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Theory of Generalized Compactness in Generalized Topological Spaces:
Part II. Countable, Sequential and Local Properties

Mohammad Irshad Khodabocus 1,2∗, Noor-Ul-Hacq Sookia 2
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Abstract: In a recent paper, a novel class of generalized compact sets (briefly, g-Tg -compact sets)

in generalized topological spaces (briefly, Tg -spaces) has been studied. In this paper, the concept is

further studied and, other derived concepts called countable, sequential, and local generalized compactness

(countable, sequential, local g-Tg -compactness) in Tg -spaces are also studied relatively. The study reveals

that g-Tg -compactness implies local g-Tg -compactness and countable g-Tg -compactness, sequential g-Tg -

compactness implies countable g-Tg -compactness and, g-Tg -compactness is a generalized topological

property (briefly, Tg -property). Diagrams establish the various relationships amongst these types of g-Tg -

compactness presented here and in the literature, and a nice application supports the overall theory.

Keywords: Generalized topological space (Tg -space), generalized compactness (g-Tg -compactness),

countable generalized compactness (countable g-Tg -compactness), sequential generalized compactness (se-

quential g-Tg -compactness), local generalized compactness (local g-Tg -compactness).

1. Introduction
Since the study of such fundamental topological invariants as ordinary and generalized compactness

in ordinary and generalized topological spaces (briefly, T , g-T-compactness in T -spaces and Tg ,

g-Tg -compactness in Tg -spaces), a variety of weaker and stronger forms of T , g-Tcompactness

in T -spaces and Tg , g-Tg -compactness in Tg -spaces have been introduced and investigated [1–

3, 5–8, 13–19].

Bacon [2] studied a class of T -spaces in which closed countably T -compact subsets are

always T -compact. Butcher and Joseph [3] gave theorems embracing known characterizations of

many of the g-T -compactness properties. El-Monsef et al. [6] generalized and studied the notions
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of T -compactness, para T -compactness, and many weak forms of such types of T -compactness.

Greever [7] studied the extent to which Hausdorff T -spaces with various combinations of T -

compactness can exist, just to name a few.

Having studied a novel class of g-Tg -compact sets in Tg -spaces recently [12], it is proposed

in this paper to advance the study a step further by studying other properties and other derived

concepts called countable, sequential, local g-Tg -compactness in Tg -spaces relatively.

The paper is organized as follows: In Section 2, preliminary notions are described in

Subsection 2.1 and the main results of g-Tg -compactness in a Tg -space are reported in Section 3.

In Section 4, the establishment of the relationships among various types of g-Tg -compactness

are discussed in Subsection 4.1. To support the work, a nice application of the concept of

g-Tg -compactness in a Tg -space is presented in Subsection 4.2. Finally, Subsection 4.3 provides

concluding remarks and future directions of the notion of g-Tg -compactness in a Tg -space.

2. Theory

2.1. Preliminaries

Standard references for notations and concepts are [9–12]. The mathematical structures T
def
=

(Ω,T ) and Tg
def
= (Ω,Tg) , respectively, are T , Tg -spaces [9], on both of which no separation

axioms are assumed unless otherwise mentioned [4, 10]. A Tg -space Tg = (Ω,Tg) endowed

with a g-Tg,H -axiom is called a g-T (H)
g -space g-T(H)

g
def
=

(
Ω, g-T (H)

g

)
[9–11]. The sets I0n , I∗n

and I0∞ , I∗∞ , respectively, are finite and infinite index sets [9]. Sets of the class Tg and of

its complement class ¬Tg , respectively, are called Tg -open and Tg -closed sets [9]. The class

g-ν-S
[
Tg,Λ

]
=

∪
E∈{O,K} g-ν-K

[
Tg

]
is called the class of all g-Tg -sets of category ν ∈ I03 (briefly,

g-ν-Tg -sets) [9, 12]. Accordingly, the class of all g-Tg -sets [9] are

g-S [Tg] =
∪
ν∈I0

3

g-ν-S [Tg] =
∪

(ν,E)∈I0
3×{O,K}

g-ν-O [Tg] =
∪

E∈{O,K}

g-E [Tg] . (1)

Definition 2.1 ((Tg,Ω,Tg,Σ)-Map [9]) A map πg : Tg,Ω −→ Tg,Σ from a Tg -space Tg,Ω =

(Ω,Tg,Ω) into a Tg -space Tg,Σ = (Σ,Tg,Σ) is called a (Tg,Ω,Tg,Σ)-map.

Definition 2.2 (g-ν- (Tg,Ω,Tg,Σ)-Map [9]) Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg -

spaces, and let opg (·) ∈ Lg

[
Σ
]
. Then, πg : Tg,Ω −→ Tg,Σ is called a g- (Tg,Ω,Tg,Σ)-map if and

only if, for every (Og,ω,Kg,ω) ∈ Tg,Ω×¬Tg,Ω there corresponds (Og,σ,Kg,σ) ∈ Tg,Σ×¬Tg,Σ such
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that: [
πg (Og,ω) ⊆ opg (Og,σ)

]
∨
[
πg (Kg,ω) ⊇ ¬ opg (Kg,σ)

]
. (2)

A g- (Tg,Ω,Tg,Σ)-map is of category ν if and only if it is in the class of g-ν- (Tg,Ω,Tg,Σ)-maps:

g-ν-M [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,ω,Kg,ω

)(
∃Og,σ,Kg,σ,opg,ν (·)

)
[(
πg (Og,ω) ⊆ opg,ν (Og,σ)

)
∨
(
πg (Kg,ω) ⊇ ¬ opg,ν (Kg,σ)

)]}
. (3)

Definition 2.3 The classes of g-ν- (Tg,Ω,Tg,Σ)-open and g-ν- (Tg,Ω,Tg,Σ)-closed maps, respec-

tively, are:

g-ν-MO [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,ω

)(
∃Og,σ,opg,ν (·)

)[
πg (Og,ω) ⊆ opg,ν (Og,σ)

]}
,

g-ν-MK [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Kω

)(
∃Kg,σ,opg,ν (·)

)[
πg (Kg,ω) ⊇ ¬ opg,ν (Kg,σ)

]}
. (4)

Accordingly, the class of all g- (Tg,Ω,Tg,Σ) -maps [9] are

g-M [Tg,Ω;Tg,Σ] =
∪
ν∈I0

3

g-ν-M [Tg,Ω;Tg,Σ]

=
∪

(ν,E)∈I0
3×{O,K}

g-ν-ME [Tg,Ω;Tg,Σ] =
∪

E∈{O,K}

g-ME [Tg,Ω;Tg,Σ] . (5)

Definition 2.4 (g-ν- (Tg,Ω,Tg,Σ)-Continuous [9]) Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ)

be Tg -spaces, and let opg (·) ∈ Lg

[
Ω
]
. Then, πg : Tg,Ω −→ Tg,Σ is said to be g- (Tg,Ω,Tg,Σ)-

continuous if and only if, for every (Og,σ,Kg,σ) ∈ Tg,Σ ×¬Tg,Σ there corresponds (Og,ω,Kg,ω) ∈

Tg,Ω × ¬Tg,Ω such that:

[
π−1
g (Og,σ) ⊆ opg (Og,ω)

]
∨
[
π−1
g (Kg,σ) ⊇ ¬ opg (Kg,ω)

]
. (6)

A g- (Tg,Ω,Tg,Σ)-continuous map is of category ν if and only if it is in the class of g-ν- (Tg,Ω,Tg,Σ)-

continuous maps:

g-ν-C [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,σ,Kg,σ

)(
∃Og,ω,Kg,ω,opg,ν (·)

)
[(
π−1
g (Og,σ) ⊆ opg,ν (Og,ω)

)
∨
(
π−1
g (Kg,σ) ⊇ ¬ opg,ν (Kg,ω)

)]}
. (7)

Definition 2.5 (g-ν- (Tg,Ω,Tg,Σ)-Irresolute [9]) Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ)

be Tg -spaces, and let opg (·) ∈ Lg

[
Ω
]
. Then, πg : Tg,Ω −→ Tg,Σ is said to be g- (Tg,Ω,Tg,Σ)-

irresolute if and only if, for every (Og,σ,Kg,σ) ∈ Tg,Σ × ¬Tg,Σ there corresponds (Og,ω,Kg,ω) ∈
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Tg,Ω × ¬Tg,Ω such that:

[
π−1
g

(
opg (Og,σ)

)
⊆ opg (Og,ω)

]
∨
[
π−1
g

(
¬ opg (Kg,σ)

)
⊇ ¬ opg (Kg,ω)

]
. (8)

A g- (Tg,Ω,Tg,Σ)-irresolute map is of category ν if and only if it is in the class of g-ν- (Tg,Ω,Tg,Σ)-

irresolute maps:

g-ν-I [Tg,Ω;Tg,Σ]
def
=

{
πg :

(
∀Og,σ,Kg,σ

)(
∃Og,ω,Kg,ω,opg,ν (·)

)
[(
π−1
g

(
opg,ν (Og,σ)

)
⊆ opg,ν (Og,ω)

)
∨
(
π−1
g

(
¬ opg,ν (Kg,σ)

)
⊇ ¬ opg,ν (Kg,ω)

)]}
. (9)

The classes of g- (Tg,Ω,Tg,Σ) -continuous and g- (Tg,Ω,Tg,Σ) -irresolute maps, respectively, are:

g-C [Tg,Ω;Tg,Σ] =
∪
ν∈I0

3

g-ν-C [Tg,Ω;Tg,Σ] , g-I [Tg,Ω;Tg,Σ] =
∪
ν∈I0

3

g-ν-I [Tg,Ω;Tg,Σ] . (10)

By a g-Tg -open set and a g-Tg -closed set are meant a Tg -open set Og ∈ Tg and a Tg -closed

set Kg ∈ ¬Tg satisfying Og ⊆ opg (Og) and Kg ⊇ ¬ opg (Kg) , respectively. Likewise, by a g-Tg -

open set of category ν and a g-Tg -closed set of category ν are meant a Tg -open set Og ∈ Tg

and a Tg -closed set Kg ∈ ¬Tg satisfying Og ⊆ opg,ν (Og) and Kg ⊇ ¬ opg,ν (Kg) , respectively;

g-Tg -sets of category ν will be called g-ν-Tg -sets [9].

Given the Tg -sets Rg , Sg ⊂ Tg , Rg is said to be equivalent to Sg , written Rg ∼ Sg , if

and only if, there exists a Tg -map πg : Rg −→ Sg which is bijective. A Tg -set Sg ⊂ Tg is finite

if and only if Sg = ∅ or Sg ∼ I∗µ for some µ ∈ I∗∞ ; otherwise, the Tg -set Sg is said to be infinite.

A Tg -set Rg ⊂ Tg is denumerable and satisfies the condition card (Rg) = ℵ0 (aleph-null) if and

only if Sg ∼ I∗∞ . The Tg -set Rg is called countable if and only if it is finite or denumerable [9].

The symbol
⟨
Sg,α ∈ g-ν-S [Tg]

⟩
α∈I∗

σ
denotes a g-Tg -sets sequence of category ν in Tg

[9, 11]. The sequences
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
,
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
, and

⟨
Vg,α ∈ g-K [Tg]

⟩
α∈I∗

σ
,

respectively, are simply said to be a g-Tg -covering, a g-Tg -open covering, and a g-Tg -closed

covering of a Tg -set Sg ⊂ Tg whose cardinality is at most σ ∈ I∗∞ if and only if the corresponding

relations Sg ⊆
∪

α∈I∗
σ

Sg,α , Sg ⊆
∪

α∈I∗
σ

Ug,α and Sg ⊆
∪

α∈I∗
σ

Vg,α hold true [9, 11]. The map

ϑ :
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
−→

⟨
Sg,ϑ(α) ∈ g-S [Tg]

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

(11)

is said to realise a g-Tg -subcovering
⟨
Sg,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

of Sg from the g-Tg -covering⟨
Sg,α

⟩
α∈I∗

σ
if and only if Sg ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Sg,ϑ(α) [9, 11]. The Tg -set Sg ⊂ Tg of a
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Tg -space Tg is g-ν-Tg -compact if and only if, for every
⟨
Ug,α ∈ g-ν-O [Tg]

⟩
α∈I∗

σ
,

∃
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

: Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ug,ϑ(α), (12)

where ϑ (σ) = card
(
I∗ϑ(σ)

)
≤ card (I∗σ) = σ [9, 11]. The class of all g-ν-Tg -compact sets is:

g-ν-A [Tg]
def
=

{
Sg :

[
∀
⟨
Ug,α ∈ g-ν-O [Tg]

⟩
α∈I∗

σ

][
∃
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

]
(

Sg ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)

Ug,ϑ(α)

)}
. (13)

A g-Tg -covering
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
of a Tg -set Sg ⊂ Tg of a Tg -space Tg = (Ω,Tg) is a

g-Tg -refinement [9, 11] of another g-Tg -covering
⟨
Rg,β ∈ g-S [Tg]

⟩
β∈I∗

µ
of the same Tg -set Sg if

and only if:

(
∀α ∈ I∗σ

)(
∃β ∈ I∗µ

)[
Sg,α ⊆ Rg,β

]
. (14)

Definition 2.6 (g-ν-T [A]
g -Space [9, 11]) A Tg -space Tg = (Ω,Tg) is called a g-ν-T [A]

g -

space denoted g-ν-T[A]
g

def
=

(
Ω, g-ν-T [A]

g

)
if and only if each g-ν-Tg -open covering

⟨
Ug,α ∈

g-ν-O [Tg]
⟩
α∈I∗

σ
of Tg has a finite g-ν-Tg -open subcovering.

By g-ν-T[CA]
g

def
=

(
Ω, g-ν-T [CA]

g

)
, g-ν-T[SA]

g
def
=

(
Ω, g-ν-T [SA]

g

)
, and g-ν-T[LA]

g
def
=

(
Ω, g-ν-T [LA]

g

)
,

respectively, are meant countably, sequentially, and locally g-ν-T [A]
g -spaces; by a g-T [E]

g -space

g-T[E]
g =

(
Ω, g-T [E]

g

)
is meant g-T[E]

g =
∨

ν∈I0
3
g-ν-T[E]

g =
(
Ω,

∨
ν∈I0

3
g-ν-T [E]

g

)
=

(
Ω, g-T [E]

g

)
,

where E ∈ {A,CA, SA,LA} .

Definition 2.7 (Finite Intersection Property [9, 11]) A sequence
⟨
Sg,α ∈ g-S [Tg]

⟩
α∈I∗

σ
of

g-Tg -sets is said to have the “finite intersection property” if and only if every finite subsequence

of the type
⟨
Sg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n

has a non-empty intersection:

∀
⟨
Sg,β(α)

⟩
(α,β(α))∈I∗

σ×I∗
n
≺

⟨
Sg,α

⟩
α∈I∗

σ
:

∩
(α,β(α))∈I∗

σ×I∗
n

Sg,β(α) ̸= ∅. (15)

Definition 2.8 (g-Tg -Accumulation Point [9, 11]) A point ξ ∈ Tg of a Tg -space Tg =

(Ω,Tg) is called a “g-Tg -accumulation point” (or “g-Tg -limit point”, “g-Tg -cluster point”, “g-Tg -

derived point”) of a Tg -set Sg ⊂ Tg of Tg if and only if every g-Tg -open set Ug,ξ ∈ g-O [Tg]
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containing ξ (whether ξ ∈ Sg or ξ /∈ Sg ) contains at least a point ζ ∈ Sg \ {ξ} :

ξ ∈ Ug,ξ ∈ g-O [Tg] ⇒ Sg ∩
(
Ug,ξ \ {ξ}

)
̸= ∅. (16)

The set derg (Sg) ⊂ Tg of all g-Tg -accumulation points is called the “g-Tg -derived set of Sg ”.

Definition 2.9 (Countably g-Tg -Compact [9, 11]) A Tg -set Sg ⊂ Tg of a Tg -space Tg =

(Ω,Tg) is said to be “countably g-Tg -compact” if and only if every infinite Tg -subset Rg ⊂ Sg

of Sg has at least one g-Tg -accumulation point ξ ∈ Sg .

Definition 2.10 (Sequentially g-Tg -compact [9, 11]) A Tg -set Sg ⊂ Tg of a Tg -space

Tg = (Ω,Tg) is “sequentially g-Tg -compact” if and only if every sequence ⟨ξα ∈ Sg⟩α∈I∗
∞

in

Sg contains a subsequence
⟨
ξϑ(α)

⟩
(α,ϑ(α))∈I∗

∞×I∗
∞
≺ ⟨ξα⟩α∈I∗

∞
which converges to a point ξ ∈ Sg .

Definition 2.11 (g-Tg -Neighborhood [9, 11]) Let ξ ∈ Tg be a point in a Tg -space Tg =

(Ω,Tg) . A Tg -subset Ng ⊆ Tg of Tg is a “g-Tg -neighborhood of ξ” if and only if Ng is a

Tg -superset of a g-Tg -open set Ug,ξ ∈ g-O [Tg] containing ξ :

(
ξ,Ng,Ug,ξ

)
∈ Tg × Tg × g-O [Tg] : ξ ∈ Ug,ξ ⊆ Ng. (17)

The class of all g-Tg -neighborhoods of ξ ∈ Tg , defined as

g-N [ξ]
def
=

{
Ng ⊂ Tg :

(
∃Ug,ξ ∈ g-O [Tg]

)[
ξ ∈ Ug,ξ ⊆ Ng

]}
, (18)

is called the “g-Tg -neighborhood system of ξ”.

Definition 2.12 (Locally g-Tg -Compact [9, 11]) A Tg -set Sg ⊆ Tg of a Tg -space Tg =

(Ω,Tg) is said to be “locally g-Tg -compact” if and only if, given any
(
ξ,Ng,ξ

)
∈ Sg × g-N [ξ] ,

there is a g-Tg -neighborhood N̂g,ξ ∈ g-N [ξ] of ξ such that N̂g,ξ ⊂ Ng,ξ and N̂g,ξ ∪ derg
(
N̂g,ξ

)
∈

g-A [Tg] .

By omitting the subscript g in almost all symbols of the above definitions, we obtain very

similar definitions but in a TΛ -space; see [9, 11, 12].

3. Main Results
The main results of the theory of g-Tg -compactness are presented in this section.

Lemma 3.1 If Sg ∈ g-A [Tg] is a g-Tg -compact set of a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
and suppose ξ /∈ Sg , then there exists

(
Ug,α,Ug,β

)
∈ g-O [Tg] × g-O [Tg] such that

(
{ξ} ,Sg

)
⊆(

Ug,α,Ug,β

)
and

∩
µ=α,β Ug,µ = ∅ .
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Proof Let Sg ∈ g-A [Tg] be a g-Tg -compact set of a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
and

suppose ξ /∈ Sg . Since ξ /∈ Sg , it results that ζ ∈ Sg implies ξ /∈ {ζ} . But by hypothesis, Tg is a

g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
and therefore, there exists

(
Ug,ζ , Ûg,ζ

)
∈ g-O [Tg]× g-O [Tg]

such that
(
ξ, ζ

)
∈ Ug,ζ × Ûg,ζ and Ug,ζ ∩ Ûg,ζ = ∅ . Hence, it follows that Sg ⊆

∪
ζ∈Sg

Ûg,ζ ,

meaning that
⟨
Ûg,ζ

⟩
ζ∈Sg

is a g-Tg -open covering of Sg . But Sg ∈ g-A [Tg] . Consequently, there

exists
⟨
Ûg,ζ(µ)

⟩
(µ,ζ(µ))∈I∗

σ×Sg
≺

⟨
Ûg,ζ

⟩
ζ∈Sg

such that Sg ⊆
∪

(µ,ζ(µ))∈I∗
σ×Sg

Ûg,ζ(µ) . Now let

Ug,α =
∩

(µ,ζ(µ))∈I∗
σ×Sg

Ug,ζ(µ), Ug,β =
∪

(µ,ζ(µ))∈I∗
σ×Sg

Ûg,ζ(µ).

It is evidently that,
(
Ug,α,Ug,β

)
∈ g-O [Tg]×g-O [Tg] , since

(
Ug,ζ(µ), Ûg,ζ(µ)

)
∈ g-O [Tg]×g-O [Tg]

for every (µ, ζ (µ)) ∈ I∗σ×Sg . Furthermore,
(
{ξ} ,Sg

)
⊆

(
Ug,α,Ug,β

)
, since ξ ∈ Ug,ζ(µ) for every

(µ, ζ (µ)) ∈ I∗σ ×Sg . Lastly, let it be claimed that
∩

µ=α,β Ug,µ = ∅ . Then, Ug,ζ(µ) ∩ Ûg,ζ(µ) = ∅

for every (µ, ζ (µ)) ∈ I∗σ×Sg which, in turn, implies that Ug,α ∩ Ûg,ζ(µ) = ∅ for every (µ, ζ (µ)) ∈

I∗σ ×Sg . Hence,

∩
µ=α,β

Ug,µ = Ug,α ∩
( ∪

(µ,ζ(µ))∈I∗
σ×Sg

Ûg,ζ(µ)

)
=

∪
(µ,ζ(µ))∈I∗

σ×Sg

(
Ug,α ∩ Ûg,ζ(µ)

)

=
∪

(µ,ζ(µ))∈I∗
σ×Sg

∅ = ∅.

