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Abstract

This work introduces a new three-step iteration process and shows that the same leads to
a unique fixed point with the help of theorems under different conditions of contractive
mappings over-generalized G - fuzzy metric spaces in the convex structure. Also, we
investigate the data dependence result of this iterative process in the generalized G - fuzzy
convex metric spaces.

1. Introduction

The fuzzy set was released in 1965 by the pioneer scientist Zadeh [1] as a class of objects with a continuum of grades of
membership. After Zadeh’s paper [1], many scientists employed the notion of fuzzy sets in many subjects of sciences such as
fuzzy metric space, fuzzy topology, fuzzy decisions, fuzzy set theory, etc. Kramosil and Michalek [2] paved a way for further
work by introducing the concept of fuzzy metric spaces which then modified by George and Veeramani [3]. After that, several
fixed point theorems were proved in fuzzy metric spaces.
Mustafa and Sims [4] brought out the concept of generalized metric space, shortly known as G -metric space, and came out
with interesting properties with its topology. Sun and Yang [5] also generalized the definition of fuzzy metric space in their way.
In 2016, Jeyaraman et al. [6] proved a result that lead to a unique common fixed point theorem with six weakly compatible
mappings in G -fuzzy metric spaces. We introduce a new three-step iteration process and show the convergence of the iteration
process to a unique fixed point using theorems under different conditions of contractive mappings on the G -fuzzy metric spaces
in the convex structure. Also, we investigate the data dependence result of this iterative process in the generalized G - fuzzy
convex metric spaces.

2. Preliminaries

Definition 2.1. Let (X ,G ,∗) be a G -fuzzy metric space and I = [0,1]. A continuous mapping ∆ : X×X× I→ X is said to be
a convex structure on X if for each (x,y,k) ∈ X×X× I and u ∈ X ,

G (u,∆(x,y,k),∆(x,y,k), t)≥ kG (u,x,x, t)+(1− k)M(u,y,y, t)

A space X together with a convex structure ∆ is called a G -fuzzy convex metric space(G -FCMS).

Definition 2.2. Let X be a G -FCMS. A nonempty subset C of X is said to be generalized convex if ∆(x,y,z;a1,a2,a3) ∈C
whenever (x,y,z;a1,a2,a3) ∈C×C×C× [0,1]× [0,1]× [0,1].

Email addresses and ORCID numbers: pazhanin@yahoo.com, 0000-0002-4586-9354 (V. Pazhani), jeya.math@gmail.com, 0000-0002-0364-1845
(M. Jeyaraman)
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Definition 2.3. Let (X ,G ,∗) be a G -FCMS. A mapping ∆ : X ×X ×X × [0,1]× [0,1]→ X is said to be G -fuzzy convex
structure on X if for each (x,y,z,a1,a2) ∈ X×X×X× [0,1]× [0,1],a1 ≥ a2 and u,v ∈ X ,

G (u,v,∆(x,y,z;a1,a2), t)≥ (a1−a2)G (u,v,x, t)+(1−a1)G (u,v,y, t)+a2G (u,v,z, t).

Lemma 2.4. Let an be a nonnegative sequence in G -FCMS and let ρ is a real number satisfying 0 ≤ ρ < 1 and (∈n)n∈N
is a sequence of positive numbers such that lim

n→∞
∈n= 1, then for any sequence of positive numbers (∈n)n∈N satisfying

an+1 ≥ ρan+ ∈n,n = 1,2, . . . , one has lim
n→∞

an = 1.

3. Main result

Theorem 3.1. Let C be a nonempty closed convex subset of a (X ,G ,∗) complete G -FCMS with ∆ convex structure and
Γ : X → X be a mapping satisfying the following conditions:

G
(
Γx,Γy,Γz, t

)
≥
{

a1G (x,y,z, t)+a2G (x,Γx,Γx, t)+a3G (y,Γy,Γy, t)+a4G (z,Γz,Γz, t)
}

(3.1)

for all x,y,z ∈ X where 0≤ a1,a2,a3,a4 < 1 and {xn}n≥0 ie the iterative scheme given by

(i) x0 ∈ X, for all n ∈ N,
(ii) xn+1 = ∆(Γyn,Γyn,Γyn : γn,γn),

(iii) yn = ∆(zn,Γzn,Γxn : αn,βn),
(iv) zn = ∆(Γxn,xn,Γxn : θn,θn) such that lim

n→∞
G (xn,Γxn,Γxn, t) = 1 with {γn},{αn},{βn} and {θn} ⊂ [0,1]

Then {xn}n≥0 G -converges to unique fixed point ṗ of Γ.

Proof: Suppose that Γ satisfies condition (i)-(iv), we have

G (xn+1, ṗ, ṗ, t) = G (∆(Γyn,Γyn,Γyn;γn,γn), ṗ, ṗ, t)

≥
{
(γn− γn)G (Γyn, ṗ, ṗ, t)+(1− γn)G (Γyn, ṗ, ṗ, t)+ γnG (Γyn, ṗ, ṗ, t)

}
≥
{

a1G (yn, ṗ, ṗ, t)+a2G (yn,Γyn,Γyn, t)+a3G (ṗ, ṗ,Γṗ, t)+a4G (ṗ, ṗ,Γṗ, t)
}

=
{

a1G (yn, ṗ, ṗ, t)+a2G (yn,Γyn,Γyn, t)+(a3 +a4)G (ṗ, ṗ,Γ ṗ, t)
}

(3.2)

and

G
(
yn, ṗ, ṗ, t

)
= G

(
∆(zn,Γzn,Γxn;αn,βn), ṗ, ṗ, t

)
≥
{(

αn−βn
)
G (zn, ṗ, ṗ, t)+

(
1−αn

)
G (Γzn, ṗ, ṗ, t)+βnG (Γxn, ṗ, ṗ, t)

}
≥

{(
αn−βn +a1(1−αn)

)
G (zn, ṗ, ṗ, t)+βna1G (xn, ṗ, ṗ, t)

+
(
1−αn

)
a2G (zn,Γzn,Γzn, t)+βna2G (xn,Γxn,Γxn, t)

+
(
1− (αn−βn)

)(
a3 +a4

)
G (ṗ,Γ ṗ,Γ ṗ, t)

}
(3.3)

and

G
(
zn, ṗ, ṗ, t

)
= G

(
∆(Γxn,xn,Γxn;θn,θn), ṗ, ṗ, t

)
≥
{(

1−θn(1−a1)
)
G (xn, ṗ, ṗ, t)+θna2G (xn,Γxn,Γxn, t)

+θn
(
a3 +a4

)
G (ṗ,Γ ṗ,Γṗ, t)

}
(3.4)
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Substituting (3.3) and (3.4) in (3.2), we obtain

G
(
xn+1, ṗ, ṗ, t

)
≥ a1

{(
αn−βn +(1−αn)a1

)((
1−θn(1−a1)

)
G (xn, ṗ, ṗ, t)

+θna2G (xn,Γxn,Γxn, t)+θn(a3 +a4)G (ṗ,Γ ṗ,Γ ṗ, t)
)
+βna1G (xn, ṗ, ṗ, t)

+(1−αn)a2G (zn,Γzn,Γzn, t)+βna2G (xn,Γxn,Γxn, t)

+
(
1− (αn−βn)

)(
a3 +a4

)
G (ṗ,Γṗ,Γṗ, t)

}
+a2G (yn,Γyn,Γyn, t)

+
(
a3 +a4

)
G (ṗ, ṗ,Γ ṗ, t)

= a1

((
αn−βn +(1−αn)a1

)(
1−θn(1−a1)

)
+βna1

)
G (xn, ṗ, ṗ, t)

+a2G (yn,Γyn,Γyn, t)+a1
(
(1−αn)a2

)
G (zn,Γzn,Γzn, t)

+a1
(
(αn−βn +(1−αn)a1)θna2 +βna2

)
G (xn,Γxn,Γxn, t)

+

{
a1

[(
αn−βn +(1−αn)a1

)
θn(a3 +a4)+

(
1− (αn−βn)

)
(a3 +a4)

]
+(a3 +a4)

}
G (ṗ, ṗ,Γṗ, t)

Since G (ṗ,Γ ṗ,Γ ṗ, t) = 1, we obtain,

G (xn+1, ṗ, ṗ, t) ≥

{
a1

[(
αn−βn +(1−αn)a1

)(
1−θn(1−a1)

)
+βna1

]
G (xn, ṗ, ṗ, t)

+a2G (yn,Γyn,Γyn, t)+a1

[
(1−αn)a2

]
G (zn,Γzn,Γzn, t)

+a1

[
(αn−βn +(1−αn)a1)θna2 +βna2

]
G (xn,Γxn,Γxn, t)

}

In order to satisfy the conditions of Lemma 2.4, we take δ ,εn and κn as follows:

0≤ δ = a1
[
(αn−βn +(1−αn)a1)(1−θn(1−a1))+βna1

]
< 1

εn =
{

a2G (yn,Γyn,Γyn, t)+a1
[(

αn−βn +(1−αn)a1
)
θna2 +βna2

]
G (xn,Γxn,Γxn, t)

+a1
(
(1−αn)a2

)
G (zn,Γzn,Γzn, t)

}
κn = G (xn, ṗ, ṗ, t).

Since
lim
n→∞

G (xn,Γxn,Γxn, t) = lim
n→∞

G (yn,Γyn,Γyn, t) = lim
n→∞

G (zn,Γzn,Γzn, t) = 1

By Lemma 2.4, we have limn→∞ G (xn, ṗ, ṗ, t) = 1.

Example 3.2. Let X = [−1,1] and the G fuzzy metric is defined by G (x,y,z, t) =
t

t +G (x,y,z)
, where G (x,y,z) = |x− y|+

|y− z|+ |z− x|. The G -fuzzy convex structure ∆ is defined by ∆(x,y,z,a1,a2) = (a1−a2)x+(1−a1)y+a2z and the self map
Γ(x) =

x
4
. Clearly, (X ,G ,∗) is a complete G -FCMS. The sequences are defined by αn =

n
n+1

, βn =
n

n+2
, γn =

n
n+3

and

thetan =
n

n+4
. Thus, the sequence {xn}n≥0 is satisfied all the conditions of the Theorem 3.1 and the sequence G -converges to

unique fixed point 0 of Γ.

Theorem 3.3. Let C be a non empty closed convex subset of a (X ,G ,∗) complete G -FCMS with ∆ convex structure and
Γ : X → X be a mapping satisfying the following conditions:

G
(
Γx,Γy,Γz, t

)
≥
{

a1G (x,y,z, t)+a2G (x,Γx,Γx, t)+a3G (y,Γy,Γy, t)+a4G (Γx,Γz,Γz, t)
}

(3.5)

for all x,y,z ∈ X where 0≤ a1,a2 ≤ 1
4 ,a3,a4 ∈ [0,1] and {xn}n≥0 is given by

(i) x0 ∈ X,
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(ii) xn+1 = ∆(Γyn,Γyn,Γyn : γn,γn),
(iii) yn = ∆(zn,Γzn,Γxn : αn,βn),
(iv) zn = ∆(Γxn,xn,Γxn : θn,θn) with
(v) {θn}n≥0 ⊂ [0, 1

4 ),
(vi) βn ≤ (1−αn)a1 ≤ αn

Then {xn}n≥0 converges to unique fixed point ṗ of Γ.

Proof: Suppose that Γ satisfies condition (i) - (iv), we have

G
(
xn+1, ṗ, ṗ, t

)
= G

(
∆(Γyn,Γyn,Γyn;γn,γn), ṗ, ṗ, t

)
≥
{
(γn− γn)G (Γyn, ṗ, ṗ, t)+(1− γn)G (Γyn, ṗ, ṗ, t)+ γnG (Γyn, ṗ, ṗ, t)

}
≥
{

a1G (yn, ṗ, ṗ, t)+a2G (yn,Γyn,Γyn, t)+a3G (ṗ, ṗ,Γ ṗ, t)+a4G (ṗ, ṗ,Γ ṗ, t)
}

=
{

a1G (yn, ṗ, ṗ, t)+a2G (yn,Γyn,Γyn, t)+(a3 +a4)G (ṗ, ṗ,Γ ṗ, t)
}

(3.6)

G
(
yn, ṗ, ṗ, t

)
= G

(
∆(zn,Γzn,Γxn;αn,βn), ṗ, ṗ, t

)
≥
{
(αn−βn)G (zn, ṗ, ṗ, t)+(1−αn)G (Γzn, ṗ, ṗ, t)+βnG (Γxn, ṗ, ṗ, t)

}
≥
{(

αn−βn +a1(1−αn)
)
G (zn, ṗ, ṗ, t)+βna1G (xn, ṗ, ṗ, t)

+(1−αn)a2G (zn,Γzn,Γzn, t)+βna2G (xn,Γxn,Γxn, t)

+(1− (αn−βn))(a3 +a4)G (ṗ,Γṗ,Γṗ, t)
}

(3.7)

G
(
zn, ṗ, ṗ, t

)
= G

(
∆(Γxn,xn,Γxn;θn,θn), ṗ, ṗ, t

)
≥
{
(θn−θn)G (Γxn, ṗ, ṗ, t)+(1−θn)G (xn, ṗ, ṗ, t)+θnG (Γxn, ṗ, ṗ, t)

}
≥
{(

1−θn(1−a1)
)
G (xn, ṗ, ṗ, t)+θna2G (xn,Γxn,Γxn, t)

+θn(a3 +a4)G (ṗ,Γṗ,Γṗ, t)
}

(3.8)

Substituting (3.7) and (3.8) in (3.6), we have

G
(
xn+1, ṗ, ṗ, t

)
≥ a1

{(
αn−βn +(1−αn)a1

)((
1−θn(1−a1)

)
G (xn, ṗ, ṗ, t)

+θna2G (xn,Γxn,Γxn, t)+θn(a3 +a4)G (ṗ,Γ ṗ,Γṗ, t)
)
+βna1G (xn, ṗ, ṗ, t)

+(1−αn)a2G (zn,Γzn,Γzn, t)+βna2G (xn,Γxn,Γxn, t)

+
(
1− (αn−βn)

)(
a3 +a4

)
G (ṗ,Γṗ,Γ ṗ, t)

}
+a2G (yn,Γyn,Γyn, t)

+
(
a3 +a4

)
G (ṗ, ṗ,Γ ṗ, t)

= a1

((
αn−βn +(1−αn)a1

)(
1−θn(1−a1)

)
+βna1

)
G (xn, ṗ, ṗ, t)

+a2G (yn,Γyn,Γyn, t)+a1
(
(1−αn)a2

)
G (zn,Γzn,Γzn, t)

+a1
(
(αn−βn +(1−αn)a1)θna2 +βna2

)
G (xn,Γxn,Γxn, t)

+
{

a1
[(

αn−βn +(1−αn)a1
)
θn(a3 +a4)+

(
1− (αn−βn)

)(
a3 +a4

)]
+
(
a3 +a4

)}
G (ṗ, ṗ,Γṗ, t)

Since G (ṗ,Γ ṗ,Γ ṗ, t) = 1, we obtain,

G
(
xn+1, ṗ, ṗ, t

)
≥

{
a1
[(

αn−βn +(1−αn)a1
)(

1−θn(1−a1)
)
+βna1

]
G (xn, ṗ, ṗ, t)

+a2G (yn,Γyn,Γyn, t)+a1
[
(1−αn)a2

]
G (zn,Γzn,Γzn, t)

+a1
[(

αn−βn +(1−αn)a1
)
θnb+βna2

]
G (xn,Γxn,Γxn, t)

}
(3.9)
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Continuing the process,

G
(
xn,Γxn,Γxn, t

)
≥
(

1+2a1

1−2a2

)
G (xn, ṗ, ṗ, t) (3.10)

G (zn,Γzn,Γzn, t) ≥
(

1+2a1

1−2a2

)
G (zn, ṗ, ṗ, t)

≥
(

1+2a1

1−2a2

)
(1−θn(1−a1))G (xn, ṗ, ṗ, t)+

(
1+2a1

1−2a2

)
θna2G (xn,Γxn,Γxn, t)

≥
(

1+2a1

1−2a2

)
(1−θn(1−a1))G (xn, ṗ, ṗ, t)+

(
1+2a1

1−2a2

)
θna2G (xn, ṗ, ṗ, t) (3.11)

G (yn,Γyn,Γyn, t) ≥
(

1+2a1

1−2a2

)
G (yn, ṗ, ṗ, t)

≥
(

1+2a1

1−2a2

){[(
αn−βn +(1−αn)a1

)(
1−θn(1−a1)

)
G (xn, ṗ, ṗ, t)

+

(
1+2a1

1−2a2

)
θna2G (xn, ṗ, ṗ, t)

]
+βna1G (xn, ṗ, ṗ, t)+βna2

(
1+2a1

1−2a2

)

G (xn, ṗ, ṗ, t)+(1−αn)a2

(
1+2a1

1−2a2

)[
(1−θn(1−a1))G (xn, ṗ, ṗ, t)

+

(
1+2a1

1−2a2

)
θna2G (xn, ṗ, ṗ, t)

]}
(3.12)

Substituting (3.10), (3.11) and (3.12) in (3.9), we obtain,

G
(
xn+1, ṗ, ṗ, t

)
≥

{(
a1
(
αn−βn +(1−αn)a1

)(
1−θn(1−a1)G (xn, ṗ, ṗ, t)

))
+a2

(
1+2a1

1−2a2

)([
(αn−βn +(1−αn)a1)

][
(1−θn(1−a1))+

(
1+2a1

1−2a2

)
θna2

]
+βna1G (xn, ṗ, ṗ, t)+βna2

(
1+2a1

1−2a2

)
+(1−αn)a2

(
1+2a1

1−2a2

)[
(1−θn(1−a1))

+

(
1+2a1

1−2a2

)
θna2

])
+a1

(
(αn−βn +(1−αn)a1)θna2 +βna2

)(1+2a1

1−2a2

)

+a1

(
(1−αn)a2

(
1+2a1

1−2a2

)[
(1−θn(1−a1))+

(
1+2a1

1−2a2

)
θna2

])}
G (xn, ṗ, ṗ, t)

G
(
xn+1, ṗ, ṗ, t

)
≥

{
a1
(
αn−βn +(1−αn)a1

)(
1−θn(1−a1)

)
+βna1

)
+a2

(
1+2a1

1−2a2

)
([

(αn−βn +(1−αn)a1)
][
(1−θn(1−a1))+

(
1+2a1

1−2a2

)
θna2

]
+βna1G (xn, ṗ, ṗ, t)+βna2

(
1+2a1

1−2a2

)
+(1−αn)a2

(
1+2a1

1−2a2

)
[
(1−θn(1−a1))+

(
1+2a1

1−2a2

)
θna2

])
+a1

(
(αn−βn +(1−αn)a1)θna2

+βna2
)(1+2a1

1−2a2

)
+a1(1−αn)a2

(
1+2a1

1−2a2

)[
(1−θn(1−a1))
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G
(
xn+1, ṗ, ṗ, t

)
≥ a1

(
(αn−βn +(1−αn)a1)(1−θn(1−a1))+βna1

)
G (xn, ṗ, ṗ, t)

+a2

(
1+2a1

1−2a2

)[
(αn−βn +(1−αn)a1)

](
1−θn(1−a1)

)
G (xn, ṗ, ṗ, t)

+

(
1+2a1

1−2a2

)2 [
(αn−βn +(1−αn)a1)

]
θna2

2G (xn, ṗ, ṗ, t)

+a2

(
1+2a1

1−2a2

)
βna1G (xn, ṗ, ṗ, t)+

(
1+2a1

1−2a2

)2

βna2
2G (xn, ṗ, ṗ, t)

+(1−αn)a2
2

(
1+2a1

1−2a2

)2 (
1−θn(1−a1)

)
G (xn, ṗ, ṗ, t)

+

(
1+2a1

1−2a2

)3

(1−αn)θna3
2G (xn, ṗ, ṗ, t)+a1

(
(αn−βn +(1−αn)a1)θna2 +βna2

)
(

1+2a1

1−2a2

)
G (xn, ṗ, ṗ, t)+a1

(
(1−αn)a2

)(1+2a1

1−2a2

)
(1−θn(1−a1))G (xn, ṗ, ṗ, t)

+a1
(
(1−αn)a2

)(1+2a1

1−2a2

)2

θna2G (xn, ṗ, ṗ, t).

Since

0 ≤

{
a1

((
αn−βn +(1−αn)a1

)(
1−θn(1−a1)

)
+βna1

)
+a2

(
1+2a1

1−2a2

)(
[(αn−βn +(1−αn)a1)]

[
(1−θn(1−a1))+

(
1+2a1

1−2a2

)
θna2

]
+βna1G (xn, ṗ, ṗ, t)+βna2

(
1+2a1

1−2a2

)
+(1−αn)a2

(
1+2a1

1−2a2

)[
(1−θn(1−a1))

+

(
1+2a1

1−2a2

)
θna2

])
+a1((αn−βn +(1−αn)a1)θna2 +βna2)

(
1+2a1

1−2a2

)

+a1
(
(1−αn)a2

)(1+2a1

1−2a2

)[(
1−θn(1−a1)

)
+

(
1+2a1

1−2a2

)
θna2

]}
< 1

By Lemma 2.4, we have limn→∞ G (xn, ṗ, ṗ, t) = 1.

4. Conclusion

In this paper, we obtain the sequence using three step iteration process and convergence of iteration process to unique fixed
point under conditions of contractive mappings on the G -fuzzy metric spaces in convex structure.
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Abstract

In this article, we perform computer searches for pedal sets of all known unitals in the
known planes of order 16. Special points of unitals having at least one special tangent
are studied in detail. It is shown that unitals without special points exist. Open problems
regarding the computational results presented in this study are discussed. A conjecture
about the numbers of line types of a unital U and its dual unital U⊥ is formulated.

1. Introduction

We assume familiarity with the basic facts from finite geometries and combinatorial design theory [1]- [3].
A t-(v,k,λ ) design is a pair D={X ,B} of a set X of cardinality v, called points, and a collection B of k-subsets of X , called
blocks, such that every t points appear together in exactly λ blocks. A parallel class of a design D is a collection of blocks that
partitions the point set of D. A resolution of D is a partition of the collection of blocks of D into disjoint parallel classes. A
design D is resolvable if it has at least one resolution.
Let π be a projective plane of order q2. A unital embedded in π is defined to be a set U of q3 +1 points of π meeting lines
of the plane in either one point or q+1 points. The sets of the intersections of the lines of π with U at q+1 points form a
2-(q3 +1,q+1,1) design.
A classical example of a unital is the Hermitian unital H(q) defined by the absolute points of a unitary polarity in PG(2,q2).
In 1976, Buekenhout provided two methods for constructing unitals [4]. In 1979, Metz used one of Buekenhout’s method
to construct a non-classical unital in a Desarguesian plane of order q2 [5], and in 1994, Barwick showed that any unitals
constructed by the other method of Buekenhout is a classical unital [6]. In 1988, for every odd prime power q, Rosati
constructed a unital in Hughes planes of order q [7], and in 1990, Kestenband generalized Rosati’s construction [8]. Some
other studies of unitals can be found in [9]- [12].
There exist q3 +1 lines meeting a unital U at one point, called tangent lines to U , and q2(q2−q+1) lines meeting U at q+1
points, called secant lines to U . For any point P /∈U , the number of tangents and secants through P are q+ 1 and q2− q,
respectively [1]. The set of the q+ 1 intersections of tangents through P with U is called the pedal set of P. P is called a
special point if its pedal set is collinear. A special tangent is defined to be a tangent having q2 special points.
In this study, pedal sets of all known unitals in the known projective planes of order 16 are computed. Special points of unitals
having at least one special tangent are studied in detail. It is shown that unitals without special points exist. Details of the
numbers of pedal sets for each possible line type are reported.
Through the paper, a line with p points will be denoted by p-line.

