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Abstract. The purpose of this article is to study the optimal control prob-
lem for fractional stochastic differential system driven by fractional Brownian

motion with Poisson jumps in Hilbert space. Initially, the sufficient conditions

for existence of mild solution results are formulated and proved by virtue of
fractional calculus, solution operator and stochastic analysis techniques. Fur-

ther, we formulated and proved the existence results for optimal control of the
proposed system with corresponding cost function by using Balder’s theorem.

Finally an example is provided to illustrate the main results.

1. Introduction

Fractional Calculus (FC) has been introduced since the end of the nineteenth
century by famous mathematicians Riemann and Liouville, but the concept of non-
integer calculus as a generalization of the traditional integer order calculus was
mentioned already in 1695 by Leibnitz and L’Hospital. The subject of FC has
become a rapidly growing area in the field of system physics, chemistry, biology,
medicine and finance etc. On the other, fractional derivatives and integrals enable
the description of the memory and hereditary properties inherent in various materi-
als and processes. Hence, there is a growing need to find the behavior of solution of
the fractional differential equations (FDEs). For more details on FDEs, the reader
may refer to the monographs [3, 4, 5, 6, 2] and references therein.

The fractional Brownian motion (fBm) is usual candidate to model phenomena
due to its self-similarity of increments and long-range dependence. This fBm BH is
the continuous centered Gaussian process with covariance function described by

RH(t, s) = E
[
BH(t)BH(s)

]
=

1

2
(t2H + s2H − |t− s|2H)
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2 K. RAVIKUMAR, K. RAMKUMAR, AND E. M. ELSAYED

The parameter H characterizes all the important properties of the process, when
H < 1

2 , the increments are negatively correlated and the correlation decays more

slowly the quadratically; when H > 1
2 , the increments are positively correlated and

the correlation decays so slowly that they are not summable, a situation which
is commonly known as the long memory property. The fBm can be expressed as
Wiener integral with respect to the standard Wiener process, i.e. the integral of
a deterministic kernal with respect to a standard Brownian motion, the Hermite
process of order 1 is fBm and of order 2 is the Rosenblatt process. However, there
exist only a few papers in this field, for more details (see [13, 14, 15, 16] and reference
therein).

On the other hand, the Poisson jumps have become very popular one in recent
years, the Poisson jumps are generally based on the Poisson random measure in
aspects of applications in many real life phenomena such as, finance, biology and
any other field of science see [7, 8, 10]. For example Poisson jump models that
are very popular in financial modeling sice Merton first derived an option pricing
formula based on a stock price process generated by a mixture of a Brownian mo-
tion and a Poisson process. This mixed process is also called the jump diffusion
process. The requirement for a jump component in a stock price process is intu-
itive, and supported by the big crashes in stock markets: The Black Monday on
October 17, 1987 and the recent market crashes in the financial crisis since 2008
are two prominent examples. To model jump events, we need two quantities: jump
frequency and jump size. The first one specifies how many times jumps happed in
a given time period, and the second one determines low large a jump is if it occurs.
It is natural and necessary to include a jump term in the stochastic differential
equation. Recently, Balasubramaniam et al. [1] and Muthukumar et al. [10] have
studied, respectively, fractional stochastic differential equations driven by Poisson
jumps and fractional stochastic differential equations with Poisson jumps. Very
recently Rihan et al. [11] extended to study the existence of solutions of fractional
stochastic differential equations with Hilfer fractional derivative and Poisson jumps.

An optimal control problem (OCP) describes the path of control variables con-
cerned with minimizing the cost functional or maximizing a payoff to the corre-
sponding system over a set of admissible control functions. Nowadays, optimal
control theory has a considerable development and have fruitful applications in
many fields like science and engineering (see [17, 18]). Stochastic optimal con-
trol problem (SOCP) makes to design the time path of the controlled variables
which performs the desired control task with minimum cost despite the presence
of noise. SOCPs and its applications have extensive attention in the literature see
[24, 25, 26, 9]. The main goal of optimal control is to find, in an open-loop control,
the optimal values of the control variables for the dynamic system which maxi-
mize or minimize a given performance index. If a fractional differential equation
describes the performance index and system dynamics, then an optimal control
problem is known as a fractional optimal control problem. Using the fractional
variational principle and lagrange multiplier technique, Agrawal [21] discussed the
general formulation and solution scheme for Riemann-Liouville fractional optimal
control problems. It is remarkable thathe fixed point technique, which is used to
establish the existence results for abstract fractional differential equations, could
be extended to address the fractional optimal control problems. Recently, Aicha
Harrat et al. [19] studied the optimal controls of impulsive fractional system with
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Clarke subdifferential. Very recently, using the LeraySchauder fixed point theorem,
Balasubramaniam et al. [1] studied the solvability and optimal controls for im-
pulsive fractional stochastic integrodifferential equations. Tamilalagan et al. [20]
investigated the solvability and optimal controls for fractional stochastic differential
equations driven by Poisson jumps in Hilbert space via analytic resolvent operators
and Banach contraction mapping principle.

Motivated by the aforementioned research works, in this manuscript we drive the
sufficient conditions for the existence of solutions of the following class of optimal
control for fractional stochastic differential system driven by fractional Brownian
motion with Poisson jumps

CDα
t x(t) = Ax(t) +B(t)u(t) + f(t, x(t)) + σ(t, x(t))

dwH(t)

dt

+

∫
U
h(t, x(t), u)Ñ(ds, du), t ∈]0, τ ],

x(0) = x0 ∈ X, (1.1)

where the integral l = [0, τ ] × X × U → R ∪ {∞} is specified latter; CDα
t is the

Caputo fractional derivative of order 0 < α < 1, the state x(·) is X-valued stochastic
process; Suppose {wH(t)}t≥0 is a fractional Brownian motion with Hurst parameter

H ∈ ( 12 , 1) defined on (Ω,ℑ, {ℑt}t≥0 ,P) with values in Hilbert space Y. The control

function u(·) takes its values from a separable reflexive Hilbert space U; A : D(A) ⊆
X → X is the infinitesimal generator of a resolvent Sα(t), t ≥ 0 on X; {B(t) : t ≥ 0}
is a family of linear operator from U to X; the functions f : [0, τ ] × X → X,
σ : [0, τ ]×X → L0

2(Y,X) and h : [0, τ ]×X×U → X are nonlinear, where L0
2(Y,X)

be the space of all Q-Hilbert-Schmidt operators from Y into X.
Let (Ω,ℑ, {ℑt}t≥0 ,P) be a complete probability space equipped with a normal

filtration (ℑt), t ∈ [0, a] and Let X, Y be real separable Hilbert spaces and L(Y,X)
denote the space of all bounded linear operator from Y into X. Let Q ∈ L(Y,Y)
be an operator defined by Qen − λnen with finite trace tr(Q) =

∑∞
n=1 λn < ∞

where λn ≥ 0 (n = 1, 2, ...) are non-negative real numbers and {en} (n = 1, 2, ...) is
a complete orthonormal basis in Y.

We define the infiite dimensional fractional Brownian motion on Y with covari-
ance Q as

wH(t) = wH
Q(t) =

∞∑
n=1

√
λnenβ

H
n(t)

where βHn are real, independent fractional Brownian motions.
In order to define Wiener integrals with respect to the Q-fractional Brownian

motion, we introduce the space L0
2 = L0

2(Y,X) of all Q-Hilbert-Schmidt operators
ψ : Y → X. We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator, if

∥ψ∥2L0
2(Y,X) =

∞∑
n=1

∥∥∥√λnψen

∥∥∥2 <∞

and that the space L0
2 equipped with the inner product < υ,ψ >L0

2
=

∑∞
n=1 <

υen, ψen > is a separable Hilbert space. Let ϕ(s); s ∈ [0, a] be a function with
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values in L0
2(Y,X), the Wiener integral of ϕ with respect to wH is defined by∫ t

0

ϕ(s)dwH(s) =

∞∑
n=1

∫ t

0

√
λϕ(s)endβ

H
n

=

∞∑
n=1

∫ t

0

√
λK∗(ϕen)(s)dβn(s) (1.2)

where βn is the standard Brownian motion. Let C ([0, τ ],L2(Ω,X)) be the Banach

space of continuous maps from [0, τ ] into L2(Ω,X) satisfying sup0≤t≤τ E ∥x(t)∥2 <
∞. Let X2 be the closed subspace of C ([0, τ ],L2(Ω,X)) consistingof measurable,
ℑt-adapted, X-valued processes x ∈ C ([0, τ ],L2(Ω,X)) equipped with the norm

∥x∥X2
=

(
sup

0≤t≤τ
E ∥x(t)∥2

)1/2

.

Suppose that {q(t); t ∈ [0, τ ]} is the Poisson point process, taking its value in a
measurable space (U ,B(U)) with a σ-finite intensity measure v(du). The compen-
sating martingle measure and Poisson counting measure are defined by

Ñ(ds, du) = N(ds, du)− v(du)ds.

Let us assume that the filteration ℑt = σ {N((0, s],Λ) : s ≤ t,Λ ∈ B(U)} ∨ N , t ∈
[0, τ ], produced by q(·) Poisson point process and is augmented, where N is the
class of P-null sets. Let p2([0, τ ] × U ; X) be the space of all predictable mappings
h : [0, τ ]× U → X for ∫ τ

0

∫
U
E ∥h(t, u)∥2X dtv(du) <∞.

Consider the following integral cost functional

ȷ {x, u} = E

{∫ τ

0

l(t, xu(t), u(t))dt

}
, (1.3)

Define the admissible set Uad, the set of all v(·) : [0, τ ] × Ω → U such that v
is ℑt-adapted stochastic process and E

∫ τ

0
∥v(t)∥p dt < ∞. Clearly Uad ̸= ∅ and

Uad ⊂ Lp([0, τ ]; U) (1 < p < +∞) is bounded, closed and convex.
Denoted by the set of all admissible state-control pairs (x, u) by Aad, where x

is the mild solution of the system (1.1) corresponding to the control u ∈ Uad. The
main objective of this paper is to find a pair (x0, u0) ∈ Aad such that

ȷ(x0, u0) := inf {ȷ(x, u) : (x, u) ∈ Aad} = ϵ.

To the best of authors knowledge, up to now, no work has been reported to derive
the optimal control for fractional stochastic differential system driven by fractional
Brownian motion with Poisson jumps. The main contributions are summarized as
follows:

(1) Fractional stochastic differential system driven by fractional Brownian mo-
tion with Poisson jumps is formulated.

(2) Fractional calculus theory is effectively used to derive the existence and
uniqueness of mild solution, a set of sufficient conditions is constructed by
using fixed point theorem.

(3) The existence of fractional optimal control for stochastic system is also
discussed.
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(4) An example is provided to illustrate the obtained theoretical results.

2. Preliminaries

In this section, we collect basic concepts, definitions and Lemmas which will be
used in the sequel to obtain the main results.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0
of a function f : [0,∞) → R with the lower limit 0 is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Euler gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0 for the function
f ∈ Cm([0, τ ],R) is defined by

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−∞−1f (m)(s)ds, m− 1 <∞ < m ∈ N.

If f is an abstract function with values in X, then the integrals appearing in Defi-
nition 2.1 and Definition 2.2 are taken in the Bochner sense. Moreover, the Caputo
derivative of a constant is always zero.

The two-parameter function of the Mittag-Leffler type is defined by the series
expension

Eα,β(z) =

∞∑
j=1

zj

Γ(αj + β)
=

1

2πi

∫
C
eλ

λα−β

λα − z
dλ; α, β > 0, z ∈ C,

where C is a contour that start and end at −∞ and encircles the disc ∥λ∥ ≤ |z|1/2
counterclockwise.

Definition 2.3. [22] A closed and linear operator A is said to be sectorial type

µ if there exist π/2 ≤ θ ≤ π, M̃ > 0 and µ ∈ R such that the following condi-
tions are satisfied: ρ(A) ⊂

∑
(θ,µ) = {λ ̸= µ, |arg(λ− µ)| < θ}, and ∥R(λ,A)∥ =∥∥(λ−A)−1

∥∥ ≤ M̃
|λ−µ| , λ ∈

∑
(θ,µ).

Lemma 2.1. [22] For 0 < α < 2, a linear closed densely defined operator A belongs
to Aα(θ0, µ0) iff λα ∈ ρ(A) for each λ ∈

∑
(θ0+π/2),µ and for any µ > µ0, θ < θ0

there is a constant C0 = C0(θ, µ) such that∥∥λα+1R(λα, A)
∥∥ ≤ C0

|λ− µ|
, for λ ∈

∑
(θ0+π/2),µ

.

Lemma 2.2. [22] If f satisfies the uniform Holder condition with the exponent
0 < γ ≤ 1 and A is a sectorial operator, then the unique solution of the Cauchy
problem

CDα
t x(t) = Ax(t) + f(t), 0 <∞ < 1, t ∈ (0, τ ],

x(0) = x0, (2.1)

is given by

x(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)F (s)ds,
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where

Sα(t) = Eα,1(At
α) =

1

2πi

∫
B̂ρ

eλt
λα−1

λα −A
dλ,

Tα(t) = tα−1Eα,1(At
α) =

1

2πi

∫
B̂ρ

eλt
1

λα −A
dλ,

B̂ρ is the Bromwich path, Tα(t) is called the α-resolvent family, and Sα(t) is the
solution operator generated by A.

An operator A is said to belong to Dα(M̃, µ) if problem (4) with f = 0 has a

solution operator Sα(t) satisfying ∥Sα(t)∥ ≤ M̃eµt. Denote Dα(µ) = ∪
{
Dα(M̃, µ) :

M̃ ≥ 1
}
, Dα = {Dα(µ : µ ≥ 0)}, and Aα(θ0, µ0) =

{
A ∈ Dα : A generates analytic

solution operators Sα(t) of type (θ0, µ0)
}
.

If 0 < α < 1 and A ∈ Aα(θ0, µ0), then we have ∥Sα(t)∥ ≤ M̃eµt and ∥Tα(t)∥ ≤
Ceµt(1 + tα−1), t > 0, µ > µ0. If

MS = sup
0≤t≤τ

∥Sα(t)∥ , MT = sup
0≤t≤τ

Ceµt(1 + t1+α),

then, we have

∥Sα(t)∥ ≤MS , ∥Tα(t)∥ ≤ tα−1MT .