This completes the proof of the lemma. 2

Theorem 3.2 Suppose Sg ∈ g-A [Tg] be a g-Tg -compact set of a g-T (H)
g -space g-T(H)

g =(
Ω, g-T (H)

g

)
. If ξ /∈ Sg , then there exists a g-Tg -open set Ug ∈ g-O [Tg] such that ξ ∈ Ug ⊆

{ (Sg) .

Proof Let Sg ∈ g-A [Tg] be a g-Tg -compact set of a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
and suppose ξ /∈ Sg . Since Tg is a g-T (H)

g -space g-T(H)
g =

(
Ω, g-T (H)

g

)
, there exists then(

Ug, Ûg

)
∈ g-O [Tg] × g-O [Tg] such that

(
{ξ} ,Sg

)
⊆

(
Ug, Ûg

)
and Ug ∩ Ûg = ∅ . Hence,

Ug ∩Sg = ∅ and consequently, ξ ∈ Ug ⊆ { (Sg) . This proves the theorem. 2

Proposition 3.3 Suppose Sg ∈ g-A [Tg] be a g-Tg -compact set of a g-T (H)
g -space g-T(H)

g =(
Ω, g-T (H)

g

)
, then Sg ∈ g-K [Tg] in g-T(H)

g .
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Proof Let Sg ∈ g-A [Tg] be a g-Tg -compact set of a g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
. It

must be proved that Sg ∈ g-K [Tg] which is equivalent to prove that { (Sg) ∈ g-O [Tg] in g-T(H)
g .

Let ξ ∈ { (Sg) ; that is, ξ /∈ Sg . Since ξ /∈ Sg there exists a g-Tg -open set Ug,ξ ∈ g-O [Tg] such

that ξ ∈ Ug,ξ ⊆ { (Sg) . Consequently, { (Sg) =
∪

ξ∈{(Sg)
Ug,ξ . Therefore, { (Sg) ∈ g-O [Tg] ,

since Ug,ξ ∈ g-O [Tg] for every ξ ∈ { (Sg) . Hence, Sg ∈ g-K [Tg] in g-T(H)
g . This proves the

proposition. 2

Lemma 3.4 If Tg = (Ω,Tg) is a Tg -space whose g-topology Tg : P (Ω) −→ P (Ω) is cofinite

on Ω , then Tg is a g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
.

Proof Let Tg = (Ω,Tg) be a Tg -space whose g-topology Tg : P (Ω) −→ P (Ω) is cofinite

on Ω and suppose
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
be a g-Tg -open covering of Ω . Then, { (Ug,α) ∈

g-K [Tg] for any chosen α ∈ I∗σ . Furthermore, since Tg : P (Ω) −→ P (Ω) is cofinite on Ω ,

Ug,α , it follows that, for every α ∈ I∗σ , { (Ug,α) is a finite g-Tg -closed set. Set { (Ug,α) ={
ξβ(α) : (α, β (α)) ∈ I∗σ × I∗ϑ(σ)

}
. Since

⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
is a g-Tg -open covering of Ω ,

for every (α, β (α)) ∈ I∗σ × I∗ϑ(σ) , ξβ(α) ∈ { (Ug,α) implies the existence of Ug,γ(α) , where⟨
Ug,γ(α)

⟩
(α,γ(α))∈I∗

σ×I∗
γ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ
, satisfying ξβ(α) ∈ Ug,γ(α) . Hence, it follows that

{ (Ug,α) ⊆
∪

(α,γ(α))∈I∗
σ×I∗

γ(σ)
Ug,γ(α) and therefore,

Ω = Ug,α ∪ { (Ug,α) = Ug,α ∪
( ∪

(α,γ(α))∈I∗
σ×I∗

γ(σ)

Ug,γ(α)

)
.

Thus, Tg is a g-T [A]
g -space g-T[A]

g =
(
Ω, g-T [A]

g

)
. This completes the proof of the lemma. 2

Theorem 3.5 If (Rg,Sg) ∈ g-A [Tg] × g-A [Tg] is a pair of disjoint g-Tg -compact sets of a

g-T (H)
g -space g-T(H)

g =
(
Ω, g-T (H)

g

)
, then there exists a pair (Ug,α,Ug,β) ∈ g-O [Tg]× g-O [Tg] of

disjoint g-Tg -open sets such that (Rg,Sg) ⊆ (Ug,α,Ug,β) .

Proof Let (Rg,Sg) ∈ g-A [Tg]× g-A [Tg] be a pair of disjoint g-Tg -compact sets of a g-T (H)
g -

space g-T(H)
g =

(
Ω, g-T (H)

g

)
and suppose ξ ∈ Rg . Then, since Rg∩Sg = ∅ , it results that ξ /∈ Sg .

But by hypothesis, Sg ∈ g-A [Tg] and consequently, there exists
(
Ug,ξ, Ûg,ξ

)
∈ g-O [Tg]×g-O [Tg]

such that
(
{ξ} ,Sg

)
⊆

(
Ug,ξ, Ûg,ξ

)
and Ug,ξ∩Ûg,ξ = ∅ . Since ξ ∈ Ug,ξ , it follows that

⟨
Ug,ξ

⟩
ξ∈Rg
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is a g-Tg -open covering of Rg . Since Rg ∈ g-A [Tg] , a g-Tg -open subcovering

⟨
Ug,υ(ξ)

⟩
(ξ,υ(ξ))∈R̂g×Rg

≺
⟨
Ug,ξ

⟩
ξ∈Rg

,

where R̂g ⊆ Rg is finite, can be selected so that Rg ⊆
∪

(ξ,υ(ξ))∈R̂g×Rg
Ug,υ(ξ) . Furthermore,

Sg ⊆
∩

(ζ,ϑ(ζ))∈Ŝg×Sg
Ûg,ϑ(ξ) , where Ŝg ⊆ Sg is finite, since Sg ⊆ Ûg,ϑ(ξ) for every (ζ, ϑ (ζ)) ∈

Ŝg ×Sg . Now let

Ug,α =
∪

(ξ,υ(ξ))∈R̂g×Rg

Ug,υ(ξ), Ug,β =
∩

(ζ,ϑ(ζ))∈Ŝg×Sg

Ûg,ϑ(ζ).

Observe that (Rg,Sg) ⊆ (Ug,α,Ug,β) . Moreover, (Ug,α,Ug,β) ∈ g-O [Tg] × g-O [Tg] , since

Ug,υ(ξ) ∈ g-O [Tg] for every (ξ, υ (ξ)) ∈ R̂g × Rg and Ûg,ϑ(ζ) ∈ g-O [Tg] for every (ζ, ϑ (ζ)) ∈

Ŝg×Sg . The proof of the theorem is complete when the statement Ug,α∩Ug,β = ∅ is proved. First

observe that, for every (ξ, ζ, υ (ξ) , ϑ (ζ)) ∈ R̂g × Ŝg ×Rg ×Sg , the relation Ug,υ(ξ) ∩ Ûg,ϑ(ζ) = ∅

implies Ug,υ(ξ) ∩Ug,β = ∅ . Consequently,

∩
µ=α,β

Ug,µ =

( ∪
(ξ,υ(ξ))∈R̂g×Rg

Ug,υ(ξ)

)
∩Ug,β =

∪
(ξ,υ(ξ))∈R̂g×Rg

(
Ug,υ(ξ) ∩Ug,β

)

=
∪

(ξ,υ(ξ))∈R̂g×Rg

∅ = ∅.

This proves the theorem. 2

Theorem 3.6 Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be Tg -spaces. If πg : Tg,Ω −→ Tg,Σ is

a g- (Tg,Ω,Tg,Σ)-continuous map and Sg,ω ∈ g-A
[
Tg,Ω

]
in Tg,Ω , then im

(
πg|Sg,ω

)
∈ g-A

[
Tg,Σ

]
in Tg,Σ .

Proof Let Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) be given Tg -spaces, πg ∈ g-C [Tg,Ω;Tg,Σ] ,

Sg,ω ∈ g-A
[
Tg,Ω

]
in Tg,Ω and suppose

⟨
Ug,α

⟩
α∈I∗

σ
be a g-Tg -open covering of im

(
πg|Sg,ω

)
in

Tg,Σ . Then,

Sg,ω ⊆ π−1
g ◦ πg (Sg,ω) ⊆ π−1

g

( ∪
α∈I∗

σ

Ug,α

)
⊆

∪
α∈I∗

σ

π−1
g (Ug,α) .

Thus,
⟨
π−1
g (Ug,α)

⟩
α∈I∗

σ
is a g-Tg -open covering of Sg,ω in Tg,Σ , because πg ∈ g-C [Tg,Ω;Tg,Σ]

and for every α ∈ I∗σ , Ug,α ∈ g-O [Tg,Ω] implies π−1
g (Ug,α) ∈ g-O [Tg,Σ] . But, the rela-

tion Sg,ω ∈ g-A
[
Tg,Ω

]
holds and consequently, there exists

⟨
π−1
g

(
Ug,ϑ(α)

)⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
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⟨
π−1
g (Ug,α)

⟩
α∈I∗

σ
such that the relation Sg,ω ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

π−1
g

(
Ug,ϑ(α)

)
holds. Accord-

ingly,

πg (Sg,ω) ⊆ πg ◦ π−1
g

( ∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Ug,ϑ(α)

)
=

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Ug,ϑ(α).

Thus,
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

is a g-Tg -open subcovering of im
(
πg|Sg,ω

)
and hence, it follows

that im
(
πg|Sg,ω

)
∈ g-A

[
Tg,Σ

]
in Tg,Σ . The proof of the theorem is complete. 2

Theorem 3.7 Let Sg,ω ⊂ Tg,Ω be a Tg -set and let πg ∈ g-I [Tg,Ω;Tg,Σ] be a g- (Tg,Ω,Tg,Σ)-

irresolute map, where Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) are Tg -spaces. If Sg,ω ∈ g-A
[
TΩ

]
,

then im
(
πg|Sg,ω

)
∈ g-A

[
Tg,Σ

]
.

Proof Let Sg,ω ⊂ Tg,Ω be a Tg -set and let πg ∈ g-I [Tg,Ω;Tg,Σ] be a g- (Tg,Ω,Tg,Σ) -irresolute

map, where Tg,Ω = (Ω,Tg,Ω) and Tg,Σ = (Σ,Tg,Σ) are Tg -spaces. Suppose Sg,ω ∈ g-A
[
TΩ

]
,

let
⟨
Ug,α ∈ g-O

[
TΣ

]⟩
α∈I∗

σ
be any g-Tg -open covering of πg (Sg,ω) ⊂ Tg,Σ . Then, since πg ∈

g-I [Tg,Ω;Tg,Σ] , it follows, evidently, that the relation Sg,ω

∪
α∈I∗

σ
π−1
g (Ug,α) holds. On the other

hand, since Sg,ω ∈ g-A
[
TΩ

]
, it results that, a g-Tg -open subcovering

⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺⟨
Ug,α

⟩
α∈I∗

σ
exists such that the relation Sg,ω ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

π−1
g

(
Ug,ϑ(α)

)
holds. Conse-

quently, it follows, then, that πg (Sg,ω) ⊆
∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Ug,ϑ(α) and hence, im

(
πg|Sg,ω

)
∈

g-A
[
Tg,Σ

]
. The proof of the theorem is complete. 2

Lemma 3.8 Let g-T[A]
g =

(
Ω, g-T [A]

g

)
be a g-T [A]

g -space. If Sg ∈ g-K
[
g-T[A]

g

]
, then Sg ∈

g-A
[
g-T[A]

g

]
in g-T[A]

g .

Proof Let g-T[A]
g =

(
Ω, g-T [A]

g

)
be a g-T [A]

g -space and suppose Sg ∈ g-K
[
g-T[A]

g

]
. Sup-

pose
⟨
Ug,α ∈ g-O

[
g-T[A]

g

]⟩
α∈I∗

σ
be a g-T[A]

g -open covering of Sg , then Ω =
(∪

α∈I∗
σ

Ug,α

)
∪

{ (Sg) =
∪

α∈I∗
σ

(
Ug,α ∪ { (Sg)

)
, meaning that

⟨
Ug,α ∪ { (Sg)

⟩
α∈I∗

σ
is a g-T[A]

g -open covering

of Sg because, Sg ∈ g-K
[
g-T[A]

g

]
implies { (Sg) ∈ g-O

[
g-T[A]

g

]
. On the other hand, g-T[A]

g

is, by hypothesis, a g-T [A]
g -space. Thus, there exists

⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ

such that Ω =
(∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Ug,ϑ(α)

)
∪ { (Sg) . But Sg ∩ { (Sg) = ∅ and hence, Sg ⊆∪

(α,ϑ(α))∈I∗
σ×I∗

ϑ(σ)
Ug,ϑ(α) . This shows that any g-T[A]

g -open covering
⟨
Ug,α ∪ { (Sg)

⟩
α∈I∗

σ
of Sg
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contains a finite g-T[A]
g -open subcovering

⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

and hence, Sg ∈ g-A
[
g-T[A]

g

]
in g-T[A]

g . The proof of the lemma is complete. 2

Theorem 3.9 Let g-T
[A]
g,Ω =

(
Ω, g-T

[A]
g,Ω

)
be a g-T [A]

g -space and let g-T
(H)
g,Σ =

(
Σ, g-T

(H)
g,Σ

)
be a

g-T (H)
g -space. If the g-Tg -map πg : g-T

[A]
g,Ω −→ g-T

(H)
g,Σ is a one-one g-

(
g-T

[A]
g,Ω, g-T

(H)
g,Σ

)
-continuous

map, then g-T
[A]
g,Ω
∼= πg

(
g-T

[A]
g,Ω

)
.

Proof Let g-T
[A]
g,Ω =

(
Ω, g-T

[A]
g,Ω

)
be a g-T [A]

g -space and let g-T
(H)
g,Σ =

(
Σ, g-T

(H)
g,Σ

)
be a g-T (H)

g -

space, and suppose πg : g-T
[A]
g,Ω −→ g-T

(H)
g,Σ is a one-one g-

(
g-T

[A]
g,Ω, g-T

(H)
g,Σ

)
-continuous map. Clearly,

πg : g-T
[A]
g,Ω −→ g-T

(H)
g,Σ is onto, and since it is, by hypothesis a one-one g-

(
g-T

[A]
g,Ω, g-T

(H)
g,Σ

)
-

continuous map, it follows that π−1
g : g-T

(H)
g,Σ −→ g-T

[A]
g,Ω exists. It must be shown that π−1

g ∈

g-C
[
g-T

(H)
g,Σ; g-T

[A]
g,Ω

]
. Recall that π−1

g : g-T
(H)
g,Σ −→ g-T

[A]
g,Ω is g-

(
g-T

(H)
g,Σ, g-T

[A]
g,Ω

)
-continuous if and

only if, for every Kg,ω ∈ g-T
[A]
g,Ω ,

(
π−1
g

)−1
(Kg,ω) = πg (Kg,ω) ∈ g-K

[
g-T

(H)
g,Ω

]
and πg (Kg,ω) ⊆

im
(
πg|Σ

)
. Clearly, Kg,ω ⊇ ¬ opg (Kg,ω) , so Kg,ω ∈ g-K

[
g-T[A]

g

]
. But, Kg,ω ∈ g-K

[
g-T[A]

g

]
implies Kg,ω ∈ g-A

[
g-T[A]

g

]
in g-T[A]

g . Furthermore, since πg ∈ g-C
[
g-T

[A]
g,Ω; g-T

(H)
g,Σ

]
, it follows

that πg (Kg,ω) ∈ g-A
[
g-T

(H)
g,Ω

]
and πg (Kg,ω) ⊆ im

(
πg|Σ

)
. But, πg (Kg,ω) ∈ g-A

[
g-T

(H)
g,Ω

]
implies

Sg ∈ g-K
[
g-T(H)

g

]
. Accordingly, π−1

g ∈ g-C
[
g-T

(H)
g,Σ; g-T

[A]
g,Ω

]
and hence, g-T

[A]
g,Ω
∼= πg

(
g-T

[A]
g,Ω

)
. The

proof of the theorem is complete. 2

Proposition 3.10 Let g-T[A]
g =

(
Ω, g-T [A]

g

)
be a g-T [A]

g -space and let g-T(H)
g =

(
Ω, g-T (H)

g

)
be

a g-T (H)
g -space. If g-T [A]

g ⊇ g-T (H)
g, , then g-T [A]

g = g-T (H)
g, .

Proof Let g-T[A]
g =

(
Ω, g-T [A]

g

)
be a g-T [A]

g -space and g-T(H)
g =

(
Ω, g-T (H)

g

)
, a g-T (H)

g -space,

and suppose g-T [A]
g ⊇ g-T (H)

g, . Further, consider the g-Tg -map πg : g-T[A]
g −→ g-T(H)

g defined by

πg (ξ) = ξ . Since g-T [A]
g ⊇ g-T (H)

g, , for every Og,α ∈ g-T (H)
g, , there exist Og,ϑ(α) ∈ g-T [A]

g such

that π−1
g

(
Og,ϑ(α)

)
= Og,α ⊆ opg (Og,α) . Consequently, πg : g-T

[A]
g,Ω −→ g-T

(H)
g,Σ is a one-one and

onto g-
(
g-T

[A]
g,Ω, g-T

(H)
g,Σ

)
-continuous map from a g-T [A]

g -space g-T
[A]
g,Ω to a g-T (H)

g -space g-T
(H)
g,Σ

and therefore, g-T
[A]
g,Ω
∼= πg

(
g-T

[A]
g,Ω

)
. Hence, g-T [A]

g = g-T (H)
g, . The proof of the proposition is

complete. 2

Theorem 3.11 If Sg ∈ g-A [Tg] is a g-Tg -compact set of a Tg -space Tg = (Ω,Tg) , then it is
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also countably g-Tg -compact in Tg .

Proof Let Sg ∈ g-A [Tg] be a g-Tg -compact set of a Tg -space Tg = (Ω,Tg) and suppose

Rg ⊂ Sg be any infinite Tg -subset of Sg . Equivalently proved, it must be shown that, the

assumption that Rg has no g-Tg -accumulation point ξ ∈ Sg leads to a contradiction. Since

Rg ⊂ Sg is, by assumption, an infinite Tg -subset of Sg with no g-Tg -accumulation point ξ ∈ Sg ,

it follows that, for every ξ ∈ Sg , there exists a g-Tg -open set Ug,ξ ∈ g-O [Tg] which contains at

most one point ζ ∈ Rg . It may be remarked, in passing, that
⟨
Ug,ξ

⟩
ξ∈Sg

is a g-Tg -open covering

of the g-Tg -compact set Sg ∈ g-A [Tg] for Sg ⊆
∪

ξ∈Sg
Ug,ξ . Consequently, there exists a g-Tg -

open subcovering
⟨
Ug,ϑ(ξ)

⟩
(ξ,ϑ(ξ))∈Sg×Ŝg

≺
⟨
Ug,α

⟩
α∈I∗

σ
, where Ŝg ⊂ Sg , such Rg ⊆ Sg ⊆∪

(ξ,ϑ(ξ))∈Sg×Ŝg
Ug,ϑ(ξ) . But, for every (ξ, ϑ (ξ)) ∈ Sg × Ŝg , Ug,ϑ(ξ) contains at most one point

ζ ∈ Rg . Therefore, the infinite Tg -subset Rg of Sg , satisfying Rg ⊆
∪

(ξ,ϑ(ξ))∈Sg×Ŝg
Ug,ϑ(ξ) ,

can contain at most η = card
(
Ŝg

)
< ∞ points. Accordingly, it follows that every infinite Tg -

subset Rg ⊂ Sg of Sg contains a g-Tg -accumulation point ξ ∈ Sg . Hence, Sg ∈ g-A [Tg] is also

countably g-Tg -compact in Tg . This completes the proof of the theorem. 2

Corollary 3.12 Every Tg -space Tg = (Ω,Tg) having the property that every countable g-Tg -

open covering
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
of the Tg -space Tg contains a finite g-Tg -open subcovering⟨

Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ
of Tg is a countably g-T [A]

g -space g-T[A]
g =

(
Ω, g-T [A]

g

)
.