2. Pedal sets of unitals in planes of order 16

Twenty-two projective planes of order 16 are known to exist. The names of the planes are in accordance with [13]: PG(2,16),
BBH1, SEMI2, SEMI4, BBH2, BBS4, DEMP, DSFP, HALL, LMRH, MATH, JOHN, and JOWK. Specific line sets of the
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planes used in this study can be found in [14].
Previously it was shown that PG(2,16) contains exactly two unitals. Unitals in the rest of the planes of order 16 have not been
completely classified, yet.
Known unitals in the known planes of order 16 were found by Stoichev and Tonchev (thirty-eight unitals) [15], Krčadinac and
Smoljak (three unitals) [16], and Stoichev and Gezek (one hundred and fifteen unitals) [12].
A pedal set of a unital U in a plane of order 16 comes from 5 points of U . The following five configurations (denoted by their
line types) are possible for pedal sets in these planes: Either all 5 points are on a line (51), or 4 points are on a line and four
2-lines (41,24), or two 3-lines and four 2-lines (32,24), or 3 points are on a line and seven 2-lines (31,27), or ten 2-lines (210).
Possible geometries of these configurations could be found in [16, Figure 2].
Using the computational algebra system MAGMA [17], pedal sets of all known unitals in the known projective planes of order
16 have been calculated. The algorithm used in our computations contains the following steps:
Step 1: Define the set of lines (L), points (P), unitals (U) of the Plane π , and line types (LT )
Step 2: For each unital u in U do
Step 3: For each point p ∈ P\u, find its tangents (T )
Step 4: For every tangent t ∈ T find t ∩u and save them in a set ps // ps is the set of pedal sets of the point p
Step 5: Save the pedal sets ps in an indexed set PS
Step 6: For each pedal set ps in PS, check which line type in LT it possesses
Step 7: Print the number of each possible line type
The number of known unitals in the known planes of order 16 is 156. Specific point sets of the known unitals used in this study
can be found in [12]. Pedal sets of the forty-two of the known unitals are studied in [16]. We list the details of the pedal sets of
the remaining unitals in Table 3.1, where Column 1 states the name of the plane, Column 2 provides the unital no’s, and the
last column gives the numbers of pedal sets for each type. All except 38 of unitals in these planes have the same pedal sets
counts with their duals. Details of the pedal sets of dual unitals having different pedal set counts with their duals are listed in
Table 3.2.
Table 3.1 shows that all unitals except unital 4 of BBH1 plane, unital 18 of BBH2 plane, unital 11 of BBS4 plane, all known
unitals in DEMP plane, unitals 4,6,7, and 8 of MATH plane, unital 5 of JOWK plane, unitals 3,4,7 and 8 of SEMI2 plane and
unitals 2,3, and 7 of SEMI4 plane have at least 16 special points.
Previously, there were only two unitals in BBH1 plane having a special tangent. Our computations show that unitals 14 and 16
of BBH1 plane also possess a special tangent. All of the unitals having a special tangent in BBH1 plane has special points not
lying on a special tangent: Unital 1 of BBH1 plane has sixteen special points outside of a special tangent, which are divided
into four distinct sets of size 4 such that each set lies on a secant through the intersection point of the special tangent with the
unital. Unital 2 (and 14) of BBH1 plane has fifty-two special points outside of a special tangent. None of these points lies on a
secant through the intersection point of the special tangent with the unital. Unital 16 of BBH1 plane has eight special points
outside of a special tangent, which are divided into two distinct sets of size 4 such that each set lies on a secant through the
intersection point of the special tangent with the unital. Eight of the unitals of BBH1 plane contains exactly 16 special points,
but none of these points lie on a special tangent.
BBH2 plane previously was known to contain only one unital having a special tangent. Our computations show that there are
six more unitals in BBH2 plane having exactly one special tangent, all of which have special points not lying on a special
tangent: Unitals 19, 20, 22, and 23 of BBH2 plane has eight special points outside of a special tangent, which are divided into
two distinct sets of size 4 such that each set lies on a secant through the intersection point of the special tangent with the unital.
Unital 21 of BBH2 plane has sixteen special points outside of a special tangent, which are divided into two distinct sets of size
8 such that each set lies on a secant through the intersection point of the special tangent with the unital. Unital 26 of BBH2
plane has twenty-four special points outside of a special tangent, which are divided into six distinct sets of size 4 such that
each set lies on a secant through the intersection point of the special tangent with the unital. Table 3.1 shows that seven of the
unitals in BBH2 plane have exactly 16 special points, but none of these points lie on a special tangent.
None of the known unitals in BBS4, DEMP, and DSFP planes have a special tangent, but six unitals in BBS4 plane have
exactly 16 special points, but none of these points lie on a special tangent.
Details of the pedal sets of the known unitals in HALL plane can be found in [16]. Only unitals 4 and 6 of HALL plane
contains special points not lying on a special tangent: Unital 4 of HALL plane has sixteen special points outside of a special
tangent, which are divided into four distinct sets of size 4 such that each set lies on a secant through the intersection point of
the special tangent with the unital. Unital 6 of HALL plane has fifty-two special points outside of a special tangent, which are
divided into ten distinct sets of size 4 and one set of size 12 such that each set lies on a secant through the intersection point of
the special tangent with the unital.
All known unitals in MATH plane having exactly 16 special points, as well as unitals 5 and 13, have exactly one special
tangent. Table 3.1 shows that unitals having more than 16 special points in MATH plane have special points not lying on a
special tangent: Unital 5 of MATH plane has eight special points outside of a special tangent, which are divided into two
distinct sets of size 4 such that each set lies on a secant through the intersection point of the special tangent with the unital.
Unital 13 of MATH plane has sixty-four special points outside of a special tangent, which are divided into sixteen distinct sets
of size 4 such that each set lies on a secant through the intersection point of the special tangent with the unital.
JOHN plane contains three unitals having a special tangent, two of which have special points not lying on a special tangent:
Unital 2 of JOHN plane has sixteen special points outside of a special tangent, which are divided into four distinct sets of size
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4 such that each set lies on a secant through the intersection point of the special tangent with the unital. Unital 26 of JOHN
plane has eight special points outside of a special tangent, which are divided into two distinct sets of size 4 such that each set
lies on a secant through the intersection point of the special tangent with the unital.
The number of known unitals in SEMI2 plane is 21, all except four have exactly sixteen special points and a special tangent.
None of the unitals in SEMI2 plane having at least 16 special points have special points outside of a special tangent.
SEMI4 plane previously was known to have exactly two unitals having a special tangent. Our computations show that many of
the known unitals in SEMI4 plane possess a special tangent. Two of these unitals have special points not lying on a special
tangent: Unital 4 of SEMI4 plane has four special points outside of a special tangent, which lies on a secant through the
intersection point of the special tangent with the unital.
In [18], it was shown that special points and special tangents of a unital U give rise to parallel classes and resolutions of the
unital design associated with U , respectively. Even though, all parallel classes and resolutions of the unital designs associated
with a unital in planes of order 9 come from special points and special tangents, respectively [16], this is not true in general.
The parallel classes of the designs associated with the following unitals in planes of order 16 come from special points: Unitals
1 and 16 of BBH1 plane, unitals 6, 21, and dual unitals 7, 20, and 26 of BBH2 plane, unital 11 of BBS4 plane, unital 3 of
DEMP plane, unital 5 of HALL plane, all unitals in LMRH plane, all unitals except unitals 5 and 9 of MATH plane, unitals 2
and 29 and dual unital 26 of JOHN plane, unitals 5 and 7 of JOWK plane, all unitals except unitals 2 and 10 of SEMI2 plane,
all unitals except unitals 3 and 4 of SEMI4 plane, and unital 2 of PG(2,16). The number of parallel classes of the designs
associated with the rest of the known unitals in planes of order 16 is grater then the number of special points of unitals.

3. Conclusion

Previously, no unitals without special points were known to exist (a question asked by the authors in [16]), but the data given in
Table 3.1 shows that unitals 6,6⊥,7, and 8 of MATH plane and unital 2 of SEMI4 plane do not have any special points (unital
2 of SEMI4 plane in [16] is the unital 12 in [12]).
All known unitals in projective planes of order q2 ∈ {9,16} having at least one special tangent have the property that the
number of special points is a multiple of q. Does this property hold in general?
Unitals 2 and 14 of BBH1 plane are the first (and only) examples of unitals having the following property: none of the special
points outside of a special tangent lies on a secant through the intersection point of the special tangent with the unital. Why do
these unitals act differently?
None of the unitals given in Table 3.2 have a special tangent. This shows that if a unital U in a plane of order 16 has a special
tangent, then U and U⊥ have the same pedal set counts. Unitals in planes of order 9 having at least one special tangent also
possess this property [16]. Are there unitals not having this property?
It was observed in [16] that the number of pedal sets having line type (q+1) always seems to agree for a unital and its dual
unital. We notice that not only the number of line type (q+1), but also the number of line type (q,2q) seems to agree for a
unital and its dual unital. Can we prove that this property holds in general?
We end this paper with the following conjecture:

Conjecture 1. Let U be a unital embedded in a projective plane of order q2, and ni(U) be the number of pedal sets of U
having line type i. Then,

ni(U) = ni(U⊥)

for i ∈ {(q+1),(q,2q)}. Furthermore, if U has a special tangent, then

ni(U) = ni(U⊥)

for any i.
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

BBH1 4 11 0 24 84 89
5 16 12 4 104 72
6 16 12 4 104 72
7 16 0 16 104 72
8 28 24 12 96 48
9 28 12 36 52 80

10 28 24 12 96 48
11 16 4 12 88 88
12 16 4 12 88 88
13 16 8 12 104 68
14 68 0 0 104 36
15 16 8 12 104 68
16 24 16 16 96 56

BBH2 7 11 8 32 96 61
8 16 24 4 92 72
9 16 16 0 124 52

10 28 24 0 108 48
11 16 12 20 92 68
12 16 4 28 80 80
13 16 8 12 104 68
14 20 16 12 96 64
15 24 0 32 76 76
16 24 4 20 92 68
17 16 0 20 104 68
18 8 0 30 120 50
19 24 24 8 136 16
20 24 56 8 88 32
21 32 8 0 96 72
22 24 24 0 88 72
23 24 16 0 112 56
24 16 24 12 112 44
25 32 16 12 88 60
26 40 16 0 112 40

BBS4 2 16 16 4 76 96
3 16 24 0 76 92
4 20 12 4 88 84
5 16 16 8 92 76
6 20 8 4 96 80

Table 3.1: Pedal sets of unitals in planes of order 16.
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

BBS4 7 24 16 24 76 68
8 24 8 12 100 64
9 20 16 36 92 44

10 16 24 20 52 96
11 4 0 0 150 54
12 16 0 0 156 36
13 16 24 48 60 60

DEMP 3 4 0 24 24 156
4 4 12 12 144 36

MATH 5 24 8 0 56 120
6 0 0 32 48 128
7 0 0 32 80 96
8 0 0 16 32 160
9 12 12 44 64 76

10 16 0 0 192 0
11 16 0 0 0 192
12 16 0 0 0 192
13 80 0 0 128 0
14 16 0 0 64 128
15 16 0 0 64 128
16 16 0 0 64 128

JOHN 6 16 20 0 68 104
7 16 16 0 80 96
8 16 12 4 80 96
9 16 8 0 116 68

10 20 12 0 96 80
11 20 16 0 92 80
12 24 0 16 100 68
13 20 0 16 64 108
14 16 20 20 112 40
15 20 12 12 68 96
16 20 16 12 112 48
17 16 24 20 76 72
18 24 4 20 88 72
19 16 44 12 84 52
20 16 32 16 100 44
21 20 0 16 88 84
22 24 12 20 60 92

Table 3.1: (Continued)
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

JOHN 23 20 12 12 80 84
24 24 8 12 64 100
25 20 12 20 52 104
26 24 0 0 128 56
27 20 0 12 112 64
28 24 0 12 88 84
29 16 0 16 48 128

JOWK 5 4 0 12 84 108
6 20 0 12 96 80
7 16 0 16 128 48

SEMI2 4 4 0 12 48 144
5 16 0 32 96 64
6 16 0 0 160 32
7 4 0 12 144 48
8 4 0 60 48 96
9 16 0 32 128 32

10 16 0 0 96 96
11 16 0 0 64 128
12 16 0 64 64 64
13 16 0 0 192 0
14 16 0 0 0 192
15 16 0 0 0 192
16 16 64 64 64 0
17 16 0 0 64 128
18 16 0 0 0 192
19 16 0 0 0 192
20 16 0 0 192 0
21 16 0 0 192 0

SEMI4 2 0 16 16 64 112
3 4 4 12 100 88
4 20 16 0 96 76
5 16 24 0 72 96
6 16 24 0 72 96
7 4 0 12 144 48
8 16 0 0 128 64
9 16 64 0 64 64

10 16 0 0 128 64
11 16 64 0 64 64

Table 3.1: (Continued)
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

BBH2 7 11 8 24 112 53
8 16 24 0 100 68

11 16 12 12 108 60
12 16 4 20 96 72
14 20 16 20 80 72
18 8 0 35 110 55
23 24 16 16 80 72

BBS4 2 16 16 0 84 92
4 20 12 0 96 80
5 16 16 4 100 72
6 20 8 0 104 76
9 20 16 32 100 40

10 16 24 28 36 104
13 16 24 24 108 36

DEMP 3 4 0 12 48 144
MATH 6 0 0 16 80 112
JOHN 6 16 20 4 60 108

8 16 12 0 88 92
9 16 8 8 100 76

10 20 12 4 88 84
11 20 16 4 84 84
17 16 24 24 68 76
19 16 44 20 68 60
21 20 0 24 72 92
24 24 8 20 48 108
25 20 12 12 68 96
26 24 0 8 112 64

JOWK 6 20 0 28 64 96

Table 3.2: Pedal sets of the dual unitals in planes of order 16.
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Abstract

In this paper, the bi-periodic Mersenne sequence, which is a generalization of the Mersenne
sequence, is defined. The characteristic function, generating function and Binet’s formula
for this sequence are obtained. Also, by using Binet’s formula, some important identities
and properties for the bi-periodic Mersenne sequence are presented.

1. Introduction

There are some studies about integer sequences in the literature [1]-[4]. Especially Mersenne primes are an active field in the
number theory and computer science [5]. They are popular research objects because of their interesting representation in the
binary system properties as (1)2, (11)2, (111)2, (1111)2,.... The Mersenne numbers can also be defined as [6]

Mn +2 = 3Mn+1−2Mn,

with the initial conditions M0 = 0 and M1 = 1.

The roots of the respective characteristic equation r2−3r+2 = 0 are r1 = 2 and r2 = 1 and we easily get the Binet formula

Mn = 2n−1.

The first few terms of the Mersenne sequence are

Mn = {0,1,3,7,15,31,63,127,255,511, ...} [7].

In many studies, generalizations of the integer sequences have been examined [8]-[15]. The bi-periodic Fibonacci sequence,
which was introduced by Edson and Yayenie, have made an important contribution to the literature [16]. Inspired by this study,
many new generalized sequences have been described [17]-[20].

The main purpose of this paper is to first define bi-periodic Mersenne sequence, to find the generating function and Binet
formula, and then to present some identities that include the bi-periodic Mersenne sequence as a result of the corresponding
Binet formula.
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2. Bi-periodic Mersenne sequence

Definition 2.1. The bi-periodic Mersenne sequence {mn}∞

n=0 is defined by

m0 = 0, m1 = 1, mn =

{
3amn−1−2mn−2, if n is even;
3bmn−1−2mn−2, if n is odd. , n≥ 2.

where a and b are any two non-zero real numbers.
By setting a = b = 1, we get the classic Mersenne numbers.
The quadratic equation for the bi-periodic Mersenne sequence is defined as

x2−3abx+2ab = 0

with the roots

α1 =
3ab+
√

9a2b2−8ab
2 and α2 =

3ab−
√

9a2b2−8ab
2 . (2.1)

Lemma 2.2. The bi-periodic Mersenne sequence satisfies the following properties:

m2n = (9ab−4)m2n−2−4m2n−4,

m2n+1 = (9ab−4)m2n−1−4m2n−3.

Proof. By using the recurrence relation for bi-periodic Mersenne sequence, we obtain m2n and m2n+1 as follows:

m2n = 3am2n−1−2m2n−2

= 3a(3bm2n−2−2m2n−3)−2m2n−2

= (9ab−2)m2n−2−6am2n−3

= (9ab−2)m2n−2− (2m2n−2 +4m2n−4)

= (9ab−4)m2n−2−4m2n−4

and

m2n+1 = 3bm2n−2m2n−1

= 3b(3am2n−1−2m2n−2)−2m2n−1

= (9ab−2)m2n−1−6bm2n−2

= (9ab−2)m2n−1− (2m2n−1 +4m2n−3)

= (9ab−4)m2n−1−4m2n−3.

Lemma 2.3. The roots α1 and α2 defined in (2.1) satisfy the following properties:

α1α2 = 2ab,

α1+α2 = 3ab,

3α1−2 =
α2

1
ab

,

3α2−2 =
α2

2
ab

,

(3α1−2)(3α2−2) = 4.

Proof. By using the definitions of α1 and α2, the proof can be easily obtained.

Theorem 2.4. The generating function for the bi-periodic Mersenne sequence is

M(x) =
x(1+2x2 +3ax)

1− (9ab−4)x2 +4x4 .
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Proof. M(x) = m0 +m1x+m2x2 + ...+msxs + ... =
∞

∑
k=0

mkxk is the formal power series representation of the generating

function for {mn}∞

n=0. If this series is multiplied by 3bx and 2x2, then we get

3bxM(x) = 3bm0x+3bm1x2 + ...= 3
∞

∑
k=0

bmkxk+1 = 3
∞

∑
k=1

bmk−1xk

and

2x2M(x) = 2m0x2 +2m1x3 + ...= 2
∞

∑
k=0

mkxk+2 = 2
∞

∑
k=2

mk−2xk.

So, (
1−3bx+2x2

)
M(x) = m0 +m1x−3bm0x+

∞

∑
k=2

(
mk−3bmk−1 +2mk−2

)
xk. (2.2)

Since m2k+1 = 3bm2k−2m2k−1 and m0 = 0, m1 = 1, we have(
1−3bx+2x2

)
M(x) = x+

∞

∑
k=1

(m2k−3bm2k−1 +2m2k−2)x2k .

m2k = 3am2k−1−2m2k−2 implies that(
1−3bx+2x2

)
M(x) = x+3(a−b)x

∞

∑
k=1

m2k−1x2k−1 .

Now, we let

m(x) =
∞

∑
k=1

m2k−1x2k−1.

Then,(
1− (9ab−4)x2 +4x4

)
m(x) =

∞

∑
k=1

m2k−1x2k−1 − (9ab−4)
∞

∑
k=2

m2k−3x2k−1 +4
∞

∑
k=3

m2k−5x2k−1

= m1x+m3x3− (9ab−4)m1x3 +
∞

∑
k=3

(
m2k−1− (9ab−4)m2k−3 +4m2k−5

)
x2k−1.

From Lemma 2.2, we have m2n−1 = (9ab−4)m2n−3−4m2n−5. By substituting this in the expression above, we get(
1− (9ab−4)x2 +4x4

)
m(x) = x+(9ab−2)x3− (9ab−4)x3 = x+2x3.

Therefore,

m(x) =
x+2x3

(1− (9ab−4)x2 +4x4)
.

Substituting m(x) in M(x) gives

(1−3bx+2x2)M(x) = x+
(

3(a−b)x
x+2x3

(1− (9ab−4)x2 +4x4)

)
.

After simplifying the above expression, we get the desired result

M(x) =
x(1+2x2 +3ax)

1− (9ab−4)x2 +4x4 .

Theorem 2.5. The terms of the bi-periodic Mersenne are given by

mn =
a1−ξ (n)

(ab)b
n
2c

(
αn

1 −αn
2

α1−α2

)
,

where α1 and α2 are as in (2.1), bbc is the floor function of b and ξ (n) is the parity function.
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Proof. Using the partial fraction decomposition, we can write the generating function for the bi-periodic Mersenne sequence
M(x) as

M(x) =
1

α1−α2

[
α1x+a( 3α1−2

2 )

2x2− ( 3α1−2
2 )

−
α2x+a( 3α2−2

2 )

2x2− ( 3α2−2
2 )

]
.

The Maclaurin series expansion of the function A−Bz
z2−C is expressed in the form

A−Bz
z2−C

=
∞

∑
n=0

BC−n−1z2n+1−
∞

∑
n=0

AC−n−1z2n.

So, M(x) can be written as

M(x) =
1

2(α1−α2)

[
∞

∑
n=0

(−α1)(
3α2−2

4 )n+1 +α2(
3α1−2

4 )n+1

( 3α1−2
4 )n+1( 3α2−2

4 )n+1
x2n+1

]

+
1

2(α1−α2)

[
∞

∑
n=0

(2a)( 3α2−2
4 )n +(2a)( 3α1−2

4 )n

( 3α1−2
4 )n( 3α2−2

4 )n
x2n

]
.

By using Lemma 2.3, we obtain

M(x) =
1

2(α1−α2)

 ∞

∑
n=0

(−α1)(α2)
2n+2

(4ab)n+1 + α2(α1)
2n+2

(4ab)n+1

1
4n+1

x2n+1

− 1
2(α1−α2)

 ∞

∑
n=0

(2a)(α2)
2n

(4ab)n − (2a)(α1)
2n

(4ab)n

1
4n

x2n

=
∞

∑
n=0

1
(ab)n

(α1)
2n+1− (α2)

2n+1

α1−α2
x2n+1 +

∞

∑
n=0

a
(ab)n

(α1)
2n− (α2)

2n

α1−α2
x2n.

By the help of the parity function ξ (n) , it follows that

M(x) =
a1−ξ (n)

(ab)b
n
2c

(
αn

1 −αn
2

α1−α2

)
xn.

Therefore, for all n≥ 0, we have

mn =
a1−ξ (n)

(ab)b
n
2c

(
αn

1 −αn
2

α1−α2

)
.

Theorem 2.6. (Catalan’s Identity) For any two nonnegative integer n and r, with r ≤ n, we get

aξ (n−r)b1−ξ (n−r)mn−rmn+r−aξ (n)b1−ξ (n)m2
n =−

(
2n−r)aξ (r)b1−ξ (r)m2

r .

Proof. Using the Binet’s formula, we obtain

aξ (n+r)b1−ξ (n−r)mn−rmn+r = aξ (n+r)b1−ξ (n−r) a1−ξ (n−r)

(ab)b
n−r

2 c

(
α

n−r
1 −α

n−r
2

α1−α2

)
a1−ξ (n+r)

(ab)b
n+r

2 c

(
α

n+r
1 −α

n+r
2

α1−α2

)

=

(
a2−ξ (n−r)b1−ξ (n−r)

(ab)n−ξ (n−r)

)(
α

n−r
1 −α

n−r
2

α1−α2

)(
α

n+r
1 −α

n+r
2

α1−α2

)
=

(
a

(ab)n−1

)(
α2n

1 − (α1α2)
n−r(α2r

1 +α2r
2 )+α2n

2
(α1−α2)2

)
and

aξ (n)b1−ξ (n)m2
n = aξ (n)b1−ξ (n)

(
a2−2ξ (n)

(ab)2b n
2c

)(
α2n

1 −2(α1α2)
n +α2n

2
(α1−α2)2

)

=

(
a

(ab)2b n
2c+ξ (n)−1

)(
α2n

1 −2(α1α2)
n +α2n

2
(α1−α2)2

)
=

(
a

(ab)n−1

)(
α2n

1 −2(α1α2)
n +α2n

2
(α1−α2)2

)
.
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So,

aξ (n+r)b1−ξ (n−r)mn−rmn+r−aξ (n)b1−ξ (n)m2
n =

(
a

(ab)n−1

)(
2(α1α2)

n− (α1α2)
n−r (α2r

1 +α2r
2 )

(α1−α2)2

)
=

(
a

(ab)n−1

)(
(α1α2)

n−r(2(α1α2)
r−α2r

1 −α2r
2 ))

(α1−α2)2

)
=

(
−a

(ab)n−1

)
(α1α2)

n−r
(

α2r
1 +α2r

2 −2(α1α2)
r)

(α1−α2)2

)
=

(
−a

(ab)n−1

)
(2ab)n−r

(
αr

1−αr
2

α1−α2

)2

−(a)2ξ (r)−1 (ab)1−ξ (r) (2n−r)m2
r

= −
(
2n−r)aξ (r)b1−ξ (r)m2

r .

Theorem 2.7. (Cassini’s Identity) The following equality holds

a1−ξ (n)bξ (n)mn−1mn+1−aξ (n)b1−ξ (n)m2
n =−a

(
2n−1) ,

where n is any nonnegative integer.

Proof. In Catalan’s identity, if we take r = 1, we get Cassini’s identity. So, the proof can be obtained from the relevant
identity.

Theorem 2.8. (d’Ocagne’s Identity) For any two nonnegative integer n and r, with r ≤ n, we have

aξ (nr+n)bξ (nr+r)mnmr+1−aξ (nr+r)bξ (nr+n)mn+1mr = 2raξ (n−r)mn−r.

Proof. There are such equations

ξ (n+1)+ξ (r)−2ξ (nr+ r) = ξ (n)+ξ (r+1)−2ξ (nr+n) = 1−ξ (n− r) (2.3)

and

ξ (n− r) = ξ (nr+n)+ξ (nr+ r) (2.4)

for the floor function defined as ξ (n) = n−2
⌊ n

2

⌋
.

Using the Binet’s formula, (2.3) and (2.4), it follows that

aξ (nr+n)bξ (nr+r)mnmr+1 =
a

(ab)(n+r−ξ (n−r))/2

α
n+r+1
1 +α

n+r+1
2 − (α1α2)

r(αn−r
1 α2 +α1α

n−r
2 )

(α1−α2)2

and

aξ (nr+r)bξ (nr+n)mn+1mr =
a

(ab)(n+r−ξ (n−r))/2

α
n+r+1
1 +α

n+r+1
2 − (α1α2)

r(αn−r+1
1 +α

n−r+1
2 )

(α1−α2)2 .

So,

aξ (nr+n)bξ (nr+r)mnmr+1−aξ (nr+r)bξ (nr+n)mn+1mr =
a

(ab)(n+r−ξ (n−r))/2
(α1α2)

r (α
n−r+1
1 +α

n−r+1
2 +α

n−r
1 α2−α1α

n−r
2 )

(α1−α2)2

=
a

(ab)(n+r−ξ (n−r))/2

(αn−r
1 −α

n−r
2 )(α1−α2)

(α1−α2)2

= 2raξ (n−r)mn−r.
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Theorem 2.9. (Honsberger Identity) For any two nonnegative integer n and r, with r ≤ n, we have

(
aξ (nr+n)bξ (nr+r)− 1

α1α2
aξ (r+1)−ξ (n)−1

(ab)ξ (nr+n)

)
mnmr+1+

(
aξ (nr+r)bξ (nr+n)− (α1α2)

aξ (r)+ξ (n−1)−1

(ab)ξ (nr+r)+1

)
mn−1mr

=
(α−1

1 +α1)(−α
−1
2 −α2)

α1−α2
aξ (n+r)mn+r.

Proof. Using the Binet’s formula, (2.3) and (2.4), we obtain

aξ (nr+n)bξ (nr+r)mnmr+1 =
a

(ab)(n+r−ξ (n−r))/2

(
α

n+r+1
1 +α

n+r+1
2 −α

r+1
1 αn

2 −αn
1 α

r+1
2

)
(α1−α2)2

and

aξ (nr+r)bξ (nr+n)mn−1mr =
a

(ab)(n+r−ξ (n−r))/2

(
α

n+r−1
1 +α

n+r−1
2 −αr

1α
n−1
2 −α

n−1
1 αr

2

)
(α1−α2)2 .

So, we get

aξ (nr+n)bξ (nr+r)mnmr+1 +aξ (nr+r)bξ (nr+n)mn−1mr =
a

(ab)
n+r−ξ (n−r)

2

(αn+r
1 −α

n+r
2 )(−α

−1
2 −α2)(α

−1
1 +α1)

(α1−α2)2

+
α

n+r
1 (α−1

2 +α2)+α
n+r
2 (α−1

1 +α1)− (1+α1α2)(α
r
1α

n−1
2 +αr

2α
n−1
1 )

(α1−α2)2

=
a

(ab)
n+r−ξ (n−r)

2

(−α
−1
2 −α2)(α

−1
1 +α1)

α1−α2

(ab)b
n+r

2 c

a1−ξ (n+r)
mn+r

+
(αr

1α
−1
2 −α

−1
1 αr

2)

α1−α2

(ab)b
n
2c

a1−ξ (n)
mn +

(αr+1
1 α2−α1α

r+1
2 )

α1−α2

(ab)b
n−1

2 c

a1−ξ (n−1)
mn−1

=(
(−α

−1
2 −α2)(α

−1
1 +α1)

α1−α2
)aξ (n+r)mn+r +

1
α1α2

aξ (r+1)−ξ (n)−1

(ab)ξ (nr+n)
mnmr+1

+(α1α2)
aξ (r)+ξ (n−1)−1

(ab)ξ (nr+r)+1
)mn−1mr.