Lemma 2.3. [13] If ψ : [0, a] → L0
2(Y,X) satisfies

∫ a

0
∥ψ(s)∥2L0

2
<∞ then the above

sum in (1.2) is well defined as X-valued random variable and we have

E

∥∥∥∥∫ t

0

ψ(s)dwH(s)

∥∥∥∥2 ≤ 2Ht2H−1

∫ t

0

∥ψ(s)∥2L0
2
ds.

By Lemma 2.2. a mild solution of the system (1.1) is defined as

Definition 2.4. An ℑt-adapted stochastic process x(t) ∈ C ([0, τ ],L2(Ω,ℑ,X)) is
called a mild solution of system (1.1) if for each u(·) ∈ Lp([0, τ ]; U), x(t) is mea-
surable and the following stochastic integral equation

x(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)u(s) + f(s, x(s))]ds

+

∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, x(s), u)Ñ(ds, du). (2.2)

3. Existence and Uniqueness

To prove the existence and uniqueness of mild solution of the system (1.1), we
impose the following hypotheses:

(H1) The functions f : [0, τ ] × X → X, σ : [0, τ ] × X → L0
2(Y,X) and h :

[0, τ ]×X×U → X are continuous, and satisfying linear growth and Lipschitz
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conditions: there are positive constants Lf , Lσ and Lh such that

∥f(t, x)− f(t, y)∥2 ≤ Lf ∥x− y∥2 , ∥f(t, x)∥2 ≤ Lf (1 + ∥x∥2),
∥σ(t, x)− σ(t, y)∥2 ≤ Lσ ∥x− y∥2 , ∥σ(t, x)∥2 ≤ Lσ(1 + ∥x∥2),∫

U
∥h(t, x, u)− h(t, y, u)∥2 v(du) ≤ Lh ∥x− y∥2 ,∫

U
∥h(t, x, u)∥2 v(du) ≤ Lh(1 + ∥x∥2).

(H2) The operator B ∈ L∞([0, τ ];L(U,X)) and ∥B∥∞ stand for the norm of
operator B in the Banach space L∞([0, τ ];L(U,X)).

(H3) The multi-valued map Ξ(·) : [0, τ ] → 2u/ {∅} has closed, convex and
bounded values, Ξ(·) is graph measurable and Ξ(·) ⊆ Φ, where Φ is a
bounded subset of U.

Theorem 3.1. Assumptions (H1)− (H3) the system (2.2) admits a unique mild
solution on [0, τ ] for each control function u(·) ∈ Uad and for each some p such that
pα > 1.

Proof. Define an operator G : X2 → X2 as

(Gx)(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)u(s) + f(s, x(s))]ds

+

∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, x(s), u)Ñ(ds, du).

To show that (2.2) is the mild solution of the system (1.1) on [0, τ ], it is enough to
prove that G has a fixed point in the space X2. We first show that G(X2) ⊂ X2.
Let x ∈ X2, then we have

E ∥(Gx)(t)∥2 ≤ 5 [Γ1 + Γ2 + Γ3 + Γ4 + Γ5] (3.1)

Clearly

Γ1 = ∥Sα(t)x0∥2

≤ M2
sE ∥x0∥2 .

Next, using the Cauchy-Schwartz inequality, we have

Γ2 = ∥Tα(t− s)B(s)u(s)ds∥2

≤ M2
T ∥B∥2∞

[∫ t

0

(t− s)α−1 ∥u(s)∥ ds
]2

≤ M2
T ∥B∥2∞

(∫ t

0

(t− s)
p(α−1)
p−1 ds

) p−1
p

(∫ t

0

∥u(s)∥pU ds
) 1

p

2

≤ M2
T ∥B∥2∞ ∥u∥2L([0,τ ];U) τ

2( pα−1
p )(

p− 1

pα− 1
)

2(p−1)
p .
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Next, by (H1) and Cauchy-Schwartz inequality, we have

Γ3 = E

∥∥∥∥∫ t

0

Tα(t− s)f(s, x(s))ds

∥∥∥∥2
≤ M2

T

(∫ t

0

(t− s)α−1ds

)(∫ t

0

(t− s)α−1E ∥f(s, x(s))∥2 ds
)

≤ M2
TLf

τα

α

∫ t

0

(t− s)α−1(1 +E ∥x(s)∥2)ds

≤ M2
TLf

τα

α2
(1 + ∥x∥2X2

).

By (H1) and Lemma 2.3, we have

Γ4 = E

∥∥∥∥∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)

∥∥∥∥2
≤ M2

T

[∫ t

0

(t− s)α−12Ht2H−1
(
E ∥σ(s, x(s))∥2L0

2

)
ds

]
≤ M2

T

[
2Ht2H−1

∫ t

0

(t− s)α−1E ∥σ(s, x(s))∥2 ds
]

≤ M2
TLσ2Ht

2H−1 τ
2α

α2
(1 + ∥x∥2X2

).

and

Γ5 = E

∥∥∥∥∫ t

0

Tα

∫
U
(t− s)h(s, x(s), u)Ñ(ds, du)

∥∥∥∥2
≤ M2

T

(∫ t

0

(t− s)α−1ds

)(∫ t

0

∫
U
(t− s)α−1E ∥h(s, x(s), u)∥2 v(du)ds

)
≤ M2

TLh
τα

α2
(1 + ∥x∥2X2

).

Thus (3.1) becomes

E ∥(Gx)(t)∥2 ≤ a+ b ∥x∥2X2
,

where a and b are suitable positive constants. Thus G maps X2 into itself.
Next, we prove that G is a contraction. For x, y ∈ X2, the Cauchy-Schwartz

inequality, and (H1) yield that

E ∥(Gx)(t)− (Gy)(t)∥2

≤ 3E

∥∥∥∥∫ t

0

Tα(t− s)[f(s, x(s))− f(s, y(s))]ds

∥∥∥∥2
+ 3E

∥∥∥∥∫ t

0

Tα(t− s)[σ(s, x(s))− σ(s, y(s))]dwH(s)

∥∥∥∥2
+ 3E

∥∥∥∥∫ t

0

Tα

∫
U
(t− s)[h(s, x(s), u)− h(s, y(s), u)]Ñ(ds, du)

∥∥∥∥2
≤ 3M2

T

(
Lf + Lσ2Ht

2H−1 + Lh

) τ2α
α2

∥x− y∥2X2
.



OPTIMAL CONTROL FOR FRACTIONAL STOCHASTIC DIFFERENTIAL SYSTEM 9

Consequently if

3M2
T

[
Lf + Lσ2Ht

2H−1 + Lh

] τ2α
α2

< 1, (3.2)

then the operator G has a unique fixed point in X2, which is a solution of the system
(1.1). The extra condition on τ can be easily removed by considering the equation
on intervals [0, τ̃ ], [0, 2τ̃ ], ... with τ̃ satisfying (3.2). □

We now obtain a priori estimate of mild solution for the system (1.1), that helps
us to obtain our main results.

Lemma 3.2. Assuming that system (2.2) is the mild solution of system (1.1) on
[0, τ ] corresponding to the control u. Then there exists a constant M > 0 such that

E ∥x(t)∥2 ≤ M, t ∈ [0, τ ].

Proof. By (H1) and Holder’s inequality, we obtain

E ∥x(t)∥2 ≤ 5E ∥Sα(t)x0∥2

+ 5E

∥∥∥∥∫ t

0

Tα(t− s)B(s)u(s)ds

∥∥∥∥2 + 5E

∥∥∥∥∫ t

0

Tα(t− s)f(s, x(s))ds

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)ds

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

∫
U
Tα(t− s)σ(s, x(s), u)Ñ(ds, du)

∥∥∥∥2
≤ 5M2

S + 5M2
T ∥B∥2∞ ∥u∥2Lp([0,τ ];U) τ

2( pα−1
p )(

p− 1

pα− 1
)

2(p−1)
p

+ 5M2
T

(
Lf + Lσ2Ht

2H−1 + Lh

) τ2α
α2

+ 5M2
T

(
Lf + Lσ2Ht

2H−1 + Lh

) τ2α
α

∫ t

0

(t− s)α−1E ∥x(s)∥2 ds.

Now using the Gronwall inequality, one can easily obtain the boundedness of x in
X2. □

4. Existence of Fractional Optimal Control

In this section, we prove the existence of fractional optimal control under the
hypothesis:

(H4) Following conditions are imposed on the integrand

l : [0, τ ]×X×U → R ∪ {∞}
such that
(1) The integrand l : [0, τ ]×X×U → R ∪ {∞} is ℑt-measurabl.
(2) The integrand l(t, ·, ·) is sequentially lower semicontinuous on X×U for
almost all t ∈ [0, τ ].
(3) The integrand l(t, x, ·) is convex on U for each x ∈ X and almost all
t ∈ [0, τ ].
(4) There exist constants d ≥ 0, e > 0, µ0 is nonnegative and µ0 ∈
L1([0, τ ];R) such that

µ0(t) + dE ∥x∥2 + eE ∥u∥pU ≤ l(t, x, u).
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Theorem 4.1. Suppose (H1)− (H4) hold, then Lagrange problem (1.3) admits at
least one optimal pair, that is, there exists an admissible state-control pair (x0, u0) ∈
Aad such that

ȷ(x0, u0) := E

{∫ τ

0

l(t, x0(t), u0(t))dt

}
≤ ȷ(x, u), ∀(x, u) ∈ Aad.

Proof. If inf
{
l(x, u)|(x, u) ∈ Aad

}
= +∞, then there is nothing to prove. With-

out any loss of generality, we may assume that inf
{
l(x, u)|(x, u) ∈ Aad

}
= +∞.

Now assumption (H4) implies that ϵ > −∞. By definition of infimum, there is
a minimizing sequence of feasible pairs (xm, um) ∈ Aad, such that l(xm, um) → ϵ
as m → +∞. Since {um} ⊆ Uad, m = 1, 2, · · · , {um} is a bounded subset of the
separable reflexive Banach space Lp([0, τ ]; U), there exists a subsequence, relabeled

as {um} and Lp([0, τ ]; U) such that um
w→ u0 (um → u0) weakly as m → +∞

in Lp([0, τ ]; U). Since Uad is closed and convex, the Mazur lemma forces us to
conclude that u0 ∈ Uad.

Let {xm} be the sequence of solution of the system (1.1) corresponding to {um},
that is

xm(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)um(s) + f(s, xm(s))]ds

+

∫ t

0

Tα(t− s)σ(s, xm(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, xm(s), u)Ñ(ds, du). (4.1)

By Lemma 3.1, it is easy to see that there exists δ > 0 such that

E ∥xm∥2 ≤ δ, m = 0, 1, 2, · · · ,

where x0 is the mild solution of the system (1.1) corresponding to the control
u0 ∈ Uad given by

x0(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)u0(s) + f(s, x0(s))]ds

+

∫ t

0

Tα(t− s)σ(s, x0(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, x0(s), u)Ñ(ds, du).

For all t ∈ [0, τ ], using (H4), the Cauchy-Schwartz inequality and the Holder
inequality, we obtain

E
∥∥xm(t)− x0(t)

∥∥2
≤ 4E

∥∥∥∥∫ t

0

Tα(t− s)[B(s)um(s)−B(s)u0(s)]ds

∥∥∥∥2
≤ 4E

∥∥∥∥∫ t

0

Tα(t− s)[f(s, xm(s))− f(s, x0(s))]ds

∥∥∥∥2
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≤ 4E

∥∥∥∥∫ t

0

Tα(t− s)[σ(s, xm(s))− σ(s, x0(s))]dwH(s)

∥∥∥∥2
≤ 4E

∥∥∥∥∫ t

0

∫
U
Tα(t− s)[h(s, xm(s), u)− h(s, x0(s), u)]Ñ(ds, du)

∥∥∥∥2
≤ 4M2

T (
p− 1

pα− 1
)

2p−2
p τ2α−

2
p

(∫ t

0

∥∥B(s)um(s)−B(s)u0(s)
∥∥p ds) 2

p

+ 4M2
T

τα

α
(Lf + Lσ2Ht

2H−1 + Lh)

∫ t

0

(t− s)α−1E
∥∥xm(s)− x0(s)

∥∥2 ds.
By applying Gronwall inequality, there exists a constant K∗(α) independent of u,m
and t such that

E
∥∥xm(t)− x0(t)

∥∥2 ≤ K∗(α)

(∫ τ

0

∥∥B(s)um(s)−B(s)u0(s)
∥∥p ds) 2

p

≤ K∗(α)
∥∥Bum −Bu0

∥∥2
Lp([0,τ ];U)

. (4.2)

Since B is strongly continuous, we get

∥∥Bum −Bu0
∥∥2
Lp([0,τ ];U)

s→ 0 as m→ ∞. (4.3)

From (4.2) and (4.3), we conclude that

E
∥∥xm(t)− x0(t)

∥∥2 → 0 as m→ ∞. (4.4)

This implies that E
∥∥xm − x0

∥∥2 → 0 in C ([0, τ ];L2(Ω,X)) as m→ ∞.
By (H4) implies the assumptions of Balder (see Theorem 2.1, [23]). Hence, by

Balder’s theorem, we get

(x, u) → E

∫ τ

0

L(t, x(t), u(t))dt

is sequentially lower semicontinuous in the strong topology of L1([0, τ ]; X) and week
topology of Lp([0, τ ]; U) ⊂ L1([0, τ ]; X). Hence, ȷ is weakly lower semicontinuous
on Lp([0, τ ]; U), and since by (H4)(4), ȷ > −∞, ȷ attains its infimum at u0 ∈ Uad,
that is,

ϵ := lim
m→∞

E

∫ τ

0

l(t, xm(t), um(t))dt

≥ E

∫ τ

0

l(t, x0(t), u0(t))dt

= ȷ(x0, u0) ≥ ϵ.

Hence completes the proof. □
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5. Application

Consider the following fractional stochastic integrodifferential system driven by
Rosenblatt process with Poisson jumps

CD
2
3
t x(t, z) = ∆x(t, z) +

∫ t

0

B̃(z, s)u(s, t)ds+

∫ t

0

f̃(s, z)sin(x, s)ds

+

∫ t

0

(x(t, z))2

1 + (x(t, z))2
dwH(t)

dt
+

∫
U
(1 + e−t)cosy(t, x, u)Ñ(dt, du),

x(0, z) = x0(z), z ∈ Ω1,

x(t, z)|z∈∂Ω = 0, t > 0, (5.1)

Here Let wH is a fractional Brownian motion with Hurst parameter H ∈ ( 12 , 1). Let

Ω1 ⊂ R3 be abounded domain and ∂Ω1 ∈ C3. Further let X = U = L2(Ω1), w(t) is
a standard cylindrical Wiener process in X defined on a stochastic space (Ω,ℑ,P).
Suppose D(A) = X2(Ω1)

⋂
X1

0(Ω1) and for z ∈ D(A), Az =
(

∂2

∂z2
1
+ ∂2

∂z2
2
+ ∂2

∂z2
3

)
z.