Theorem 3.13 Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map, where Tg,Ω =

(Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -spaces. If Sg,ω ⊂ Tg,Ω be a sequentially g-Tg -compact

set in Tg,Ω , then im
(
πg|Sg,ω

)
⊂ Tg,Σ is also a sequentially g-Tg -compact set in Tg,Σ .

Proof Let πg ∈ g-C [Tg,Ω;Tg,Σ] , where Tg,Ω = (Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -spaces,

and suppose Sg,ω ⊂ Tg,Ω be a sequentially g-Tg -compact set in Tg,Ω . If
⟨
ζα ∈ πg (Sg,ω)

⟩
α∈I∗

∞

be a sequence in im
(
πg|Sg,ω

)
⊂ Tg,Σ , then there exists a sequence ⟨ξα ∈ Sg⟩α∈I∗

∞
in Sg such

πg (ξα) = ζα that for every α ∈ I∗∞ . But, by hypothesis, Sg,ω ⊂ Tg,Ω is sequentially g-Tg -

compact in Tg,Ω . Therefore, there exists a subsequence ⟨ξα⟩α∈I∗
∞
≺

⟨
ξϑ(α)

⟩
(α,ϑ(α))∈I∗

∞×I∗
∞

which converges to a point ξ ∈ Sg . On the other hand, πg ∈ g-C [Tg,Ω;Tg,Σ] and there-

fore, πg : Tg,Ω −→ Tg,Σ is sequentially g- (Tg,Ω,Tg,Σ) -continuous. Consequently, it results that⟨
πg

(
ξϑ(α)

)⟩
(α,ϑ(α))∈I∗

∞×I∗
∞

=
⟨
ζϑ(α)

⟩
(α,ϑ(α))∈I∗

∞×I∗
∞

converges to πg (ξ) ∈ im
(
πg|Sg,ω

)
. Hence,
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im
(
πg|Sg,ω

)
⊂ Tg,Σ is sequentially g-Tg -compact in Tg,Σ . 2

Proposition 3.14 Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map, where Tg,Ω =

(Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -spaces. If Sg,ω ∈ g-A [Tg,Ω] is a g-Tg -compact set in

Tg,Ω , then im
(
πg|Sg,ω

)
∈ A [Tg,Σ] is also Tg -compact in Tg,Σ .

Proof Let πg ∈ g-C [Tg,Ω;Tg,Σ] , where Tg,Ω = (Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -spaces,

and suppose
⟨
Ug,α ∈ O [Tg,Σ]

⟩
α∈I∗

η
be a Tg -open covering of Sg,σ = im

(
πg|Sg,ω

)
⊂ Tg,Σ . Then,

since the relation πg ∈ g-C [Tg,Ω;Tg,Σ] holds, it results that
⟨
π−1
g

(
Ug,α

)⟩
α∈I∗

η
is a g-Tg -open

covering of Sg,ω = π−1
g

(
Sg,σ

)
, because O [Tg,Ω] ⊆ g-O [Tg,Ω] . Since Sg,ω ∈ g-A [Tg,Ω] , a finite

g-Tg -open subcovering
⟨
π−1
g

(
Ug,ϑ(α)

)⟩
(α,ϑ(α))∈I∗

η×I∗
ϑ(η)

≺
⟨
π−1
g

(
Ug,α

)⟩
α∈I∗

η
exists, and such that,

Sg,ω ⊆
∪

(α,ϑ(α))∈I∗
η×I∗

ϑ(η)
π−1
g

(
Ug,ϑ(α)

)
. Since πg ∈ g-C [Tg,Ω;Tg,Σ] , it follows, consequently, that

πg

(
Sg,ω

)
⊆

∪
(α,ϑ(α))∈I∗

η×I∗
ϑ(η)

Ug,ϑ(α) . Therefore,
⟨
π−1
g

(
Ug,α

)
∈ O [Tg,Σ]

⟩
α∈I∗

η
is a finite Tg -open

subcovering of Sg,σ ⊂ Tg,Σ . Hence, im
(
πg|Sg,ω

)
∈ A [Tg,Σ] is also Tg -compact in Tg,Σ . The

proof of the proposition is complete. 2

Theorem 3.15 Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map, where Tg,Ω =

(Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -spaces. If Sg,ω ⊂ Tg,Ω is a countably g-Tg -compact

set in Tg,Ω , then im
(
πg|Sg,ω

)
⊂ Tg,Σ is also a countably g-Tg -compact set in Tg,Σ .

Proof Let πg ∈ g-C [Tg,Ω;Tg,Σ] , where Tg,Ω = (Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -

spaces, and suppose Sg,ω ⊂ Tg,Ω be a countably g-Tg -compact set in Tg,Ω . To prove that

im
(
πg|Sg,ω

)
⊂ Tg,Σ is countably g-Tg -compact in Tg,Σ , let Sg,σ ⊆ πg (Sg,ω) be an infinite

Tg -subset of im
(
πg|Sg,ω

)
. Then, a denumerable Tg -subset Rg,σ =

{
ζα : α ∈ I∗∞

}
⊂ Sg,σ

exists. Since Rg,σ ⊂ Sg,σ ⊆ im
(
πg|Sg,ω

)
= πg (Sg,ω) , there exists a denumerable Tg -subset

Rg,ω =
{
ξα : α ∈ I∗∞

}
⊂ Sg,ω , with πg

(
ξα

)
= ζα for every α ∈ I∗∞ . But, by hypothesis,

Sg,ω ⊂ Tg,Ω is countably g-Tg -compact in Tg,Ω , so Rg,ω contains a g-Tg -accumulation point

ξ ∈ Sg,ω . Thus, ξ ∈ Rg,ω ∪ derg (Rg,ω) ⊆ Rg,ω and πg (ξ) ∈ im
(
πg|Sg,ω

)
= πg (Sg,ω) ;

evidently, derg (Rg,ω) ∈ g-K [Tg,Ω] and therefore, a g-Tg -closed set Vg,ω ∈ g-K [Tg,Ω] exists such

that, derg (Rg,ω) = Vg,ω . But, by hypothesis, πg ∈ g-C [Tg,Ω;Tg,Σ] . Consequently, πg

(
Rg,ω ∪

derg (Rg,ω)
)
⊆ πg (Rg,ω)∪derg

(
πg (Rg,ω)

)
= Rg,σ ∪derg (Rg,σ) . But, ξ ∈ Rg,ω ∪derg (Rg,ω) and

therefore, πg (ξ) ∈ Rg,σ ∪ derg (Rg,σ) . Now, πg (ξ) ∈ Rg,σ ∪ derg (Rg,σ) , so let it be claimed that
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πg (ξ) is a g-Tg -accumulation point of Rg,σ . There are, then, two cases, namely, ξ /∈ Rg,ω and

ξ ∈ Rg,ω .

i. Case ξ /∈ Rg,ω . If ξ /∈ Rg,ω , then πg (ξ) /∈ (Rg,ω) = Rg,σ . But, πg (ξ) ∈ Rg,σ ∪

derg (Rg,σ) and consequently, πg (ξ) is a g-Tg -accumulation point of Rg,σ .

ii. Case ξ ∈ Rg,ω . If ξ ∈ Rg,ω , choose a µ ∈ I∗∞ such that ξ = ξµ . Then, ξ /∈ R̂g,ω ={
ξα : α ∈ I∗∞ \ {µ}

}
and every g-Tg -open set Ug,ξ ∈ g-O [Tg] containing ξ contains at least a

point ξ̂ ∈ R̂g,ω = {ξα : α ∈ I∗∞ \ {µ}} and therefore, ξ is a g-Tg -accumulation point of R̂g,ω .

But, πg

(
R̂g,ω

)
=

{
ζα : α ∈ I∗∞ \ {µ}

}
since, by hypothesis, πg

(
ξα

)
= ζα for every α ∈ I∗∞ .

Thus, πg (ξ) is a g-Tg -accumulation point of πg

(
R̂g,ω

)
where πg

(
R̂g,ω

)
⊆ Rg,σ . Moreover, since

πg

(
R̂g,ω ∪ derg

(
R̂g,ω

))
⊆ πg

(
R̂g,ω

)
∪ derg

(
πg

(
R̂g,ω

))
= R̂g,σ ∪ derg

(
R̂g,σ

)
, it follows that, πg (ξ)

is a g-Tg -accumulation point of R̂g,σ . Since Rg,σ ⊂ Sg,σ ⊆ im
(
πg|Sg,ω

)
= πg (Sg,ω) , πg (ξ)

is also a g-Tg -accumulation point of Sg,σ and πg (ξ) ∈ im
(
πg|Sg,ω

)
= πg (Sg,ω) . Therefore,

every infinite Tg -subset Sg,σ ⊆ im
(
πg|Sg,ω

)
of πg (Sg,ω) contains a g-Tg -accumulation point in

πg (Sg,ω) and hence, im
(
πg|Sg,ω

)
⊂ Tg,Σ is also a countably g-Tg -compact set in Tg,Σ . The proof

of the theorem is complete. 2

Proposition 3.16 If Sg ⊂ Tg is a sequentially g-Tg -compact set of a Tg -space Tg = (Ω,Tg) ,

then every countable g-Tg -open covering
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
of the g-Tg -compact set Sg is

reducible to a finite g-Tg -open subcovering of the type
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ
of

Sg .

Proof Let it be assumed that Sg ⊂ Tg is a sequentially g-Tg -compact infinite set of a Tg -space

Tg = (Ω,Tg) . Furthermore, assume that there exists a countable g-Tg -open covering
⟨
Ug,α ∈

g-O [Tg]
⟩
α∈I∗

σ
of Sg with no finite g-Tg -open subcovering

⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ

of Sg . Finally, introduce the sequence ⟨ξα ∈ Sg⟩α∈I∗
∞

and define its elements in the following

manner. Let ϑ (1) ∈ I∗ϑ(σ) ⊂ I∗σ be the smallest integer in I∗ϑ(σ) such that Sg∩Ug,ϑ(1) ̸= ∅ ; choose

ξ1 ∈ Sg ∩Ug,ϑ(1) . Let ϑ (2) ∈ I∗ϑ(σ) ⊂ I∗σ be the least integer larger than ϑ (1) in I∗ϑ(σ) such that

Sg ∩Ug,ϑ(2) ̸= ∅ ; choose ξ2 ∈
(
Sg ∩Ug,ϑ(2)

)
\
(
Sg ∩Ug,ϑ(1)

)
. Note that, such a point ξ2 always

exists, for otherwise Ug,ϑ(1) covers Sg . Continuing in this way, the properties of ⟨ξα⟩α∈I∗
∞

, for

every α ∈ I∗∞ \ {1} , are

ξα ∈ Sg ∩Ug,ϑ(α), ξα /∈
∪

ν∈I∗
α−1

(
Sg ∩Ug,ϑ(ν)

)
, ϑ (α) > ϑ (α− 1) .
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Let it be claimed that ⟨ξα⟩α∈I∗
∞

has no convergent subsequence
⟨
ξϑ(α)

⟩
(α,ϑ(α))∈I∗

∞×I∗
∞
≺ ⟨ξα⟩α∈I∗

∞

in Sg . Suppose ξ ∈ Sg , then there exists a µ ∈ I∗ϑ(σ) such that ξ ∈ Ug,ϑ(µ) . Now, Sg∩Ug,ϑ(µ) ̸= ∅

since, ξ ∈ Sg ∩ Ug,ϑ(µ) . Thus, there exists ν ∈ I∗ϑ(σ) such that, Ug,ϑ(ν) = Ug,ϑ(µ) . But, by

the properties of the sequence ⟨ξα⟩α∈I∗
∞

, α > ϑ (ν) implies ξα /∈ Ug,ϑ(µ) . Accordingly, since

ξ ∈ Ug,α ∈ g-O [Tg] no subsequence
⟨
ξϑ(α)

⟩
(α,ϑ(α))∈I∗

∞×I∗
∞
≺ ⟨ξα⟩α∈I∗

∞
of ⟨ξα⟩α∈I∗

∞
converges to

ξ ∈ Sg . But, ξ was arbitrary and hence, Sg ⊂ Tg is not sequentially g-Tg -compact in Tg . The

proof of the proposition is complete. 2

Theorem 3.17 If Sg ∈ g-A [Tg] is a g-Tg -compact set of a Tg -space Tg = (Ω,Tg) , then it is

also locally g-Tg -compact in Tg .

Proof Let Sg ∈ g-A [Tg] be a g-Tg -compact set of a Tg -space Tg = (Ω,Tg) . Since

Sg ∈ g-A [Tg] , for every g-Tg -open covering
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
, there exists a g-Tg -open

subcovering
⟨
Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ
such that Sg ⊆

∪
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

Ug,ϑ(α) . It

is clear that, for every ξ ∈ Sg , there exists Ug,ξ ∈ g-O [Tg] such that Sg ∩Ug,ξ = Ug,ϑ(α) ∩Ug,ξ

for some (α, ϑ (α)) ∈ I∗σ × I∗ϑ(σ) . For every (α, ξ, ϑ (α) , υ (α, ξ)) ∈ I∗σ × Sg × I∗ϑ(σ) × I∗υ(σ) ,

set Ug,υ(α,ξ) = Ug,ϑ(α) ∩ Ug,ξ . Then, since
(
Ug,ϑ(α),Ug,ξ

)
∈ g-O [Tg] × g-O [Tg] for every

(α, ξ, ϑ (α)) ∈ I∗σ × Sg × I∗ϑ(σ) , there exists, for every (α, ξ, ϑ (α)) ∈ I∗σ × Sg × I∗ϑ(σ) , a pair(
Og,ϑ(α),Og,ξ

)
∈ Tg×Tg of Tg -open sets such that,

(
Ug,ϑ(α),Ug,ξ

)
⊆

(
opg

(
Og,ϑ(α)

)
, opg

(
Og,ξ

))
.

Consequently,

Ug,υ(α,ξ) = Ug,ϑ(α) ∩Ug,ξ ⊆ opg
(
Og,ϑ(α)

)
∩ opg

(
Og,ξ

)
⊆ opg

(
Og,ϑ(α) ∩ Og,ξ

)
= opg

(
Og,υ(α,ξ)

)
,

where Ug,υ(α,ξ) = Ug,ϑ(α) ∩ Ug,ξ for every (α, ξ, ϑ (α) , υ (α, ξ)) ∈ I∗σ × Sg × I∗ϑ(σ) × I∗υ(σ) .

Therefore, Ug,υ(α,ξ) ∈ g-O [Tg] for every (α, ξ, ϑ (α) , υ (α, ξ)) ∈ I∗σ×Sg× I∗ϑ(σ)× I∗υ(σ) . But, since

ξ ∈ Ug,ϑ(α,ξ) ⊆ Ug,ϑ(α,ξ) ∪ derg
(
Ug,ϑ(α,ξ)

)
and Ug,ϑ(α) ⊃ Ug,ϑ(α,ξ) ∪ derg

(
Ug,ϑ(α,ξ)

)
∈ g-A [Tg] , it

results that,

ξ ∈ Ug,ϑ(α,ξ) ⊆ Ug,ϑ(α,ξ) ∪ derg
(
Ug,ϑ(α,ξ)

)
⊂ Ug,ϑ(α).

Thus, given any
(
ξ,Ug,ϑ(α)

)
∈ Sg×g-O [Tg] , there is a g-Tg -open neighborhood Ug,ϑ(α,ξ) ∈ g-N [ξ]

of ξ such that Ug,ϑ(α,ξ) ⊂ Ug,ϑ(α) and Ug,ϑ(α) ∪ derg
(
Ug,ϑ(α)

)
∈ g-A [Tg] . Hence, Sg ∈ g-A [Tg]

implies that it is also locally g-Tg -compact in Tg . The proof of the theorem is complete. 2

Corollary 3.18 Every Tg -space Tg = (Ω,Tg) having the property that every local g-Tg -open
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covering
⟨
Ug,α ∈ g-O [Tg]

⟩
α∈I∗

σ
of the Tg -space Tg contains a finite g-Tg -open subcovering⟨

Ug,ϑ(α)

⟩
(α,ϑ(α))∈I∗

σ×I∗
ϑ(σ)

≺
⟨
Ug,α

⟩
α∈I∗

σ
of Tg is a locally g-T [A]

g -space g-T[A]
g =

(
Ω, g-T [A]

g

)
.

Theorem 3.19 Let πg : Tg,Ω −→ Tg,Σ be a g- (Tg,Ω,Tg,Σ)-continuous map, where Tg,Ω =

(Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -spaces. If Sg,ω ⊂ Tg,Ω is a locally g-Tg -compact set

in Tg,Ω , then im
(
πg|Sg,ω

)
⊂ Tg,Σ is also a locally g-Tg -compact set in Tg,Σ .

Proof Let πg ∈ g-C [Tg,Ω;Tg,Σ] , where Tg,Ω = (Ω,Tg,Ω) and Tg,Ω = (Ω,Tg,Ω) are Tg -

spaces, and suppose Sg,ω ⊂ Tg,Ω be locally g-Tg -compact in Tg,Ω . Since Sg,ω is locally g-Tg -

compact, for any given
(
ξ,Ng,ξ

)
∈ Sg,ω × g-N [ξ] , there is a g-Tg -neighborhood N̂g,ξ ∈ g-N [ξ]

of ξ such that N̂g,ξ ⊂ Ng,ξ and N̂g,ξ ∪ derg
(
N̂g,ξ

)
∈ g-A

[
Tg,Ω

]
. Consequently, ξ ∈ N̂g,ξ ⊆

N̂g,ξ ∪derg
(
N̂g,ξ

)
⊂ Ng,ξ and thus, πg (ξ) ∈ πg

(
N̂g,ξ

)
⊆ πg

(
N̂g,ξ ∪derg

(
N̂g,ξ

))
⊂ πg

(
Ng,ξ

)
. But,

πg

(
N̂g,ξ∪derg

(
N̂g,ξ

))
⊆ πg

(
N̂g,ξ

)
∪πg

(
derg

(
N̂g,ξ

))
because, by hypothesis, πg ∈ g-C [Tg,Ω;Tg,Σ] .

Therefore,

πg (ξ) ∈ πg

(
N̂g,ξ

)
⊆ πg

(
N̂g,ξ ∪ derg

(
N̂g,ξ

))
⊆ πg

(
N̂g,ξ

)
∪ derg

(
πg

(
N̂g,ξ

))
⊂ πg

(
Ng,ξ

)
.

Since N̂g,ξ ⊂ Tg,Ω is a g-Tg -neighborhood in Tg,Ω containing ξ ∈ Sg,ω ⊂ Tg,Ω , πg

(
N̂g,ξ

)
⊂

Tg,Σ is a g-Tg -neighborhood in Tg,Σ containing πg (ξ) ∈ πg

(
Sg,ω

)
∈ Tg,Σ . Now πg

(
N̂g,ξ

)
∪

derg
(
πg

(
N̂g,ξ

))
∈ g-A

[
Tg,Σ

]
by virtue of the statements N̂g,ξ ∪ derg

(
N̂g,ξ

)
∈ g-A

[
Tg,Ω

]
and

πg ∈ g-C [Tg,Ω;Tg,Σ] . In other words, for any given
(
πg (ξ) , πg

(
Ng,ζ

))
=

(
ζ,Ng,ζ

)
∈ Sg,σ×g-N [ζ] ,

there is a g-Tg -neighborhood πg

(
N̂g,ξ

)
= N̂g,ζ ∈ g-N [ζ] of πg (ξ) = ζ such that πg

(
N̂g,ξ

)
=

N̂g,ζ ⊆ Ng,ζ = πg

(
Ng,ξ

)
and πg

(
N̂g,ξ

)
∪ derg

(
πg

(
N̂g,ξ

))
= N̂g,ζ ∪ derg

(
N̂g,ζ

)
∈ g-A

[
Tg,Σ

]
.

Therefore, Sg,σ ⊂ Tg,Σ is locally g-Tg -compact in Tg,Σ . But, Sg,σ = πg (Sg,ω) = im
(
πg|Sg,ω

)
.

Hence, im
(
πg|Sg,ω

)
⊂ Tg,Σ is locally g-Tg -compact in Tg,Σ . The proof of the theorem is complete.

