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Düzce-TÜRKİYE
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Bilecik Şeyh Edebali University,

Bilecik-TÜRKİYE
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Düzce-TÜRKİYE
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Abstract

This article aims to specify a new C−class function endowed with altering distance
and ultra altering distance function via generalized Ξ−contraction, which is called the
G (Σ,ϑ ,Ξ)−contraction in modular b−metric spaces. Regarding these new contraction
type mappings, the study includes some existence and uniqueness theorems, and to indicate
the usability and productivity of these results, some applications related to integral type
contractions and an application to the graph structure.

1. Introduction and preliminaries

In this study, the set of all natural and non-negative real numbers will be symbolized by N and R+, respectively.
Fixed point theory is an active and popular area for researchers in nonlinear analysis. Especially metric fixed point theory is a
cornerstone for this research area. Researchers working in this field are indebted to S. Banach [1]. The focal point of this topic
is to achieve the best suitable conditions on mappings to guarantee the existence and the uniqueness of fixed points, mainly the
Banach Fixed Point Theorem put forward by Banach in 1922. In particular, extensive progress has been made in improving
and expanding these conditions over the past few decades.
However, the metric structure has been generalized in many directions. One of the crucial results defined in different periods
by Bakhtin [2] and Czerwik [3, 4] is b−metric space, as noted below.

Definition 1.1. [3] Let S be a non-void set and κ ≥ 1,(κ ∈ R). Presume that the function η : S×S→ R+ provides the
following terms: for every ϖ ,ξ ,ρ ∈ S,

(η1) η (ϖ ,ξ ) = 0⇔ ϖ = ξ ,
(η2) η (ϖ ,ξ ) = η (ξ ,ϖ) ,
(η3) η (ϖ ,ξ )≤ κ [η (ϖ ,ρ)+η (ρ,ξ )] .

The function η is entitled a b−metric on S, and the pair (S,η) is a b−metric space.

In the case of κ = 1, the concept of b−metric and ordinary metric coincide. Also, unlike standard metrics, the b−metric is not
continuous. Accordingly, the following lemma is valuable and exceptionally significant for a b−metric space.

Lemma 1.2. [5] Let (S,η) be a b−metric space with κ ≥ 1, the sequences
{

ϖq
}

and
{

ξq
}

be convergent to ϖ and ξ ,
respectively. So, we have

1
κ2 η (ϖ ,ξ )≤ liminf

q→∞
η (ϖq,ξq)≤ limsup

q→∞

η (ϖq,ξq)≤ κ
2
η (ϖ ,ξ ) .
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Especially, if ϖ = ξ , then we have lim
q→∞

η (ϖq,ξq) = 0. Also, for z ∈ S, we have

1
κ

η (ϖ ,z)≤ liminf
q→∞

η (ϖq,z)≤ limsup
q→∞

η (ϖq,z)≤ κη (ϖ ,z) .

In 2008, V. V. Chistyakov [6] proposed a new concept of modular metric space generated by F−modular and the theory of this
space. Afterward, in 2010, V. V. Chistyakov [7] defined the modular metric space using a modular that identifies an arbitrary
set.
Initially, let S be a non-empty set and υ : (0,∞)×S×S→ [0,∞] be a function. For brevity, we will write:

υλ (ϖ ,ξ ) = υ (λ ,ϖ ,ξ ) ,

for all λ > 0 and ϖ ,ξ ∈ S.

Definition 1.3. [7] Let S be a non-empty set and υ : (0,∞)×S×S→ [0,∞] be a function that admits the following axioms.
Thereupon, we say that υ is named a modular metric for all ϖ ,ξ ,ρ ∈ S

(υ1) υλ (ϖ ,ξ ) = 0 for all λ > 0 if and only if ϖ = ξ ,
(υ2) υλ (ϖ ,ξ ) = υλ (ξ ,ϖ) for all λ > 0,
(υ3) υλ+µ (ϖ ,ξ )≤ υλ (ϖ ,ρ)+υµ (ρ,ξ ) for all λ ,µ > 0.

If we only exchange the (υ1) with

(υ1
′) υλ (ϖ ,ϖ) = 0 for all λ > 0,

then υ is said to be a (metric) pseudomodular on S.

For more detail, it refers to [6]-[10].
In 2018, M. E. Ege and C. Alaca [11] introduced modular b−metric spaces by combining the structures of b−metric and
modular metrics and, besides, established some fixed point theorems in the new space setting.

Definition 1.4. [11] Let S be a non-empty set and let κ ≥ 1(κ ∈ R). A map ` : (0,∞)×S×S→ [0,∞] is entitled as modular
b−metric, provided that the following circumstances satisfied for all ϖ ,ξ ,ρ ∈ S,

(`1) `λ (ϖ ,ξ ) = 0 for all λ > 0 if and only if ϖ = ξ ,
(`2) `λ (ϖ ,ξ ) = `λ (ξ ,ϖ) for all λ > 0,
(`3) `λ+µ (ϖ ,ξ )≤ κ

[
`λ (ϖ ,ρ)+ `µ (ρ,ξ )

]
for all λ ,µ > 0.

The pair (S, `) is a modular b−metric space expressed in MbMS.

In fact, for κ = 1, it can be seen that MbMS is an extension of the modular metric space.

Example 1.5. [11] Let us consider the space

lp =

{
(ϖ j)⊂ R :

∞

∑
j=1

∣∣ϖ j
∣∣p < ∞

}
0 < p < 1.

For λ ∈ (0,∞) if we define `λ (ϖ ,ξ ) = m(ϖ ,ξ )
λ

such that

m(ϖ ,ξ ) =

(
∞

∑
j=1

∣∣ϖ j−ξ j
∣∣p) 1

p

, ϖ = ϖ j,ξ = ξ j ∈ lp

then we see that (S, `) is an MbMS with κ = 2
1
p .

Example 1.6. [12] Let (S,υ) be a modular metric space and let p≥ 1 be a real number. Take `λ (ϖ ,ξ ) = (υλ (ϖ ,ξ ))p. Due
to the fact that the function Γ(t) = t p is convex for t ≥ 0, by Jensen inequality, we attain

(α +β )p ≤ 2p−1 (α p +β
p)

for α,β ≥ 0. Thus, (S, `) is an MbMS with κ = 2p−1.

Definition 1.7. [11] Let ` be a modular b−metric on a set S, and a modular set is identified by

S` =
{

ξ ∈ S : ξ
`∼ϖ

}
,
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where the `∼ is a binary relation on S defined by,

ϖ ∼ ξ ⇔ lim
λ→∞

`λ (ϖ ,ξ ) = 0,

for ϖ ,ξ ∈ S. Also, note that the set

S∗` = S∗` (ϖ0) = {ϖ ∈ S : ∃λ = λ (ϖ)> 0 such that `λ (ϖ ,ϖ0)< ∞} (ϖ0 ∈ S)

is mentioned as a modular metric space (around ϖ0).

In what follows, we recollect some basic topological properties of MbMS.

Definition 1.8. [11] Let (S, `) be an MbMS and (ϖq)q∈N be a sequence in S∗` .

(i) (ϖq)q∈N is called `−convergent to ϖ ∈ S∗` if and only if `λ (ϖq,ϖ)→ 0, as q→ ∞ for all λ > 0.
(ii) (ϖq)q∈N in S∗` is named `−Cauchy sequence if lim

q,m→∞
`λ (ϖq,ϖm) = 0 for all λ > 0.

(iii) S∗` is called `−complete if any `−Cauchy sequence in S∗` is `−convergent to the point of S∗` .

In [13], A.H. Ansari presented a novel class of functions named C−class functions. This class has extended many results for
metric fixed point theory, which contains almost all types of contractions.

Definition 1.9. [13] Let G : [0,∞)× [0,∞)→R be a function. If for all p,q ∈ [0,∞), the function G is continuous and satisfies
the below circumstances, then we say that G is a C−class function.

(G1) G (p,q)≤ p;
(G2) G (p,q) = p implies that either p = 0 or q = 0.

The C−class functions are symbolized by C .

Example 1.10. [13] The following ones from G1 to G5 are examples of G ∈ C .

(i) G1 (p,q) = p−q for all p,q ∈ [0,∞),
(ii) G2 (p,q) = mp for all for all p,q ∈ [0,∞) where 0 < m < 1,
(iii) G3 (p,q) = p

(1+q)r for all p,q ∈ [0,∞), where r ∈ (0,∞),
(iv) G4 (p,q) = pβ (p) for all p,q ∈ [0,∞), where β : [0,∞)→ [0,∞) and is continuous,
(v) G5 (p,q) = n

√
ln(1+ pn) for all p,q ∈ [0,∞).

Definition 1.11. [14] The family Ω denotes all function Σ : [0,∞)→ [0,∞), which is named altering distance function, if

(Σ1) Σ is continuous and non-decreasing;
(Σ2) Σ(ι) = 0 if and only if ι = 0.

Definition 1.12. [13] The family Π denotes all function ϑ : [0,∞)→ [0,∞), which is named ultra altering distance function if

(ϑ1) ϑ is continuous;
(ϑ2) ϑ (t)> 0 for all t > 0.

Also, for C−class functions, it refers to [15]-[18].
In 2017, Fulga and Proca [19] introduced a new contraction mapping involving the following expression and proved a fixed
point theorem on a complete metric space,

Ξ(ϖ ,ξ ) = m(ϖ ,ξ )+ |m(ϖ ,Γϖ)−m(ξ ,Γξ )| ,

whenever (S,m) is a complete metric space and ϖ ,ξ ∈ S. Subsequently, it is used as Ξ−contraction and appears in many
articles, see, [20]-[22].
In [23], Proca specified a new expression of Ξ−contraction with the “max operator” and also, in [24] verified a fixed point
theorem, as indicated below.

Theorem 1.13. [24] Let Γ : S→ S be a mapping on a complete metric space (S,m). Γ admits a unique fixed point in S if there
exists α ∈ [0,1) such that for all ϖ ,ξ ∈ S

m(Γϖ ,Γξ )≤ α (M∗ (ϖ ,ξ )) ,

where

M∗ (ϖ ,ξ ) = max{m(ϖ ,ξ )+ |m(ϖ ,Γϖ)−m(ξ ,Γξ )| ; m(ϖ ,Γϖ)+ |m(ϖ ,ξ )−m(ξ ,Γξ )| ;
m(ξ ,Γξ )+ |m(ϖ ,ξ )−m(ϖ ,Γϖ)| ; 1

2 [m(ϖ ,Γξ )+m(ξ ,Γϖ)+ |m(ϖ ,Γϖ)−m(ξ ,Γξ )|]
}
.

Furthermore, in [24], Proca has given an example to explain that M∗ (ϖ ,ξ ) is more general than the value of the maximum of
Ciric type contraction [25].
The following notion will be used throughout the study.

Definition 1.14. [26] Let (S,m) be a metric space and Γ,ϒ : S→ S be two mappings. Then, Γ and ϒ are said to be weakly
compatible if Γϖ = ϒϖ implies Γϒϖ = ϒΓϖ for some ϖ ∈ S.
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2. Main results

Owing to the fact that the concept of modular metrics does not have to be finite, the following requirements are essential to
assuring the existence and uniqueness of fixed points of contraction mappings in modular metric and modular b−metric spaces.

(M1) `λ (ϖ ,Γϖ)< ∞ for all λ > 0 and ϖ ∈ S∗` ,
(M2) `λ (ϖ ,ξ )< ∞ for all λ > 0 and ϖ ,ξ ∈ S∗` .

In this section, we aim to characterize the concept of G (Σ,ϑ ,Ξ)−contractions by considering the C−class function endowed
with the functions Σ and ϑ , including generalized Ξ−contractions for four mappings in the framework of modular b−metric
spaces. We also put forward some new results derived immediately from the main result.

Definition 2.1. Let ` be a modular b−metric with κ ≥ 1 on set S∗` , and let Γ,ϒ,J,ζ : S∗` → S∗` be mappings. The mappings
Γ,ϒ,J, and ζ are called G (Σ,ϑ ,Ξ)-contraction, if there exist G ∈ C , Σ ∈Ω, and ϑ ∈Π such that

Σ
(
κ

3`λ (Γϖ ,ϒξ )
)
≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) , (2.1)

where

Ξ(ϖ ,ξ ) = max{`λ (ζ ϖ ,Jξ )+ |`λ (ζ ϖ ,Γϖ)− `λ (Jξ ,ϒξ )| ; `λ (ζ ϖ ,Γϖ)+ |`λ (ζ ϖ ,Jξ )− `λ (Jξ ,ϒξ )| ;
`λ (Jξ ,ϒξ )+ |`λ (ζ ϖ ,Jξ )− `λ (ζ ϖ ,Γϖ)| ; 1

2

[
`2λ (ζ ϖ ,ϒξ )+`2λ (Jξ ,Γϖ)

κ
+ |`λ (ζ ϖ ,Γϖ)− `λ (Jξ ,ϒξ )|

]}
,

for all distinct ϖ ,ξ ∈ S∗` , and all λ > 0.

Theorem 2.2. Let S∗` be an `−complete MbMS with constant κ ≥ 1. Assume that the following statements are ensured:

(i) The mappings Γ,ϒ,J, and ζ are a G (Σ,ϑ ,Ξ)−contraction such that Γ
(
S∗`
)
⊂ J

(
S∗`
)

and ϒ
(
S∗`
)
⊂ ζ

(
S∗`
)
,

(ii) One of the sets Γ
(
S∗`
)
,J
(
S∗`
)
,ϒ
(
S∗`
)

and ζ
(
S∗`
)

is a closed subset of S∗` ,
(iii) The pairs {J,ϒ} and {ζ ,Γ} are weakly compatible.

If the condition (M1) is satisfied, then Γ,ϒ,J and ζ admit a common fixed point in S∗` . Moreover, the condition (M2) is provided,
the common fixed point of Γ,ϒ, J, and ζ is unique.

Proof. Let ϖ0 ∈ S∗` be an arbitrary point. If we take into account the condition (i), there is a point ϖ1 ∈ S∗` such that
ξ0 = Γϖ0 = Jϖ1. In a similar way, one can find a point ϖ2 ∈ S∗` such that ξ1 = ϒϖ1 = ζ ϖ2 as ϒ

(
S∗`
)
⊆ ζ

(
S∗`
)
. Following the

above process, we acquire a sequence
{

ξq
}

such that

ξ2q = Γϖ2q = Jϖ2q+1 and ξ2q+1 = ϒϖ2q+1 = ζ ϖ2q+2.

Assume that ξq0 6= ξq0+1, because if we accept that ξq0 = ξq0+1 for some q0, the proof is evident. Therefore, we have
`λ

(
ξ2q,ξ2q+1

)
> 0 for all λ > 0. From (2.1), we procure

Σ
(
κ

3`λ

(
Γϖ2q,ϒϖ2q+1

))
≤ G

(
Σ
(
Ξ
(
ϖ2q,ϖ2q+1

))
,ϑ
(
Ξ
(
ϖ2q,ϖ2q+1

)))
,

where

Ξ
(
ϖ2q,ϖ2q+1

)
= max

{
`λ

(
ζ ϖ2q,Jϖ2q+1

)
+
∣∣`λ

(
ζ ϖ2q,Γϖ2q

)
− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣;
`λ

(
ζ ϖ2q,Γϖ2q

)
+
∣∣`λ

(
ζ ϖ2q,Jϖ2q+1

)
− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣ ;
`λ

(
Jϖ2q+1,ϒϖ2q+1

)
+
∣∣`λ

(
ζ ϖ2q,Jϖ2q+1

)
− `λ

(
ζ ϖ2q,Γϖ2q

)∣∣ ;
1
2

[
`2λ (ζ ϖ2q,ϒϖ2q+1)+`2λ (Jϖ2q+1,Γϖ2q)

κ
+
∣∣`λ

(
ζ ϖ2q,Γϖ2q

)
− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣]}
= max

{
`λ

(
ξ2q−1,ξ2q

)
+
∣∣`λ

(
ξ2q−1,ξ2q

)
− `λ

(
ξ2q,ξ2q+1

)∣∣ ;
`λ

(
ξ2q−1,ξ2q

)
+
∣∣`λ

(
ξ2q−1,ξ2q

)
− `λ

(
ξ2q,ξ2q+1

)∣∣ ;
`λ

(
ξ2q,ξ2q+1

)
+
∣∣`λ

(
ξ2q−1,ξ2q

)
− `λ

(
ξ2q−1,ξ2q

)∣∣ ;
1
2

[
`2λ (ξ2q−1,ξ2q+1)+`2λ (ξ2q,ξ2q)

κ
+
∣∣`λ

(
ξ2q−1,ξ2q

)
− `λ

(
ξ2q,ξ2q+1

)∣∣]} .

Now, if we assume that σq = `λ

(
ξq−1,ξq

)
and use the triangle inequality

`2λ

(
ξ2q−1,ξ2q+1

)
≤ κ

[
`λ

(
ξ2q−1,ξ2q

)
+ `λ

(
ξ2q,ξ2q+1

)]
,

we get that

Σ
(
κ

3
σ2q+1

)
≤ G

(
Σ
(
Ξ
(
ϖ2q,ϖ2q+1

))
,ϑ
(
Ξ
(
ϖ2q,ϖ2q+1

)))
, (2.2)
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where

Ξ
(
ϖ2q,ϖ2q+1

)
≤max

{
σ2q +

∣∣σ2q−σ2q+1
∣∣ ; σ2q +

∣∣σ2q−σ2q+1
∣∣ ;

σ2q+1 +
∣∣σ2q−σ2q

∣∣ ; 1
2

[
κ(σ2q+σ2q+1)

κ
+
∣∣σ2q−σ2q+1

∣∣]} .

If σ2q+1 ≥ σ2q, we achieve

Ξ
(
ϖ2q,ϖ2q+1

)
≤max

{
σ2q+1,

σ2q +σ2q+1 +σ2q+1−σ2q

2

}
= σ2q+1.

From the above, it is concluded that

Σ
(
σ2q+1

)
≤ Σ

(
κ

3
σ2q+1

)
≤ G

(
Σ
(
σ2q+1

)
,ϑ
(
σ2q+1

))
≤ Σ

(
σ2q+1

)
,

which means

G
(
Σ
(
σ2q+1

)
,ϑ
(
σ2q+1

))
= Σ

(
σ2q+1

)
.

From (G2), either Σ
(
σ2q+1

)
= 0 or ϑ

(
σ2q+1

)
= 0. Nevertheless, a contradictory situation arises in both cases due to our

assumption. For σ2q+1 < σ2q, we have
∣∣σ2q−σ2q+1

∣∣= σ2q−σ2q+1 and

Ξ
(
ϖ2q,ϖ2q+1

)
≤max

{
2σ2q−σ2q+1,σ2q+1

σ2q +σ2q+1 +σ2q−σ2q+1

2

}
.

As
[
2σ2q−σ2q+1 > σ2q > σ2q+1

]
, we yield that

Ξ
(
ϖ2q,ϖ2q+1

)
= max

{
2σ2q−σ2q+1,σ2q+1,σ2q

}
= 2σ2q−σ2q+1. (2.3)

Moreover, by repeating similar steps, we acquire that σ2q < σ2q−1. Then, it ensures σq+1 < σq. So, we say
{

σq
}
={

`λ

(
ξq−1,ξq

)}
is a non-increasing sequence of non-negative real numbers. Thereby, there exists τ ≥ 0 such that lim

q→∞
σq = τ

for all λ > 0. Now, we aim to show τ = 0.

By using (G1) and (2.3), contemplating the inequality (2.2), we get

Σ
(
σ2q+1

)
≤ Σ

(
κ

3
σ2q+1

)
≤ G

(
Σ
(
2σ2q−σ2q+1

)
,ϑ
(
2σ2q−σ2q+1

))
≤ Σ

(
2σ2q−σ2q+1

)
.

If we take the limit in the above inequality, we have

Σ(τ)≤ G (Σ(τ) ,ϑ (τ))≤ Σ(τ) ,

and consequently, G (Σ(τ) ,ϑ (τ)) = Σ(τ) . Then, from (G2), either Σ(τ) = 0 or ϑ(τ) = 0. This implies that τ = 0, i.e., for all
λ > 0

`λ

(
ξq−1,ξq

)
→ 0 , (q→ ∞) . (2.4)

We need to show that
{

ξq
}

is an `−Cauchy sequence. It is adequate to demonstrate that
{

ξ2q
}

is an `−Cauchy sequence.
Presume on, by contrast; we will find ε > 0 and also form two sequences {ai} and {bi} of positive integers fulfilling bi > ai ≥ i
such that bi is the smallest index for which

`λ

(
ξ2ai ,ξ2bi

)
≥ ε and `λ

(
ξ2ai ,ξ2bi−2

)
< ε, for all λ> 0. (2.5)

From (2.5), we gain

ε ≤ `λ

(
ξ2ai ,ξ2bi

)
≤ κ` λ

2

(
ξ2ai ,ξ2bi+1

)
+κ` λ

2

(
ξ2bi+1,ξ2bi

)
.

Taking the limit superior in the above expression as i→ ∞ and by utilizing (2.4), we attain

limsup
q→∞

`λ

(
ξ2ai ,ξ2bi+1

)
≥ ε

κ
, for all λ> 0. (2.6)

From (`3), we acquire

`λ

(
ξ2ai−1,ξ2bi

)
≤ κ` λ

2
(ξ2ai−1,ξ2ai)+κ

2` λ
2

(
ξ2ai ,ξ2bi−2

)
+κ

3` λ
4

(
ξ2bi−2,ξ2bi−1

)
+κ

3` λ
4

(
ξ2bi−1,ξ2bi

)
.
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Again, by taking the limit as i→ ∞ and taking the expressions (2.4) and (2.5) into account, the above inequality provides that

limsup
k→∞

`λ

(
ξ2ai−1,ξ2bi

)
≤ κ

2
ε , for all λ> 0. (2.7)

Thereby, by (2.1), we procure

Σ
(
κ

3`λ

(
Γϖ2ai ,ϒϖ2bi+1

))
≤ G

(
Σ
(
Ξ
(
ϖ2ai ,ϖ2bi+1

))
,ϑ
(
Ξ
(
ϖ2ai ,ϖ2bi+1

)))
, (2.8)

where

Ξ
(
ϖ2ai ,ϖ2bi+1

)
= max

{
`λ

(
ζ ϖ2ai ,Jϖ2bi+1

)
+
∣∣`λ (ζ ϖ2ai ,Γϖ2ai)− `λ

(
Jϖ2bi+1,ϒϖ2bi+1

)∣∣ ;
`λ (ζ ϖ2ai ,Γϖ2ai)+

∣∣`λ

(
ζ ϖ2ai ,Jϖ2bi+1

)
− `λ

(
Jϖ2bi+1,ϒϖ2bi+1

)∣∣ ;
`λ

(
Jϖ2bi+1,ϒϖ2bi+1

)
+
∣∣`λ

(
ζ ϖ2ai ,Jϖ2bi+1

)
− `λ (ζ ϖ2ai ,Γϖ2ai)

∣∣ ;
1
2

[
`2λ (ζ ϖ2ai ,ϒϖ2bi+1)+`2λ (Jϖ2bi+1,Γϖ2ai)

κ
+
∣∣`λ (ζ ϖ2ai ,Γϖ2ai)− `λ

(
Jϖ2bi+1,ϒϖ2bi+1

)∣∣]}
= max

{
`λ

(
ξ2ai−1,ξ2bi

)
+
∣∣`λ

(
ξ2ai−1,ξ2bi

)
− `λ

(
ξ2ai ,ξ2bi+1

)∣∣ ;
`λ

(
ξ2ai−1,ξ2bi

)
+
∣∣`λ

(
ξ2ai−1,ξ2bi

)
− `λ

(
ξ2ai ,ξ2bi+1

)∣∣ ;
`λ

(
ξ2ai ,ξ2bi+1

)
+
∣∣`λ

(
ξ2ai−1,ξ2bi

)
− `λ

(
ξ2ai−1,ξ2bi

)∣∣ ;
1
2

[
`2λ (ξ2ai−1,ξ2bi+1)+`2λ (ξ2bi ,ξ2ai)

κ
+
∣∣`λ

(
ξ2ai−1,ξ2bi

)
− `λ

(
ξ2ai ,ξ2bi+1

)∣∣]} .
Also, by using (`3), we derive

`2λ

(
ξ2ai−1,ξ2bi+1

)
≤ κ

[
`λ

(
ξ2ai−1,ξ2bi

)
+ `λ

(
ξ2bi ,ξ2bi+1

)]
,

`2λ

(
ξ2bi ,ξ2ai

)
≤ κ

[
`λ

(
ξ2bi ,ξ2ai−1

)
+ `λ (ξ2ai−1,ξ2ai)

]
.

(2.9)

Consequently, we combine the inequalities (2.8) and (2.9), we deduce Ξ
(
ϖ2ai ,ϖ2bi+1

)
≤ `λ

(
ξ2ai−1,ξ2bi

)
, thence, we get

Σ
(
κ

3`λ

(
ξ2ai ,ξ2bi+1

))
≤ G

(
Σ
(
`λ

(
ξ2ai−1,ξ2bi

))
,ϑ
(
`λ

(
ξ2ai−1,ξ2bi

)))
. (2.10)

Now, by employing (2.6), (2.7), and (G1), if we take the limit as (i→ ∞) in (2.10), then we achieve

Σ

(
κ

3 ε

κ

)
≤ G

(
Σ
(
κ

2
ε
)
,ϑ
(
κ

2
ε
))
≤ Σ

(
κ

2
ε
)

which stands for

G
(
Σ
(
κ

2
ε
)
,ϑ
(
κ

2
ε
))

= Σ
(
κ

2
ε
)
,

hence, it must be either Σ
(
κ2ε
)
= 0 or ϑ

(
κ2ε
)
= 0. As κ ≥ 1 and ε > 0, it is a contradiction, that is,

{
ξ2q
}

is an `−Cauchy
sequence. Thus,

{
ξq
}

is an `−Cauchy sequence in S∗` . Since S∗` is an `−complete MbMS, there exists c ∈ S∗` such that

lim
q→∞

ξq = c. (2.11)

Now, we aim to show that Γc = ϒc = Jc = ζ c = c. Primarily, we prove that Γc = ζ c = c, that is, c is a common fixed point for
the maps Γ and ζ . The following statements are obvious.

lim
q→∞

ξ2q = lim
q→∞

Γϖ2q = lim
q→∞

Jϖ2q+1 = c,

lim
q→∞

ξ2q+1 = lim
q→∞

ϒϖ2q+1 = lim
q→∞

ζ ϖ2q+2 = c.

Considering the hypothesis, let ζ
(
S∗`
)

be a closed subset of S∗` , there exists u ∈ S∗` such that c = ζ u. We claim that Γu = c.
Let us replace ϖ and ξ in expression (2.1) with u and ϖ2q+1, respectively.

Σ
(
κ

3`λ

(
Γu,ϒϖ2q+1

))
≤ G

(
Σ
(
Ξ
(
u,ϖ2q+1

))
,ϑ
(
Ξ
(
u,ϖ2q+1

)))
,

where

Ξ
(
u,ϖ2q+1

)
= max

{
`λ

(
ζ u,Jϖ2q+1

)
+
∣∣`λ (ζ u,Γu)− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣;
`λ (ζ u,Γu)+

∣∣`λ

(
ζ u,Jϖ2q+1

)
− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣ ;
`λ

(
Jϖ2q+1,ϒϖ2q+1

)
+
∣∣`λ

(
ζ u,Jϖ2q+1

)
− `λ (ζ u,Γu)

∣∣ ;
1
2

[
`2λ (ζ u,ϒϖ2q+1)+`2λ (Jϖ2q+1,Γu)

κ
+
∣∣`λ (ζ u,Γu)− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣]}
= max

{
`λ

(
c,ξ2q

)
+
∣∣`λ (c,Γu)− `λ

(
ξ2q,ξ2q+1

)∣∣ ;
`λ (c,Γu)+

∣∣`λ

(
c,ξ2q

)
− `λ

(
ξ2q,ξ2q+1

)∣∣ ;
`λ

(
ξ2q,ξ2q+1

)
+
∣∣`λ

(
c,ξ2q

)
− `λ (c,Γu)

∣∣ ;
1
2

[
`2λ (c,ξ2q+1)+`2λ (ξ2q,Γu)

κ
+
∣∣`λ (c,Γu)− `λ

(
ξ2q,ξ2q+1

)∣∣]} .
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Also, by using (2.11) and (G1), if we take the limit as q→ ∞ in the above, and note that

`2λ

(
ξ2q,Γu

)
≤ κ

[
`λ

(
ξ2q,ξ2q+1

)
+ `λ

(
ξ2q+1,Γu

)]
,

we conclude Ξ
(
u,ϖ2q+1

)
≤ `λ (c,Γu). Hence, we obtain

Σ(`λ (Γu,c))≤ Σ
(
κ

3`λ (Γu,c)
)
≤ G (Σ(`λ (Γu,c)) ,ϑ (`λ (Γu,c)))≤ Σ(`λ (Γu,c)) ,

which implies the following

G (Σ(`λ (Γu,c)) ,ϑ (`λ (Γu,c))) = Σ(`λ (Γu,c)) .