The admissible control set Uad :=
{
u ∈ U : ∥u∥Lp([0,1];U) ≤ 1

}
. Define the frac-

tional Brownian motion in Y by wH(t) =
∑∞

n=1

√
λnβH(t)en, where H ∈ ( 12 , 1) and

{βHn}n∈N is a sequence of one-dimensional fractional Brownian motions mutually
independent.

The functions f : [0, τ ] × X → X, σ : [0, τ ] × X → L0
2(Q

1/2Y,X) and h :
[0, τ ]×X× U → X are defined by

x(t)(z) = x(t, z), x(0)(z) = x(0, z) = x0(z),

(Bu)(t)(z) =

∫ t

0

B̃(z, s)u(s, t)ds,

f(t, x(t))(z) = f(t, x(t, z)) =

∫ t

0

f̃(s, z)sin(x, s)ds,

σ(t, x(t))(z) = σ(t, x(t, z)) =
(x(t, z))2

1 + (x(t, z))2
,∫

U
h(t, x, u)Ñ(ds, du) =

∫
U
(1 + e−t)cosy(t, x, u)Ñ(dt, du),

Thus, for α = 2
3 the problem (5.1) can be written as the abstract from of system

(1.1) with the cost function

ȷ(x, u) = E

{∫ 1

0

l(t, x(t), u(t))dt

}
,

where l(t, x(t), u(t))(z) =
∫
Ω1

|x(t, z)|2 dz +
∫
Ω1

|u(t, z)|2 dz. It is easy to see that

the assumptions (H1)− (H4) are satisfied, there exists an optimal pair (x0, u0) ∈
L0([0, 1]Ω1 × L2[0, 1] × Ω1) such that ȷ(x0, u0) ≤ ȷ(x, u) for all (x, u) ∈ L2([0, 1] ×
Ω1 × L2([0, 1]× Ω1).

6. Conclusion

In this paper, we studied the existence of solutions and optimal control results
of fractional stochastic differential system driven by fractional Brownian motion
with Poisson jumps in Hilbert space. The sufficient conditions for the existence
of mild solution results are formulated and proved by virtue of fractional calculus,



OPTIMAL CONTROL FOR FRACTIONAL STOCHASTIC DIFFERENTIAL SYSTEM 13

solution operator and stochastic analysis techniques. Furthermore, the existence of
optimal control of the proposed problem is presented by using Balder’s theorem.
The optimal control analysis for fractional stochastic differential inclusions with
distributed delays, time varying delays, and impulsive effects will be our future
work.
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Abstract. The interaction between prey and predator is one of the most
fundamental processes in ecology. In this paper, we first consider the system

incorporating a feedback control and we discuss the dynamic behavior of prey-

predator interaction model that includes two competitive predators and one
prey with a generalized interaction functional. The primary presumption in

the model construction is the effects of feedback control and the competition

between two predators on the only prey which gives a strong implication of
the real-world situation. By analyzing characteristic equations, we carry out

detailed discussion with respect to stability of equilibrium points of the con-
sidered model. Further, we investigate the impact of the memory measured

by fractional time derivative on the temporal behavior.

1. Introduction

Mathematical modeling of the real-world phenomenon is a potent tool for pre-
dicting some ecological and biological components. The validity of this mathe-
matical approximation depends on the model itself. The crucial component that
describes the interaction between different species in a certain environment is the
interaction functional. There are many types of these functionals in the literature
[9,10,14,15,19]. Each one describes a specific manner of intermingling between two
species. The reason for this great diversity in functionals is due to the variety of
environmental conditions in the problem. Some of the factors that influence the
selection of these parameters are the behavior of the prey and predator and the
studied area. For the last factor, many components play a crucial role such as
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rivers (water availability), food (for the prey) and the density of prey and predator.
Overall, the functional selection depends on many factors.

In the environment, the intermingling is not limited to just two populations, but
interactions can be defined between more than two species in one single place. The
scientists interested in this point of view have put efforts to model such complex
interactions in the last few decades. We can take as an example two types of
prey and one predator [5], where the predator has the capability of hunting both
prey populations. Moreover, in prey–predator–super predator models the predator
feeds the prey only, and the super predator feeds both prey and predator. In some
models, it is studied the interaction between two predators and one prey model
where two types of predators are fed the same prey. Due to the intrinsic nature
of the predators, there will always be a constant struggle to capture this one prey.
The predator-prey models with three species have been attracted many researchers.
In [8], it is highlighted and studied the intermingling and competition between two
competitive predators on one prey with a generalized class of interaction functionals
in the presence of the time-fractional derivative. Fractional ordinal systems are
not just an extension of traditional integer ordinal systems in mathematics but
also have some merits that integer-order systems do not have, such as memory and
hereditary properties [11,21]. As known, many biological systems have memory [18].
Fractional order systems compared to integer order systems can more accurately
describe population patterns and reveal the relationships between prey species and
predatory species [1,4].

In real situations, it is seen that one predator determines its own hunting terri-
tory. The presence of other predators in such territories is entirely unacceptable.
This situation is called competition. The models in which competition is found,
have also received much attention in many research papers such as.

When examining the local asymptotic stability of the equilibrium points of dy-
namic systems, note that the equilibrium value of the considered system is some-
times not as we would like, and maybe in some cases what we need is a smaller
value. In this case, we may change the system structurally by introducing a feed-
back control variable [2,12], which can be implemented by employing biological
control strategy. In [13], the dynamic behavior of fractional-order predator–prey
model incorporating a constant prey refuge and feedback control has investigated.

In this paper, we are interested in studying the intermingling and competition
between two competitive predators on one prey with a generalized class of interac-
tion functionals in the presence of the time-fractional derivative. By summarizing
all the previously mentioned components let us focus on the following incorporat-
ing feedback control time-fractional formulation with a generalized consumption
functional:


c
0D

q
tx(t) = x(r − ax− rx

k )− f(x)y − g(x)z − cu,
c
0D

q
t y(t) = e1f(x)y − µ1y − βyz,

c
0D

q
t z(t) = e2g(x)z − µ2z − γyz,

c
0D

q
tu(t) = −hu+mx,

x(0) = x0

y(0) = y0

z(0) = z0

u(0) = u0

(1.1)

where 0 < q < 1, c0D
q
t is the Caputo q−order fractional derivative. The condi-

tions on the functionals f and g are defined as
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(A1) f(0) = 0, g(0) = 0,
(A2) f ′(x) > 0, g′(x) > 0 for x > 0.

In the system (1.1), x(t), y(t) and z(t) are the densities of prey, first predator
and second predator populations at time t, respectively; u(t) denotes the feedback
control variable for prey population at time t. We assume that the prey population
reproduces logistically with the increasing rate r, a is the intraspecific competition
coefficient of prey population and the carrying capacity k of the space, e1 and
e2 are respectively the conversion rate of the prey biomass into the first predator
population and the diversion of the prey biomass into the second predator biomass,
µ1 and µ2 are the mortality rates of the first and second predators, respectively,
β(resp., γ) is the competition rate of the first predator with the second one (resp.,
of the second predator with the first one). The functionals f and g are respectively
the interaction functionals for the first and second predator populations with the
prey population. Here all the parameters are assumed to be positive.

The rest of this paper is organized as follows. In section 2, we introduce some
notations, definitions and lemmas. In section 3, we give the equilibrium points
of fractional-order predator–prey model (1.1), and we discuss their stability. The
concluding section of the paper is intended to highlight the biological meanings of
the acquired numerical results.

2. Preliminaries

We introduce some useful definitions and lemmas in this section which are nec-
essary for our latter study.

Definition 2.1. [11] The q−order fractional integral for a function ζ is defined as

0I
q
t ζ(s) =

1

Γ(q)

∫ t

0

(t− s)q−1ζ(s)ds, q > 0

where Γ(.) is the well-known Gamma function which is defined by Γ(q) =
∫∞

0
e−ttz−1dt.

Definition 2.2. [11] The Caputo q−order fractional derivative for a function ζ is
defined as

c
0D

q
t ζ(s) =

1

Γ(n− q)

∫ t

0

(t− s)n−q−1ζn(s)ds,

where n is a positive integer, n− 1 < q < n. Particularly, when 0 < q < 1,

c
0D

q
t ζ(s) =

1

Γ(1− q)

∫ t

0

(t− s)−qζ
′
(s)ds.

Lemma 2.1. [11] If the Caputo q−order fractional derivative c
0D

q
t is integrable

then

0I
q
t
c
0D

q
t ζ(s) = ζ(t)−

n−1∑
k=0

ζk(0)

k!
tk.

Especially, for 0 < q ≤ 1, one can obtain
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0I
q
t
c
0D

q
t ζ(s) = ζ(t)− ζ(0).

Lemma 2.2. [3] Let V (t) be a continuous function on [0,+∞) and satisfying

c
0D

q
tV (t) ≤ θ V (t),

where 0 < q < 1 and θ is a constant. Then

V (t) ≤ V (0) Eq(θt
q) ∀t ≥ 0.

Lemma 2.3. [20] Consider the following q−order fractional system:{
c
0D

q
t z(t) = f(z),

z(0) = z0,
(2.1)

where 0 < q < 1 and z ∈ Rn. The equilibrium points of the system (2.1) can be
calculated by solving the following equation: f(z) = 0. These points are locally

asymptotically stable if all eigenvalues λi of the Jacobian matrix J = ∂f
∂z evaluated

at the equilibrium points satisfy the Matignon conditions:

|arg (λi)| >
qπ

2
.

Theorem 2.4. [13] The trivial equilibrium point of the system attained by the
λ2 + (k − r)λ+ cm− rk = 0 characteristic equation is locally asymptotically stable
if either of the following criteria is satisfied.

(H1) k ≥ r and rk < cm,

(H2) k < r, rk < cm, (k + r)
2
< 4cm and 0 < q < 2

π arctan

(√
4(cm−rk)−(k−r)2

r−k

)
.

Theorem 2.5. [13] The predator-extinction equilibrium point of the system at-
tained by the λ2 +

(
r − 2cm

k + k
)
λ+ rk − cm = 0 characteristic equation is locally

asymptotically stable if either of the following criteria is satisfied.
(H3) k2 + rk − 2cm ≥ 0 and rk > cm,

(H4) k2+rk−2cm < 0, rk > cm,
(
k2 + rk − 2cm

)2
< 4k2(rk−cm) and 0 <

q < 2
π arctan

(√
4k2(rk−cm)−(k2+rk−2cm)2

2cm−k2−rk

)
.

3. Mathematical analysis and asymptotic behavior of the solution

3.1. Equilibria of the model. In this subsection, we determine the local behavior
of the system (1.1). First, we determine the equilibria of the system (1.1), which
are the solutions of the following system:

0 = x(r − ax− rx

k
)− f(x)y − g(x)z − cu,

0 = e1f(x)y − µ1y − βyz,
0 = e2g(x)z − µ2z − γyz,
0 = −hu+mx. (3.1)

As a first remark, we deduce that the system 3.1 has the following particular cases:
(i) For the system (1.1) there always exists the trivial equilibrium point E0(0, 0, 0, 0),

which represents the extinction of the three populations.
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(ii) E1(x1, 0, 0, u1) which implies the extinction of two types of predators,

where x1 = k(rh−cm)
h(ak+r) , u1 = km(rh−cm)

h2(ak+r) . This point is called the predator-free

equilibrium (PFE).
(iii) Searching for the first predator-free equilibrium (FPFE) as E2(x2, 0, z2, u2),

we insert y = 0. By replacing this result in the third equation of system (3.1) we get,

x2 = g−1
(
µ2

e2

)
, u2 = m

h g
−1(µ2

e2
) where g−1 is the inverse function of g, which exists

since g is a bijective function from the conditions (A1) and (A2 ). Substituting this
last result into the first equation of (3.1) yields

z2 =
e2x2

(
r − ax2 − rx2

k −
cm
h

)
µ2

,

which is positive if x2 <
k(rh−cm)
h(ak+r) . Summarizing all the results, we can conclude

that FPFE E2(x2, 0, z2, u2) exists if x2 <
k(rh−cm)
h(ak+r) .

(iv) Seeking for the second predator-free equilibrium (SPFE) as E3(x3, y3, 0, u3)
by replacing z = 0 in (3.1). By substituting this result into the second equation of
system (3.1) we get x3 = f−1(µ1

e1
), u3 = m

h f
−1(µ1

e1
) where f−1 is the inverse func-

tion of f , which exists since f is a bijective function function from the conditions
(A1) and (A2 ). Taking this last result along with the first equation of (3.1), we get

y3 =
e1x3

(
r − ax3 − rx3

k −
cm
h

)
µ1

,

which is biologically relevant if x3 <
k(rh−cm)
h(ak+r) . Summarizing all the results, we

can deduce that SPFE as E3(x3, y3, 0, u3) exists if x3 <
k(rh−cm)
h(ak+r) .

Remark. It is assumed that both functional f and g are increasing in x. From
x3 and x2, if limx→∞ f(x) = a (resp.,limx→∞ g(x) = b) then another condition on
the parameters arises, µ1

e1
< a (resp., µ2

e2
< b), which is a necessary condition for

having a solution for the equation f(x) = µ1

e1
(resp., g(x) = µ2

e2
).

(v) Now we are in a position to seek the coexistence equilibrium point
E4(x∗, y∗, z∗, u∗), which is the positive solution of the following system:

0 = x(r − ax− rx

k
)− f(x)y − g(x)z − cu,

0 = e1f(x)− µ1 − βz,
0 = e2g(x)− µ2 − γy,
0 = −hu+mx. (3.2)

From 0 = e2g(x)− µ2 − γy we obtain,

y∗ =
e2

γ
g(x)− µ2

γ
. (3.3)

Moreover, from 0 = e1f(x)− µ1 − βz we find that

z∗ =
e1

β
f(x)− µ1

β
. (3.4)
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Substituting (3.3) and (3.4) into (3.2), from the first equation, we get F1(x) =
F2(x), where

F1(x) = x(r − ax− rx

k
)− cmx

h
,

F2(x) = f(x)g(x)

(
e2

γ
− e1

β

)
−
(
µ2

γ
f(x)− µ1

β
g(x)

)
. (3.5)

Some straightforward calculations suggest that

F1(0) = F1

(
k(rh− cm)

h(ak + r)

)
= 0, F1(x) =

{
> 0 for x < k(rh−cm)

h(ak+r)

< 0 for x > k(rh−cm)
h(ak+r) .