2

4. Discussion
4.1. Categorical Classifications

Having adopted a categorical approach in the classifications of g-Tg -compactness in the Tg -space

Tg , the dual purposes of the this section are firstly, to establish the various relationships amongst

the elements of the sequences
⟨
g-ν-T[E]

g =
(
Ω, g-ν-T [E]

g

)⟩
ν∈ I0

3
and

⟨
g-ν-T[E] =

(
Ω, g-ν-T [E]

)⟩
ν∈ I0

3

of g-ν-T [E]
g -spaces and g-ν-T [E] -spaces, respectively, where E ∈ {A,CA, SA,LA} , and secondly,

to illustrate them through diagrams.
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Figure 1: Relationships: g-Tg -compact spaces and Tg -compact spaces

It is plain that Tg -compactness implies both countable Tg -compactness and local countable

Tg -compactness; sequential Tg -compactness implies countable Tg -compactness. Moreover, the

following implications also hold: g-TLA
g ←− g-TA

g , g-TCA
g ←− g-TA

g , and g-TCA
g ←− g-TSA

g . Since

the relation T[E] ←− g-T[E] holds for every E ∈ {A,CA, SA,LA} , taking this last statement

together with those preceding it into account, the diagram presented in Figure 1 follows, in which

are illustrated the various relationships amongst the elements of
⟨
g-T[E]

g

⟩
E∈Λ

and
⟨
T
[E]
g

⟩
E∈Λ

, where

Λ = {A,CA, SA,LA} .

For each ν ∈ I03 , these implications hold: g-ν-T[LA]
g ←− g-ν-T[A]

g , g-ν-T[CA]
g ←− g-ν-T[A]

g ,

and g-ν-T[CA]
g ←− g-ν-T[SA]

g . For each E ∈ Λ = {A,CA, SA,LA} , these implications also hold:

g-0-T[E]
g ←− g-1-T[E]

g , g-1-T[E]
g ←− g-3-T[E]

g , and g-2-T[E]
g ←− g-3-T[E]

g . When all these implications

are taken into consideration, the resulting compactness diagram so obtained is that presented in

Figure 2. It is reasonably correct to call them g-T[E]
g -spaces of type E and of category ν , where

(ν,E) ∈ I03 ×{A,CA, SA,LA} . As in the papers of [7] and [17], among others, the manner we have

positioned the arrows is solely to stress that, in general, none of the implications in Figures 1 and

2 is reversible.

In order to exemplify the notion of g-T[E]
g -spaces of type E and of category ν , where

(ν,E) ∈ I03 × {A,CA, SA,LA} , a nice application is presented in the following section.

4.2. A Nice Application

Focusing on basic concepts from the standpoint of the theory of g-Tg -compactness, we shall now

present a nice application.

Let Tg : P (Ω) −→P (Ω) be the g-topology on Ω = N (set of positive integers) generated

by Tg -open and Tg -closed sets belonging to:

Tg
def
=

{
Og,(2µ−1,2µ) :

(
∀µ ∈ I∗∞

)([
Og,(2µ−1,2µ) = ∅

]
∨
[
Og,(2µ−1,2µ) = {2µ− 1, 2µ}

])}
;

¬Tg
def
=

{
Kg,(2µ−1,2µ) :

(
∀µ ∈ I∗∞

)([
Kg,(2µ−1,2µ) = N

]
∨
[
Kg,(2µ−1,2µ) = {

(
{2µ− 1, 2µ}

)])}
,
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Figure 2: Relationships: g-Tg -compact spaces

respectively. As in the above case, it results that Tg : P (Ω) −→ P (Ω) satisfies the relations

Tg (∅) = ∅ , Tg

(
Og,(2µ−1,2µ)

)
⊆ {2µ− 1, 2µ} = Og,(2µ−1,2µ) and, Tg

(∩
µ∈I∗

σ
Og,(2µ−1,2µ)

)
=∩

µ∈I∗
σ

Tg

(
Og,(2µ−1,2µ)

)
as well as Tg

(∪
µ∈I∗

∞
Og,(2µ−1,2µ)

)
=

∪
µ∈I∗

∞
Tg

(
Og,(2µ−1,2µ)

)
, since the

two relations
∩

µ∈I∗
σ

Og,(2µ−1,2µ) = ∅ ∈ Tg and
∪

µ∈I∗
∞

Og,(2µ−1,2µ) = Ω ∈ Tg , respectively, hold.

Therefore, Tg = (Tg,Ω) is a Tg -space and, moreover, since the relation Tg = (Tg,Ω) = (T ,Ω) =

T holds, it is also a T -space. Notice that
⟨
Og,(2α−1,2α)

⟩
α∈I∗

∞
is a Tg -open covering of Ω , since

Og,(2α−1,2α) ∈ O [Tg] for every α ∈ I∗∞ and furthermore, it is also a g-Tg -open covering of Ω ,

since Og,(2α−1,2α) ⊆ opg
(
Og,(2α−1,2α)

)
∈ g-O [Tg] for every α ∈ I∗∞ . However, Tg = (Tg,Ω) ,

where Ω = N , is not a T
[A]
g -space because

⟨
Og,(2α−1,2α)

⟩
α∈I∗

∞
is a Tg -open covering of Ω with no

finite Tg -open subcovering.

As stated above, since g-Tg -compactness implies Tg -compactness, it follows, obviously,

that it is also not a g-T[A]
g -space. On the other hand, Tg = (Tg,Ω) , where Ω = N , is also not

a sequentially g-Tg -compact Tg -space for the simple reason that sequence ⟨ξα = α ∈ Ω⟩α∈I∗
∞

in

Tg contains no subsequence of the type
⟨
ξϑ(α)

⟩
(α,ϑ(α)∈Ω)∈I∗

∞×I∗
∞
≺ ⟨ξα⟩α∈I∗

∞
which converges to a

point ξ ∈ Ω . Hence, Tg is not a g-T[SA]
g -space which, then, implies that it is also not a T

[SA]
g -space.

Let Sg ⊂ Tg be a non-empty Tg -set in Tg . Then, it is no error to express it in the

form Sg = S even
g ∪ S odd

g , where S even
g =

{
µ : (∀α ∈ I∗∞) [µ = 2α]

}
and S odd

g =
{
µ :

(∀α ∈ I∗∞) [µ = 2α− 1]
}

. Since Sg ̸= ∅ , consider an arbitrary point ξ ∈ Sg . If ξ ∈ S even
g
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then, for every Tg -open set Ug,ξ ∈ O [Tg] containing ξ , S even
g ∩

(
Ug,ξ \ {ξ}

)
= ∅ and S odd

g ∩(
Ug,ξ \ {ξ}

)
̸= ∅ . But, if ξ ∈ S odd

g then, for every Tg -open set Ug,ξ ∈ O [Tg] containing ξ ,

S even
g ∩

(
Ug,ξ \ {ξ}

)
̸= ∅ and S odd

g ∩
(
Ug,ξ \ {ξ}

)
= ∅ . In either case, it follows, then, that Sg

have at least one Tg -accumulation point. Accordingly, Tg is a T
[CA]
g -space. For every α ∈ I∗∞ , set

Ug,2α−1 = {2α− 1} and Ug,2α = {2α} . Accordingly, Ug,2α−1 , Ug,2α ∈ g-O [Tg] since Ug,2α−1 ,

Ug,2α ⊆ opg
(
Og,(2α−1,2α)

)
∈ g-O [Tg] for every α ∈ I∗∞ . Observe that, Sg∩

(
Ug,2α−1\{2α− 1}

)
=

∅ and Sg ∩
(
Ug,2α \ {2α}

)
= ∅ for every α ∈ I∗∞ . This proves the existence of an infinite Tg -set

Rg ⊂ Tg with no g-Tg -accumulation point and hence, Tg is not a g-T[CA]
g -space.

In relation to the above descriptions, further Tg -properties amongst the g-T [A]
g -spaces

g-T[A]
g =

(
Ω, g-T [A]

g

)
, g-T[CA]

g =
(
Ω, g-T [CA]

g

)
, g-T[SA]

g =
(
Ω, g-T [SA]

g

)
, and g-T[LA]

g =
(
Ω, g-T [LA]

g

)
called, respectively, g-T [A]

g -space, countably g-T [A]
g -space, sequentially g-T [A]

g -space, and locally

g-T [A]
g -space, can be discussed in a similar way by slight modifications of some Tg -properties

found in those cases.

4.3. Concluding Remarks

In a recent paper [11] the study of a novel class of g-Tg -compactness in Tg -spaces was presented.

In this paper, the concept is further studied and other derived concepts called countable, se-

quential, local g-Tg -compactness in Tg -spaces have also been studied relatively. It was shown

that g-Tg -compactness implies local g-Tg -compactness and countable g-Tg -compactness, sequen-

tial g-Tg -compactness implies countable g-Tg -compactness and g-Tg -compactness is a generalized

topological property (briefly, Tg -property).

For future research, it would be interesting to develop the theory of g-Tg -compactness of

mixed categories. More precisely, for some pair (ν, µ) ∈ I03 × I03 such that ν ̸= µ , to develop

the theory of g-Tg -compactness in terms of relatively g-Tg -open sets belonging to the class{
Ug = Ug,ν ∪Ug,µ : (Ug,ν ,Ug,µ) ∈ g-ν-O

[
Tg

]
× g-µ-O

[
Tg

]}
in a Tg -space Tg . Such a theory is

what we thought would certainly be worth considering, and the discussion of this paper ends here.
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Abstract: In this paper, we classify quasi-conformally flat generalized Sasakian-space forms under

the assumption that the characteristic vector field is Killing. Also, we classify quasi-conformally Weyl-

symmetric generalized Sasakian-space forms.
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1. Introduction
In Riemannian geometry, many authors have studied curvature properties and to what extent they

determined the manifold itself. Two important curvature properties are quasi-conformal flatness

and Weyl-symmetry.

In [1], Alegre, Blair and Carriazo introduced and studied generalized Sasakian-space forms.

These spaces are defined as follows: Given an almost contact metric manifold (M,ϕ, ξ, η, g) , they

say that M is a generalized Sasakian-space form if there exist three functions f1, f2 and f3 on

M such that

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }

+f2{g(X,ϕZ)ϕY − g(Y,ϕZ)ϕX + 2g(X,ϕY )ϕZ} (1)

+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ},

for any vector fields X,Y,Z on M , where R denotes the curvature tensor of M. In such a case,

we will write M(f1, f2, f3).

Then, Kim studied conformally flat generalized Sasakian space forms [5].

In this paper, we study quasi-conformally flat generalized Sasakian-space forms and quasi-

conformally Weyl-symmetric generalized Sasakian-space forms.
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2. Preliminaries

An odd-dimensional Riemannian manifold (M,g) is said to be an almost contact metric manifold

if it admits a tensor field ϕ of type (1,1) , a vector field ξ and a 1 -form η such that

η(ξ) = 1, (2)

ϕ2X = −X + η(X)ξ, (3)

and

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) (4)

for any vector fields X,Y on M [2]. Also,

ϕξ = 0 (5)

and

η ○ ϕ = 0 (6)

are deducible from these conditions. We define the fundamental 2 -form Φ on M by Φ(X,Y ) =

g(X,ϕY ). An almost contact metric manifold M is said to be a contact metric manifold if

g(X,ϕY ) = dη(X,Y ). If ξ is a Killing vector field, then the contact metric manifold is said

to be a K -contact manifold. The almost contact metric structure of M is said to be normal if
[ϕ,ϕ](X,Y ) = −2dη(X,Y )ξ , for any X,Y, where [ϕ,ϕ] denotes the Nijenhuis torsion tensor of

ϕ . A normal contact metric manifold is called a Sasakian manifold. A normal almost contact

metric manifold M with closed forms η and Φ is called a cosymplectic manifold. Cosymplectic

manifolds are characterized by ∇Xξ = 0 and (∇Xϕ)Y = 0 for any vector fields X,Y on M. Given

an almost contact metric manifold (M,ϕ, ξ, η, g), a ϕ -section of M at p ∈ M is a plane section

π ⊆ TpM spanned by a unit vector Xp orthogonal to ξp and ϕXp . The ϕ -sectional curvature of π

is defined by g(R(X,ϕX)ϕX,X). A cosymplectic space-form, i.e., a cosymplectic manifold with

constant ϕ -sectional curvature c , is a generalized Sasakian space-form with f1 = f2 = f3 = c
4

[6].

It is known that the ϕ -sectional curvature of a generalized Sasakian-space form M(f1, f2, f3) is

f1 + 3f2 [1].

For a (2n+1)-dimensional almost contact metric manifold (M,ϕ, ξ, η, g), n ≥ 1, its Schouten

tensor L is defined by

L = − 1

2n − 1
Q + τ

4n(2n − 1)
I, (7)

where Q denotes the Ricci operator and τ is the scalar curvature of M . The Weyl conformal
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curvature tensor is given by

C(X,Y )Z = R(X,Y )Z (8)

−[g(LX,Z)Y − g(Y,Z)LX − g(LY,Z)X + g(X,Z)LY ].

In dimension > 3, that is n > 1, M is conformally flat if and only if C = 0, and in this case,

L satisfies (∇XL)Y − (∇Y L)X = 0 for any vector fields X,Y on M. In dimension 3 , that is

n = 1, C = 0 is automatically satisfied and M is conformally flat if and only if L satisfies

(∇XL)Y − (∇Y L)X = 0 for any vector fields X,Y on M.

A symmetric tensor field T of type (1,1) is a Codazzi tensor if it satisfies

(▽XT )Y − (▽Y T )X = 0.

For the later use, we give the following lemma which was proved Derdzinski.

Lemma 2.1 [3, 4] Let T be a Codazzi tensor on a Riemannian manifold M . Then, we have the

following:

If T has more than one eigenvalue, then the eigenspaces for each eigenvalue v form an

integrable subbundle Vv of constant multiplicity on open sets: If the multiplicity is greater than 1 ,

then the integral submanifolds are umbilical submanifolds and each eigenfunction is constant along

the integral submanifolds of its subbundle. Moreover, if v is constant on M , then the integral

submanifolds of Vv are totally geodesic.

Let M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian-space form. Then, the

curvature tensor R of M is given by (1). From (1), we can easily see that

QX = {2nf1 + 3f2 − f3}X − {3f2 + (2n − 1)f3}η(X)ξ, (9)

τ = 2n(2n + 1)f1 + 6nf2 − 4nf3. (10)

Moreover, we can see that

LX = {−1
2
f1 −

3

2(2n − 1)
f2}X + {

3

2n − 1
f2 + f3}η(X)ξ. (11)

Therefore, the Weyl conformal curvature tensor C can be written as

C(X,Y )Z = −3
2n − 1

f2{g(Y,Z)X − g(X,Z)Y }

+f2{g(ϕY,Z)ϕX − g(ϕX,Z)ϕY + 2g(X,ϕY )ϕZ} (12)

− 3

2n − 1
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.
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The notion of the quasi-conformal curvature tensor was defined by Yano and Sawaki [8]. According

to them a quasi-conformal curvature tensor is defined by

C̃(X,Y )Z = aR(X,Y )Z

+b[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ] (13)

− τ

2n + 1
[ a
2n
+ 2b][g(Y,Z)X − g(X,Z)Y ],

where a and b are constants, S is the Ricci tensor, Q is the Ricci operator and τ is the scalar

curvature of the manifold M2n+1. A Riemannian manifold (M2n+1, g), (n > 1), is called quasi-

conformally flat if the quasi-conformal curvature tensor C̃ = 0. If a = 1 and b = −1
2n−1 , then the

quasi-conformal curvature tensor is reduced to the Weyl conformal curvature tensor.

A Riemannian manifold is said to be quasi-conformally Weyl-symmetric manifold if

R(X,Y ) ⋅ C̃ = 0,

where C̃ is the quasi-conformal curvature tensor.

On the other hand, from (1), we have

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y } (14)

and
R(ξ,X)Y = (f1 − f3){g(X,Y )ξ − η(Y )X}. (15)

3. Quasi-Conformally Flat Generalized Sasakian-Space Forms

Theorem 3.1 Let M(f1, f2, f3) be a (2n+1)-dimensional generalized Sasakian-space form. Then,

we have the following: (i) If n > 1 , then M is quasi-conformally flat if and only if f2 =

− (a+(2n−1)b)
3(an+b) f3, (ii) If M is quasi-conformally flat and ξ is a Killing vector field, then it is flat,

or of constant curvature, or locally the product N1 ×N2n , where N1 is a 1-dimensional manifold

and N2n is a 2n-dimensional almost Hermitian manifold of constant curvature. In any case, M

is locally symmetric and has constant ϕ-sectional curvature.

Proof Assume that M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian−space form.

Using (1), (9), (10) and equation S(X,Y ) = g(QX,Y ) in (13), we obtain

C̃(X,Y )Z = 1

2n + 1
[(−3a + 6b)f2 + (2a + 2(2n − 1)b)f3]{g(Y,Z)X − g(X,Z)Y }

+af2{g(X,ϕZ)ϕY − g(Y,ϕZ)ϕX + 2g(X,ϕY )ϕZ} (16)

+[(a + (2n − 1)b)f3 + 3bf2]{η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.
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If a = 1 and b = − 1
2n−1 , then we obtain (13), that is, the quasi-conformal curvature tensor is

reduced to the conformal curvature tensor.

Suppose that M(f1, f2, f3) is quasi-conformally flat and n > 1 . Then, we have C̃ = 0.

If we put X = ϕY in (16), then we find

1

2n + 1
[3(2b − a)f2 + 2(a + (2n − 1)b)f3]{g(Y,Z)ϕY − g(ϕY,Z)Y }

+af2{g(ϕY,ϕZ)ϕY − g(Y,ϕZ)ϕ2Y + 2g(ϕY,ϕY )ϕZ}

+[(a + (2n − 1)b)f3 + 3bf2]{η(ϕY )η(Z)Y − η(Y )η(Z)ϕY (17)

+g(ϕY,Z)η(Y )ξ − g(Y,Z)η(ϕY )ξ} = 0

or using (3) and (4) in (17), we obtain

1

2n + 1
[3(2b − a)f2 + a(2n + 1)f2

+2(a + (2n − 1)b)f3]{g(Y,Z)ϕY − g(ϕY,Z)Y } (18)

+[af2 + (a + (2n − 1)b)f3 + 3bf2]{−η(Y )η(Z)ϕY − g(Y,ϕZ)η(Y )ξ}

+af2{2g(Y,Y )ϕZ − 2η(Y )η(Y )ϕZ} = 0.

If we choose a unit vector U such that g(U, ξ) = 0 and put Y = U in (18), then we have

1

2n + 1
[{(2(n−1)a+6b)f2+2(a+(2n−1)b)f3}{g(U,Z)ϕU−g(ϕU,Z)U}+2(2n+1)af2ϕZ] = 0. (19)

Putting Z = U in (19), we get

{(2(n − 1)a + 6b + 2(2n + 1)a)f2 + 2(a + (2n − 1)b)f3}ϕU = 0.

Thus, we have

(2(n − 1)a + 6b + 2(2n + 1)a)f2 + 2(a + (2n − 1)b)f3 = 0.

From this equation, we get

f2 = −
(a + (2n − 1)b)

3(an + b)
f3. (20)

Conversely, if f2 = − (a+(2n−1)b)3(an+b) f3, then from (16), we have C̃(X,Y )Z = 0 and hence, M(f1, f2, f3)

is quasi-conformally flat. Therefore, when n > 1, M(f1, f2, f3) is conformally flat if and only if

f2 = − (a+(2n−1)b)3(an+b) f3. Thus, the first part (i) of the Theorem 3.1 is proved.

For the proof of the second part (ii), we assume that M(f1, f2, f3) is quasi-conformally flat

and ξ is Killing. Then, the Schouten tensor L of the manifold is a Codazzi tensor, that is,

(∇XL)Y − (∇Y L)X = 0 (21)
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for any vector fields X,Y on M. Also, if n > 1, then we have f2 = − (a+(2n−1)b)3(an+b) f3 by the first part

(i) and hence from (12), we obtain

LX = [−1
2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]X

+[ (2n + 1)(n − 1)
(2n − 1)(na + b)

]af3η(X)ξ. (22)

Using (7), from (13), we get

C̃(X,Y )Z = aR(X,Y )Z − (2n − 1)b[g(LY,Z)X − g(LX,Z)Y

+g(Y,Z)LX − g(X,Z)LY ] (23)

− τ

2n(2n + 1)
(a + (2n − 1)b)[g(Y,Z)X − g(X,Z)Y ].

If n = 1, then from (23), we get

C̃(X,Y )Z = aR(X,Y )Z − b[g(LY,Z)X − g(LX,Z)Y

+g(Y,Z)LX − g(X,Z)LY ] (24)

−τ
6
(a + b)[g(Y,Z)X − g(X,Z)Y ].