Hence, we obtain

(
aξ (nr+n)bξ (nr+r)− 1

α1α2

aξ (r+1)−ξ (n)−1

(ab)ξ (nr+n)

)
mnmr+1 +

(
aξ (nr+r)bξ (nr+n)− (α1α2)

aξ (r)+ξ (n−1)−1

(ab)ξ (nr+r)+1

)
mn−1mr

=
(α−1

1 +α1)(−α
−1
2 −α2)

α1−α2
aξ (n+r)mn+r.

Theorem 2.10. (Sums Involving Binomial Coefficient) For any nonnegative integer r, we have

r

∑
s=0

(
r
s

)
(−2)

r−s
(3s)(ab)

b s
2c

aξ (s)ms = m2r

and
r

∑
s=0

(
r
s

)
(−2)

r−s
(3s)(ab)

b s+1
2 c

aξ (s+1)−1ms+1 = m2r+1.

Proof. For any integer s, we have

(ab)b
s
2caξ (s)ms = a

(
αs

1−αs
2

α1−α2

)
.
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By using this equality above, we get

r

∑
s=0

(
r
s

)
(−2)

r−s
(3s)(ab)

b s
2c

aξ (s)ms =
r

∑
s=0

(
r
s

)
(−2)

r−s
(3s)a

(
αs

1−αs
2

α1−α2

)

=
a

α1−α2

[
r

∑
s=0

(
r
s

)
(−2)

r−s
(3α1)

s−
r

∑
s=0

(
r
s

)
(−2)

r−s
(3α2)

s

]
=

a
α1−α2

[(3α1−2)r− (3α2−2)r]

=
a

α1−α2

[(
α2

1
ab

)r

−
(

α2
2

ab

)r]
=

a
(ab)r

(
α2r

1 −α2r
2

α1−α2

)
= m2r.

Also,

r

∑
s=0

(
r
s

)
(−2)

r−s
(3s)(ab)

b s+1
2 c

aξ (s+1)−1ms+1 =
r

∑
s=0

(
r
s

)
(−2)

r−s
(3s)a

(
α

s+1
1 −α

s+1
2

α1−α2

)

=
1

α1−α2

[
α1

r

∑
s=0

(
r
s

)
(−2)

r−s
(3α1)

s−α2

r

∑
s=0

(
r
s

)
(−2)

r−s
(3α2)

s

]

=
1

α1−α2
[α1 (3α1−2)r−α2 (3α2−2)r]

=
1

α1−α2

[
α1

(
α2

1
ab

)r

−α2

(
α2

2
ab

)r]
=

1
(ab)r

(
α

2r+1
1 −α

2r+1
2

α1−α2

)
= m2r+1.

Theorem 2.11. The nonnegative terms of the bi-periodic Mersenne sequence are defined in terms of the positive terms as

m−n =−2−nmn.

Proof. By using the Binet’s formula, we obtain

m−n =
a1−ξ (−n)

(ab)b
−n
2 c

(
α
−n
1 −α

−n
2

α1−α2

)
=

a1−ξ (−n)

(ab)b
−n
2 c

(
αn

2 −αn
1

(α1α2)n(α1−α2)

)
=

a1−ξ (n)

2n(ab)n(ab)b
−n
2 c

(
αn

2 −αn
1

α1−α2

)
=

−a1−ξ (n)

2n(ab)b
−n
2 c

(
αn

1 −αn
2

α1−α2

)
= −2−nmn.

3. Conclusion

In this paper, we define bi-periodic Mersenne sequence, which is called bi-periodic Mersenne sequence. We obtain some
properties for this sequence such as Binet formula, generating function, Catalan, Cassini, d’Ocagne and Honsberger identities.
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Abstract

The surface patterns of natural and experimental deposits are important as they result from
the internal microstructure. For this purpose, lacunarity analysis is applied to determine the
heterogeneous nature of deposit surface patterns. In this study, images were digitally moved
onto the square mesh to determine the heterogeneous situation of manganese dendrite
patterns on the natural magnesite surface. The relation between the lacunarity values of the
images and the box size was examined. The lacunarity values corresponding to the box
size values were estimated using the gliding-box algorithm. This relation was determined
numerically as a power-law function using nonlinear regression method. It has been shown
that the system examined with the generated numerical model function can be defined with
three specific parameters. As a result, it has been shown that it is possible to describe
the relationship between numerical solution-based lacunarity-box size and a third-order
nonlinear differential equation. With this study, the lacunarity-box size value on different
system images can be determined by using the gliding box algorithm and calculating the
coefficient value from the power-law relationship.

1. Introduction

Lacunarity is derived from the Latin word ”lacuna” meaning space or lake in Latin. Geometrical patterns and fractal gaps are
specific terms that determine superficial morphological heterogeneity by referring to a measure using the counting method.
Since it goes beyond intuitive measures for heterogeneity, lacunarity can quantify additional properties of various patterns,
such as ”scale invariance” and heterogeneity [1]-[3]. The earliest description of lacunarity as a geometric term is attributed to
Mandelbrot. In 1983, Mandelbrot essentially defined it as an auxiliary element infractal analysis [4]. The geometric texture
pattern in an image is scale dependent. It can vary significantly with the size and spatial resolution of the digital image. Any
very small image can contain parts of a pattern and be able to characterize the entire pattern, whereas a large image can consist
of more than one pattern and accurately describe it as well. Likewise, a pixel in a low spatial resolution image shows signs of
many patterns smaller than an integrated pixel size. Spatially, the resolution increases, the image pixels may be smaller. In
this case, it may be appropriate to perform lacunarity analysis to generate meaningful information from the image pattern.
Lacunarity applications provide flexibility in terms of ease of mathematical operation. Theoretically, however, it should be
used with a different scale due to the consistent mean of characterization across tissue patterns [5]. Today, lacunarity analysis
is used to characterize data and geometric patterns in various areas such as ecology, physics, medical imaging, urban spatial
analysis and etc. It has many applications, especially in multiple fractal analysis [6, 7].
Fractal geometry describes photometric and geometric changes in fractal or non-fractal pattern images using lacunarity
analysis. It has also developed a statistical approach that provides separable features over an extremely wide range of image
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transformations [8]-[11]. Accordingly, the numerical determination of the properties of the texture showing the geometric
pattern is related to the estimation of the value of the image calculated according to the multi-scale local binary system. The
changes are determined by combining the lacunarity parameters. Thus, to distinguish superficial patterns from each other, it is
possible to characterize the local distribution of superficial designs using lacunarity analysis [12]. In addition, appropriate
numerical methods and software have been developed to calculate the lacunarity value developed by Plotnick et al. [2, 3].
In general, the definition of the morphological image is related to the scale at which it is studied. A pattern that is observed to
be homogeneous at a given scale can be heterogeneous when observed at a larger scale. Images of natural and experimental
specimens emerge from variations of cellular units, often forming repeating patterns of the same type or pattern from a
combination of the cellular units, the pattern of the base unit and the assembly of this group of pixels [11]-[13]. Some of these
can be described as fractal. Classification by surface pattern, objectively or by definition, provides a meaningful hint regarding
physical properties in many imaging and visualization applications [6, 8, 12].
Geometric pattern gap analysis is a measure of the statistical distribution of void dimensions based on fractal mathematics
[1, 2]. The lacunarity analysis originally developed for binary data (binary or presence/absence) can be easily applied to
designs with continuous distributed variables [2]. A distance (in scale) is calculated as the ratio of the first and second moments
of the counts in all possible boxes of this spacing width. The first moment is the sum of the mean values of all possible blocks
in dimension Z(1), and the second moment is the sum of the mean squares in all possible blocks in dimension Z(2). The ratio of
the first and second moments is defined as the fractal geometry lacunarity [2, 3].
In this study, the relations between box sizes and the lacunarity values of a geometric pattern are examined both mathematically
and numerically. For this purpose, in Section 2, a basic depiction of the lacunarity concept is introduced. In section 3, a
third-order non-linear differential equation is firstly proposed for expressing the relationship between the value of the lacunarity
and the box size. In addition, the analytical solution for the proposed differential equation is also demonstrated. In Section 4,
the aliasing between the analytical solution of the proposed differential equation and the numerical simulations is shown by
handling the results of the lacunarity analysis for natural manganese dendrites using the non-linear regression. Finally, we
summarize and interpret the findings in Section 5.

2. Lacunarity description

In imaging techniques, a geometric pattern is defined in the form of a matrix in an M-dimensional square lattice. Accordingly,
the matrix elements are determined as either a white pixel (filled) or a black pixel valued zero (empty). In the first step, the unit
matrix r× r is calculated by scaling the matrix for each r value, by increasing the value from r = 1 to r ≤ L, until it reaches
the value of the upper left corner. As the box is moved to the right, one pixel is displaced, and the white pixels are counted
again. These operations are repeated until the matrix is moved over the entire image and the frequency distribution is generated.
Accordingly, the number of r-sized boxes containing S occupied sites is denoted by n [S,r], and the total number of r-sized
boxes is denoted by N (r). If the size of the image is M, the following relation can be defined:

N [r] = (M− r+1)2.

The number of full sites S is transformed into a probability distribution by dividing the frequency distribution N(r) by n[S,r],
i.e., the number of filled sites with box size r. Hence, the probability distribution is:

Q(S, r) = n [S,r]/N[r].

This value can be defined as the probability distribution Q(S,r) of a morphological structure, i.e., the coating ratio of the
image. Thus, the first order Z(1) and the second order Z(2) statistical moments are calculated. The first and second moments
are given by:

Z(1) = ∑S∗Q(S,r),

Z(2) = ∑S2∗Q(S,r).

The lacunarity value (Λ), which is calculated as the ratio of the second moment to the statistical first moment, is proportional
to the box size r and can be defined as follows:

Λ [r] = Z(2)/[Z(1)]
2
.

The statistical first moment is

Z(1) = M [r] ,

and the second moment is

Z(2) = S2
s [r]+M[r]2,
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where M [r] is the mean and S2
s [r] is the statistical variance of the number of sites per box

Λ [r]= S2
s [r]/M[r]2 +1. (2.1)

Equation (2.1) implies that the lacunarity is not simply dependent on the size of the gliding box r. In a random map, the white
squares are occupied by the corresponding environment, and each part of the map is not only bound to Q(S,r) but also to
the distribution of gaps (related white squares). Thus, the lacunarity value differs, depending on the statistical distribution
of the two different patterned map spaces with the occupancy rates of the occupied sites, i.e., full coverage of the full sites
[6, 8, 11, 13].

3. Lacunarity analysis and discussion

A manganese dendrite image was used on the surface of natural magnesite ore for the lacunarity analysis. For this purpose,
the manganese dendrite shown in Figure 3.1 was defined as a matrix of M = 100 pixels in the computer environment and
converted to binary format (BMP) using the image processing method via imageJ [14].

The algorithm used a floating box size rmin. = 1 to rmax. = 100, the first and second moment values and statistical values were
calculated for lacunarity with MATLAB software and graph diagrams were drawn using Origin 7.0. For the sample used, the
lacunarity values varying according to the probability distribution were calculated as Λ(100) = 1.000 for rmax. = 100 pixel and
Λ(1) = 3.662 for rmin. = 1 pixel. In addition, the first and second moments and lacunarity values of the box size 1 ≤ r ≤ 100
are shown in Table 3.1, and the relationship of the lacunarity value to the box size is shown graphically in Figure 3.2. The
values in Table 3.1 are presented that vary from r = 1 to r = 10 pixels, then change from r = 10 to r = 100 pixels in interval
10 pixels.

Figure 3.1: Binary format image of manganese dendrite patterns with different probability distributions selected from the magnesite ore
surface with dimension M = 100 pixels.

Box size (r) First moment Z(1)(r) Second moment Z(2)(r) Lacunarity (Λ(r))
1 0.2731 0.2731 3.662
2 1.087746 3.440363 2.907697
3 2.434923 14.99823 2.529703
4 4.306728 42.21086 2.275775
5 6.699219 93.59939 2.08557
6 9.626593 179.1739 1.933434
7 13.09767 310.2645 1.808606
8 17.13285 500.6209 1.705493
9 21.73358 765.5755 1.620786

10 26.90581 1122.259 1.550247
20 111.8363 15770.17 1.260871
30 254.8863 77447.11 1.192099
40 456.0922 234575.4 1.127658
50 711.9516 538348.3 1.062093
60 1025.158 1071731 1.019774
70 1390.106 1939315 1.003581
80 1793.254 3217359 1.000497
90 2186.372 4782181 1.00041
100 2731 7458361 1.0000

Table 3.1: First and second moments and lacunarity values representing distribution of box size r and statistical distribution values, for
lattice size M = 100 pixels. The probability distribution value is computed as 0.273 for the image b.
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Figure 3.2: Change of lacunarity value Λ(r) according to box size value r and non-linear regression implications.

When the Λ(r) values in Table 3.1 and Figure 3.1 are examined, the box size of the lacunarity is seen to be similar to the
power-law function r = rmin,rmin+1, . . .,rmax. Accordingly, a mathematical model can be defined for this relationship. Thus,
the mathematical model function

Λ(r) =
β

rα
+ γ, (3.1)

can be suggested for the relationship. This is the Λ(r), r best interpretation of the lacunarity value between model function
Λ(r), r = [rmin,rmax] and r = rmin + rmin +1, . . . ,rmax, which can describe the geometric behaviour of manganese dendrites on
the magnesite ore surface. A non-linear regression method can be used to determine solution constants for the function. The
constant model parameters α = 0.311, β = 3.122 and γ = 0.494 are calculated with regression coefficient R2 = 0.983 for a
pattern with probability distribution Q(1,100) = 0.273. The values of the other examples are also summarized in Table 3.2.
Here, the parameters α , β and γ are independent and arbitrary variables for each sample of the system. The calculated results
can be shown by the general fixed parameters α*, β* and γ* of the model function, which best show the probability distribution
and the regional morphological phase transitions in the surfaces of the images used.

Samples
Probability
distribution Model parameters

Regression
coefficient

Q(S,r) α∗ β ∗ γ∗ R2

Manganese dendrites

a 0.231 0.522±0,011 3.815±0,003 0.304±0,001 0.988
b 0.273 0.494±0,021 3.122±0,001 0.311±0,003 0.983
c 0.353 0.532±0,010 2.118±0,004 0.392±0,001 0.971
d 0.361 0.637±0,038 1.963±0,001 0.430±0,002 0.952
e 0.374 0.411±0,052 2.103±0,002 0.347±0,003 0.978

Table 3.2: The probability distributions and values of the proposed mathematical model parameters for the observed samples.

The three parameters (α , β and γ) of the mathematical model have a single meaning for the lacunarity function of each
manganese dendrites image. In particular, the value α represents the convergence of the Λ(r) function, β represents the graph
depression for lacunarity and γ represents a transition term. Calculations showed that while the β value takes on values over a
very large numerical range, the parameters α and γ remain small. A small change is defined as a power-law function with low
lacunarity value, while a large pit is a power-law function with high lacunarity value and a growing β value. The power-law
function parameters can be correlated with the α and β constants, which can define the occupancy and morphological structure
of the images. In particular, a small variation of the α value corresponds to a significant change in the value of β .

4. Model characterization

The relationship between lacunarity and the box-size r can be defined by:

r
dΛ

dr
dΛ3

dr3 = r(
dΛ2

dr2 )
2

− dΛ

dr
dΛ2

dr2 , (4.1)

where r ≤ M. This third order non-linear differential equation describes the edge size of the pixels that define the space box.
To get the analytical solution of the non-linear differential equation (4.1), we need to do some variable transformations as this
dΛ

dr = m, dΛ2

dr2 = dm
dr and dΛ3

dr3 = dm2

dr2 . According to this variable transformation, equation (4.1) is reduced to the second order
differential equation as following:

rm
dm2

dr2 − r
(

dm
dr

)2

−m
dm
dr

= 0. (4.2)
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For this kind of nonlinear differential equation, the variable transform m = eu is applied to get the solution. By this
transformation, if we write dm

dr = eu du
dr and dm2

dr2 = eu
( du

dr

)2
+ eu du2

dr2 equalities in equation (4.2),

r(eu)2

(
du2

dr2 +

(
du
dr

)2
)
− r(eu)2

(
du
dr

)2

+(eu)2 du
dr

= 0,

and when the proper arrangement is made,

r
du2

dr2 +
du
dr

= 0, (4.3)

second order linear differential equation is obtained.

Again, if we take du
dr = v and du2

dr2 = dv
dr variable transformation for equation (4.3), the third order non-linear ordinary differential

equation (4.1) is reduced to the following first order linear differential equation,

r
dv
dr

+ v = 0. (4.4)

By separation of variables, the equation (4.4) gives the following form,

dv
v
+

dr
r

= 0, (4.5)

and the analytical solution of equation (4.5) is obtained as,

v =
c1

r
.

By using the variable transformation du
dr = v, m = eu and dΛ

dr = m in this order, the analytical solution of third order non-linear
differential equation (4.1) is obtained as follow,

Λ(r) =
C2

C1 +1
rC1+1 + c3, (4.6)

where c1, c2 and c3 are the parameters that describe the system under investigation. The mathematical model (3.1) coincides
with the analytical solution of the proposed third order differential equation (4.6) with the assumptions β = c2

c1+1 , α =−(c1 +1)
and γ = c3. Thus, the change between the lacunarity values and box size was modeled.

5. Conclusions

In this study, the relationship between the lacunarity values and the box size is used to determine the heterogeneity of fractal
and non-fractal geometric patterns on the deposit surface. For this purpose, the lacunarity value according to the box size for
the manganese dendrite sediment patterns formed in the pores and cracks of the natural magnesite ore surface was calculated
by using the gliding-box algorithm and the relations of the lacunarity value with the box size were defined. For describing
this relation, the nonlinear regression method is used and the numerical power-law function is derived. It is shown that it is
possible to determine the heterogeneity of the pattern system with three numerical model parameters. By taking the numerical
model function as a reference, a third-order nonlinear differential equation is derived and its analytical solution is performed.
The numerical solution function is compatible with the analytical solution function. This study’s findings can be utilized to
estimate the heterogeneity of similar deposit surfaces.
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Abstract

Let m be a positive integer. In this paper, we consider the exponential Diophantine equation
(6m2 + 1)x +(3m2− 1)y = (3m)z and we show that it has only unique positive integer
solution (x,y,z) = (1,1,2) for all m > 1. The proof depends on some results on Diophantine
equations and the famous primitive divisor theorem.

1. Introduction

Let u, v, w be relatively prime positive integers greater than one. Consider the exponential Diophantine equation

ux + vy = wz, x,y,z ∈ N. (1.1)

In 1956, Jeśmanowicz conjectured that if (u,v,w) is a Pythagorean triple then the above equation has only the unique positive
integer solution (x,y,z) = (2,2,2) [1]. In [2], Terai proposed that if up + vq = wr with p,q,r ∈ N, r ≥ 2 then (1.1) has only
the positive integer solution (x,y,z) = (p,q,r) except for a few triples (u,v,w). The following combined version of these two
conjectures are called the Terai-Jeśmanowicz conjecture [3].

Conjecture 1. [3, Conjecture 3.2] If (x,y,z) = (p,q,r) is a solution of (1.1) with min{p,q,r}> 1 then the only solution to
(1.1) with min{x,y,z}> 1 is (x,y,z) = (p,q,r).

Many research confirmed that these conjectures are true in many special cases [4]-[11]. Especially, the positive integer solutions
of the exponential Diophantine equation

(am2 +1)x +(bm2−1)y = (cm)z (1.2)

which is a special case of (1.1) with a,b,c,m are positive integers such that a+ b = c2 has already been investigated by a
number of authors and all of them justify Terai’s conjecture in their special cases. In [12], Terai consider the equation (1.2) with
(a,b,c) = (4,5,3) and he proved that (x,y,z) = (1,1,2) is the only positive integer solution of (4m2+1)x+(5m2−1)y = (3m)z

under some conditions. Remaining cases of this equation are completed in [13]-[15]. As a recent study, in [16], the complete
solution of (1.2) with (a,b,c) = (4,21,5) is also given. For some similar problems, see for example [8], [17]-[24]. In this
paper, we consider the exponential Diophantine equation

(6m2 +1)x +(3m2−1)y = (3m)z (1.3)

and we give the complete solution of this equation by proving the following theorem.
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Theorem 1.1. Let m be a positive integer. Then the equation (1.3) has only the unique positive integer solution (x,y,z)= (1,1,2)
for all m > 1.

We state the above theorem for m > 1, since for m = 1 the equation (1.3) turns intu the equation 7x +2y = 3z which is already
known that it has exactly two solutions as (x,y,z) = (1,1,2),(2,5,4) [25]. It is also worth to note that this equation 7x+2y = 3z

is one of the a few known exceptional cases of Terai’s conjecture [10]. So from now on we take m > 1. We refer to section 3
of [3] for various version of above conjecture and for a complete list of all known examples of (1.1) which has at least two
distinct solutions. The proof of the Theorem 1.1 mainly depends on the combinations of two methods. One of them is due to
[26, 27] which enable us to find the other possible solutions of the Diophantine equations X2 +DY 2 = kZ and aX2 +bY 2 = kZ

from the known solutions under some conditions and the other one is the famous primitive divisor theorem [28, 29]. The
details of these methods are given in the next chapter

2. Preliminaries

Let D be any positive integer. By h(−4D), we denote the class number of positive binary quadratic forms of discriminant −4D.

Lemma 2.1. [30, Theorems 11.4.3, 12.10.1 and 12.14.3]

h(−4D)<
4
π

√
D log(2e

√
D).

Lemma 2.2. [27, Theorems 1 and 2] Let D and k be relatively prime positive integers such that D > 1 and k is an odd integer.
If the equation

U2 +DV 2 = kW , U,V,W ∈ Z, gcd(U,V ) = 1, W > 0

has solutions (U,V,W ), then any solution of the above equation can be expressed as

U +V
√
−D = λ1(U1 +λ2V1

√
−D)t ,

W =W1t, t ∈ N,

where λ1,2 ∈ {±1}, U1,V1,W1 are positive integers satisfying U2
1 +DV 2

1 = kW1 , gcd(U1,V1) = 1 and W1 | h(−4D).

Let D1,D2 be relatively prime positive integers greater that 1 and let (X ,Y,Z) be a fixed solution of the equation

D1X2 +D2Y 2 = kz, gcd(X ,Y ) = 1, 2 - k, Z > 0 and X ,Y,Z ∈ Z. (2.1)

Then there exists a unique positive integer l such that l = D1αX +D2βY, 0 < t < k, where α ,β are integers with βX−αY = 1
[27, Lemma 1]. The positive integer l is called the characteristic number of this particular solution (X ,Y,Z) and it is denoted
by < X ,Y,Z > . if < X ,Y,Z >= l then it is known that D1X ≡ −lY (mod k) [27, Lemma 6]. Let (X0,Y0,Z0) be a solution
of (2.1) and let < X0,Y0,Z0 >= l0. Then the set of all solutions (X ,Y,Z) with < X ,Y,Z >≡±l0 (mod k) is called a solution
class of (2.1) and it is denoted by S(l0).

Lemma 2.3. [27, Theorems 1 and 2] For any fixed solution class S(l0) of (2.1), there exists a unique solution (X1,Y1,Z1)∈ S(l0)
such that X1 > 0, Y1 > 0 and Z1 ≥ Z, where Z runs through all solutions (X ,Y,Z) ∈ S(l0). The solution (X1,Y1,Z1) is called
the least solution of S(l0). If (X ,Y,Z) is a solution belongs to S(l0) then

Z = Z1t, 2 - t, t ∈ N,

X
√

D1 +Y
√
−D2 = s1

(
X1
√

D1 + s2Y1
√
−D2

)t
, s1,s2 ∈ {−1,1}.

Lemma 2.4. [26, Theorem 2] Let (X1,Y1,Z1) be the least solution of S(l0). If (2.1) has a solution (X ,Y,Z) ∈ S(l0) satisfying
X > 0 and Y = 1, then Y1 = 1. Further, if (X ,Z) 6= (X1,Z1), then one of the following conditions is satisfied:

(i) D1X2
1 = 1

4 (k
Z1 ±1),D1 =

1
4 (3kZ1 ±1),(X ,Z) = (X1|D1X2

1 −3D2|,3Z1).

(ii) D1X2
1 = 1

4 F3r+3ε ,D2 =
1
4 L3r,kZ1 = F3r+ε ,

(X ,Z) = (X1|D2
1X4

1 −10D1D2X2
1 +5D2

2|,5Z1), where ε ∈ {−1,1}, r is a positive integer, and Fn is nth Fibonacci number.

The primitive divisor theorem is another powerful tool for solving some Diophantine equations. Let α,β be algebraic integers.
A Lucas pair is a pair (α,β ) such that α +β and αβ are non-zero relatively prime integers and

α

β
is not a root of unity. If

(α,β ) is any Lucas pair then the corresponding sequences of Lucas numbers are defined by

Ln(α,β ) =
αn−β n

α−β
, n = 0,1,2, . . . .

Recall that primitive divisors of Ln(α,β ) are the prime numbers p such that p | Ln(α,β ) and p - (α−β )2L1(α,β ) . . .Ln−1(α,β )

(n > 1). Any two Lucas pairs (α1,β1) and (α2,β2) are called equivalent if
α1

α2
=

β1

β2
=±1.
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Lemma 2.5. [28] If n > 30 then Ln(α,β ) has a primitive divisor.

Lemma 2.6. [29] If 4 < n≤ 30 and n 6= 6 then, up to equivalence, Ln(α,β ) has a primitive divisor except for the following
parameters (e, f )

• (1,5),(1,−7),(2,−40),(1,−11),(1,−15),(12,−76) or (12,−1364) if n = 5,
• ((1,−7) or (1,−19) if n = 7,
• (1,−7) or (2,−24) if n = 8,
• (2,−8),(5,−3) or (5,−47) if n = 10,
• (1,−5),(1,−7),(1,−11),(2,−56),(1,−15) or (1,−19) if n = 12,
• (1,−7) if n = 13,18 or 30.

where (α,β ) =

(
e+
√

f
2

,
e−
√

f
2

)
.