To guarantee at least one nontrivial intersection between two curves of the func-
tionals F1 and F2, we introduce the following assumption:

F1(x̃) > F2(x̃), F2

(
k(rh− cm)

h(ak + r)

)
> 0 with x̃ = max{x2, x3},

which it can be rewritten as

x̃ < k(rh−cm)
h(ak+r) , r > rε :=

k

(
f(x)g(x)( e2γ −

e1
β )−(µ2γ f(x)−µ1

β
g(x))

x + cm
h +ax

)
(k−x) .

Under this condition , we get the existence of at least one nonnegative solution
of system.

3.2. Asymptotic behavior of the system (1.1). In this part, we are interested
in determining the asymptotic stability of the equilibria obtained in the previous
section. For the time-fractional-order derivative, the concept of the local stability
is very different from the first-order derivative, where in this case, we have an
expansion of the stability region in comparison with the first-order derivative.

Let E(x, y, z, u) be an equilibrium for the system (1.1). The Jacobian matrix of
system (1.1) at E(x, y, z, u) is expressed as

J(E) =


r − 2ax− 2rx

k − f
′
(x)y − g′(x)z −f(x) −g(x) −c

e1f
′
(x)y e1f(x)− µ1 − βz −βy 0

e2g
′
(x)z −γz e2g(x)− µ2 − γy 0
m 0 0 −h


(3.6)

At E0(0, 0, 0, 0), the Jacobian matrix of the system (1.1) is

J(E0) =


r −f(0) −g(0) −c
0 e1f(0)− µ1 0 0
0 0 e2g(0)− µ2 0
m 0 0 −h

 ,

and the characteristic equation for J(E0) is
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(λ− (e1f(0)− µ1)) (λ− (e2g(0)− µ2)) (λ2 + (h− r)λ+ cm− rh) = 0. (3.7)

The eigenvalues of (3.7) are

λ2 = e1f(0)− µ1, λ3 = e2g(0)− µ2, λ1,4 =
−(h− r)±

√
∆1

2
, (3.8)

where ∆1 = (h− r)2 − 4(cm− rh).
Obviously, λ2 = e1f(0)−µ1 < 0 and λ3 = e2g(0)−µ2 < 0 are always negative.

Now we discuss the eigenvalues λ1 and λ4 , it is clear that the cases h > r, h = r
and h < r are possible, so we consider three separate cases.

Case 1. h > r
(1a) rh < cm. If ∆1 ≥ 0, we can derive from (3.8) that four eigenvalues

λ1, λ2, λ3 and λ4 are negative, which imply that the equilibrium point E0 is locally
asymptotically stable for all 0 < q < 1. In fact, | arg(λ1,2,3,4)| = π > qπ

2 for
all 0 < q < 1, which satisfy the condition of Lemma 2.3. If ∆1 < 0, then λ1

and λ4 are complex conjugates with negative real parts, which imply | arg(λ1,4)| =
arctan

(√
−∆1

r−h

)
+π > qπ

2 for all 0 < q < 1. According to Lemma 2.3, we know that

the equilibrium point E0 is locally asymptotically stable.
(1b) rh = cm. From (3.7) we know that one eigenvalue must be zero and

remaining three eigenvalues are negative. Then E0 is marginally stable.
(1c) rh > cm. Then ∆1 = (h + r)2 − 4(cm) > 0 . From (3.8), we see that

one of the eigenvalues λ1 and λ4 is positive and the other eigenvalue is negative.
Let λ4 < 0 and λ1 > 0, which imply | arg(λ4)| = π > qπ

2 and | arg(λ1)| = 0 < qπ
2

for all 0 < q < 1. Hence E0 is unstable.
Case 2. h = r.

(2a) rh < cm. Then ∆1 < 0 and (3.7) has pure imaginary roots λ1 =
2
√
cm− rhi and λ4 = −2

√
cm− rhi , which mean | arg(λ1,4)| = π

2 > qπ
2 for all

0 < q < 1. Since λ2 < 0, λ3 < 0 according to Lemma 2.3, we know that the
equilibrium point E0 is locally asymptotically stable.

(2b) rh = cm. From (3.7), we see that λ1 = λ4 = 0 , λ2 and λ3 is negative.
Then E0 is marginally stable.

(2c) rh > cm. From (3.7), we know that λ1 = 2
√
cm− rh and λ4 =

−2
√
cm− rh, which imply | arg(λ4)| = π > qπ

2 and | arg(λ1)| = 0 < qπ
2 for all

0 < q < 1. Hence E0 is unstable.
Case 3. h < r.

(3a) rh < cm. If ∆1 ≥ 0, then the two eigenvalues λ1 and λ4 are positive
which imply | arg(λ1,4)| = 0 < qπ

2 for all 0 < q < 1. Thus the equilibrium point E0

is unstable. If ∆1 < 0, then λ1 and λ4 are complex conjugates with positive real
parts. According to Lemma 2.3, we know that the equilibrium point E0 is locally

asymptotically stable if | arg(λ1,4)| = arctan
(√
−∆1

r−h

)
> qπ

2 is satisfied.

(3b) rh = cm. It is clear that (3.7) has a positive eigenvalue λ1 = r − h,
which means | arg(λ1)| = 0 < qπ

2 for all 0 < q < 1. Hence E0 is unstable.

(3c) rh > cm. Then ∆1 = (h + r)2 − 4(cm) > 0. From (3.7) , we see that
one of the eigenvalues λ1 and λ4 is positive and the other eigenvalue is negative.
Thus the equilibrium point E0 is unstable.
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If h < r, rh < cm, (h+ r)2 < 4(cm), one has | arg(λ1,4)|= arctan
(√
−∆1

r−h

)
< π

2 ,

where ∆1 = (h − r)2 − 4(cm − rh), thus q < 2
π arctan

(√
4(cm−rh)−(h−r)2

r−h

)
<

2
π ×

π
2 = 1.

Hence we resume the stability conditions for the equilibrium E0(0, 0, 0, 0) by
the following theorem.

Theorem 3.1. The trivial equilibrium point E0(0, 0, 0, 0) representing the extinc-
tion of the three populations of the system (1.1) is locally asymptotically stable if
either of the following criteria is satisfied:

(i) h ≥ r and rh < cm,

(ii) h < r, rh < cm, (h+ r)
2
< 4cm and 0 < q < 2

π arctan

(√
4(cm−rh)−(h−r)2

r−h

)
.

At the predator-free equilibrium E1(x1, 0, 0, u1), the Jacobian matrix of the sys-
tem (1.1) is

J(E1) =


r − 2cm

h −f
(
k(rh−cm)
h(ak+r)

)
−g
(
k(rh−cm)
h(ak+r)

)
−c

0 e1f
(
k(rh−cm)
h(ak+r)

)
− µ1 0 0

0 0 e2g
(
k(rh−cm)
h(ak+r)

)
− µ2 0

m 0 0 −h

 (3.9)

and the characteristic equation for E1(x1, 0, 0, u1) is

(λ− (e1f (x1)− µ1)) (λ− (e2g (x1)− µ2))

(
λ2 +

(
r − 2cm

h
+ h

)
λ+ rh− cm

)
= 0.

(3.10)
The Jacobian matrix (3.9) has the eigenvalues

λ2 = e1f

(
k(rh− cm)

h(ak + r)

)
− µ1, λ3 = e2g

(
k(rh− cm)

h(ak + r)

)
− µ2,

λ1,4 =
−h

2+rh−2cm
h ±

√
∆2

2
, (3.11)

where

∆2 =

(
h2 + rh− 2cm

)2 − 4h2(rh− cm)

h2
.

Then, we have

λ2 =

{
< 0 for k(rh−cm)

h(ak+r) < x3

> 0 for k(rh−cm)
h(ak+r) > x3

and

λ3 =

{
< 0 for k(rh−cm)

h(ak+r) < x2

> 0 for k(rh−cm)
h(ak+r) > x2.
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Obviously, λ2 and λ3 are negative if x < x̃ = min{x2, x3}. Now we discuss the
eigenvalues λ1 and λ4, it is clear that the cases h2 +rh−2cm > 0, h2 +rh−2cm =
0 and h2 +rh−2cm < 0 are possible, respectively, so we consider three separate
cases.

Case 4. h2 + rh− 2cm > 0.
rh > cm. If ∆2 ≥ 0, we can derive from (3.11) that four eigenvalues

λ1, λ2, λ3 and λ4 are negative if x < x̃ = min{x2, x3} , which imply that the
equilibrium point E1 is locally asymptotically stable for all 0 < q < 1. In fact,
| arg(λ1,2,3,4)| = π > qπ

2 for all 0 < q < 1, which satisfy the condition of Lemma
2.3. If ∆2 < 0 , then λ1 and λ4 are complex conjugates with negative real parts,

which imply | arg(λ1,4)| = arctan
(

h
√
−∆2

2cm−h2−rh

)
+π > qπ

2 for all 0 < q < 1. Accord-

ing to Lemma 2.3, we know that the equilibrium point E1 is locally asymptotically
stable

Case 5. h2 + rh− 2cm = 0.
rh > cm. Then ∆2 < 0 and (3.10) has pure imaginary roots λ1 = 2

√
rh− cmi

and λ4 = −2
√
rh− cmi which means that | arg(λ1,4)| = π

2 > qπ
2 for all 0 < q < 1.

If x < x̃ = min{x2, x3} holds, then we have λ2 < 0 and λ3 < 0. According to
Lemma 2.3, we know that the equilibrium point E1 is locally asymptotically stable.

Case 6. h2 + rh− 2cm < 0.
rh > cm, If ∆2 ≥ 0, then the two eigenvalues λ1 and λ4 are positive

which imply | arg(λ1,4)| = 0 < qπ
2 for all 0 < q < 1. Thus the equilibrium point

E1 is unstable. If ∆2 < 0 then λ1 and λ4 are complex conjugates with positive
real parts. In addition, x < x̃ = min{x2, x3} holds, then we have λ2 < 0 and
λ3 < 0. According to Lemma 2.3, we know that the equilibrium point E1 is locally

asymptotically stable if | arg(λ1,4)| = arctan
(

h
√
−∆2

2cm−h2−rh

)
> qπ

2 is satisfied.

When h2 + rh− 2cm < 0 , rh > cm,
(
h2 + rh− 2cm

)2
< 4h2(rh− cm), one has

| arg(λ1,4)| = arctan

(√
4h2(rh−cm)−(h2+rh−2cm)2

2cm−h2−rh

)
< π

2 , thus

q < 2
π arctan

(√
4h2(rh−cm)−(h2+rh−2cm)2

2cm−h2−rh

)
< 2

π ×
π
2 = 1.

Hence we resume the stability conditions for the equilibrium E1(x1, 0, 0, u1) by
the following theorem.

Theorem 3.2. The predator-extinction equilibrium point of the system is locally
asymptotically stable if either of the following criteria is satisfied:

(i) h2 + rh− 2cm ≥ 0 , rh > cm and x < x̃ = min{x2, x3},
(ii) h2 + rh− 2cm < 0, rh > cm,

(
h2 + rh− 2cm

)2
< 4h2(rh− cm),

0 < q < 2
π arctan

(√
4h2(rh−cm)−(h2+rh−2cm)2

2cm−h2−rh

)
and x < x̃ = min{x2, x3}.

Now we analyze the linear stability of FPFE point of E2(x2, 0, z2, u2). The
Jacobian matrix corresponding to the equilibrium FPFE is evaluated as

J(E2) =


r − 2ax2 − 2rx2

k − g
′
(x2)z2 −f(x2) −g(x2) −c

0 e1f(x2)− µ1 − βz2 0 0

e2g
′
(x2)z2 −γz2 0 0
m 0 0 −h

 .

(3.12)
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As a first look, we can deduce that λ2 = e1f (x2) − µ1 − βz2 is an eigen-
value of the Jacobian matrix (3.12). By replacing the explicit formula of z2 =
e2x2(r−ax2− rx2k −

cm
h )

µ2
we obtain λ2 = e1f (x2) − µ1 −

βe2x2(r−ax2− rx2k −
cm
h )

µ2
. Obvi-

ously, if e1f (x2) − µ1 < 0 (equivalent to x2 < x3 ), then | arg(λ2)| > qπ
2 . Now we

presume that if e1f (x2)− µ1 > 0 (equivalent to x2 > x3 ). Then

λ2 =

{
> 0 for r < r1 :=

k
(

(e1f(x2)−µ1)µ2
βe2x2

+ax2+ cm
h

)
k−x2

,

< 0 for r > r1.

Under the condition λ2 > 0, we get | arg(λ2| < qπ
2 . This means that FPFE is

an unstable equilibrium point. Besides, from λ2 > 0, we conclude that | arg(λ2)| <
qπ
2 . This means that three remaining eigenvalues of the Jacobian matrix (3.12)

determine the stability (resp., instability) of this equilibrium. Note that these
significant eigenvalues are the eigenvalues of the matrix

J̃ =

 r − 2ax2 − 2rx2

k − g
′
(x2)z2 −g(x2) −c

e2g
′
(x2)z2 0 0
m 0 −h

 . (3.13)

To determine the nature of the eigenvalues of the reduced matrix (3.13), we
define the characteristic equation of (3.13) as

P (λ) = λ3 + ϑ1λ
2 + ϑ2λ+ ϑ3,

where

ϑ1 = h− r + 2ax2 +
2rx2

k
+ g

′
(x2)z2,

ϑ2 = −cm− hr + 2hax2 +
2hrx2

k
+ hg

′
(x2)z2 + e2g

′
(x2)g(x2)z2,

ϑ3 = he2g
′
(x2)g(x2)z2.

D(P ) denotes the discriminant of the cubic polynomial P (λ), as follows:

D(P ) =

∣∣∣∣∣∣∣∣∣∣
1 ϑ1 ϑ2 ϑ3 0
0 1 ϑ1 ϑ2 ϑ3

3 2ϑ1 ϑ2 0 0
0 3 2ϑ1 ϑ2 0
0 0 3 2ϑ1 ϑ2

∣∣∣∣∣∣∣∣∣∣
= 18ϑ1ϑ2ϑ3 + (ϑ1ϑ2)2 − 4ϑ3(ϑ1)2 − 4(ϑ2)2 − 27(ϑ3)2

Using the Routh-Hurwitz stability criterion for fractional calculus defined in [7],
[16] and [17] we get the stability conditions for the nontrivial equilibrium.

