n+ 1)
DT̃ (x),

where Proposition 3.4 and Lemma 2.2 were used. �

Proposition 4.7. If m > 3, T ∈ Tn, and Mmn,3 is defined by (1.6), then

Mmn,3(T, x) = T (x) +
1

(3n2 + 3n+ 1)
D2T (x).

Proof. Set u(n) = 3n2 + 3n+ 1. As before, if Tn ∈ Tn, then TnD3
n ∈ T4n and, taking into account

Proposition 2.1, one has

1

(mn+ 1)

mn∑
k=0

T (xmn,k)D3
n(x− xmn,k) =

1

2π

∫ π

−π
Tn(x+ t)D2

n(t)dt.
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If T is written as in (2.12), then

1

(mn+ 1)

mn∑
k=0

T (xmn,k)D3
n(x− xmn,k)

=a0
1

2π

∫ π

−π
D3
n(t)dt+

n∑
j=1

1

2π

∫ π

−π

Aj(T, x)

(2n+ 1)
cos(jt)D3

n(t)dt.

Taking into account Proposition 3.5

1

u(n)(mn+ 1)

mn∑
k=0

T (xmn,k)D3
n(x− xmn,k)

=a0 +
1

u(n)

n∑
j=1

Aj(T, x)(3n2 + 3n+ 1− j2)

2π

∫ π

−π
2 cos2(jt)dt

=a0 +
1

u(n)

n∑
j=1

Aj(T, x)(3n2 + 3n+ 1− j2)

=T (x)− 1

u(n)

n∑
j=1

j2Aj(T, x) = T (x) +
1

u(n)
D2T (x),

here we use Lemma 2.2. �

5. MAIN RESULTS

In the first result of this section we estimate the norms of the operators.

Proposition 5.8. If n ∈ N, Q3n is defined by (1.7) and f ∈ C2π , then

‖Q3n(f)‖ ≤ ‖f‖
and

‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 4‖f‖.

Proof. Since |Dn(x)| ≤ 1, 1 +Dn(x) ≥ 0. Therefore

D2
n(x) +D3

n(x) = D2
n(x)(1 +Dn(x)) ≥ 0.

It is sufficient to verify that Q3n is a positive operator. Moreover

Q3n(f, x) = Cn

4n∑
k=0

f(x4n,k)(D2
n(x4n,k) +D3

n(x− x4n,k))

=
(2n+ 1)

(7n2 + 7n+ 2)(4n+ 1)

4n∑
k=0

f(x4n,k)D2
n(x− x4n,k)

+
1

(7n2 + 7n+ 2)(4n+ 1)

4n∑
k=0

f(x4n,k)D3
n(x− x4n,k))

=
(2n+ 1)2

(7n2 + 7n+ 2)
M4n,2(f, x) +

(3n2 + 3n+ 1)

(7n2 + 7n+ 2)
M4n,3(f, x).

It follows from Propositions 4.6 and 4.7 that

Q3n(1, x) =
(2n+ 1)2

(7n2 + 7n+ 2)
+

(3n2 + 3n+ 1)

(7n2 + 7n+ 2)
= 1.
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If f ∈ C2π and x ∈ [−π, π), then

|Q3n(f, x)| ≤ ‖f‖Q3n(1, x) = ‖f‖.

The second assertion is a simple consequence of the first one. �

Proposition 5.9. If n ∈ N, Q3n is defined by (1.7) and T ∈ Tn, then

Q2
3nT − 2Q3nT + T =

−(2n+ 1)2D2T − 2(2n+ 1)D3T̃ +D4T

(7n2 + 7n+ 2)2
.

Proof. It follows from Propositions 4.6 and 4.7 that (we set u(n) = 3n2+3n+1 v(n) = 7n2+7n+2

and W = DT̃ )

Q3nT =
(2n+ 1)2

v(n)
M4n,2T +

(3n2 + 3n+ 1)

v(n)
M4n,3T

=
(2n+ 1)2

v(n)

(
T − 1

(2n+ 1)
DT̃
)

+
(3n2 + 3n+ 1)

v(n)

(
T +

1

u(n)
D2T

)
= T +

1

v(n)

(
D2T − (2n+ 1)W

)
.(5.15)