3. Proof of Theorem 1.1

We treat the (1.3) according to the parity of m. For the case m is even, the proof of Theorem 1.1 easily follows from the next
lemma.

3.1. The case 2 | m

Lemma 3.1. If m is even then (x,y,z) = (1,1,2) is the unique positive integer solution of equation (1.3).

Proof. If z ≤ 2, then (x,y,z) = (1,1,2) is clearly the unique solution of the equation (1.3). So assume that z ≥ 3. Taking
equation (1.3) modulo m2 we get that 1+(−1)y ≡ 0 (mod m2) and hence we see that y is odd since m2 > 2. Taking equation
(1.3) modulo 3m3 we find that

1+6m2x+(−1)+3m2y≡ 0 (mod 3m3)

2x+ y≡ 0 (mod m),

which is false because y is odd and m is even. So we conclude that the equation (1.3) has no positive integer solution when
z≥ 3. Therefore (1.3) has only the unique positive integer solution (1,1,2) when m is even.

From now on we deal with the case m is odd.

3.2. The case 2 - m

Let (x,y,z) be any solution of (1.3). Clearly (x,y,z) = (1,1,2) is a solution of (1.3). Since m > 1, taking (1.3) modulo m2 we
see that, as in the previous case, y is odd.
From now on we separate two cases according to the parity of x. First suppose that x is also odd. Now consider the Diophantine
equation

(6m2 +1)X2 +(3m2−1)Y 2 = (3m)Z , Z > 0 and X ,Y,Z ∈ Z. (3.1)

Since (x,y,z) is any solution of (1.3), we see that

(X ,Y,Z) =
(
(6m2 +1)

x−1
2 ,(3m2−1)

y−1
2 ,z

)
(3.2)

is a solution of (3.1). Let l =< (6m2 +1)
x−1

2 ,(3m2−1)
y−1

2 ,z > be a characteristic number of the solution given in (3.2). Then,
from the congruence

(6m2 +1)
x+1

2 ≡−l(3m2−1)
y−1

2 (mod 3m),

we see that l ≡±1 (mod 3m).
Note that (X1,Y1,Z1) = (1,1,2) is also a solution of the equation (3.1) and let l0 =< 1,1,2 > be the characteristic number of
this solution. So, we have that

(6m2 +1) ·1≡−l0 ·1 (mod 3m),

l0 ≡−1 (mod 3m).
(3.3)

So we see that l ≡ ±l0 (mod 3m), which implies that the solutions (X1,Y1,Z1) = (1,1,2) and one in (3.2) are in the same
solution class S(l0) of (3.1). Further (X ,Y,Z) = (1,1,2) is clearly the least solution of S(l0). So by Lemma (2.3), we get that

(6m2 +1)
x−1

2
√

6m2 +1+(3m2−1)
y−1

2
√

1−3m2 = λ1(
√

6m2 +1+λ2

√
1−3m2 )t , (3.4)
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with
z = 2t, 2 - t, t ∈ N and λ1,2 ∈ {−1,1}.

Expanding the right hand side of (3.4) and equating the coefficients of
√

1−3m2, we find that

(3m2−1)
y−1

2 = λ1λ2 ∑

t−1
2

i=0

( t
2i+1

)
(6m2 +1)

t−1
2 −i(1−3m2)i (3.5)

At this point we claim that y = 1. For this purpose, assume that y > 1. Then from (3.5), we find that

0≡ λ1λ2t (6m2 +1)
t−1

2 (mod (3m2−1))

0≡±3
t−1

2 t (mod (3m2−1)),

which is a contradiction, since it implies that 2 | 3 t−1
2 t since m is odd. So we have that y = 1 and hence Y = (3m2−1)

y−1
2 = 1.

Now we check two conditions in Lemma 2.4. Since (X1,Y1,Z1) = (1,1,2) is the least solution of S(l0), by Lemma 2.4, we
have that either

6m2 +1 =
1
4
(32m2∓1)

or
F3r+ε = (3m)2

where ε =±1. The first one implies that 4(6m2+1) = (32m2∓1). But this means that 4≡±1 (mod m2), which is impossible.
On the other hand since only square Fibonacci number greater than 1 is F12 = 122 [31], the second one implies that 3m = 12
which is also false because of parity of m. Thus, by Lemma 2.4, we conclude that (X ,Z) = ((6m2+1)

x−1
2 ,z) = (X1,Z1) = (1,2).

Hence the equation (1.3) has no positive integer solution other than (x,y,z) = (1,1,2) when x is odd.
Now we treat the case x is even. Then from (1.3), the equation

U2 +(3m2−1)V 2 = (3m)W , gcd(U,V ) = 1, W > 0

has a solution

(U,V,W ) =
(
(6m2−1)

x
2 ,(3m2−1)

y−1
2 ,z

)
Thus from Lemma 2.2, we have that

z =W1t, t ∈ N,

(6m2 +1)
x
2 +(3m2−1)

y−1
2
√

1−3m2 = λ1

(
U1 +λ2V1

√
1−3m2

)t
,

(3.6)

where λ1,2 ∈ {−1,1} and U1,V1,W1 are positive integers satisfying

U2
1 +(3m2−1)V 2

1 = (3m)W1 , gcd(U1,V1) = 1 (3.7)

h(−4(3m2−1))≡ 0 (mod W1). (3.8)

Suppose that 2|t and let

U2 +V2

√
1−3m2 =

(
U1 +λ2V1

√
1−3m2

) t
2
. (3.9)

Taking the norm of both sides of (3.9) in Q(
√

1−3m2) and taking into account (3.7), we get that

U2
2 +(3m2−1)V 2

2 = (3m)
W1t

2 = (3m)
z
2 . (3.10)

Substituting (3.9) into (3.6), we have that

(6m2 +1)
x
2 +(3m2−1)

y−1
2
√

1−3m2 = λ1

(
U2 +V2

√
1−3m2

)2

and therefore it follows that

(6m2 +1)
x
2 = λ1(U2

2 −V 2
2 (3m2−1)). (3.11)

(3m2−1)
y−1

2 = 2λ1U2V2. (3.12)
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Since gcd(6m2 +1,3m2−1) = 1, from (3.11) and (3.12) we deduce that |U2|= 1. So |V2|= 1
2 (3m2−1)

y−1
2 . Substituting |U2|

and |V2| into (3.10), we get that

1+
1
4
(3m2−1)y = (3m)

z
2 ,

which implies that 3≡ 0 (mod 3m), a contradiction since 3m > 3. So we conclude that 2 - t. Let

α =U1 +V1

√
1−3m2, β =U1−V1

√
1−3m2

Then, from (3.6), taking its complex conjugate, we get that

(6m2 +1)
x
2 − (3m2−1)

y−1
2
√

1−3m2 = λ1

(
U1−λ2V1

√
1−3m2

)t
. (3.13)

By subtracting (3.13) from (3.6) we get that

(3m2−1)
y−1

2 =V1

∣∣∣∣α t −β t

α−β

∣∣∣∣=V1|Lt(α,β )|. (3.14)

By (3.7), we have α +β = 2U1, α−β = 2V1
√

1−3m2, αβ = (3m)W1 . Since gcd(U1,V1) = 1, the integers α +β = 2U1 and
αβ = (3m)W1 are also relatively prime by (3.7) and α

β
6=±1, units of ring of algebraic integers of Q(

√
1−3m2). So Lt(α,β )

is a Lucas sequence. From (3.14), we see that the Lucas numbers Lt(α,β ) have no primitive divisors. So, from Lemma 2.5
and Lemma 2.6, we get that t ≤ 30 and if 4 < t ≤ 30 and t 6= 6 then the parameters

(e, f ) := (2U1,4V 2
1 (1−3m2))

must be one of the parameters given in Lemma 2.6. But none of them match with any one of these parameters. So, it follows
that

t ≤ 3.

Now we will show that the case t = 3 is also not possible. To see this, assume that t = 3. So, expanding the right hand side of
(3.6) for t = 3 as(

U1 +λ2V1

√
1−3m2

)t
=U3

1 +3U2
1 λ2V1

√
1−3m2 +3U1V 2

1 (1−3m2)+λ2V 3
1 (1−3m2)

√
1−3m2

and equating the coefficients of both sides of it, we get that

(6m2 +1)
x
2 = λ1U1

(
U2

1 −3(3m2−1)V 2
1
)

(3.15)

and

(3m2−1)
y−1

2 = λ1λ2V1
(
3U2

1 − (3m2−1)V 2
1
)
. (3.16)

Note that from (3.7) one can see that gcd(3U1,3m2−1) = 1, so from (3.16) we have that 3U2
1 − (3m2−1)V 2

1 =±1. In fact
taking modulo 3 we see that only the positive sign can occur and

3U2
1 − (3m2−1)V 2

1 = 1. (3.17)

Thus, it follows that

|V1|= (3m2−1)
y−1

2 . (3.18)

Substituting (3.18) into (3.15) we get that

(6m2 +1)
x
2 = λ1U1

(
U2

1 −3(3m2−1)y) . (3.19)

By reducing (3.17) and (3.18) modulo 3m, we find that 3X2
1 − (−1)1≡±1 (mod 3m), which means that U1 ≡ 0 (mod m).

Then from (3.19) we find that 1
x
2 ≡ 0 (mod m), which is clearly false. Thus, we may have only t = 1. Thus z =W1t =W1 and

by (3.8) we know that W1 ≤ h(−4(3m2−1)). Using the upper bound in Lemma 2.1, we get that

z <
4
π

√
3m2−1log

(
2e
√

3m2−1
)
. (3.20)
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Assume that z = 3. Then at least one of x or y must be greater than 1. x≥ 2 gives (3m)3 > (6m2 +1)x ≥ (6m2 +1)2 > 62m4,
and hence 33 > 62m > 36, a contradiction. Similarly if y≥ 2 then the inequality (3m)3 ≥ (3m2−1)2 +(6m2 +1) also leads
us a contradiction. So z≥ 4. Taking equation (1.3) modulo (9m4), it implies that

6m2x+3m2y≡ 0 (mod 9m4)

and therefore

2x+ y≡ 0 (mod 3m2).

So

3m2 ≤ 2x+ y. (3.21)

Since (6m2 +1)x < (3m)z and (3m2−1)y < (3m)z, we see that x < z and y < z. So from (3.21) we find m2 < z. Thus from the
inequality

m2 < z <
4
π

√
3m2−1log

(
2e
√

3m2−1
)

we find that m≤ 11. Then z and hence x and y are also bounded. Taking into account (3.20) together with x,y < z we wrote a
short computer program with Maple to check all possible solutions of (1.3) in the range 3≤ m≤ 11 and we found no positive
integer solutions (m,x,y,z) of (1.3) when z≥ 3. This completes the proof.

4. Discussion

In this paper, we take into account the equation (1.2) in the special case with the parameters (a,b,c) = (6,3,3) and we show
that the corresponding equation (6m2 +1)x +(3m2−1)y = (3m)z has only the unique solution (x,y,z) = (1,1,2) when m > 1.
By the results of this paper we get that another support of the Terai’s Conjecture. As a generalization of the results of this
paper one can consider to solve the equation (1.2) in more general case where 2 | a, 2 - b, a+b = c2.
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[1] L. Jeśmanowicz, Some remarks on Pythagorean numbers, Wiadom Mat 1, (1955/1956), 196-202.
[2] N. Terai, The Diophantine equation ax +by = cz, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 22-26.
[3] M. Le, R. Scott, R. Styer, A survey on the ternary purely exponential Diophantine equation ax +by = cz, Surv. Math. Appl., 214 (2019), 109-140.
[4] M. Alan, On the exponential Diophantine equation (m2 +m+1)x +my = (m+1)z, Mediterr. J. Math., 17(189) (2020), 1-8.
[5] M. Alan, On the exponential Diophantine equation mx +(m+1)y = (1+m+m2)z, An. St. Univ. Ovidius Constanta, Ser. Mat., 29(3) (2021), 23-32.
[6] Z. Cao, A note on the Diophantine equation ax +by = cz, Acta Arith., 91 (1999), 85-93.
[7] E. Kızıldere, M. Le, G. Soydan, A note on the ternary purely exponential Diophantine equation Ax +By =Cz with A+B =C2, Stud. Sci. Math. Hung.,

57(2) (2020), 200-206.
[8] T. Miyazaki, Exceptional cases of Terai’s conjecture on Diophantine equations, Arch. Math., 95 (2010), 519-527.
[9] T. Miyazaki, N. Terai, A study on the exponential Diophantine equation ax +(a+b)y = bz, Publ. Math. Debrecen, 95 (2019), 19-37.

[10] N. Terai, T. Hibino, On the Exponential Diophantine Equation ax + lby = cz, Int. J. Algebra, 10 (2016), 393-403.
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Abstract

Let W ⊂ P5 be a general complete intersection of a quadric hypersurface and a quartic
hypersurface. In this paper, we prove that W contains only finitely many smooth curves
C ⊂ P5 such that d := deg(C)≤ 11, g := pa(C)≤ 3 and h1(OC(1)) = 0.

1. Introduction

The aim of this paper is to prove the following result.

Theorem 1.1. Let W ⊂ P5 be a general complete intersection of a quadric hypersurface and a quartic hypersurface. Then W
contains only finitely many smooth curves C ⊂ P5 such that d := deg(C)≤ 11, g := pa(C)≤ 3 and h1(OC(1)) = 0.

We recall that W is a Calabi-Yau threefold and that there are several papers considering finiteness results for rational curves on
certain Calabi-Yau threefolds (see [1]-[6] for the general quintic hypersurface of P4, the topic of the Clemens conjecture, which
ask about the finiteness of rational curves of any fixed degree on such a general quintic). This finiteness result is not true for an
arbitrary Calabi-Yau threefold [7, Remark 3.24]. For other complete intersection Calabi-Yau threefolds there are results of two
types: existence results of good curves on the Calabi-Yau threefold [8, Theorem 2], [9, Theorem 1.2] and finiteness results
in very restricted ranges. As in [4] our classical approach to Theorem 1.1 cannot be applied when

(10
5

)
≥ 4d +1−g. There

are also papers on 3-folds of general type ([10]-[12] and see [13] and references therein for arithmetically Cohen-Macaulay
codimension 2 subvarieties).
The upper bound d≤ 11 comes from the proof at a few critical steps, but in many lemmas d = 12 or even d = 13 may be handled.
The approach used in this paper (as the one for quintic 3-folds introduced in [4]) requires that 126 = h0(OP5(4))> 4d +1−g
or, working with a fixed smooth quadric hypersurface Q⊂ P5,

(9
5

)
−
(7

5

)
= h0(OQ(4))> 4d +1−g. The upper bound g≤ 3

may be weakened in certain steps, but we are sure that new idea are needed to handle pairs (d,g) such that 4d +1−g≥ 126.
Theorem 1.1 is a negative result, a non-existence result. We point out that similar statements are very important, higher genera
cases of the count of rational curves of fixed degree on Calabi-Yau manifolds, which is related to Mirror Symmetry [6, 14, 15].
For the Calabi-Yau threefold X ⊂ P4, X a very general quintic hypersurface, there is an explicit integer nd for the number of
the degree d rational curves contained in X [14, 15]. At the moment nobody is able to prove the finiteness of such rational
curves of a given degree d, except for very low d.
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1.1. A roadmap of the proof

For all integers d > 0 and g≥ 0 let Md,g denote the locally closed subscheme of the Hilbert scheme of P5 parametrizing all
smooth curves C⊂ P5 such that deg(C) = d, pa(C) = g and h1(OC(1)) = 0. The scheme Md,g is an irreducible quasi-projective
variety of dimension 6d +2−2g. Let W be the set of all smooth threefolds W ⊂ P5, which are the complete intersection of
a hypersurface of degree 2 and a hypersurface of degree 4. For each W ∈W we have Pic(W ) = ZOW (1), its normal bundle
NW,P5 is isomorphic to OW (2)⊕OW (4), and the quadric hypersurface, Q, containing W is unique. Standard exact sequences
give h0(OW (2))⊕OW (4)) = 1+h0(OW (4)) = 20+h0(OQ(4))−h0(OQ(2)) =

(9
4

)
−
(7

2

)
= 124. Since h1(NW,P5) = 0, the set

W is a smooth variety of dimension 124. The set W is obviously irreducible. For a general W ∈W the quadric associated to W
is smooth. Since all smooth quadric hypersurfaces of P5 are projectively equivalent, we may fix a smooth quadric hypersurface
Q and look only at the set Md,g(Q) := {C ∈Md,g |C ⊂ Q}. To prove Theorem 1.1 we see which elements of Md,g(Q) are
contained in a smooth element of |OQ(4)|. Let W denote the set of all smooth elements of |OQ(4)|. To prove Theorem 1.1 for
the pair (d,g) it is sufficient to prove that a general element of |OQ(4)| contains only finitely many elements of Md,g(Q). We
need to study the schemes Md,g(Q) and this is done in Section 3 (see in particular Remark 3.3).
A key idea in this paper is that the smooth quadric hypersurface Q ⊂ P5 is isomorphic to the Grassmannian G(2,4) of all
2-dimensional linear subspace of a 4-dimensional vector spaces. By the universal properties of the Grassmmannians each map
C→ Q, C ∈Md,g, corresponds to a pair (E,V ) with E a rank 2 spanned vector bundle on C and V ⊆ H0(E) a linear subspace
spanning E. Section 3 shows how to use this correspondence between embeddings C ⊂ Q and rank 2 vector bundles on C.
Remark 3.3 first gives some elementary statements on rank 2 vector bundles and relate them to our main idea. Then (again in
Remark 3.3) we consider separately each low genus. In part (a) we finish the known case g = 0. Steps (b), (c) and (d) considers
curves of genus 1, 2 and 3, respectively. Lemmas in later sections prove key statements for these genera, but Remark 3.3 is the
key first step for them. Thus the proof is done as a case by case proof in which for any smooth curve C ⊂ P5 we distinguish the
genus of C and the dimension (at most 5) of the linear space 〈C〉 spanned by C. If 〈C〉 is a plane we also distinguish if 〈C〉 is
contained in Q or not. If (E,V ) is the pair giving the embedding C ↪→ Q the integer dim〈C〉 is the dimension of the image of
∧2(V ) into H0(OC(1)).
Using this section and later lemmas we prove that all Md,g(Q) are irreducible of dimension 4d +1−g, smooth if g≤ 2, while
we describe the singular locus of Md,3(Q) (it contains only hyperelliptic curves). We stress again that to prove these results we
use that Q is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear subspaces of C4. In the case (d,g) = (6,3)
we see that all curves C ⊂W are hyperelliptic and that they have h1(IC(2)) = 1, although 2d +1−g <

(7
2

)
(Remark 4.5).

In section 2 we study Md,g(Q), g≤ 3, and check all cases with d ≤ 7 (Lemmas 4.3, 4.4, 4.6, 4.7) and all curves spanning a
linear subspace of P5 of dimension ≤ 3. In section 5 we prove that if d ≤ 14 a general element of Md,g(Q) has h1(IC(4)) = 0
(Lemma 5.5). Lemma 5.3 do the same for a smooth hyperplane section of Q and its proof may be adapted to a singular
hyperplane section of Q. In section 6 we handle the non-degenerate curves C ∈Md,g with h1(IC(4))> 0. In the last section
we handle the curves C ∈Md,g with h1(IC(4))> 0 and spanning a hyperplane of P5.

2. Notation

For any r ∈ {1,2,3,4,5} set Md,g(r) := {C ∈Md,g : dim(〈C〉) = r}, where for any set S⊂ P5, 〈S〉 denote the linear span of S.
Let W be the set of all smooth complete intersection W ⊂ P5 of a quadric hypersurface and a quartic hypersurface. If we fix a
smooth quadric hypersurface Q⊂ P5, then we call W the set of all smooth elements of |OQ(4)|.

3. Uses of vector bundles

The 4-dimensional smooth quadric hypersurface Q is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear
subspaces of C4. Hence for any projective curve X to get a morphism φ : X → Q we need to take a rank 2 vector bundle E
on X and a linear map u : C4→ H0(E) such that u(C4) spans E. To explain the proof here we assume that u is injective and
instead of (E,u) we use (E,V ) with V := u(C4) (see Remark 3.1 for the case in which u is not injective). Assume that X is
smooth. It is easy to check if φ is an embedding; indeed if we know that V spans E the map φ is an embedding if and only if
dim(H0(E(−Z))∩V )≤ 1 for every degree 2 zero-dimensional scheme Z ⊂C. Assume that φ is an embedding and call C its
image. Let

0→F∨→ O⊕4
Q → E → 0

denote the tautological exact sequence of Q=G(2,4) with rank(E )= rank(F )= 2 and det(E )∼= det(F )∼=OQ(1). Identifying
X and C, i.e. seeing E as a vector bundle on C, we have E = E|C, while F∨ := F∨

|C is the kernel of the surjection V ⊗OC→ E.
Note that F and F are spanned.

Remark 3.1. Assume that u : C4 → H0(E) is not injective, but that V := Im(u) spans E. Since E has rank 2, then 2 ≤
dim(V )≤ 3 and dim(V ) = 2 if and only if E ∼= O⊕2

X and hence the associated map φ : X →Q is constant. If dim(V ) = 3, then
Im(φ) is contained in a plane with TP2(−1) as universal rank 2 quotient bundle and OP2(−1) as universal rank 1 subbundle.
Hence φ(X) ∈Md,g(2). This case is settled in Lemma 4.4.
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Remark 3.2. Assume E ∼= OC⊕L for some line bundle L. In this case L ∼= OC(1). Write V = C⊕V1 with C = H0(OC).
Hence C is contained in a certain Schubert cell of Q, i.e., a 2-dimensional linear subspace contained in Q. Hence C ∈Md,g(2).
This case is solved in Lemma 4.4. If F ∼= OC⊕OC(1), then C is contained in the other family of planes contained in Q and so
C ∈Md,g(2).

In the next remark we point out some irreducibility and smoothness results for Md,g(Q).

Remark 3.3. Since T Q∼= E ⊗F , we have T Q|C ∼= E⊗F. In many cases with low g we have h1(E⊗F) = 0. In this case we
have h1(NC,Q) = 0 and hence the Hilbert scheme Hilb(Q) of Q at [C] is smooth of dimension 4d +1−g, where d := deg(C)
and g := pa(C).

Claim 1: If either h1(E) = 0 or h1(F) = 0, then h1(E⊗F) = 0 .
Proof of Claim 1: Assume for instance h1(E) = 0. Since F is spanned, the evaluation map eF : H0(F)⊗OC → F is

surjective. Set K := ker(eF). Since dimC = 1, h2(K⊗E) = 0. Hence the exact sequence

0→ K⊗E→ H0(F)⊗E→ E⊗F → 0

proves Claim 1.
Claim 2: In any genus g≥ 2 the set of all C ∈Md,g(Q) with h1(E) = 0 is an open, smooth and irreducible subset of Md,g(Q)

with dimension 4d +1−g.
Proof of Claim 2: The openness part follows from the semicontinuity of cohomology. Since C is a curve and F is spanned,

the vanishing of h1(E) implies the vanishing of h1(E⊗F). Hence this part of Md,g(Q) is smooth and everywhere of dimension
4d +1−g. Since g≥ 2, any vector bundle on a smooth curve C is a flat limit of a family of stable bundles [16, Proposition
2.6]. If h1(E) = 0, then E is a flat limit of a family of stable bundles with vanishing cohomology. The claim follows from the
irreducibility of Mg and the irreducibility of the set of all stable vector bundles with rank two and degree d on a fixed smooth
curve of genus g≥ 2. This set has dimension 4g−3.

(a) If g = 0, then h1(E⊗F) = 0, because E⊗F is spanned and hence a direct sum of line bundles of degree ≥ 0. The
scheme Md,0(Q) is irreducible, because both E and F are specializations with constant cohomology of the rigid bundle with
rank 2 and degree d (the direct sum of the line bundle of degree dd/2e and the one of degree bd/2c).

(b) Assume g = 1.
Claim 3: We claim that h1(E⊗F) = 0, unless E ∼= OC⊕OC(1) and F ∼= OC⊕OC(1).
Proof of Claim 3: Since E⊗F ∼= F⊗E, it is sufficient to prove that E ∼= OC⊕OC(1) . Since E is spanned, it is a direct

sum of indecomposable and spanned vector bundles of degree ≥ 0 and if one of them has degree zero, it is a factor OC of E.
By Atiyah’s classifications of vector bundles on elliptic curves ([17, Part II]) every indecomposable vector bundle G with
deg(G)> 0 satisfies h1(G) = 0, concluding the proof of Claim 3.
This part of Md,1(Q) is irreducible for the following reasons. By Atiyah’s classification of vector bundles on an elliptic curve
([17, Part II]), E is a specialization with constant cohomology of semistable bundles. Therefore to check that Md,1(Q) is
irreducible, it is sufficient to test the cases with E semistable. If E is semistable, then h1(E⊗F) = 0 for any spanned bundle F
by Claim 3. If d is odd, then we use that any two stable bundle with same rank and degree only differ by a twist with an element
of Pic0(C). If d is even, then either E ∼= R⊕L with R,L ∈ Pic(d/2)(C) and R⊗L ∼= OC(1) or E is a non-trivial extension of
R by itself and R⊗2 ∼= OC(1). The latter case is a specialization of the former one (at least varying C), because Md,1(Q) is
smooth and equidimensional and the indecomposable bundles have a smaller dimension.