Theorem 3.3. The positive equilibrium point is asymptotically stable if either of
the following criteria is satisfied:
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(i) D(P ) > 0, ϑ1 > 0, ϑ3 > 0, ϑ1ϑ2 − ϑ3 > 0 for all q ∈ (0, 1),
(ii) D(P ) < 0, ϑ1 ≥ 0, ϑ2 ≥ 0, ϑ3 > 0, 0 < q < 2

3 ,
(iii) D(P ) < 0, ϑ1 > 0, ϑ3 > 0, ϑ1ϑ2 = ϑ3 for all q ∈ (0, 1).

Hence we resume the stability conditions for the equilibrium E2(x2, 0, z2, u2) by
the following theorem. Therefore,

Theorem 3.4. For FPFE, if x2 <
k(rh−cm)
h(ak+r) , then we have;

(i) If x2 > x3 and r < r1, then the FPFE is unstable,
(ii) For x2 < x3 or (x2 > x3 and r > r1) if one of the condition

(i), (ii) or (iii) in Theorem 3.3 holds we get the local stability of FPFE.

To study the stability of the SPFE of E3(x3, y3, 0, u3), the Jacobian matrix
corresponding to the equilibrium SPFE is evaluated as

J(E3) =


r − 2ax3 − 2rx3

k − f
′
(x3)y3 −f(x3) −g(x3) −c

e1f
′
(x3)y3 0 −βy3 0
0 0 e2g(x3)− µ2 − γy3 0
m 0 0 −h

 .

(3.14)

As a first look, we can deduce that λ3 = e2g(x3) − µ2 − γy3 is an eigen-
value of the Jacobian matrix (3.14). By replacing the explicit formula of y3 =
e1x3(r−ax3− rx3k −

cm
h )

µ1
we obtain λ3 = e2g(x3) − µ2 −

γe1x3(r−ax3− rx3k −
cm
h )

µ1
. Obvi-

ously, if e2g(x3) − µ2 < 0 (equivalent to x2 > x3 ), then | arg(λ3)| > qπ
2 . Now we

presume that if e1f (x2)− µ1 > 0 (equivalent to x2 < x3 ). Then

λ3 =

{
> 0 for r < r2 :=

k
(

(e2g(x3)−µ2)µ1
γe1x3

+ax3+ cm
h

)
k−x3

,

< 0 for r > r2.

Under the condition λ3 > 0, we get | arg(λ3)| < qπ
2 . This means that FPFE is

an unstable equilibrium point. Besides, from λ3 > 0, we conclude that | arg(λ3)| <
qπ
2 . This means that three remaining eigenvalues of the Jacobian matrix (3.14)

determine the stability (resp., instability) of this equilibrium. Note that these
significant eigenvalues are the eigenvalues of the matrix

J̃ =

 r − 2ax3 − 2rx3

k − f
′
(x3)y3 −f(x3) −c

e1f
′
(x3)y3 0 0
m 0 −h

 . (3.15)

To determine the nature of the eigenvalues of the reduced matrix (3.15), we
define the characteristic equation of (3.15 ) as

P ∗(λ) = λ3 + θ1λ
2 + θ2λ+ θ3,
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where

θ1 = h− r + 2ax3 +
2rx3

k
+ f

′
(x3)y3,

θ2 = −cm− hr − 2hax3 +
2hrx3

k
+ hf

′
(x3)y3 + e1f

′
(x3)f(x3)y3,

θ3 = he1f
′
(x3)f(x3)y3.

D(P ∗) denotes the discriminant of the cubic polynomial
D(P ∗) = 18θ1θ2θ3 + (θ1θ2)2 − 4θ3(θ1)2 − 4(θ2)2 − 27(θ3)2

With the same technics in Theorem 3.3, we get the stability conditions for the
nontrivial equilibrium. Therefore

Theorem 3.5. For SPFE if x2 <
k(rh−cm)
h(ak+r) , then we have;

(i) If x2 < x3 and r < r2, then the FPFE is unstable.
(ii) For x2 > x3 or (x2 < x3 and r > r2) if one of the conditions in

(i), (ii) or (iii) in Theorem 3.3 holds, we get the local stability of FPFE.

Now we are in a position to focus on studying the local behavior of the coexistence
equilibrium. For this positive equilibrium point, we have that assumption for the
existence of at least one non-negative solution of the system (1.1). The Jacobian
matrix of the system (1.1) evaluated at the equilibrium E4(x∗, y∗, z∗, u∗) is given
by

J(E4) =


r − 2ax∗ − 2rx∗

k − f ′(x∗)y∗ − g′(x∗)z∗ −f(x∗) −g(x∗) −c
e1f

′
(x∗)y∗ e1f(x∗)− µ1 − βz∗ −βy∗ 0

e2g
′
(x∗)z∗ −γz∗ e2g(x∗)− µ2 − γy∗ 0
m 0 0 −h

 .

(3.16)

Therefore, the characteristic equation associated with Jacobian (3.16) is

∆(λ) = λ4 + Φ1λ
3 + Φ2λ

2 + Φ3λ+ Φ4,

where

Φ1 = h− r + 2ax∗ +
2rx∗

k
+ g

′
(x∗)z∗ + f

′
(x∗)y∗,

Φ2 = cm− rh+ 2hax∗ +
2rhx∗

k
+ hg

′
(x∗)z∗ + hf

′
(x∗)y∗ + βy∗γz∗ + e1f

′
(x∗)f(x∗)y∗

+e2g
′
(x∗)g(x∗)z∗,

Φ3 = hβy∗γz∗ + he1f
′
(x∗)f(x∗)y + he2g

′
(x∗)g(x∗)z∗ − rβy∗γz∗ + 2ax∗βy∗γz∗

+
2rx∗

k
βy∗γz∗ + g

′
(x∗) (z∗)

2
βy∗γ + f

′
(x∗) (y∗)

2
βγz∗ − f(x∗)βy∗e2g

′
(x∗)z∗

−g(x∗)e1f
′
(x∗)y∗γz∗,

Φ4 = cmβy∗γz∗ − rhβy∗γz∗ + hβy∗γz∗2ax∗ +
2hrx∗

k
βy∗γz∗ + hg

′
(x∗) (z∗)

2
βy∗γ

+hf
′
(x∗) (y∗)

2
βγz∗ − hf(x∗)βy∗e2g

′
(x∗)z∗ − hg(x∗)e1f

′
(x∗)y∗γz∗.
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and D(4) denotes the discriminant of the polinom 4(λ) as follows,

D(∆) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 4 0 0 0
Φ1 1 0 3Φ1 4 0 0
Φ2 Φ1 1 2Φ2 3Φ1 4 0
Φ3 Φ2 Φ1 Φ3 2Φ2 3Φ1 4
Φ4 Φ3 Φ2 0 Φ3 2Φ2 3Φ1

0 Φ4 Φ3 0 0 Φ3 2Φ2

0 0 Φ4 0 0 0 Φ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 256 (Φ4)

3 − 192Φ1Φ3 (Φ4)
2 − 128 (Φ4)

2
(Φ2)

2
+ 144Φ2(Φ3)2Φ4

−27(Φ3)4 + 144(Φ1)2Φ2(Φ4)2 − 6(Φ1)2(Φ3)2Φ4 − 80Φ1(Φ2)2Φ3Φ4

+18Φ1Φ2(Φ3)3 + 16(Φ2)4Φ4 − 4(Φ2)3(Φ3)2 − 27(Φ1)4(Φ4)2

+18(Φ1)3Φ2Φ3Φ4 − 4(Φ1)3(Φ3)3 − 4(Φ1)2(Φ2)3Φ4 + (Φ1)2(Φ2)2(Φ3)2.

Using the Routh-Hurwitz stability criterion for fractional calculus, we get the
stability conditions for the nontrivial positive equilibrium.

Theorem 3.6. The positive equilibrium point E4(x∗, y∗, z∗, u∗) is asymptotically
stable if either of the following criteria is satisfied:

(i) D(∆) > 0,Φ1 > 0, Φ3 > 0, Φ4 > 0, Φ1Φ2 − Φ3 > 0,

Φ3(Φ1Φ2 − Φ3)− (Φ1)
2

Φ4 > 0
(ii) D(∆) < 0, Φ1 ≥ 0, Φ2 ≥ 0, Φ3 ≥ 0, Φ4 ≥ 0, 0 < q < 2

3 .
(iii) D(∆) < 0, Φ1 > 0, Φ3 > 0, Φ4 > 0, Φ1Φ2 = Φ3, Φ3(Φ1Φ2 − Φ3) =

(Φ1)
2

Φ4) for all q ∈ (0, 1).

4. Numerical analysis of the system (1.1)

The main purpose of this section is to solve the following fractal problem nu-
merically:

c
0D

q
tV (t) = P (t, V (t)) . (4.1)

By applying the fundamental theorem of fractional calculus on (1.1), we get

V (t)− V (0) =
1

Γ(q)

∫ t

0

P (s, V (s)) (t− s)q−1ds. (4.2)

Letting t = tn = nh in (4.2), we arrive at

V (tn) = V (0) +
1

Γ(q)

n−1∑
i=0

∫ ti+1

ti

P (s, V (s)) (tn − s)q−1ds.

Now we can approximate the function P (t, V (t)) by the following linear approx-
imation:
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P (t,K(t)) ≈ P (ti+1, Vi+1) +
t− ti+1

h
(P (ti+1, Vi+1)− P (ti, Vi)) , tε[ti, ti+1]

(4.3)
with the notation Vi = V (ti).
By substituting equation (4.2) into (4.3) and applying some algebra (for more

detail, see [6]) we get

Vn = V0 + hq

(
ΦnP (t0, V0) +

n∑
i=1

Ψn−iP (ti, Vi)

)
(4.4)

with

Φn =
(n− 1)q+1 − nq(n− q − 1)

Γ(q + 2)
,

Ψn =

{
1

Γ(q+2) , n = 0,
(n−1)q−2nq+(n+1)q

Γ(q+2) n = 1, 2, 3, ...

Using the numerical method presented in the formula (4.4) to solve the problem
(4.1), we obtain the following iterative schemes:

xn = x0 + hq

(
ΦnP1 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP1 (xi, yi, zi, ui)

)
,

yn = y0 + hq

(
ΦnP2 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP2 (xi, yi, zi, ui)

)
,

zn = z0 + hq

(
ΦnP3 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP3 (xi, yi, zi, ui)

)
,

un = u0 + hq

(
ΦnP4 (x0, y0, z0, u0) +

n∑
i=1

Ψn−iP4 (xi, yi, zi, ui)

)
,

where

P1(x, y, z, u) = x(r − ax− rx

k
)− f(x)y − g(x)z − cu,

P2(x, y, z, u) = e1f(x)y − µ1y − βyz,
P3(x, y, z, u) = e2g(x)z − µ2z − γyz,
P4(x, y, z, u) = −hu+mx.

5. Conclusion

In this research, we studied an ecological model with two predators fighting on
one prey with a generalized functional response. We consider a fractional-order
predator–prey model incorporating feedback control. The reason behind consid-
ering a comprehensive generalized class of functional interaction is to model the
diversity in predator–prey interaction with the environment. These interactions
can be affected by many factors, such as the environment and the adaptation of
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the three species. We analyzed the existence of different equilibrium points and
some criteria were derived to ensure the asymptotical stability of these equilibrium
points. In the first section, we studied the existence of the equilibria of the sys-
tem (1.1), where we can have many equilibrium points next to the predator-free
equilibrium. By analyzing the existence of the equilibria we obtained that these
populations may have many scenarios. They include the extinction of three pop-
ulations, two types of predators, the extinction of each population of predators,
and finally the coexistence of the three populations. For the coexistence stage, we
provided some conditions on the model parameters for the existence of this equi-
librium. The theoretical results show that feedback control play important roles in
adjusting coexistence of prey species and predator species. To determine which sce-
nario will prevail, we have utilized the local asymptotic stability using the Jacobian
matrix.
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Abstract. Since 1992, the International Federation of Association Football

(FIFA) has been ranking senior mens national soccer teams based on a variety
of criteria. In 2003, FIFA extended the FIFA/Coca-Cola World Rankings into

ranking senior womens national soccer teams. The FIFA/Coca-Cola World

Rankings published just before the 1994 FIFA World Cup USA, 1998 FIFA
World Cup France, 2002 FIFA World Cup Korea/Japan, 2006 FIFA World Cup

Germany, 2010 FIFA World Cup South Africa, 2014 FIFA World Cup Brazil,

2018 FIFA World Cup Russia, 2003 FIFA World Cup USA, 2007 FIFA World
Cup China, 2011 FIFA World Cup Germany, 2015 FIFA World Cup Canada,

and the 2019 FIFA World Cup France were considered. These rankings were

compared to the final results of those FIFA World Cups based on two different
methods of displaying the teams finish and were analyzed. Of the top 16

teams in each of the Mens FIFA World Cups, 74.1% of those teams advanced
to the Round of 16. Meanwhile, 83.9% of the top 12 teams in each of the

Womens FIFA World Cups advanced to the Round of 16 or Quarterfinals.

The Pearson correlation coefficient between the Pre-Tournament rankings and
final results was calculated using both ranking methods. The Womens World

Cups had higher Pearson correlation coefficients for both methods than the

Mens World Cups. In addition, the Womens World Cups had higher t-values
and z-scores than the Mens World Cup when tested for independence and
association between the Pre-Tournament rankings and final results using both

ranking methods. These findings indicate that the Womens World Cups were
more predictable than Mens World Cups based on the FIFA/Coca-Cola World

Rankings.

1. Introduction

In December 1992, FIFA instituted a ranking system of mens senior national
soccer teams. The first iteration of the ranking system was in place from 1993 until
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1998. The system gave teams one point for a tie or draw, three points for a win,
and no points for a draw in games that were acknowledged by FIFA. Over this time
period, FIFA saw the need for improvement in the ranking of senior national teams.
This improvement included the addition of criteria to the ranking procedure such
as considering the results of games played by senior national teams over the last
8 years and including data such as game outcome (win, loss, or draw), number of
goals, location of the game (home, away, or neutral), importance of the match, and
strength of the region.