Since M(f1, f2, f3) is quasi-conformally flat, we can write C̃(X,Y )Z = 0, then we get

R(X,Y )Z = b

a
[g(LY,Z)X − g(LX,Z)Y

+g(Y,Z)LX − g(X,Z)LY ] (25)

+τ
6

(a + b)
a
[g(Y,Z)X − g(X,Z)Y ]

for any vector fields X,Y,Z . In the 3 -dimensional manifold M(f1, f2, f3) , the Schouten tensor is

given by (11),

LX = −1
2
(f1 + 3f2)X + (3f2 + f3)η(X)ξ. (26)

From (25) and (26), we obtain

R(X,Y )Z = [f1 + (
a − 2b
a
)f2 −

2

3
(a + b

a
)f3]{g(Y,Z)X − g(X,Z)Y }

+ b
a
(3f2 + f3){η(Y )η(Z)X − η(X)η(Z)Y (27)

+g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ}.
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If we take
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f∗1 = f1 + (a−2ba
)f2 − 2

3
(a+b

a
)f3,

f∗3 = b
a
(3f2 + f3),

(28)

then we can write

R(X,Y )Z = f∗1 {g(Y,Z)X − g(X,Z)Y }

+f∗3 {η(Y )η(Z)X − η(X)η(Z)Y

+g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ}.

Equation (26) gives

Lξ = (−1
2
f1 +

3

2
f2 + f3)ξ. (29)

If X is a vector orthogonal to ξ , then we get

LX = −1
2
(f1 + 3f2)X. (30)

For n > 1, then from (22), we get

Lξ = −1
2
[f1 − {

1

na + b
[(4n

2 − 2n − 1
2n − 1

)a + b]}f3]ξ. (31)

If X is a vector orthogonal to ξ , then we have

LX = [−1
2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]X. (32)

Let ξ,E1,E2, ...,E2n be local orthonormal vector fields on M(f1, f2, f3) . Then from (21), (22)

and (32), we get

(▽EiL)Ej − (▽EjL)Ei = −1
2
(Eif1)Ej +

1

2
(Ejf1)Ei

+ 1

2(na + b)
( a

2n − 1
+ b)[(Eif3)Ej − (Ejf3)Ei]

+ (2n + 1)(n − 1)
(2n − 1)(na + b)

af3η(▽EiEj −▽EjEi)ξ = 0. (33)

Taking inner product with Ej in (33), we have

(Ejf1) =
1

(na + b)
( a

2n − 1
+ b)(Ejf3). (34)
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Using (31), we obtain

(▽EjL)ξ +L▽Ej ξ = −1
2
{f1 −

1

(na + b)
[(4n

2 − 2n − 1
2n − 1

)a + b]f3}▽Ej ξ

−1
2
(Ejf1)ξ +

1

2(na + b)
[(4n

2 − 2n − 1
2n − 1

)a + b](Ejf3)ξ. (35)

If we use (34) in (35), then we get

(▽EjL)ξ +L▽Ej ξ = −1
2
{f1 −

1

(na + b)
[(4n

2 − 2n − 1
2n − 1

)a + b]f3}▽Ej ξ

+ (2n + 1)(n − 1)
(2n − 1)(na + b)

a(Ejf3)ξ. (36)

Since ▽Ejξ is orthogonal to ξ , using (32), we get

L(▽Ejξ) = [−
1

2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]▽Ej ξ. (37)

Thus from (36), we obtain

(▽EjL)ξ = [
(2n + 1)(n − 1)
(2n − 1)(na + b)

a]((Ejf3)ξ + f3▽Ej ξ). (38)

Since ξ is Killing, then we get

(▽ξL)Ej +L(▽ξEj) = [−1
2
ξ(f1) +

1

2(na + b)
( a

2n − 1
+ b)ξ(f3)]Ej

+[−1
2
f1 +

1

2(na + b)
( a

2n − 1
+ b)f3]▽ξ Ej , (39)

where

L(▽ξEj) = −
1

2
f1▽ξ Ej +

1

2(na + b)
( a

2n − 1
+ b)f3▽ξ Ej . (40)

Thus from (36), we have

(▽ξL)Ej = [−
1

2
ξ(f1) +

1

2(na + b)
( a

2n − 1
+ b)ξ(f3)]Ej . (41)

Since (▽EjL)ξ = (▽ξL)Ej , from (38) and (41), we get

[ (2n + 1)(n − 1)
(2n − 1)(na + b)

a]((Ejf3)ξ + f3▽Ej ξ) (42)

= [−1
2
ξ(f1) +

1

2(na + b)
( a

2n − 1
+ b)ξ(f3)]Ej .
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Taking inner product with Ej in (42), we obtain

ξ(f1) =
1

(na + b)
( a

2n − 1
+ b)ξ(f3). (43)

Taking inner product with ξ, from (42), we get

[ (2n + 1)(n − 1)
(2n − 1)(na + b)

a]((Ejf3)ξ + f3▽Ej ξ) = 0, (44)

this gives Ejf3 = 0 and f3▽Ej ξ = 0 (j = 1,2, ..., 2n). Combining this with ▽ξξ = 0 gives

f3(▽Xξ) = 0 (45)

for any vector field X . From (45), we get

(Y f3)(▽Xξ) + f3▽Y ▽Xξ = 0.

This equation and (45) give

(Xf3)▽Y ξ − (Y f3)▽X ξ + f3[▽X ▽Y ξ −▽Y ▽X ξ −▽[X,Y ]ξ] = 0.

Multiplying this equation with f3 and using (45), we get

f2
3R(X,Y )ξ = 0.

This equation and (14) give

f2
3 (f1 − f3)[η(Y )X − η(X)Y ] = 0

from which we obtain f3(f1 − f3) = 0.

Consider the case f1 = 0. In this case, we have f3 = 0 on M and hence, f2 = 0 . Thus, M

is flat.

Next consider the case f1 ≠ 0 . Differentiating f3(f1−f3) = 0 with ξ gives {f1+[ 1
(na+b)(

a
2n−1+

b) − 2]f3}ξ(f3) = 0. If f3(p) = 0 at a point p ∈ M , then f1(p)ξ(f3)(p) = 0 , where since f1 ≠ 0,

we get ξ(f3) = 0 at p . If f3(p) ≠ 0 , then f3 = f1 in an open neighborhood U of p . Thus,

{ a(1+n−2n2)
(na+b)(2n−1)f3}ξ(f3) = 0. For n > 1 , since 1 + n − 2n2 ≠ 0 , we get ξ(f3) = 0 on U. Thus, we have

ξ(f3) = 0 on M. Since Ejf3 = 0 (j = 1,2, ..., 2n), f3 is constant on M . Hence, we have:

(a) If f3 = 0 , then M is of constant curvature f1 .

(b) If f3 ≠ 0 , then we have f1 = f3 and ▽Xξ = 0 for any vector X on M . Hence, the

Schouten tensor L has two distinct constant eigenvalues 1
2
f1 with multiplicity 1 and −1

2
f1 with

multiplicity 2n . Therefore, we have the decomposition D⊕[ξ], where D is the distribution defined

127



Ahmet Yıldız / FCMS

by η = 0 and [ξ] is the distribution spanned by the vector ξ. By Lemma 2.1, D is integrable.

Hence, M is locally product of an integral submanifold N1 of [ξ] and an integral submanifold

N2n of D . Since the eigenvalue is constant on M, N2n is a totally geodesic submanifold of M

by Lemma 2.1. If we denote the restriction of ϕ in D by J , then

J2X = ϕ2X = −X + η(X)ξ = −X

for any X ∈ D. Hence, J defines an almost complex structure on N2n.

Also, g′(JX,JY ) = g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) = g′(X,Y ) for any X,Y ∈ D , where

g′ is the induced metric on N2n from g . Hence, (N2n, J, g′) is an almost Hermitian manifold.

Since N2n is a totally geodesic hypersurface of M , the equation of Gauss is given by

R(X,Y )Z = R′(X,Y )Z

for any vector fields X,Y and Z tangent to N2n , where R′ is the curvature tensor of N2n . Thus,

we get

R′(X,Y )Z = f1[g′(Y,Z)X − g′(X,Z)Y ]

and hence, N2n is a space of constant curvature f1 . In any case, from the above arguments, we

can easily see that M(f1, f2, f3) is locally symmetric. Since f1 and f3 are constants, we can see

that M is of constant ϕ -sectional curvature. This completes the proof of the Theorem 3.1. ◻

The above theorem was proved in another ways by Kim [5] and Sarkar and De [7].

Remark 3.2 In the Theorem 1, the condition ”ξ is Killing vector field” cannot be removed.

For example, given (N,J, g) with constant curvature c , say, a 6-dimensional sphere with nearly

Kaehler structure [6], the warped product M = R ×f N, where f > 0 is a nonconstant function on

R , can be endowed with an almost contact metric structure (ϕ, ξ, η, gf).

4. Quasi-Conformally Weyl-Symmetric Generalized Sasakian-Space Forms

Let us consider a quasi-conformally Weyl-symmetric generalized Sasakian-space form M(f1, f2, f3) .

Then, the condition

R(X,Y ) ⋅ C̃ = 0

holds on M(f1, f2, f3) for every vector fields X,Y . Hence, we have

(R(X,Y ) ⋅ C̃)(U,V )W = R(X,Y )C̃(U,V )W − C̃(R(X,Y )U,V )W

−C̃(U,R(X,Y )V )W − C̃(U,V )R(X,Y )W = 0. (46)
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So, for X = ξ in (46), we have

R(ξ, Y )C̃(U,V )W − C̃(R(ξ, Y )U,V )W

−C̃(U,R(ξ, Y )V )W − C̃(U,V )R(ξ, Y )W = 0. (47)

From (15), we get

(f1 − f3){g(Y, C̃(U,V )W )ξ − η(C̃(U,V )W )Y − g(Y,U)C̃(ξ, V )W

+η(U)C̃(Y,V )W − g(Y,V )C̃(U, ξ)W + η(V )C̃(U,Y )W

−g(Y,W )C̃(U,V )ξ + η(W )C̃(U,V )Y } = 0. (48)

Taking the inner product of (48) with ξ, we obtain

(f1 − f3){g(Y, C̃(U,V )W ) − η(C̃(U,V )W )η(Y ) − g(Y,U)η(C̃(ξ, V )W )

+η(U)η(C̃(Y,V )W ) − g(Y,V )η(C̃(U, ξ)W ) + η(V )η(C̃(U,Y )W )

+η(W )η(C̃(U,V )Y )} = 0. (49)

Putting Y = U in (49), we have

(f1 − f3){g(U, C̃(U,V )W ) − η(C̃(U,V )W )η(U) − g(U,U)η(C̃(ξ, V )W )

+η(U)η(C̃(U,V )W ) − g(U,V )η(C̃(U, ξ)W ) + η(V )η(C̃(U,U)W )

+η(W )η(C̃(U,V )U} = 0. (50)

From (16), we get

η(C̃(X,Y )Z) = (a + (2n − 1)b
2n + 1

)[−3f2 + (1 − 2n)f3]{g(Y,Z)η(X) − g(X,Z)η(Y )}. (51)

Putting Z = ξ , the equation (51) turns into the form

η(C̃(X,Y )ξ) = 0. (52)

Thus, using (52) in (50), we obtain

(f1 − f3){g(U, C̃(U,V )W ) − g(U,U)η(C̃(ξ, V )W )

−g(U,V )η(C̃(U, ξ)W ) + η(W )η(C̃(U,V )U)} = 0. (53)

Let {ei}, 1 ≤ i ≤ 2n + 1, (e2n+1 = ξ) be an orthonormal basis of the tangent space at any point.

Then, the sum for U = ei, 1 ≤ i ≤ 2n + 1, of the relation (53) give us

(f1 − f3){g(ei, C̃(ei, V )W ) − g(ei, ei)η(C̃(ξ, V )W )

−g(ei, V )η(C̃(ei, ξ)W ) + η(W )η(C̃(ei, V )ei)} = 0. (54)
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On the other hand, from (51), we have

η(C̃(ξ, V )W ) = (a + (2n − 1)b
2n + 1

)[−3f2 + (1 − 2n)f3]{g(W,V ) − η(W )η(V )}. (55)

Using (55) in (54), we get

(f1 − f3){g(ei, C̃(ei, V )W ) + 2n(
a + (2n − 1)b

2n + 1
)[3f2 + (1 − 2n)f3]g(W,V )} = 0. (56)

Also, from (16), we have

C̃(ei, V )W = 1

2n + 1
[(−3a + 6b)f2 + (2a + 2(2n − 1)b)f3][g(W,V )ei − g(W,ei)V ]

+af2[g(ei, ϕW )ϕV − g(V,ϕW )ϕei + 2g(ei, ϕV )ϕW ] (57)

+[(a + (2n − 1)b)f3 + 3bf2][η(ei)η(W )V − η(V )η(W )ei

+g(ei,W )η(V )ξ − g(V,W )η(ei)ξ].

Taking the inner product of (57) with ei , we get

g(C̃(ei, V )W,ei) = (
a + (2n − 1)b

2n + 1
)(3f2 + (2n − 1)f3)[g(W,V ) − (2n + 1)η(W )η(V )]. (58)

If we use (58) in (56), we get

(f1 − f3)(a + (2n − 1)b)(3f2 + (2n − 1)f3)[g(W,V ) − η(W )η(V )] = 0. (59)

If f1 ≠ f3 and a ≠ (2n − 1)b , then 3f2 + (2n − 1)f3 = 0 , that is,

f2 = −
(2n − 1)

3
f3. (60)

Hence, using (60) in (10), we obtain

τ = 2n(2n + 1)(f1 − f3) (61)

and using (60) in (9), we get

QX = 2n(f1 − f3)X. (62)

So, we have the following result:

Theorem 4.1 Let M(f1, f2, f3) be a generalized Sasakian-space form. Then, M2n+1 (n > 1) is

quasi-conformally Weyl-symmetric if and only if either f1 = f3 or f2 = − (2n−1)3
f3 (when f1 ≠ f3 ),

where a ≠ (2n − 1)b.
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Abstract: In this study, we consider bi-f -harmonic Legendre curves in Sasakian space forms. We

investigate necessary and sufficient conditions for a Legendre curve to be bi-f -harmonic in various cases.
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1. Introduction

Let (N,g) and (N̄ , ḡ) be two Riemannian manifolds and ψ ∶ (N,g) → (N̄ , ḡ) be a smooth map.

Then, let give the following definitions.

Definition 1.1 Harmonic maps between two Riemannian manifolds are critical points of the

energy functional

E(ψ) = 1

2
∫
N
∣dψ∣2dvg

for smooth maps ψ ∶ (N,g)→ (N̄ , ḡ) . Namely, ψ is called as harmonic if

τ(ψ) = −d∗dψ = trace∇dψ = 0.

Here τ(ψ), which is the tension field of ψ , is the Euler-Lagrange equation of the energy functional

E(ψ), d is the exterior differentiation, d∗ is the codifferentiation, ∇ is the connection induced from

the Levi-Civita connection ∇N̄ of N̄ and the pull-back connection ∇N̄ [1, 3, 8].

Definition 1.2 ψ is called as biharmonic if it is critical point, for all variations, of the bienergy

functional

E2(ψ) =
1

2
∫
N
∣τ(ψ)∣2dvg.

It means that ψ is a biharmonic map if bitension field τ2(ψ) equals to

τ2(ψ) = trace(∇ψ∇ψ −∇ψ∇)τ(ψ) − trace(R
N̄(dψ, τ(ψ))dψ) = 0, (1)
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where RN̄ is the curvature tensor field of N̄ [3, 12].

It is easy to see that any harmonic map is a biharmonic map. On the other hand, a

biharmonic map is called as proper biharmonic if it is not harmonic. Now, let us remind the

definition of a bi-f -harmonic map.

Definition 1.3 ψ is called as bi-f -harmonic if it is critical point of the bi-f -energy functional

Ef,2(ψ) =
1

2
∫
N
∣τf(ψ)∣2dvg,

where τf(ψ) = fτ(ψ) + dψ(gradf) is the f -tension field. The Euler-Lagrange equation for the

bi-f -harmonic map is given by

τf,2(ψ) = trace(∇ψf(∇ψτf(ψ)) − f∇ψ∇N τf(ψ) + fRN̄(τf(ψ), dψ)dψ) = 0, (2)

here τf,2(ψ) is the bi-f -tension field of the map ψ and f is a smooth positive function on the

domain [12].

Note that overall throughout this paper, we will use SSF instead of Sasakian space form for

the sake of simplicity.

The authors of [14] summarized the relationship between biharmonic and bi-f -harmonic

maps; by extending bienergy functional to bi-f -energy functional defining a new type of harmonic

map called as bi-f -harmonic map.

Bi-f -harmonic maps were introduced by Ouakkas et al. in 2010 [9] and Perktaş et al. ob-

tained bi-f -harmonicity conditions of curves in Riemannian manifolds and derived bi-f -harmonic

equations for curves in various spaces such as Euclidean and hyperbolic space in 2019 [12]. Bihar-

monic Legendre curves were handled in SSF by Fetcu in 2008 [4] and were introduced by Özgür

and Güvenç in generalized SSF and S -space forms in 2014 [10, 11]. Subsequently, f -biharmonic

Legendre curves were examined by Özgür and Güvenç in SSF in 2017 and were studied by Güvenç

in S -space forms in 2019 [6, 7].

Inspired by these papers, in this study, we examined bi-f -harmonic Legendre curves in

Sasakian space form. Firstly, in Section 2, we remind definition and properties of a Sasakian space

form. Then, in Section 3, we give our main theorems and corollaries.

2. Sasakian Space Forms

Let (N,g) be a framed metric manifold with dim(N) = (2n + s) and a framed metric structure

(φ, ξα, ηα, g) , where α ∈ {1, ..., s} ; φ is a (1,1) tensor field defining a φ−structure of rank 2n ;
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ξ1, ..., ξs are vector fields; η1, ..., ηs are 1− forms and g is a Riemannian metric on N .

For all K,L ∈ TN and α,β ∈ {1, ..., s} , following formulas are satisfied;

φ2K = −K +
s

∑
α=1

ηα(K)ξα, ηα(ξβ) = δαβ , φ(ξα) = 0, ηα ○φ = 0, (3)

g(φK,φL) = g(K,L) −
s

∑
α=1

ηα(K)ηα(L), (4)

dηα(K,L) = g(K,φL) = −dηα(L,K), ηα(K) = g(K,ξ). (5)

If Nijenhuis tensor of φ equals to −2dηα⊗ξα for all α ∈ {1, ..., s} , then (φ, ξα, ηα, g) is called

S−structure and if s = 1 , a framed metric structure becomes an almost contact metric structure;

an S−structure becomes a Sasakian structure, then we have [2, 11, 13]:

(∇Kφ)L =
s

∑
α=1
(g(φK,φL)ξα + ηα(L)φ2K), (6)

∇ξα = −φ, α ∈ {1, ..., s} . (7)

A plane section in TpN is a φ -section if there exists a vector K ∈ TpN being orthogonal

to ξ1, ..., ξs such that K,φK span the section. The sectional curvature of a φ -section is called φ -

sectional curvature such that a S -manifold of constant φ -section curvature c is called as S -space

form. Finally, if s = 1 , a S -space form becomes a Sasakian space form [2, 6, 7]. For a SSF, from

equations (6) and (7), it is easy to see that

(∇Kφ)L = g(K,L)ξ − η(L)K, (8)

∇Kξ = −φK (9)

and the curvature tensor R of a SSF is given by

R(K,L)M = c + 3
4
(g(L,M)K − g(K,M)L)

+ c − 1
4
(g(K,φM)φL − g(L,φM)φK + 2g(K,φL)φM + η(K)η(M)L

− η(L)η(M)K + g(K,M)η(L)ξ − g(L,M)η(K)ξ) (10)

for all K,L,M ∈ TN [2].

Here let’s remind the definition of a Legendre curve in a SSF.
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Definition 2.1 A Legendre curve of a SSF (N2n+1, φ, ξ, η, g) is a one dimensional integral sub-

manifold of N and β ∶ I → (N2n+1, φ, ξ, η, g) is a Legendre curve if η(T ) = 0 , where T is the

tangent vector field of β [6, 7].

3. Bi-f -harmonic Legendre Curves in Sasakian Space Forms

Let β ∶ I Ð→ N be an arc-length parametrized curve in a m -dimensional Riemannian manifold

(N,g) and u1, u2, , ur are vector fields along β such that

u1 = β
′
= T,

∇u1u1 = k1u2,

∇u1u2 = −k1u1 + k2u3, (11)

⋮

∇u1ur = −kr−1ur−1.

Then, β is called a Frenet curve of osculating order r , here k1, . . . , kr−1 are positive functions on

I and 1 ≤ r ≤m . With the help of Definition 1.3, β is called a bi-f -harmonic curve if and only if

following condition is hold [12],

τf,2(β) = (ff
′′
)
′
u1 + (3ff

′′
+ 2(f

′
)2)∇u1u1 + 4ff

′
∇2
u1
u1 + f2∇3

u1
u1 + f2R(∇u1u1, u1)u1

= 0. (12)

Now, let (N2n+1, φ, ξ, η, g) be a Sasakian space form and β ∶ I → N be a Legendre curve.