Then, from (G2), either Σ(`λ (Γu,c)) = 0 or ϑ (`λ (Γu,c)) = 0, which yields `λ (Γu,c) = 0 ⇔ Γu= c. Therefore, Γu= ζ u= c.
Since the mappings Γ and ζ are weakly compatible, we have Γc = Γζ u = ζ Γu = ζ c. Next, we claim that Γc = c. Again, from
(2.1), we get

Σ
(
κ

3`λ

(
Γc,ϒϖ2q+1

))
≤ G

(
Σ
(
Ξ
(
c,ϖ2q+1

))
,ϑ
(
Ξ
(
c,ϖ2q+1

)))
,

where

Ξ
(
c,ϖ2q+1

)
= max

{
`λ

(
ζ c,Jϖ2q+1

)
+
∣∣`λ (ζ c,Γc)− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣;
`λ (ζ c,Γc)+

∣∣`λ

(
ζ c,Jϖ2q+1

)
− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣ ;
`λ

(
Jϖ2q+1,ϒϖ2q+1

)
+
∣∣`λ

(
ζ c,Jϖ2q+1

)
− `λ (ζ c,Γc)

∣∣ ;
1
2

[
`2λ (ζ c,ϒϖ2q+1)+`2λ (Jϖ2q+1,Γc)

κ
+
∣∣`λ (ζ c,Γc)− `λ

(
Jϖ2q+1,ϒϖ2q+1

)∣∣]}
= max

{
`λ

(
Γc,ξ2q

)
+
∣∣`λ (ζ c,Γc)− `λ

(
ξ2q,ξ2q+1

)∣∣ ;
`λ (ζ c,Γc)+

∣∣`λ

(
Γc,ξ2q

)
− `λ

(
ξ2q,ξ2q+1

)∣∣ ;
`λ

(
ξ2q,ξ2q+1

)
+
∣∣`λ

(
Γc,ξ2q

)
− `λ (ζ c,Γc)

∣∣ ;
1
2

[
`2λ (Γc,ξ2q+1)+`2λ (ξ2q,Γc)

κ
+
∣∣`λ (ζ c,Γc)− `λ

(
ξ2q,ξ2q+1

)∣∣]} .

Likewise, by utilizing (2.11), (G1) and noting

`2λ

(
ξ2q,Γc

)
≤ κ

[
`λ

(
ξ2q,ξ2q+1

)
+ `λ

(
ξ2q+1,Γc

)]
,

taking the limit as q→ ∞ in the above, we get

Ξ
(
c,ϖ2q+1

)
≤ `λ (Γc,c)

and, so

Σ(`λ (Γc,c))≤ Σ
(
κ

3`λ (Γc,c)
)
≤ G (Σ(Ξ(Γc,c)) ,ϑ (Ξ(Γc,c)))≤ Σ(Ξ(Γc,c)) .

Thus, we have

G (Σ(`λ (Γc,c)) ,ϑ (`λ (Γc,c))) = Σ(`λ (Γc,c)) .

By (G2), either Σ(`λ (Γc,c)) = 0 or ϑ (`λ (Γc,c)) = 0. This shows that Γc = c. The next step is to prove that c is the fixed
point of ϒ and J. Because Γ

(
S∗`
)
⊂ J

(
S∗`
)
, there is an element v in S∗` such that Γc = Jv. Then, Γc = Jv = ζ c = c. We claim

that ϒv = c. From (2.1)

Σ
(
κ

3`λ (Γc,ϒv)
)
≤ G (Σ(Ξ(c,v)) ,ϑ (Ξ(c,v))) ,

where

Ξ(c,v) = max{`λ (ζ c,Jv)+ |`λ (ζ c,Γc)− `λ (Jv,ϒv)|; `λ (ζ c,Γc)+ |`λ (ζ c,Jv)− `λ (Jv,ϒv)| ;
`λ (Jv,ϒv)+ |`λ (ζ c,Jv)− `λ (ζ c,Γc)| ; 1

2

[
`2λ (ζ c,ϒv)+`2λ (Jv,Γc)

κ
+ |`λ (ζ c,Γc)− `λ (Jv,ϒv)|

]}
= max{`λ (ζ c,c)+ |`λ (ζ c,c)− `λ (c,ϒv)| ; `λ (ζ c,c)+ |`λ (ζ c,c)− `λ (c,ϒv)| ;

`λ (c,ϒv)+ |`λ (ζ c,c)− `λ (ζ c,c)| ; 1
2

[
`2λ (c,ϒv)+`2λ (c,Γc)

κ
+ |`λ (c,Γc)− `λ (c,ϒv)|

]}
.

Note that `2λ (c,ϒv)≤ κ
[
`λ

(
c,ξ2q

)
+ `λ

(
ξ2q,ϒv

)]
, we get Ξ(c,v)≤ `λ (c,ϒv). Then, by using (G1), we have

Σ(`λ (c,ϒv))≤ Σ
(
κ3`λ (c,ϒv)

)
≤ G (Σ(`λ (c,ϒv)) ,ϑ (`λ (c,ϒv)))

≤ Σ(`λ (c,ϒv)) ,
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which implies

G (Σ(`λ (c,ϒv)) ,ϑ (`λ (c,ϒv))) = Σ(`λ (c,ϒv)) .

So, similar to the above, by using (G2), it is clear that ϒv = c. By the weak compatibility of the mappings ϒ and J, we achieve
that ϒc = ϒJv = JJv = Jc.
Finally, we demand that ϒc = c. Using from (2.1) we achieve

Σ
(
κ

3`λ (Γc,ϒc)
)
≤ G (Σ(Ξ(c,c)) ,ϑ (Ξ(c,c))) ,

where

Ξ(c,c) = max{`λ (ζ c,Jc)+ |`λ (ζ c,Γc)− `λ (Jc,ϒc)|; `λ (ζ c,Γc)+ |`λ (ζ c,Jc)− `λ (Jc,ϒc)| ;
`λ (Jc,ϒc)+ |`λ (ζ c,Jc)− `λ (ζ c,Γc)| ; 1

2

[
`2λ (ζ c,ϒc)+`2λ (Jc,Γc)

κ
+ |`λ (ζ c,Γc)− `λ (Jc,ϒc)|

]}
= max{`λ (c,ϒc)+ |`λ (c,c)− `λ (ϒc,ϒc)| ; `λ (ζ c,c)+ |`λ (ζ c,c)− `λ (c,ϒc)| ;

`λ (c,ϒv)+ |`λ (ζ c,c)− `λ (ζ c,c)| ; 1
2

[
`2λ (c,ϒc)+`2λ (ϒc,c)

κ
+ |`λ (c,c)− `λ (ϒc,ϒc)|

]}
.

Hence, this implies

Ξ(c,c) = max
{
`λ (ϒc,c) ,

`2λ (ϒc,c)
κ

}
= `λ (ϒc,c)

and from (G1), we obtain

Σ(`λ (c,ϒc))≤ Σ
(
κ

3`λ (ϒc,c)
)
≤ G (Σ(`λ (ϒc,c)) ,ϑ (`λ (ϒc,c)))≤ Σ(`λ (ϒc,c)) ,

which yields

G (Σ(`λ (c,ϒc)) ,ϑ (`λ (c,ϒc))) = Σ(`λ (c,ϒc)) .

Then, from(G2), one can conclude Γc = ϒc = ζ c = Jc = c. Since Γ
(
S∗`
)
⊂ J

(
S∗`
)

and ϒ
(
S∗`
)
⊂ ζ

(
S∗`
)
, similar calculations

can be done for the case in which J
(
S∗`
)
(or Γ

(
S∗`
)
, ϒ
(
S∗`
)
) is closed.

In conclusion, for the uniqueness of the common fixed point of Γ,ϒ, J, and ζ , suppose that c∗ is another common fixed point
of our mappings, that is, c∗ = Γc∗ = ϒc∗ = Jc∗ = ζ c∗ such that c 6= c∗. Then, from (2.1), we have

Σ
(
κ

3`λ (Γc,ϒc∗)
)
≤ G (Σ(Ξ(c,c∗)) ,ϑ (Ξ(c,c∗))) ,

where

Ξ(c,c∗) = max{`λ (ζ c,Jc∗)+ |`λ (ζ c,Γc)− `λ (Jc∗,ϒc∗)|; `λ (ζ c,Γc)+ |`λ (ζ c,Jc∗)− `λ (Jc∗,ϒc∗)| ;
`λ (Jc∗,ϒc∗)+ |`λ (ζ c,Jc∗)− `λ (ζ c,Γc)| ; 1

2

[
`2λ (ζ c,ϒc∗)+`2λ (Jc∗,Γc)

κ
+ |`λ (ζ c,Γc)− `λ (Jc∗,ϒc∗)|

]}
= max{`λ (c,c∗)+ |`λ (c,c)− `λ (c∗,c∗)| ; `λ (c,c)+ |`λ (c,c∗)− `λ (c∗,c∗)| ;

`λ (c∗,c∗)+ |`λ (c,c∗)− `λ (c,c)| ; 1
2

[
`2λ (c,c

∗)+`2λ (c
∗,c)

κ
+ |`λ (c,c)− `λ (c∗,c∗)|

]}
= max

{
`λ (c,c∗) ,

`2λ (c,c
∗)

κ

}
= `λ (c,c∗) .

Thus, by (G1), we get

Σ(`λ (c,c
∗))≤ Σ

(
κ

3`λ (c,c
∗)
)
≤ G (Σ(`λ (c,c

∗)) ,ϑ (`λ (c,c
∗)))≤ Σ(`λ (c,c

∗)) ,

which implies

G (Σ(`λ (c,c
∗)) ,ϑ (`λ (c,c

∗))) = Σ(`λ (c,c
∗)) .

Thereby, it is easy to show that c = c∗, which means that the common fixed point of Γ,ϒ, J, and ζ is unique.

Inferences drawn directly from the main result are presented below.

Corollary 2.3. Let S∗` be an `-complete MbMS with constant κ ≥ 1 and let Γ,ϒ : S∗` → S∗` be two self-mappings. Presume
that the following statements are satisfied:
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(i) There exist G ∈ C , Σ ∈Ω, and ϑ ∈Π such that

Σ
(
κ

3`λ (Γϖ ,ϒξ )
)
≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) ,

where

Ξ(ϖ ,ξ ) = max{`λ (ϖ ,ξ )+ |`λ (ϖ ,Γϖ)− `λ (ξ ,ϒξ )| ; `λ (ϖ ,Γϖ)+ |`λ (ϖ ,ξ )− `λ (ξ ,ϒξ )| ;
`λ (ξ ,ϒξ )+ |`λ (ϖ ,ξ )− `λ (ϖ ,Γϖ)| ; 1

2

[
`2λ (ϖ ,ϒξ )+`2λ (ξ ,Γϖ)

κ
+ |`λ (ϖ ,Γϖ)− `λ (ξ ,ζ ξ )|

]}
,

for all distinct ϖ ,ξ ∈ S∗` and for all λ > 0.
(ii) The conditions (M1) and (M2) are provided.

Then, Γ and ϒ admit a common unique fixed point in S∗` .

If we distinguish Γ = ϒ in Corollary 2.3, we yield the below one.

Corollary 2.4. Let S∗` be an `-complete MbMS with coefficient κ ≥ 1 and let Γ : S∗` → S∗` be a mapping. Presume that the
following circumstances are satisfied:

(i) There exist G ∈ C , Σ ∈Ω, and ϑ ∈Π such that

Σ
(
κ

3`λ (Γϖ ,Γξ )
)
≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) ,

where

Ξ(ϖ ,ξ ) = max{`λ (ϖ ,ξ )+ |`λ (ϖ ,Γϖ)− `λ (ξ ,Γξ )| ; `λ (ϖ ,Γϖ)+ |`λ (ϖ ,ξ )− `λ (ξ ,Γξ )| ;
`λ (ξ ,Γξ )+ |`λ (ϖ ,ξ )− `λ (ϖ ,Γϖ)| ; 1

2

[
`2λ (ϖ ,Γξ )+`2λ (ξ ,Γϖ)

κ
+ |`λ (ϖ ,Γϖ)− `λ (ξ ,Γξ )|

]}
,
(2.12)

for all distinct ϖ ,ξ ∈ S∗` and for all λ > 0.
(ii) The conditions (M1) and (M2) are provided.

Then Γ possesses a unique fixed point in S∗` .

Also, we get the following corollary if we choose G (p,q) = p−q for all p,q ∈ [0,∞) in Corollary 2.4.

Corollary 2.5. Let S∗` be an `-complete MbMS with constant κ ≥ 1 and let Γ : S∗` → S∗` be a mapping. Presume that the
below statements hold:

(i) There exist Σ ∈Ω and ϑ ∈Π such that

Σ
(
κ

3`λ (Γϖ ,Γξ )
)
≤ Σ(Ξ(ϖ ,ξ ))−ϑ (Ξ(ϖ ,ξ )) ,

where Ξ(ϖ ,ξ ) is as in (2.12), for all distinct ϖ ,ξ ∈ S∗` and for all λ > 0.
(ii) The conditions (M1) and (M2) are provided.

Then, Γ holds a unique fixed point in S∗` .

If we choose that G (p,q) = kp, k ∈ (0,1), for all p ∈ [0,∞), then we possess the below one.

Corollary 2.6. Let S∗` be an `-complete MbMS with κ ≥ 1 and let Γ : S∗` → S∗` be a mapping. Presume that the following
conditions hold:

(i) There exist Σ ∈Ω and k ∈ (0,1) such that

Σ
(
κ

3`λ (Γϖ ,Γξ )
)
≤ kΣ(Ξ(ϖ ,ξ )) ,

where Ξ(ϖ ,ξ ) is defined as in (2.12) and for all ϖ ,ξ ∈ S∗` and λ > 0.
(ii) The conditions (M1) and (M2) are provided.

Thus, Γ admits a unique fixed point in S∗` .
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3. An application to graph theory

Let S∗` be an `-complete MbMS with κ ≥ 1, and let consider: Λ =
{
(ϖ ,ϖ) : ϖ ∈ S∗`

}
, which denotes the diagonal of the

Cartesian product S∗` ×S∗` . Also, let H be a directed graph such that

• V (H) : vertices coincide with S∗` ,
• B(H) : edges contain all loops such that Λ⊆ B(H).

The pair (V (H) ,B(H)) could be displayed as the graph H. The following set

B
(
H−1)= { (ϖ ,ξ ) ∈ S∗` ×S∗` | (ξ ,ϖ) ∈ B(H)} ,

is identified where H−1 is obtained in the graph H by reversing the direction of edges and called conversion of H. The graph
H can be called an undirected graph, which denotes H̃, in case of the direction is ignored and so, we get

B
(
H̃
)
= B(H)∪B

(
H−1) .

Let K be a subgraph of a graph H such that V (K) ⊆ V (H) and B(K) ⊆ B(H). If ϖ and ξ be vertices in a graph H, then
a path from ϖ to ξ of length j ∈ N is a sequence (ϖ j), which has j+ 1 distinct vertices such that ϖ = ϖ0,ϖ1, ...,ϖ j and
(ϖi−1,ϖi) ∈ B(H) for i = 1, . . . , j.

Also, H is called a “connected graph” if there is a path between two vertices. Moreover, H is a “weakly connected graph”,
provided that H̃ is connected. For more detail about the graph theory, see [27]-[29].

Definition 3.1. Let Γ : S→ S be a mapping on a metric space (S,m). Presume that the followings hold:

(i) (ϖ ,ξ ) ∈ B(H) ⇒ (Γϖ ,Γξ ) ∈ B(H) , f or all ϖ ,ξ ∈ S,
(ii) m(Γϖ ,Γξ )≤ µm(ϖ ,ξ ) , f or all (ϖ ,ξ ) ∈ B(H) , and µ ∈ (0,1).

Then, Γ is called a Banach H-contraction mapping on S.

Let S∗` be an MbMS endowed with a graph H and Γ : S∗` → S∗` . We set

S∗`
Γ = {ϖ ∈ S∗` |(ϖ ,Γϖ) ∈ B(H)} .

We present a new concept using the graph structure entitled G (Σ,ϑ ,Ξ)-graphic contraction, as noted below.

Definition 3.2. Let S∗` be an MbMS endowed with a graph H. Presume that the following statements are provided:

(i) Γ preserves edges of H, i.e.,

(ϖ ,ξ ) ∈ B(H) ⇒ (Γϖ ,Γξ ) ∈ B(H)

for all ϖξ ∈ S∗` .
(ii) There exists a G ∈ C , Σ ∈Ω, and ϑ ∈Π such that

Σ
(
κ

3`λ (Γϖ ,Γξ )
)
≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) , (3.1)

where

Ξ(ϖ ,ξ ) = max{`λ (ϖ ,ξ )+ |`λ (ϖ ,Γϖ)− `λ (ξ ,Γξ )| ; `λ (ϖ ,Γϖ)+ |`λ (ϖ ,ξ )− `λ (ξ ,Γξ )| ;
`λ (ξ ,Γξ )+ |`λ (ϖ ,ξ )− `λ (ϖ ,Γϖ)| ; 1

2

[
`2λ (ϖ ,Γξ )+`2λ (ξ ,Γϖ)

κ
+ |`λ (ϖ ,Γϖ)− `λ (ξ ,Γξ )|

]}
,

for all ϖ ,ξ ∈ B(H), and λ > 0.

Then, Γ is called a G (Σ,ϑ ,Ξ)-graphic contraction on S∗` .

Theorem 3.3. Let S∗` be an `−complete MbMS endowed with a graph H and Γ : S∗` → S∗` be a mapping. Assume that the
circumstances below hold:

(i) There exists ϖ0 ∈ S∗`
Γ,

(ii) Γ is a G (Σ,ϑ ,Ξ)−graphic contraction,
(iii) If {ϖk} is a sequence in S∗` such that lim

k→∞
`λ (ϖk,ϖ

∗) = 0 and (ϖk,ϖk+1)∈ B(H), then there exists a subsequence {ϖks}
of {ϖk} such that (ϖks ,ϖ

∗) ∈ B(H),
(iv) H is a weakly connected graph.

Then, by the conditions (M1) and (M2), Γ holds a unique fixed point in S∗` .
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Proof. Define the sequence {ϖk} in S∗` by ϖk+1 = Γϖk for all k ∈ N. From (i), since ϖ0 ∈ S∗`
Γ; we have (ϖ0,Γϖ0) ∈ B(H) .

If we denote ϖ1 = Γϖ0, then

(ϖ0,Γϖ0) = (ϖ0,ϖ1) ∈ B(G) .

Because Γ preserves the edges of H, the following expression is provided:

(ϖ0,ϖ1) ∈ B(H) ⇒ (Γϖ0,Γϖ1) ∈ B(H) .

Continuing this way, we procure

(ϖk,ϖk+1) ∈ B(H) .

So, from Corollary 2.4, we get {ϖk} is an `−Cauchy sequence in S∗` . Because S∗` is an `−complete space, there exists ϖ∗ ∈ S∗`
such that

lim
k→∞

`λ (ϖk,ϖ
∗) = 0. (3.2)

Now, we show that ϖ∗ is a fixed point of Γ. Using (iii), we have (ϖks ,ϖ
∗) ∈ B(H). Then, from (3.1), we obtain

Σ
(
κ

3`λ (Γϖks ,Γϖ
∗)
)
≤ G (Σ(B(ϖks ,ϖ

∗)) ,ϑ (B(ϖks ,ϖ
∗))) , (3.3)

where

Ξ(ϖks ,ϖ
∗) = max{`λ (ϖks ,ϖ

∗)+ |`λ (ϖks ,Γϖks)− `λ (ϖ
∗,Γϖ∗)| ;

`λ (ϖks ,Γϖks)+ |`λ (ϖks ,ϖ
∗)− `λ (ϖ

∗,Γϖ∗)| ;
`λ (ϖ

∗,Γϖ∗)+ |`λ (ϖks ,ϖ
∗)− `λ (ϖks ,Γϖks)| ;

1
2

[
`2λ (ϖks ,Γϖ∗)+`2λ (ϖ∗,Γϖks)

κ
+ |`λ (ϖks ,Γϖks)− `λ (ϖ

∗,Γϖ∗)|
]}

= max{`λ (ϖks ,ϖ
∗)+ |`λ (ϖks ,ϖks−1)− `λ (ϖ

∗,Γϖ∗)| ;
`λ (ϖks ,ϖks−1)+ |`λ (ϖks ,ϖ

∗)− `λ (ϖ
∗,Γϖ∗)| ;

`λ (ϖ
∗,Γϖ∗)+ |`λ (ϖks ,ϖ

∗)− `λ (ϖks ,ϖks−1)| ;
1
2

[
`2λ (ϖks ,Γϖ∗)+`2λ (ϖ∗,ϖks−1)

κ
+ |`λ (ϖks ,ϖks−1)− `λ (ϖ

∗,Γϖ∗)|
]}

.

(3.4)

Taking the limit as s→ ∞ in (3.3) and (3.4) and by employing (3.2) and (G1), we deduce that

Σ(`λ (ϖ
∗,Γϖ

∗))≤ Σ
(
κ

3`λ (ϖ
∗,Γϖ

∗)
)
≤ G (Σ(`λ (ϖ

∗,Γϖ
∗)) ,ϑ (`λ (ϖ

∗,Γϖ
∗)))≤ Σ(`λ (ϖ

∗,Γϖ
∗)) ,

and as a consequence, the subsequent term is found.

G (Σ(`λ (ϖ
∗,Γϖ

∗)) ,ϑ (`λ (ϖ
∗,Γϖ

∗))) = Σ(`λ (ϖ
∗,Γϖ

∗)) .

Using the properties of G , we say that ϖ∗ = Γϖ∗, that is, ϖ∗ is a fixed point of Γ.
Next, we show that ϖ∗ is a unique fixed point of Γ. Let w be another fixed point of Γ, i.e., w = Γw, there exists r ∈ S∗` such
that (ϖ∗,r) ∈ B(H) and (r,w) ∈ B(H) . Using (iv), we have (ϖ∗,w) ∈ B(H) .
Thence, from (3.2), we achieve

Σ
(
κ

3`λ (Γϖ
∗,Γw)

)
≤ G (Σ(Ξ(ϖ∗,w)) ,ϑ (Ξ(ϖ∗,w))) , (3.5)

where

Ξ(ϖ∗,w) = max{`λ (ϖ
∗,w)+ |`λ (ϖ

∗,Γϖ∗)− `λ (w,Γw)| ; `λ (ϖ
∗,Γϖ∗)+ |`λ (ϖ

∗,w)− `λ (w,Γw)| ;
`λ (w,Γw)+ |`λ (ϖ

∗,w)− `λ (ϖ
∗,Γϖ∗)| ; 1

2

[
`2λ (ϖ

∗,Γw)+`2λ (w,Γϖ∗)
κ

+ |`λ (ϖ
∗,Γϖ∗)− `λ (w,Γw)|

]}
.

(3.6)

Together with (3.5) and (3.6), also applying the features of the functions G ,Σ,ϑ , we yield that ϖ∗ = w, hence ϖ∗ is a unique
fixed point of Γ.

4. Application to integral type contractions

This section consists of a common fixed point theorem, including integral type contraction and some consequences, which can
be obtained by applying particular expressions in the main result.

Definition 4.1. Let Θ := {µ : R+→ R+| µ Lebesgue integrable mapping} be a class of mappings satisfying the followings:
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(µ1) µ is non-negative and summable function;
(µ2) for all ε > 0

ε∫
0

µ (ρ)dρ > 0.

In what follows, Branciari [30] demonstrated a fixed point theorem regarding a contractive condition of integral type.

Theorem 4.2. [30] Let Γ be a self-mapping on a complete metric space (S,m), and there exists k ∈ (0,1) and µ ∈Θ. If for
ϖ ,ξ ∈ S

m(Γϖ ,Γξ )∫
0

µ (ρ)dρ ≤ k

m(ϖ ,ξ )∫
0

µ (ρ)dρ

is satisfied, then Γ possesses a unique fixed point in (S,m).

Subsequently, numerous studies have been done about the consequence of Branciari with some known properties. In [31],
Azadifar et al. verified that a common fixed point theorem was satisfying a contractive condition of integral type in the sense of
modular metric spaces.
Now, we construct our main result of this section by defining the G (Σ,ϑ ,Ξ)−contraction of integral type, as indicated below.

Definition 4.3. Let S∗` be an MbMS with the coefficient κ ≥ 1 and let Γ,ϒ,J,ζ : S∗` → S∗` be mappings. The mappings Γ,ϒ,J
and ζ are called G (Σ,ϑ ,Ξ)-contraction of integral type, if there exist G ∈ C , Σ ∈Ω, ϑ ∈Π, and µ ∈Θ such that

Σ

κ
3

` λ
c
(Γϖ ,ϒξ )∫
0

µ (ρ)dρ

≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) , (4.1)

where

Ξ(ϖ ,ξ ) = max


` λ

l
(ζ ϖ ,Jξ )∫

0
µ (ρ)dρ +

∣∣∣∣∣∣
` λ

l
(ζ ϖ ,Γϖ)∫

0
µ (ρ)dρ−

` λ
l
(Jξ ,ϒξ )∫

0
µ (ρ)dρ

∣∣∣∣∣∣ ;
` λ

l
(ζ ϖ ,Γϖ)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣
` λ

l
(ζ ϖ ,Jξ )∫

0
µ (ρ)dρ−

` λ
l
(Jξ ,ϒξ )∫

0
µ (ρ)dρ

∣∣∣∣∣∣ ;
` λ

l
(Jξ ,ϒξ )∫

0
µ (ρ)dρ +

∣∣∣∣∣∣
` λ

l
(ζ ϖ ,Jξ )∫

0
µ (ρ)dρ−

` λ
l
(ζ ϖ ,Γϖ)∫

0
µ (ρ)dρ

∣∣∣∣∣∣ ;

1
2


` 2λ

l
(ζ ϖ ,ϒξ )∫
0

µ(ρ)dρ+

` 2λ
l

(Jξ ,Γϖ)∫
0

µ(ρ)dρ

κ
+

∣∣∣∣∣∣
` λ

l
(ζ ϖ ,Γϖ)∫

0
µ (ρ)dρ−

` λ
l
(Jξ ,ϒξ )∫

0
µ (ρ)dρ

∣∣∣∣∣∣


for all distinct ϖ ,ξ ∈ S∗` , for c, l ∈ R+, c > l and for all λ > 0.

Theorem 4.4. Let S∗` be an `−complete MbMS with coefficient κ ≥ 1. Assume that the following statements hold:

(i) Γ,ϒ,J and ζ be a G (Σ,ϑ ,Ξ)−contraction such that Γ
(
S∗`
)
⊂ J

(
S∗`
)

and ϒ
(
S∗`
)
⊂ ζ

(
S∗`
)
,

(ii) One of the sets Γ
(
S∗`
)
,J
(
S∗`
)
,ϒ
(
S∗`
)

and ζ
(
S∗`
)

is a closed subset of S∗` ,
(iii) The pairs {J,ϒ} and {ζ ,Γ} are weakly compatible.

Under the conditions (M1) and (M2), the mappings Γ, ϒ, J, and ζ admit a unique common fixed point in S∗` .