The weighting procedure for the importance of the match assigned a 1.0 weight
for a friendly match, a 1.50 weight for a continental championship group stage or
qualifying match and a FIFA World Cup qualifying match, group stage match, a
1.75 weight for a Continental Finals match or a FIFA Confederation Cup match,
and a 2.0 weight for a FIFA World Cup finals match. Additionally, different regions
had different weights added to their matches. For example, the Union of European
Football Associations (UEFA) had a weight of 1, Confederacin Sudamericana de
Ftbol or the South American Football Federation (CONMEBOL) had a weight
of 0.99, the Confederation of North, Central America and Caribbean Association
Football (CONCACAF) had a weight of 0.94, the Asian Football Confederation
(AFC) had a weight of 0.93, and the Oceania Football Confederation (OCF) had a
weight of 0.93. In the case of a negative point total, the points would be rounded
up to 0 (FIFA, 2005).

A third iteration of the rankings made their debut in 2006 following the 2006
FIFA World Cup in Germany. This ranking system was based off of the match
outcome which awarded 3 points for a win, 1 point for a tie, and 0 points for a
loss. This varied the importance of matches from a weighted multiplier of 1 for a
friendly to 4 for a FIFA World Cup match. The strength of the opponent formula
was ({200-Position in rankings}/100) and the strength of the region which was
based on the regions results at the last 3 FIFA World Cup. The occurrence of
the game with more recent games have more of an impact on the ranking, and
the average number of points won from matches in the last 12 months prior to the
ranking (FIFA, 2007).

Although not relevant for any of the World Cups considered in this study, the
FIFA/Coca-Cola World Ranking changed again in 2018 following the 2018 FIFA
World Cup and then had an additional change made in 2022 to round decimals to
the nearest hundredth to promote accuracy. The current ranking format follows
the formula:

P = Pbefore + I(WWe). (1.1)

The P of the equation stands for total points. The Pbefore stands for points
before a particular game. I stands for the importance of the match with a value
of 5 for international friendlies played outside of the International Match Calendar
(windows set aside for senior national team matches), 10 for international friendlies
played within these windows, 15 for matches that happen during the group stage of
Nations League matches within each region, 25 for any playoff and finals matches
in these Nations Leagues and qualifying matches for the FIFA World Cup and
Confederations finals, 35 for matches that occur between the group stages and
quarterfinals of a Confederations Final, 40 for Confederations Final matches from
the quarterfinal stage onwards and all games that happen at the FIFA Confeder-
ations Cup, 50 for FIFA World Cup matches that occur between the group stages



PREDICTABILITY OF THE MENS AND WOMENS FIFA WORLD CUP 33

and quarterfinals, and 60 for FIFA World Cup quarterfinals, semifinals, 3rd place,
and finals matches. W stands for the outcome of the match with 1 for a win, 0.5
for a draw, and 0 for a loss. We stands for expected win and is defined as

We =
1

10(Pbefore,B−Pbefore,A)/600 + 1
. (1.2)

Additionally, this model analyzes results from a penalty shootout and other
results with different weights (FIFA, 2018). The FIFA Womens World Rankings
havent changed since their inception in 2003. The FIFA Womens World Rankings
has the formula

WWRnew = WWRold + (Actual− Predicted). (1.3)

This is where WWRnew stands for the new senior national team Womens World
Ranking. WWRold stands for the old Womens World Ranking. The actual and pre-
dicted value come from the match outcome, goal differential, goals scores, location
of the match, importance of the match, and difference in their and their opponents
points before a match (FIFA). While the FIFA/Coca-Cola Mens World Rankings
have had three different formats under which World Cups have been played, the
FIFA/Coca-Cola Womens World Rankings have had one iteration of the rankings.
However, the Womens FIFA World Cup has undergone changes including going
from 16 to 24 teams and increasing the number of teams who make the knockout
rounds, while the Mens World Cup has increased from 24 to 32 teams, but has not
increased the number of teams who make the knockout rounds. For this reason, the
predictability of both of the FIFA World Cup final results was studied based on two
methods of classification of those results against the Pre-Tournament Rankings.

2. Methods

2.1. Data Collection. The data collected for this study include the results of
the Mens 1994 FIFA World Cup USA, 1998 FIFA World Cup France, 2002 FIFA
World Cup Korea/Japan, 2006 FIFA World Cup Germany, 2010 FIFA World Cup
South Africa, 2014 FIFA World Cup Brazil, and the 2018 FIFA World Cup Russia.
Additionally, results of the Womens 2003 FIFA World Cup USA, 2007 FIFA World
Cup China, 2011 FIFA World Cup Germany, 2015 FIFA World Cup Canada, and
2019 FIFA World Cup France were also obtained. The FIFA/Coca-Cola Mens and
Women’s Ranking was gathered from the ranking that occurred in March before the
Womens FIFA World Cup and May for the Mens FIFA World Cup. These results
are all publicly available on the FIFA website (fifa.com). The organized data of
both the Pre-Tournament Rankings and final results are available in the appendix.

2.2. Analytical Procedures. The acquired data was studied using Chi-Square
tests to standardize the data, rules were adapted and implemented to try to un-
derstand how FIFA World Cups would play out based on suggested Group winners
and teams that would advance to the Round of 16. This data was supplemented
by results of teams ranked in the top 12 or 16 of the respective FIFA World Cup
Pre-Rankings against those outside of the top 12 or 16. The effectiveness of these
predictive methods was tested by running the Fisher Transformation Hypothesis
Test and the Students t-test to analyze the effectiveness of using the FIFA/Coca-
Cola World Rankings in predicting FIFA World Cup final results (Suzuki & Ohmori,
2008).
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2.3. Rules Analysis. The first step in analyzing these results is to create rules
to sort the data and evaluate the effectiveness of rankings between the Mens and
Womens FIFA World Cup. First, the teams that qualified for the FIFA World Cup
in their respective year and classification had their ranking documented and then
sorted to get a list of 16 teams (Womens 2003 FIFA World Cup USA, 2007 FIFA
World Cup China, and 2011 FIFA World Cup Germany), 24 teams (1994 FIFA
World Cup USA Womens 2015 FIFA World Cup Canada, and 2019 FIFA World
Cup France), 32 teams (all other Mens FIFA World Cups besides the 1994 FIFA
World Cup USA). The game results of teams that fell within the top 16 teams
qualified for the Mens FIFA World Cups and top 12 for the Womens FIFA World
Cup against teams below these marks were gathered and sorted for testing. The
final placement of teams was determined using two methods.

For the Mens World Cups, in Method A, the top 4 finishing teams were given
a 1,2,3, or 4 based on their corresponding place. Then, if a team was eliminated
in the Group Stage, they were assigned a 7, teams eliminated in the Round of 16
assigned a 6, and teams eliminated in the Quarterfinals a 5. In Method B, the top
4 teams were given a 1,2,3, or 4 based on their corresponding place. Then, if a
team was eliminated in the Group Stage, they were assigned a 24 ( if this was the
1994 FIFA World Cup USA) or 32 (if this was any other Mens FIFA World Cup),
teams eliminated in the Round of 16 a assigned 16, and teams eliminated in the
Quarterfinals assigned an 8.

For the Womens World Cups, in Method A, the top 4 finishing teams were given
a 1,2,3, or 4 based on their corresponding place. Then, if a team was eliminated in
the Group Stage, they were assigned a 7 (if this was the 2015 or 2019 FIFA World
Cup) or 6 (if this was the 2003, 2007, or 2011 FIFA World Cup), teams eliminated
in the Round of 16 are assigned a 6, and teams eliminated in the Quarterfinals are
assigned a 5. In Method B, the top 4 teams were given a 1,2,3, or 4 based on their
corresponding place. Then, if a team was eliminated in the Group Stage, they were
assigned a 16 (if this was the 2003, 2007, or 2011 FIFA World Cup) or 24 (if this
was the 2015 or 2019 FIFA World Cup), teams eliminated in the Round of 16 were
assigned a 16, and teams eliminated in the Quarterfinals were assigned an 8.

3. Statistical Testing Analysis

3.1. Fisher Exact Test. The study used the Fisher Exact Test to test the number
of top 12 or 16 teams that advanced from the Group Stage vs the number of lower
ranked teams advancing from the Group Stage. A second Fisher Exact Test was
run on the differences in winning percentage in games played by teams ranked in
the top 12 or 16 teams of the World Cup and against those of lower ranked teams.
This allowed the study to determine if the association between the differences in
advancement or winning percentage was different or not. Thus, consider the popu-
lation in the study to be the FIFA World Cups in which there was a ranking that
was available right before the World Cup was played. For simplicity, let there be
variables S and F such that there are m and n collected states in S and F that
creates an mxn matrix (Hoffman, 2014). Then, to represent a specific cell in the
m n matrix, let’s denote this xij such that s = i and f = j. Then the total sum
of observable states is N = ΣiRi = ΣjRj such that Cj is the sum of the columns
and Ri is the sum of the rows. The Fisher Exact Test calculates the conditional
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probability that this matrix exists through the formula (Weisstein)

p =
(R1!R2! . . . Rm!)(C1!C2! . . . Cn!)

N !
∏
i,j xij

. (3.1)

Fishers exact test is then paired with the Chi-Square Test so that the study has a
standard measurement of association between variables.

3.2. Chi-Square Test. Since the measurement for over 80% of the variables used
and boolean values, a Chi-Square Test is also considered. The Chi-Square test
statistics is classically defined as

χ2 =

k∑
i=1

[ni − E(ni)]
2

E(ni)
=

k∑
i=1

[ni − npi]2

npi
, (3.2)

where n stands for total number of games or teams, ni stands for a particular
number of teams advancing or not or games won, loss, or drawn, and pi is the
probability of this event happening. Expected cell frequencies are calculated using
E(n̂ij) = (ricj)/n where n stands for total number of games or teams, and ri and
cj stand for specific row and column totals (Wackerly et al., 2012).

3.3. Pearson Correlation Coefficient. The rules analysis described by Methods
A and B, in combination with the Fisher Exact Test and Chi-Square Test set the
basis which allows the study to take into account the Pearson correlation coefficient
because the graphs of our rules vs final results are not monotonic. Therefore, the
study draws a line of best fit of the form Y = β0 +β1x+ ε such that the parameter
β1 =

σy

σx
ρ and E(Y |X = x) = β0 + β1x . This implies that ρ is positive when,

generally, as X increases Y increases and that ρ is negative when as Y decreases,
X increases. Going forward, ρ can be expressed in terms of r where

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ )2

. (3.3)

Here, n is the total teams that participated in the FIFA World Cups considered
and Xi and Yi are sample team rankings within the World Cups considered, and X̄
and Ȳ are the sample means (Wackerly et al., 2012). The study will use the Fisher
Transformation when constructing the null and alternative hypotheses.

3.4. Fisher Transformation Hypothesis Test. Consider the null hypothesis
H0 : ρ = 0 with an alternative hypothesis Ha : ρ 6= 0 using a level of α = 0.05.

From the Fisher transformation, the study has F (r) = 1
2 ln

(
1+r
1−r

)
. The Fisher

transformation will allow for F (r) to follow an approximately normal distribution
such that the mean= F (ρ) = F (0) = 0 with standard deviation 1√

n−3 , where n is

the number of teams that have played in the FIFA World Cup since the Ranking
system began. Using these variables, a z-score is obtained (Vrbik, 2005) such that

z =
x
1√
n−3

= F (r)
√
n− 3. (3.4)

To further strengthen the argument for whether the Mens or Womens World Cup
is more predictable, this test is paired with a Students t-distribution.
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3.5. Student’s t-test. The t-distribution test is defined from a bivariate normal
distribution of a population value (which is consistent with this studys data) with
the null hypothesis. The null hypothesis is that there is no correlation between
the final finish ranking through Methods A and B against the Pre-Tournament
Rankings of the teams participating in the FIFA World Cup. The t-test has n-2
degrees of freedom where n stands for the total number of teams that participated
in the Mens or Womens World Cup. In this studys analysis this will be 216 for Men
and 96 for Women. The Students t-test statistic (Rahman, 1968) is calculated by

t = r

√
n− 2

1− r2
. (3.5)

The critical value of r (Soper et al., 1917) is determined as

r =
t√

n− 2 + t2
. (3.6)

Using the results from the statistical tests, this study will aim to define whether
the Mens or Womens World Cup is more predictable based on Pre-Tournament
Rankings.

4. Results

4.1. Mens World Cup Analysis.

4.1.1. Tests of Association. The Fisher Exact Test was used to determine if there
was a nonrandom association between the number of teams in the Top 16 that
advanced to the Round of 16 against the teams in the lower 16 based on each of
the different ranking formats.

Table 1: Tests of Association
Advancement from Group Stage in FIFA World Cup

Type FIFA World
Cup 1994
and 1998

FIFA World
Cup 2002
and 2006

FIFA World
Cup 2010,
2014, and
2018

Total

Top 16
Ranked
Teams Ad-
vancing to
the Round of
16

25 (23.714) 22 (23.714) 36 (35.571) 83

Lower 16
Teams Ad-
vancing to
the Round of
16

7 (8.286) 10 (8.286) 12 (12.429) 29

Total 32 32 48 112

Note: the number in parenthesis are the expected counts. From the information
detailed in Table 1, we find the p-value to be p = 0.679. From this we find that
there is not a statistically significant association between the number of teams that
were ranked in the top 16 of the World Cup that advanced to the Round of 16
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against the number of teams that were ranked in the lower 16 of the World Cup
that advanced.

As a standardizing tool, we use a Chi-Squared test of association. Using the data
from Table 1, we find the Chi-Square value to be 0.768 with degrees of freedom
(d.f.) = 2, and a p-value (p)= 0.681. Thus, there is not a statistically significant
association between the number of teams that were ranked in the top 16 of the
World Cup that advanced to the Round of 16 against the number of teams that
were ranked in the lower 16 of the World Cup that advanced. This is consistent
with our findings from the Fisher Exact test.

Another Chi-Squared test of association was run using the win, loss, and draw
data from matches played of teams ranked in the top 16 against those from outside
of the top 16 based on each of the different ranking formats.

Table 2: Tests of Association
Win/Loss/Draw Record Comparison

Type FIFA World
Cup 1994
and 1998

FIFA World
Cup 2002
and 2006

FIFA World
Cup 2010,
2014, and
2018

Total

Win 32 (32.888) 39 (39.981) 67 (65.131) 138
Loss 10 (8.579) 10 (10.430) 16 (16.991) 36
Draw 9 (9.533) 13 (11.589) 18 (18.879) 40
Total 51 62 101 214

Note: The numbers in parenthesis are the expected counts. From the data in Table
2, we find the Chi-Squared value is 0.655 with a p-value of p= 0.957. Note, the
Fisher Exact Test cannot be used since the number of matches played was over
90. Since the p-value was found to be greater than 0.05, there is not a statistically
significant association between the win, loss, draw records of the teams ranked in
the top 16 against those from outside of the top 16.