Then, with the help of equation (11) and derivative of η(T ) = η(u1) = 0, following equality

η(u2) = 0 (13)

is obtained [7]. By using equations (10), (11) and (13), we get the following equalities

∇u1u1 = k1u2,

∇u1∇u1u1 = ∇2
u1
u1 = −k21u1 + k

′

1u2 + k1k2u3,

∇u1
∇u1
∇u1

u1 = ∇3
u1
u1 = −3k1k

′

1u1 + ( − k31 + k
′′

1 − k1k22)u2

+(2k
′

1k2 + k1k
′

2)u3 + k1k2k3u4,

R(∇u1u1, u1)u1 = k1(
c + 3
4
)u2 + 3k1(

c − 1
4
)g(u2, φu1)φu1.

Then, by substutiting these equalities into the bi-f -harmonicity condition, namely into the equa-

tion (12), we obtain bi-f -harmonicity condition of a Legendre curve in a Sasakian space form as
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follows,

τf,2(β) = [(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2]u1

+ [(3ff
′′
+ 2(f

′
)2)k1 + 4ff

′
k
′

1 + ( − k31 + k
′′

1 − k1k22 + k1(
c + 3
4
))f2]u2

+ [4ff
′
k1k2 + f2(2k

′

1k2 + k1k
′

2)]u3

+ [k1k2k3f2]u4

+ 3f2k1(
c − 1
4
)g(u2, φu1)φu1

= 0. (14)

It should be noted that if function f is a constant, then bi-f -harmonicity condition turns

into a biharmonicity condition. For this reason, the function f will be considered different from a

constant throughout the paper.

Now, we give interpretations of bi-f -harmonicity condition given in equation (14).

Remark 3.1 [12] The property of a curve being bi-f -harmonic in a n-dimensional space (n > 3)

does not depend on all its curvatures, but only on k1, k2 and k3 .

Let k =min{r,4} . From equation (14), β is a bi-f -harmonic curve if and only if τf,2(β) = 0,

namely,

(i) c = 1 or φu1 ⊥ u2 or φu1 ∈ sp{u2, ..., uk} ,

(ii) g(τf,2(β), ui) = 0 for all i = 1, ..., k.

Thus, we can give the following main theorem.

Theorem 3.2 Let β be a non-geodesic Legendre curve of osculating order r in a Sasakian space

form (N2n+1, φ, ξ, η, g) and k =min{r,4} . Then, β is a bi-f -harmonic curve if and only if

(i) c = 1 or φu1 ⊥ u2 or φu1 ∈ sp{u2, ..., uk} ,

(ii) the first k of the following differential equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
+ 3( c−1

4
)g(u2, φu1)2,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 + 3( c−14 )g(u2, φu1)g(u3, φu1) = 0,

k2k3 + 3( c−14 )g(u2, φu1)g(u4, φu1) = 0.

(15)
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From here on, we investigate results of Theorem 3.2 in eight cases.

Case I: If c = 1, then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Hence, we have Theorem 3.3.

Theorem 3.3 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) and c = 1.

Then, β is a bi-f -harmonic curve iff following differential equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

(16)

Also, we get the following corollary from Theorem 3.2.

Corollary 3.4 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) and c = 1.

Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 and f, k1 satisfy the following differential equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1

or

(ii) β is of osculating order r = 3 and f, k1, k2 satisfy the following differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0.
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Proof It is known that if k2 equals to zero, then β is called as of osculating order 2 . Here, if we

substitute zero, for k2 in equation (16), third and fourth equations are vanished, then we obtain

the differential equations given in (i). On the other hand, if k3 equals to zero, then β is called as

of osculating order 3 and similarly, substutiting zero for k3 in equation (16), fourth equation is

vanished, so we obtain the differential equations given in (ii).

Case II: If c = 1 and (f.f ′′)′ = 0 , then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k21ff
′
+ 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ 1,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

(17)

Hence, we have Theorem 3.5.

Theorem 3.5 Let β be a Legendre curve with non-constant geodesic curvature in a SSF

(N2n+1, φ, ξ, η, g), c = 1, (f.f
′′
)
′
= 0 and n ≥ 2. Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 with f = c1k
− 3

4

1 , where c1 is a positive integration constant

and k1 satisfy the following second order non-linear ordinary differential equation

16k41 − 16k21 − 33(k
′

1)2 + 20k1k
′′

1 = 0

or

(ii) β is of osculating order r = 3 with f = c1k
− 3

4

1 , k2 = c2k1 , where c1, c2 are positive integration

constants and k1 satisfy the following second order non-linear ordinary differential equation

16(1 + c22)k41 + 20k1k
′′

1 − 33(k
′

1)2 − 16k21 = 0.

Proof By using the first equation of (17), we get

f
′

f
= −3

4

k
′

1

k1
,

f
′′

f
= 21

16
(k

′

1

k1
)2 − 3

4

k
′′

1

k1
. (18)

Thus from equation (18), we obtain f = c1k
− 3

4

1 , where c1 is an integration constant. Then, we know

that if k2 = 0 , β is called as of osculating order r = 2 and if k2 = 0 , third and fourth equations of

(17) are vanished. Finally, by substutiting equation (18) to the second equation of (17), we obtain

a second order non-linear ordinary differential equation 16k41 − 16k21 − 33(k
′

1)2 + 20k1k
′′

1 = 0 .
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On the other hand, we know that if k3 = 0 , β is called as of osculating order r = 3 and

if k3 = 0, fourth equation of (17) is vanished. Then, by substutiting equation (18) to the third

equation of (17), we obtain that k2 = c2k1 for a positive integration constant c2 . Finally, by using

these results in the second equation of (17), we get second order non-linear ordinary differential

equation 16(1 + c22)k41 + 20k1k
′′

1 − 33(k
′

1)2 − 16k21 = 0 . So, the proof is complete. ◻

Case III: If c ≠ 1 and φu1 ⊥ u2 , then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Then, before giving Theorem 3.7, we need the following proposition.

Proposition 3.6 [5] Let β be a Legendre curve of osculating order 3 in a SSF (N2n+1, φ, ξ, η, g)

and φu1 ⊥ u2. Then, {u1, u2, u3, φu1,∇u1φu1, ξ} is linearly independent at any point of β .

Consequently, n ≥ 3.

Now, we can give Theorem 3.7.

Theorem 3.7 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g), c ≠ 1 and

φu1 ⊥ u2. Then, β is a bi-f -harmonic curve iff following differential equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Now, we can introduce the Corollary 3.8 of Theorem 3.7.

Corollary 3.8 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g), c ≠ 1 and

φu1 ⊥ u2. Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 and f, k1 satisfy the following differential equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
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or

(ii) β is of osculating order r = 3, n ≥ 3 and f, k1, k2 satisfy the following differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0.

Proof The proof is similar to the proof of Corollary 3.4. ◻

Now, let investigate the Case IV.

Case IV: If c ≠ 1, φu1 ⊥ u2 and (ff ′′)′ = 0 , then equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k21ff
′
+ 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

Now, with the help of Proposition 3.6, we can give the Theorem 3.9.

Theorem 3.9 Let β be a Legendre curve with non-constant geodesic curvature in a SSF

(N2n+1, φ, ξ, η, g) , c ≠ 1 and φu1 ⊥ u2. Then, β is a bi-f -harmonic curve iff either

(i) β is of osculating order r = 2 with f = c1k
− 3

4

1 , {u1, u2, φu1,∇u1φu1, ξ} is linearly independent,

n ≥ 2 and k1 satisfy the following second order non-linear ordinary differential equation

16k41 − 4(c + 3)k21 − 33(k
′

1)2 + 20k1k
′′

1 = 0

or

(ii) β is of osculating order r = 3 with f = c1k
− 3

4

1 , k2 = c2k1, {u1, u2, u3, φu1,∇u1φu1, ξ} is

linearly independent, n ≥ 3 and k1 satisfy the following second order non-linear ordinary

differential equation

16(1 + c22)k41 + 20k1k
′′

1 − 33(k
′

1)2 − 4(c + 3)k21 = 0.

Proof It is proved as similar to the proof of Theorem 3.5. ◻
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Case V: Let c ≠ 1 and φu1 ∥ u2.

In this case, since φu1 ∥ u2 , we can write φu1 = ∓u2. Hence, g(u2, φu1) = ∓1, g(u3, φu1) =

g(u3,∓u2) = 0 and similarly, g(u4, φu1) = g(u4,∓u2) = 0. Then, equation (15) reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c,

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 = 0,

k2k3 = 0.

(19)

Remark 3.10 In [11], it is proved that in a SSF (N2n+1, φ, ξ, η, g) if c ≠ 1 and φu1 ∥ u2 , then

k2 = 1 .

Hence, we give the Theorem 3.11.

Theorem 3.11 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , c ≠ 1 and

φu1 ∥ u2 . Then, β is a bi-f-harmonic curve iff it is of osculating order r = 3 with f = c1k
− 1

2

1 and

k1 satisfies the following differential equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

18(k
′

1)3 − 11k1k
′

1k
′′

1 + 4k21k
′′′

1 + 8k41k
′

1 = 0,

4k41 − 3(k
′

1)2 + 2k1k
′′

1 − 4(c − 1)k21 = 0.

Proof First of all from Remark 3.10, we know that k2 = 1 and by choosing β as a curve of

osculating order r = 3 , we get k3 = 0 . Then, when we substitute these informations into the

equation (19), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c − 1,

2 f
′

f
+ k

′
1

k1
= 0.

(20)

Then, with help of third equation of (20), we obtain

f
′

f
= −1

2

k
′

1

k1
,

f
′′

f
= 3

4
(k

′

1

k1
)2 − 1

2

k
′′

1

k1
. (21)

Finally, if equation (21) is substituted into the first and second equation of (20), then two equations

are found for k1 and the proof is completed. ◻
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Case VI: If c ≠ 1, φu1 ∥ u2 and (ff ′′)′ = 0, then by using Remark 3.10, equation (15)

reduces to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k21ff
′
+ 3k1k

′

1f
2 = 0,

k21 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c − 1,

2 f
′

f
+ k

′
1

k1
= 0.

(22)

In this case, if we take into consideration first and third equations of (22), then it is easy to

see that f is a constant. Therefore, we obtain Theorem 3.12.

Theorem 3.12 There is no bi-f-harmonic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , where c ≠ 1,

φu1 ∥ u2 and (ff ′′)′ = 0.

Considering that f is a constant, then we get Corollary 3.13.

Corollary 3.13 Let β be a Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , where c ≠ 1, φu1 ∥ u2

and (ff ′′)′ = 0. Then, β is a biharmonic curve if and only if it is a helix with k1 =
√
c − 1 and

k2 = 1.

Case VII: Let c ≠ 1 and g(u2, φu1) is not equal to −1,0 or 1.

Now, let (N2n+1, φ, ξ, η, g) be a SSF and β ∶ I Ð→ N be a Legendre curve of osculating order

r , where 4 ≤ r ≤ 2n+1 and n ≥ 2 . We know that if β is bi-f -harmonic, then φu1 ∈ sp{u2, u3, u4} .

Here, let denote the angle between φu1 and u2 by ϕ(t) , namely,

g(u2, φu1) = cosϕ(t). (23)

By differentiating g(u2, φu1) along β with the help of (8) and (11), the equality

−ϕ
′
(t)sinϕ(t) = k2g(u3, φu1) (24)

is obtained. Also, we can write

φu1 = g(u2, φu1)u2 + g(u3, φu1)u3 + g(u4, φu1)u4. (25)

For details, see [7]. By using these results, we obtain Theorem 3.14 and Theorem 3.15.

Theorem 3.14 Let β be a non-geodesic Legendre curve in a SSF (N2n+1, φ, ξ, η, g) , c ≠ 1 and

g(u2, φu1) is not equal to −1,0 or 1. Then, β is a bi-f -harmonic curve iff following differential
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equations are satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ff
′′
)
′
− 4k21ff

′
− 3k1k

′

1f
2 = 0,

k21 + k22 = 3
f
′′

f
+ 2( f

′

f
)2 + 4k

′
1

k1

f
′

f
+ k

′′
1

k1
+ c+3

4
+ 3( c−1

4
)cos2ϕ(t),

4k2
f
′

f
+ 2k2 k

′
1

k1
+ k

′

2 + 3( c−14 )g(u3, φu1)cosϕ(t) = 0,

k2k3 + 3( c−14 )g(u4, φu1)cosϕ(t) = 0.

Proof It is easy to see that if equation (23) substituted into equation (15), then the proof is

completed. ◻

Case VIII: If c ≠ 1 and g(u2, φu1) is not equal to −1,0 or 1 and (ff ′′)′ = 0 , then equation

(15) reduces to

4k21ff
′
+ 3k1k

′

1f
2 = 0, (26)

k21 + k22 = 3
f
′′

f
+ 2(f

′

f
)2 + 4k

′

1

k1

f
′

f
+ k

′′

1

k1
+ c + 3

4
+ 3(c − 1

4
)cos2ϕ(t), (27)

4k2
f
′

f
+ 2k2

k
′

1

k1
+ k

′

2 + 3(
c − 1
4
)g(u3, φu1)cosϕ(t) = 0, (28)

k2k3 + 3(
c − 1
4
)g(u4, φu1)cosϕ(t) = 0. (29)

Now, let give the interpretation of Case VIII.

First of all, from equation (26), it is easy to see that f
′

f
= −3

4

k
′
1

k1
and f

′′

f
= 3

4
(k

′
1

k1
)2 − 1

2

k
′′
1

k1
.

Then, by using these equalities in the equations (27) and (28), we get

k21 + k22 =
33

16
(k

′

1

k1
)2 − 5

4

k
′′

1

k1
+ c + 3

4
+ 3(c − 1

4
)cos2ϕ(t), (30)

−k2(
k
′

1

k1
) + k

′

2 + 3(
c − 1
4
)g(u3, φu1)cosϕ(t) = 0, (31)

respectively. Then, by multiplying equation (31) with 2k2 and using equation (24), we get

2k2k
′

2 − 2k22
k
′

1

k1
+ 3(c − 1

4
)(−2ϕ

′
(t)cosϕ(t)sinϕ(t)) = 0. (32)

Let ϕ be a constant. Then, from (24), we get g(u3, φu1) = 0 and also, from (25), we get

g(u4, φu1) = ∓sinϕ since ∥φu1∥ = 1 . Finally, from (32), we obtain k2 = c2k1 , where c2 is a

positive integration constant. Then, by using these informations, equations (29) and (30) reduces
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to c2k1k3 = ∓3(c−1)sin(2ϕ(t))
8

and

33(k
′

1)2 − 20k1k
′′

1 + k21(4(c + 3) + 3(c − 1)cos2ϕ(t) − 16k21 − 16c22k21) = 0.

Now, we can state the Theorem 3.15.

Theorem 3.15 Let β be a Legendre curve with non-constant geodesic curvature of osculating

order r in a SSF (N2n+1, φ, ξ, η, g) , where c ≠ 1 , g(u2, φu1) is not equal to −1,0 or 1, (ff
′′
)
′
= 0,

r ≥ 4 , n ≥ 2 and ϕ be a constant. Then, β is a bi-f -harmonic curve iff f = c1k
− 3

4

1 , k2 = c2k1 and

k1, k3 satisfy following differential equations

33(k
′

1)2 − 20k1k
′′

1 + k21(4(c + 3) + 3(c − 1)cos2ϕ(t) − 16k21 − 16c22k21) = 0,

c2k1k3 = ∓
3(c − 1)sin(2ϕ(t))

8
,

where c1 and c2 are positive integration constants.
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Abstract: This paper mainly aims to investigate some soliton kinds with certain vector fields on

Riemannian manifolds and gives some notable geometric results as regards such vector fields. Also, in

this paper some special tensors that have an important place in Riemannian geometry are discussed and

given some significant links between these tensors. Finally, an example that supports one of our results is

given.

Keywords: Ricci soliton, Yamabe soliton, conformal quadratic killing tensor, Z -curvature tensor.

1. Introduction
Over the past few years, the theory of geometric flows has become a significant tool to determine

the most geometric properties of the related object of the manifolds in Riemannian geometry. Ricci

flow, one of the most important geometric flows, was defined by Hamilton so that he can find a

canonical metric on a smooth manifold in [12]. Another important geometric flow is the Yamabe

flow that Hamilton defined as a tool in order to construct metrics of constant scalar curvature in a
given conformal class of Riemannian metrics on a smooth manifold [11]. Such flows are evolution

equations for Riemannian metric. After these works, many mathematicians have studied such

geometric flows and other evolution equations arising in differential geometry.

In 1988, Hamilton defined the concepts of Yamabe and Ricci solitons in Riemannian geom-

etry [11]. The formation of singularities in the Yamabe and Ricci flows are determined by these

concepts, which evolve only by diffeomorphisms and scaling. Also, the limit of the solutions of

the Yamabe and Ricci flow are appeared by Yamabe and Ricci solitons, respectively. Whereas a

special solution of the Yamabe flow is the Yamabe soliton, a special solution of the Ricci flow is

the Ricci soliton. Ricci and Yamabe solitons are equals to each other in dimension n = 2 . But

n > 2 , these solitons do not have such an equivalence.

Let M be a Riemannian manifold together with the Riemannian metric g and let S and r
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be the Ricci tensor and scalar curvature of M , respectively. For a vector field ξ being tangent to

M , if the following

(£ξg)(W,F ) + 2S(W,F ) + 2λg(W,F ) = 0 (λ ∈ R) (1)

is satisfied, then this manifold is called a Ricci soliton. Similarly, if the following

(£ξg)(W,F ) = 2(r − λ)g(W,F ) (λ ∈ R) (2)

is satisfied, then this manifold is called a Yamabe soliton. Here, £ξg stands for the Lie-derivative

of g with respect to ξ and W,F ∈ Γ(TM) . A Yamabe (Ricci) soliton with vector field ξ is

denoted by (M,g, ξ, λ) . If ξ is Killing or zero in (1), then the Ricci soliton becomes trivial and in

such a case, the metric becomes an Einstein metric. Hence, Ricci solitons can be considered as a

generalization of Einstein manifolds. Similarly, if ξ is Killing or zero in (2), then Yamabe solitons

reduce to manifolds of constant scalar curvature.

Yamabe (Ricci) solitons can be categorized as steady, expanding or shrinking depending on

the values of λ : λ = 0 , λ > 0 or λ < 0 . In addition, Ricci (Yamabe) solitons are called gradient

if ξ is the gradient Dµ of a smooth function µ called potential function. Recently, several varied

generalizations of Ricci and Yamabe solitons have been investigated comprehensively by many

authors within the framework of the many context. For example, in 2011, Pigola et al. defined

almost Ricci solitons which are a more general case of Ricci solitons by setting λ in (1) as a function

[19]. Similarly, Barbosa and Ribeiro introduced an another class of Yamabe solitons evolution

equation (2) by taking constant λ with a variable function and then, they called it almost Yamabe

soliton in [1]. For the recent works, we refer to ([6, 7, 16, 17, 21, 26]) and references therein.

On the other hand, as it is well-known that vector fields have been used for studying

differential geometry of manifolds since they characterize most geometric properties of the related

object. They are widely used in several fields of differential geometry and physics. Also, they play

a significant role in the study of Riemannian geometry. Therefore, many papers on a Riemannian

manifold endowed with geometric vector fields so that this manifold admits a Ricci soliton or

Yamabe soliton have been discussed by many mathematicians. For further readings, we refer to

studies ([2–5, 14, 18, 25, 27]).

Motivated by these circumstances, we deal with Ricci solitons and Yamabe solitons, which

have recently received considerable attention of many geometers, on Riemannian manifolds en-

dowed with certain vector fields such as affine conformal, projective and concircular. Also, we

investigate some geometric properties of notions of Z -curvature tensor and conformal quadratic

Killing tensor, which proves to be rich in geometrical structures. The present study is structured

as follows. In Section 2, we recall some necessary and notations formulas that will be needed. The

Section 3 is devoted to conclusion in which we present our results that are obtained in this paper.
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2. Preliminaries
In this section, some required notions which will be used for later are recalled.