Proof. Let ϖ0 ∈ S∗` be an arbitrary point and similar to the proof of Theorem 2.2, we construct a sequence
{

ξq
}

in S∗` such that

ξ2q = Γϖ2q = Jϖ2q+1, ξ2q+1 = ϒϖ2q+1 = ζ ϖ2q+2.
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From (4.1), we get

Σ

κ
3

` λ
c
(Γϖ2q,ϒϖ2q+1)∫

0

µ (ρ)dρ

≤ G
(
Σ
(
Ξ
(
ϖ2q,ϖ2q+1

))
,ϑ
(
Ξ
(
ϖ2q,ϖ2q+1

)))
,

where

Ξ
(
ϖ2q,ϖ2q+1

)
= max


` λ

l
(ζ ϖ2q,Jϖ2q+1)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ζ ϖ2q,Γϖ2q)∫

0
µ (ρ)dρ−

` λ
l
(Jϖ2q+1,ϒϖ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ζ ϖ2q,Γϖ2q)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ζ ϖ2q,Jϖ2q+1)∫

0
µ (ρ)dρ−

` λ
l
(Jϖ2q+1,ϒϖ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(Jϖ2q+1,ϒϖ2q+1)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ζ ϖ2q,Jϖ2q+1)∫

0
µ (ρ)dρ−

` λ
l
(ζ ϖ2q,Γϖ2q)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;

1
2


` 2λ

l
(ζ ϖ2q ,ϒϖ2q+1)∫

0
µ(ρ)dρ+

` 2λ
l
(Jϖ2q+1 ,Γϖ2q)∫

0
µ(ρ)dρ

κ
+

∣∣∣∣∣∣∣
` λ

l
(ζ ϖ2q,Γϖ2q)∫

0
µ (ρ)dρ−

` λ
l
(Jϖ2q+1,ϒϖ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣



= max


` λ

l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ−

` λ
l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ−

` λ
l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ−

` λ
l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;

1
2


` 2λ

l
(ξ2q−1 ,ξ2q+1)∫

0
µ(ρ)dρ+

` 2λ
l
(ξ2q ,ξ2q)∫

0
µ(ρ)dρ

κ
+

∣∣∣∣∣∣∣
` λ

l
(ξ2q−1,ξ2q)∫

0
µ (ρ)dρ−

` λ
l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣

 .

Now, we accept σq =

` λ
c
(ξq−1,ξq)∫

0
µ (ρ)dρ, and σ∗q =

` λ
l
(ξq−1,ξq)∫

0
µ (ρ)dρ with c > l and suppose that σ∗

2q+1
≥ σ∗

2q
. Again,

similar to the proof of Theorem 2.2 and by using (G1), we obtain

Σ

(
σ
∗
2q+1

)
≤ Σ

(
σ2q+1

)
≤ Σ

(
κ

3
σ2q+1

)
≤ G

(
Σ

(
σ
∗
2q+1

)
,ϑ
(

σ
∗
2q+1

))
≤ Σ

(
σ
∗
2q+1

)
.

From the properties of G , we have a contradiction. Then, we get σ∗
2q+1

< σ∗
2q such that Ξ

(
ϖ2q,ϖ2q+1

)
= 2σ∗

2q
−σ∗

2q+1
.

Also, in a similar way, we yield that σ∗
2q
< σ∗

2q−1
. So, it ensures that σ∗

q+1
< σ∗q such that

σ
∗
q =


` λ

l
(ξq−1,ξq)∫

0

µ (ρ)dρ


is a non-increasing sequence of non-negative real numbers and so the following sequence

` λ
l
(ξq−1,ξq)∫

0

µ (ρ)dρ
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converges to a non-negative number r. We shall prove that r = 0. By the same argument, we conclude that

Σ
(
σ2q+1

)
≤ Σ

(
κ

3
σ2q+1

)
≤ G

(
Σ

(
2σ
∗
2q
−σ

∗
2q+1

)
,ϑ
(

2σ
∗
2q
−σ

∗
2q+1

))
≤ Σ

(
2σ
∗
2q
−σ

∗
2q+1

)
.

If we take the limit above, we gain

Σ(r)≤ G (Σ(r) ,ϑ (r))≤ Σ(r) ,

and consequently, G (Σ(r) ,ϑ (r)) = Σ(r) . Then, from (G2), either Σ(r) = 0 or ϑ(r) = 0. This implies that r = 0, that is,
`λ (ξq−1,ξq)∫

0
µ (ρ)dρ → 0, as q→ ∞. It follows that

`λ

(
ξq−1,ξq

)
→ 0 , (q→ ∞) .

In the next step, we demonstrate that
{

ξq
}

is an `−Cauchy sequence. It is enough to achieve that
{

ξ2q
}

is an `−Cauchy
sequence. If it is not, then we can find ε > 0 such that there exist two sequences {ai} and {bi} of positive integers satisfying
bi > ai ≥ i such that bi is the smallest index for which

` λ
l

(
ξ2ai ,ξ2bi

)
≥ ε, and ` λ

l

(
ξ2ai ,ξ2bi−2

)
< ε, for all λ > 0.

Note that ε ≤ ` λ

l

(
ξ2ai ,ξ2bi

)
≤ ` λ

c

(
ξ2ai ,ξ2bi

)
and continuing as in the proof of Theorem 2.2, we deduce that

Σ

` λ
c
(ξ2ai ,ξ2bi+1)∫

0
µ (ρ)dρ

≤ Σ

κ3
` λ

c
(ξ2ai ,ξ2bi+1)∫

0
µ (ρ)dρ



≤ G

Σ

` λ
l
(ξ2ai−1,ξ2bi)∫

0
µ (ρ)dρ

 ,ϑ

` λ
l
(ξ2ai−1,ξ2bi)∫

0
µ (ρ)dρ




≤ Σ

` λ
l
(ξ2ai−1,ξ2bi)∫

0
µ (ρ)dρ

 .

Nevertheless, the above inequality causes a contradiction, that is,
{

ξ2q
}

is an `−Cauchy sequence. Thus,
{

ξq
}

is an `−Cauchy
sequence in S∗` . Since S∗` is `−complete MbMS, there exists z ∈ S∗` such that

lim
q→∞

ξq = z.

Now, we shall prove that Γz = ϒz = Jz = ζ z = z. Indeed, we only need to show that Γz = ζ z = z. Also, similar to Theorem
2.2, it is clear that z is a common fixed point of ϒ and J. Assuming that ζ

(
S∗`
)

is a closed subset of S∗` , there is u ∈ S∗` such
that z = ζ u. We claim that Γu = z. From (4.1), we have

Σ

κ
3

` λ
c
(Γu,ϒϖ2q+1)∫

0

µ (ρ)dρ

≤ G
(
Σ
(
Ξ
(
u,ϖ2q+1

))
,ϑ
(
Ξ
(
u,ϖ2q+1

)))
,
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where

Ξ
(
u,ϖ2q+1

)
= max


` λ

l
(z,ξ2q)∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(z,Γu)∫
0

µ (ρ)dρ−
` λ

l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(z,Γu)∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(z,ξ2q)∫
0

µ (ρ)dρ−
` λ

l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(z,ξ2q)∫
0

µ (ρ)dρ−
` λ

l
(z,Γu)∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;

1
2


` 2λ

l
(z,ξ2q+1)∫

0
µ(ρ)dρ+

` 2λ
l
(ξ2q ,Γu)∫

0
µ(ρ)dρ

κ
+

∣∣∣∣∣∣∣
` λ

l
(z,Γu)∫
0

µ (ρ)dρ−
` λ

l
(ξ2q,ξ2q+1)∫

0
µ (ρ)dρ

∣∣∣∣∣∣∣

 .

Step by step, similar to the proof of Theorem 2.2, we obtain

Σ

` λ
l
(Γu,z)∫
0

µ (ρ)dρ

≤ Σ

` λ
c
(Γu,z)∫
0

µ (ρ)dρ

≤ Σ

κ3
` λ

c
(Γu,z)∫
0

µ (ρ)dρ



≤ G

Σ

` λ
l
(Γu,z)∫
0

µ (ρ)dρ

 ,ϑ

` λ
l
(Γu,z)∫
0

µ (ρ)dρ



≤ Σ

` λ
l
(Γu,z)∫
0

µ (ρ)dρ

 .

Hence, from (G2), we achieve that Γu= ζ u= z. Since the maps Γ and ζ are weakly compatible, we have Γz=Γζ u= ζ Γu= ζ z.
In another step, we show that Γz = z. However, it can be shown similar to the above proof. So Γz = ζ z = z is procured.
Finally, for the uniqueness, we assume that w be another common fixed point, i.e., Γw = ϒw = Jw = ζ w such that z 6= w. Then,
from (4.1), we get

Σ

κ
3

` λ
c
(Γz,ϒw)∫
0

µ (ρ)dρ

≤ G (Σ(Ξ(z,w)) ,ϑ (Ξ(z,w))) ,

and it is straightforward that Ξ(z,w) =

` λ
l
(z,w)∫
0

µ (ρ)dρ. Thereupon, we get

Σ

` λ
l
(z,w)∫
0

µ (ρ)dρ

≤ Σ

` λ
c
(z,w)∫
0

µ (ρ)dρ

≤ Σ

κ3
` λ

c
(z,w)∫
0

µ (ρ)dρ



≤ G

Σ

` λ
l
(z,w)∫
0

µ (ρ)dρ

 ,ϑ

` λ
l
(z,w)∫
0

µ (ρ)dρ



≤ Σ

` λ
l
(z,w)∫
0

µ (ρ)dρ

 .

Hence, from the properties of the function G , z = w is gained as a unique common fixed point of Γ, ϒ, J and ζ .
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Some conclusions can be drawn from the main result of this section are given.

Corollary 4.5. Let S∗` be an `-complete MbMS with constant κ ≥ 1 and let Γ and ϒ be self mappings in S∗` . The following
statements hold:

(i) There exist G ∈ C , Σ ∈Ω, ϑ ∈Π, and µ ∈Θ such that

Σ

κ
3

` λ
c
(Γϖ ,ϒξ )∫
0

µ (ρ)dρ

≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) ,

where

Ξ(ϖ ,ξ ) = max


` λ

l
(ϖ ,ξ )∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ−
` λ

l
(ξ ,ϒξ )∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ϖ ,ξ )∫
0

µ (ρ)dρ−
` λ

l
(ξ ,ϒξ )∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ξ ,ϒξ )∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ϖ ,ξ )∫
0

µ (ρ)dρ−
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;

1
2


` 2λ

l
(ϖ ,ϒξ )∫
0

µ(ρ)dρ+

` 2λ
l

(ξ ,Γϖ)∫
0

µ(ρ)dρ

κ
+

∣∣∣∣∣∣∣
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ−
` λ

l
(ξ ,ϒξ )∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣

 ,

for all distinct ϖ ,ξ ∈ S∗` , for c, l ∈ R+, c > l and for all λ > 0.
(ii) (M1) and (M2) are provided.

The mappings Γ and ϒ admit a unique common fixed point in S∗` .

By choosing Γ = ϒ in Corollary 4.5, we obtain the following one.

Corollary 4.6. Let S∗` be an `-complete MbMS with coefficient κ ≥ 1 and let Γ : S∗` → S∗` be a mapping. Suppose that the
following circumstances are satisfied:

(i) There exists G ∈ C , Σ ∈Ω, ϑ ∈Π and µ ∈Θ such that

Σ

κ
3

` λ
c
(Γϖ ,Γξ )∫
0

µ (ρ)dρ

≤ G (Σ(Ξ(ϖ ,ξ )) ,ϑ (Ξ(ϖ ,ξ ))) ,
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where

Ξ(ϖ ,ξ ) = max


` λ

l
(ϖ ,ξ )∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ−
` λ

l
(ξ ,Γξ )∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ϖ ,ξ )∫
0

µ (ρ)dρ−
` λ

l
(ξ ,Γξ )∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;
` λ

l
(ξ ,Γξ )∫
0

µ (ρ)dρ +

∣∣∣∣∣∣∣
` λ

l
(ϖ ,ξ )∫
0

µ (ρ)dρ−
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣ ;

1
2


` 2λ

l
(ϖ ,Γξ )∫
0

µ(ρ)dρ+

` 2λ
l

(ξ ,Γϖ)∫
0

µ(ρ)dρ

κ
+

∣∣∣∣∣∣∣
` λ

l
(ϖ ,Γϖ)∫
0

µ (ρ)dρ−
` λ

l
(ξ ,Γξ )∫
0

µ (ρ)dρ

∣∣∣∣∣∣∣

 ,

(4.2)

for all distinct ϖ ,ξ ∈ S∗` , for c, l ∈ R+, c > l and for all λ > 0.
(ii) The conditions (M1) and (M2) are provided.

The mapping Γ holds a unique fixed point in S∗` .

Besides, we attain the following consequence if we perceive G (p,q) = p−q for all p,q ∈ [0,∞) in Corollary 4.6.

Corollary 4.7. Let S∗` be an `-complete MbMS with coefficient κ ≥ 1 and let Γ : S∗` → S∗` be a mapping. Assume that the
following statements hold:

(i) There exist Σ ∈Ω, ϑ ∈Π and µ ∈Θ such that

Σ

κ
3

` λ
c
(Γϖ ,Γξ )∫
0

µ (ρ)dρ

≤ Σ(Ξ(ϖ ,ξ ))−ϑ (Ξ(ϖ ,ξ )) ,

where Ξ(ϖ ,ξ ) is defined as in (4.2) and for all distinct ϖ ,ξ ∈ S∗` , for c, l ∈ R+, c > l and for all λ > 0.
(ii) The condition (M1) and (M2) are provided.

Then, Γ admits a unique fixed point in S∗` .

If we constitute G (p,q) = kp, k ∈ (0,1) for all p ∈ [0,∞), then we get the below one.

Corollary 4.8. Let S∗` be an `-complete MbMS with κ ≥ 1 and let Γ : S∗` → S∗` be a mapping. Assume that the following ones
hold:

(i) There exists Σ ∈Ω and µ ∈Θ such that

Σ

κ
3

` λ
c
(Γϖ ,Γξ )∫
0

µ (ρ)dρ

≤ kΣ(Ξ(ϖ ,ξ )) ,

where Ξ(ϖ ,ξ ) is defined as in (4.2) and for all distinct ϖ ,ξ ∈ S∗` , c, l ∈ R+, c > l for all λ > 0.
(ii) The conditions (M1) and (M2) are provided.

Then, we yield that Γ admits a unique fixed point S∗` .

5. Conclusion

Consequently, we extended the results of Fulga and Proca [19, 20] and [23, 24] to modular b−metric space via C−class
functions for four mappings and examined that our results can be applied to graph structure and integral type contractions. In
the meantime, our consequences are still valid in the case of

Ξ(ϖ ,ξ ) = `λ (ϖ ,ξ )+ |`λ (ϖ ,Γϖ)− `λ (ξ ,Γξ )| .

Moreover, by taking κ = 1, the obtained conclusions for MbMS are valid in the setting of modular metric space.
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Abstract

In this work, we consider the finite ring F2 + uF2 + vF2, u2 = 1,v2 = 0, u · v = v · u = 0
which is not Frobenius and chain ring. We studied constacyclic and negacyclic codes in
F2+uF2+vF2 with odd length. These codes are compared with codes that had priorly been
obtained on the finite field F2. Moreover, we indicate that the Gray image of a constacyclic
and negacyclic code over F2 +uF2 + vF2 with odd length n is a quasicyclic code of index
4 with length 4n in F2. In particular, the Gray images are applied to two different rings
S1 = F2 + vF2, v2 = 0 and S2 = F2 +uF2, u2 = 1 and negacyclic and constacyclic images
of these rings are also discussed.

1. Introduction

The fundamental problem in coding theory, such as distance, polynomial representation over codes, weight, etc. were
examined in [1]. The Gray images of cyclic and negacyclic codes defined on Z4 were studied, and their relationships on
Z2 were researched in [2]. In [3], differently in the previously studied the ring Z4, the images of the (1+u)− constacyclic
codes on the finite chain ring F2 +uF2 were studied in the case u2 = 0, and the relationship of cyclic codes between this ring
and field F2 has been mentioned. Moreover, in [4] gray images of (1+u2)− constacyclic codes on F2 +uF2 +u2F2 with 8
elements were given on the field F2 by the same authors in [3]. X. Xiaofang [5] investigated (1+ v)− constacyclic codes over
F2 +uF2 +vF2,u2 = v2 = 0,v ·u = u ·v = 0, and (1+v)−constacyclic codes in F2 +uF2 +vF2 of odd length were described
through cyclic codes over F2 +uF2 + vF2.

In this study, unlike in [6], we take the properties of the variables in the ring structure differently. Therefore, a different ring
structure emerged. In the next section, we give the primary form of the ring and define the Gray transformations. In the third
section, we show that the images of the codes on this ring correspond to codes in the finite rings. Finally, in the last part, we
also match the codes found to codes on F2.

2. Preliminaries

We denote R = F2 +uF2 + vF2 as a ring with characteristic 2, where u2 = 1,v2 = 0,u · v = v ·u = 0. It is clearly see that
F2 +uF2 + vF2 ∼= F2[u,v]/〈u2 = 1,v2 = 0,u · v = v ·u = 0〉. Consider R = F2 +uF2 + vF2 = {0,1,u,1+u,v,1+ v,u+ v,1+
u+ v}. Thus R is a ring under ”+ ” and ”.” operations. Also, 1 and 1+ v are units in R, and all the ideals of R can be given
by {0} = I0, Iu, Iv, Iu+v, I1+u = I1+u+v, I1+v = R. We consider R as a natural extension of S1 = F2 + vF2, v2 = 0. Thus,
S1 ∼= F2[v]/〈v2〉. Then, the elements of S1 are 0,1,v,1+ v where the units in S1 are 1 and 1+ v. We consider R as a natural

Email addresses and ORCID numbers: mustafaozkan@trakya.edu.tr, 0000-0001-7398-8564 (M. Özkan), berkyenice@yandex.com, 0000-0002-
7370-6376 (B. Yenice), tugba.guroglu@cbu.edu.tr, 0000-0001-9306-0296 (A.T. Güroğlu)
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extension of S2 = F2 +uF2, u2 = 1. Therefore, S2 ∼= F2[u]/〈u2〉. The elements of S2 are 0,1,u and 1+u. Then, the only units
in S2 are 1 and u. Let us take C as a linear code with length n over R (Sn

1 or Sn
2). Thus C is a R (Sn

1 or Sn
2) submodule of Rn (Sn

1
or Sn

2). If D is a linear code with length n in F2, in this case, D is a F2 subvector space Fn
2. An element of C and D is called a

codeword.

Let Γ1 denote the Gray map on R (see [6]).

Γ1 : R 7→ S2
1

a+ub+ vc 7→ Γ1(a+ub+ vc) = Γ1(r+uq) = (v · r,q)

where r = a+ vc and q = b+ vc. It can be extended to Rn as shown below:
Γ1(c0,c1, . . . ,cn−1) = (v · r0,v · r1, . . . ,v · rn−1,q0,q1, . . . ,qn−1) where ci = ri +u ·qi for all 0≤ i≤ n−1. Let the Gray map Ψ1
on R be defined as indicated below:

Ψ1 : R 7→ S2
2

a+ub+ vc 7→Ψ1(a+ub+ vc) = Ψ1(r+ vq) = (u · r,q) (2.1)

such that r = a+ub and q= c+ub. We will extend Ψ1 to Rn, that is, Ψ1(c0,c1, . . . ,cn−1)= (u ·r0,u·r1, . . . ,u ·rn−1,q0,q1, . . . ,qn−1)
where ci = ri + v ·qi for all 0≤ i≤ n−1.

Let us define the Gray map Γ2 on S1 as the following:

Γ2 : S1 7→ F2
2

s+ vt 7→ (s,s+ t) (2.2)

where s, t ∈ F2. The extension of Γ2 to Sn
1 is given by

Γ2 : Sn
1 7→ F2n

2

(c0,c1, . . . ,cn−1) 7→ (s0, . . . ,sn−1,s0 + t0, . . . ,sn−1 + tn−1)

where ci = si + v · ti, si, ti ∈ F2 for all 0≤ i≤ n−1. The Gray map Ψ2 on S2 is given by

Ψ2 : S2 7→ F2
2

s+ut 7→ (s,s+ t) (2.3)

where s, t ∈ F2. The extension of Ψ2 to Sn
2 is given by

Ψ2 : Sn
2 7→ F2n

2

(c0,c1, . . . ,cn−1) 7→ (s0, . . . ,sn−1,s0 + t0, . . . ,sn−1 + tn−1)

where ci = si +u · ti, si, ti ∈ F2 for all 0≤ i≤ n−1. For r ∈ R, we define the weight function w1(r) by

w1(r) =


0 ; r = 0
1 ; r = 1
2 ; r = v,1+u,1+u+ v
3 ; r = u,u+ v,1+ v

For r ∈ R, we define the weight function w2(r) by

w2(r) =


0 ; r = 0
1 ; r = 1,u,u+ v
2 ; r = u,1+ v,1+u+ v
3 ; r = 1+u

Then w1(r) and w2(r) extend to a weight function in Rn. If r = (r0,r1, . . . ,rn−1) ∈ Rn, then we write w1(r) = ∑
n−1
i=0 w1(ri) and

w2(r) = ∑
n−1
i=0 w2(ri). Let x, y ∈ Rn be any distinct vectors. The distance d1(x,y) and d2(x,y) can be defined to be w1(x− y)

and w2(x− y). The d1 and d2 minimum distance of C can be given by d1(C) = min{d1(x,y)} and d2(C) = min{d2(x,y)} for
any x,y ∈C such that x 6= y. The weights w3(t) of t ∈ S1 and w4(t) of t ∈ S2 can be given by
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w3(t) =

 0 ; t = 0
1 ; t = v,1+ v
2 ; t = 1

w4(t) =

 0 ; t = 0
1 ; t = u,1+u
2 ; t = 1

These extend to w3 and w4 weight functions in Sn
1 and Sn

2. If t = (t0, t1, . . . , tn−1) ∈ Sn
1, Sn

2, then we have w3(t) = ∑
n−1
i=0 w3(ti)

and w4(t) = ∑
n−1
i=0 w4(ti). Let x,y ∈ Sn

1,S
n
2 be any distinct vectors. The distance d3(x,y) and d4(x,y) between x,y can be given

by wS1(x− y) and wS2(x− y), respectively. Also, the d3 and d4 minimum distance of C is defined as d3(C) = min { d3 (x,y) }
and d4(C) = min{d4(x,y)} for any x,y ∈C such that x 6= y. Let D as a code with length n over F2 and c = (c0,c1, . . . ,cn−1) be
a codeword of D. The Hamming weight of D is defined as wH(c) = ∑

n−1
i=0 wH(ci) where wH(ci) = 1 if ci = 1 and wH(ci) = 0 if

ci = 0. In addition, we can define the minimum Hamming distance of D such as dH = min {dH(c, c̃)} for any c, c̃ ∈ D, c 6= c̃.
The elements of R as a+ub+ vc = r+ vq where r = a+ub and q = c+ub are in S2, we have

w1(a+ub+ vc) = w1(r+ vq) = w4(ur,q) = w4(b+ua,c+ub) = wH(b,c,b+a,c+b)

Similarly, the elements of R as a+ub+ vc = r+ vq where r = a+ vc and q = b+ vc are in S1 and so we obtain the following

w2(a+ub+ vc) = w2(r+uq) = w3(vr,q) = w3(av,b+ vc) = wH(0,b,a,b+ c)

Definition 2.1. [1] Let C be a linear code over R with length n. A cyclic shift on Rn is a permutation σ such that
σ (c0,c1, . . . ,cn−1) = (cn−1,c0, . . . ,cn−1). If σ(C) =C, the code C is said to be cyclic code. A (1+ v)− constacylic shift µ

act on Rn as µ(c0,c1, . . . ,cn−1) = ((1+v)cn−1,c0, . . . ,cn−2). The code C is called (1+v)−constacyclic code if µ(C) =C. A
negacylic shift δ act on Rn as δ (c0,c1, . . . ,cn−1) = (−cn−1,c0, . . . ,cn−2). If δ (C) =C, C is said to be negacyclic code.

Let P(C) =

{
∑

n−1
i=0 rixi : (r0,r1, . . . ,rn−1) ∈C

}
. P(C) is a polynomial representation of code C with length n over R. Note

that C is cyclic if and only if P(C) is an ideal of R[x]/〈xn−1〉 and C is (1+ v)− constacyclic if and only if P(C) is an ideal of
R[x]/〈xn− (1+ v)〉.

Definition 2.2. [1] Let a ∈ S2n
1 with a = (a0,a1, . . . ,a2n−1) = (a(0)|a(1)), a(i) ∈ Sn

1 for all i = 0,1 and σ be the usual cyclic
shift.

σ∗21 : S2n
1 7→ S2n

1

a 7→ σ∗21 (a) = (σ(a(0))|σ(a(1)))

A code Ĉ of length 2n in S1 is called quasicyclic code with index 2 if σ∗21 (Ĉ) = Ĉ. Let a ∈ S2n
2 with

a = (a0,a1, . . . ,a2n−1) = (a(0)|a(1)), a(i) ∈ Sn
2 for all i = 0,1 and σ be the usual cyclic shift.

σ∗22 : S2n
2 7→ S2n

2

a 7→ σ∗22 (a) = (σ(a(0))|σ(a(1)))

A code Ĉ with length 2n in S2 is called quasicyclic code with index 2 if σ∗22 (Ĉ) = Ĉ. Take a ∈ F4n
2 with

a = (a0,a1, . . . ,a4n−1) = (a(0)|a(1)|a(2)|a(3)), a(i) ∈ Fn
2 for all i = 0,1,2,3 and let σ be the usual cyclic shift.

σ∗4 : F4n
2 7→ F4n

2

a 7→ σ∗4(a) = (σ(a(0))|σ(a(1))|σ(a(2))|σ(a(3)))

A code D̂ of length 4n over F2 is called quasicyclic code with index 4 if σ∗4(D̂) = D̂.

3. Negacyclic codes and their gray images

We get quasicyclic code of index 2 with even length in S2 as the Gray image Ψ1 of negacyclic code over R. Therefore,
we construct the Gray image Ψ2 of quasicyclic code of index 2 in S2 with even length.

Proposition 3.1. σ∗22 Ψ1 = Ψ1δ

Proof. Ψ1, σ∗22 and δ are defined in (2.1) and in [1], respectively. Let c = (c0,c1, . . . ,cn−1) ∈ Rn such that ci = ri + v ·qi for
i = 0,1, . . . ,n−1.

Ψ1(c0,c1, . . . ,cn−1) = Ψ1(r0 + v ·q0,r1 + v ·q1, . . . ,rn−1 + v ·qn−1) = (u · r0,u · r1, . . . ,u · rn−1,q0,q1, . . . ,qn−1)

By applying σ∗22 , we have
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Ψ1(c0,c1, . . . ,cn−1) = σ∗22 (u · r0,u · r1, . . . ,u · rn−1,q0,q1, . . . ,qn−1) = (u · rn−1,u · r0, . . . ,u · rn−2,qn−1,q0,q1, . . . ,qn−2)

Conversely, δ (c0, . . . ,cn−1) = (−cn−1,c0, . . . ,cn−2) where −cn−1 = rn−1 + v ·qn−1. Therefore,

Ψ1(δ (c)) = Ψ1(rn−1 + v ·qn−1,r0 + v ·q0, . . . ,rn−2 + v ·qn−2) = (u · rn−1,u · r0, . . . ,u · rn−2,qn−1,q0, . . . ,qn−2)

Equality is obtained by using the above equations.

Theorem 3.1 A code C1 of length n over R is a negacyclic code if and only if Ψ1(C1) is a quasicyclic code of index 2 and
length 2n over S2.

Proof. Assume that C1 is a negacyclic code. Then we write δ (C1) =C1. By applying Ψ1, we have Ψ1(δ (C1)) = Ψ1(C1). By
using Proposition 3.1, we have σ∗22 (Ψ1(C1)) = Ψ1(δ (C1)) = Ψ1(C1). Therefore Ψ1(C1) is a quasicyclic code with index 2.
On the contrary, if Ψ1(C1) is a quasicyclic code with index 2, then σ∗22 (Ψ1(C1)) = Ψ1(C1). Again by Proposition 3.1, we have
σ∗22 (Ψ1(C1)) = Ψ1(δ (C1)) = Ψ1(C1). Since δ (C1) =C1, C1 is a negacyclic code.

Proposition 3.2. σ∗4Ψ2 = Ψ2σ∗22

Proof. Ψ2, σ∗22 and σ∗4 are given in (2.3) and in [1], respectively.