(c) Assume g = 2. By Remark 3.2 and Lemma 4.4 we may assume E 6= OC⊕OC(1) and F 6= OC⊕OC(1).
Now assume g = 2 and h1(E)> 0. By duality we get a non-zero map v : E→ ωC. Since E is spanned, Im(v) is spanned. Hence
either v is surjective or Im(v)∼= OC. The latter case is not possible, because (since E is spanned), it would give that E has OC
as a factor. Thus v is surjective. Set A := ker(v). We have A∼= OC(1)⊗ω∨C . Since OC(1) is very ample, we have d > 4. Hence
h1(A) = 0. If d ≥ 6, A is spanned. If d ≥ 7, then h1(A⊗ω∨C ) = 0 and hence E ∼= A⊕ωC. Assume also h1(F)> 0. We get that
F is an extension of ωC by OC(1)⊗ωC. Since h1(ω⊗2

C ) = 0, we get h1(E⊗F) = 0 and so h1(NC,Q) = 0. Hence Md,2(Q) is
smooth and of pure dimension 4d +1−g. To check the irreducibility of Md,2, it is sufficient to prove that the bundles with
h1(E)> 0 do not fill a connected component of Md,2. If d ≤ 6, see Lemma 4.6 and Lemma 4.8. If d ≥ 7, then E ∼= A⊕ωC and
so on a fixed curve C this set is isomorphic to Picd−2(C); we write g for the genus, because the same argument is needed when
g = 3. Fix C ∈Mg and take E ∼= A⊕ωC with A ∈ Pic2(C). This family of bundles is irreducible and (since Md,g(Q) is smooth
along all these bundles) we only need to exclude that Md,g(Q) has two connected components, one formed by bundles E1 with
h1(E1) = 0 and the other ones with bundles with h1(E) = 1. We have h1(E) = 1 and so h0(E) = d+3−2g. If h1(E1) = 0, then
h0(E1) = d+2−2g. We have dim(G(4,d+1+2(1−g))) = dim(G(4,d+2(1−g))+4. Thus each bundle E with h1(E)> 0
has the property that H0(E) has a family of 4-dimensional linear subspaces with higher dimension. For g≥ 3 it is sufficient to
note that for a fixed C the possible E depends on A ∈ Picd−g(C), the set of all rank 2 stable bundles on C with degree d have
dimension 4g−3 and g+4 < 4g−3. When g = 2 we also need to factorize the huge automorphism group of A⊕ωC (we have
h0(A⊗ω∨C ) = d−5).

(d) Assume g = 3. By Remark 3.2 and Lemma 4.4 we may assume E 6= OC⊕OC(1) and F 6= OC⊕OC(1). We also assume
d ≥ 8, leaving the cases d ≤ 7 to Remark 4.7. All cases with h1(E) = 0 are done as in Claim 2. Assume h1(E) > 0 and
h1(F) > 0. As in step (b) we get non-zero maps v1 : E → ωC and v2 : F → ωC with Im(vi) a non-trivial and spanned line
bundle. Hence either vi is surjective or C is not hyperelliptic and Im(vi) = ωC(−p) for some p ∈ C or C is hyperelliptic



184 Fundamental Journal of Mathematics and Applications

and Im(vi) is the g1
2 of C. In all cases ker(vi) is spanned and non-special, because we assumed d ≥ 9. The case in which

E ∼= A⊕ωC is handled as in step (c). If either C is not hyperelliptic or at least one among Im(v1) and Im(v2) is not the g1
2 on

C, we have h1(E⊗F) = 0 and so h1(NC,Q) = 0. So Md,3(Q) is smooth and of dimension 4d +1−g = 4d−2 at [C]. Hence
h1(E⊗F) > 0 if and only if C is hyperelliptic and Im(v1) and Im(v2) are the g1

2, R, on C. In this case we have E ∼= A⊕R
and F ∼= B⊕R with deg(A) = deg(B) = d− 2 and so h1(E ×F) = 1. Therefore every irreducible component of Md,3(Q)
containing [C] has dimension at least 4d + 1− g and at most 4d + 2− g. To check that these points are singular points of
Md,3(Q) and hence that Md,3(Q) has pure dimension 4d− 2, it is sufficient to prove that these bundles do not fill a subset
of Md,3(Q) of dimension ≥ 4d−2; we will prove that these bundles fill in a family of dimension ≤ 4d−3, because this is
needed to prove the irreducibility of Md,3(Q). The set of these bundles only depends on the choice of a hyperelliptic curve C,
the choice of A ∈ Picd−2(C) and the choice of a 4-dimensional linear subspace of H0(A⊕R). We have h1(A⊕R) = h1(R) = 1
and so h0(A⊕R) = d +2−2g. Since there ∞5 hyperelliptic curves and Picd−2(C) has dimension 3, it is sufficient to use that
5+4+3< 6+4g−3. Then the proof in step (c) handles all bundles of the form A⊕ωC. It remains to handle the bundles E with
C not hyperelliptic and Im(v1)∼= ωC(−p) for some p ∈C. Set A := ker(v1) ∈ Picd−3(C). Note that h1(E) = 1 and h1(F) = 0.
Hence these bundles are in the smooth part of Md,3(Q). We have h0(E) = h0(E1)+1 when h1(E1) and so the Grassamannian
of all 4-dimensional linear subspaces has dimension 4+ z, where z is the dimension of all 4-dimensional linear subspaces of
H0(E1). The bundles E1 depends on 4g−3 = 9 parameters. The bundles E depends on A (g = 3) parameters, on p ∈C (one
parameter) and an extension classes of ωC(−p) by A. For the trivial extensions we use that 4+g+1 < 4g−3. Two non-trivial,
but proportional extensions, give the same bundle, up to isomorphisms. Hence the bundles E with h1(A⊗ω∨C (p))≤ 1, do not
fill a connected component of Md,3(Q). We have deg(A⊗ω∨C ) = d−6. Since C is not hyperelliptic, we have h1(A⊗ω∨C (p))≤ 1
for all d ≥ 8. See Remark 4.7 for the case d ≤ 7.

4. Preliminary lemmas

The following lemma is proved as in [6, page 153].

Lemma 4.1. Fix (d,g) such that 2d ≤ 19+g and h1(IC(2)) = 0 for all C ∈Md,g. Then a general W ∈W contains finitely
many elements of Md,g and the incidence variety Id,g ⊂Md,g×W is irreducible.

Remark 4.2. Unfortunately in several interesting cases many curves satisfies h1(IC(2))> 0 (e.g. if 2d +1−g > 15 this is
the case for all curves spanning a hyperplane of P5). Working with Md,g(Q) we only need to check if h1(IC(4)) = 0. This is
true for all C ∈Md,g(Q) for some more pairs (d,g). We divide Md,g(Q) in the one with h1(IC(4)) = 0 and in the ones with
h1(IC(4))> 0. We need to prove that for C in a non-empty open subset of Md,g(Q) we have h1(IC(4)) = 0 (Lemma 5.5). The
last two sections of this paper tackle the case h1(IC(4))> 0.

Remark 4.3. Md,g(1) 6= /0 if and only if d = 1 and g = 0. By Lemma 4.1 a general W has only finitely many lines.

Lemma 4.4. Md,g(2) 6= /0 if and only if either d = 2 and g = 0 or d = 3 and g = 1. In the cases (d,g) ∈ {(2,0),(3,1)} a
general W contains finitely many elements of Md,g(2).

Proof. Since the curves in Md,g are non-special, Md,g(2) 6= /0 if and only if either d = 2 and g = 0 or d = 3 and g = 1.
The second assertion follows from Lemma 4.1.

Remark 4.5. Set Γ := {C ∈M6,3 : C is hyperelliptic}. Γ is an irreducible divisor of the 32-dimensional variety M6,3. Fix
a smooth quadric hypersurface Q ⊂ P5 and set Γ′ := Γ∩M6,3(Q). Fix C ∈ M6,3(Q). We have dim(〈C〉) = 3. Since Q is
smooth, 〈C〉 * Q and so Q′ := 〈C〉 is an irreducible quadric surface containing C. Since all even degree smooth curves
of a quadric cone of P3 are complete intersection [18, V Ex. 2.9], Q′ is a smooth quadric. Since (d,g) = (6,3), then
C ∈ |OQ′(2,4)|∪ |OQ′(4,2)| and so C is hyperelliptic. Hence no C ∈M6,3(Q)\Γ′ is contained in some W ∈W. Conversely,
any hyperelliptic curve X may be embedded in Q′ = P1×P1 as an element of |OQ′(2,4)| using the g1

2, R, of X to get one
morphism X → P1 and a general A ∈ Pic4(X) for the other map X → P1 so that A⊗R is very ample). Hence for a fixed X
the set of all such embeddings is parametrized by an irreducible variety of dimension 3. Fix C ∈ Γ′, say with C ∈ |OQ′(2,4)|.
We have NC,Q ∼= OC(1)⊕2⊕OC(2,4) and hence h1(NC,Q) = 0. So M6,3(Q) is smooth at [C] and of dimension 4d +1−g = 22.
Since |OQ′(2,4)| is irreducible and as 〈C〉 we may take any P3 ⊂ P5 transversal to Q, M6,3(Q) is irreducible. Call I ⊂ Γ′×W
the incidence correspondence and let π1 : I → Γ′ and π2 : I →W denote the projections. We have h1(Q,IC,Q(4)) = 0,
because h1(Q′,IC,Q′(4)) = h1(Q′,OQ′(2,0)) = 0. Lemma 4.1 concludes the proof of the theorem for (d,g) = (6,3). In this
case the incidence correspondence is irreducible, because the set of all hyperelliptic curves is irreducible and all these curves
C have the same h0(IC(2)) and h1(IC(4)) = 0 (and so the incidence correspondence for M6,3(Q) is irreducible).

Lemma 4.6. We have Md,g(3) 6= /0 if and only if d ≥ g+3. If g≤ 3, then a general W ∈W contains some C ∈Md,g(3) only if
(d,g) ∈ {(3,0),(4,1),(5,2),(6,3)} and in each of these cases W contains only finitely many curves C.

Proof. Fix a smooth hyperquadric Q, C ∈Md,g(3) and W ∈W containing C. Set U := 〈C〉. Since Q is smooth, U * Q and
hence Q′ := Q∩U is a quadric surface containing C. Since the irreducible curve C spans U and C ⊂Q′, Q′ is irreducible. If Q′

is a quadric cone, then C is arithmetically normal [18, V Ex. 2.9] and hence h1(IC(t)) = 0 for t = 2,4, so that we may apply
Lemma 4.1 to these curves) and we find pairs (d,g) ∈ {(3,0),(4,1),(5,2)}. If Q′, up to a change of the ruling of Q′ we get all
C ∈ |OQ′(2,g+1)| and so d = g+3. If g≤ 4 we have h1(IC(4)) = h1(Q′,IC,Q′(4)) = h1(Q′,OQ′(2,4−g−1)) = 0.
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Lemma 4.7. Theorem 1.1 is true for g = 3 and d ≤ 7.

Proof. Take g = 3 and d ≤ 7. Since h1(OC(1)) = 0, we have 6≤ d ≤ 7. Remark 4.5 and Lemma 4.6 solve the case d = 6 and
the case d = 7 in which C ∈M7,3(3). Hence we may assume d = 7 and dim(〈C〉) = 4. In this case C is linearly normal in its
linear span and so h1(IC(t)) = 0 for all t ∈ N. Apply Lemma 4.1.

Lemma 4.8. Fix C ∈Md,g(Q)(r) with d ≤ 7, g≤ 2 and r = 4,5. Then h1(NC,Q) = h1(IC(4)) = 0. Moreover, these cases only
contribute finitely many smooth curves to a general W ∈W.

Proof. Since g≤ 2, we have h1(NC,Q) = 0. Since d < 4+ r, we have h1(IC(4)) = 0 [19, Theorem at page 492] and hence
these cases contributes only finitely smooth curves to a general W ∈W.

Lemma 4.9. A general W ∈W contains no singular conic (reducible or a double line).

Proof. Take any conic D⊂W . Since h1(ID,P5(4))= 0, we have h1(Q,ID,Q(4))= 0 and hence h0(Q,ID,Q(4))= h0(D,ID,Q(4)).
Either D is contained in a plane contained in Q or it is the complete intersection of Q and a plane. In both cases we have
h1(ND,Q) = 0. Thus a dimensional count gives that a general W ∈W contains only finitely many conics and that all these
conics are smooth.

We recall the following well-known consequence of the bilinear lemma (it is a key tool in [2]).

Lemma 4.10. Fix integers t ≥ 2, r ≥ 3 and an integral and non-degenerate curve T ⊂ Pr such that h1(IT (t)) > 0. Fix a
linear subspace V ⊆ H0(OPr(1)). Assume that h1(M,IM∩T,M(t)) = 0 for every hyperplane M ∈ |V |. Then h1(IT (t−1))≥
h1(IT (t))+dim(V )−1.

Proof. For any hyperplane M ⊂ Pr we have an exact sequence

0→IT (t−1)→IT (t)→IT∩M,M(t)→ 0

Now assume that V contains an equation of M. Since h1(M,IT,M(t)) = 0, the map H1(IT (t−1))→ H1(IT (t)) is surjective
and hence its dual eM : H1(IT (t))∨→ H1(IT (t−1))∨ is injective. Taking the equations of all hyperplanes we get a bilinear
map map u : H1(IT (t))∨×V → H1(IT (t − 1))∨, which is injective with respect to the second variables, i.e. for every
non-zero linear form ` the map u|H1(IT (t))∨×{`} is injective (it is eM with M := {`= 0}). Hence if (a, `) ∈ H1(IT (t))∨×V
with a 6= 0 and ` 6= 0, then u(a, `) = eM(a) 6= 0. Therefore the bilinear map u is non-degenerate in each variable. Hence
h1(IT (t−1))≥ h1(IT (t))+dim(V )−1 by the bilinear lemma.

5. Good postulation in degree 4

In this section we prove for certain d,g the existence of a non-degenerate C ∈Md,g(Q) with h1(IC(4)) = 0.

Lemma 5.1. Fix C ∈Md,g(Q) such that h1(NC,Q) = 0. Take an integer t > 0 and a smooth rational curve T ⊂ Q such that
deg(C∩T ) = 1 and deg(T ) = t. Then h1(NC∪T,Q) = 0 and C∪T is a flat limit of elements of Md+t,g(Q).

Proof. Set {p} := C∩T . By assumption h1(OC(1)) = 0. Since Q is homogeneous, its tangent bundle is spanned. Hence
NT,Q is a direct sum of line bundles of degree ≥ 0. Therefore h1(NT,Q(−p)) = 0. A Mayer-Vietoris exact sequence gives
h1(OC∪T (1)) = 0. Hence if C∪T is smoothable inside Q, then it is a flat limit of a family of elements of Md+t,g(Q). Since
h1(NT,Q(−p)) = 0, as in [20, Theorem 4.1] we get that C∪T is smoothable inside Q and h1(NC∪T,Q) = 0.

Lemma 5.2. For all g ∈ {0,1,2,3} there is a non-degenerate C ∈Mg+5,g(Q) and any such C is projectively normal.

Proof. Let X ⊂ P5 be a linearly normal smooth curve of genus g≤ 3 and degree g+5. Since g+5≥ 2g+1, X is projectively
normal [21]. It is sufficient to prove that some X is contained in a smooth quadric hypersurface. Since g≤ 3, we start with a
smooth quadric surface Q1 ⊂ Q, a smooth curve A ∈ |IQ1(2,g+1)| and then we apply the case t = 2 of Lemma 5.1.

Lemma 5.3. Let Q′ ⊂ P4 be a smooth quadric hypersurface. Fix integers d,g such that 0≤ g≤ 3 and d ≥ g+4. Let Md,g(Q′)
be the set of all non-special smooth curves C ⊂ Q′ of genus g and degree d.

(a) There is C ∈Mg+4,g(Q′) which is projectively normal.
(b) If either g + 4 ≤ d ≤ g + 6 or g ≤ 2 and d = g + 7 or g = 0 and d = 8, then there is C ∈ Md,g(Q′) such that

h1(Q′,IC,Q′(3)) = 0.
(c) If either g+ 4 ≤ d ≤ g+ 9, or g ≤ 2 and d = g+ 10 or g = 0 and d = 11,12, then there is C ∈ Md,g(Q′) such that

h1(Q′,IC,Q′(4)) = 0.
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Proof. The proof of part (a) is similar to the one Lemma 5.2. The same proof also gives the case d = g+4 of part (b).
(i) Let A⊂ Q′ be a smooth projectively normal curve of genus g and degree g+4. Let Q1 ⊂ Q′ be a general hyperplane

section. Q1 is a smooth quadric surface and S := A∩Q1 is a subset of Q1 with degree g+4, in uniform position and spanning
the 3-dimensional linear space spanned by Q1. Fix p ∈ S and set S′ := S \{p}. Let B be a general element of |Ip,Q1(1,2)|.
Lemma 5.1 shows that A∪B is smoothable inside Q′. Hence to prove the case d = g+ 7, g ≤ 2, of part (b) it is sufficient
to prove that h1(Q′,IA∪B,Q′(3)) = 0. We have ResQ1(A∪B) = A. Since h1(Q′,IA,Q′(2)) = 0, the case t = 3 of the residual
sequence

0→IA,Q′(t−1)→IA∪B,Q′(t)→I(A∪B)∩Q1,Q1(t)→ 0

shows that it is sufficient to prove that h1(Q1,I(A∪B)∩Q1,Q1(3)) = 0. We have Q1∩ (A∪B) = S′∪B and hence it is sufficient
to prove that h1(Q1,IS′,Q′(2,1)) = 0. S′ is a set of g+ 3 ≤ 6 points of Q1. Assume e := h1(Q1,IS′,Q1(2,1)) > 0. Hence
h0(Q,IS′,Q1(2,1)) = e + 3− g. Since S is in uniform position, we get h0(Q1,IS,Q1(2,1)) = e + g− 3. Fix a general
D ∈ |IS,Q1(2,1)|. First assume that D is irreducible. For any set E ⊂ D with #(E) = 5, we have h0(Q1,ID,Q1(2,1)) =
h0(Q1,IE,Q1(2,1)) and hence h1(Q1,IE,Q1(2,1)) = 0. If g≤ 2 we may take S′ ⊆ E. Now assume that D is reducible. Since
S is in uniform position, we may assume that no 2 of the points of S are contained in a line of Q1. Hence we get the existence
of a smooth conic D1 ⊂ Q1 containing at least g+ 4 points of S′. Since S is in uniform position, we get S ⊂ D1. If g = 3
we use instead of B a curve B′ ∈ |Ip,Q1(1,1)| (in this case the equality h1(Q1,IS′,Q1(2,2)) = 0 may be proved using an
elliptic curve D′ ∈ |OQ1(2,2)|, because h1(D,IS′,D1(2,2)) = 0 for any set E ⊂ D with #(E) ≤ 7. Now assume g = 0 and
d = 8. Instead of B we take a general B1 ∈ |Ip,Q1(1,3)|. It is sufficient to prove that h1(Q,IS′,Q1(2,0)) = 0. We have
#(S′) = 3 = h0(Q1,OQ1(0,2)), and it is sufficient to use again by the uniform position that no two points of S are on a line of
Q1.

(ii) Now we prove part (c). Since in part (b) we get non-special curves, the same curves C have h1(Q′,IC,Q′(4)) = 0
by the Castelnuovo-Mumford’s lemma. Hence we may assume that either d ≥ g+8 and g ≤ 2, or d ≥ g+7 and g = 3 or
g = 0 and d ≥ 9. Set t := 8 if g = 0, t := g+ 7 if g = 1,2 and t := 9 if g = 3. By part (b) there is A ⊂Mt,g(Q′) such that
h1(Q′,IA,Q′(3)) = 0. Take a general hyperplane section Q1 of Q′ and set S := Q1∩S. S′ is a subset of Q1 with cardinality
t, spanning a P3 and in uniform position. Fix p ∈ S and set S′ := S\{p}. Fix a general B ∈ |Ip,Q1(1,2)|. As in step (i) it is
sufficient to prove that h1(Q1,IS′,Q(3,2)) = 0. In all cases we have t−1≤ 8. The uniform position and the non-degeneracy
of S′ imply that no line of Q1 contains at least 2 points of S′ and no conic of Q1 contains at least 4 points of S′.
Now take g = 0. In this case A may be dismantled into a union of lines. Fix a general line L ⊂ Q′. For each q ∈ L. The
union of all lines of Q′ trough q is the 2-dimensional quadric cone Tq(Q′)∩Q′. For a general q ∈ L the curve Tq(Q′)∩Q1 is a
smooth element Dq of |OQ1(1,1)| and a general line in Q′ passing through q meets Q1 at a general point of Q1. Hence we
get h0(Q1,IS′(3,1)) = 0 if #S′ ≤ 8, i.e. if we start with a general A ∈d,0 (Q′) with d ≤ 9. Thus we get the case g = 0 of part
(c).

Lemma 5.4. Let Q′ ⊂ P4 be a smooth quadric hypersurface. Fix a set S ⊂ Q′ with #S ≤ 10 and S is in linearly general
position. Take p ∈ S and set S′ := S\{p}.

(a) If 1≤ d ≤ 4, then there is C ∈Md,0(Q′) such that C∩S = {p} and h1(Q′,IS′∪C,Q′(3)) = 0.
(b) If 1≤ d ≤ 9, then there is C ∈Md,0(Q′) such that C∩S = {p} and h1(Q′,IS′∪C,Q′(4)) = 0.

Proof. Let Q1 be a general hyperplane section of Q′ containing p. Q1 is smooth and Q1∩S = {p}. We have h1(Q′,IS′,Q′(2)) =
0, because #S′ ≤ 9 [22, Theorem 3.2]. To prove part (a) it is sufficient to take any smooth C ∈ |Ip,Q1(1,3)|. By Castelnuovo-
Mumford’s lemma to prove part (b) we may assume d > 4. Fix a general A ∈ M4,0(Q′) containing p. Part (a) gives
h1(Q′,IA∪S′,Q′(3)) = 0. Fix a general hyperplane section Q2 ⊂ Q′. We have Q2∩S = /0 and the set E := Q2∩A is in linearly
general position in the P3 spanned by Q2. Fix q ∈ E and set E ′ := E \{q}. Fix a general B ∈ |Iq,Q2(1,4)|. By Lemma 5.1
it is sufficient to prove that h1(IS′∪A∪B,Q′(4)) = 0. Since ResQ1(S

′∪A∪B) = S′∪A and h1(IA∪S′,Q′(3)) = 0, it is sufficient
to prove that h1(Q1,IE ′∪B,Q1(4)) = 0, i.e. h1(Q′,IE ′(3,0)) = 0. This is true, because E ′ is formed by 3 points in uniform
position.

Lemma 5.5. (a) For all integers d,g such that 0 ≤ g ≤ 3 and g+ 5 ≤ d ≤ g+ 9 there is a non-degenerate C ∈Md,g(Q)
such that h1(IC(3)) = 0.

(b) For all integers d,g such that either 0 ≤ g ≤ 3 and g+5 ≤ d ≤ 14 there is a non-degenerate C ∈Md,g(Q) such that
h1(IC(4)) = 0.

Proof. Fix a projectively normal A ∈Mg+5,5(Q). Fix a general hyperplane section Q′ ⊂ Q. Since h1(Q,IA,Q(4)) = 0, we
may assume d > g+5. The set S := A∩Q1 is in linearly general position. Fix p ∈ S and set S′ := S\{p}. Apply part (b) of
Lemma 5.4 to get T ∈Md−g−5,0(Q′) such that h1(Q′,IS′∪T (4)) = 0. Since h1(Q,IA∪T (3)) = 0 and (A∪T )∩Q′ = S′∪T ,
the residual sequence of Q′ in Q gives h1(Q,IA∪B(4)) = 0. Use Lemma 5.1 and the semicontinuity theorem for cohomology
to prove part (b). For part (a) we take T of degree ≤ 4 and use that h1(Q,IA,Q(2)) = 0.

Remark 5.6. A general element of Md,0(Q′) (resp. Md,0(Q)) is a deformation of a tree contained in Q′ (resp. Q). Using this
observation we may improve parts (a) and (b) of Lemma 5.5, but for a range of integers d out of reach with our tools for the
Clemen’s conjecture.
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6. Non-degenerate curves

In this section we consider non-degenerate curves C of Md,g or of Md,g(Q). By [19, Theorem at page 492] we have
h1(IC(4)) = 0 if either d ≤ 8 or d = 9 and g > 0 or d = 9, g = 0 and there is no line R⊂ P5 with deg(R∩C)≥ 6. By Lemma
5.5, the irreducibility of Md,g(Q) and the equality dim(Md,g(Q)) = 4d +1−g we may assume h1(IC(4))> 0.

Lemma 6.1. Assume d ≤ 11 and fix a non-degenerate C ∈Md,g such that there is no line R⊂ P5 with deg(R∩C)≥ 6. Then
h1(M,IC∩M,M(4)) = 0 for every hyperplane M ⊂ P5.

Proof. Fix a hyperplane M⊂P5. Since C spans P5, Z :=C∩M is a curvilinear scheme spanning M. Assume h1(M,IZ,M(4))>
0. Let N be a hyperplane of N with maximal a := deg(Z∩N). Since Z spans M, we have a≥ 4. Assume for the moment a = 4,
i.e. assume that Z is in linearly general position. Since d ≤ 17, we have h1(M,IZ,M(4)) = 0 [22, Theorem 3.2]. Hence we
may assume a≥ 5.

(a) First assume h1(N,IZ∩N,N(4))> 0. Since Z spans M, we have a≤ d−1≤ 10. The maximality property of N implies
that Z∩N spans N. Hence deg(Z∩U)≤ 9 for every plane U ⊂ N. Fix a plane U ⊂ N with b := deg(Z∩U) is maximal. If
h1(U,IZ∩U,U (4))> 0, then there is a line R⊂U with deg(R∩Z)≥ 6. Hence we may assume h1(U,IZ∩U,U (4)) = 0. The
residual sequence of U in N gives h1(N,IResU (Z∩N),N(3))> 0. We have deg(ResU (Z∩N))≤ 10−b≤ 7. By [23, Lemma 34]
there is a line L⊂ N such that deg(L∩ResU (Z))≥ 5. Hence b≥ 6. Hence 10−b > deg(L∩ResU (Z)), a contradiction.

(b) Now assume h1(N,IZ∩N(4)) = 0. The residual exact sequence

0→IResN(Z),M(3)→IZ,M(4)→IZ∩N,N(4)→ 0

gives h1(M,IResN(Z),M(3))> 0. Since d−a≤ 7, then there is a line L⊂M such that deg(ResN(Z))≥ 5 [23, Lemma 34]. By
assumption we have deg(L∩Z) = 5. Since deg(Z∩L)≥ 5, the maximality property of a gives a≥ 7. Since d−a≥ 5, we get
d ≥ 12, a contradiction.