Let (M,g) be a Riemannian manifold and A be a second order symmetric tensor. For any

W,F,Z ∈ Γ(TM) , if this tensor satisfies the following

(∇WA)(F,Z) + (∇FA)(Z,W ) + (∇ZA)(W,F ) = 0,

then it is called a quadratic Killing tensor (as a generalization of a Killing vector). Likewise, if

this tensor satisfies the following

(∇WA)(F,Z) + (∇FA)(Z,W ) + (∇ZA)(W,F ) = (3)

k(W )A(F,Z) + k(F )A(Z,W ) + k(Z)A(W,F ),

then it is called a conformal quadratic Killing tensor (as a generalization of a conformal Killing

vector). Here, ∇ is the Levi-Civita connection of M and k is a 1 -form. For more details as

regards these tensors, we refer to ([22, 23, 28]).

Let ξ be a vector field on a Riemannian manifold (M,g) . The vector field ξ is named as

affine conformal, projective and concircular, respectively, if the followings [5, 8, 20]

(£ξ∇)(W,F ) =W (ρ)F + F (ρ)W − g(W,F )Dρ, (4)

(£ξ∇)(W,F ) = p(W )F + p(F )W (5)

and

∇W ξ = µW, (6)

where p is a 1 -form, Dρ is the gradient of ρ and µ, ρ are some smooth functions on M . If variable

ρ in (4) is constant, then ξ is named as an affine vector field. Also, if p = 0 in (5), then the vector

field ξ is called affine. The vector field ξ is named as concurrent if it satisfies (6) together with

µ = 1 .

On the other hand, the Hessian tensor Hµ of a smooth function µ on (M,g) is given by

Hµ(W,F ) = g(∇W (Dµ), F ),

where Dµ is the gradient of µ on M [4]. Also, the Hessian tensor Hµ is symmetric in W and F .

Now, we need the following lemma for later use.

Lemma 2.1 [4] Let µ be a function on a Riemannian manifold M . Then, the gradient Dµ of µ

is a concircular vector field if and only if the Hessian Hµ of µ satisfies

Hµ(W,F ) = fg(W,F ) (7)

148



Halil İbrahim Yoldaş / FCMS

for W,F tangent to M , where f is the function on M . Moreover, in such case the function f

satisfies equation ∇W v = fW with v =Dµ .

Also, from Lemma 2.1 and taking µ = f in (7), it can be easily seen that the gradient Dµ

of µ satisfies

∇WDµ = µW

for any W ∈ Γ(TM) .

3. Main Results
In this section, our main results that we obtained in this work are given.

Proposition 3.1 If a Riemannian manifold (M,g) admits a Yamabe soliton with vector field V ,

then V is an affine conformal vector field on M .

Proof Since (M,g) is a Yamabe soliton, from (2), one has

(£V g)(F,Z) = 2(r − λ)g(F,Z) (8)

for any F,Z ∈ Γ(TM) . Differentiating the equation (8) covariantly along any vector field W

provides

(∇W £V g)(F,Z) = 2W (r)g(F,Z). (9)

On the other hand, it follows from the formula (see Yano [24, p.23]) that we have the equality

(£V∇W g −∇W £V g −∇[V,W ]g)(F,Z) = (10)

−g((£V∇)(W,F ), Z) − g((£V∇)(W,Z), F ).

Since the Riemannian metric g is parallel with respect to ∇ , namely ∇g = 0 , the equality (10)

turns into

(∇W £V g)(F,Z) = g((£V∇)(W,F ), Z) + g((£V∇)(W,Z), F ). (11)

Also, in view of (9) and (11), we immediately have

2W (r)g(F,Z) = g((£V∇)(W,F ), Z) + g((£V∇)(W,Z), F ). (12)

If we rearrange cyclically W,F and Z in (12), then we obtain

2F (r)g(Z,W ) = g((£V∇)(F,Z),W ) + g((£V∇)(F,W ), Z) (13)
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and

2Z(r)g(W,F ) = g((£V∇)(Z,W ), F ) + g((£V∇)(Z,F ),W ). (14)

Due to being £V∇ symmetric tensor of type (1,2) , that is, (£V∇)(W,F ) = (£V∇)(F,W ) , adding

(12) and (13), we get

2W (r)g(F,Z) + 2F (r)g(Z,W ) = 2g((£V∇)(W,F ), Z) (15)

+g((£V∇)(Z,W ), F )

+g((£V∇)(Z,F ),W )

which together with the equation (14) gives the following

g((£V∇)(W,F ), Z) =W (r)g(F,Z) + F (r)g(Z,W ) −Z(r)g(W,F ).

Using the fact that Z(r) = g(Dr,Z) , the above last equation can be written as

g((£V∇)(W,F ), Z) = W (r)g(F,Z) + F (r)g(Z,W ) (16)

−g(Dr,Z)g(W,F ).

Removing Z from both sides in (16) gives

(£V∇)(W,F ) =W (r)F + F (r)W − g(W,F )Dr (17)

which by (4) means that the vector field V is affine conformal on M . Thus, we get the requested

result. ◻

Lemma 3.2 Let V be a a concircular vector field on a Riemannian manifold (M,g) . Then, V

is also an affine conformal vector field on M .

Proof It follows from (6) that we have

∇ZV = µZ (18)

for vector field Z being tangent to M . It follows from (18) and the definition of the covariant

derivative, we arrive at

∇F∇ZV = F (µ)Z + µ∇FZ (19)

for vector field F being tangent to M . If we interchange the roles of F and Z in (19), then one

has

∇Z∇FV = Z(µ)F + µ∇ZF. (20)
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Moreover, taking [F,Z] instead of Z in (18), we write

∇[F,Z]V = µ∇FZ − µ∇ZF. (21)

By means of (19), (20) and (21), we find that

R(F,Z)V = F (µ)Z −Z(µ)F (22)

which by taking inner product on both sides of (22) by W yields

g(R(F,Z)V,W ) = F (µ)g(Z,W ) −Z(µ)g(F,W ). (23)

This is equivalent to

g(R(V,W )F,Z) = F (µ)g(Z,W ) −Z(µ)g(F,W ) (24)

from which it follows that

R(V,W )F = F (µ)W − g(F,W )Dµ. (25)

On the other hand, as is known from Yano [24, p.23], that the following identity holds

(£V∇)(W,F ) = R(V,W )F −∇∇WFV +∇W∇FV. (26)

Making use of (6), (25) and (26), therefore we obtain

(£V∇)(W,F ) =W (µ)F + F (µ)W − g(W,F )Dµ

which is the desired result. ◻

Remark 3.3 If the vector field V is concurrent, then V is also an affine vector field on M .

Let A be a geometric/physical quantity on a Riemannian manifold M . If it satisfies

£ξA = 2ΩA, (27)

then A inherits symmetry with respect to vector field ξ . Here, £ stands for the Lie derivative and

Ω is a function on the manifold [10]. For more details related to symmetry inheritance applications

on manifolds, please see ([9, 10, 13, 28]).

The metric inheritance symmetry is one of the most basic and widely used example for which

A = g in (27), in this case ξ is the conformal Killing vector field such that

(£ξg)(W,F ) = 2Ωg(W,F ).

Also, if Ω is zero in above equation, then ξ is the Killing vector field.
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If A = R in (27), then the equation takes the form

£ξR = 2ΩR.

This particular symmetry is called curvature inheritance, where R is the Riemannian curvature

tensor. If Ω = 0 , then it is called curvature collineation, which M admits a special symmetry.

In the following theorem, we discuss the role of such symmetry inheritance for the Ricci

tensor field of a Riemannian manifold M .

Theorem 3.4 Let µ be a potential function of an almost gradient Ricci soliton (M,g,V, λ) , where

(M,g) has symmetry inheritance and µ is the function satisfying equation (6). Then, the Ricci

tensor field of M has symmetry inheritance with respect to V if the Hessian Hµ of µ satisfies

Hµ(W,F ) = µg(W,F ) (28)

for any W,F ∈ Γ(TM) .

Proof Let us consider that the Hessian Hµ of µ satisfies equation (28). Then, by Lemma 2.1,

the gradient Dµ of µ is a concircular vector field. Since M is an almost gradient Ricci soliton

and from Lemma 3.2, the concircular vector field V satisfies

(£V∇)(W,F ) =W (µ)F + F (µ)W − g(W,F )Dµ (29)

for vector fields W and F being tangent to M . Due to V = Dµ , the equation (29) transforms

into

(£V∇)(W,F ) = g(W,V )F + g(F,V )W − g(W,F )V. (30)

Differentiating (30) covariantly along any vector field T and using the property of being V

concircular, we obtain

(∇T £V∇)(W,F ) = µg(T,W )F + µg(T,F )W − µg(W,F )T. (31)

Similarly, by a straight forward calculation, we also have

(∇W £V∇)(T,F ) = µg(W,T )F + µg(W,F )T − µg(T,F )W. (32)

From [24], it is well known that

(£V R)(T,W )F = (∇T £V∇)(W,F ) − (∇W £V∇)(T,F ). (33)

After inserting (31) and (32) in (33), we deduce that

(£V R)(T,W )F = 2µg(T,F )W − 2µg(W,F )T. (34)
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Furthermore, operating inner product with arbitrary vector field X in (34) yields

g((£V R)(T,W )F,X) = 2µg(T,F )g(W,X) − 2µg(W,F )g(T,X). (35)

Setting T =X = ei in (35) and summing up over i (i = 1,2, ..., n) , we derive that

(£V S)(W,F ) = −2µ(n − 1)g(W,F ). (36)

Here, {ei} stands for the orthonormal basis of TpM for all p ∈M .

On the other hand, since M admits an almost gradient Ricci soliton with concircular vector

field V , we find from (1) and (18) that

S(F,Z) = −(λ + µ)g(F,Z) (37)

for any F,Z ∈ Γ(TM) . Replacing F with V in (37) gives

S(V,Z) = −(λ + µ)g(V,Z). (38)

Owing to Lemma 3.2, putting F =W = ei in (23) and taking summation over i , we have

S(Z,V ) = −(n − 1)g(Dµ,Z). (39)

Then, with the help of (38) and (39), one can see that λ + µ = n − 1 . Using this in (37) provides

S(F,Z) = −(n − 1)g(F,Z). (40)

Keeping in mind (36) and from (40), we get

(£V S)(W,F ) = 2µS(W,F ) (41)

which gives the conclusion. Hence, the proof is completed. ◻

The next result gives a necessary condition for the Ricci tensor field of M to be conformal

quadratic Killing.

Theorem 3.5 Let (M,g) be a Ricci soliton with vector field V , where V is either an affine

conformal or a projective vector field. Then, the Ricci tensor field of M is conformal quadratic

Killing.

Proof Let us take into account that (M,g) is a Ricci soliton with affine conformal vector field

V . Then, the equation (1) can be written as

(£V g)(F,Z) = −2S(F,Z) − 2λg(F,Z) (42)
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for any F,Z ∈ Γ(TM) . Performing the properties of Lie derivative and Levi-Civita connection in

(42), we infer that

(∇W £V g)(F,Z) = −2(∇WS)(F,Z) (43)

for W being tangent to M . On the other hand, making use of the equation (4), we get

g((£V∇)(W,F ), Z) + g((£V∇)(W,Z), Y ) = 2g(W,Dρ)g(F,Z). (44)

By virtue of the equations (11), (43) and (44), we have

(∇WS)(F,Z) = −g(W,Dρ)g(F,Z). (45)

If we stand for the the dual 1 -form of Dρ by −ϕ , then equation (45) becomes

(∇WS)(F,Z) = ϕ(W )g(F,Z). (46)

Also, if W,F and Z are cyclically displaced in (46), then we find that

(∇FS)(Z,W ) = ϕ(F )g(Z,W ) (47)

and

(∇ZS)(W,F ) = ϕ(Z)g(W,F ). (48)

By combining the equalities (46), (47) and (48), we obtain

(∇WS)(F,Z) + (∇FS)(Z,W ) + (∇ZS)(W,F ) =

ϕ(W )g(F,Z) + ϕ(F )g(Z,W ) + ϕ(Z)g(W,F )

which by (3) means that the Ricci tensor field of M is a conformal quadratic Killing tensor.

When the above steps are done for the projective vector field V , it can be easily showed

that the Ricci tensor field of M is conformal quadratic Killing. Hence, the proof is completed. ◻

In 2012, as a general concept of the Einstein gravitational tensor in General relativity,

generalized (0,2) symmetric Z tensor was introduced by Mantica and Molina. According to

them, such a tensor is defined by [15]

Z(W,F ) = S(W,F ) + fg(W,F ) (49)

for f being a smooth function on M and S being the Ricci tensor field of M .

The next theorem presents an important relationship for curvature tensor Z and conformal

quadratic Killing.
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Theorem 3.6 Let (M,g) be a Riemannian manifold admitting Z -curvature tensor. Then, the

tensor Z is conformal quadratic Killing if and only if the Ricci tensor field of M is conformal

quadratic Killing.

Proof Taking covariant derivative of (49) along T and using the fact that T (f) = df(T ) , we get

(∇TZ)(W,F ) = (∇TS)(W,F ) + df(T )g(W,F ) (50)

for any W,F,T ∈ Γ(TM) . By a combinatorial combination, we find

(∇WZ)(F,T ) = (∇WS)(F,T ) + df(W )g(F,T ) (51)

and

(∇FZ)(T,W ) = (∇FS)(T,W ) + df(F )g(T,W ). (52)

By adding the equations (50), (51) and (52) provides

(∇TZ)(W,F ) + (∇WZ)(F,T ) + (∇FZ)(T,W ) = (53)

(∇TS)(W,U) + (∇WS)(U,T ) + (∇US)(T,W )

+df(T )g(W,F ) + df(W )g(F,T ) + df(F )g(T,W ).

Now, if Z is conformal quadratic Killing, then we write

(∇TZ)(W,F ) + (∇WZ)(F,T ) + (∇FZ)(T,W ) = (54)

α(T )g(W,F ) + α(W )g(F,T ) + α(F )g(T,W ).

Therefore, by combining (53) with (54) and using the linearity property of the 1 -forms, we get

(∇TS)(W,F ) + (∇WS)(F,T ) + (∇FS)(T,W ) = (α − df)(T )g(W,F ) (55)

+(α − df)(W )g(F,T ) + (α − df)(F )g(T,W ).

If we take ϕ instead of the 1 -form α − df in (55), then one has

(∇TS)(W,F ) + (∇WS)(F,T ) + (∇FS)(T,W ) =

+ϕ(T )g(W,F ) + ϕ(W )g(F,T ) + ϕ(F )g(T,W ).

This, by (3), implies that the Ricci tensor field of M is a conformal quadratic Killing tensor.

Conversely, let the Ricci tensor field of M admitting Z -curvature tensor be a conformal

quadratic Killing tensor. Then, we have

(∇TS)(W,F ) + (∇WS)(F,T ) + (∇FS)(T,W ) = (56)

k(T )g(W,F ) + k(W )g(F,T ) + k(F )g(T,W ).
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After substituting (56) into (53) and using the linearity of the 1 -forms, we obtain

(∇TZ)(W,F ) + (∇WZ)(F,T ) + (∇FZ)(T,W ) = (57)

φ(T )g(W,F ) +φ(W )g(F,T ) +φ(F )g(T,W ),

where we have used φ = k + df . Consequently, by (3) the tensor Z is conformal quadratic Killing.

Therefore, we arrive at the desired result. ◻

The proof of following corollary easily follows from Theorem 3.6.

Corollary 3.7 Let (M,g) be a Riemannian manifold admitting Z−curvature tensor. Then, we

have the followings:

i) If tensor Z is quadratic Killing, then the Ricci tensor field of M is conformal quadratic Killing.

ii) If the Ricci tensor field of M is quadratic Killing, then tensor Z is conformal quadratic Killing.

Example 3.8 [2] We set the three-dimensional manifold as

M = {(u, v, t) ∈ R3, t > 0},

where (u, v, t) are the Cartesian coordinates in R3 . Take

g ∶= 1

t2
{du⊗ du + dv ⊗ dv + dt⊗ dt},

η ∶= −1
t
dt, V ∶= −t ∂

∂t
.

Here, η denotes the dual 1-form of the vector field V . Let E1 , E2 and E3 be the vector fields in

R3 such that these vector fields are linearly independent given by:

E1 = t
∂

∂u
, E2 = t

∂

∂v
and E3 = −t

∂

∂t
.

Then, we have

η(E1) = 0, η(E2) = 0, η(E3) = 1,

[E2,E1] = 0, [E3,E2] = −E2, [E1,E3] = E1.

On the other hand, we find from Koszul’s formula for the Riemannian metric g :

∇E1E1 = −E3, ∇E2E1 = 0, ∇E3E1 = 0,

∇E1E2 = 0, ∇E2E2 = −E3, ∇E3E2 = 0,

∇E1E3 = E1, ∇E2E3 = E2, ∇E3E3 = 0.
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Also, with the help of the above equations we find

R(E1,E2)E3 = 0, R(E3,E1)E2 = 0, R(E2,E3)E1 = 0,

R(E1,E2)E2 = −E1, R(E2,E1)E1 = −E2, R(E1,E3)E3 = −E1,

R(E3,E1)E1 = −E3, R(E2,E3)E3 = −E2, R(E3,E2)E2 = −E3.

Utilizing the expressions of the curvature tensors, we obtain

S(E1,E1) = S(E2,E2) = S(E3,E3) = −2 and S(Ei,Ej) = 0 (58)

for all i ≠ j (i, j = 1,2,3) . As {E1,E2,E3} forms a basis of M , the followings can be written as

W = a1E1 + a2E2 + a3E3,

Z = b1E1 + b2E2 + b3E3,

F = c1E1 + c2E2 + c3E3

for any vector field W,Z,F ∈ Γ(TM) , where ai, bi, ci ∈ R+ for i = 1,2,3 . Then, by a straight

forward calculation, one has

∇FW = −a1c1E3 + a3c1E1 − a2c2E3 + a3c2E2, (59)

∇FZ = −b1c1E3 + b3c1E1 − b2c2E3 + b3c2E2. (60)

From the above equations, we find that

S(W,Z) = −2(a1b1 + a2b2 + a3b3), (61)

S(∇FW,Z) = 2a1c1b3 − 2a3c1b1 + 2a2c2b3 − 2a3c2b2, (62)

S(W,∇FZ) = 2b1c1a3 − 2b3c1a1 + 2b2c2a3 − 2b3c2a2. (63)

Therefore, we have

(∇FS)(W,Z) = 0. (64)

Similarly, we obtain

(∇WS)(Z,F ), (∇ZS)(F,W ) = 0. (65)

In this case, from (64) and (65), S is a quadratic Killing tensor.

Furthermore, using (59)-(63) in (49) gives

Z(W,Z) = (f − 2)(a1b1 + a2b2 + a3b3), (66)

Z(∇FW,Z) = (2 − f)a1c1b3 + (f − 2)a3c1b1 + (2 − f)2a2c2b3 (67)

+(f − 2)a3c2b2,

Z(W,∇FZ) = (2 − f)b1c1a3 + (f − 2)b3c1a1 + (2 − f)b2c2a3 (68)

+(f − 2)b3c2a2.
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From (64)-(68) and owing to the fact that g(X,Y ) = a1b1 + a2b2 + a3b3 , we get

(∇FZ)(W,Z) = df(F )g(W,Z). (69)

Likewise,

(∇WZ)(Z,F ) = df(W )g(Z,F ), (∇ZZ)(F,W ) = df(Z)g(F,W ). (70)

Thus Z is a conformal quadratic Killing tensor, which verifies Corollary 3.7 (ii) .
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Abstract: The extended modular group Γ is isomorphic to the amalgamated free product of two dihedral

groups D2 and D3 with amalgamation Z2 . This group acts on rational numbers transitively. In this study,

we obtain elements in the extended modular group that are mappings between given two rationals. Also,

we express these elements as a word in generators. We use interesting relations between continued fractions

and the Farey graph.
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1. Introduction

The modular group Γ = PSL(2,Z) is the projective special linear group of 2× 2 matrices over the

ring of integers with determinant one. This group is the quotient group SL(2,Z)/±I , hence, each

matrix (a b
c d

) represents the same element with its negative (−a −b
−c −d) . Modular group acts on

the upper half plane H via linear fractional transformations z → az+b
cz+d . These transformations are

orientation preserving isometries of H . Modular group is generated by two elements,

T = (0 −1
1 0

) , U = (1 1
0 1
) .

By taking S = TU = (0 −1
1 1

) , the presentation of Γ is

Γ =< T,S ∶ T 2 = S3 = I >≅ Z2 ∗Z3.

Let us denote the set G = {(a b
c d

) ∶ a, b, c, d ∈ Z, ad − bc = −1} . The corresponding trans-

formations of elements in G are anti-automorphisms. Thus, the extended modular group can be
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defined as Γ = PSL(2,Z) ∪G . The extended modular group is isomorphic to free product of two

dihedral groups of order 4 and 6 , amalgamated with a cyclic group of order 2 , i.e.,

Γ =< T,S,R ∶ T 2 = S3 = R2 = (TR)2 = (SR)2 = I >≅D2 ∗Z2 D3,

where R = (0 1
1 0

) is a reflection map.