σ∗22 (a) = σ∗22 (a0,a1, . . . ,a2n−1) = (σ(a(0))|σ(a(1)))
= (σ(a0,a1, . . . ,an−1)|σ(an, . . . ,a2n−1))
= (an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

where an−1 = sn−1 +u · tn−1,a0 = s0 +u · t0, . . . ,a2n−2 = s2n−2 +u · t2n−2. By applying Ψ2, we have

Ψ2(σ
∗2
2 (a)) = Ψ2(an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

= Ψ2(sn−1 +u · tn−1,s0 +u · t0, . . . ,sn−2 +u · tn−2,s2n−1 +u · t2n−1, . . . ,s2n−2 +u · t2n−2)
= (sn−1,s0, . . . ,sn−2,s2n−1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Conversely, Ψ2(a) = Ψ2(a0,a1, . . . ,a2n−1) = (s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1) where a0 = s0 +ut0,

a1 = s1 +ut1 , . . . ,a2n−1 = s2n−1 +ut2n−1. By applying σ∗4, we have

σ∗4(Ψ2(a)) = σ∗4(Ψ2(a0,a1, . . . ,a2n−1)) = σ∗4(s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1)
= (σ(s0,s1, . . . ,sn−1)|σ(sn,σ(sn+1, . . . ,s2n−1)|σ(s0 + t0,s1 + t1, . . . ,sn−1 + tn−1)|σ(sn + tn,sn+1 + tn+1, . . . ,s2n−1 + t2n−1))
= (sn−1,s0, . . . ,sn−2,s2n−1,sn+1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Equality is obtained by using the above equations.

Theorem 3.2 A code C2 with length 2n over S2 is a quasicyclic code of index 2 if and only if Ψ2(C2) is a quasicyclic code
with length 4n over F2 and has index 4.

Proof. Assume C2 is a quasicyclic code with index 2. Then σ∗22 (C2) =C2. By applying Ψ2, we get Ψ2(σ
∗2
2 (C2)) = Ψ2(C2).

Using Proposition 3.2, we can write σ∗4(Ψ2(C2)) = Ψ2(σ
∗2
2 (C2)) = Ψ2(C2). So Ψ2(C2) is a quasicyclic code with index 4.

Conversely, if Ψ2(C2) is a quasicyclic code of index 4, then we say that σ∗4(Ψ2(C2)) = Ψ2(C2). From Proposition 3.2, we
have σ∗4(Ψ2(C2)) = Ψ2(σ

∗2
2 (C2)) = Ψ2(C2). Since Ψ2 is injective, it follows that σ∗22 (C2) =C2.

4. Constacyclic codes and their gray images

In this part, we present even length quasicyclic code of index 2 over S1 as the Gray image Γ1 of constacyclic code over R
and we also give the Gray image Γ2 of constacyclic code with index 2 over S1 with even length.

Proposition 4.1. σ∗21 Γ1 = Γ1δ

Proof. The proof is given in [5].

Theorem 4.1 A code C3 of length n in R is a constacyclic code if and only if Γ1(C3) is a quasicyclic code with length 2n over
S1 and has index 2.

Proof. The proof is given in [5].

Proposition 4.2. σ∗4Γ2 = Γ2σ∗21
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Proof. Γ2, σ∗21 and σ∗4 are given in (2.2) and in [1], respectively.

σ∗21 (a) = σ∗21 (a0,a1, . . . ,a2n−1) = (σ(a(0))|σ(a(1)))
= (σ(a0,a1, . . . ,an−1)|σ(an, . . . ,a2n−1))
= (an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

where an−1 = sn−1 + v · tn−1,a0 = s0 + v · t0, . . . ,a2n−2 = s2n−2 + v · t2n−2. By applying Γ2, we have
Γ2(σ

∗2
1 (a)) = Ψ2(an−1,a0, . . . ,an−2,a2n−1,an, . . . ,a2n−2)

= Ψ2(sn−1 + v · tn−1,s0 + v · t0, . . . ,sn−2 + v · tn−2,s2n−1 + v · t2n−1, . . . ,s2n−2 + v · t2n−2)

= (sn−1,s0, . . . ,sn−2,s2n−1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Conversely, Γ2(a) = Γ2(a0,a1, . . . ,a2n−1) = (s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1) where a0 = s0 + v · t0,

a1 = s1 + v · t1, . . . ,a2n−1 = s2n−1 + v · t2n−1. By applying σ∗4, we have
σ∗4(Γ2(a)) = σ∗4(Γ2(a0,a1, . . . ,a2n−1)) = σ∗4(s0,s1, . . . ,s2n−1,s0 + t0,s1 + t1, . . . ,s2n−1 + t2n−1)

= (σ(s0,s1, . . . ,sn−1)|σ(sn,σ(sn+1, . . . ,s2n−1)|σ(s0 + t0,s1 + t1, . . . ,sn−1 + tn−1)|σ(sn + tn,sn+1 + tn+1, . . . ,s2n−1 + t2n−1))
= (sn−1,s0, . . . ,sn−2,s2n−1,sn+1, . . . ,s2n−2,sn−1 + tn−1,s0 + t0, . . . ,sn−2 + tn−2,s2n−1 + t2n−1, . . . ,s2n−2 + t2n−2)

Equality is obtained by using the above equations.

Theorem 4.2 A code C4 with length 2n over S1 is a quasicyclic code of index 2 if and only if Γ2(C4) is a quasicyclic code of
index 4 over F2 with length 4n.

Proof. Assume that C4 is a quasicyclic code with index 2. So σ∗21 (C4) =C4. By applying Γ2, we have Γ2(σ
∗2
1 (C4)) = Γ2(C4).

From Proposition 4.2, it follows that σ∗4(Γ2(C4)) = Γ2(σ
∗2
1 (C4)) = Γ2(C4). Hence Γ2(C4) is a quasicyclic code with index 4.

Conversely, if Γ2(C4) is a quasicyclic code of index 4, then σ∗4(Γ2(C4)) = Γ2(C4). By Proposition 4.2, it can be written as
σ∗4(Γ2(C4)) = Γ2(σ

∗2
1 (C4)) = Γ2(C4). Since Γ2 is injective, it follows that σ∗21 (C4) =C4.

5. Conclusion

We examined the constacyclic and negacyclic codes over R = F2 +uF2 + vF2, u2 = 1, v2 = 0, u · v = v ·u = 0 which is not
Frobenius and chain ring. We compare these codes with the codes over finite field F2. Besides, we mention the Gray image of
constacyclic and negacyclic codes over R with odd length n, and it is a quasicyclic code of index 4 with length 4n in F2.
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Ayşegül Keten Ç̧opur1* and Adalet Satar2

1Department of Mathematics and Computer Science, Faculty of Science, Necmettin Erbakan University, Konya, Türkiye
2Department of Mathematics, The Graduate School of Natural and Applied Science, Necmettin Erbakan University, Konya, Türkiye

*Corresponding author

Article Info

Keywords: Approximation property,
Bounded weak approximation property,
p-weak approximation property, Weak
approximation property
2010 AMS: 46A32, 47A05
Received: 7 April 2022
Accepted: 3 October 2022
Available online: 26 October 2022

Abstract

In this study, some existing results dealing with the weak approximation property of Banach
spaces are considered for the p-weak approximation property. Also, an observation on the
bounded weak approximation and the p-bounded weak approximation properties is given.
Moreover, the proof of the solution of the duality problem for the p-weak approximation
property which exists in the literature is given in a shorter way as an alternative.

1. Introduction

The approximation property, which closely related to basis property of Banach spaces, appeared in Banach’s book in 1932
[1], and the variants of this property were systematically studied by Grothendieck, in 1955 [2]. A Banach space W has the
approximation property (AP) if for every ε > 0 and every compact set M in W , there is a finite-rank operator R : W →W
satisfying ‖Rw−w‖< ε , for every w ∈M [2]. Let 1≤ λ < ∞. A Banach space W has the λ -bounded approximation property
(λ -BAP) if for every ε > 0 and every compact set M in W , there exists a finite-rank operator R : W →W satisfying ‖R‖ ≤ λ

and ‖Rw−w‖ < ε , for every w ∈M (see [3]). W has the bounded approximation property (BAP) if W has the λ -BAP, for
some λ (see [3]). W has the metric approximation property (MAP) if W has the 1-BAP (see [3]). Clearly, a Banach space
with the BAP has the AP, but the converse is not generally true (see [3]). It is possible to find many studies on the AP and its
versions in the literature. For examples, we can mention from [4]-[9].
Grothendieck characterized the concept of compactness in Banach spaces as follows. Let W be a Banach space and let M ⊂W .
M is a relatively compact set if and only if there is a null sequence (wn)n in W satisfying M ⊂ {∑∞

n=1 anwn : (an)n ∈ Bl1} ([2]
and see [10, Proposition1.e.2]). Inspired by Grothendieck’s characterization, Sinha and Karn [11] introduced the concept of
p-compactness in Banach spaces. Let M be a subset of the Banach space W , and let 1≤ p≤ ∞. If there exists a p-summable
sequence (wn)n in W (‖wn‖ → 0 as p = ∞) such that M ⊂ {∑∞

n=1 anwn : (an)n ∈ Blq} (where 1
p +

1
q = 1), M is said to be

relatively p-compact [11]. We remember that the ∞-compact sets are exactly the compact sets, and p-compact sets are
r-compact if 1≤ p < r ≤ ∞ [11].
The concept of a p-compact set leaded to the concept of the p-approximation property (p-AP). Sinha and Karn [11] defined
the concept of the p-approximation property by replacing compact sets with p-compact sets in the definition of the AP. In
recent years, the plenty of studies which focused on p-compactness, the p-AP, and some versions of the p-AP appeared. Some
from these are [12]-[16]. Note that any Banach space has the 2-AP (and thus the p-AP for 1≤ p≤ 2) [11, Theorem 6.4].
Inspired from a result characterizing the AP given by Grothendieck, Choi and Kim [4] defined the weak approximation and
the bounded weak approximation properties as weaker versions of the AP. Let W be a Banach space. If for every compact
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operator R : W →W , every ε > 0, and every compact subset M of W , there exists a finite-rank operator R0 : W →W satisfying
‖Rw−R0w‖ < ε for all w ∈M, then W has the weak approximation property (WAP) [4]. Also, W has the bounded weak
approximation property (BWAP) if for every compact operator R : W →W , there exists a positive number λR such that for every
compact subset M of W , and every ε > 0, there is a finite-rank operator R0 : W →W satisfying ‖R0‖ ≤ λR and ‖R0w−Rw‖< ε

for all w ∈M [4]. It is clear that the BWAP implies the WAP. Also, it is showed in [4] that the AP implies the BWAP. In the
BWAP, if for every compact operator R : W →W with ‖R‖ ≤ 1, λR = 1, then W has the metric weak approximation property
(MWAP) [6].
As the weaker versions of the WAP and the BWAP, Li and Fang in [14] introduced the concepts of the p-weak approximation
property (p-WAP) and the p-bounded weak approximation property (p-BWAP), respectively. A Banach space W has the
p-weak approximation property (p-WAP) if for every compact operator R : W →W , every p-compact subset M of W and, every
ε > 0, there exists a finite-rank operator R0 : W →W satisfying ‖R0w−Rw‖< ε for all w ∈M [14]. W has the p-bounded
weak approximation property (p-BWAP) if for every compact operator R : W →W , there exists a positive number λR such that
for every p-compact subset M of W and every ε > 0, there is a finite-rank operator R0 : W →W satisfying ‖R0‖ ≤ λR and
‖R0w−Rw‖< ε for all w ∈M [14]. It is clear that the WAP implies the p-WAP and the BWAP implies the p-BWAP.
The aim of this study is to obtain for the p-WAP the some results which given on the WAP in [6]-[8], by using the proof
techniques in these results. Firstly, through a characterization given on the BWAP in [4, Lemma 3.7], it has been observed
that the concepts of the p-BWAP and the BWAP are equivalent to each other. After, as a modification for the p-WAP of
[6, Theorem 1.4 (a)], it is shown that the p-WAP of a Banach space W passes to its closed subspace N whenever N⊥ is a
complemented subspace of the dual space W ∗ and W ∗ has the v∗p density, and also shown that the metric weak* density property
in [6, Theorem 1.4 (b)] can be changed with the metric v∗p density property. The proof of the solution of the duality problem for
the p-WAP (respectively, p-BWAP) proved by Li and Fang [14] has been proved in a shorter way as an alternative. Moreover,
as modifications of [7, Theorem 3.5] and [8, Theorem 1.3], respectively, it has been observed that the direct sum of two Banach
spaces with the p-WAP and the p-AP has the p-WAP, and every ideal in a Banach space W has the p-WAP if and only if W has
the p-WAP.

2. Notation and preliminaries

The symbols W and Z will denote Banach spaces. Let K be a subset of W . The symbol IK represents the identity mapping on
K, and for any topology τ on W , Kτ denotes the τ-closure of K in W . If the τ is a norm topology, then we write K. The symbol
BW denotes the closed unit ball of W . For 1≤ p < ∞, the symbol lp(W ) (respectively, l∞(W )) denotes the Banach space of all
p-summable sequences (respectively, bounded sequences) in W , and c0(W ) denotes the Banach space of all null sequences
in W , respectively. L(W,Z) denotes the Banach space of all linear bounded operators from W to Z with usual operator norm
‖,‖. In this case F = C, we write W ∗ instead of L(W,C). A linear operator R from W to Z is called compact if R(BW ) is a
compact subset of Z. The symbols F(W,Z) and K(W,Z) denote subspaces of finite rank and compact operators of L(W,Z),
respectively. Let λ > 0. Kλ (W,W ) (respectively, Fλ (W,W )) denotes the collection of compact (respectively, finite rank)
operators R : W →W with ‖R‖ ≤ λ . Kλ

z∗(W
∗,W ∗) (respectively, Fλ

z∗ (W
∗,W ∗)) denotes the collection of compact (respectively,

finite rank) and weak∗-to-weak∗ continuous operators R : W ∗→W ∗ with ‖R‖ ≤ λ . For a set K ⊂W , the annihilator of K in
W ∗ will be denoted by K⊥. That is, K⊥ = {w∗ ∈W ∗ : w∗(w) = 0 for each w ∈ K}. The notations τ and τp will denote the
topologies on L(W,Z), which of uniform convergence on the compact sets and p-compact sets in W , respectively. Through the
paper, for p with 1 < p < ∞, the q satisfies 1

p +
1
q = 1.

3. Some results for the p-weak approximation property

In this section, we will give an observation on the p-BWAP, some results on the p-WAP, and an alternative proof of solution
of the duality problem for the p-WAP (respectively, p-BWAP). Firstly, we remember that the definitions of the vp and v∗p
topologies given in [15] as the modifications of the v and weak∗ topologies in [5, 6], respectively.

Definition 3.1. ([15], see [5, 6]) Let 1 < p < ∞. Let X1 be space of all linear functionals ϑ on L(W,W ) as in the form below

ϑ(S) =
∞

∑
k=1

∞

∑
i=1

λ
k
i (w

∗
k)(Swi)

in which (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (λ k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞.

Let X2 be space of all linear functionals φ on L(W ∗,W ∗) as in the form below

φ(R) =
∞

∑
k=1

∞

∑
i=1

β
k
i (Rw∗k)(wi)

in which (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and tk = (β k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖tk‖q‖w∗k‖< ∞.
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Let vp be the topology induced by X1 on L(W,W ), and let v∗p be the topology induced by X2 on L(W ∗,W ∗). From elementary
facts, the vp and v∗p are locally convex topologies (see [5, 6, 17, 18]). Also, by using [13, Theorem 2.5], we get (L(W,W ),τp)

∗=
X1 = (L(W,W ),vp)

∗.
An operator S and a net (Sα)α in L(W,W ),

Sα

vp−→ S if and only if
∞

∑
k=1

∞

∑
i=1

λ
k
i (w

∗
k)(Sα wi)→

∞

∑
k=1

∞

∑
i=1

λ
k
i (w

∗
k)(Swi)

for every (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (λ k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞ ([15], see [5, 6]).

Similarly, for an operator R and a net (Rα)α in L(W ∗,W ∗),

Rα

v∗p−→ R if and only if
∞

∑
k=1

∞

∑
i=1

β
k
i (Rα w∗k)(wi)→

∞

∑
k=1

∞

∑
i=1

β
k
i (Rw∗k)(wi)

for every (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (β k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞ ([15], see [5, 6]).

Remark 3.2. ([15], see [5]) For any 1 < p < ∞, by [13, Theorem 2.5], we can easily see that the τp-topology on the space
L(W,W ) is stronger than the vp-topology. Also, the v∗p-topology on the space L(W ∗,W ∗) is weaker than the vp-topology. The
vp and v∗p topologies coincide if W is a reflexive Banach space. Also, we remember that for an operator S and a net (Sα)α in
L(W,W )

Sα

vp−→ S if and only if S∗α
v∗p−→ S∗.

Remark 3.3. ([15], see [5, 6]) We have the following for a Banach space W.

• Let 2 < p < ∞. W has the p-AP if and only if IW ∈ F(W,W )
vp .

• Let 1 < p < ∞. W has the λ -BAP if and only if IW ∈ Fλ (W,W )
vp

.
• Let 2 < p < ∞. W has the p-WAP if and only if K(W,W )⊂ F(W,W )

vp .

Now we recall that the properties v∗pD and Bv∗pD given in [15] for compact operators on the dual space W ∗.

Definition 3.4. ([15], see [5, 6]) Let W be a Banach space and let 1 < p < ∞.

(a) W ∗ is said to have the v∗p density (v∗pD) if K(W ∗,W ∗)⊂ Kz∗(W ∗,W ∗)
v∗p .

(b) W ∗ is said to have the bounded v∗p density (Bv∗pD) if K1(W ∗,W ∗)⊂ Kλ
z∗(W

∗,W ∗)
v∗p

for some λ > 0.

W ∗ is said to have the metric v∗p density (Mv∗pD) if the Bv∗pD is satisfied for λ = 1.

Lemma 3.5. ([15], see [10, Lemma 1.e.17], see [4, Lemma 3.11]) For a Banach space W and 1 < p < ∞, we have the
following.

(a) F(W ∗,W ∗)⊂ Fz∗(W ∗,W ∗)
τp ⊂ Fz∗(W ∗,W ∗)

v∗p .

(b) Fλ (W ∗,W ∗)⊂ Fλ
z∗ (W

∗,W ∗)
τp
⊂ Fλ

z∗ (W
∗,W ∗)

v∗p
for all λ > 0.

Lemma 3.6. ([6, Lemma 3.6]) Let W be a Banach space, let N be a closed subspace of W such that let N⊥ be a complemented
subspace in W ∗. Then, there exists a linear bounded map U : N∗→W ∗ satisfying (Un∗)(n) = n∗(n) for ∀ n∗ ∈ N∗ and n ∈ N.

3.1. Main results

Now, we give the main results of this paper.

Remark 3.7. For any 1 < p < ∞, Li and Fang in [14] defined the p-BWAP as weak version of the BWAP. On the other hand,
Choi and Kim in [4, Lemma 3.7] showed that compact sets can be replaced by finite sets in the BWAP. Since every finite set is
p-compact and every p-compact set is compact, the [4, Lemma 3.7] will also be correct when its part (a) is replaced with the
p-BWAP. So, p-compact sets can be replaced with finite sets in p-BWAP. Thus, the concepts of the p-BWAP and the BWAP are
equivalent.

Using Remark 3.7, the relation definitions and (see [18, Lemma 3.5]), the following characterizations are obtained.

Remark 3.8. (see [4, Lemma 3.7], and see [18, Lemma 3.5]) Let 1 < p < ∞. We get the followings.
(a) A Banach space W has the BWAP if and only if for every R ∈ K(W,W ), there is a λR > 0 such that R ∈ FλR(W,W )

vp
.

(b) A Banach space W has the MWAP if and only if K1(W,W )⊂ F1(W,W )
vp .

The part (a) of the following theorem is a modification of [6, Theorem 1.4 (a)] for the p-WAP, and the part (b) shows that a
similar result will be obtained when the metric weak* density (MW ∗D) property are replaced with the Mv∗pD in [6, Theorem
1.4 (b)].
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Theorem 3.9. (see [6, Theorem 1.4]) Let 2 < p < ∞. Let W be a Banach space, let N a closed subspace of W such that let
N⊥ be a complemented subspace in W ∗.

(a) N has the p-WAP if W has the p-WAP and W ∗ has the v∗pD.

(b) K1(N,N)⊂ Fµ(N,N)
τp for some µ > 0 if W has the MWAP and W ∗ has the Mv∗pD. In particular, N has the BWAP.

Proof. (a) By using that W has the p-WAP, Kz∗(W ∗,W ∗)⊂ Fz∗(W ∗,W ∗)
v∗p is obtained. If this inclusion is combined with the

property v∗pD of W ∗, then we get K(W ∗,W ∗)⊂ Fz∗(W ∗,W ∗)
v∗p . Now, let R ∈ K(N,N). We show that R ∈ F(N,N)

vp .
Let IN : N→W be the inclusion map, and let the operator U : N∗→W ∗ be such as in Lemma 3.6. Since UR∗I∗N ∈ K(W ∗,W ∗),

there exists a net (R∗α)α ⊂ Fz∗(W ∗,W ∗) such that R∗α
v∗p−→UR∗I∗N . That means,

∞

∑
k=1

∞

∑
i=1

λ
k
i (R

∗
α w∗k)(wi)

α−→
∞

∑
k=1

∞

∑
i=1

λ
k
i (UR∗I∗Nw∗k)(wi) (3.1)

for every (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (λ k

i )
∞
i=1 ∈ lq for each k ∈ N satisfying ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞.

Now, we take the sequences (ni)
∞
i=1 ∈ lp(N), (n∗k)

∞
k=1 ⊂N∗ and, tk = (β k

i )
∞
i=1 ∈ lq for each k ∈N satisfying ∑

∞
k=1 ‖tk‖q‖n∗k‖< ∞.

Therefore, we get from (3.1)

∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗
αU(n∗k))(INni)

α−→
∞

∑
k=1

∞

∑
i=1

β
k
i (UR∗I∗NU(n∗k))(INni) =

∞

∑
k=1

∞

∑
i=1

β
k
i (UR∗I∗NU(n∗k))(ni). (3.2)

Therefore, by (3.2), and the definition of the operator U , we get

∞

∑
k=1

∞

∑
i=1

β
k
i (I
∗
NR∗αUn∗k)(ni) =

∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗
αU(n∗k))(INni)

α−→
∞

∑
k=1

∞

∑
i=1

β
k
i (UR∗I∗NU(n∗k))(ni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗I∗NU(n∗k))(ni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (Un∗k)(Rni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (n
∗
k)(Rni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗n∗k)(ni).

Thus, from the definition v∗p, we have I∗NR∗αU
v∗p−→R∗. It follows that R∗ ∈F(N∗,N∗)

v∗p . From Lemma 3.5 (a), R∗ ∈Fz∗(N∗,N∗)
v∗p ,

and by Remark 3.2, we get R ∈ F(N,N)
vp . This proves (a).

(b) Since W has the MWAP, K1(W,W ) ⊂ F1(W,W )
vp . Thus, as in the proof of (a), we get K1

z∗(W
∗,W ∗) ⊂ F1

z∗(W
∗,W ∗)

v∗p .
Now, let R be an operator in K1(N,N). Then UR∗I∗N ∈ K‖U‖(W ∗,W ∗). Using that W ∗ has the Mv∗pD, we get UR∗I∗N ∈

K‖U‖(W ∗,W ∗)⊂ F‖U‖z∗ (W ∗,W ∗)
v∗p

. By following similar steps in the proof of the part (a), if Lemma 3.5 (b) is applied, then it

is obtained R∗ ∈ F‖U‖
2

z∗ (N∗,N∗)
v∗p

. By Remark 3.2, R ∈ F‖U‖
2
(N,N)

vp
. Since (L(W,W ),τp)

∗ = (L(W,W ),vp)
∗, by (see [18,

Lemma 3.5]), R ∈ F‖U‖
2
(N,N)

τp
, where µ =: ‖U‖2. Thus, the proof is completed.

Remark 3.10. Let 2 < p < ∞. Li and Fang [14] proved that if the W ∗ has p-WAP (respectively, p-BWAP), then W has the
p-WAP (respectively, p-BWAP). The proof of this theorem can be shortened by using Remark 3.2 and Lemma 3.5. Actually,

suppose that W ∗ has the p-WAP, and let R ∈ K(W,W ). It follows from Lemma 3.5 (a) that R∗ ∈ Fz∗(W ∗,W ∗)
v∗p . Thus, there

exists a net (Rα)α in F(W,W ) such that R∗α
v∗p−→ R∗. By Remark 3.2, Rα

vp−→ T . Thus, R ∈ F(W,W )
vp .This shows that W has

the p-WAP. Using Lemma 3.5 (b), the shortened proof for the p-BWAP can be made as similar.

The following theorem is a modification for the p-WAP of [7, Theorem 3.5]. The proof of theorem is omitted since similar to
[7, Theorem 3.5].
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Theorem 3.11. (see [7, Theorem 3.5]) The Banach space W ⊕Z has the p-WAP if W has the p-WAP and Z has the p-AP.

Li and Fang in [14] proved that the complemented subspaces of a Banach space with the p-WAP have the p-WAP. Combining
this result with Theorem 3.11, we obtain the following result.

Corollary 3.12. Let 2 < p < ∞. Let a closed subspace N of a Banach space W be complemented in W. Then, we have the
following:
(a) The space N has the p-WAP if W has the p-WAP, [14].
(b) The space W/N has the p-WAP if W has the p-WAP.
(c) The space W has the p-WAP if N has the p-WAP and W/N has the p-AP.

Proof. (a) This part is proved by [14].
(b) Since N is a complemented subspace of W , it is well known that there is a closed subspace M of W such that M is
complementary of N and the spaces W/N and M are isomorphic (see [17]). From (a), since every complemented subspace of
W has the p-WAP, M has the p-WAP. Thus, W/N has the p-WAP.
(c) As in (b), there exists a closed subspace M of W such that the spaces W/N and M are isomorphic. Thus, from the hypothesis,
M has the p-AP. Since N has the p-WAP and M has the p-AP, from Theorem 3.11 and [17, p. 65], we get that W has the
p-WAP.

By a modification of [8, Theorem 1.3], we obtain the following theorem for the p-WAP of a Banach space W . The proof of this
theorem is omitted since similar to [8, Theorem 1.3]. (The locally complemented subspace and ideal concepts in the following
theorem can be found in [8].)

Theorem 3.13. (see [8, Theorem 1.3]) Let 2 < p < ∞. For a Banach space W the following are equivalent.
(a) W has the p-WAP.
(b) Every locally complemented subspace of W has the p-WAP.
(c) Every ideal in W has the p-WAP.
(d) For every closed and separable subspace Z of W, there is a closed and separable subspace Y ⊂W containing the subspace
Z such that Y has the p-WAP.

Remark 3.14. The above theorem also shows that without the property v∗pD on the space W ∗ in Theorem 3.9 (a), Theorem 3.9
(a) will still be true (see [19, 20]).

4. Conclusion

In the paper, it has been observed that the BWAP and the p-BWAP concepts are equivalent to each other. Some results on
the p-WAP of Banach spaces have been given. The proof of the solution of the duality problem for the p-WAP (respectively,
p-BWAP) which exists in the literature is given in a shorter way as an alternative.
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Abstract

An undirected mathematical graph, G = (V,E) where V is a set of vertices and E =V ×V
is the set of edges, can model a computer network. By this consideration we search for
solutions to real computer network problems with a theoretical approach. This approach
is based on labelling each edge by a subset of a universal set, and then encoding a path
as the union of the labels of its edges. We label each vertex v ∈ V by using a subset of
universal set U , then we present a way to encode shortest paths in the graph G by using a
way optimizing the data. By mathematical approach, it is provable that the labelling method
we introduced eliminates the errors from the shortest paths in the graph. We aim to obtain
the results in a more efficient use of network resources and to reduce network traffic. This
shows how our theoretical approach works in real world network systems.