Hence

Q2
3nT =

(2n+ 1)2

v(n)
M4n,2

(
T +

D2T − (2n+ 1)W

v(n)

)
+
u(n)

v(n)
M4n,3

(
T +

D2T − (2n+ 1)W

v(n)

)
= Q3nT +

(2n+ 1)2

v2(n)
M4n,2

(
D2T − (2n+ 1)W

)
+

u(n)

v2(n)
M4n,3

(
D2T − (2n+ 1)W

)
= Q3nT +

(2n+ 1)2

v2(n)

(
D2T − D(D̃2T )

(2n+ 1)
− (2n+ 1)W +DW̃

)
+

u(n)

v2(n)

(
D2T +

D4T

u(n)
− (2n+ 1)W − (2n+ 1)D2W

u(n)

)

(recall D(D̃2T ) = D3T̃ and DW̃ = −D2T )

= Q3nT +
1

v(n)
D2T − (2n+ 1)

v2(n)
D3T̃ − (2n+ 1)

v(n)
W − (2n+ 1)2

v2(n)
D2T

+
1

v2(n)
D4T − (2n+ 1)

v2(n)
D3T̃

= Q3nT +
D2T

v(n)
− (2n+ 1)DT̃

v(n)
− (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

D4T

v2(n)
.
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Taking into account (5.15) we conclude that

Q2
3n(T )− 2Q3n(T ) + T = T −Q3n(T ) +

D2T

v(n)
− (2n+ 1)

v(n)
DT̃

− (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

1

v2(n)
D4T

= − 1

v(n)

(
D2T − (2n+ 1)DT̃

)
+
D2T

v(n)
− (2n+ 1)

v(n)
DT̃

− (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

1

v2(n)
D4T

= − (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

1

v2(n)
D4T.

�

Theorem 5.2. If n ∈ N (n ≥ 3), Q3n is defined by (1.7), and f ∈ C2π , then

‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 5En(f) + ω2

(
f,
π

n

)
.

Proof. Fix f ∈ C2π and, for each n ∈ N, let Tn ∈ Tn be the polynomial of the best approximation
for f in Tn.

If we setMn(f) = Q2
3n(f)−2Q3n(f) and v(n) = 7n2+7n+2, taking into account Propositions

5.8, 5.9, and 2.3 one has

‖Mn(f) + f‖ = ‖Mn(f − Tn) + f − Tn +Mn(Tn) + Tn‖
≤ 4‖f − Tn‖+ ‖Mn(Tn) + Tn‖

≤ 4En(f) +
‖D4T‖+ 2(2n+ 1)‖D3T̃‖+ (2n+ 1)2‖D2T‖

v2(n)

≤ 4En(f) +
n4 + 4n2(n+ 1)(2n+ 1) + n2(2n+ 1)2

v2(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
= 4En(f) +

n2(13n2 + 16n+ 5)

v2(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
≤ 4En(f) +

n2(14n2 + 14n+ 4)

v2(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
= 4En(f) +

2n2

v(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
≤ 4En(f) +

2

7

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
≤ 5En(f) + ω2

(
f,
π

n

)
.

�

Remark 5.1. The term En(f) in Theorem 5.2 can be estimate as (see [6, Theorem 2.5])

En(f) ≤ 5

2
ω2

(
f,

2π

n+ 1

)
.

Therefore

(5.16) ‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 25

2
ω2

(
f,

2π

n+ 1

)
+ ω2

(
f,
π

n

)
≤ 14ω2

(
f,

2π

n+ 1

)
.
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6. APPROXIMATION OF NON-PERIODIC FUNCTIONS

Let C[−1, 1] the space of continuous functions f : [−1, 1] → R provided with the sup norm
‖f‖∞ = sup{|f(x)| : x ∈ [−1, 1]}. In this section we follow a known procedure to pass from
approximation by trigonometric polynomials to approximation by algebraic polynomials (see
Proposition 6.10 below).

For f ∈ C[−1, 1] and x, h ∈ [−1, 1] define

(τhf)(x) =
1

2

(
f
(
xh+

√
(1− x2)(1− h2)

)
+ f

(
xh−

√
(1− x2)(1− h2)

))
and

ωT (f, t) = sup
t≤h≤1

‖f − τhf‖.