4.1.2. Rules Analysis. Using the Chi-Square test and Fisher Exact test as a base-
line, the rules described were analyzed by finding the Pearson Correlation Coef-
ficient and running the Fisher Transformation Hypothesis Test and the Students
t-test to test the independence of the Pre-Tournament Rankings and the Final
Results analyzed by the rules of Methods A and B.

In Figure 1, the Pre-Tournament Rankings and Final Results using Method A.
The Pearson Correlation Coefficient (r) was computed by taking the square root
of R2 to obtain r = 0.405. Next, a Fisher Transformation Hypothesis Test is done
using a two-tailed test to test if r 6= 0. Thus, in running the test, F(0.405) =
1
2 ln(2.361) = 0.430, with n = 216, and z = (0.430)

√
213 = 6.270. Hence, there

is a correlation between the Pre-Tournament Rankings and Final Results using
Method A. To further provide evidence of the existence of a correlation between
Pre-Tournament Rankings and Final Results using Method A, a Students t-test was
run and gave the following data: t = 6.006, r = 0.380, and d.f. = 214. Similarly,
the probability of this happening by chance is found to be roughly 0, and this
provides further evidence of a correlation between Pre-Tournament Rankings and
Final Results using Method A.
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Figure 1.

Figure 2.

To determine which method was better at predicting the outcome of the World
Cup, the same steps were taken in regards to Method B. In Figure 2, the Pre-
Tournament Rankings and Final Results using Method B were analyzed via a scat-
ter plot. As before, the Pearson Correlation Coefficient (r) was computed by taking
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the square root of R2 to get r = 0.425. The Fisher Transformation Hypothesis
Test is done using a two-tailed test to test if r 6= 0. Thus, we find F(0.425) =
1
2 ln(2.489) = 0.454, n = 216, and z = (0.454)

√
213 = 6.631. Hence, we find there

is a correlation between the Pre-Tournament Rankings and Final Results using
Method B. To further provide evidence of the existence of a correlation between
Pre-Tournament Rankings and Final Results using Method B, a Students t-test
was run and gave the following data: t = 6.878, r = 0.425, and d.f. = 214. Like-
wise the probability of this happening by chance is found to be roughly 0, and this
provides evidence of a correlation between Pre-Tournament Rankings and Final
Results using Method B.

4.2. Womens World Cup Analysis.

4.2.1. Tests of Association. In a similar fashion to the Mens World Cups, the Wom-
ens World Cups are analyzed first by using the Fisher Exact Test to determine if
there is a nonrandom association between the number of teams in the Top 12 that
advanced to the Round of 8 or 16 against the teams in the lower 12 based on each
of the Womens World Cup formats.

Table 3: Tests of Association
Advancement from Group Stage in FIFA World Cup

Type FIFA World
Cup 2003, 2007,
and 2011

FIFA World
Cup 2015 and
2019

Total

Top 12 Ranked
Teams Ad-
vancing to the
Round of 8 or
16

24 (20.143) 23 (26.857) 47

Lower Ranked
Teams Ad-
vancing to the
Round of 8 or
16

0 (3.857) 9 (5.146) 9

Total 24 32 56

Note: The numbers in parenthesis are the expected counts. We find the two-tailed
p-value to be p = 0.007. From this we find that there is a statistically significant
association between the number of teams that were ranked in the top 12 of the
World Cup that advanced to the Round of 8 or 16 against the number of teams
that were ranked in the lower 12 of the World Cup that advanced.

Proceeding as we did before, we use a Chi-Squared test of association to compute
the Chi-Square value. We found the value to be 8.043 with degrees of freedom d.f. =
1, and a p-value (p)= 0.005. Thus, there is a statistically significant association
between the number of teams that were ranked in the top 12 of the World Cup that
advanced to the Round of 8 or 16 against the number of teams that were ranked in
the lower 12 of the World Cup that advanced. This is consistent with our finding
using the Fisher Exact Test.

Another Chi-Squared test of association was run using the win, loss, and draw
data from matches played of teams ranked in the top 12 against those from outside
of the top 12 based on each of the Womens World Cup formats.
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Table 4: Tests of Association
Win/Loss/Draw Record Comparison

Type FIFA World
Cup 2003, 2007,
and 2011

FIFA World
Cup 2015 and
2019

Total

Win 31 (29.494) 44 (45.506) 75
Loss 0 (1.180) 3 (1.82) 3
Draw 4 (4.326) 7 (6.674) 11
Total 35 54 89

Note: The numbers in parenthesis are the expected counts. We computed the Chi-
Squared value as 2.112 with a p-value of p = 0.348 and d.f. = 2. Thus we find
that there is not a statistically significant association between the win, loss, draw
records of the teams ranked in the top 12 against those from outside of the top 12.

4.2.2. Rules Analysis. Using the Chi-Square test and Fisher Exact test as a base-
line, the rules ranking the teams described were analyzed by first calculating the
Pearson Correlation Coefficient and then running Fisher Transformation Hypoth-
esis Test and the Students t-test to test the independence of the Pre-Tournament
Rankings and the Final Results analyzed by the rules of Methods A and B.

Figure 3.

In Figure 3, the Pre-Tournament Rankings and Final Results using Method
A were analyzed via a scatter plot. The Pearson Correlation Coefficient (r) was
computed by taking the square root of R2 to get r= 0.683. Next, a Fisher Trans-
formation Hypothesis Test is done using a two-tailed test to test if r 6= 0. The
Fisher Hypothesis Test results in F(0.683)= 0.835, with z = 8.052, and n = 96.
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This leaves the study with a critical value that is less than 0.05 since z = 8.052,
which has a p-value of approximately 0. Hence, there is a correlation between the
Pre-Tournament Rankings and Final Results using Method A. To further support
our claim that there is a correlation between Pre-Tournament Rankings and Final
Results using Method A, a Students t-test was run and gave the following data:
t = 9.062, r = 0.683, and d.f.=94. Similarly the probability of this happening due
to chance is found to be approximately 0, and this provides evidence of a correlation
between Pre-Tournament Rankings and Final Results using Method A.

In order to discuss which method is better in analyzing the outcome of the World
Cup, the same analysis was conducted using the rules described in Method B.

Figure 4.

The Pre-Tournament Rankings and Final Results using Method B were analyzed
via a scatter plot. From here, the Pearson Correlation Coefficient (r) was computed
by taking the square root of R2 to get r = 0.757. Next, a Fisher Transformation
Hypothesis Test is done using a two-tailed test to test if r 6= 0. The Fisher Trans-
formation F(0.757) = 0.989, z = 9.538, and n = 96. This leaves the study with
a critical value that is less than 0.05 since z = 9.538, which has a p-value of ap-
proximately 0. Hence, there is a correlation between the Pre-Tournament Rankings
and Final Results using Method B. To further support our claim that there is a
correlation between Pre-Tournament Rankings and Final Results using Method B,
a Students t-test was run and gave the following data: t = 11.232, r = 0.757, and
d.f. = 94. Similarly, the probability of this happening by chance is found to be
roughly 0, and this provides further support of our claim of a correlation between
Pre-Tournament Rankings and Final Results using Method B.
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5. Discussion

Our objective was to determine which FIFA/Coca-Cola World Ranking system
was better at predicting the Mens or Womens World Cup winner when changes
in the ranking and FIFA World Cup format and rules based Final results ranking
were taken into account. Based on Table 1 and Table 3, the majority of teams
advancing to the Round of 8 or 16 were teams that were in the top 12 or 16 of the
Pre-Tournament Rankings. This proves to be a good indicator because each FIFA
World Cup Champion has been ranked inside the top 12 or 16 in the rankings prior
to each tournament. One can argue that if the FIFA/Coca-Cola World Ranking
system was completely accurate at predicting the World Cup, then 100% of the
teams in the top 16 or 12 of the rankings should be in the World Cup and advance
to the Round of 16 or 8. However, this is not the case because each region has
different allotments for teams that qualify to the World Cup, and sometimes a
higher ranked team doesnt qualify for the FIFA World Cup. For that reason,
teams were then re-ranked based on the qualified teams for the FIFA World Cup.
Additionally, FIFA does not have a way in drawing the groups such that each of
the top 12 or 16 teams do not end up in the same group. For that reason, there
are instances where a group may have had three or four teams in the top 12 or
16 with only the top two advancing, while others may only have one team. This
would mean that there are some groups where a team from outside of the top 16
would be guaranteed to make the Round of 16 or 8, such as in Group A of the 2018
World Cup where Uruguay and Egypt were predicted to advance, but Uruguay was
the only team in the Top 16 of the Pre-Tournament Rankings, meaning the other
prediction would not be as accurate and subsequently was not as Russia advanced.

For this reason, winning percentages are also taken into account when determin-
ing the validity of the FIFA/Coca-Cola World Rankings. With the top 16 teams of
the Mens World Cup having an overall winning percentage of 73.8% and the top
12 teams of the Womens World Cup having a winning percentage of 90.4%, the
trend is that the top 16 or 12 teams often beat teams outside of the top 16 or 12.
Based on our analysis using the Fisher Transformation Hypothesis Test and the
Student t-test, we found evidence that a correlation between the Pre-tournament
rankings and the final outcomes of the FIFA World Cup was present using both
ranking methods. This implies that the FIFA/Coca-Cola World Rankings are a
reliable predictor of World Cup outcomes, to an extent.

Having shown that the FIFA/Coca-Cola World Ranking, to an extent, are a
predictor of the FIFA Mens and Womens World Cup winners, it became an objective
to find which World Cup it predicted better. First, from Table 1 and Table 3, the
Womens World Cup has 83.9% of their top 12 teams advancing to the Round of 8
or 16 in comparison to the 74.1% of the Mens World Cup top 16 teams advancing
to the Round of 16. Our analysis demonstrates that the Womens World Cup has
statistically significant values from the Fisher Exact test and Chi-Square test for
association, while the Mens World Cup does not. This implies that there is a
statistically significant association between the number of teams that were ranked
in the top 12 of the Womens World Cup that advanced to the Round of 8 or 16
against the number of teams that were ranked in the lower 12 of the Womens World
Cup that advanced. Similarly, in Table 2 and Table 4, Womens World Cup top
12 teams have a winning percentage of 90.4% in comparison to the 73.8% winning
percentage of the top 16 Mens World Cup teams against those outside of the top 12
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or 16. Furthermore, while the win, loss, and draw records did not have statistically
significant results, the Womens World Cup had lower Chi-Square test for association
values. This shows the Womens World Cup win, loss, and draw values for teams
in the top 12 against those outside of the top 12 is more statistically significant
than the match results of the teams in the top 16 of the Mens World Cup against
those who are not. When doing the rules analysis, Method B has higher Pearson
Correlation Coefficients in Figure 2 and Figure 4 when compared with their
corresponding graph (0.425 vs 0.405 and 0.757 vs 0.683), but the Womens results
are more statistically significant. For example, when comparing Figure 1 and
Figure 3, the Mens World Cup has a lower t-value (6.006 vs 9.062), z-score (6.269
vs 8.052), Pearson Correlation Coefficient (0.405 vs 0.683) than the corresponding
Womens World Cup values. Moreover, in Figure 2 and Figure 4, the Mens
World Cup has a lower t-value (6.630 vs 11.232), z-score (6.878 vs 9.538), Pearson
Correlation Coefficient (0.425 vs 0.757) than the corresponding Womens World Cup
values. This demonstrates that the Womens World Cup is more predictable than
the Mens World Cup.

6. Conclusion

Based on our analysis, we have established statistical justification to the claim
that the Womens World Cup is more predictable than the Mens World Cup based on
the Final Results using Methods A and B and the Pre-Tournament Rankings from
the FIFA/Coca-Cola World Rankings. However, there are some crucial differences
between the Mens and Womens World Cups outside of the ranking structure and
World Cup format that this study did not consider such as the qualifying formats
(this sets the field of teams that will participate in the FIFA World Cup), different
playing surfaces (Womens World Cup are sometimes played on artificial turf while
the Mens World Cups are not), the differences in prize money ($400 million for the
Mens World Cup and $30 million for the Womens World Cup), and differences in
accommodations (Womens teams are forced to share hotel accommodations while
Mens teams do not). For example, all of these factors may impact the results of
this study and were not taken into consideration (Prahl, 2019). For that reason,
as the FIFA Womens soccer game grows worldwide and fights for equal pay such
as that undertaken by the United States Womens National Team (USWNT), the
results of this study may change. Like the Womens World Cup, the Mens will
soon be changing as the 2026 FIFA Mens World Cup will feature 48 teams in 16
groups of three where the top two teams from each group will progress through to
a 32-team knockout stage (FIFA, 2017). This would potentially weaken the results
of this model as the methods of ranking and the format of the World Cups are ever
changing and this model only utilized two rules for determining the final ranking.
However, our results are consistent with other studies that have used similar ranking
procedures and have found the process to be reliable. The results of our analysis
pointed to the Womens game having less independence between the final results
and pre-tournament ranking. Thus, under the current format, we conclude that
the Womens World Cup is more predictable than the Mens World Cup.
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7. Appendix

Table 1: FIFA 1994 Mens World Cup

FIFA 1994 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Germany 5 8
2 2 Netherlands 5 8
3 3 Brazil 1 1
4 4 Italy 2 2
5 5 Spain 5 8
6 6 Norway 7 24
7 7 Romania 5 8
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

8 8 Argentina 6 16
10 9 Sweden 3 3
11 10 Nigeria 6 16
12 11 Switzerland 6 16
14 12 Republic of Ireland 6 16
16 13 Mexico 6 16
17 14 Colombia 7 24
19 15 Russia 7 24
23 16 United States 6 16
24 17 Cameroon 7 24
27 18 Belgium 6 16
28 19 Morocco 7 24
29 20 Bulgaria 4 4
31 21 Greece 7 24
34 22 Saudi Arabia 6 16
37 23 South Korea 7 24
43 24 Bolivia 7 24

End of Table

FIFA 1994 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Romania, Switzer-
land

Romania, Switzer-
land

B Brazil, Sweden Brazil, Sweden
C Germany, Spain Germany, Spain
D Argentina, Nigeria Nigeria, (Bulgaria)
E Italy, Norway (Mexico), (Ireland)
F Netherlands, (Bel-

gium)
Netherlands, Bel-
gium

Note: Parenthesis in the Suggested outcome by rules column is representative
of an outside of the top 16 that is predicted to move on, while parenthesis around
teams in Actual Outcome by Rules are results that were different than predicted
results.