1. Introduction

We consider an undirected and unweighted regular graph G = (V,E) where V is the set of vertices and E =V ×V is the set of
edges in the graph. This graph may represent a computer network. Therefore, it may be a reasonable approach that a real-time
routing scenario in a computer network can be modeled in a mathematical graph. As a realistic model for a computer network
we choose a graph denoted by a king’s graph. The king’s graph is a graph G = (V,E) with a set of vertices V and a set of edges
E where V = {(i, j)|i ∈ [0,M], j ∈ [0,N],M,N ∈ Z}. The vertices (i, j) and (p,q) are connected in a king’s graph by an edge
if and only if i = p and j = q±1 or i = p±1 and j = q or i = p±1 and j = q±1 (see Figure 1.1).
In literature, some applications of king’s graph such as tracking vehicles [1] has been studied by [2, 3]. In order to produce
solutions to some network problems encoding the verticies [4] or edges [5] have been suggested in literature.
One of the labelling idea denoted by Bloom filter has been studied by [6]. A Bloom filter is a way to compress the data. Bloom
filter has been widely preferred to seek for solutions to network problems [7]-[9]. This is because it saves time and space when
querying the element whether in the set or not. Another application of the Bloom filter is to save space in big sized graphs [10].
Using small spaces in some models is an advantage for saving memory or reducing the network traffic [11]. A wide range of
research of network applications of Bloom filters has been presented in [12]. Bloom filter is a random data structure, therefore
it may produce errors denoted by false positives. These errors can be tolerable in the set, if the probability of false positives is
highly small. Therefore, some applications of the Bloom filter aim to reduce the probability of false positives.
Considering routing scenarios in networks the users may face some delivery problems. For network deliveries using shortest
paths [13] is an advantage to save time and network resources. However, this approach can cause additional network traffic in
practice. In this case, the users may be forced to use any path between two distinct nodes rather than shortest paths. We have
introduced encoding methods for shortest paths without false positives in some graphs [14]-[16]. An encoding method for the
shortest path in king’s graph were considered in [5]. In this paper, we consider the routing scenarios using any path for delivery
in a king’s graph. We build Bloom filters do not produce false positives and uses less space than the Bloom filter obtain in [5].
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Figure 1.1: A king’s graph with computers on each vertex [5].

In this research, we consider to encode any path by using the main idea behind the Bloom filters. This encoding method do
not produce false positives. Note that a computer tends to send the message throughout all connections to it, hence the false
positives in this model are the adjacent edges to path chosen in advance. The Bloom filter in this model of routing has a role of
packet header that is sent with the message between computers. A sender can send messages through any path between two
distinct nodes. We assume that the sender chooses a particular delivery path, encodes it as a Bloom filter, and this Bloom filter
is sent along together with the message. We introduce a certain encoding method for the paths in this paper for this model to
function.

2. Bloom filters for routing models

Bloom filter is a way to represent a subset S with n elements of a universe U [6]. We denote the Bloom filters by β . Each
element in the set U is represented by a binary array of length m. The number of the bits 1 in this binary string is k.
The Bloom filter can be obtained by applying the binary operations to the binary strings of the elements in the set S. This
structure of the Bloom filter is determined by design of the applications. We use bit-wise OR operation in this research like
some other applications of the Bloom filter [17]. Binary OR operation takes the bit 0 and 1, then it produces the bit 1, otherwise
it produces the bit 0.
An element x from the set U can be queried whether in the subset S or not by comparing the Bloom filter of the subset S with
the binary array of the element x in all bits positions. This property of the Bloom filter provides the users to access the set very
quickly.
We may denote the representative binary array of an element by β (x) and the Bloom filter of the set S by β (S). If β (x) 6≤ β (S),
then it can be concluded that x is definitely not in the set S. However, if β (x) ≤ β (S), then we cannot be certain about the
existence of the element x in the set S. Since, the standard implementation of a Bloom filter, the bits 1s are placed in the array
of each element randomly and the Bloom filter of the set S is obtained by adding these binary arrays together.
Because of this randomness, one can obtain that β (x) ≤ β (S) for some elements in the universe. Some of these elements
may seem like an element of the set S, but they may not belong to the set S. These elements are called false positives. The
probability of false positives is obtained after a simple calculation as (1− e

−kn
m )k where m is the length of the Bloom filter, n is

the number of elements in the set S and k is the number of bit 1 in the Bloom filter of an element [6].
The probability of false positives can be reduced depending on the number of the bits 1 in the Bloom filter of the set S.Therefore,
the optimum number of the bits 1s denoted by k in the Bloom filter is computed by the formula dln2× m

n e which is obtained by
taking the derivation of the false positives probability formula [12].

3. A way of edge labelling

Suppose G = (V,E) is a king’s graph with a set of vertices V and a set of edges E, and U is a universal set of labels, obviously
V < E in the king’s graph. Consider a labelling such that U =V , and for each e ∈ E, β (e) = {u,v}, where u and v are the
endpoints of the edge e and β (e) is the label of the edge e. That means each vertex in the label of a path is represented by one
bit. Therefore, we may denote this labelling method by a bit-per-vertex labelling.
There are (M +1)(N +1) = MN +M +N +1 vertices in total in a king’s graph of size of M×N. Therefore, the length of
the labels in the graph is MN +M+N +1. A path is a sequence of the consecutive distinct edges and an edge is denoted by
e = {vi,v j} where vi and v j are the end vertices of the edge e. A path P = v0,v1, ...,vn where vi is a vertex and i∈ {0,1,2, ...,n}
is represented by a label that is obtained by applying bitwise OR operation to the labels of the vertices belonging to the path
P. Binary OR operation takes the bits 0 and 1 as inputs and produces a bit 1, if at least one of the input is 1. Otherwise, it
produces a bit 0, when all inputs are 0. The number of the bit 1 in the label of a vertex, an edge and a path are 1,2 and n, which
is the number of veritices in the path, respectively.
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4. Properties of the shortest paths

The edges in a king’s graph has four orientation of compass directions that are north (or south), east (or west), north-east (or
south-west) and north-west (or south-east. For instance, vertical and horizontal edges have the orientation of the way of north
or equally south and east or equally west, respectively. The orientations of the diagonal edges are north-east (south-west) and
north-west (south-east) in a king’s graph.

Lemma 4.1. If a shortest path between the vertices u = (xi,y j) and v = (x(i+m), y( j+n)) consists of horizontal and diagonal
edges, with at least one horizontal edge, then the first components of the vertices have a sequence of xi,x(i+1),x(i+2), ...,x(i+n).
If a shortest path between the vertices u = (xi,y j) and v = (x(i+m),y( j+n)) consists of vertical and diagonal edges, with at least
one vertical edge, then the second components of the vertices have a sequence of yi,y(i+1)y(i+2), ...,y(i+n).

Proof. Suppose a path P between vertices u = (xi,y j) and v = (x(i+m),y( j+n)). The endpoints of the vertical, horizontal and
diagonal edges have a form of {(xi,y j), (xi,y( j+1))}, {(xi,y j),(x(i+1),y j)}, and {(xi,y j),(x(i+1),y( j+1))}, respectively.
There can be found two paths between the vertices (xi,y j) and v = (x(i+1),y( j+1)). One path P1 is the diagonal edge where the
sequence of the vertices in the path is {(xi,y j),(x(i+1),y( j+1))}, and other path P2 consists of one vertical and one horizontal
edge with the sequence of vertices {(xi,y j),(x(i+1),y j),(x(i+1),y( j+1))} or {(xi,y j),(xi,y( j+1)),(x(i+1),y( j+1))}. Therefore,
|P1|< |P2|. This concludes that vertical and horizontal edges do not appear in a shortest path. Besides, if m > 0 and n > 0
where the path lies between the vertices u = (xi,y j) and v = (x(i+m),y( j+n)), then this shortest path contains diagonal edges as
many as possible.

Figure 4.1: Vertical and horizontal lines in the king’s graphs

The adjacent vertical edges which have the same first component constitute a vertical line in the graph (see Figure 4.1).
The vertical lines in the graph are parallel to the y-coordinate and one can assign each of them with a number of a point
from x-coordinate such as {x1,x2, ....,xn}. Similarly, the adjacent horizontal edges which have the same second component
constitute a horizontal line in the graph. The horizontal lines are parallel to the x-coordinate, then the number of the lines are
{y1,y2, ....,yn}. Therefore, each edge in the shortest path consisting of horizontal and diagonal edges takes place between the
ordered pair of two consecutive vertical lines and the edges in the shortest path consisting of vertical and diagonal edges takes
place between the ordered pair of two consecutive horizontal lines.
Suppose there are two edges from the shortest path consisting of horizontal and diagonal edges between two consecutive
vertical lines numbered xi and xi+1 where i ∈ {1,2, ...,n} and there is one edge from the shortest path between all other
consecutive vertical lines. The previous edge of the edges lying between the vertical lines xi and xi+1 has the endpoints between
the lines xi−1 and xi . The sequence of the vertical lines containing the endpoints of the these three edges is xi−1,xi,xi+1,xi .
Theoretically, this fragment of the path P contains the edges between the lines xi−1 and xi . Obviously, there can be found a
another path between these two lines which is shorter than the path P which also contain another edges between the lines xi
and xi+1. Similarly, we may suppose the shortest path consisting of vertical and diagonal edges contains two edges between
two horizontal lines yi and yi+1 and there is one edge from the shortest path between all other consecutive horizontal lines.
In a fragment of the path, the endpoints of the adjacent edges belong to the horizontal lines yi−1,yi,yi+1. There is one edge
between the lines yi−1 and yi and two edges between the lines yi and yi+1. However, there is another path containing the edges
between the lines yi−1 and yi and this path is shorter than the path containing two edges between the lines yi and yi+1.

5. Zero false positives zone

We suppose a king’s graph represents a network and each node in the graph represents a computer. The shortest paths between
distinct nodes are used for the message delivery. The sender computer chooses a shortest path to the receiver and the messages
follow this route from the sender to the receiver. The messages are not sent back. Yet, a computer tends to send the message
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through the computers connected to it. Therefore, the false positives in this model are the adjacent edges to the chosen shortest
path.

Theorem 5.1. If a path P is one of the shortest between the vertices u and v in a king’s graph, the label of the path does not
produce a false positive.

Proof. Suppose the edges in a king’s graph are labelled by one-bit-vertex labelling. Consider a shortest path P with the
sequence of vertices v0,v1, ...,vn. The edges in the path P are represented by ek = {vk,v(k+1)} where k ∈ {0,1, . . . ,n}. Suppose
that there is a false positive f = {vi,v j} ∈ E.
Since f is adjacent to the shortest path, either vi ∈ {v0,v1, ...,vn} or v j ∈ {v0,v1, ...,vn}. Suppose vi ∈ {v0,v1, ...,vn} and
vi = {(p,q)} where p ∈ [0,M] and q ∈ [0,N] in a M×N sized king’s graph. Therefore, v j belongs to V ′ = {(p+1,q),(p−
1,q),(p,q+1),(p,q−1),(p+1,q+1),(p−1,q−1),(p+1,q−1),(p−1,q+1)}. A vertex in a shortest path is connected
with two adjacent vertices which belong to the shortest path. Therefore, two adjacent vertices vi−1 and vi+1 to the vertex vi also
belong to V ′. If v j = vi−1 or v j = vi+1, then we can conclude that f is an edge in the shortest path. According to bit-per-vertex
labelling each node is represented by a bit in the Bloom filter of the shortest path. Therefore, it is obtained that β ( f )≤ β (P)
and f is not a false positive.
Suppose v j ∈V ′−{vi−1,vi+1}. The vertices vi−1,vi,vi+1 can belong to consecutive vertical lines xi−1,xi,xi+1. Yet, the other
vertices in V ′−{vi−1,vi+1} also belongs to the lines xi−1,xi,xi+1.
However, if the shortest path consists of horizontal and diagonal edges, then by the Lemma 4.1 the endpoints of the edges in
the shortest path belong to the vertical lines and there is one vertex from the shortest path on each vertical line. Since each
vertex is represented by one bit in the shortest path, βP recognizes that the other vertices whether on the path or not. Therefore,
when v j ∈V ′−{vi−1,vi+1}, then β ( f ) 6≤ β (P) and f is not a false positive.
Similarly, if the shortest path consists of vertical and diagonal edges, then by the Lemma 4.1 the endpoints of the edges
in the shortest path belong to the horizontal lines and there is one vertex from the shortest path on each horizontal line.
Each horizontal line contains one vertex from the shortest path by Lemma 4.1. Therefore, when v j ∈V ′−{vi−1,vi+1}, then
β ( f ) 6≤ β (P) and f is not a false positive.
In conclusion, bit-per-vertex labelling method in king’s graph do not produce any false positives for the shortest paths.

6. Practical performance of bit-per-vertex encoding method

The edges in a graph G can be encoded by one bit. Therefore, in a Bloom filter of a shortest path each edge is represented by
one bit 1 and each bit has a particular bit position in the Bloom filter. Therefore, this encoding method also do not produce a
false positive.
Obviously, the length of the Bloom filter is |E| and the number of the bits 1s k in the Bloom filter is the number of edges in
the path P. The number of edges in a king’s graph |G|, where the size of the graph is M×N, is 4MN +M +N. By using
bit-per-vertex encoding method, the length of the Bloom filter is obtained as |V |= MN +M+N +1. Obviously, in a king’s
graph |V |< |E|. Hence, the space is saved with the parameters used for coding edges in our method for the king’s graphs.
Besides, if the standard Bloom filter is used for encoding the edges with the parameters that we have obtained with bit-per-vertex
encoding, then we probably obtain false positives. The probability of false positives is [6] by the formula (1− e

−kn
m )k where m

is length of Bloom filter, n is the number of edges in a shortest path between two distinct nodes and k is the number of the bits
1s in the Bloom filters of the edges.
In our model, m = |V | and k = 2. If we take n as its maximum value. This is max(M,N) where the size of the king’s graph is
M×N, when the shortest path is one of the the number shortest path lying between one corner to opposite corner of a king’s
graph. In order to obtain less probability of false positives, we recalculate k by using the formula dln2× m

n e, [11]. By this
formula, optimum k is obtained with the maximum number of edges in a shortest path and the length of Bloom filters of the
edges.

Size of a king’s graph m = (M+1)2 Optimum k n = max(M,M) Probability of false positives
2×2 9 ≈ 3 2 ≈ 0,115

10×10 121 ≈ 8 10 ≈ 0,002
18×18 361 ≈ 14 18 ≈ 0,000065
25×25 676 ≈ 18 25 ≈ 0,0000022
30×30 961 ≈ 22 30 ≈ 2,07090265e−7

Table 1: The probabilities of false positives are obtained by using parameters from different sizes of graphs

Therefore k is dln2× M2+2M+1
M e with the parameters of our model where the size of the graph is M×M, the optimum k

depends on the size of the king’s graph. This results that the more the size of the graph increases, the more the value of the k
rises. For example; k ≈ 2, when the king’s graph has a size of 1×1. Obviously, k > 2 in the other sizes of the king’s graphs.
However, real-world network models have bigger sizes than 1×1 sized king’s graph. In the encoding method we introduce k
is 2 in the Bloom filters of edges in any size of the king’s graph. This is another advantage of bit-per-vertex encoding.
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We can conclude that if the edges in a king’s graph would have been encoded by standard Bloom filter with optimum parameters
of our model, then the probability of the false positives would be calculated with (1− e

−kn
m )k. We list some examples of

probabilities of false positives obtained from different sizes of graphs (see Table 1).
Another encoding method introduced in [5] do not produce false positives for shortest paths in king’s graphs. The length of the
Bloom filter in that study is 12× (M×N) where the size of the king’s graph is M×N. It can be seen that 12× (M×N)≤
MN+M+N+1 when M = N = 22. Therefore, one may think the method introduced in [5] which offers 12× (M×N) length
Bloom filter saves more space than bit-per-vertex encoding method in the big size of king’s graph where M > 22 and N ≥ 22.
However, in literature the practicable size of a Bloom filter m has been chosen as 256 [13]. Hence, bit-per-vertex coding works
for bigger sizes of king’s graph models with more advantages than the other encoding methods, if m is chosen from 256 up to
506.

7. Conclusion

In this research we have chosen a graph with V < E that is a realistic network model and we have built labels for the edges in
this graph. The labels have reasonably small length. This property of the labels is an advantages, if the network users have a
small space to store the data. Additionally, the bit-per-vertex labelling do not produce false positives for shortest paths. This is
another advantage for some routing scenarios taking the mathematical graphs as a network model. We show that if a Bloom
filter is built with some assumptions, then it is possible to obtain a model using less space without false positives. The encoding
method and routing model we have introduced in this paper can work, when the graph is regular and has an overall shape of a
king’s graph. For the future work, we aim to generalize this encoding idea to arbitrary graphs. The shape of graph in this paper
has been chosen specifically, it is regular and undirected. This graph has its specific geometric structure. Therefore, the coding
structure can be changed for other types of graphs. Also, we may extend the work in neutrosophic environment for future
studies.
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[8] C. E. Rothenberg, C. Macapuna, B. Alberto, M. F. Magalhães, F. L. Verdi, A. Wiesmaier, In-packet Bloom filters: Design and networking applications,

Comput. Netw., Elsevier, 55 (2011), 1364–1378.
[9] X. Yang, A. Vernitski, L. Carrea, An approximate dynamic programming approach for improving accuracy of lossy data compression by Bloom filters,

Eur. J. Oper. Res. 252 (2016), 985–994.
[10] A. Saha, N. Sengupta, M. Ramanath, Reachability in large graphs using bloom filters, Proceedings - 2019 IEEE Trans Knowl Data Eng, ICDEW 2019,

(2019), 217–224.
[11] M. Mitzenmacher, Compressed bloom filters, IEEE ACM Trans Netw., 10 (2002), 604–612.
[12] A. Broder, M. Mitzenmacher, Network applications of bloom filters: A survey, Internet Math., Taylor & Francis , 1 (2004), 485–509.
[13] L. Carrea, A. Vernitski, M. Reed, Optimized hash for network path encoding with minimized false positives, Comput. Netw., 58 (2014), 180–191.
[14] G. C. Kayaturan, A. Vernitski, A Way of eliminating errors when using Bloom filters for routing in computer networks, Comput. Electr. Eng. (CEEC),

2016 8th, (2016), 95–100.
[15] G. C. Kayaturan, A. Vernitski, Routing in hexagonal computer networks: How to present paths by Bloom filters without false positives, Netw., ICN

2016. , (2016), 52–57.
[16] G. C. Kayaturan, A. Vernitski, Encoding shortest paths in triangular grids for delivery without errors, Proceedings - ICFNDS, (2017), 7.
[17] S. Tarkoma, C. E. Rothenberg, E. Lagerspetz, Theory and practice of bloom filters for distributed systems, IEEE Commun. Surv. Tutor., 14, (2012),

131–155.



Fundamental Journal of Mathematics and Applications, 5 (4) (2022) 245-256

Research Article

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.org.tr/en/pub/fujma

ISSN: 2645-8845

doi: https://dx.doi.org/10.33401/fujma.1117103

Approximately Near Rings in Proximal Relator Spaces
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Abstract

The motivation of this article is to define approximately near rings, some types of ap-
proximately near rings, approximately N-groups, approximately ideals, and approximately
near rings of all descriptive approximately cosets. Moreover, some properties of these
approximately algebraic structures are given. Furthermore, approximately near-ring homo-
morphisms are introduced and their some properties are investigated.

1. Introduction

Let X be a nonempty set and Rδ be a set of proximity relations on X . Then (X ,Rδ ) is called a proximal relator space. Efremovic̆
proximity, descriptive proximity and Lodato proximity are different types of proximity relations [1]-[3]. Non-abstract points
have locations and features. In proximal relator space, the sets consist of these points.
The aim of this work is to obtain algebraic structures in proximal relator spaces using descriptively upper approximations of
the subsets of X . In 2017 and 2018, approximately semigroups and approximately ideals, approximately groups, approximately
subgroups and approximately rings were introduced by İnan [4]-[7]. Approximately Γ-semigroups were also defined [8]. In
these articles some examples of these approximately algebraic structures in digital images endowed with proximity relations
were given as in this article. Approximately algebraic structures satisfy a framework for further applied areas such as image
analysis or classification problems.
In 1983, Pilz introduced the near-rings as a generalization of rings. In near rings, the addition operation does not need to be
commutative as only one distributive law is sufficient [9].
Essentially, the focus of this article is to define approximately near rings, some types of approximately near rings, approximately
N-groups, approximately ideals and approximately near rings of all descriptive approximately cosets. Moreover, some
properties of these approximately algebraic structures are given. Furthermore, approximately near ring homomorphisms are
introduced and their some properties are investigated.

2. Preliminaries

Let X be a nonempty set and R be a family of relations on X . If R is a family of proximity relations on X , then (X ,Rδ )
is called proximal relator space, where Rδ contains proximity relations, for example Efremovic̆ proximity δE [1], Lodato
proximity δL [2], Wallman proximity δω or descriptive proximity δΦ [3, 10, 11].
Throughout this article, the Efremovic̆ proximity [1] and the descriptive proximity relations are considered.
An Efremovic̆ proximity δ is a relation on P(X) that satisfies the conditions: For I,J,K ⊆ X

1o I δ J⇒ J δ I.
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2o I δ J⇒ I 6= /0 and J 6= /0.
3o I∩ J 6= /0⇒ I δ J.
4o I δ (J∪K)⇔ I δ J or I δ K.
5o {x} δ {y} ⇔ x = y.
6o I δ J⇒∃E ⊆ X such that I δ E and Ec δ J (Efremovic̆ Axiom).

Lodato proximity [2] swaps the Efremovic̆ Axiom with:

I δ J and ∀b ∈ J,{b} δ K⇒ I δ K (Lodato Axiom).

Here, I δ J means that I is proximal to J. Also, I δ J means that I is not proximal to J.
Let X be a set of non-abstract points which has a location and features [12, §3] in (X ,RδΦ

). Let Φ = {φ1, . . . ,φn} be a set of
probe functions that represents features of any x ∈ X .
A probe function φi : X → R represents features of a sample non-abstract point. Let Φ(x) = (φ1(x), . . . ,φn(x)),(n ∈ N) be an
object description denoting a feature vector of x, which is a description of each x ∈ X . After choosing a set of probe functions,
one can obtain a descriptive proximity relation δΦ as follows:
[13] Let I,J ⊆ X .

Q(I) = {Φ(a) | a ∈ I}

is a set description of I ⊆ X . And

I∩
Φ

J = {x ∈ I∪ J |Φ(x) ∈ Q(I) and Φ(x) ∈ Q(J)} .

is a descriptive intersection of I and J.
[10] If Q(I)∩Q(J) 6= /0, then I is called descriptively proximal (near) to J, denoted by IδΦJ.
Throughout the article,

(
X ,RδΦ

)
or shortly X is considered as descriptive proximal relator space, unless otherwise stated.

[14] Let X be a descriptive proximal relator space and A ⊆ X . Let (A,◦) and (Q(A) , ·) be groupoids. Consider the object
description Φ by means of a function

Φ : A⊆ X −→ Q(A)⊂ Rn, x 7→Φ(x), x ∈ A.

The object description Φ of A into Q(A) is an object descriptive homomorphism if Φ(x◦ y) = Φ(x) ·Φ(y) for all x,y ∈ A.

Definition 2.1. [5] Let A⊆ X. A descriptively upper approximation of A is defined with

Φ∗A = {x ∈ X | xδΦA}.

It is clear that A⊆Φ∗A for all A⊆ X .

Lemma 2.2. [5] Let I, J be subsets of X. Then
(i) Q(I∩ J) = Q(I)∩Q(J),
(ii) Q(I∪ J) = Q(I)∪Q(J).

Definition 2.3. [5] Let “·” be a binary operation on X. G ⊆ X is called an approximately groupoid if x · y ∈ Φ∗G for all
x,y ∈ G.

Definition 2.4. [4] Let “·” be a binary operation on X. Then G ⊆ X is called an approximately group if the following
conditions are true:

(A G1) x · y ∈Φ∗G for all x,y ∈ G,
(A G2) (x · y) · z = x · (y · z) property holds in Φ∗G for all x,y,z ∈ G,
(A G3) There exists e ∈Φ∗G such that x · e = e · x = x for all x ∈ G (e is called the approximately identity element of G),
(A G4) There exists y ∈ G such that x · y = y · x = e for all x ∈ G (y is called the inverse of x in G and denoted as x−1).

A subset S of X is called an approximately semigroup if

(A S1) x · y ∈Φ∗S for all x,y ∈ S,
(A S2) (x · y) · z = x · (y · z) property holds in Φ∗S for all x,y,z ∈ S
properties are satisfied.
If an approximately semigroup S has an approximately identity element e ∈Φ∗S such that x · e = e · x = x for all x ∈ S, then S
is called an approximately monoid.
If x · y = y · x for all x,y ∈ S holds in Φ∗S, then S is called commutative approximately groupoid (semigroup, monoid or group).
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Theorem 2.5. [4] Let G⊆ X be an approximately group. Then the followings are true:
(i) There is one and only one approximately identity element in G.
(ii) There is one and only one inverse of elements in G.
(iii) If either x · z = y · z or z · x = z · y, then x = y for all x,y,z ∈ G.

Theorem 2.6. [4] Let G be an approximately group, H be a nonempty subset of G and Φ∗H be a groupoid. Then H is an
approximately subgroup of G if and only if x−1 ∈ H for all x ∈ H.

Let G be an approximately groupoid in
(
X ,RδΦ

)
, x ∈ G and A,B ⊆ G. Then the subsets x ·A, A · x, A ·B ⊆ Φ∗G ⊆ X are

defined as:

x ·A = xA = {xa | a ∈ A},
A · x = Ax = {ax | a ∈ A},

A ·B = AB = {ab | a ∈ A,b ∈ B}.

Lemma 2.7. [4] Let A,B ⊆ X and A,B,Q(A),Q(B) be groupoids. If Φ : X −→ R is an object descriptive homomorphism,
then

Q(A)Q(B) = Q(AB) .

Theorem 2.8. [6] Let G be an approximately group, H be an approximately subgroup of G and G/ρl be a set of all descriptive
approximately left cosets of G by H. If (Φ∗G)/ρl ⊆Φ∗

(
G/ρl

)
, then G/ρl is an approximately group with the binary operation

xH� yH = (x · y)H for all x,y ∈ G.

Definition 2.9. [9] Let N be a nonempty set and “+” and “·” be binary operations defined on N. Then N is called a (right)
near-ring if the following properties are satisfied:
(N1) N is a group with “+” (need not be commutative),
(N2) N is a semigroup with “·”,
(N3) For all x,y,z ∈ N, (x+ y) · z = (x · z)+(y · z).

3. Approximately near rings

Definition 3.1. Let “+” and “·” be binary operations on
(
X ,RδΦ

)
. For a subset N of X is called an approximately near ring

if the following conditions are satisfied:

(A N1) N is an approximately group with “+” (need not be abelian),
(A N2) N is an approximately semigroup with “·”,
(A N3) For all x,y,z ∈ N,

(x+ y) · z = (x · z)+(y · z) property holds in Φ∗N.

In addition,

(A N4) If x · y = y · x for all x,y ∈ N,

then N is a commutative approximately near ring.

(A N5) If Φ∗N contains an element 1N such that 1N · x = x ·1N = x for all x ∈ N,

then N is called an approximately near ring with identity.

Since (A N3), instead of approximately near-ring it can be used approximately right near ring. Furthermore, if consider the
condition x · (y+ z) = (x · y)+(x · z) for all x,y,z ∈ N instead of (A N3), then it can be named an approximately left near ring.
Throughout this study approximately near ring will be used.
In general, the identity element of the approximately group (N,+) is defined as zero of the approximately near ring N. Also,
the set of all approximately near rings is shown with the notation AN .
It should be noted here that, these conditions (A N1)− (A N3) have to be hold in Φ∗N. Addition or multiplying of finite
number of elements in N may not always belong to Φ∗N. Therefore we cannot always say that kx ∈Φ∗N or xk ∈Φ∗N for all
x ∈ N and some k ∈ Z+. If (Φ∗N,+) and (Φ∗N, ·) are groupoids, then kx ∈Φ∗N for all integer k or xk ∈Φ∗N for all positive
integer k, for all x ∈ N.
An element x in approximately near ring N with identity is called a left (resp. right) approximately invertible if there exists
y ∈ N (resp. z ∈ N) such that y · x = 1N (resp. x · z = 1N). The element y (resp. z) is called a left (resp. right) approximately
inverse of x. If x ∈ R is both left and right approximately invertible, then x is called an approximately invertible or an
approximately unit. The set of approximately units in an approximately near ring N with identity forms is an approximately
group with multiplication.
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Figure 3.1: Digital Image I

Example 3.2. Let I be a digital image endowed with δΦ. It is composed of 16 pixels (image elements) as shown in the Fig. 3.1.
An image element xi j is a pixel in the location (i, j). Let φ be a probe function that represents RGB (Red, Green, Blue) codes of
pixels that are shown in Table 1.

x00 x01 x02 x03 x10 x11 x12 x13 x20 x21 x22 x23 x30 x31 x32 x33
Red 249 252 228 204 249 252 204 244 228 204 181 244 204 244 174 181
Green 245 207 234 245 245 207 245 212 234 245 232 212 245 212 220 232
Blue 75 94 98 185 75 94 185 140 98 185 231 140 185 140 124 231

Table 3.1: RGB codes of pixels

Let

+ : I× I −→ I
(xi j,xkl) 7−→ xi j + xkl

,

xi j + xkl = xmn, i+ k ≡ m (mod 2) and j+ l ≡ n (mod 2)

be a binary operation on I such that 0≤ i, j,k, l ≤ 3. Let N = {x01,x10} ⊆ I.
From Definition 2.1, descriptively upper approximation of N is Φ∗N = {xi j ∈ X | xi jδφ N}. Hence φ (xi j)∩Q(N) 6= /0 such that
xi j ∈ I, Q(N) = {φ(xi j) | xi j ∈ N}. From Table 1,

Q(N) = {φ (x01) ,φ (x10)}
= {(252,207,94) ,(249,245,75)}.