In this study, we focus on the action of the extended modular group Γ on rational numbers.

Every rational number has a reduced fraction p
q
= −p−q , where p, q ∈ Z and (p, q) = 1 . We represent

∞ as 1
0
= −1

0
. Consider the element V = (a b

c d
) ∈ Γ and the corresponding Möbius transformation

V (z) = az+b
cz+d . The image of p

q
is

V (p
q
) = ap + bq

cp + dq
.

Here ap+bq
cp+dq is also a reduced fraction. Additionally, the Diophantine equation px − qy = ±1 is

solvable since (p, q) = 1 . Hence, it is possible to find an element W = (p x
q y

) ∈ Γ such that

W (∞) = p
q

. As a result, the action of the extended modular group on rationals is transitive [14].

Our aim is to find an element V ∈ Γ for given two rationals p
q
, p
′

q′
such that V (p

q
) = p′

q′
. Also, we

represent V as a word in generators.

2. Motivation and Background Materials

In this section, we give some information about continued fractions, the Farey sequence, the Farey

graph and relations to the extended modular group. For more information see [1, 2, 6].

There are impressive relations between the modular group and continued fractions. Let

V = (a b
c d

) = Ur0 .T.U r1 .⋯.Urn .T i ∈ Γ where rj ∈ Z and i = 0,1 . The corresponding Möbius

transformation of this element is

V (z) = Ur0 .T.U r1 .⋯.Urn .T (z) = r0 −
1

r1 − 1
r2− 1

⋱rn−1− 1
rn− 1

z

. (1)

In addition, the image of infinity is a continued fraction expansion of a
c

. This expansion is

the Rosen continued fraction defined in [11] for λ = 1 , and it is called integer continued fraction

expansion.
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In this expansion, for i ≤ n , Ci = pi

qi
= [r0; r1, ..., ri] is called ith convergent of the expansion.

It can be seen by calculation pi.qi−1 − qi.pi−1 = ±1 . On the other hand, it is possible to make

connections between integer continued fractions and the Farey sequence.

The Farey sequence of order n is a complete and ordered set of reduced rational numbers

in the interval [0,1] which have denominators less than or equal to n .

F1 = {
0

1
,
1

1
} ,

F2 = {
0

1
,
1

2
,
1

1
} ,

F3 = {
0

1
,
1

3
,
1

2
,
2

3
,
1

1
} ,

F4 = {
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1
} .

It can be seen that if a
c

and b
d

appears one after another in some Fn , then ad−bc = ±1 . We called

such rationals Farey neighbours. All Farey neighbours of a rational x is denoted by N (x) . The

Farey sum of a
c

and b
d

defined as,

a

c
⊕ b

d
= a + b
c + d

.

All Farey neigbours of a rational number can be obtained by Farey sum. More clearly, if a rational
p
q

first appears in Fn by Farey sum of a
c

and b
d

in Fn−1 , i.e., a
c
⊕ b

d
= a+b

c+d =
p
q

, then a
c

and b
d

are

Farey neighbours of p
q

. Here a
c

and b
d

are called Farey parents of p
q

and conversely, p
q

is called

Farey child of a
c

and b
d

. If ai

ci
is a Farey neighbour of p

q
, then ai

ci
⊕ p

q
is also a Farey neighbour of

p
q

.

Observe that every Fn includes Fn−1 and new members are obtained by Farey sum of its

neighbours. For instance 1
2
∈ F2 is the Farey sum of 0

1
and 1

1
in F1 . This rule is known as

the mediant rule. It should be noted that if the denominator of Farey sum of two neighbours in

Fn−1 exceeds n , then this rational number will not appear in Fn since the definition of the Farey

sequence. Definition of the Farey sequence can be extended to Q̂ = Q ∪ {∞} by assuming ∞ = 1
0

.

Hence, for a given rational a
c

, it is known that a
c

has finite integer continued fraction expansion.

In addition, b
d

is the penultimate convergent of the integer continued fraction expansion of a
c

.

This yields ad − bc = ±1 , in other words, a
c

and b
d

are Farey neighbours. As a result, (a b
c d

) ∈ Γ .
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Figure 1: The Farey graph

The Farey graph is a graph with vertex set Q̂ . Two reduced fractions p
q

and r
s

are adjacent

if and only if ps− rq = ±1 , i.e., they are Farey neighbours. The edge between two vertices is drawn

by a hyperbolic line in H . The edges between 1
0
= ∞ and every integer a are vertical lines. To

construct the graph, first join the vertices 1
0
, 0
1

and 1
1

and obtain a big triangle. By induction,

if the endpoints of a long edge are a
c

and b
d

, then the label of the third vertex of the triangle is

a
c
⊕ b

d
= a+b

c+d , see in Figure 1.

In recent years, many studies have contributed the continued fractions related to the action

of some subgroups Möbius transformations. In [2], integer continued fraction expansions and

geodesic expansions are studied from the perspective of graph theory. Short and Walker used Rosen

continued fractions as paths in a class of graphs in hyperbolic geometry [13]. Same authors also

studied connections between even integer continued fractions and the Farey graph [12]. Relations

between cusp points and Fibonacci numbers are studied in [7] using Farey graph and continued

fractions. Algebraic and combinatorial properties of continued fractions and modular group related

with Farey graph are given in [10]. Besides that some relations between elliptic elements and circuits

in graph for normalisers of subgroups of PSL(2,R) are examined in [4, 5].

3. Main Results

Firstly, we obtain matrix representation of the elements in Γ which the corresponding transforma-

tion is a mapping between given two rationals. For a given reduced rational x = p
q

and a neighbour

y = r
s
∈ N (x) , we know ps − rq = ±1 . Thus, we have (p r

q s
) ∈ Γ . In addition, if y = r

s
is on the

left side of x = p
q

in the Farey graph that is y < x , then ps − rq = 1 and (p r
q s
) ∈ Γ . In other

words, the corresponding transformation pz+r
qz+s is an automorphism. In this case, it is possible to

construct an anti-automorphism element by taking −r for r and −s for s , i.e., (p −r
q −s) . Similar
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observations can be done for the case y > x . For convenience throughout this paper, we need to

define a location function µx ∶ N (x)→ {−1,+1} for neighbours of a rational:

µx (y) =
⎧⎪⎪⎨⎪⎪⎩

1 , y < x
−1 , y > x

.

Now we are ready to obtain a mapping between two rationals.

Lemma 3.1 Let p
q
, p
′

q′
∈ Q and r

s
∈ N (p

q
) , r′

s′
∈ N (p

′

q′
) . Then the corresponding transformation

of the element

V = (p
′s − r′q pr′ − p′r
q′s − qs′ ps′ − q′r)

maps the rational p
q

to p′

q′
. Moreover,

• If µ p
q
( r
s
) .µ p′

q′
( r

′

s′
) = 1 , then the corresponding transformation of V is an automorphism.

• If µ p
q
( r
s
) .µ p′

q′
( r

′

s′
) = −1 , then the corresponding transformation of V is an anti-automorphism.

Proof Let p
q

be a reduced rational and r
s

be a Farey neighbour of p
q

. Then, we have from the

definition of Farey neighbour ps − rq = ±1 . Hence, V1 = (
p r
q s
) ∈ Γ . In addition, cusp point of

this element is p
q

. Similarly, we have the element V2 = (
p′ r′

q′ s′
) ∈ Γ with cusp point p′

q′
. Finally,

V = V2.V
−1
1 is the element V (p

q
) = p′

q′
.

The equality µ p
q
( r
s
) .µ p′

q′
( r

′

s′
) = 1 tells us both V1 and V2 are automorphism or anti-

automorphism simultaneously. This yields V is an automorphism. The case µ p
q
( r
s
) .µ p′

q′
( r

′

s′
) = −1

can be interpreted similarly. ◻

Obtaining an element that maps p
q

to p′

q′
via Lemma 3.1 requires Farey neighbours one for

each. Following corollary is an answer to what if p
q

and p′

q′
are adjacent.

Corollary 3.2 Let the reduced rationals p
q

and p′

q′
be adjacent in the Farey graph. Then, the

corresponding transformation of the element

V = (p
′q′ − pq p2 − p′2
q′2 − q2 pq − p′q′)

maps p
q

to p′

q′
. Furthermore, V is a reflection.
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Proof Since p
q

and p′

q′
are adjacent in the Farey graph, we can take V1 = (

p p′

q q′
) and

V2 = (
p′ p
q′ q

) . Proof follows similar to the proof of Lemma 3.1. It can be seen easily that

µ p
q
(p

′

q′
) .µ p′

q′
(p
q
) = −1 . This equality proves that V is an anti-automorphism. It is obvious that V

is a reflection since Tr(V ) = 0 . ◻

Considering the arguments mentioned before Lemma 3.1, we can map p
q

to p′

q′
via an elliptic

element. It is enough to take V2 = (
p′ −p
q′ −q) in the proof of Corolary 3.2. Therefore, we omit the

proof of the following corollary.

Corollary 3.3 Let the reduced rationals p
q

and p′

q′
be adjacent in the Farey graph. Then, the

corresponding transformation of the element

V = (p
′q′ + pq −p2 − p′2
q′2 + q2 −pq − p′q′)

maps p
q

to p′

q′
. Furthermore, V is an elliptic element of order 2 in Γ .

Now our aim is to obtain a generalization of Lemma 3.1. For doing this, we need more

information about Farey neighbours. As we mentioned in the motivation section, the Farey

sequence of level n is a complete and ordered set of reduced rationals which have denominators

less than or equal to n . Every Fn includes Fn−1 . New members obtained via mediant rule. More

clearly, if a
c

and b
d

is contained in Fn−1 , then the mediant of these two terms a
c
⊕ b

d
= a+b

c+d is

contained in Fn on one condition that c + d ≤ n . If a reduced rational p
q

first appears in Fn via

Farey sum of a
c

and b
d

in Fn−1 , then a
c

and b
d

is called Farey parents of p
q

. After that all Farey

neighbours of p
q

will be of the form,

a

c
< a

c
⊕ p

q
= p + a
q + c

< p + a
q + c

⊕ p

q
= 2p + a
2q + c

< ... < p

q
< ... p

q
⊕ b

d
= p + b
q + d

< b

d
.

A basic result of this, is the following lemma.

Lemma 3.4 Let p
q

be a reduced rational number and r
s
, r
′

s′
∈N (p

q
) . Then, there exists an integer

k such that

(r
′

s′
) = (p r

q s
) .(k

1
) .
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Here we consider the element (p r
q s
) ∈ Γ as an automorphism (or anti-automorphism).

Using Lemma 3.4, we can construct another automorphism (anti-automorphism) element with

cusp point p
q

.

Lemma 3.5 Let V1, V2 ∈ Γ with same cusp point. Then there exists an integer k such that

V1.U
k = V2.

Here U = (1 1
0 1

) is the parabolic generator of Γ .

Proof Suppose the common cusp point is p
q

. For neighbours r
s
, r
′

s′
∈N (p

q
) , we can think V1 and

V2 as

V1 = (
p r
q s
) and V2 = (

p r′

q s′
) .

From Lemma 3.4, we have an integer k such that

r′

s′
= kp + r
kq + s

.

Hence, we complete the proof by considering the generator U = (1 1
0 1

) ,

(p r′

q s′
) = (p r

q s
) .(1 1

0 1
)
k

.

◻

The above lemma tells us V1 and V1.U
k have common cusp point for every integer k , and

that is the key for the following theorem which is a generalization of Lemma 3.1.

Theorem 3.6 Let p
q
, p
′

q′
be reduced fractions in Q and r

s
∈ N (p

q
) , r′

s′
∈ N (p

′

q′
) . Then for every

k ∈ Z , the corresponding transformation of the element

V = (p
′s − r′q − kp′q pr′ − p′r + kpp′
q′s − qs′ − kqq′ ps′ − q′r + kpq′)

maps the rational p
q

to p′

q′
.

Proof We use a similar technique of the proof of Lemma 3.1. From Lemma 3.5, the elements

V1 = (
p r
q s
) .(1 1

0 1
)
k1

and V2 = (
p′ r′

q′ s′
) .(1 1

0 1
)
k2
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have cusp points p
q

and p′

q′
, respectively, for k1, k2 ∈ Z . Then, V2.V

−1
1 is the desired element V

for k2 − k1 = k ∈ Z . ◻

4. Words in Generators
In this section, we consider relations between Farey paths and integer continued fractions. Using

these relations, we obtain extended modular group elements as words in terms of generators that

correspond a transformation between given two rationals.

Theorem 4.1 Let p
q
= [r0, r1, ..., rn] and p′

q′
= [s0, s1, ..., sm] be reduced rationals. Then, the

automorphism in the extended modular group that maps p
q

to p′

q′
has the word form

W (U,T,R) = Us0 .T.Us1 .T.⋯.Usm .T.Uk.T.U−rn .T.U−rn−1 .T.⋯.T.U−r0 (2)

for every integer k . In addition, the anti-automorphism has the word form

W ′(U,T,R) = Us0 .T.Us1 .T.⋯.Usm .R.Uk.T.U−rn .T.U−rn−1 .T.⋯.T.U−r0 . (3)

Proof First we map p
q

to 0 . Considering the equality (1),

U−rn .T.U−rn−1 .T.⋯.T.U−r0(p
q
) = 0.

The two ordered elliptic generator T maps 0 to infinity. Then, the parabolic generator U fixes

infinity. Finally, the cusp point of the element

Us0 .T.Us1 .T.⋯.Usm .T

is p′

q′
which proves the result. The second part of the proof can be done by considering the element

with cusp point p′

q′
as Us0 .T.Us1 .T.⋯.Usm .R . ◻

Since the modular group is isomorphic to the free product of the cyclic groups of orders 2

and 3 , every element can be expressed as a word in T and S . Considering U = TS , we get two

blocks,

TS = (1 1
0 1

) and TS2 = (0 0
1 1

) .

Hence, every element V ∈ Γ has a word form,

V = Si.(TS)m0 .(TS2)n0 .(TS)m1 .(TS2)n1 .⋯.(TS)mk .(TS2)nk .T j .Rt,

where i = 0,1,2 , j, t = 0,1 . The powers of the blocks are positive integers but m0 and nk may be

zero. This form is called block reduced form. Every element in the extended modular group has
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block reduced form. For instance, RTS2RTSTS2TS2RTS can be expressed as (TS)2.(TS2)3R .

Trace classes of the modular group and the extended modular group were studied in [3, 8].

Corresponding transformations of these blocks are related to simple continued fraction expansions.

Here we obtain block forms of the words given in Theorem 4.1.

Theorem 4.2 The block reduced form of the elements given in (2) and (3) are

WBRF = (TS)s0−1.(TS2).(TS)s1−2.(TS2).⋯.(TS)sm−2.(TS2).(TS)k−1.

(TS2)rn−1.(TS).(TS2)rn−1−2.(TS).⋯.(TS).(TS2)r1−2.(TS).(TS2)r0−1.T

W ′
BRF = (TS)s0−1.(TS2).(TS)s1−2.(TS2).⋯.(TS)sm−1−2.(TS2).(TS)sm−1.

(TS2)k.(TS)rn−1.(TS2).(TS)rn−1−2.(TS2).⋯.(TS)r1−2.(TS2).(TS)r0−1.T.R,

respectively.

Proof First we take U = T.S in (2).

WBRF = (TS)s0 .T.(TS)s1 .T.⋯.(TS)sm .T.(TS)k.T.(TS)−rn .T.(TS)−rn−1 .T.⋯.T.(TS)−r0

= (TS)s0−1.TS.T.TS.(TS)s1−2TS.T.⋯.T.TS.(TS)sm−2.TS.T.TS.(TS)k−1.

T.(S2T )rn .T.(S2T )rn−1 .T.⋯.T.(S2T )r0 .

Since the elliptic generator T is of order 2 and S is of order 3 , we have the block reduced

form of the word as stated. The second part of the proof can be obtained similarly with relations

RS = S2R,

TR = RT.

◻
Before we sum up all our results, we make connections with Farey paths. A path in a graph

consists of consecutive adjacent vertices. So, a Farey path < v1, v2, ..., vn > is a path such that

vi = pi

qi
for i = 1,2, ..., n are reduced rationals and since the consecutive vi ’s are adjacent, we have

pi.qi−1 − qi.pi−1 = ±1 . As Farey graph is connected, there always be a path between two rationals.

For a given reduced rational p
q
= [r0; r1, ..., rn] , the ith convergent of the integer continued

fraction expansion of p
q

defined as Ci = pi

qi
= [r0; r1, ..., ri] for 0 ≤ i ≤ n , where C0 = p0

q0
= r0

1
and

Cn = pn

qn
= p

q
. Furthermore, we know that pi.qi−1 − qi.pi−1 = ±1 . Hence, every consecutive pair Ci

and Ci−1 are Farey neighbours. Also, this situation can be thought as <∞,C0,C1, ...,Cn−1,Cn >

is a path from ∞ to p
q

. Finally, every integer continued fraction expansion of a rational p
q

is
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related to a path from ∞ to p
q

. Moreover, the shortest integer continued fraction of p
q

is related

to a geodesic path from ∞ to p
q

.

Now we give an example to explain all our results.

Example 4.3 Let the given reduced rationals be 7
11

and 12
7

. We find elements V ∈ Γ that the

corresponding transformation V (z) maps 7
11

to 12
7

, i.e., V ( 7
11
) = 12

7
. We observe the following

two paths from infinity to rationals 7
11

and 12
7

,

v =<∞,1,
2

3
,
7

11
>,

v′ =<∞,2,
9

5
,
7

4
,
12

7
> .

The penultimate vertex 2
3

in path v , is the neighbour of 7
11

such that µ 7
11
(2
3
) = −1 . Similarly, the

neighbour of 12
7

is 7
4

, µ 12
7
(7
4
) = −1 . By Lemma 3.1, we have the hyperbolic element,

V = (−41 25
−23 14

) ∈ Γ.

The corresponding transformation is V (z) = −41z+25−23z+14 . Hence, we obtain V ( 7
11
) = 12

7
. For the

neighbour 2
3

, taking −2 for 2 and −3 for 3 in Lemma 3.1, we have the element,

V1 = (
113 −73
65 −42)

which the corresponding transformation V1(z) = 113z−73
65z−42 is a glide-reflection. To express V and

V1 as words in generators we need the integer continued fraction expansions of 7
11

and 12
7

. The

consecutive vertices in Farey path are the concecutive convergents of the integer continued fraction

expansion. The convergents of 7
11

are 1, 2
3

and 7
11

. For 12
7

, we have the convergents 2, 9
5
, 7
4

and

12
7

. Hence, one can calculate the integer continued fractions

7

11
= [1,3,4] ,

12

7
= [2,5,1,3] .

From Theorem 4.1, we have the words

W = U2.T.U5.T.U.T.U3.T.Uk.T.U−4.T.U−3.T.U−1,
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W ′ = U2.T.U5.T.U.T.U3.R.Uk.T.U−4.T.U−3.T.U−1.

The elements V and V1 have the word forms W and W ′ for k = 0 , respectively. Finally, we

express W and W ′ in block reduced forms by Theorem 4.2,

WBRF = (TS).(TS2).(TS)3.(TS2).(TS)−1.(TS2).(TS).(TS2).(TS)k−1.(TS2)3.(TS).(TS2).(TS).T,

W ′
BRF = (TS).(TS2).(TS)3.(TS2).(TS)−1.(TS2).(TS)2.(TS2)k.(TS)3.(TS2).(TS).(TS2).T.R.

We substitute S2T for the fifth term (TS)−1 in each word,

WBRF = (TS).(TS2).(TS)2.(TS2)2.(TS)k−1.(TS2)3.(TS).(TS2).(TS).T,

W ′
BRF = (TS).(TS2).(TS)2.(TS2).(TS).(TS2)k.(TS)3.(TS2).(TS).(TS2).T.R.

5. Conclusion

For given two reduced rationals p
q

and p′

q′
, we obtain elements V ∈ Γ such that V (p

q
) = p′

q′
. We

use the relations between paths in the Farey graph and continued fractions to get V as a word

in terms of generators. We also obtain the block reduced form that is a word contains only finite

ordered elements. For future research one can consider the blocks,

f = RTS = (0 1
1 1

) and h = TSR = (1 1
1 0
)

defined in [9]. Powers of these matrices have only Fibonacci entries. Koruoğlu proved that every

element can be written as a word in powers of f and h . This word is called New Block Reduced

Form [9]. Obtaining new block reduced form of the words given in this study, makes relations to

the Fibonacci sequence.
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