Lemma 6.2. Assume d ≤ 11 and fix a non-degenerate C ∈Md,g such that there is no line R ⊂ P5 with deg(R∩C) ≥ 5, no
conic D⊂ P5 with deg(D∩C)≥ 8, no plane cubic T with deg(T ∩C) = 9 and C∩T ∈ |OT (3)|. Then h1(M,IC∩M,M(3)) = 0
for every hyperplane M ⊂ P5.

Proof. Fix a hyperplane M⊂P5. Since C spans P5, Z :=C∩M is a curvilinear scheme spanning M. Assume h1(M,IZ,M(3))>
0. Let N be a hyperplane of N with maximal a := deg(Z∩N). Since Z spans M, we have a≥ 4. Assume for the moment a = 4,
i.e. assume that Z is in linearly general position. Since d ≤ 13, we have h1(M,IZ,M(3)) = 0 [22, Theorem 3.2]. Hence we
may assume a≥ 5.

(a) First assume h1(N,IZ∩N,N(3))> 0. Since Z spans M, we have a≤ d−1≤ 10. The maximality property of N implies
that Z∩N spans N. Hence deg(Z∩U)≤ 9 for every plane U ⊂ N. Let U ⊂ N be a plane such that b := deg(U ∩Z) is maximal.
If h1(U,IZ∩U,U (3))> 0, then [24, Corollaire 2] shows the existence of either R or D or T . Now assume h1(U,IU∩Z,U (3)) = 0.
The residual sequence of U gives h1(N,IResU (N∩Z),N(2)) > 0. Since deg(ResU (N ∩Z)) ≤ 10−b ≤ 7, either there is a line
L ⊂ N with deg(L∩ResU (Z)) ≥ 4 or there is a conic D ⊂ N with deg(D∩Z) ≥ 6. The latter case is impossible, because
it implies a− b ≥ 6 and b ≥ 6, a contradiction. Hence there is a line L with deg(L∩ResU (Z)) ≥ 4. To prove the lemma
we may assume deg(Z ∩L) = 4. Let E ⊂ N be a plane containing L and with maximal c := deg(E ∩Z) among the planes
containing L. If h1(E,IE∩Z,E(3)) > 0, then [24, Corollaire 2] shows the existence of either R or D or T . Now assume
h1(E,IE∩Z,E(3)) = 0. The residual sequence of E gives h1(N,IResE (Z∩N),N(2))> 0. Since c≥ 5, there is a line R⊂ N such
that deg(R∩ResU (Z∩N)≥ 4. To prove the lemma we may assume that deg(R∩Z) = 4. First assume R∩L = /0. Let Q′ ⊂ N
be a general quadric containing L∪R. Note that Q′ is a smooth quadric. Since Z is curvilinear and IL∪R,N(2) is spanned, we
have Z∩Q′ = Z∩ (R∪L). Since h1(Q′,IZ∩(L∪R,Q′(3)) = 0, we get h1(N,IResQ′ (Z∩N),N(1))> 0, contradicting the inequality
deg(ResQ′(Z∩N))≤ 2.
Now assume R∩L 6= /0 and R 6= L. Since deg(R∩ResE(Z∩N))≥ 4 and E ⊃ L, we have deg(Z∩ (R∪L))≥ 8 and so we may
take D := R∪L.
Now assume R = L. We may take Z′ ⊆ Z ∩N minimal among the subschemes such that h1(N,IZ′,M(3)) > 0. Let Q′ be a
quadric surface containing L in its singular locus. Since deg(ResQ′(Z′))≤ 10−4−4 = 2, we have h1(M,IResQ(Z′)(1)) = 0.
Therefore the residual exact sequence of Q′ gives h1(Q′,IZ′∩Q′,Q′(t)) > 0. The minimality of Z′ gives Z′ ⊂ Q. Since Z′ is
curvilinear we get deg(Z′) = 8 and that each connected component γ of Z′ has even degree with deg(γ ∩L) = deg(γ)/2. Hence
there is a plane N′ ⊃ L with deg(N∩Z′)> deg(Z′∩L) = 4. We get deg(ResN′(Z′))≤ 3 and hence by a residual exact sequence
of N′ gives h1(N,IZ′,M(3)) = 0, a contradiction.

(b) Now assume h1(N,IZ∩N(3)) = 0. A twist of the residual exact sequence in step (b) of the proof of Lemma 6.1 gives
h1(M,IResN(Z),M(2))> 0. If d−a≤ 5, then there is a line L⊂M such that deg(ResN(Z))≥ 4 [23, Lemma 34]. By assumption
we have deg(L∩Z) = 4. Since deg(Z∩L)≥ 4, the maximality property of a gives a≥ 6. Since d−a≥ 5, we also get d = 11.
Let U ⊂M be a hyperplane such that U ⊃ L and deg(U ∩Z) is maximal. If h1(U,IU∩Z,U (3))> 0, then we may repeat part (a).
Now assume h1(U,IU∩Z,U (3)) = 0. The residual sequence of U gives h1(N,IResU (Z),N(2)) > 0. Since deg(ResE(Z)) ≤ 4,
there is a line R⊂ N with R⊃ ResE(Z) and deg(ResE(Z)) = 4. We conclude as in step (a).
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Lemma 6.3. Let X ⊂ P5 be an integral and non-degenerate curve of degree d ≤ 13. Then h1(H,IC∩H,H(t)) = 0 , t = 3,4, for
a general hyperplane H ⊂ P5.

Proof. The scheme C∩H spans H and it is in uniform position and in particular it is in linearly general position. Apply [22,
Theorem 3.2].

Lemma 6.4. Let X ⊂ P5 be an integral and non-degenerate curve of degree d ≥ 9 (resp. 5≤ d ≤ 8). Then h0(IX (2))≤ 6
(resp. h0(IX (2))≤ 15−d).

Proof. Fix a general hyperplane H ⊂ P5. The scheme S := X ∩H spans H and it is formed by d points in linearly general
position in H. Hence h0(H,IS,H(2))≤ 6 if d ≥ 9 and h0(H,IS,H(2)) = 15−d if d ≤ 8. Use the exact sequence

0→IX (1)→IX (2)→IX∩H,H(2)→ 0

and that X is non-degenerate, i.e., h0(IX (1)) = 0.

Lemma 6.5. Assume g≤ 3 and d ≤ 11. There is no non-degenerate C ∈Md,g such that h1(IC(4))> 0 and there is no line
L⊂ P5 with deg(L∩C)≥ 5,no conic D with deg(C∩D)≥ 8 and no plane cubic T with deg(T ∩C) = 9 and C∩T ∈ |OT (3)|.

Proof. Since h1(IC(4))> 0 and deg(R∩C)≤ 5 for all lines R, we have d ≥ 9 [19, Theorem at page 492]. By Lemmas 4.10,
6.1 and 6.2 we have h1(IC(3))≥ 5+h1(IC(4))≥ 10+h1(IC(5))≥ 11. By Lemma 6.3 we have h1(IC(2))≥ h1(IC(3)).
Hence h0(IC(2))≥ 31+g−2d. Use Lemma 6.4.

Lemma 6.6. Fix an integer a > 0 and assume d ≥ 2g−1+a. Fix a zero-dimensional curvilinear scheme Z ⊂ P5 such that
deg(Z) = a. Set EZ := {C ∈Md,g : Z ⊂C}. Then every irreducible component of EZ has dimension ≤ 6d +2−2g−4a.

Proof. If EZ = /0, then the lemma is true. Hence we may assume EZ 6= /0. Fix C ∈ EZ . By [25, Theoreme 1.5] it is sufficient to
prove that h1(NC(−Z)) = 0. Since C is smooth, NC is a quotient of TP5

|C and hence by the Euler’s sequence of TP5 the bundle

NC is a quotient of OC(1)⊕6. Since d ≥ 2g−1+a, we have h1(OC(1)(−Z)) = 0. Use that h2(G ) = 0 for every coherent sheaf
G on C.

Corollary 6.7. Assume d ≥ 9. Fix a ∈ {4,5,6}. Let Aa be the set of all non-degenerate C ∈Md,g such that there is a line
R⊂ P5 such that deg(C∩R)≥ a. Then every irreducible component of Aa has dimension ≤ 6d +2−2g+8−3a

Proof. Fix a line R⊂ P5 and a zero-dimensional scheme Z ⊂ R with deg(Z) = a. First apply Lemma 6.6, then use that R has
∞a zero-dimensional schemes of degree a and then use that P5 contains ∞8 lines.

Lemma 6.8. Assume 0≤ g≤ 3 and d≤ 11. Let B be the set of all non-degenerate C∈Md,g having a line R with deg(R∩C)≥ 6.
Then a general element of W contains no element of B.

Proof. Fix C ∈B. The existence of R implies d ≥ 9 and that d ≥ 10 if g > 0. By Corollary 6.7 to prove the lemma it is
sufficient to avoid all C ∈B with h1(IC(4))≥ 10. Since d ≤ 11, Lemma 6.3 and the exact sequence in the proof of Lemma
6.4 for X =C and t = 3,4 give h1(IC(2))≥ 10. Hence h0(IC(2))≥ 30+g−2d, contradicting Lemma 6.4.

Lemma 6.9. Assume 0 ≤ g ≤ 3 and d ≤ 11. Let B′ be the set of all non-degenerate C ∈ Md,g having a line R with
deg(R∩C)≥ 4. Then a general element of W contains no element of B′.

Proof. By Corollary 6.7 it is sufficient to test all C ∈Md,g with h1(IC(4))≥ 4. By Lemma 6.8 we may assume that C has no
line R with deg(R∩C)≥ 6. Hence Lemmas 4.10 and 6.1 give h1(IC(3))≥ 5+h1(IC(4))≥ 9. By Lemma 6.3 and the exact
sequence in the proof of Lemma 6.4 for t = 3 and X =C we have h1(IC(2))≥ 9 and so h0(IC(2))≥ 31+g−2d. Lemma
6.4 gives a contradiction.

Lemma 6.10. Assume 0 ≤ g ≤ 3 and d ≤ 11. Let B1 be the set of all non-degenerate C ∈ Md,g having a conic D with
deg(D∩C)≥ 8. Then a general element of W contains no element of B1.

Proof. Fix C ∈B1, say associated to the conic D, and take W ∈W containing C (if any). By Lemma 6.9 we may assume the
non-existence of lines L with deg(L∩C)≥ 4. Hence D is not a reducible conic. It is not a double conic, say with L := Ared,
because we would have deg(L∩C)≥ deg(A∩C)/2≥ 4. Hence D is smooth. By Lemma 4.9 it is sufficient to test the curves
C with h1(IC(4)) ≥ 10. Lemmas 4.10 and 6.1 give h1(IC(3)) ≥ 15. Lemma 6.3 and the cohomology exact sequence of
the the exact sequence in the proof of Lemma 6.4) for X = C and t = 3 give h1(IC(2)) ≥ 15 and so h0(IC(2)) ≥ 14+ g,
contradicting Lemma 6.4.

Lemma 6.11. Assume 0≤ g≤ 3 and d ≤ 11. Let B2 be the set of all non-degenerate C ∈Md,g having a plane cubic T with
deg(T ∩C) = 9 and C∩T ∈ |OC∩T,T (3)|. Then a general element of W contains no element of B2.
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Proof. Take C for which T exists. We have d = 11. The set of all hyperplanes of P5 containing 〈T 〉 induces a g2
2 on C.

Hence g = 0. Fix any scheme Z ∈ |OT (3)|. Since g = 0, Lemma 6.6 implies h1(NC(−Z)) = 0 and hence the set of all C ⊂ P5

containing Z has dimension 6d +1−4deg(Z) = 31. Since P5 has ∞9 planes, each plane has ∞9 plane cubics and each plane
cubic T has ∞9 elements of |OT (3)|, it is sufficient to exclude all C ∈B2 with h1(IC(4))≥ 9. By Lemmas 6.9 and 6.10 we
may assume the non-existence of line R⊂ P5 with deg(C∩R)≥ 4 and of conics D⊂ P5 with deg(C∩D)≥ 8. As in the proof
Lemma 6.10 we get h1(IC(2))≥ 14, i.e .h0(IC(2))≥ 13+g, contradicting Lemma 6.4.

By Lemma 5.5 at this point we proved that a general W ∈W contains only finitely many non-degenerate C ∈Md,g.

7. Degenerate curves

In this section we prove that a general W ∈W contains only finitely many degenerate C ∈Md,g(Q), d ≤ 11 and g ≤ 3. By
Remarks 4.3, 4.4 and Lemma 4.6 it is sufficient to test the curves C ∈Md,g(4). By [19, Theorem at page 492] we may assume
d≥ 7 and d≥ 8 if either g> 0 or C has genus 0 and no line R with deg(R∩C)≥ 6. By Remark 4.3 and Lemma 4.6 it is sufficient
to test the degenerate C ∈Md,g(Q). Fix a hyperplane M ⊂ P5 and set Q′ := Q∩M. Set M′d,g(Q

′) := {C ∈Md,g(Q) : C ⊂ Q′

and C spans M}. Either Q′ is smooth or Q′ has a unique singular point, o. For any C ∈M′d,g(Q
′) set x(C) = 0 if either Q′

is smooth or Q′ is a cone with vertex o and o /∈C, and set x(C) := 1 if Q′ has vertex o and o ∈C. Since ωQ′
∼= OQ′(−3),

if x(C) = 0, then Hilb(Q′) is smooth and of dimension 3d + 2− 2g. Now assume that Q′ is a cone with vertex o and that
x(C) = 1, i.e. that o ∈C. Let u : Q̃′→ Q′ be the blowing up of o. Let E := v−1(o) be the exceptional divisor and let C̃ ⊂ Q̃′ be
the strict transform of C. Since C is smooth, v maps isomorphically C̃. Let Ψ be closure in Hilb(Q̃′) of the strict transforms
of all A ∈Md,g(Q′) with x(A) = 1. We claim that dimΨ≤ 3d +1. Fix D ∈Ψ. Since Aut(Q̃′) acts transitively of Q̃′ \E, the
first part of the proof gives h1(ND,Q̃) = 0. Hence it is sufficient to prove that deg(ND,Q̃)≤ 3d−1, i.e. deg(τQ̃|D

)≤ 3d +1, i.e.

deg(ωQ̃|D) ≥ −3d−1. The group Pic(Q̃) is freely generated by E and the pull-back H of OQ(1). We have D ·H = d and
D ·E = x. We have ωQ̃

∼= OQ̃(−3H−E) [26, Example 8.5 (2)]. Hence dim(M′d,g(Q
′)) has dimension ≤ 3d + x(C) at C. Since

Q has ∞4 singular hyperplane sections and ∞5 smooth hyperplane sections, to prove that a general W ∈W has no (resp. finitely
many) curves C spanning a hyperplane, it is sufficient to exclude the ones with h1(IC(4))≥ d−4−g. For all d,g for which
we only use that h1(IC(4))≥ d−5−g, no degenerate C ∈Md,g is contained in a general W ∈W. Fix a hyperplane M ⊂ P5.
Let M′d,g(M) be the set of all C ∈Md,g contained in M and spanning M.

Lemma 7.1. A general W ∈W contains no C ∈Md,g such that there is a hyperplane M with C ∈M′d,g(M) and h0(M,IC(2))≥
4.

Proof. Let K ⊂M denote the set-theoretic base locus of |IC,M(2)| and A any irreducible component of K containing C. Note
that |IC,M(2)|= |IA,M(2)|. Since C spans M, every element of |IC,M(2)| is irreducible and A spans M. Hence dim(K)≤ 2.
First assume dim(A) = 2. Since a complete intersection B of two quadrics of M has h0(M,IB,M(2)) = 2 < 4 and A spans
M, we get deg(A) = 3. Hence either A is a smooth rational normal scroll or a cone over a rational normal curve of P3. In
both cases we have h0(M,IA,M(2)) = 3, a contradiction. Hence dim(A) = 1, i.e. A =C. Fix two general elements Q1,Q2
of |IC,M(2)| and let E be an irreducible component of Q1∩Q2 containing C. Since A =C, there is a quadric hypersurface
Q3 ⊂M, containing C, but not E. Since C ⊆ E ∩Q3, we get E = Q1∩Q2, d ≤ 8, and that either d = 8 and C = Q1∩Q2∩Q3
or d = 7 and C is linked to a line by the complete intersection Q1∩Q2∩Q3. In both cases C is arithmetically Cohen-Macaulay
and in particular h1(IC(4)) = 0, a contradiction.

Lemma 7.2. A general W ∈W contains no C∈M11,g such that there is a hyperplane M with C∈M′11,g(M) and h0(M,IC,M(2))=
3.

Proof. Take K,A as in the proof of Lemma 7.1. Since d > 8, we only need to modify the proof of the case dim(A) = 2.
If dim(A) = 2, then deg(A) = 3 and A is either the cone of of a rational normal curves of P3 or it is a smooth rational
normal curve isomorphic to the Hirzebruch surface F1 embedded by the complete linear system |h+2 f |. Write C ∈ |ah+b f |
with a > 0 and b ≥ a. We have 11 = a+ b and hence b > a. Since ωF1

∼= OF1(−2h− 3 f ), the adjunction formula gives
2g−2 = (ah+b f ) · ((a−2)h+(b−3) f ) =−a(a−2)+a(b−3)+b(a−2) = (a−2)(b−a)+a(b−3). If g = 0 we get that
either a = 1 (and hence b = 10) or a = b = 2, contradicting the equality a+b = 10. If g > 0, then a≥ 2. There is no solution
with a+b = 11, a≥ 2, and g≤ 3. In the case a = 1 and b = 10 the curve C has h0(A,OA(4−C)) = 0. Hence if C ⊂W , then
A⊂W , contradicting the fact that Pic(W ) is generated by OW (1).
Now assume that A is a cone over a rational normal curve. Let o be the vertex of A and call u : F2→ A the blowing up of o. Set
h := u−1(o). F2 is isomorphic to the Hirzebruch surface with the same name, h is the only section of its ruling with negative
self-intersection and u is induced by the linear system |h+2 f |. We have h2 = −2 and ωF2

∼= OF2(−2h−4 f ). Let C′ ⊂ F2
denote the strict transform of C, with C′ ∈ |ah+b f and b≥ 2a. Since C is smooth, u sends isomorphically C′ to C. Hence
11 = b and b ∈ {2a,2a+1}. Since h0(OF2(4h+8 f −C)) = 0, any W containing C contains A, a contradiction.

Lemma 7.3. Fix C ∈ M′d,g(M), d ≤ 13, and let H be a general hyperplane of M. We have h1(H,IH∩C,H(4)) = 0 and
h1(H,IH∩C,H(3))≤max{0,d−10}.
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Proof. Any S ⊆C∩H with #(S) ≤ 10 (resp. #(S) ≤ 13) is in linearly general position in M and hence h(M,IS,M(3)) = 0
(resp. h1(M,IC,M(4)) = 0 by [22, Theorem 3.2].

Lemma 7.4. Let N ⊂M be a hyperplane and let Z ⊂ N be a degree d ≤ 11 zero-dimensional scheme spanning N. If there are
neither a line R⊂ N with deg(R∩Z)≥ 6 nor a plane conic D⊂ N with deg(D∩Z) = 10, then h1(N,IZ,N(4)) = 0.

Proof. Let U ⊂ N be a plane of N with maximal a := deg(Z∩N). Since Z spans N, we have a≥ 3. Assume for the moment
a = 3, i.e. assume that Z is in linearly general position. Since d ≤ 13, we have h1(N,IZ,MN(4)) = 0 [22, Theorem 3.2]. Hence
we may assume a≥ 4.
First assume h1(U,IZ∩U,U (4))> 0. Since Z spans N, we have a≤ d−1≤ 10. Use [24, Corollaire 2 or Remarques (i) at page
116].
Now assume h1(N,IZ∩N(4)) = 0. The residual exact sequence of U in N gives h1(N,IResU (Z)(3))> 0. Since deg(ResU (Z)) =
d−a≤ 7, [23, Lemma 34] gives the existence of a line L⊂ N such that deg(L∩Z)≥ 5. Then we continue as in step (a) of
the proof of Lemma 6.2. the residual exact sequence of M gives h1(M,IResN(Z),M(3))> 0. Since d−a≤ 7, then there is a
line L⊂M such that deg(ResN(Z))≥ 5 [23, Lemma 34]. By assumption we have deg(L∩Z) = 5. Since deg(Z∩L)≥ 5, the
maximality property of a gives a≥ 7. Since d−a≥ 5, we get d ≥ 12, a contradiction.

Lemma 7.5. A general W ∈W contains no C ∈ M′d,g(M) such that there a plane conic D with deg(D∩C) ≥ 10 (if D is
singular also assume that deg(L∩C)≤ 5 for each line L⊂ D).

Proof. The pencil of hyperplanes of M containing the plane U spanned by D shows that d = 11, deg(D∩C) = 10, and g = 0.
First assume that D is a double line. Fix W ∈W with W ⊃C. Set L := Dred. Since deg(L∩C), we have L⊂W for any W ∈W
with W ⊃C. Let ResL(C∩D) be the residual scheme with respect to the divisor L of U . Since deg(C∩L)≥ deg(C∩D)/2,
our assumptions give deg(L∩C) = 5 and hence deg(ResL(C∩D)) = 5. Since C∩D⊂ D, we have ResL(C∩D)⊂ L. Since
D *W (Lemma 4.9), we have W ∩U = L∪T with T a plane cubic not containing L. Hence deg(L∩T ) =3. Since ResL(C∩D)
is contained both in L and in T , we get a contradiction.
Now assume D = R∪ L with R,L lines and L 6= R. Since deg(L∩C) ≤ 5 and deg(R∩C) ≤ 5 by assumption, we have
deg(R∩C) = deg(R∪L) = 5. Hence D⊂W , contradicting Lemma 4.9.
Now assume that D is smooth. Since g = 0 for each Z ⊂ D with deg(D) = 10, we have h1(NC,M(−Z)) = 0 and so h0(NC,M) =
45− 30. Since D has ∞10 degree 10 subschemes, M has ∞6 planes, each plane has ∞5 conics and P5 has ∞5, hyperplanes,
each irreducible component of the set of all (C,D,M) with D a smooth conic and CıM′11,0(M) has dimension at most 41,
i.e. codimension at least 17 in M11,0. Hence to avoid these curves we may assume h1(IC(4)) ≥ 16. Lemma 7.3 gives
h1(M,IC(2))≥ 15. Hence h0(M,IC(2))≥ 7, contradicting Lemma 7.1.

Lemma 7.6. A general W ∈W contains no C ∈M′d,g(M), d ≤ 11, for some hyperplane M such that there is no line R⊂M
with deg(R∩C)≥ 6.

Proof. By Lemma 7.5 we may assume that there is no conic D with deg(D∩C)≥ 10. Since d ≤ 11, Lemmas 4.10 and 7.4 give
h1(M,IC,M(3))≥ 4+h1(IC∩M,M(3))≥ d−g. Assume for the moment that either d≤ 10 or d = 11 and h1(H,IC∩H,H(3))= 0
for a general hyperplane H of M. Lemma 7.3 gives h1(M,IC,M(2))≥ d−g and so h0(M,IC(2))≥ 15+d−g−2d−1+g =
14− d. Hence if d ≤ 10 Lemma 7.1 concludes the proof. If d = 11 and h1(H,IC∩H,H(3)) = 1, we get h0(M,IC(2)) ≥
2. Assume h0(IC(2)) = 2 and let K be the intersection of two general elements of |IC,M(2)| and call A ⊆ Kred any
irreducible component containing C. Since h1(M,IC,M(3))≥ 11−g, we have h0(M,IC(3))≥ 45−2d > 10. Hence the map
H0(M,IC,M(2))⊗H0(OM(1))→H0(M,IC,M(3)) is not surjective. Take U ∈ |IC,M(3)| not containing K. Since deg(C)> 9,
we first get A = K, and then (since d = 11), that the complete intersection K∩U links C to a line. Hence C is arithmetically
Cohen-Macaulay, contradicting the assumption h1(M,IC,M(4))> 0.

Lemma 7.7. A general W ∈W contains no curve C with C ∈ M′d,g(M) for some hyperplane and with a line R such that
deg(R∩C)≥ 6.

Proof. Note that if W,C,R are as in the statement of the lemma with C ⊂W , then R ⊂W (Bezout). Let G be the set
of all quadruples (W,H,L,C) with W ∈W′, M a hyperplane, L ⊂W ∩M a line, C ∈ M′d,g(M) and deg(L∩C) ≥ 6. Fix
M, a line L ⊂ M and Z ⊂ R with deg(Z) = 6. First assume d ≥ 2g− 1+ 6. Lemma 6.6 gives h1(M,NC,M(−Z)) = 0, i.e.
h0(NC,M(−Z)) = 5d + 1− g− 18. Since L has ∞6 degree 6 zero-dimensional schemes, M has ∞6 lines and P5 has ∞5

hyperplanes, and each W ∈W′ contains only finitely many lines, we get that each irreducible component of G has dimension at
most 5d−g. Hence to prove the lemma it is sufficient to exclude the curves C ∈M′d,g(M) with h1(IC(4))≥ d−g+2. Lemma
7.3 gives h1(M,IC,M(3))≥ d−g+2. Hence h1(M,IC,M(2))≥ d−g+1 (Lemma 7.3) and so h0(M,IC,M(2))≥ 15−d ≥ 4,
contradicting Lemma 7.1. Now assume d ≤ 2g+4. Since d ≥ 7 and g = 0 if d = 7, then (d,g) ∈ {(8,2),(8,3),(9,3),(10,3)}.
Assume d = 8. The net of all hyperplanes of M containing R induces a g2

2 on C and hence g = 0, a contradiction. Now assume
(d,g) ∈ {(9,3),(10,3)}. We take Z′ ⊂ R with deg(Z′) = 4. Since d ≥ 2g−1+deg(Z′), as above we get that we may assume
h1(IC(4)) ≥ d− g. Since d ≤ 10, we have h1(M,IC,M(2)) ≥ h1(M,IC,M(3)) ≥ h1(M,IC,M(4)) (Lemma 7.3) and hence
h0(M,IC,M(2))≥ 14−d ≥ 4, contradicting Lemma 7.1.