Table 2: FIFA 1998 Mens World Cup

FIFA 1998 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Brazil 2 2
2 2 Germany 5 8
4 3 Mexico 6 16
5 4 England 6 16
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

6 5 Argentina 5 8
7 6 Norway 6 16
8 7 Yugoslavia 6 16
9 8 Chile 6 16
10 9 Colombia 7 32
11 10 United States 7 32
12 11 Japan 7 32
13 12 Morocco 7 32
14 13 Italy 5 8
15 14 Spain 7 32
18 15 France 1 1
19 16 Croatia 3 3
20 17 South Korea 7 32
21 18 Tunisia 7 32
22 19 Romania 6 16
24 20 South Africa 7 32
25 21 Netherlands 4 4
27 22 Denmark 5 8
29 23 Paraguay 6 16
30 24 Jamaica 7 32
31 25 Austria 7 32
34 26 Saudi Arabia 7 32
35 27 Bulgaria 7 32
36 28 Belgium 7 32
41 29 Scotland 7 32
42 30 Iran 7 32
49 31 Cameroon 7 32
74 32 Nigeria 6 16

End of Table
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FIFA 1998 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Brazil, Norway Brazil, Norway
B Italy, Chile Italy, Chile
C France, (South

Africa)
France, (Denmark)

D Spain, (Paraguay) (Nigeria),
Paraguay

E Mexico, (South Ko-
rea)

Netherlands, (Mex-
ico)

F Germany, Yu-
goslavia

Germany, Yu-
goslavia

G England, Colombia (Romania), Eng-
land

H Argentina, Japan Argentina, (Croa-
tia)

Table 3: FIFA 2002 Mens World Cup

FIFA 2002 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 France 7 32
2 2 Brazil 1 1
3 3 Argentina 7 32
5 4 Portugal 7 32
6 5 Italy 6 16
7 6 Mexico 6 16
8 7 Spain 5 8
11 8 Germany 2 2
12 9 England 5 8
13 10 United States 5 8
15 11 Republic of Ireland 6 16
17 12 Cameroon 7 32
18 13 Paraguay 6 16
19 14 Sweden 6 16
20 15 Denmark 6 16
21 16 Croatia 7 32
22 17 Turkey 3 3
23 18 Belgium 6 16
24 19 Uruguay 7 32
25 20 Slovenia 7 32
27 21 Nigeria 7 32
28 22 Russia 7 32
29 23 Costa Rica 7 32
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

31 24 Tunisia 7 32
32 25 Japan 6 16
34 26 Saudi Arabia 7 32
36 27 Ecuador 7 32
37 28 South Africa 7 32
38 29 Poland 7 32
40 30 South Korea 4 4
42 31 Senegal 5 8
50 32 China 7 32

End of Table

FIFA 2002 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A France, Denmark Denmark, (Sene-
gal)

B Spain, Paraguay Spain, Paraguay
C Brazil, (Turkey) Brazil, Turkey
D Portugal, United

States
(South Korea),
United States

E Germany, Ireland Germany, Ireland
F Argentina, England (Sweden), England
G Mexico, Italy Mexico, Italy
H (Belgium),(Japan) Belgium, Japan

Table 4: FIFA 2006 Mens World Cup

FIFA 2006 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Brazil 5 8
2 2 Czech Republic 7 32
3 3 Netherlands 6 16
4 4 Mexico 6 16
5 5 United States 7 32
5 6 Spain 6 16
7 7 Portugal 4 4
8 8 France 2 2
9 9 Argentina 5 8
10 10 England 5 8
13 11 Italy 1 1
16 12 Sweden 6 16
18 13 Japan 7 32
19 14 Germany 3 3
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

21 15 Tunisia 7 32
23 16 Iran 7 32
23 17 Croatia 7 32
26 18 Costa Rica 7 32
29 19 South Korea 7 32
29 20 Poland 7 32
32 21 Ivory Coast 7 32
33 22 Paraguay 7 32
34 23 Saudi Arabia 7 32
35 24 Switzerland 6 16
39 25 Ecuador 6 16
42 26 Australia 6 16
44 27 Serbia and Mon-

tenegro
7 32

45 28 Ukraine 5 8
47 29 Trinidad and To-

bago
7 32

48 30 Ghana 6 16
57 31 Angola 7 32
61 32 Togo 7 32

End of Table

FIFA 2006 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Germany, (Costa
Rica)

Germany,
(Ecuador)

B England, Sweden England, Sweden
C Argentina, Nether-

lands
Argentina, Nether-
lands

D Portugal, Mexico Portugal, Mexico
E Czech Republic,

United States
(Italy), (Ghana)

F Brazil, Japan Brazil, (Australia)
G France, (South Ko-

rea)
France, (Switzer-
land)

H Spain, Tunisia Spain, (Ukraine)

Table 5: FIFA 2010 Mens World Cup

FIFA 2010 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Brazil 5 8
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

2 2 Spain 1 1
3 3 Portugal 6 16
4 4 Netherlands 2 2
5 5 Italy 7 32
6 6 Germany 3 3
7 7 Argentina 5 8
8 8 England 6 16
9 9 France 7 32
13 10 Greece 7 32
14 11 United States 6 16
15 12 Serbia 7 32
16 13 Uruguay 4 4
17 14 Mexico 6 16
18 15 Chile 6 16
19 16 Cameroon 7 32
20 17 Australia 7 32
21 18 Nigeria 7 32
24 19 Switzerland 7 32
25 20 Slovenia 7 32
27 21 Ivory Coast 7 32
30 22 Algeria 7 32
31 23 Paraguay 5 8
32 24 Ghana 5 8
34 25 Slovakia 6 16
36 26 Denmark 7 32
38 27 Honduras 7 32
45 28 Japan 6 16
47 29 South Korea 6 16
78 30 New Zealand 7 32
83 31 South Africa 7 32
105 32 North Korea 7 32

End of Table
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FIFA 2010 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A France, Uruguay Uruguay, (Mexico)
B Argentina, Greece Argentina, (South

Korea)
C United States, Eng-

land
United States, Eng-
land

D Germany, Serbia Germany, (Ghana)
E Netherlands,

Cameroon
Netherlands,
(Japan)

F Italy, (Paraguay) Paraguay, (Slo-
vakia)

G Brazil, Portugal Brazil, Portugal
H Spain, Chile Spain, Chile

Table 6: FIFA 2014 Mens World Cup

FIFA 2014 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Spain 7 32
2 2 Germany 1 1
3 3 Brazil 4 4
4 4 Portugal 7 32
5 5 Argentina 2 2
6 6 Switzerland 6 16
7 7 Uruguay 6 16
8 8 Colombia 5 8
9 9 Italy 7 32
10 10 England 7 32
11 11 Belgium 5 8
12 12 Greece 6 16
13 13 United States 6 16
14 14 Chile 6 16
15 15 Netherlands 3 3
17 16 France 5 8
18 17 Croatia 7 32
19 18 Russia 7 32
20 19 Mexico 6 16
21 20 Bosnia and Herze-

govina
7 32

22 21 Algeria 6 16
23 22 Ivory Coast 7 32
26 23 Ecuador 7 32
28 24 Costa Rica 5 8
33 25 Honduras 7 32
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

37 26 Ghana 7 32
43 27 Iran 7 32
44 28 Nigeria 6 16
46 29 Japan 7 32
56 30 Cameroon 7 32
57 31 South Korea 7 32
62 32 Australia 7 32

End of Table

FIFA 2014 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Brazil, (Croatia) Brazil, (Mexico)
B Spain, Chile Chile, (Nether-

lands)
C Colombia, Greece Colombia, Greece
D Uruguay, England (Costa Rica),

Uruguay
E France, Switzer-

land
France, Switzer-
land

F Argentina, (Bosnia
and Herzegovina)

Argentina, (Nige-
ria)

G Germany, Portugal Germany, (United
States)

H Belgium, (Russia) Belgium, (Algeria)

Table 7: FIFA 2018 Mens World Cup

FIFA 2018 Mens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Germany 7 32
2 2 Brazil 5 8
3 3 Belgium 3 3
4 4 Portugal 6 16
5 5 Argentina 6 16
6 6 Switzerland 6 16
7 7 France 1 1
8 8 Poland 7 32
10 9 Spain 6 16
11 10 Peru 7 32
12 11 Denmark 6 16
12 12 England 4 4
14 13 Uruguay 5 8
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

15 14 Mexico 6 16
16 15 Colombia 6 16
20 16 Croatia 2 2
21 17 Tunisia 7 32
22 18 Iceland 7 32
23 19 Costa Rica 7 32
24 20 Sweden 5 8
27 21 Senegal 7 32
34 22 Serbia 7 32
36 23 Australia 7 32
37 24 Iran 7 32
41 25 Morocco 7 32
45 26 Egypt 7 32
48 27 Nigeria 7 32
55 28 Panama 7 32
57 29 South Korea 7 32
61 30 Japan 6 16
67 31 Saudi Arabia 7 32
70 32 Russia 5 8

End of Table

FIFA 2018 Mens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Uruguay, (Egypt) Russia, (Uruguay)
B Spain, Portugal Spain, Portugal
C France, Peru France, (Denmark)
D Croatia, Argentina Croatia, Argentina
E Brazil, Switzerland Brazil, Switzerland
F Germany, Mexico (Sweden), Mexico
G Belgium, England Belgium, England
H Argentina, Japan Argentina, Japan

Table 8: FIFA 2003 Womens World Cup

FIFA 2003 Womens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 United States 3 3
2 2 Norway 5 8
3 3 Germany 1 1
4 4 China 5 8
5 5 Sweden 2 2
6 6 Brazil 5 8
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Continuation of Table 12
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

7 7 North Korea 6 16
9 8 France 6 16
11 9 Russia 5 8
12 10 Canada 4 4
14 11 Japan 6 16
15 12 Australia 6 16
23 13 Nigeria 6 16
25 14 South Korea 6 16
35 15 Argentina 6 16
53 16 Ghana 6 16

End of Table

FIFA 2003 Womens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A United States, Swe-
den

United States, Swe-
den

B Norway, Brazil Norway, Brazil
C Germany, Canada Germany, Canada
D China, Russia China, Russia

Table 9: FIFA 2007 Womens World Cup

FIFA 2007 Womens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 United States 3 3
2 2 Germany 1 1
3 3 Sweden 6 16
4 4 Norway 4 4
5 5 North Korea 5 8
6 6 Denmark 6 16
8 7 Brazil 3 3
9 8 Canada 6 16
10 9 Japan 6 16
11 10 China 5 8
12 11 England 5 8
15 12 Australia 5 8
23 13 New Zealand 6 16
24 14 Nigeria 6 16
29 15 Argentina 6 16
47 16 Ghana 6 16

End of Table
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FIFA 2007 Womens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Germany, Japan Germany, (Eng-
land)

B United States, Swe-
den

United States,
(North Korea)

C Norway, Canada Norway, (Aus-
tralia)

D Denmark, Brazil Brazil, (China)

Table 10: FIFA 2011 Womens World Cup

FIFA 2011 Womens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 United States 2 2
2 2 Germany 5 8
3 3 Brazil 5 8
4 4 Japan 1 1
5 5 Sweden 3 3
6 6 Canada 6 16
7 7 France 4 4
8 8 North Korea 6 16
9 9 Norway 6 16
10 10 England 5 8
11 11 Australia 5 8
22 12 Mexico 6 16
24 13 New Zealand 6 16
27 14 Nigeria 6 16
31 15 Colombia 6 16
61 16 Equatorial Guinea 6 16

End of Table

FIFA 2011 Womens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Germany, Canada Germany, (France)
B England, Japan England, Japan
C Sweden, United

States
Sweden, United
States

D Brazil, Norway Brazil, (Australia)
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Table 11: FIFA 2015 Womens World Cup

FIFA 2015 Womens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 Germany 4 4
2 2 United States 1 1
3 3 France 5 8
4 4 Japan 2 2
5 5 Sweden 6 16
6 6 England 3 3
7 7 Brazil 6 16
8 8 Canada 5 8
10 9 Australia 5 8
11 10 Norway 6 16
12 11 Netherlands 6 16
14 12 Spain 7 24
16 13 China 5 8
17 14 New Zealand 7 24
18 15 South Korea 6 16
19 16 Switzerland 6 16
25 17 Mexico 7 24
28 18 Colombia 6 16
29 19 Thailand 7 24
33 20 Nigeria 7 24
37 21 Costa Rica 7 24
48 22 Ecuador 7 24
53 23 Cameroon 6 16
67 24 Ivory Coast 7 24

End of Table

FIFA 2015 Womens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A Canada, Nether-
lands

Canada, (China)

B Germany, Norway Germany, Norway
C Japan, (Switzer-

land)
Japan, (Cameroon)

D United States, Swe-
den

United States,
(Australia)

E Brazil, Spain Brazil, (South Ko-
rea)

F France, England France, England
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Table 12: FIFA 2019 Womens World Cup

FIFA 2019 Womens World Cup
FIFA Rank-
ing

World Cup
Ranking

Country Final Result
A

Final Result
B

1 1 United States 1 1
2 2 Germany 5 8
3 3 England 4 4
4 4 France 5 8
5 5 Canada 6 16
6 6 Australia 6 16
7 7 Japan 6 16
8 8 Netherlands 2 2
9 9 Sweden 3 3
10 10 Brazil 6 16
12 11 Norway 5 8
13 12 Spain 6 16
14 13 South Korea 7 24
15 14 Italy 5 8
16 15 China 6 16
19 16 New Zealand 7 24
20 17 Scotland 7 24
34 18 Thailand 7 24
37 19 Argentina 7 24
38 20 Nigeria 6 16
39 21 Chile 7 24
46 22 Cameroon 6 16
49 23 South Africa 7 24
53 24 Jamaica 7 24

End of Table

FIFA 2019 Womens World Cup Suggested Outcomes
Group Suggested Outcome

by Rules
Actual Outcome by
rules

A France, Norway France, Norway
B Germany, Spain Germany, Spain
C Brazil, Australia (Italy), Australia
D England, Japan England, Japan
E Netherlands,

Canada
Netherlands,
Canada

F United States, Swe-
den

United States, Swe-
den
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