Hence we get Φ∗N = {x00,x01,x10,x11} as in Fig. 3.2.

Figure 3.2: Upper Approximation of N

Hence N is an approximately group with “+” in
(
I,RδΦ

)
from Definition 2.4. Furthermore, let

· : I× I −→ I
(xi j,xkl) 7−→ xi j · xkl = xi j

be a binary operation on I. Then it is obvious that N is an approximately semigroup with “·” in
(
I,RδΦ

)
. Also for all

xi j,xkl ,xmn ∈ N,
(xi j + xkl) ·xmn = xi j ·xmn+xkl ·xmn property holds in Φ∗N. But since x01 ·(x01 + x01) 6= x01 ·x01+x01 ·x01, so xi j ·(xkl + xmn) =
xi j · xkl + xi j · xmn property does not hold in Φ∗N. Consequently, N is an approximately right near ring.

Example 3.3. Let I be a digital image endowed with δΦ. It is composed of 25 pixels (image elements) as shown in the Fig. 3.3.
An image element xi j is a pixel in the location (i, j). Let φ be a probe function that represents RGB (Red, Green, Blue) codes of
pixels that are shown in Table 2.
Let
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Figure 3.3: Digital Image I

x00 x01 x02 x03 x04 x10 x11 x12 x13 x14 x20 x21 x22 x23 x24
Red 170 228 170 200 238 228 0 130 0 200 0 130 170 205 200
Green 240 240 240 230 252 240 160 182 160 230 160 182 240 205 200
Blue 200 237 200 255 244 237 145 167 145 255 145 167 200 216 250

x30 x31 x32 x33 x34 x40 x41 x42 x43 x44
Red 205 0 183 170 200 238 183 205 200 130
Green 205 160 213 240 230 252 213 205 230 182
Blue 216 145 204 200 255 244 204 216 255 167

Table 3.2: RGB codes of pixels

+ : I× I −→ I
(xi j,xkl) 7−→ xi j + xkl

,

xi j + xkl = xmn, i+ k ≡ m (mod 4) and j+ l ≡ n (mod 4)

be a binary operation on I such that 0≤ i, j,k, l ≤ 4. Let N = {x02,x11,x20,x33} ⊆ I.
From Definition 2.1, Φ∗N = {xi j ∈ I | xi jδφ N}. Hence φ (xi j)∩Q(N) 6= /0 such that xi j ∈ I, Q(N) = {φ(xi j) | xi j ∈ N}. From
Table 2,

Q(N) = {φ (x02) ,φ (x11) ,φ (x20) ,φ (x33)}
= {(170,240,200) ,(0,160,145)}.

Hence we get Φ∗N = {x00,x02,x11,x13,x20,x22,x31,x33}.
And so N is an approximately group with “+” in

(
I,RδΦ

)
from Definition 2.4. Furthermore, let

· : I× I −→ I
(xi j,xkl) 7−→ xi j · xkl = xi j

be a binary operation on I. Then it is obivious that N is an approximately semigroup with “·” in
(
I,RδΦ

)
. Also for all

xi j,xkl ,xmn ∈ N,
(xi j + xkl) ·xmn = xi j ·xmn+xkl ·xmn property holds in Φ∗N. But since x02 ·(x02 + x02) 6= x02 ·x02+x02 ·x02, so xi j ·(xkl + xmn) =
xi j · xkl + xi j · xmn property does not hold in Φ∗N. Consequently, N is an approximately right near ring.

Theorem 3.4. All ordinary near rings in proximal relator spaces are approximately near rings.

Proof. Let N ⊆ X be a near ring. Since N ⊆ Φ∗N, then the properties (A N1)− (A N3) hold in Φ∗N. Therefore N is an
approximately near ring.

Theorem 3.5. All approximately rings in descriptive proximal relator space are approximately near rings.

Proof. Let N ⊆X be an approximately ring. From definition of approximately ring, it is easily shown that N is an approximately
near ring.

Lemma 3.6. Let N ⊆ X be an approximately near ring and 0N ∈ N. If 0N · x ∈ N for all x ∈ N, then
(i) 0N · x = 0N ,
(ii) (−x) · y =−(x · y)
for all x,y ∈ N.
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Proof. (i) For all x ∈ N, 0N · x = (0N +0N) · x = 0N · x+0N · x.
From Theorem 2.5 (i), since the identity element is unique, 0N · x = 0N .
(ii) From (i), 0N · y = 0N for all y ∈ N. Then 0N = 0N · y = ((−x)+ x) · y = (−x) · y+ x · y.
From Theorem 2.5 (ii), since the approximately inverse element is unique, (−x) · y =−(x · y).

Definition 3.7. Let N be an approximately near ring. The set

N0 = {x ∈ N | x ·0N = 0N }

is called zero symmetric part of N and the set

Nc = {x ∈ N | x ·0N = x}

is called constant part of N.

If N = N0, then N is called a zero symmetric approximately near ring and if N = Nc, then N is called constant approximately
near ring. The set of all zero symmetric approximately near rings is represented as N0 and the set of all constant approximately
near rings is represented as Nc.
If the condition d · (x+ y) = d · x+d · y holds in Φ∗N for all x,y ∈ N, then d is called distributive element. Also, the set of all
approximately near ring with the identity is represented as N1 and the set of all distributive elements in N is represented as Nd .
If N = Nd , then N is called distributive approximately near ring.

Definition 3.8. Let (G,+) be an approximately group, N be an approximately near ring and

ω : Φ∗N×G→Φ∗G, ω ((x,g)) = xg.

The pair (G,ω) is called an approximately N-group if (x+ y)g = xg+ yg and (x · y)g = x(yg) properties satisfy in Φ∗G for all
g ∈ G and all x,y ∈ N. It is denoted by NG and the set of all approximately N-groups is denoted by NG .

Theorem 3.9. All approximately near-ring (N,+, ·) are approximately N-groups.

Definition 3.10. Let N ∈N1 and NG ∈NG . If 1N g = g property holds in Φ∗G for all g ∈ G, then NG is called an unitary
approximately N-group.

Lemma 3.11. Let N be an approximately near ring and G be an approximately N-group. Then
(i) 0Ng = 0G for all g ∈ G.
(ii) (−x)g =−xg for all g ∈ G and all x ∈ N.
(iii) x0G = 0G for all x ∈ N0.
(iv) xg = x0G for all g ∈ G and all x ∈ Nc.

Proof. (i) For all g ∈ G, 0Ng = (0N +0N)g = 0Ng+0Ng. From Theorem 2.5 (i), 0Ng = 0G.
(ii) From (i), 0Ng = 0G for all g ∈ G. Then 0G = 0Ng = ((−x)+ x)g = (−x)g+ xg.From Theorem 2.5 (ii), (−x)g =−xg.
(iii) Since x ·0N = 0N for all x ∈ N0, x0G = x(0Ng) = (x ·0N)g = 0Ng = 0G by (i).
(iv) Since x ·0N = x for all x ∈ Nc, xg = (x ·0N)g = x(0Ng) = x0G by (i).

Definition 3.12. Let N be an approximately near ring and M be an approximately subgroup of (N,+). M is called an
approximately subnear ring of N if M ·M ⊆Φ∗M.

Theorem 3.13. Let N ⊆ X be an approximately near ring, M ⊆ N and (Φ∗M,+), (Φ∗M, ·) be groupoids. Then M is an
approximately subnear ring of N iff −x ∈M for all x ∈M.

Proof. (⇒) Let M is an approximately subnear ring of M. Then (M,+) is an approximately group and hence −x ∈M for all
x ∈M.
(⇐) Let −x ∈M for all x ∈M. Since (Φ∗M,+) a groupoid, (M,+) is an approximately group from Theorem 2.6. Therefore,
since (Φ∗M, ·) is a groupoid and M ⊆ N, x · y ∈Φ∗M and (x · y) · z = x · (y · z) property holds in Φ∗M for all x,y,z ∈M. Hence
(M, ·) is an approximately semigroup. Furthermore, since (Φ∗M,+) and (Φ∗M, ·) are groupoids and M is an approximately
near ring, (x+ y) · z = (x · z)+(y · z) property holds in Φ∗M for all x,y,z ∈M. Consequently, M is an approximately subnear
ring of N.

Definition 3.14. Let N be an approximately near ring, G be an approximately N-group and H be an approximately subgroup
of (G,+). Then H is called an approximately N-subgroup of G if N ·H ⊆Φ∗H.

Definition 3.15. Let N be an approximately near ring and I be an approximately subgroup of (N,+). Then I is called an
approximately ideal of N if the following properties are satisfied:
(1) I ·N ⊆Φ∗I,
(2) x · (y+a)− x · y ∈Φ∗I for all x,y ∈ N and all a ∈ I.
Furthermore, I is called right approximately ideal of M if only the condition (1) satisfies. Also, I is called left approximately
ideal of M if only the condition (2) satisfies.
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Definition 3.16. Let N be an approximately near ring, G be an approximately N-group and H be an approximately N-subgroup
of G. Then H is called an approximately ideal of G if x(g+h)− xg ∈ Nr (B)

∗H for all g ∈ G, all h ∈ H and all x ∈ N.

Theorem 3.17. Let N ⊆ X be an approximately near ring, M1 and M2 two approximately subnear rings of N and Φ∗M1,
Φ∗M2 be groupoids with the binary operations “+” and “·”. If

(Φ∗M1)∩ (Φ∗M2) = Φ∗ (M1∩M2) ,

then M1∩M2 is an approximately subnear ring of N.

Corollary 3.18. Let N ⊆ X be an approximately near ring, {Mi : i ∈ ∆} be a nonempty family of approximately subnear rings
of N and Φ∗Mi be groupoids for all i ∈ ∆. If

⋂
i∈∆

(Φ∗Mi) = Φ∗
(⋂

i∈∆

Mi

)
,

then
⋂

i∈∆

Mi is an approximately subnear ring of N.

3.1. Approximately near rings of weak cosets

Let N be an approximately near ring and M be an approximately subnear ring of N. The relation “∼r” defined as

a∼r b⇔ a+(−b) ∈M∪{0N}

where a,b ∈ N.

Theorem 3.19. Let N be an approximately near ring. Then “∼r” is a right weak equivalence relation on N.

Proof. Since (N,+) is an approximately group, −a ∈ N for all a ∈ N. Due to a+(−a) = 0N ∈M∪{0N}, a∼r a. Let a∼r b
for all a,b ∈ N. Then a+(−b) ∈ M ∪{0N}, that is a+(−b) ∈ M or a+(−b) ∈ {0N}. If a+(−b) ∈ M, since (M,+) is
an approximately group, then −(a+(−b)) = b+(−a) ∈M. Hence b ∼r a. Also if a+(−b) ∈ {0N}, then a+(−b) = 0N .
Therefore b+(−a) =−(a+(−b)) =−0N = 0N and so b∼r a. Consequently, “∼r” is a right weak equivalence relation on
N.

A weak class containing the element a ∈ N according to the relation “∼r” is defined by

ãr = {m+a|m ∈M,a ∈ N,m+a ∈ N}∪{a} .

Definition 3.20. Let N be an approximately near ring. A weak class determined by right weak equivalence relation “∼r” is
called near right weak coset.

Similarly, the relation “∼`” defined as

a∼` b⇔ (−a)+b ∈M∪{0N}

where a,b ∈ N.

Theorem 3.21. Let N be an approximately near ring. Then “∼`” is a left weak equivalence relation on N.

Proof. Since (N,+) is an approximately group, −a ∈ N for all a ∈ N. Due to (−a) +a = 0N ∈M∪{0N}, a∼` a. Let a∼` b
for all a,b ∈ N. Then (−a)+b ∈M∪{0N}, that is, (−a)+b ∈M or (−a)+b ∈ {0N}. If (−a)+b ∈M, since (M,+) is a
an approximately group, then −((−a)+b) = (−b)+a ∈M. Hence b ∼` a. Also if (−a)+b ∈ {0N}, then (−a)+b = 0N .
Therefore (−b)+a =−((−a)+b) =−0N = 0N and so b∼` a. Consequently, “∼`” is a left weak equivalence relation on
N.

A class that contains the element a ∈ N, determined by relation “∼`” is

ã` = {a+m|m ∈M,a ∈ N,a+m ∈ N}∪{a} .

Definition 3.22. Let N be an approximately near ring. A class determined by left weak equivalence relation “∼`” is called
near left weak coset.

We can easily show that ãr = M+a and ã` = a+M. Approximately group (M,+) may not always abelian. If (M,+) is an
abelian approximately group, ãr = ã`. Otherwise ãr 6= ã`.
Let N be an approximately near ring and M be an approximately subnear ring of N. Then

N/∼`
= {a+M|a ∈ N}

is a set of all near left weak cosets of N determined by M. If we consider Φ∗N instead of approximately near ring N
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(Φ∗N)/∼`
= {a+M|a ∈Φ∗N} .

Hence

a+M = {a+m|m ∈M,a ∈Φ∗N,a+m ∈ N}∪{a} .

Definition 3.23. Let N be an approximately near ring and M be an approximately subnear ring of N. For a,b ∈ N, let a+M
and b+M be two near left weak cosets that determined the elements a and b, respectively. Then sum of two near left weak
cosets that determined by a+b ∈Φ∗N can be defined as

{(a+b)+m|m ∈M,a+b ∈Φ∗N,(a+b)+m ∈ N}∪{a+b}

and denoted by

(a+M)⊕ (b+M) = (a+b)+M.

Definition 3.24. Let N be an approximately near ring and M be an approximately subnear ring of N. For a,b ∈ N, let a+M
and b+M be two near left weak cosets that determined the elements a and b, respectively. Then product of two near left weak
cosets that determined by a ·b ∈Φ∗N can be defined as

{(a ·b)+m|m ∈M,a ·b ∈Φ∗N,(a ·b)+m ∈ N}∪{a ·b}

and denoted by

(a+M)� (b+M) = (a ·b)+M.

Definition 3.25. Let N/∼`
be a set of all near left weak cosets of N determined by M and ξΦ (S) be a descriptive approximately

collection of S ∈ P(X). Then

Φ∗
(
N/∼`

)
=
⋃

ξΦ(S) ∩
Φ

N/∼` 6= /0 ξΦ (S)

is called upper approximation of N/∼`
.

Theorem 3.26. Let N be an approximately near ring, M be an approximately subnear ring of N and N/∼`
be a set of all near

left weak cosets of N determined by M. If

(Φ∗N)/∼`
⊆Φ∗

(
N/∼`

)
,

then N/∼`
is an approximately near ring with the operations given by

(a+M)⊕ (b+M) = (a+b)+M

and

(a+M)� (b+M) = (a ·b)+M

for all a,b ∈ N.

Proof. (A N1) Let (Φ∗N)/∼`
⊆Φ∗

(
N/∼`

)
. Since N is an approximately near ring,

(
N/∼`

,⊕
)

is an approximately group of
all near left weak cosets of N determined by M from Theorem 2.8.
(A N2)

(A S1) Since (N, ·) is an approximately semigroup, a · b ∈ Φ∗N for all a,b ∈ N and (a+M)� (b+M) = (a ·b)+M
∈ (Φ∗N)/∼`

for all (a+M) ,(b+M) ∈ N/∼`
. From the hypothesis, (a+M)� (b+M) = (a ·b)+M ∈ Φ∗

(
N/∼`

)
for all

(a+M) ,(b+M) ∈ N/∼`
.

(A S2) Since (N, ·) is an approximately semigroup, associative property holds in Φ∗N. Hence

((a+M)� (b+M))� (c+M)
= ((a ·b)+M)� (c+M)
= ((a ·b) · c)+M
= (a · (b · c))+M
= (a+M)� ((b · c)+M)
= (a+M)� ((b+M)� (c+M))

holds in (Φ∗N)/∼`
for all (a+M) ,(b+M) ,(c+M) ∈ N/∼`

. From the hypothesis, associative property holds in Φ∗
(
N/∼`

)
.

So
(
N/∼`

,�
)

is an approximately semigroup of all near left weak cosets of N determined by M.
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(A N3) Since N is an approximately near ring, right distributive property holds in Φ∗N for all a,b,c ∈ N. Then

((a+M)⊕ (b+M))� (c+M)
= ((a+b)+M)� (c+M)
= ((a+b) · c)+M
= ((a · c)+(b · c))+M
= ((a · c)+M)⊕ ((b · c)+M)
= ((a+M)� (c+M))⊕ ((b+M)� (c+M))

for all (a+M) ,(b+M) ,(c+M) ∈ N/∼`
.

Hence right distributive property holds in Φ∗
(
N/∼`

)
from the hypothesis.

Consequently, N/∼`
is an approximately near ring.

Definition 3.27. Let N be an approximately near ring and M be an approximately subnear ring of N. The approximately near
ring N/∼`

is called an approximately near ring of all near left weak cosets of N determined by M and denoted by N/wM.

3.2. Approximately near ring homomorphisms

Definition 3.28. Let N1,N2 ⊆ X be two approximately near rings and

ψ : Φ
∗N1→Φ

∗N2

be a mapping. If

ψ (a+b) = ψ (a)+ψ (b)

and

ψ (a ·b) = ψ (a) ·ψ (b)

for all a,b ∈ N1, then ψ is called an approximately near ring homomorphism. Furthermore, N1 is called approximately
homomorphic to N2 and denoted by N1 'a N2.
An approximately near ring homomorphism ψ : Φ∗N1→Φ∗N2 is called
(1) an approximately near ring monomorphism if ψ is one-one,
(2) an approximately near ring epimorphism if ψ is onto,
(3) an approximately near ring isomorphism if ψ is one-one and onto.
Set of all approximately near ring homomorphisms from Φ∗N1 into Φ∗N2 is denoted by Hom(Φ∗N1,Φ

∗N2).

Theorem 3.29. Let N1,N2 be two approximately near rings and ψ be an approximately near ring homomorphism from Φ∗N1
into Φ∗N2. Then
(i) ψ (0N1) = 0N2 , where 0N2 ∈Φ∗N2 is the near zero of N2.
(ii) ψ (−a) =−ψ (a) for all a ∈ N1.

Proof. (i) Since 0N1 = 0N1 +0N1 and ψ is an approximately near ring homomorphism, ψ (0N1) = ψ (0N1 +0N1) = ψ (0N1)+
ψ (0N1). Hence ψ (0N1) = 0N2 as the approximately identity element is unique.
(ii) a+(−a)= 0N1 for all a∈N1. Then 0N2 =ψ (0N1)=ψ (a+(−a))=ψ (a)+ψ (−a) by (i). Similarly, 0N2 =ψ (−a)+ψ (a)
for all a ∈ N1. By Theorem 2.5 (ii), since ψ (a) has a unique approximately inverse, ψ (−a) =−ψ (a) for all a ∈ N1.

Definition 3.30. Let N1,N2 ⊆ X be two approximately near rings and
ψ ∈ Hom(Φ∗N1,Φ

∗N2). The set

Kerψ = {a ∈ N1 | ψ (a) = 0N2 }

is called kernel of approximately near ring homomorphism ψ .

Theorem 3.31. Let N1,N2 ⊆ X be two approximately near rings,
ψ ∈ Hom(Φ∗N1,Φ

∗N2) and (Φ∗Ker ψ,+), (Φ∗Ker ψ, ·) be groupoids. Then Kerψ is a approximately subnear ring of
N1.

Proof. Let a ∈ Kerψ . Then ψ (a) = 0N2 . Since N1,N2 ⊆ X are two approximately near rings, 0N1 ∈ Φ∗N1 and 0N2 ∈ Φ∗N2,
ψ (0N1) = 0N2 by Theorem 3.29 (i). Hence 0N2 = ψ (0N1) = ψ (a+(−a)) = ψ (a) +ψ (−a) and so ψ (−a) = 0N2 from
ψ (a) = 0N2 . Thus from Definition 3.30, −a ∈ Ker ψ . Therefore Kerψ is an approximately subnear ring of N1 from Theorem
3.13.
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Theorem 3.32. Let N1,N2 ⊆ X be two approximately near rings,
ψ ∈ Hom(Φ∗N1,Φ

∗N2) and (Φ∗N1,+), (Φ∗N1, ·) be groupoids. If S is an approximately subnear ring of N1 and

ψ (Φ∗S) = Φ∗ψ (S) ,

then ψ (S) = {ψ (a) |a ∈ S} is an approximately subnear ring of N2.

Proof. Since N1,N2 ⊆ X are two approximately near rings, 0N1 ∈Φ∗N1 and 0N2 ∈Φ∗N2, ψ (0N1) = 0N2 by Theorem 3.29 (i).
Thus 0N2 = ψ (0N1) ∈ ψ (Φ∗S) = Φ∗ψ (S). This means that Φ∗ψ (S) 6= /0, i.e., ψ (S) 6= /0. Since S is an approximately subnear
ring of N1, −a ∈ S for all a ∈ S from Theorem 3.13. Therefore −ψ (a) = ψ (−a) ∈ ψ (S) for all ψ (a) ∈ ψ (S) by Theorem
3.29 (ii). Consequently, ψ (S) is an approximately subnear ring of N2 from Theorem 3.13.

Theorem 3.33. Let N1,N2 ⊆ X be two approximately near rings, T ⊆ N2,
ψ ∈ Hom(Φ∗N1,Φ

∗N2) and (Φ∗T,+), (Φ∗T, ·) be groupoids. If T is an approximately subnear ring of N2, then ψ−1 (T ) =
{a ∈ N1|ψ (a) ∈ T} is an approximately subnear ring of N1.

Proof. Let a ∈ ψ−1 (T ). Then ψ (a) ∈ T . Since T is an approximately subnear ring of N2, −ψ (a) ∈ T from Theorem 3.13.
Hence ψ (−a) ∈ T and so −a ∈ ψ−1 (T ) by Theorem 3.29 (ii). Consequently, ψ−1 (T ) is an approximately subnear ring of N1
from Theorem 3.13.

Theorem 3.34. Let N be an approximately near ring and M be an approximately subnear ring of N. Then the mapping
Π : Φ∗N→Φ∗ (N/wM) defined by Π(a) = a+M for all a ∈Φ∗N is an approximately near ring homomorphism.

Proof. From the definition of Π, Definitions 3.23 and 3.24,

Π(a+b) = (a+b)+M = (a+M)⊕ (b+M) = Π(a)⊕Π(b) , Π(a ·b) = (a ·b)+M = (a+M)� (b+M) = Π(a)�Π(b)

for all a,b ∈ N. Thus Π is an approximately near ring homomorphism from Definition 3.28.

Definition 3.35. The approximately near ring homomorphism Π is called a natural approximately near ring homomorphism
from Φ∗N into Φ∗ (N/wM).

Definition 3.36. Let N1,N2 ⊆ X be two approximately near rings, S⊆ N1. Let

τ : Φ∗N1 −→Φ∗N2

be a mapping and

τS =
τ
∣∣
S : S−→Φ∗N2

a restricted mapping. If

τ (a+b) = τS (a+b) = τS (a)+ τS (b) = τ (a)+ τ (b)

and

τ (a ·b) = τS (a ·b) = τS (a) · τS (b) = τ (a) · τ (b)

for all a,b ∈ S, then τ is called a restricted approximately near ring homomorphism and also, N1 is called restricted
approximately homomorphic to N2, denoted by N1 'ra N2.

Theorem 3.37. Let N1,N2 ⊆ X be two approximately near rings and
τ ∈ Hom(Φ∗N1,Φ

∗N2). Let (Φ∗Kerτ,+), (Φ∗Kerτ, ·) be groupoids and (Φ∗N1)/∼`
be a set of all approximately left

weak cosets of Φ∗N1 determined by Kerτ . If

(Φ∗N1)/∼`
⊆Φ∗

(
N1/∼`

)
and

Φ∗τ (N1) = τ (Φ∗N1) ,

then

N1/∼`
'ra τ (N1) .

Proof. Since (Φ∗Kerτ,+) and (Φ∗Kerτ, ·) are groupoids, Kerτ is an approximately subnear ring of N1 from Theorem 3.31.
Since Kerτ is an approximately subnear ring of N1 and (Φ∗N1)/∼`

⊆ Φ∗
(
N1/∼`

)
, then N1/∼`

is an approximately near
ring of all near left weak cosets of N1 determined by Kerτ , from Theorem 3.26. Since Φ∗τ (N1) = τ (Φ∗N1), τ (N1) is an
approximately subnear ring of N2 from Theorem 3.32. Let
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σ : Φ∗
(
N1/∼`

)
−→ Φ∗τ (N1)

A 7−→ σ(A) =
{

σN1/∼`
(A) ,A ∈ (Φ∗N1)/∼`

0τ(N1) ,A /∈ (Φ∗N1)/∼`

be a mapping where

σN1/∼`
= σ

∣∣
N1/∼`

: N1/∼`
−→ Φ∗τ (N1)

a+Kerτ 7−→ σN1/∼`
(a+Kerτ) = τ (a)

for all a+Kerτ ∈ N1/∼`
.

Since

a+Kerτ = {a+ k | k ∈ Kerτ,a+ k ∈ N1}∪{a} ,

b+Kerτ =
{

b+ k′ | k′ ∈ Kerτ,b+ k′ ∈ N1
}
∪{b}

and the mapping τ is an approximately near ring homomorphism,

a+Kerτ = b+Kerτ

⇒ a ∈ b+Kerτ

⇒ a ∈ {b+ k′ | k′ ∈ Kerτ,b+ k′ ∈ N1} or a ∈ {b}
⇒ a = b+ k′, k′ ∈ Kerτ, b+ k′ ∈ N1 or a = b
⇒ −b+a = (−b+b)+ k′, k′ ∈ Kerτ or τ (a) = τ (b)
⇒ −b+a = k′, k′ ∈ Kerτ

⇒ −b+a ∈ Kerτ

⇒ τ (−b+a) = 0τ(N1)

⇒ τ (−b)+ τ (a) = 0τ(N1)

⇒ −τ (b)+ τ (a) = 0τ(N1)

⇒ τ (a) = τ (b)
⇒ σN1/∼`

(a+Kerτ) = σN1/∼`
(b+Kerτ)

Therefore σN1/∼`
is well defined.

For A,B ∈Φ∗
(

σN1/∼`

)
, we suppose that A = B. Since the mapping σN1/∼`

is well defined,

σ (A) =

{
σN1/∼`

(A) , A ∈ (Φ∗N1)/∼

0τ(N1) , A /∈ (Φ∗N1)/∼

=

{
σN1/∼`

(B) , B ∈ (Φ∗N1)/∼

0τ(N1) , B /∈ (Φ∗N1)/∼

= σ (B).

Consequently σ is well defined.
For all a+Kerτ,b+Kerτ ∈ N1/∼`

⊂Φ∗
(
N1/∼`

)
,

σ ((a+Kerτ)⊕ (b+Kerτ))
= σ ((a+b)+Kerτ)
= σN1/∼`

((a+b)+Kerτ)

= τ (a+b)
= τ (a)+ τ (b)
= σN1/∼`

(a+Kerτ)+σN1/∼`
(b+Kerτ)

= σ (a+Kerτ)+σ (b+Kerτ)

and

σ ((a+Kerτ)� (b+Kerτ))
= σ ((a ·b)+Kerτ)
= σN1/∼`

((a ·b)+Kerτ)

= τ (a ·b)
= τ (a) · τ (b)
= σN1/∼`

(a+Kerτ) ·σN1/∼`
(b+Kerτ)

= σ (a+Kerτ) ·σ (b+Kerτ).