Fundamental Journal of Mathematics and Applications 191

End of the proof of Theorem 1.1: The last lemma concludes the proof of Theorem 1.1 for all C ∈Md,g(4). Since in section 6
we checked all C ∈Md,g(5), in Remark 4.3 all C ∈Md,g(1), in Remark 4.4 all C ∈Md,g(2) and in Lemma 4.6 all C ∈Md,g(3),
we have completed the proof of Theorem 1.1.
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Abstract

In this study, we consider a partitioned linear model with linear partial parameter constrains,
known as a constrained partitioned linear model (CPLM), and its reduced models. A group
of formulas on best linear unbiased predictors (BLUPs) and best linear unbiased estimators
(BLUEs) in CPLM is derived via some quadratic matrix optimization methods, and further
many basic properties of the predictors and estimators are established under some general
assumptions. Our main purpose is to derive various inequalities and equalities for the
comparison of covariance matrices of BLUPs and BLUEs under CPLM and its reduced
models.

1. Introduction and preliminary results

We first introduce the following notations. A′, r(A), C (A), and A+ denote, respectively, the transpose, the rank, the column
space, and the Moore–Penrose generalized inverse of A ∈ Rm×n, where Rm×n stands for the set of all m×n real matrices.
EA = A⊥ = Im−AA+ stands for the orthogonal projector, where Im denotes the identity matrix of size m×m. i+(A) and
i−(A) denote the positive and the negative inertias of symmetric matrix A, respectively, and for both i±(A) and i∓(A) are
used. The inequality A1−A2 < 0 or A1 < A2 means that the difference A1−A2 is positive semi-definite (psd) matrix in
the Löwner partial ordering (LPO) for the symmetric matrices A1 and A2 of same size, further, we use A1 ≺ A2, A1 4 A2,
and A1 � A2 in cases where the difference A1−A2 is negative definite, negative semi-definite, and positive definite matrix,
respectively.
As a linear model with its partitioned form, we consider

M : y = Xα + ε =
[
X1, X2

][
α ′1, α ′2

]′
+ ε = X1α1 +X2α2 + ε, (1.1)

E(ε) = 0 and cov(ε,ε) = D(ε) = σ
2
Σ, (1.2)

and its reduced model

MR : X⊥2 y = X⊥2 X1α1 +X⊥2 ε, (1.3)

where y ∈ Rn×1 is a vector of observable response variables, X =
[
X1, X2

]
∈ Rn×k is a known matrix of arbitrary rank with

Xi ∈Rn×ki , α =
[
α ′1, α ′2

]′ ∈Rk×1 is a vector of fixed but unknown parameters with α i ∈Rki×1, ε ∈Rn×1 is an unobservable
vector of random errors, σ2 is a positive unknown parameter, and Σ ∈ Rn×n is a known psd matrix of arbitrary rank, i = 1,2,
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k1 + k2 = k. The reduced linear model MR in (1.3), also known as the correctly-reduced model, is obtained by pre-multiplying
X⊥2 on both sides of the partitioned linear model M in (1.1); see, e.g., [1] and [2]. The model in (1.3) is one of the different
forms of the model in (1.1) and, especially, this model can be considered when estimation/prediction problems in general
parametric functions of partial parameters are considered.
In statistical theory and its applications, there often exist certain restrictions on unknown parameters in linear regression models.
These kinds of restrictions occur in many situations such as the linear hypothesis testing on parameters. Let us considered the
partitioned linear model in (1.1) with a certain restriction on α1, known as constrained partitioned linear model (CPLM), as
follows:

N : y = Xα + ε = X1α1 +X2α2 + ε, A1α1 = b1, (1.4)

and its constrained reduced linear model (CRLM),

NR : X⊥2 y = X⊥2 X1α1 +X⊥2 ε, A1α1 = b1, (1.5)

where the linear restriction equation A1α1 = b1 is consistent for given A1 ∈ Rm×k1 of arbitrary rank and b1 ∈ Rm×1. The two
given equation parts in (1.4) and (1.5) can merge into the following combined form of vectors

N̂ : ŷ = X̂α + ε̂ = X̂1α1 + X̂2α2 + ε̂, (1.6)

N̂R : X̂⊥2 ŷ = X̂⊥2 X̂1α1 + X̂⊥2 ε̂, (1.7)

respectively, and according to the expectation and covariance matrix assumptions in (1.2),

E(ŷ) = X̂α, E(X̂⊥2 ŷ) = X̂⊥2 X̂1α1, D(ŷ) = D(ε̂) = σ
2
[

Σ 0
0 0

]
:= Σ̂, D(X̂⊥2 ŷ) = D(X̂⊥2 ε̂) = σ

2X̂⊥2 Σ̂X̂⊥2 (1.8)

are obtained, where

ŷ =

[
y
b1

]
, X̂ =

[
X̂1, X̂2

]
=

[
X1 X2
A1 0

]
, X̂1 =

[
X1
A1

]
, X̂2 =

[
X2
0

]
, ε̂ =

[
ε

0

]
, X̂⊥2 =

[
X⊥2
0

]
.

This merging operation in (1.6) and (1.7) is a well-known method of including equality restrictions in constrained linear
regression models.
We make statistical inference of the models in (1.6) and (1.7) under the assumptions that the models are consistent, i.e., we
assume that ŷ ∈ C

[
X̂, Σ̂

]
holds with probability (wp) 1, corresponding the consistency of N̂ , in this case, the model N̂R in

(1.7) is consistent, i.e., X̂⊥2 ŷ ∈ C
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
holds wp 1; see, e.g., [3].

To estimate the unknown parameter vector α1 and to predict random error vector ε jointly in (1.4) and (1.5), we construct a
general vector containing the both unknown vectors as follows

φ 1 = K1α1 +Hε̂ =
[
K1,0

]
α +Hε̂ := K̂α +Hε̂ (1.9)

for given matrices K̂ =
[
K1,0

]
∈Rs×k with K1 ∈Rs×k1 and H ∈Rs×(n+m). It can be seen from the expectation and covariance

matrix assumptions in (1.2) and (1.8),

E(φ 1) = K1α1, D(φ 1) = σ
2HΣ̂H′, cov(φ 1, ŷ) = σ

2HΣ̂, cov(φ 1, X̂
⊥
2 ŷ) = σ

2HΣ̂X̂⊥2 . (1.10)

In the present paper, we concern with the problems of constrained prediction/estimation under a CPLM and its CRLMs. We
first review some of the results related to the subject that we consider in the study including the consistency of CPLMs,
predictability/estimability of φ 1 in (1.9), the best linear unbiased predictors (BLUPs), and the best linear unbiased estimators
(BLUEs). We show how to establish the BLUPs and the BLUEs of all unknown vectors in a CPLM and its CRLMs and
present some fundamental properties of the BLUPs/BLUEs by solving certain constrained quadratic matrix-valued function
optimization problems in LPO including ranks and inertias of block matrices. Our main purpose is to derive various inequalities
and equalities for comparison of covariance matrices of the BLUPs/BLUEs of all unknown vectors in the CPLM and its
CRLMs. Previous and recent work on the problems of the inference of CPLMs can be found in; see e.g., [4]-[18] among
others.
The results, in the present paper, are established by making use of formulas of ranks of block matrices and elementary matrix
operations. We review well-known results, which we need later, related to block matrices as follows.

Lemma 1.1 ([19]). Let A1, A2 ∈ Rm×n, or, let A1 = A′1, A2 = A′2 ∈ Rm×m. Then,

1. A1 = A2 ⇔ r(A1−A2) = 0.
2. A1 � A2 ⇔ i+(A1−A2) = m and A1 ≺ A2 ⇔ i−(A1−A2) = m.
3. A1 < A2 ⇔ i−(A1−A2) = 0 and A1 4 A2 ⇔ i+(A1−A2) = 0.
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Lemma 1.2 ([19]). Let A1 = A′1 ∈ Rm×m, A2 = A′2 ∈ Rn×n, P ∈ Rm×n, and c ∈ R. Then,

r(A1) = i+(A1)+ i−(A1).

i±(cA1) =

{
i±(A1) i f c > 0
i∓(A1) i f c < 0 .

i±

[
A1 P
P′ A2

]
= i±

[
A1 −P
−P′ A2

]
= i∓

[
−A1 P

P′ −A2

]
.

i±

[
A1 0
0 A2

]
= i±(A1)+ i±(A2). i+

[
0 P
P′ 0

]
= i−

[
0 P
P′ 0

]
= r(P).

Lemma 1.3 ([19]). Let A1 = A′1 ∈ Rm×m, B = B′ ∈ Rn×n, and A2 ∈ Rm×n. Then,

i±

[
A1 A2
A′2 0

]
= r(A2)+ i±(EA2A1EA2). (1.11)

i+

[
A1 A2
A′2 0

]
= r
[
A1, A2

]
and i−

[
A1 A2
A′2 0

]
= r(A2) if A1 < 0. (1.12)

i±

[
A1 A2
A′2 B

]
= i±(A1)+ i±(B−A′2A+

1 A2) if C (A2)⊆ C (A1). (1.13)

Lemma 1.4 ([20]). Let Q ∈ Rn×n be a symmetric psd matrix. Assume that there exists X0 ∈ Rm×n such that X0A = B for
given A ∈ Rn×p, B ∈ Rm×p. Then the maximal positive inertia of X0QX′0−XQX′ subject to all solutions of XA = B is

max
XA=B

i+(X0QX′0−XQX′) = r
[

X0Q
A′

]
− r(A) = r(X0QA⊥). (1.14)

Hence there exists solution X0 of X0A = B such that holds for all solutions of XA = B⇔ X0 satisfies both X0A = B and
X0QA⊥ = 0.

2. BLUPs/BLUEs’ computations

A group of computational formulas on the BLUPs/BLUEs of all unknown vectors in CPLM and its CRLMs are given with
many basic properties of BLUPs/BLUEs by using quadratic matrix optimization methods given as in Lemma 1.4. Under our
considerations, firstly, we review the predictability/estimability requirement of φ 1 and its special cases under the models (1.6)
and (1.7) before giving the definition of the BLUPs/BLUEs.

1. φ 1 in (1.9) is predictable by ŷ under N̂ in (1.6), i.e., E(Lŷ−φ 1) = 0 holds for some L⇔ C (K̂′)⊆ C (X̂′)⇔ K̂α is
estimable under (1.6), i.e., K1α1 is estimable under (1.6),

2. X̂α is always estimable and ε̂ is always predictable under (1.6),
3. φ 1 in (1.9) is predictable by X̂⊥2 ŷ under N̂R in (1.7), i.e., E(GX̂⊥2 ŷ−φ 1) = 0 holds for some G⇔ C (K′1)⊆ C (X̂′1X̂⊥2 )
⇔ K1α1 is estimable under (1.7),

4. X̂1α1 is estimable under (1.7)⇔ C (X̂′1)⊆ C (X̂′1X̂⊥2 ),
5. X̂⊥2 X̂1α1 is always estimable and X̂⊥2 ε̂ is always predictable under (1.7),
6. α1 is estimable under (1.7)⇔ r(X̂⊥2 X̂1) = k1 and ε̂ is always predictable under (1.7);

see, e.g., [21]. Further, φ 1 is predictable under N̂ when it is predictable under N̂R.

Definition 2.1 ([22],[23]). The BLUP/BLUE definitions for models in (1.6) and (1.7) are given as follows, respectively.

1. Let φ 1 be predictable by ŷ in (1.6). If there exists Lŷ such that

D(Lŷ−φ 1) = min s.t. E(Lŷ−φ 1) = 0 (2.1)

holds in the LPO, the linear statistic Lŷ is defined to be the BLUP of φ 1 and is denoted by Lŷ = BLUP
N̂
(φ 1) =

BLUP
N̂
(K̂α +Hε̂). If H = 0 in φ 1 or K̂ = 0 in φ 1, Lŷ corresponds the BLUE of K̂α , denoted by BLUE

N̂
(K̂α) and

BLUP of Hε̂ , denoted by BLUP
N̂
(Hε̂), under (1.6).
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2. Let φ 1 be predictable by X̂⊥2 ŷ in (1.7). If there exists GX̂⊥2 ŷ such that

D(GX̂⊥2 ŷ−φ 1) = min s.t. E(GX̂⊥2 ŷ−φ 1) = 0

holds in the LPO, the linear statistic GX̂⊥2 ŷ is defined to be the BLUP of φ 1 and is denoted by GX̂⊥2 ŷ = BLUP
N̂R

(φ 1) =

BLUP
N̂R

(K1α1 + Hε̂). If H = 0 in φ 1 or K1 = 0 in φ 1, GX̂⊥2 ŷ corresponds the BLUE of K1α1, denoted by
BLUE

N̂R
(K1α1) and BLUP of Hε̂ , denoted by BLUP

N̂R
(Hε̂), under (1.7).

The fundamental results on BLUP of φ 1 under (1.6) and (1.7) are collected in the following theorems. The results given below
are obtained from [24] by considering the models and notation used in this paper. For different approaches; see, e.g, [23], [25].

Theorem 2.2. Let φ 1 be predictable by ŷ in (1.6). Then,

BLUP
N̂
(φ 1) = Lŷ =

([
K̂ HΣ̂X̂⊥

]
W+

1 +P1W⊥
1

)
ŷ, (2.2)

where P1 ∈ Rs×(n+m) is an arbitrary matrix and W1 =
[
X̂, Σ̂X̂⊥

]
. In particular,

1. L is unique⇔ r(W1) = (n+m).
2. BLUP

N̂
(φ 1) is unique wp 1⇔ N̂ is consistent.

3. r(W1) = r
[
X̂, Σ̂

]
= r
[
X̂, X̂⊥Σ̂

]
.

4. Further, the following dispersion matrix equalities hold.

D[BLUP
N̂
(φ 1)] = σ

2 [K̂, HΣ̂X̂⊥
]

W+
1 Σ̂
([

K̂, HΣ̂X̂⊥
]

W+
1
)′
, (2.3)

D[φ 1−BLUP
N̂
(φ 1)] = σ

2 ([K̂, HΣ̂X̂⊥
]

W+
1 −H

)
Σ̂
([

K̂, HΣ̂X̂⊥
]

W+
1 −H

)′
. (2.4)

5. In particular,

BLUE
N̂
(K̂α) =

([
K̂, 0

]
W+

1 +P2W⊥
1

)
ŷ, (2.5)

BLUP
N̂
(Hε̂) =

([
0, HΣ̂X̂⊥

]
W+

1 +P3W⊥
1

)
ŷ, (2.6)

where P2 and P3 ∈ Rs×(n+m) are arbitrary matrices.

Proof. Let Lŷ be an unbiased linear predictor for φ 1 under the model in (1.6). Then,

E(Lŷ−φ 1) = 0⇔ LX̂ = K̂, i.e.,
[
L, −Is

][X̂
K̂

]
= 0, (2.7)

D(Lŷ−φ 1) = σ
2(L−H)Σ̂(L−H)′ = σ

2 [L, −Is
][In+m

H

]
Σ̂

[
In+m

H

]′ [
L, −Is

]′ (2.8)

for unbiased linear predictor Lŷ. The similar expressions can be written for the other unbiased linear predictor Tŷ for φ 1 under
the model in (1.6) by writing T instead of L in (2.7) and (2.8). Then the expression in (2.1) can be expressed as to find solution
L of the consistent linear matrix equation LX̂ = K̂ such that D(Lŷ−φ 1)4 D(Tŷ−φ 1) s.t. TX̂ = K̂, i.e.,

[
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [
L, −Is

]′
4
[
T, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [
T, −Is

]′ s.t. TX̂ = K̂. (2.9)

Applying (1.14) to (2.9), the maximal positive inertia of D(Lŷ−φ 1)−D(Tŷ−φ 1) subject to TX̂ = K̂ is obtained as follows:

max
E(Tŷ−φ1)=0

i+(D(Lŷ−φ 1)−D(Tŷ−φ 1)) = r


[
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′
[

X̂
K̂

]′
− r

[
X̂
K̂

]

= r

([
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [X̂
K̂

]⊥)
.

(2.10)
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Combining (2.7) with (2.10), we conclude that D(Lŷ−φ 1) = min ⇔ there exists L satisfying both

LX̂ = K̂ and
[
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [X̂
K̂

]⊥
= 0,

i.e., Lŷ = BLUP
N̂
(φ 1)⇔ L

[
X̂, Σ̂X̂⊥

]
=
[
K̂ HΣ̂X̂⊥

]
. This matrix equation is consistent and the general solution of the

equation can be written as in (2.2); see, e.g., [26]. Results in items 1 and 2 follow from (2.2). For the result in item 3, we refer
[27, Lemma 2.1(a)]. (2.3) is seen from (2.2) and the assumptions in (1.2). Further,

cov{BLUP
N̂
(φ 1),φ 1}=

[
K̂ HΣ̂X̂⊥

][
X̂, Σ̂X̂⊥

]+
Σ̂H′ (2.11)

by using (1.8) and (1.10). (2.4) is seen from (2.3) and (2.11). (2.5) and (2.6) follow directly from (2.2).

Theorem 2.3. Let φ 1 be predictable by X̂⊥2 ŷ in (1.7). Then,

BLUP
N̂R

(φ 1) = GX̂⊥2 ŷ =
([

K1, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]W+
2 +P4W⊥

2

)
X̂⊥2 ŷ, (2.12)

where P4 ∈ Rs×(n+m) is an arbitrary matrix and W2 =
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]. In particular,

1. G is unique⇔ r(W2) = (n+m).
2. BLUP

N̂R
(φ 1) is unique wp 1⇔ N̂R is consistent.

3. r(W2) = r
[
X̂⊥2 X̂1, (X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2
]
= r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
.

4. The following dispersion matrix equalities hold.

D[BLUP
N̂R

(φ 1)] = σ
2 [K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 Σ̂X̂⊥2

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2
)′
,

D[φ 1−BLUP
N̂R

(φ 1)] = σ
2
([

K1, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)
Σ̂

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)′
. (2.13)

5. In particular,

BLUP
N̂R

(φ 1) = GX̂⊥2 ŷ =
([

K1, 0
]

W+
2 +P5W⊥

2

)
X̂⊥2 ŷ,

BLUP
N̂R

(φ 1) = GX̂⊥2 ŷ =
([

0, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]W+
2 +P6W⊥

2

)
X̂⊥2 ŷ,

where P5 and P6 ∈ Rs×(n+m) are arbitrary matrices.

Proof. The proof of the theorem is obtained in a similar way to the proof of the Theorem 2.3.

3. Main results

Theorem 3.1. Let consider models N̂ and N̂R in (1.6) and (1.7), respectively, and assume that φ 1 is predictable under these
models. Let BLUP

N̂
(φ 1) and BLUP

N̂R
(φ 1) be as given in (2.2) and (2.12), and

A =


Σ̂ Σ̂X̂⊥2 Σ̂H′ 0 X̂

X̂⊥2 Σ̂ 0 0 X̂⊥2 X̂1 0
HΣ̂ 0 0 K1 0
0 X̂′1X̂⊥2 K′1 0 0
X̂′ 0 0 0 0

 .

Then

i+(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)]) = i+(A)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1), (3.1)

i−(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)]) = i−(A)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂), (3.2)

r(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)]) = r(A)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂). (3.3)

Further,
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1. D[φ 1−BLUP
N̂
(φ 1)]� D[φ 1−BLUP

N̂R
(φ 1)]⇔ i+(A) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ s.

2. D[φ 1−BLUP
N̂
(φ 1)]≺ D[φ 1−BLUP

N̂R
(φ 1)]⇔ i−(A) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂)+ s.

3. D[φ 1−BLUP
N̂
(φ 1)]< D[φ 1−BLUP

N̂R
(φ 1)]⇔ i−(A) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

4. D[φ 1−BLUP
N̂
(φ 1)]4 D[φ 1−BLUP

N̂R
(φ 1)]⇔ i+(A) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1).

5. D[φ 1−BLUP
N̂
(φ 1)] = D[φ 1−BLUP

N̂R
(φ 1)]⇔ r(A) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

Proof. Let D = D[φ 1−BLUP
N̂
(φ 1)]. By using (2.13) and (1.13),

i±(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)])

= i±

(
D−

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)
Σ̂

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)′)

= i±

 Σ̂ Σ̂

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)′([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)
Σ̂ D

− i±(Σ̂)

= i±

([
Σ̂ −Σ̂H′

−HΣ̂ D

]
+

[
Σ̂X̂⊥2 0

0
[
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]][ 0 W2
W′

2 0

]+[X̂⊥2 Σ̂ 0
0

[
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]′
])

− i±(Σ̂)

(3.4)

is obtained, where W2 =
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]. We can apply (1.13) to (3.4) since the column space inclusions

C (Σ̂)⊆ C (W2) and C
([

K1, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]′)⊆ C (W′
2) hold. Then (3.4) is equivalently written as follows

i±


0 −X̂⊥2 X̂1 −X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥ X̂⊥2 Σ̂ 0
−X̂′1X̂⊥2 0 0 0 K′1

−(X̂⊥2 X̂1)
⊥X̂⊥2 Σ̂X̂⊥2 0 0 0 (X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂H′

Σ̂X̂⊥2 0 0 Σ̂ −Σ̂H′

0 K1 HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥ −HΣ̂ D


− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]− i±(Σ̂)

= i±


−X̂⊥2 Σ̂X̂⊥2 −X̂⊥2 X̂1 −X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥ X̂⊥2 Σ̂H′

−X̂′1X̂⊥2 0 0 K′1
−(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 0 0 (X̂⊥2 X̂1)
⊥X̂⊥2 Σ̂H′

HΣ̂X̂⊥2 K1 HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥ D−HΣ̂H′

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]

= i±

−X̂⊥2 Σ̂X̂⊥2 −X̂⊥2 X̂1 X̂⊥2 Σ̂H′

−X̂′1X̂⊥2 0 K′1
HΣ̂X̂⊥2 K1 D−HΣ̂H′

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ i±

[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i∓

X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

HΣ̂X̂⊥2 HΣ̂H′ K1

X̂′1X̂⊥2 K′1 0

−
0

Is
0

D
[
0 Is 0

]+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]
− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
.

(3.5)

We can reapply (1.13) to (3.5) after writing D = D[φ 1−BLUP
N̂
(φ 1)] in (2.4). Then, (3.5) is equivalently written as follows

by using the similar way to obtaining (3.4),

i∓




Σ̂ 0 −Σ̂H′ 0
0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

−HΣ̂ HΣ̂X̂⊥2 HΣ̂H′ K1

0 X̂′1X̂⊥2 K′1 0

+


Σ̂ 0
0 0
0
[
K̂, HΣ̂X̂⊥

]
0 0

[ 0 W1
W′

1 0

]+[
Σ̂ 0 0 0
0 0

[
K̂, HΣ̂X̂⊥

]′ 0

]
− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ i±

[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]− i∓(Σ̂).

(3.6)
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We can apply (1.13) to (3.6) since C (Σ̂)⊆ C (W1), where W1 =
[
X̂, Σ̂X̂⊥

]
. From Lemma 1.2 and 1.3, (3.6) is equivalent to

i∓



0 −X̂ −Σ̂X̂⊥ Σ̂ 0 0 0
−X̂′ 0 0 0 0 K̂′ 0
−X̂⊥Σ̂ 0 0 0 0 X̂⊥Σ̂H′ 0

Σ̂ 0 0 Σ̂ 0 −Σ̂H′ 0
0 0 0 0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

0 K̂ HΣ̂X̂⊥ −HΣ̂ HΣ̂X̂⊥2 HΣ̂Ĥ′ K1

0 0 0 0 X̂′1X̂⊥2 K′1 0


− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− i∓(Σ̂)− r

[
X̂, Σ̂X̂⊥

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i∓



−Σ̂ −X̂ −Σ̂X̂⊥ 0 Σ̂H′ 0
−X̂′ 0 0 0 K̂′ 0
−X̂⊥Σ̂ 0 0 0 X̂⊥Σ̂H′ 0

0 0 0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

HΣ̂ K̂ HΣ̂X̂⊥ HΣ̂X̂⊥2 0 K1

0 0 0 X̂′1X̂⊥2 K′1 0


− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i∓


−Σ̂ −X̂ 0 Σ̂H′ 0
−X̂′ 0 0 K̂′ 0

0 0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

HΣ̂ K̂ HΣ̂X̂⊥2 0 K1

0 0 X̂′1X̂⊥2 K′1 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]
+ i∓

[
X̂⊥Σ̂X̂⊥

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i±


Σ̂ 0 X̂ Σ̂H′ 0
0 −X̂⊥2 Σ̂X̂⊥2 0 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

X̂′ 0 0 K̂′ 0
HΣ̂ HΣ̂X̂⊥2 K̂ 0 −K1

0 X̂′1X̂⊥2 0 −K′1 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]
+ i∓

[
X̂⊥Σ̂X̂⊥

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i±


Σ̂ −Σ̂X̂⊥2 X̂ 0 Σ̂H′

−X̂⊥2 Σ̂ 0 −X̂⊥2 X̂1 X̂⊥2 X̂1 0
X̂′ −X̂′1X̂⊥2 0 0 K̂′

0 X̂′1X̂⊥2 0 0 −K′1
HΣ̂ 0 K̂ −K1 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]
+ i∓

[
X̂⊥Σ̂X̂⊥

]

= i±


Σ̂ Σ̂X̂⊥2 Σ̂H′ 0 X̂

X̂⊥2 Σ̂ 0 0 X̂⊥2 X̂1 0
HΣ̂ 0 0 K1 0
0 X̂′1X̂⊥2 K′1 0 0
X̂′ 0 0 0 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ i±

[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]− r
[
X̂, Σ̂

]

+ i∓
[
X̂⊥Σ̂X̂⊥

]
.

(3.7)

In consequence, by using (1.11) and (1.12), we obtain (3.1) and (3.2) from (3.7). (3.3) is obtained by adding the equalities in
(3.1) and (3.2). (a)-(e) is seen from (3.1)-(3.3) by using Lemma 1.1.