We also set
En(f)∞ = inf

P∈Pn

‖f − P‖∞,

where Pn be the family of all algebraic polynomial of degree not greater than n.
We introduce operators similar to Q3n by setting

R3n(f, x) = Cn

4n∑
k=0

f(cosx4n,k)(D2
n(arccosx− x4n,k) +D3

n(arccosx− x4n,k))

for f ∈ C[−1, 1] and x ∈ [−1, 1]. Notice that Dn(arccosx − x4n,k) can be written in terms of
the Chebyshev polynomials. Hence R3n(f, x) is an algebraic polynomial of degree not greater
than 3n (see Proposition 6.10 below).

Theorem 6.3. If n ∈ N (n ≥ 3) and f ∈ C[−1, 1], then

‖R2
3n(f)− 2R3n(f) + f‖ ≤ 14ωT

(
f, cos

2π

n+ 1

)
.

Proof. Fix f ∈ C[−1, 1] and set F (t) = f(cos t). It is known that (see [4, Lemma 3]), for t ∈
[−1, 1],

(6.17) ωT (f, t) = ω2(F, arccos t).

If x ∈ [−1, 1] and x = cos t (0 ≤ t ≤ π), it follows from Theorem 5.2 and (6.17) that

|R2
3n(f, x)− 2R3n(f, x) + f(x)| = |R2

3n(f, cos t)− 2R3n(f, cos t) + f(cos t)|
=
∣∣Q2

3n(F, t)− 2Q3n(F, t) + F (t)
∣∣

≤ 14ω2

(
F,

2π

n+ 1

)
= 14ωT

(
f, cos

2π

n+ 1

)
.

�

Remark 6.2. Here we only consider estimates in norm, pointwise estimates require another approach.

Remark 6.3. Let X1[−1, 1] be the family of f ∈ C[−1, 1] for which there exists g ∈ C[−1, 1] such that

lim
h→1−

∥∥∥τhf − f
1− h

− g
∥∥∥
∞

= 0.

If f ∈ X1[−1, 1], then ωT (f, t) ≤ C(1− t) (see [4, Lemma 6]). Hence, for f ∈ X1[−1, 1],

‖R2
3n(f)− 2R3n(f) + f‖ ≤ C

(
1− cos

2π

n+ 1

)
≤ 2Cπ2

(n+ 1)2
.
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The following result is known, but we include a proof for the benefit of the reader.

Proposition 6.10. For each n,m ∈ N, f ∈ C[−1, 1] and x ∈ [−1, 1], the function
4n∑
k=0

f(cosx4n,k)Dm
n (arccosx− x4n,k)

is an algebraic polynomial of degree not greater than mn.

Proof. For k ∈ N0, let Tk(x) = cos(k arccosx) be the Chebyshev polynomial of degree k.
Since

Dn(arccosx) = 1 + 2

n∑
k=1

cos(k arccosx) = 1 + 2

n∑
k=1

Tk(x),

one has f(1)Dm
n (arccosx) is an algebraic polynomial.

For 1 ≤ j, k ≤ 2n, we consider the trigonometric identities

cos(jx4n,4n+1−k) = cos
2j(4n+ 1− k)π

4n+ 1
= cos

2kjπ

4n+ 1
= cos(x4n,jk),

sin(jx4n,4n+1−k) = − sin
2jkπ

4n+ 1
= − sinx4n,jk

and

cos j(arccosx− x4n,k) + cos j(arccosx− x4n,4n+1−k)

=Tj(x)
(

cos(jx4n,k) + cos(jx4n+1−k,k)
)

+ sin(j arccosx)
(

sin(jx4n,k) + sin(jx4n+1−k,k)
)

=2 cos(jx4n,k)Tj(x),

to obtain
4n∑
k=1

f(cosx4n,k)Dm
n (arccosx− x4n,k)

=

2n∑
k=1

f(cosx4n,k)
(
Dm
n (arccosx− x4n,k) +Dm

n (arccosx− x4n,4n+1−k)
)

=

2n∑
k=1

f(cosx4n,k)

mn∑
j=0

%n,m(j)
(

cos(j(arccosx− x4n,k))

+ cos(j(arccosx− x4n,4n+1−k))
)

=2

2n∑
k=1

f(cosx4n,k)

mn∑
j=0

%n,m(j) cos(jx4n,k)Tj(x).

�
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