Therefore σ is a restricted approximately near ring homomorphism by Definition 3.36. Consequently, N1/∼`
'ra τ (N1).
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4. Conclusion

Algebraic structures provide a consistent theoretical background for all mathematical research. The theoretical background is
very important in all problems of processing digital images. In this study, approximately near-rings as an algebraic structure on
digital images were investigated. We hope this research will inspire the investigations in both some theoretical and applied
sciences.
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[6] E. İnan, Approximately subgroups in proximal relator spaces, Adıyaman University Journal of Science, 8 (1) (2018), 24-41.
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Abstract

In this paper, we obtain exact solutions of the (2+1)-dimensional combined KdV-mKdV
equation by using a symbol calculation approach. First, we give some background on
the equation. Second, the exp(−ϕ(z))-expansion method will be introduced to solve the
equation. After, using the exp(−ϕ(z))-expansion method to solve the equation, we can get
four types of exact solutions, which are hyperbolic, trigonometric, exponential, and rational
function solutions. Finally, we can observe the characteristics of the exact solutions via
computer simulation more easily.

1. Introduction

Seeking the exact solutions of nonlinear partial differential equations (NLPDEs) is a hotspot in nonlinear science research
and the related theory has developed rapidly in recent decades. Because many nonlinear phenomena existing in nature and
various fields can be described as NLPDEs. More importantly, the solutions of NLPDEs can account for these complex
phenomena as well as applying in these fields [1]-[12], such as atmosphere, optical fiber communications and fluid mechanics.
There is a series of NLPDEs, for example, the KdV equation, the KP equation and the Schrödinger equation. Also, there
are many effective methods to search exact solutions of NLPDEs, such as Lie symmetry [13], the Hirota bilinear method
[14, 15], the extended complex metho d[16], and the exp(−ϕ(z))-expansion method [17]. Particularly, the exp(−ϕ(z))-
expansion method first proposed by Zhao and Li [17] can be used to attain analytical traveling wave solutions of numerous
NLPDEs, such as the combined KdV-mKdV equation[18], the (1+1)-dimensional classical Boussinesq equations [19] and the
Caudrey-Dodd-Gibbon-Sawada-Kotera equation [20].
As we all know, the KdV equation becoming a kind of classical nonlinear partial differential equations can be used to describe
small amplitude shallow water waves, stratified internal waves, ion acoustic waves and its model has great practical value in
many fields [21]-[23], such as plasma physics, solid state physics and fluid mechanics. With the development of soliton theory
and the in-depth research in the KdV equation, we fully understand the properties of it and its abundant solutions. Meanwhile,
various extensions of KdV equations are derived. More recently, Wang and Kara [24] built the new (2+1)-dimensional KdV
and mKdV equations as

ut −6uux +6uuy−uxxx +uyyy +3uxxy−3uxyy = 0 (1.1)
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ut −6u2ux +6u2uy−uxxx +uyyy +3uxxy−3uxyy = 0 (1.2)

Then Malik et al. [25] proposed the (2+1)-dimensional combined KdV-mKdV equation by combining them, which is given by:

ut −a1uux +a1uuy−a2u2ux +a2u2uy−a3uxxx +a3uyyy +a4uxxy−a4uxyy = 0 (1.3)

By considering a1 = 6,a2 = 0,a3 = 1,a4 = 3 and a1 = 0,a2 = 6,a3 = 1,a4 = 3, Eq.(1.3) reduces to Eqs.(1.1) and (1.2)
respectively. Additionally, although the authors have obtained the analytical solutions to the combined KdV-mKdV equation in
[18], the (2+1)-dimensional combined KdV-mKdV equation in [25] has more dimensions and the mixed partial derivatives in
contrast to the former, which means a much broader researching space for scholars. Therefore, it makes sense to research the
the (2+1)-dimensional combined KdV-mKdV equation deeply. The integrability of the equation and some forms of its solutions
are illuminated in Sandeep Malik’s paper. In this article, we use the exp(−ϕ(z))-expansion method to attain exact solutions to
the (2+1)-dimensional combined KdV-mKdV equation and observe the characteristics of them by computer simulation, which
can obtain more abundant solutions to the equation and indicate the validity of the exp(−ϕ(z))-expansion method. The results
and simulations are gained by using Maple.

2. The exp(−ϕ(z))-expansion method

Considering the following nonlinear PDE:

F(u,ux,uy,ut ,uxx,uyy,utt , · · ·) = 0, (2.1)

in which F is a polynomial of the unknown function u(x,y, t) and its partial derivatives, and it also involves nonlinear terms.

Step 1. Insert traveling wave transform

u(x,y, t) = u(z), z = κx+λy+ωt,

into Eq.(2.1) to reduce it into the ODE,

P(u,u′,u′′,u′′′, · · ·) = 0, (2.2)

in which P is a polynomial of u and its derivatives, while ′ := d
dz .

Step 2. Assume that the exact solutions of Eq.(2.2) have the following form:

u(z) =
n

∑
υ=0

Cυ(exp(−ϕ(z)))υ , (2.3)

in which Cυ , (0≤ υ ≤ n) are constants to be determined later, such that Cn 6= 0 and ϕ = ϕ(z) satisfies the ODE as follows:

ϕ
′(z) = b1 + exp(−ϕ(z))+b2 exp(ϕ(z)). (2.4)

where b1 and b2 are constants and the solutions of Eq.(2.4) are given as below:
When b2

1−4b2 > 0, b2 6= 0,

ϕ(z) = ln

−
√
(b2

1−4b2) tanh(
√

b2
1−4b2
2 (z+ ς))−b1

2b2

 , (2.5)

ϕ(z) = ln

−
√
(b2

1−4b2)coth(
√

b2
1−4b2
2 (z+ ς))−b1

2b2

 . (2.6)

When b2
1−4b2 < 0, b2 6= 0,

ϕ(z) = ln


√
(4b2−b2

1) tan(
√

(4b2−b2
1)

2 (z+ ς))−b1

2b2

 , (2.7)
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ϕ(z) = ln


√
(4b2−b2

1)cot(
√

(4b2−b2
1)

2 (z+ ς))−b1

2b2

 (2.8)

When b2
1−4b2 > 0, b1 6= 0, b2 = 0,

ϕ(z) =− ln
(

b1

exp(b1(z+ ς))−1

)
. (2.9)

When b2
1−4b2 = 0, b1 6= 0, b2 6= 0,

ϕ(z) = ln
(
−2(b1(z+ ς)+2)

b2
1(z+ ς)

)
. (2.10)

When b2
1−4b2 = 0, b1 = 0, b2 = 0,

ϕ(z) = ln(z+ ς). (2.11)

in which ς is an arbitrary constant and Cn 6= 0,b1,b2 are constants in Eqs.(2.5)-(2.11). Considering the homogeneous balance
between the highest order derivatives and nonlinear terms of Eq.(2.2), we define the degree of u(z) as D(u(z)) = n and the
positive integer n can be ascertained by the following expressions

D
(

dα u
dzα

)
= n+α,D

(
uβ

(
dα u
dzα

)s)
= nβ + s(n+α). (2.12)

Step 3. Plugging Eq.(2.3) into Eq.(2.2), we obtain a polynomial of exp(−ϕ(z)). Then collect all terms with the same power
about exp(−ϕ(z)) and let the coefficients of them equal zero respectively. After that, we get a set of algebraic equations and
by solving them we confirm the values of Cn 6= 0,b1,b2. Finally, we substitute the obtained values into Eq.(2.3) as well as
Eqs.(2.5)-(2.11) to achieve the determination of the exact solutions for the original PDE.

3. Exact solutions of the (2+1)-dimensional combined KdV-mKdV equation

Substituting traveling wave transform
u(x,y, t) = u(z), z = κx+λy+ωt,

into Eq.(1.3) and then integrating it, we obtain

u+(
1
2

a1λ − 1
2

a1κ)u2 +(
1
3

a2λ − 1
3

a2κ)u3 +(a3λ
3−a3κ

3 +a4κ
2
λ −a4κλ

2)u′′+δ = 0. (3.1)

where δ is the integration constant.
Taking the homogeneous balance between u3 and u′′ of Eq.(3.1) according to Eqs.(2.12), we can yield n = 1 and hence

u(z) =C0 +C1 exp(−ϕ(z)), (3.2)

where C1 6= 0, C0 are constants.
Plugging u,u2,u3,u′′ into Eq.(3.1) and equating the coefficients with the same order of exp(−ϕ(z)) to zero, we obtain

e0(−ϕ(z)) :ω C0 +1/2a1 λ C0
2−1/2a1 κ C0

2 +1/3a2 λ C0
3

−1/3a2 κ C0
3 +δ −C1 κ

3 a3b1 b2 +C1 λ
3 a3b1 b2

−C1 a4 κ λ
2b1 b2 +C1 a4 κ

2
λ b1 b2 = 0

e1(−ϕ(z)) :−C1 a3 b1
2
κ

3 +C1 a3 b1
2
λ

3 +C1 a4 b1
2
κ

2
λ

−C1 a4 b1
2
κ λ

2−2a3 κ
3b2 C1 +2a3 λ

3b2 C1

+2C1 λ a4b2 κ
2−2C1 λ

2a4 b2 κ−C0
2C1 a2 κ

+C0
2C1 a2 λ −C0 C1 a1 κ +C0 C1 a1 λ

+C1 ω = 0

e2(−ϕ(z)) :−3C1 a4 κ λ
2b1 +3C1 a4 κ

2
λ b1 +1/2a1 λ C1

2

−1/2a1 κ C1
2 +a2 λ C0 C1

2−a2 κ C0 C1
2

−3C1 a3 κ
3b1 +3C1 a3 λ

3b1 = 0



260 Fundamental Journal of Mathematics and Applications

e3(−ϕ(z)) :−2C1 a3 κ
3 +2C1 a3 λ

3 +1/3a2 λ C1
3

−1/3a2 κ C1
3−2C1 a4 κ λ

2 +2C1 a4 κ
2
λ = 0

Having solved the above algebraic equations,we get two different cases:

Case 1.

C0 =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2
,

C1 =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2
,

δ =
1

24a2
2

(
−3b1

√
−(a3 λ 2 +κ (a3−a4)λ +a3 κ2)a2

((
2
(
b1

2−4b2
)

(κ−λ )
(
a3 κ

2 +a3 κ λ +a3 λ
2−a4 κ λ

)
+4ω

)
a2

+a1
2 (κ−λ )

)√
6+2a1

(
6ω a2 +a1

2 (κ−λ )
))

, (3.3)

where b1 and b2 are arbitrary.
Plugging Eqs.(3.3) into Eq.(3.2), we can obtain

u(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2
exp(−ϕ(z)).

(3.4)

Employing Eqs.(2.5) to (2.11) into Eq.(3.4) respectively, attains the exact solutions to the (2+1)-dimensional combined
KdV-mKdV equation in the following.

Case 1.1. When b2
1−4b2 > 0, b2 6= 0,

u11(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

− 2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(b2

1−4b2) tanh(
√

b2
1−4b2
2 (z+ ς))+b1)

,

u12(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

− 2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(b2

1−4b2)coth(
√

b2
1−4b2
2 (z+ ς))+b1)

.

Case 1.2. When b2
1−4b2 < 0, b2 6= 0,

u13(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+
2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(4b2−b2

1) tan(
√

4b2−b2
1

2 (z+ ς))−b1)
,

u14(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+
2b2
√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(
√
(4b2−b2

1)cot(
√

4b2−b2
1

2 (z+ ς))−b1)
.

Case 1.3. When b2
1−4b2 > 0, b1 6= 0, b2 = 0,

u15(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1

a2(exp(b1(z+ ς))−1)
.
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Case 1.4. When b2
1−4b2 = 0, b1 6= 0, b2 6= 0,

u16(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

− b2
1(z+ ς)

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

2a2(b1(z+ ς)+2)
.

Case 1.5. When b2
1−4b2 = 0, b1 = 0, b2 = 0,

u17(z) =

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )b1−a1

2a2

+

√
−6a2 (a3 κ2 +a3 κ λ +a3 λ 2−a4 κ λ )

a2(z+ ς)
.

Case 2.

C0 =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2
,

C1 =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2
,

δ =
1

24a2
2

(
3b1

√
−(a3 λ 2 +κ (a3−a4)λ +a3 κ2)a2

((
2
(
b1

2−4b2
)

(κ−λ )
(
a3 κ

2 +a3 κ λ +a3 λ
2−a4 κ λ

)
+4ω

)
a2

+a1
2 (κ−λ )

)√
6+2a1

(
6ω a2 +a1

2 (κ−λ )
))

, (3.5)

where b1 and b2 are arbitrary constants.
Plugging Eqs.(3.5) into Eq.(3.2), we can obtain

u(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2
exp(−ϕ(z)).

(3.6)

Employing Eqs.(2.5) to (2.11) into Eq.(3.6) respectively, attains the exact solutions to the (2+1)-dimensional combined
KdV-mKdV equation in the following.

Case 2.1. When b2
1−4b2 > 0, b2 6= 0,

u21(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

+
2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(b2

1−4b2) tanh(
√

b2
1−4b2
2 (z+ ς))+b1)

,

u22(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

+
2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(b2

1−4b2)coth(
√

b2
1−4b2
2 (z+ ς))+b1)

.

Case 2.2. When b2
1−4b2 < 0, b2 6= 0,

u23(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

− 2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(4b2−b2

1) tan(
√

4b2−b2
1

2 (z+ ς))−b1)
,
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u24(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

− 2b2
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(
√
(4b2−b2

1)cot(
√

4b2−b2
1

2 (z+ ς))−b1)
.

Case 2.3. When b2
1−4b2 > 0, b1 6= 0, b2 = 0,

u25(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1

a2(exp(b1(z+ ς))−1)
.

Case 2.4. When b2
1−4b2 = 0, b1 6= 0, b2 6= 0,

u26(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

+
b2

1(z+ ς)
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

2a2(b1(z+ ς)+2)
.

Case 2.5. When b2
1−4b2 = 0, b1 = 0, b2 = 0,

u27(z) =−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )b1 +a1

2a2

−
√
−6a2 (a3 λ 2 +a3 κ λ +a3 κ2−a4 κ λ )

a2(z+ ς)
.

4. Computer simulations

In this section, the results are illustrated by computer simulations respectively.

Figure 4.1: 3D profile of u11(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 3.
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Figure 4.2: 3D profile of u12(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 3.

Figure 4.3: 3D profile of u13(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1
10 , λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 5.

Figure 4.4: 3D profile of u14(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1
10 , λ = 1, t = 1, ω = 2, ς =−1, b1 = 4, and b2 = 5.
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Figure 4.5: 3D profile of u15(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, and b1 = 1.

Figure 4.6: 3D profile of u16(z) for a1 = 1.2, a2 = 0.3, a3 =−0.2, a4 = 0.8, κ = 1, λ = 1, t = 1, ω = 2, ς =−1, and b1 = 1.

5. Conclusion

In this study, we use the exp(−ϕ(z))-expansion method to obtain abundant new exact solutions to the (2+1)-dimensional
combined KdV-mKdV equation. Except the types of hyperbolic and exponential function solutions which are the same as
those of Sandeep Malik’s paper [25], we also get new types of function solutions including trigonometric and rational solutions.
Additionally, the results indicate that utilizing the exp(−ϕ(z))-expansion method to the combined KdV-mKdV equation
and the (2+1)-dimensional combined KdV-mKdV equation can get the same forms of solutions, while the solutions to the
(2+1)-dimensional combined KdV-mKdV equation have one more case. These solutions can widely stimulate mathematicians
and physicists’ interest and have potential value to be applied in mathematics and physics. Meanwhile, the effectiveness of
the exp(−ϕ(z))-expansion method to seek exact solutions for nonlinear differential equations can be seen from the obtained
results.
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Abstract

I reconsider the approximation of Bessel functions with finite sums of trigonometric func-
tions, in the light of recent evaluations of Neumann-Bessel series with trigonometric
coefficients. A proper choice of angle allows for an efficient choice of the trigonometric
sum. Based on these series, I also obtain straightforward non-standard evaluations of new
parametric sums with powers of cosine and sine functions.

1. Introduction

The aim of this paper is twofold: to investigate trigonometric approximations of Bessel functions via Bessel-Neumann series
whose sums are finite trigonometric sums, and use the same series to provide new sums of powers of sines with cosines.
Bessel functions are among the most useful and studied special functions. Analytic expansions exist for different regimes [1],
and numerical algorithms for their precise evaluation [2]-[5]. Their simplest approximations are polynomials [6]-[8] and finite
trigonometric sums, that can be advantageous in applications [9].
Let’s consider J0. Several trigonometric sums appeared in the decades, sometimes being rediscovered. These very simple ones

J0(x)' 1
4 [1+ cosx+2cos(

√
2

2 x)] (1.1)

J0(x)' 1
6

[
1+ cosx+2cos( 1

2 x)+2cos(
√

3
2 x)

]
(1.2)

have errors ε = J0− Japprox
0 with power series (the marvel of Mathematica)

ε(x) =− x8

28·20160 (1−
x2

36 + ...), ε(x) =− x12

212·239500800 (1−
x2

52 + ...).

In practice, an error less than 0.001 is achieved for x≤ 3 or x≤ 5.9. These approximations were obtained by Fettis with the
Poisson formula [10]. Rehwald [11] and later Waldron [12], Blachman and Mousavinezhad [13] and [14] used the strategy of
truncating to the first term Neumann-Bessel series like this one

J0(x)+2J8(x)+2J16(x)+ ...= 1
4 cos[1+ cosx+2cos(

√
2

2 x)],

that can be obtained from the Bessel generating function. The examples (1.1), (1.2) correspond to n = 4,6 of eq.19 in [15]:

J0(x)+2∑
∞

k=1(−1)knJ2kn(x) =
1
n∑

n−1
`=0 cos(xcos π

n `) (1.3)
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where only J0 is kept, and the errors reflect the behaviour J2n(x)≈ (x/2)2n

(2n)! of the first neglected term. The truncation yields J0

as a sum of cosines that corresponds to the evaluation of the Bessel integral J0(x) =
∫

π

0
dθ

π
cos(xcosθ) with the trapezoidal

rule with n nodes [16]-[18]. Increasing n increases accuracy: n = 15 is a formula by Fettis [10] with 8 cosines (instead of 15,
symmetries of the roots of unity reduce the number of terms):

J0(x)' 1
15 cosx+ 2

15∑
7
k=1 cos(xcos kπ

15 ). (1.4)

The error now is order x30×10−42 and less than 10−6 for x < 15.
I reconsider the approximations for J0 in the light of new Neumann-Bessel trigonometric series in [19]. They extend the series
(1.3) by including an angular parameter, that is chosen to kill the term with J2n, so that the truncation involves the next-to-next
term J4n of the series. This is presented in Section 2. The same strategy is then used in Section 3 to approximate Bessel
functions Jn of low order by appropriate series. The quality of the approximations is the same as earlier ones with same number
of terms, but the terms are different and the source of error is more clear.
In Section 4, I show that the same Neumann series give in very simple way some parametric sums of powers of sines and
cosines. Some are found in the recent literature [20], while the following ones, to my knowledge, are new:

n

∑
`=0

sinp( θ+2π`
n ){ sin

cos }(q
θ+2π`

n ) (p,q = 0,1, ...).

Many other trigonometric sums are available in the literature. For example, sums like ∑
m−1
k=1 sin 2kqπ

m cotn kπ

m and variants are
studied in [21, 22]. Ratios of powers of sines and cosines are evaluated in [23], and many results are given in the remarkable
paper [24].

2. The Bessel function J0

Consider the Neumann trigonometric series eq.11 in [19]:

J0(x)+2
∞

∑
k=1

(−1)knJ2kn(x)cos(2knθ) =
1
n

n−1

∑
`=0

cos[xcos(θ + π

n `)]. (2.1)

The approximations (1.1), (1.2) and (1.4) are obtained with θ = 0, n = 4, 6, 15, and neglecting functions J8, J12, J30 and higher
orders. However they are not optimal. The advantage of eq.(2.1) is the possibility to choose the angle θ = π/4n to kill all
terms J2n, J6n, etc. Then:

J0(x)−2J4n(x)+2J8n(x)− ...=
1
n

n−1

∑
`=0

cos(zcos 1+4`
4n π).

An expansion for J0 results, again, by neglecting the other terms.

Some examples:

• n = 2. It is J0(x) = 1
2 [cos(xcos π

8 )+cos(xsin π

8 )]+ε2(x). If we neglect the error, the first zero occurs at π

√
2−
√

2 = 2.4045
( j0,1 = 2.4048).
• n = 3. The approximation has three cosines:

J0(x) = 1
3 [cos(x 1√

2
)+ cos(x

√
3−1

2
√

2
)+ cos(x

√
3+1

2
√

2
)]+ ε3(x) (2.2)

ε3(x) = x12

212·239500800

[
1− x2

52 +
x4

52·112 −
x6

52·112·180 + . . .
]
.

Remarkably, the first powers of the error are opposite of those for the expansion eq.(1.2), that would involve 6 terms if not for
the degeneracy of the roots of unity. The half-sum of (1.2) and (2.2),

J0(x)' 1
12

[
1+ cosx+2cos( 1

2 x)+2cos(
√

3
2 x)+2cos(x 1√

2
)+2cos(x

√
3−1

2
√

2
)+2cos(x

√
3+1

2
√

2
)
]

(2.3)

has error ε(x) =− x24

5.2047 ×10−30[1− x2

100 +
x4

20800 − . . . ].
• n = 6 gives a precision similar to the sum (2.3):

J0(z) = 1
6

[
cos(xcos π

24 )+ cos(xcos 3π

24 )+ cos(xcos 5π

24 )+ cos(xsin π

24 )+ cos(xsin 3π

24 )+ cos(xsin 5π

24 )
]
+ ε6(x). (2.4)

The error has power expansion ε6(x) = x24

5.2047 ×10−30[1− x2

100 + . . .].
• n = 8 is a sum of 8 cosines and compares with the formula (1.4) by Fettis. The two approximations are different but with the
same number of terms (because θ = 0 produces degenerate terms) and similar precision.
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Figure 2.1: The Bessel function J0 (thick) and the trigonometric expansion (2.4). The difference increases with x; it is less than 10−9 for
x < 8 and 10−3 for x < 15.

3. Bessel functions Jn.

• J1 is evaluated via J1 =−J′0. Eq. (2.3) gives:

J1(x)' 1
12

[
sinx+ sin( 1

2 x)+
√

3sin(
√

3
2 x)+

√
2sin(x 1√

2
)+(

√
3−1√

2
)sin(x

√
3−1

2
√

2
)+(

√
3+1√

2
)sin(x

√
3+1

2
√

2
)
]

with error ε(x)' (x/20)23×3.87× [1− 13
1200 x2 + . . . ].

• J2,J4 can be evaluated with the following identity (the real part of eq.(5) in [19]):

Jp(x)+∑
∞

k=1[Jkn+p(x)+(−1)kn+pJkn−p(x)]cos(knθ) = 1
n∑

n−1
`=0 cos[xsin(θ + 2π`

n )+ p(θ + 2π`
n )]. (3.1)

Because of the term Jn−p, we take 2p < n. With y = π

2n :

Jp(x)− (−1)pJ2n−p(x)+ . . .= 1
n∑

n−1
`=0 cos[xsin( 1+4`

2n π)+ p 1+4`
2n π].

If only Jp is kept, the approximation depends on the parity of p:

Jp(x)'

{
cos(p 1+4`

2n π)× 1
n ∑

n−1
`=0 cos[xsin( 1+4`

2n π)] p even
−sin(p 1+4`

2n π)× 1
n ∑

n−1
`=0 sin[xsin( 1+4`

2n π)] p odd

p = 2, n = 6, give the short formula

J2(x)' 1
2
√

3

[
cos(xsin π

12 )− cos(xcos π

12 )
]

with error ε(x) = 2.69114× (x/10)−10[1− x2

44 + ...]. The first zero is evaluated 2
3 π
√

6 ' 5.1302 ( j2,1 = 5.13562). A better
approximation is n = 8, y = π

16 :

J2(x)' 1
4 cos(π

8 )[cos(xsin π

16 )− cos(xcos π

16 )]+
1
4 sin(π

8 )[cos(xcos 5π

16 )− cos(xsin 5π

16 )]

with error ε(x) = 7.00119×10−16x14[1− x2

60 + ...]; ε(5) = 3×10−6, ε(8) = 0.0010.
For J4 we select p = 4, n = 8, θ = π

16 . Now the lowest neglected term is J12:

J4(x)'
√

2
8

[
cos(xsin π

16 )+ cos(xcos π

16 )− cos(xsin 5π

16 )− cos(xcos 5π

16 )
]
.

The error is less that 10−3 at x < 6.3.
• J3,J5. A useful sum for odd-order Bessel functions is eq.(17) in [19]:

∞

∑
k=0

(−1)n+kJ(2n+1)(2k+1)(x)cos[(2k+1)θ ] =
2n

∑
`=0

sin[xcos( θ+2π`
2n+1 )]

2(2n+1)
. (3.2)

The angle θ = π

6 cancels J6n+3, J14n+7 etc. and gives the approximation

J2n+1(x)'
(−1)n
√

3

2n

∑
`=0

sin[xcos 1+12`
12n+6 π]

2n+1

that neglects J10n+5 etc. With n = 1 and n = 2 we obtain:

J3(x)'− 1
3
√

3
[sin(xcos π

18 )− sin(xsin 2π

9 )− sin(xsin π

9 )]

J5(x)' 1
5
√

3

[
sin(xcos π

30 )+ sin(xsin π

15 )− sin(
√

3
2 x)− sin(xsin 4π

15 )+ sin(xcos 2π

15 )
]
.

The expansion for J3 has error ε = 2.33373×10−17x15[1− x2

64 + ...]. The second one has error ε = 1.92134x25×10−33× [1−
x2

104 + ...].
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Figure 3.1: The Bessel function J3 (thick) and the approximation (3.3). The difference is ε(6) = 6×10−6, ε(8) = .0003, ε(10) = .0045.

4. Trigonometric identities

The Neumann-Bessel series here used provide sums of powers of sines and cosines. They arise by expanding in powers of x
the Bessel functions in the series,

Jn(x) =
∞

∑
k=0

(−1)k (x/2)n+2k

k!(k+n)!

and the trigonometric functions in the sum of the series.

• Consider the series eq.(2.1). At threshold powers x2n, x4n etc. new Bessel functions (−1)n2J2n cos(2nθ), 2J4n cos(4nθ) etc.
enter a term in the sum of cosines.

1
n∑

n−1
`=0

[
cos θ+`π

n

]2k
=



1
4k

(2k
k

)
0≤ k < n

1
4k

[(2k
k

)
+2
( 2k

k−n

)
cos(2θ)

]
n≤ k < 2n

1
4k

[(2k
k

)
+2
( 2k

k−n

)
cos(2θ)+2

( 2k
k−2n

)
cos(4θ)

]
2n≤ k < 3n

... ...

.

By replacing θ with θ +nπ we obtain:

1
n∑

n−1
`=0

[
sin θ+`π

n

]2k
=



1
4k

(2k
k

)
0≤ k < n

1
4k

[(2k
k

)
+(−1)n2

( 2k
k−n

)
cos(2θ)

]
n≤ k < 2n

1
4k

[(2k
k

)
+(−1)n2

( 2k
k−n

)
cos(2θ)+2

( 2k
k−2n

)
cos(4θ)

]
2n≤ k < 3n

... ...

.

Examples:

1
9 ∑

8
`=0
[
sin θ+`π

9

]20
= 1

410

[(20
10

)
−2
(20

1

)
cos(2θ)

]
.

1
n ∑

n−1
`=0

[
cos( 1+6`

6n π)
]2n

= 1
4n

[(2n
n

)
+1
]
,

1
n ∑

n−1
`=0

[
cos( 1+4`

4n π)
]4n

= 1
16n

[(4n
2n

)
−2
]
.

For θ = 0 and θ = π

2 these identities are eqs. 4.4.2 in [25], 2.1 and 2.2 (together with several other non-parametric sums) in
[26]. The series had also been studied in [27]. Parametric averages on the full circle were recently evaluated by Jelitto [20],
with a different method.

•With the Neumann series (3.2) we obtain:

1
2n+1∑

2n
`=0

[
cos θ+2π`

2n+1

]2k+1
=


0 1≤ 2k+1 < 2n+1
1
4k

(2k+1
k−n

)
cosθ 2n+1≤ 2k+1 < 3(2n+1)

1
4k

[(2k+1
k−n

)
cosθ +

( 2k+1
k−3n−1

)
cos(3θ)

]
3(2n+1)≤ 2k+1 < 5(2n+1)

... ...