As an immediate consequence of Theorem 3.1, the following results are obtained by setting H = 0 and K1 = X̂1, respectively,
in this theorem.
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Corollary 3.2. Let N̂ and N̂R be as given in (1.6) and (1.7), respectively, and assume that K1α1 is estimable under these
models. Denote

B =


Σ̂ Σ̂X̂⊥2 0 0 X̂

X̂⊥2 Σ̂ 0 0 X̂⊥2 X̂1 0
0 0 0 K1 0
0 X̂′1X̂⊥2 K′1 0 0
X̂′ 0 0 0 0

 .
Then

i+(D[BLUE
N̂
(K1α1)]−D[BLUE

N̂R
(K1α1)]) = i+(B)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1),

i−(D[BLUE
N̂
(K1α1)]−D[BLUE

N̂R
(K1α1)]) = i−(B)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂),

r(D[BLUE
N̂
(K1α1)]−D[BLUE

N̂R
(K1α1)]) = r(B)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂).

Further,

1. D[BLUE
N̂
(K1α1)]� D[BLUE

N̂R
(K1α1)]⇔ i+(B) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ s.

2. D[BLUE
N̂
(K1α1)]≺ D[BLUE

N̂R
(K1α1)]⇔ i−(B) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂)+ s.

3. D[BLUE
N̂
(K1α1)]< D[BLUE

N̂R
(K1α1)]⇔ i−(B) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

4. D[BLUE
N̂
(K1α1)]4 D[BLUE

N̂R
(K1α1)]⇔ i+(B) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1).

5. D[BLUE
N̂
(K1α1)] = D[BLUE

N̂R
(K1α1)]⇔ r(B) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

Corollary 3.3. Let N̂ and N̂R be as given in (1.6) and (1.7), respectively, and assume that X̂1α1 is estimable under these
models. Denote

C =

 Σ̂ Σ̂X̂⊥2 X̂
X̂⊥2 Σ̂ 0 0
X̂′ 0 0

 .
Then

i+(D[BLUE
N̂
(X̂1α1)]−D[BLUE

N̂R
(X̂1α1)]) = i+(C)− r

[
X̂, Σ̂

]
,

i−(D[BLUE
N̂
(X̂1α1)]−D[BLUE

N̂R
(X̂1α1)]) = i−(C)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂2),

r(D[BLUE
N̂
(X̂1α1)]−D[BLUE

N̂R
(X̂1α1)]) = r(C)− r

[
X̂, Σ̂

]
− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂2).

Further,

1. D[BLUE
N̂
(X̂1α1)]� D[BLUE

N̂R
(X̂1α1)]⇔ i+(C) = r

[
X̂, Σ̂

]
+m+n.

2. D[BLUE
N̂
(X̂1α1)]≺ D[BLUE

N̂R
(X̂1α1)]⇔ i−(C) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂2)+m+n.

3. D[BLUE
N̂
(X̂1α1)]< D[BLUE

N̂R
(X̂1α1)]⇔ i−(C) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂2).

4. D[BLUE
N̂
(X̂1α1)]4 D[BLUE

N̂R
(X̂1α1)]⇔ i+(C) = r

[
X̂, Σ̂

]
.

5. D[BLUE
N̂
(X̂1α1)] = D[BLUE

N̂R
(X̂1α1)]⇔ r(C) = r

[
X̂, Σ̂

]
+ r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂2).

Corollary 3.4. Let N̂ and N̂R be as given in (1.6) and (1.7), respectively, and assume that α1 is estimable under these
models. Then

1. i±(D[BLUE
N̂
(α1)]−D[BLUE

N̂R
(α1)]) = r(D[BLUE

N̂
(α1)]−D[BLUE

N̂R
(α1)]) = 0.

2. i±(ε̂−D[BLUP
N̂
(ε̂)]−D[ε̂−BLUP

N̂R
(ε̂)]) = r(ε̂−D[BLUP

N̂
(ε̂)]−D[ε̂−BLUP

N̂R
(ε̂)]) = 0.
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Abstract

In this paper, we give a new approach for Bertrand and Mannheim curves in 3D Lie groups
with bi-invariant metrics. In this way, some conditions including the known results have
been given for a curve to be Bertrand or Mannheim curve in 3D Euclidean space and in 3D
Lie groups.

1. Introduction

The curve and surface theory is a comprehensive field in differential geometry. Especially associated curves whose the Frenet
apparatus satisfy some geometric conditions in Euclidean 3-space. For examples, general helix is a curve, whose tangent
vector makes a constant angle with a fixed straight line. Lancret gave the condition for a given curve to be a general helices by
the ratio of its curvatures to be constant [1]. In [2], a different approach is given to a general helix lying on a sphere. Also, slant
helix was defined as a curve whose normal vector makes a constant angle with a fixed straight line in 3D Euclidean space by
Izumiya and Takeuchi [3]. They showed that a curve is a slant helix iff the geodesic curvature of spherical image of principal
normal indicatrix of the curve is a constant function. On the other hand, there exist some examples of associated curves such as
Bertrand and Mannheim curve couples whose the Frenet apparatus satisfy some geometric conditions in 3D Euclidean space.
Bertrand curve couples defined by J. M. Bertrand in 1845 [4]. ”If the normal vectors of the two curves are coincide at the
corresponding points of the curves, we say that these curves are Bertrand curve couple”. Liu and Wang defined Mannheim
curve couples in 2008 [5]. ”If the normal vector of a given curve is coincide with an other curve’s bi-normal vector at the
corresponding points of the curves, we say that these curves are Mannheim curve couple.” They gave a condition for a given
curve to be a Mannheim curve. Also, [6]-[9] can be looked at for examining Bertand and Mannheim curves in different spaces.
Recently, Ç. Camcı et.all and A. Uçum et.all gave a generalization for Bertrand and Mannheim curves in 3D Euclidean space,
respectively [10, 11].
Lie groups are an important mathematical form because they have three different structures in mathematics such that S3, SO(3)
and Abelian Lie groups. In addition, Lie groups have a wide range of theory and application in physics and mechanics, as well
as their importance in mathematics. Some associated curves such as general helices, slant helices, Bertrand and Mannheim
curves are introduced in the Lie groups [12]-[15]. On the other hand, different structures such as spinor representations, curve
flows in Lie groups and the conjugate mate structures of curves were investigated in [16]-[19]. And it has been shown that
the conditions obtained in 3D Lie groups are a generalization of the conditions obtained in 3D Euclidean space. In [20], Lie
algebras and their applications related to dynamical structures are given.
In this paper, we introduce a generalization for Bertrand and Mannheim curves in 3D Lie groups, respectively. Also, we obtain
some characterizations of these curves. Moreover, we give some results about this curves for special cases of 3D Lie groups.
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2. Preliminaries

Assume that G be the 3D Lie group with bi-invariant metric 〈,〉 and ∇ be the Levi-Civita connection of Lie group G. The Lie
algebra of G denotes with g, which is isomorphic to TfG, where f is neutral element of G. As the metric is bi-invariant, we
have the following equations for all P,Q,R ∈ g;

〈P, [Q,R]〉= 〈[P,Q] ,R〉

and

∇PQ=
1
2
[P,Q] .

Let E1,E2, ...,En be an orthonormal basis of g and γ be an an arc-lengthed curve on G. Then, we can write any two vector
fields Y1 and Y2 along γ as Y1 = ∑

n
i=1 aiEi and Y2 = ∑

n
i=1 biEi where ai and bi are real-valued smooth functions. Also, the

Lie bracket of Y1 and Y2 is given

[Y1,Y2] =
n

∑
i=1

aibi[Ei,E j]

On the other hand, the covariant derivative of Z along γ is given by

∇
γ
′Z= Ż+

1
2
[t,Z] (2.1)

where t = γ
′

and Ż= ∑
n
i=1

dz
dt

Ei. Also, if Z is the left-invariant vector field, then Ż= 0 [21].

Let γ be a curve with Frenet apparatus {t,n,b,κ,τ} in Lie group G. Then the Frenet-Serret formulas are expressed by

∇tt = κn, ∇tn =−κt+ τb, ∇tb =−τn

where ∇ is connection of Lie group G and κ = ‖ṫ‖.

Proposition 2.1. [12] Let γ : J ⊂ R→ G be a curve in Lie group G with the Frenet apparatus {t,n,b,κ,τ}. Then Lie
curvature τG is defined by

τG =
1
2
〈[t,n],b〉.

Proposition 2.2. [13] Let γ : J ⊂ R→G be an arc length parametrized curve with the Frenet apparatus {t,n,b}. Then the
following equalities

[t,n] = 〈[t,n],b〉b = 2τGb

[t,b] = 〈[t,b],n〉n =−2τGn

hold.

Remark 2.3. [12, 22] The follows hold for Lie group G with bi-invariant metric in special cases:
(i) Let G is an Abelian group, then τG = 0,
(ii) Let G is SU2, then τG = 1,
(iii) Let G is SO3, then τG = 1

2 .

Theorem 2.4. [12] Let γ : J ⊂ R→G be a curve in Lie group G with the curvatures κ,τ and Lie curvature τG. Then, γ is a
general helix iff

τ− τG
κ

= constant

Theorem 2.5. [13] Let γ : J ⊂ R→G be a curve in Lie group G such that parametrized by the arc-length parameter s with
the curvatures κ,τ and Lie curvature τG. Then γ is a slant helix iff

κ

(
1+
(

τ− τG
κ

)2
)3

2

(
τ− τG

κ

)′ = constant
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Theorem 2.6. [14] Let γ : J ⊂ R→G be a curve in Lie group G such that parametrized by the arc-length parameter s with
the curvatures κ,τ and Lie curvature τG. Then, γ is Mannheim curve iff

λκ

(
1+
(

τ− τG
κ

)2
)

= 1

where λ is constant.

Theorem 2.7. [15] Let γ : J ⊂ R→ G be a Bertrand curve in Lie group G with the curvatures κ,τ and Lie curvature τG.
Then, γ satisfy the following equality

λκ +µ(τ− τG) = 1

where λ ,µ are constants.

3. Generalized Bertrand curves in 3D Lie groups

In this section, we investigate generalized Bertrand curves in 3D Lie groups and we give some characterizations.

Definition 3.1. A curve γ : J ⊂ R→ G is a Bertrand curve if there exists a special curve γ : J ⊂ R→ G and a bijection
ζ : γ → γ where n(s) and n(s) at s ∈ J, s ∈ J coincide. Also, γ(s) is called the Bertrand mate of γ(s) in Lie group G.

Let γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the Frenet apparatus
{t,n,b} and the curvatures κ,τ 6= 0 and γ(s) be a Bertrand mate curve of γ with the Frenet apparatus {t,n,b} and the
curvatures κ,τ 6= 0. We can write as

γ(s) = γ(σ(s)) = γ(s)+a(s)t(s)+b(s)n(s)+ c(s)b(s) (3.1)

where a(s),b(s) and c(s) are differentiable functions on J.

Theorem 3.2. Let γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Bertrand curve with Bertrand mate γ iff one of the followings holds:
i. The differentiable functions a,b and c satisfy the following equations:

aκ +b
′ − c(τ− τG) = 0 and c

′
+b(τ− τG) = 0 (3.2)

ii. The differentiable functions a,b,c and real number ` satisfy the following equations:

aκ +b
′ − c(τ− τG) = 0, c

′
+b(τ− τG) 6= 0 (3.3)

1+a
′ −bκ = `(c

′
+b(τ− τG)), `κ− (τ− τG) 6= 0, κ + `(τ− τG) 6= 0

Proof. Let us assume that γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with
the curvatures κ,τ 6= 0. By differentiating equation (3.1), we get

dγ(s)
ds

σ
′
=

dγ(s)
ds

+a
′
(s)t(s)+a(s)ṫ(s)+b

′
(s)n(s)+b(s)ṅ(s)+ c

′
(s)b(s)+ c(s)ḃ(s). (3.4)

By using equation (2.1) and Proposition 2.1, we have

tσ
′
= (1+a

′ −bκ)t+(aκ +b
′ − c(τ− τG))n+(c

′
+b(τ− τG))b (3.5)

By taking the inner product of equation (3.5) with n, we have

aκ +b
′ − c(τ− τG) = 0

Therefore, we get

tσ
′
= (1+a

′ −bκ)t+(c
′
+b(τ− τG))b (3.6)

It is clear that,

(σ
′
)2 = (1+a

′ −bκ)2 +(c
′
+b(τ− τG))

2 (3.7)

Then, we can write as

t = λ1t+λ2b (3.8)
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for

λ1 =
1+a

′ −bκ

σ
′ and λ2 =

c
′
+b(τ− τG)

σ
′ (3.9)

By differentiating equation (3.8) in G, we get

σ
′
κn = λ

′
1t+(λ1κ−λ2(τ− τG))n+λ

′
2b (3.10)

This shows that λ
′
1 = 0 and λ

′
2 = 0.

i. Let us suppose that λ2 = 0. Therefore, we have c
′
+b(τ− τG) = 0.

ii. Let us suppose that λ2 6= 0. Then, we can write

1+a
′ −bκ = `(c

′
+b(τ− τG)) (3.11)

where
λ1

λ2
= `= constant. By according to equation (3.10), we write

σ
′
κn = (λ1κ−λ2(τ− τG))n

By taking the norm of both sides and by using equations (3.7) and (3.9), we get

(σ
′
)2(κ)2 =

(`κ− (τ− τG))
2

`2 +1
(3.12)

where `κ− (τ− τG) 6= 0. If we denote by λ =
λ1κ−λ2(τ− τG)

σ
′
κ

, we have

n = λn (3.13)

By differentiating equation (3.13), we get

(−κt+(τ− τG)b)σ
′
=−λκt+λ (τ− τG)b (3.14)

where λ
′
= 0. If we rewrite equation (3.14) by using equation (3.6), we get,

−σ
′
(τ− τG)b = µ1(s)t+µ2(s)b

where

µ1(s) =−
(c
′
+b(τ− τG))(`κ− (τ− τG))

(σ
′
)2(`2 +1)κ

(κ + `(τ− τG))

and

µ2(s) =
(c
′
+b(τ− τG))(`κ− (τ− τG))`

(σ
′
)2(`2 +1)κ

(κ + `(τ− τG))

It is clear that κ + `(τ− τG) 6= 0.
Conversely, assume that γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0.
i. Let’s assume that the condition (3.2) is satisfied for the differentiable functions a,b and c. Therefore, we write the derivative
of equation (3.1) as follows:

dγ

ds
= (1+a

′ −bκ)t (3.15)

From equation (3.15), we get

σ
′
=

ds
ds

=

∥∥∥∥dγ

ds

∥∥∥∥= ε1(1+a
′ −bκ)> 0

where ε1 = sgn(1+a
′ −bκ). Therefore, we have

t = ε1t, n = ε1n, b = b
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and

κ =
κ

σ
′ , τ− τG =

ε1(τ− τG)

σ
′

Consequently, γ is a Bertrand curve in Lie group G.
ii. Let’s assume that the condition (3.3) is satisfied for the differentiable functions a,b,c and real function `. Therefore, we
write the derivative of equation (3.1) as follows:

dγ

ds
= (1+a

′ −bκ)t+(c
′
+b(τ− τG))b (3.16)

From equation, we get

σ
′
=

∥∥∥∥dγ

ds

∥∥∥∥= ξ1(c
′
+b(τ− τG))

√
`2 +1

where ξ1 = sgn(c
′
+b(τ− τG)). By according to equation (3.16), we have

t =
ξ1√
`2 +1

(`t+b), 〈t, t〉= 1 (3.17)

By differentiating (3.17) with respect to s, we get

ṫσ ′ =
ξ1√
`2 +1

(`ṫ+ ḃ)

ṫ =
ξ1(`κ− (τ− τG))n

σ
′√

`2 +1

(3.18)

Then, from equation (3.18), we get

κ = ‖ṫ‖= ξ2(`κ− (τ− τG))

σ
′√

`2 +1
(3.19)

and

n = ξ1ξ2n, 〈n,n〉= 1 (3.20)

where ξ2 = sgn(`κ− (τ− τG)). Then, we have

b = t∧n =
ξ2√
`2 +1

(−t+ `b), 〈b,b〉= 1 (3.21)

By differentiating equation (3.21), we get

τ− τG =−〈ḃ,n〉= ξ1(κ +(τ− τG)`)

σ
′√

`2 +1
(3.22)

Thus, γ is a Bertrand curve in Lie group G.

Proposition 3.3. Let γ : J ⊂ R→G and γ : J ⊂ R→G be Bertrand curve pair with the Frenet vectors {t,n,b} and {t,n,b},
respectively. Then τG = τG for τG = 1

2 〈[t,n],b〉 and τG = 1
2 〈[t,n],b〉.

Proof. The proof is easily seen from equations (3.17), (3.20) and (3.21).

Remark 3.4. If a = c = 0 in Theorem 3.2, we obtain the Bertrand curve conditions in the 3D Lie groups in the literature [15]
where

γ(s) = γ(σ(s)) = γ(s)+b(s)n(s)

Corollary 3.5. Let γ : J ⊂ R→G be a Bertrand curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Bertrand curve where γ(s) = γ(σ(s)) = γ(s)+b(s)n(s) iff there exist real number b and ` satisfying

1−bκ = `b(τ− τG) `κ− (τ− τG) 6= 0

In the following corollary, we show the existence of Bertrand curves with general helix in Lie group G.
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Corollary 3.6. Let γ : J ⊂R→G be a general helix in Lie group G with the curvatures κ,τ satisfying `κ− (τ− τG) 6= 0 and
κ + `(τ− τG) 6= 0 where ` is a real number. Then, γ is given by

γ(σ(s)) = γ(s)+
ks

`− k
t+

s
`− k

b (3.23)

where k 6= 0 is constant.

Proof. Suppose that γ : J ⊂ R→G be a general helix in Lie group G with the curvatures κ,τ . From Theorem 2.4, we can
write

τ− τG
κ

= k (3.24)

where k 6= 0 is constant. On the other hand, if we take b = 0 in the conditions of (ii) in Theorem 3.2, we have

aκ = c(τ− τG), c
′ 6= 0, 1+a

′
= `c

′
(3.25)

By using equations (3.24) and (3.25), we get

a = kc, c =
s

`− k
.

Hence, equation (3.23) is satisfied.

Corollary 3.7. Let γ : J ⊂ R→G be a Bertrand curve with the curvatures κ,τ and γ : I ⊂ R→ G be a Bertrand mate curve
of γ with the curvatures κ,τ . Then γ is a general helix iff γ is a general helix in 3D Lie groups.

Proof. By using equations (3.19) and (3.22), we get

τ− τG
κ

= ξ1ξ2

1+ `

(
τ− τG

κ

)
`−
(

τ− τG
κ

)
and

τ− τG
κ

=

(
τ− τG

κ

)
`−ξ1ξ2(

τ− τG
κ

)
+ξ1ξ2`

.

Therefore, γ is a general helix (i.e
τ− τG

κ
= constant) iff γ is a general helix (i.e

τ− τG
κ

= constant).

Corollary 3.8. If G is Abelian Lie group, the results obtained correspond to the generalized Bertrand curves given in study
[10].

4. Generalized Mannheim curves in 3D Lie groups

In this part, we obtain generalized Mannheim curves in 3D Lie groups and we obtain some characterizations.

Definition 4.1. A curve γ : J ⊂ R→G is a Mannheim curve if there exists a special curve γ∗ : J ⊂ R→G and a bijection
ζ : γ → γ where n and b∗ at s ∈ J, s∗ ∈ J∗ coincide. Also, γ∗(s∗) is called the Mannheim mate of γ(s) in Lie group G.

Let γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the Frenet apparatus
{t,n,b} and the curvatures κ,τ 6= 0 and γ∗(s∗) be a Mannheim mate curve of γ with the Frenet apparatus {t∗,n∗,b∗} and the
curvatures κ∗,τ∗ 6= 0. Then, we have

γ
∗(s∗) = γ

∗(ϕ(s)) = γ(s)+ e(s)t(s)+ f (s)n(s)+g(s)b(s) (4.1)

where e(s), f (s) and g(s) are differentiable functions on J.

Theorem 4.2. Let γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Mannheim curve with Mannheim mate γ∗ iff there exist differentiable functions e, f ,g satisfying

eκ + f
′ −g(τ− τG) = 0, g

′
+ f (τ− τG) 6= 0 (4.2)

(1+ e
′ − f κ)κ = (g

′
+ f (τ− τG))(τ− τG)
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Proof. Suppose that γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. By differentiating equation (4.1), we get

dγ∗(s∗)
ds∗

ϕ
′
=

dγ(s)
ds

+ e
′
(s)t(s)+ e(s)ṫ(s)+ f

′
(s)n(s)+ f (s)ṅ(s)+g

′
(s)b(s)+g(s)ḃ(s)

Then, we have

t∗ϕ
′
= (1+ e

′ − f κ)t+(eκ + f
′ −g(τ− τG))n+(g

′
+ f (τ− τG))b (4.3)

By taking the scalar product of equation (4.3) with n, we find

eκ + f
′ −g(τ− τG) = 0

Then, we have

t∗ϕ
′
= (1+ e

′ − f κ)t+(g
′
+ f (τ− τG))b (4.4)

It is seen that

(ϕ
′
)2 = (1+ e

′ − f κ)2 +(g
′
+ f (τ− τG))

2 (4.5)

Then, we can denote as

t∗ = δ1t+δ2b (4.6)

for

δ1 =
1+ e

′ − f κ

ϕ
′ and δ2 =

g
′
+ f (τ− τG)

ϕ
′ (4.7)

By differentiating equation (4.6) in G, we have

ṫ∗ϕ ′ = δ
′
1t+δ1 ṫ+δ

′
2b+δ2ḃ

ϕ
′
κ∗n∗ = δ

′
1t+(δ1κ−δ2(τ− τG))n+δ

′
2b

(4.8)

By taking the scalar product of (4.8) with n, we have δ1κ−δ2(τ− τG) = 0. From equation (4.7), we get

(1+ e
′ − f κ)κ = (g

′
+ f (τ− τG))(τ− τG) (4.9)

where g
′
+ f (τ− τG) 6= 0.

Conversely, suppose that γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with
the curvatures κ,τ 6= 0 and the conditions of (4.2) hold for differentiable functions e, f ,g. Then, we can write

dγ∗

ds
= (1+ e

′ − f κ)t+(g
′
+ f (τ− τG))b (4.10)

where

ϕ
′
=

√
〈dγ∗

ds
,

dγ∗

ds
〉= ξ1(g

′
+ f (τ− τG))

√
κ2 +(τ− τG)2

κ

with ξ1 = sgn(g
′
+ f (τ− τG)). From equation (4.10), we get

t∗ =
ξ1√

κ2 +(τ− τG)2
((τ− τG)t+κb), 〈t∗, t∗〉= 1 (4.11)

Then, we can denote

t∗ = γ1t+ γ2b (4.12)

where

γ1 =
ξ1(τ− τG)√

κ2 +(τ− τG)2
, γ2 =

ξ1κ√
κ2 +(τ− τG)2

.
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By differentiating (4.12) with respect to s, we get

ṫ∗ =
γ
′
1t+ γ

′
2b

ϕ
′ (4.13)

Then, from equation (4.13), we get

κ
∗ = ‖ṫ∗‖= ξ2((τ− τG)κ

′ − (τ− τG))
′
κ

ϕ
′
(κ2 +(τ− τG)2)

=

−ξ2κ2
(

τ− τG
κ

)′
ϕ
′
(κ2 +(τ− τG))2 (4.14)

and

n∗ =
ξ1ξ2√

κ2 +(τ− τG)2)
(−κt+(τ− τG)b), 〈n∗,n∗〉= 1 (4.15)

where ξ2 = sgn((τ− τG)κ
′ − (τ− τG))

′
κ). Moreover, we can obtain

b∗ = t∗∧n∗ =−ξ2n, 〈b∗,b∗〉= 1 (4.16)

Finally, we get

τ
∗− τ

∗
G =−〈ḃ∗,n∗〉= ξ1

√
κ2 +(τ− τG)2

ϕ
′ 6= 0 (4.17)

Then, γ is a Mannheim curve in Lie group G.

Proposition 4.3. Let γ : J ⊂ R→ G and γ∗ : J∗ ⊂ R→ G be Mannheim curve pair with the Frenet vectors {t,n,b} and

{t∗,n∗,b∗}, respectively. Then τG = τ∗G for τG =
1
2
〈[t,n],b〉 and τ∗G =

1
2
〈[t∗,n∗],b∗〉.

Proof. The proof is easily seen from equations (4.11), (4.15) and (4.16).

Remark 4.4. If e = g = 0 in Theorem 4.2, we satisfy the Mannheim curve conditions in the 3D Lie groups in the literature
[14] where

γ
∗(s∗) = γ

∗(ϕ(s)) = γ(s)+ f (s)n(s)

Corollary 4.5. Let γ : J ⊂ R→G be a Mannheim curve in G such that parametrized by the arc-length parameter s with the
curvatures κ,τ 6= 0. γ is a Bertrand curve where γ∗(s∗) = γ∗(ϕ(s)) = γ(s)+ f (s)n(s) iff there exist real number f satisfying

κ = f (κ2 +(τ− τG)
2).

Corollary 4.6. Let γ : J ⊂ R→G be a general helix with the curvatures κ,τ 6= 0. Then, the Mannheim mate γ∗ is a straight
line in Lie group G.

Proof. Suppose that γ : J ⊂ R→G be a general helix with the curvatures κ,τ 6= 0 in Lie group G. Since the ratio
τ− τG

κ
is

constant, we get κ∗ = 0. Then, the Mannheim mate γ∗ is a straight line.

Corollary 4.7. Let γ : J ⊂ R→G be a Mannheim curve with the curvatures κ,τ and γ∗ : J∗ ⊂ R→ G be a Mannheim mate
of γ with the curvatures κ∗,τ∗. Then γ∗ is a general helix iff γ is a slant helix in Lie group G.

Proof. From equations (4.14) and (4.17), we get

τ∗− τG
κ∗

=−ξ1ξ2κ

(
1+
(

τ− τG
κ

)2
)3

2

(
τ− τG

κ

)′
Hence, the desired is achieved.

Corollary 4.8. If G is Abelian Lie group, the results obtained correspond to the generalized Mannheim curves given in study
[11].
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5. Conclusion

In this study, we examined generalized Bertrand and Mannheim curves in 3D Lie groups inspired by [10] and [11] studies. We
have shown that we obtain the results in studies [10], [11], [14] and [15], especially considering the Abelian Lie groups. In
connection with this study, special curve types can be studied in Lie groups with different metric structures in the future.
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