.

The sums of even powers of cosines are obtained from the series eq.16 in [19]:

J0(x)+2
∞

∑
k=1

(−1)kJ(4n+2)k(x)cos(2kθ) =
2n

∑
`=0

cos[xcos θ+2π`
2n+1 ]

2n+1
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1
2n+1 ∑

2n
`=0
[
cos θ+2π`

2n+1

]2k
=



1
4k

(2k
k

)
0≤ k < 2n+1

1
4k

[(2k
k

)
+2
( 2k

k−2n−1

)
cos(2θ)

]
2n+1≤ k < 4n+2

1
4k

[(2k
k

)
+2
( 2k

k−2n−1

)
cos(2θ)+2

( 2k
k−4n−2

)
cos(4θ)

]
4n+2≤ k < 6n+3

... ...

.

Example: (cos θ

3 )
12 +(cos θ+π

3 )12 +(cos θ+2π

3 )12 = 3
46 [
(12

6

)
+2
(12

3

)
cos(2θ)+2cos(4θ)].

The formulae with sines are obtained by shifting the parameter θ .

• Now let’s consider the sum eq.(3.1) with p < n− p.
The equations are new and are easier to state if we distinguish the parity of n and of p.

Case n = 2m and p = 2q. Eq.(3.1) now is:

1
2m∑

2m−1
`=0 cos[xsin( θ+π`

m )]cos[2q θ+π`
m ] = J2q(x)+ [J2m−2q(x)+ J2m+2q(x)]cos(2θ)

+[J4m−2q(x)+ J4m+2q(x)]cos(4θ)+ ...

Separation of even and odd parts in x, and expansion in x give:

1
2m∑

2m−1
`=0 [sin θ+π`

m ]2k+1 sin(2q θ+π`
m ) = 0, k = 0,1,2, ...

This result is obvious as the sum from 0 to m−1 is opposite of the rest of the sum. The symmetry is used also in the other
result:

1
m ∑

m−1
`=0 [sin θ+π`

m ]2k cos(2q θ+π`
m ) =

= (−1)q

4k



0 k < q( 2k
k−q

)
q≤ k < m−q( 2k

k−q

)
+(−1)m

( 2k
k−m+q

)
cos(2θ) m−q≤ k < m+q( 2k

k−q

)
+(−1)m

[( 2k
k−m+q

)
+
( 2k

k−m−q

)]
cos(2θ) m+q≤ k < 2m−q

... ...

Case n = 2m, p = 2q+1. Eq.(3.1) becomes:

− 1
2m ∑

2m−1
`=0 sin[xsin( θ+π`

m )]sin[(2q+1) θ+π`
m ] = J2q+1(x)+

+[−J2m−2q−1(x)+ J2m+2q+1(x)]cos(2θ)+ [J4m−2q−1(x)+ J4m+2q+1(x)]cos(4θ)+ ...

The non trivial result is:
1
m ∑

m−1
`=0 [sin θ+π`

m ]2k+1 sin[(2q+1) θ+π`
m ] =

= (−1)q

22k+1



0 k < q(2k+1
k−q

)
q≤ k < m−q−1(2k+1

k−q

)
+(−1)m

( 2k+1
k+m−q

)
cos(2θ) m−q−1≤ k < m+q(2k+1

k−q

)
+(−1)m

[( 2k+1
k+m−q

)
+
( 2k+1

k−m−q

)]
cos(2θ) m+q≤ k < 2m−q−1

... ...

Example: 1
5 ∑

4
`=0 sin13(π`

5 )sin( 3π`
5 ) =− 1

213

[(13
5

)
−
(13

10

)
−
(13

0

)]
=− 125

1024 .

Case n = 2m+1 and p = 2q:
1

2m+1 ∑
2m
`=0 cos[xsin( θ+2π`

2m+1 )]cos(2q θ+2π`
2m+1 ) = J2q(x)+ [J4m+2−2q(x)+ J4m+2+2q(x)]cos(2θ)+ ...

1
2m+1 ∑

2m
`=0 sin[xsin( θ+2π`

2m+1 )]sin(2q θ+2π`
2m+1 ) = [J2m+1−2q(x)− J2m+1+2q(x)]cosθ + ...

1
2m+1 ∑

2m
`=0[sin θ+2π`

2m+1 ]
2k cos(2q θ+2π`

2m+1 ) =

= (−1)q

4k



0 k < q( 2k
k−q

)
q≤ k < 2m+1−q( 2k

k−q

)
−
( 2k

k+q−1−2m

)
cos(2θ) 2m+1−q≤ k < 2m+1+q( 2k

k−q

)
−
[( 2k

k+q−1−2m

)
+
( 2k

k−q−1−2m

)]
cos(2θ) 2m+1+q≤ k < 4m+2−q

... ...
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1
2m+1∑

2m
`=0[sin θ+2π`

2m+1 ]
2k+1 sin(2q θ+2π`

2m+1 ) =
(−1)q+m+1

22k+1


0 k < m−q( 2k+1

k−m+q

)
cosθ m−q≤ k < m+q[( 2k+1

k−m+q

)
−
( 2k+1

k−m−q

)]
cosθ m+q≤ k < 3m+1−q

... ...

Case n = 2m+1 and p = 2q+1:

1
2m+1∑

2m
`=0 cos[xsin θ+2π`

2m+1 ]cos[(2q+1) θ+2π`
2m+1 ] = [J2m−2q(x)+ J2m+2q+2(x)]cosθ + ...

− 1
2m+1∑

2m
`=0 sin[xsin θ+2π`

2m+1 ]sin[(2q+1) θ+2π`
2m+1 ] = J2q+1(x)+ [−J4m−2q+1(x)+ J4m+2q+3(x)]cos(2θ)+ ...

1
2m+1 ∑

2m
`=0 sin[ θ+2π`

2m+1 ]
2k cos[(2q+1) θ+2π`

2m+1 ] =

= (−1)m+q

4k


0 k < m−q( 2k

k−m+q

)
cosθ m−q≤ k < m+q+1[( 2k

k−m+q

)
−
( 2k

k−m−q−1

)]
cosθ m+q+1≤ k < 3m+q+2

... ...

1
2m+1 ∑

2m
`=0 sin[ θ+2π`

2m+1 ]
2k+1 sin[(2q+1) θ+2π`

2m+1 ] =

= (−1)q

22k+1



0 k < q(2k+1
k−q

)
q≤ k < 2m−q(2k+1

k−q

)
−
( 2k+1

k+q−2m

)
cos(2θ) 2m−q≤ k < 2m+q+1(2k+1

k−q

)
−
[( 2k+1

k+q−2m

)
+
( 2k+1

k−q−1−2m

)]
cos(2θ) 2m+q+1≤ k < 4m−q+1

... ...

.

Examples:

1
13 ∑

12
`=0 sin9( θ+2π`

13 )sin(5 θ+2π`
13 ) = 1

29

(9
2

)
= 9

128 for all θ ,
1

13 ∑
12
`=0 sin31( θ+2π`

13 )sin(5 θ+2π`
13 ) = 1

231

[(31
13

)
−
((31

5

)
+1
)

cos(2θ)
]
.

Conclusion

Bessel functions of the first kind may be well approximated on an interval containing the origin, by the trapezoidal rule applied
the Bessel integral. The result is a finite trigonometric sum. Here I show that comparable accuracy is obtained by exploiting
some exact results for Neumann series of Bessel functions and cosines, as finite trigonometric sums. At appropriate angles,
the second term of the Neumann series cancels and, by the rapid decay of third and next terms, the trigonometric sum well
represents the first Bessel term in the Neumann series.
The same Neumann series allow for the evaluation of new trigonometric sums of powers of sine and cosine functions. They
extend recent results by Jelitto [20], and are not included in the extensive paper by Al Jarrah et al. [15].
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Abstract

In this paper, the intuitionistic fuzzy counterparts of the collineations defined in classical
projective planes are defined in intuitionistic fuzzy projective planes. The properties of the
intuitionistic fuzzy projective plane left invariant under the intuitionistic fuzzy collineations
are characterized depending on the base point, base line, membership degrees, and the
non-membership degrees of the intuitionistic fuzzy projective plane.

1. Introduction

The fuzzy concept was first proposed by Zadeh in 1965 [1], and many scientists have contributed to this field. Projective
planes have been fuzzified by Kuijken et al., see [2]. Also a fuzzy group corresponding to the fuzzy projective geometry was
created, so that through these fuzzy projective geometries a relationship between fuzzy vector spaces and fuzzy groups was
obtained by Kuijken, Maldeghem and Kerre in 1999 [3]. The fuzzy projective plane collinations were described by Kuijken
and Maldeghem in 2003 [4].
As a generalization of Zadeh’s Fuzzy Sets, Intuitionistic Fuzzy Set which is characterized by a membership function and a
nonmembership function was proposed by Atannassov [5]. In 2009, a new model of intuitionistic fuzzy projective geometry
was constructed by Ghassan [6] and it is seen that this new intuitionistic fuzzy projective plane is closely related to the
fibered projective geometry. And also in different algebraic structures many theories were introduced. By Sharma, a relation
relating to the Intuitionistic fuzzy subgroup of a group with its homomorphic image by using the properties of their (α,β )–cut
sets was determined [7]. By developing and holding to some properties of Atanassov’s intuitionistic fuzzy relations, some
connections of their properties with lattice operations were introduced in 2012 [8]. Pradhan and Pal introduced the set of
all linear transformations L(V) defined over an intuitionistic fuzzy vector space V not form an vector space and the concept
of the inverse of an intuitionistic fuzzy linear transformation (IFLT) in 2012 [9]. In 2015, Bayar and Ekmekci showed that
intuitionistic fuzzy versions of some classical configurations in projective plane are valid in the intuitionistic fuzzy projective
plane with base Desarguesian or Pappian plane [10]. In intuitionistic fuzzy projective plane, the conditions to the intuitionistic
fuzzy versions of Menelaus and Ceva 6-figures have been determined by Akca et. al. [11]. In 2021, by constructing a
homomorphism between intuitionistic fuzzy abstract algebras, intuitionistic fuzzy congruence relations were examined and
also some isomorphism theorems on intuitionistic abstract algebras were introduced by Cuvalcioglu and Tarsuslu [12]. In the
fuzzy and intuitionistic fuzzy projective planes, Altintas and Bayar introduced the fuzzy counterparts and the intuitionistic
fuzzy counterparts of the central collineations defined in the classical projective planes and showed some properties of central
fuzzy and intuitionistic fuzzy collineations [13]. This paper is an extention of examinations by Altintas et. al. [14] on the
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Fuzzy Collineations of Fuzzy Projective Planes to intuitionistic fuzzy projective planes. In [14], we introduced fuzzy versions
of some classical properties related to collineations of projective plane by collineations in fuzzy projective planes by using the
base point, the base line and the membership degrees of fuzzy projective plane.
The aim of this study is to define the intuitionistic fuzzy equivalents of collineations defined in classical projective planes in
intuitionistic fuzzy projective planes such that every point and every line in the base plane possess the degree of membership
and the degree of non-membership and to prove the properties that are invariant under the intuitionistic fuzzy collineations in
intuitionistic fuzzy projective planes.

Definition 1.1. A fuzzy set λ of a set X is a function λ : X → [0,1] : x→ λ (x). The number λ (x)is called the degree of
membership of the point x in λ . The intersection λ ∧µ of the two fuzzy sets λ and µ on X is given by the fuzzy set
λ ∧µ : X → [0,1] : λ (x)∧µ(x),
where ∧ denotes the minimum operator and also ∨ denotes the maximum operator [1].

Definition 1.2. [5] Let X be a nonempty fixed set. An intuitionistic fuzzy set A on X is an object having the form A =
{〈x,λ (x),µ(x)〉 : x ∈ X} where the function λ : X → I and µ : X → I denote the degree of membership (namely, λ (x)) and the
degree of nonmembership (namely, µ(x)) of each element x ∈ X to the set A, respectively 0≤ λ (x)+µ(x)≤ 1 for each x ∈ X.
An intuitionistic fuzzy set A = {〈x,λ (x),µ(x)〉 : x ∈ X} can be written in the A = {〈x,λ ,µ〉 : x ∈ X}, or simply A = 〈λ ,µ〉 .
Let A = {〈x,λ (x),µ(x)〉 : x ∈ X} and B = {〈x,δ (x),γ(x)〉 : x ∈ X} be an intuitionistic fuzzy sets on X. Then,

(a) Ā = {〈x,µ(x),λ (x)〉 : x ∈ X} (the complement of A).
(b) A∩B = {〈x,λ (x)∧δ (x),µ(x)∨ γ(x)〉 : x ∈ X} (the meet of A and B).
(c) A∪B = {〈x,λ (x)∨δ (x),µ(x)∧ γ(x)〉 : x ∈ X} (the join of A and B).
(d) A⊆ B⇔ λ (x)≤ δ (x) and µ(x)≥ γ(x) for each x ∈ X.
(e) A = B⇔ A⊆ B and B⊆ A.
(f) 1̃ = {〈x,1,0〉 : x ∈ X} , 0̃ = {〈x,0,1〉 : x ∈ X} .

Definition 1.3. Let A = (λ ,µ) be an intuitionistic fuzzy set of a classical vector space V over F. For any x,y∈V and α,β ∈ F,
if it satisfy λA(αx+βy)≥ min{λA(x),λA(y)} and µA(αx+βy)≤ max{µA(x),µA(y)}, then A is called an intuitionistic fuzzy
subspace of V . Let Vn denotes the set of all n−tuples

(〈
x1λ ,x1µ

〉
,
〈
x2λ ,x2µ

〉
, ...,

〈
xnλ ,xnµ

〉)
over F. An element of Vn is called

an intuitionistic fuzzy vector (IFV) of dimension n, where xiλ and xiµ are the membership and non-membership values of the
component xi [9].

Definition 1.4. An intuitionistic fuzzy set A= {〈x,λ (x),µ(x)〉 : x ∈ X} on n−dimensional projective space S is an intuitionistic
fuzzy n−dimensional projective space on S if λ (p)≥ λ (q)∧λ (r) and µ(p)≤ µ(q)∨µ(r),for any three collinear points p,q,r
of A we denoted [A,S]. The projective space S is called the base projective space of [A,S] if [A,S] is an intuitionistic fuzzy point,
line, plane, ... , we use base point, base line, base plane, ..., respectively [6].

Definition 1.5. Let 〈λ ,µ〉 be an intuitionistic fuzzy projective space and let U be a subspace of P . Then (λU ,U) is called a
fuzzy subspace of (λ ,P) if λU (x)≤ λ (x) and µU (x)≥ µ(x) for x ∈U, and λU (x) = 0,µU (x) = 1 for x /∈U.

Definition 1.6. Let (λ ,µ) be an intuitionistic fuzzy projective space of dimension n. Then there are constants ai,bi ∈ [0,1], i =
0,1, ...,n, with ai +bi ≤ 1, and a chain of subspaces (Ui)0≤i≤n with Ui ≤Ui+1 and dimUi = i, such that

(λ ,µ) : P → [0,1]× [0,1]
ū → (a0,b0) f or ū ∈U0

ū → (ai,bi) f or ū ∈Ui \Ui−1, i = 1,2, ...,n

Definition 1.7. [10] Consider the projective plane P = (N ,D ,◦). Suppose a ∈N and α,β ∈ [0,1]. The IF-point (a,α,β )
is the following intuitionistic fuzzy set on the point set N of P:

(a,α,β ) : N → [0,1] :
a→ α, a→ β

x→ 0, x ∈N \{a}

The point a ∈N is called the base point of the IF-point (a,α,β ). An IF-line (L,α,β ) with base line L is defined in a similar
way. The IF- lines (L,α,β ) and (M,σ ,ω) intersect in the unique IF-point (L∩M,α ∧σ ,β ∨ω). The IF-points (a,α,β )
and(b,σ ,ω) span the unique IF-line (〈a,b〉 ,α ∧σ ,β ∨ω) .

Definition 1.8. Suppose P is a projective plane P = (N ,D ,◦). The intuitionistic fuzzy set Z = 〈λ ,µ〉 on N ∪D is an
intuitionistic fuzzy projective plane on P if :

(1) λ (L)≥ λ (p)∧λ (q) and µ(L)≤ µ(p)∨µ(q);∀p,q : 〈p,q〉= L

(2)λ (p)≥ λ (L)∧λ (M) and µ(p)≤ µ(L)∨µ(M);∀L,M : L∩M = p.

The intuitionistic fuzzy projective plane can be considered as an ordinary projective plane, where to every point (and only to
points) one (and only one ) degrees of membership and nonmembership are assigned [6].
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Now here, the intuitionistic fuzzy counterparts of the theorems and proofs related to the fuzzy linear maps in Abdulhalikov’s
works [15] are given by using the intuitionistic fuzzy linear maps definition.

Definition 1.9. Let V and W be two vector spaces over the same field F and T be is a linear map from V to W. Suppose that
(V,λV ,µV ) and (W,λW ,µW ) be intuitionistic fuzzy vector spaces on F. For all x ∈V , if

λW (T (x))≥ λV (x) and µW (T (x))≤ µV (x)

is satisfied such that 0 ≤ λV + µV ≤ 1 and 0 ≤ λW + µW ≤ 1, T is called as an intuitionistic fuzzy linear maps from the
intuitionistic fuzzy vector space (V,λV ,µV ) to the intuitionistic fuzzy vector space (W,λW ,µW ).

Definition 1.10. If T which is a zero linear map from V to W, is an intuitionistic fuzzy linear map defined between the
intuitionistic fuzzy vector spaces (V,λV ,µV ) and (W,λW ,µW ), then T is called as an intuitionistic fuzzy zero linear map.

2. Intuitionistic collineations of intuitionistic fuzzy projective plane

In this paper, our aim is to investigate intuitionistic collineations of intuitionistic fuzzy projective planes. Compared to
isomorphisms, collineations of projective plane and fuzzy isomorphisms, fuzzy collineations of fuzzy projective plane have the
advantages and properties. In projective planes, a collineation is a point-to-point and line-to-line transformation that preserves
the relation of incidence. Thus it transforms ranges into ranges, pencils into pencils, quadrangles into quadrangles, and so on.
Clearly, it is a self-dual concept, the inverse of a collineation, and the product of two collineations is again a collineation [4].
Our aim is now to define the intuitionistic fuzzy counterparts of homomorphism and isomorphism defined in vector spaces in
intuitionistic fuzzy projective planes and to apply theorems about properties of collineations in projective plane to intuitionistic
fuzzy projective plane. Furthermore, we will show that each collineation can be uniquely extended to a fuzzy projective
collineation.
The definitions of homomorphism, isomorphism and collineation in projective planes can be adopted to fuzzy projective planes
as follows:

Definition 2.1. Let [P,λP ,µP ] and [P
′
,λP

′ ,µP
′ ] be two intuitionistic fuzzy projective planes with base planes P =

(N ,D ,◦), P
′
=

(
N

′
,D

′
,◦′

)
, respectively. Suppose that f be a homomorphism of a projective plane P into a projec-

tive plane P′P′. f̄ is called as intuitionistic fuzzy homomorphism from [P,λP ,µP ] into [P
′
,λP

′ ,µP
′ ] if f̄ (p,α,β ) =

( f (p),α
′
,β
′
) for all (p,α,β ) ∈ [P,λP ,µP ] where λP(p) = α , µP(p) = β , λP

′ ( f (p)) = α
′
, µP

′ ( f (p)) = β
′

and α ≤ α
′
,

β ≥ β
′
. If f is an isomorphism of P into P ′ and α = α

′
,β = β

′
, then f̄ is called as intuitionistic fuzzy isomorphism

between the intuitionistic fuzzy projective planes [P,λP ,µP ] and [P
′
,λP

′ ,µP
′ ]. Also if P = P

′
, this f̄ intuitionistic fuzzy

isomorphism is called as intuitionistic fuzzy collineation.

Theorem 2.2. Let f̄ : [P,λ ,µ]→ [P
′
,λ
′
,µ
′
] is intuitionistic fuzzy isomorphism, the following holds:

(i) For any pair of intuitionistic fuzzy points (p1,α1,β1) and (p2,α2,β2), p1 6= p2 in [P,λ ,µ],

f̄ (〈(p1,α1,β1),(p2,α2,β2)〉) =
〈

f̄ (p1,α1,β1), f̄ (p2,α2,β2)
〉
.

(ii) For any pair of intuitionistic fuzzy lines (L,γ1,σ1) and (M,γ2,σ2), L 6= M in [P,λ ,µ],

f̄ ((L,γ1,σ1)∩ (M,γ2,σ2)) = f̄ (L,γ1,σ1)∩ f̄ (M,γ2,σ2).

(iii) For any intuitionistic fuzzy point (p,α,β ) and intuitionistic fuzzy line (L,γ,σ) in [P,λ ,µ], if p is not on L, then the
intuitionistic fuzzy point f̄ (p,α,β ) is not on f̄ (L,γ,σ) in [P

′
,λ
′
,µ
′
].

Proof (i) Let f̄ be an intuitionistic fuzzy isomorphism between [P,λ ,µ] and [P
′
,λ
′
,µ
′
]. The intuitionistic fuzzy line

spanned by the intuitionistic fuzzy points (p1,α1,β1) and (p2,α2,β2) with distinct base points p1, p2 is 〈(p1,α1,β1),(p2,α2,β2)〉=
(〈p1, p2〉 ,α1 ∧α2,β1 ∨ β2). Since f is isomorphism between the base projective planes P and P

′
, f (p1) 6= f (p2). So

f̄ (p1,α1,β1) 6= f̄ (p2,α2,β2). Using the definitions of f̄ and f ,

f̄ (〈(p1,α1,β1),(p2,α2,β2)〉) = ( f (〈p1, p2〉),α1∧α2,β1∨β2) = (〈 f (p1), f (p2)〉 ,α1∧α2,β1∨β2)
= 〈( f (p1),α1,β1) ,( f (p2),α2,β2)〉 =

〈
f̄ (p1,α1,β1), f̄ (p2,α2,β2)

〉
is obtained.

(ii) Let f̄ be an intuitionistic fuzzy isomorphism between [P,λ ,µ] and [P
′
,λ
′
,µ
′
]. The intersection point of the

intuitionistic fuzzy lines (L,γ1,σ1) and (M,γ2,σ2) with distinct base lines L, M is (L,γ1,σ1)∩ (M,γ2,σ2) = (L∩M,γ1 ∧
γ2,σ1∨σ2). Since f is isomorphism between the projective planes P and P

′
, f (L) 6= f (M). So f̄ (L,γ1,σ1) 6= f̄ (M,γ2,σ2).

Using the definition of f̄ and f

f̄ ((L,γ1,σ1)∩ (M,γ2,σ2)) = ( f (L∩M),γ1∧ γ2,σ1∨σ2) = ( f (L)∩ f (M),γ1∧ γ2,σ1∨σ2)
= (( f (L),γ1,σ1)∩ ( f (M),γ2,σ2)) = f̄ (L,γ1,σ1)∩ f̄ (M,γ2,σ2)
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(iii) Suppose that the intuitionistic fuzzy point f̄ ((p,α,β )) is on the intuitionistic fuzzy line f̄ ((L,γ,σ)) when the base
point p is not on the base line L. Then the intuitionistic fuzzy point (p,α,β ) is not on the intuitionistic fuzzy line (L,γ,σ).
From definitions of f and f̄ , f̄ ((p,α,β )) = ( f (p),α,β ) and f̄ ((L,γ,σ)) = ( f (L),γ,σ). Since the intuitionistic fuzzy point
f̄ ((p,α,β )) is on the intuitionistic fuzzy line f̄ ((L,γ,σ)) and f is isomorphism, f (p) ◦ f (L) and p ◦L are obtained. This
contradicts the hypothesis.
From now on, we considered the intuitionistic fuzzy projective plane [P,λ ,µ] with base plane P and (λ ,µ) in the following
form:

(λ ,µ) : PG(V ) → [0,1]× [0,1]
q → (a0,b0)
p → (a1,b1) , p ∈ L\{q}
p → (a2,b2) , p ∈P \{L}

where L is a projective line of P contains q and a0 ≥ a1 ≥ a2, b0 ≤ b1 ≤ b2, 0≤ ai +bi ≤ 1, i = 0, 1, 2.

The intuitionistic fuzzy point (q,a0,b0) and the intuitionistic fuzzy line (L,a1,b1) are called as the base point, the base line
of the intuitionistic fuzzy projective plane [P,λ ,µ], respectively. The invariant properties under any intuitionistic fuzzy
collineation in [P,λ ,µ] depending on the base line, the base point, the membership degrees and nonmembership degrees of
[P,λ ,µ] are investigated in detail with the following theorems.

Theorem 2.3. Suppose that f̄ is an intuitionistic fuzzy collineation of [P,λ ,µ] defined by the collineation f of the base plane
P . Then,

(i) If a0 6= a1 6= a2, then the intuitionistic fuzzy collineation f̄ leaves invariant the base point and the base line of [P,λ ,µ].
(ii) If a0 6= a1 = a2, then the base point is invariant and the base line turns into a line passing through the base point under

the intuitionistic fuzzy collineation f̄ .

Proof (i) Let a0 6= a1 6= a2.
The image of the base point (q,a0,b0) is f̄ (q,a0,b0) = ( f (q),a0,b0). Since there is no other point which has membership
degree (a0,b0) in [P,λ ,µ], ( f (q),a0,b0) must be the base point. So f (q) = q, f̄ (q,a0,b0) = (q,a0,b0).
Since (L,a1,b1) = 〈(q,a0,b0),(p,a1,b1)〉 3 p◦L, p 6= q and from Theorem 2. 2. i), the base line is

f̄ ((L,a1,b1)) =
〈

f̄ (q,a0,b0), f̄ (p,a1,b1)
〉
= 〈( f (q),a0,b0),( f (p),a1,b1)〉 , ( f (q) = q)

= 〈(q,a0,b0),( f (p),a1,b1)〉 = (〈q, f (p)〉 ,a0∧a1,b0∨b1) = (〈q, f (p)〉 ,a1,b1).

Since there is no other line with (a1,b1) membership degree, f̄ ((L,a1,b1)) = (〈q, f (pi)〉 ,a1,b1) = (L,a1,b1) is obtained. So
the base point and the base line are invariant under the intuitionistic fuzzy collineation f̄ .
The converse of this proposition is not true. While the base point and the base line are invariant, the membership degrees can
be different or equal.

(ii) Let a0 6= a1 = a2.
The image of the base point (q,a0,b0) is f̄ (q,a0,b0) = ( f (q),a0,b0). Since there is no other line with (a0,b0) membership
degree in [P,λ ,µ], ( f (q),a0ib0) must be base point. So f (q) = q and f̄ (q,a0,b0) = ( f (q),a0,b0) = (q,a0,b0). Since f̄ is
intuitionistic fuzzy isomorphism, f̄ (q,a0,b0)◦ f̄ (L,a1,b1). Hence, the base point (q,a0,b0) is on ( f (L),a1,b1).

f̄ (L,a1,b1) = f̄ (〈(q,a0,b0),(p,a1,b1)〉) =
〈

f̄ (q,a0,b0), f̄ (p,a1,b1)
〉
= 〈( f (q),a0,b0),( f (p),a1,b1)〉

= 〈(q,a0,b0), f (p,a1,b1)〉 = (〈q, f (p)〉 ,a0∧a1,b0∨b1) = (〈q, f (p)〉 ,a1,b1)

So the base line f (L) = 〈q, f (p)〉 turns into the line through the base point.
The following theorem states the properties of f̄ intuitionistic fuzzy collineation while the base point is invariant.

Theorem 2.4. Suppose that f̄ is an intuitionistic fuzzy collineation of [P,λ ,µ] defined by the collineation f of the base plane
P and the base point (q,a0,b0) be invariant under the intuitionistic fuzzy collineation f̄ .

(i) If the base line (L,a1,b1) is invariant under f̄ , [P,λ ,µ] has at most three membership degrees.
(ii) If the base line (L,a1,b1) turns into a line other than itself passing through the base point (q,a0,b0), there are at most

two membership degrees in [P,λ ,µ] such that a0 ≥ a1 = a2 and b0 ≤ b1 = b2.
(iii) The base line (L,a1,b1) does not turn into an intuitionistic fuzzy line that does not pass through the base point (q,a0,b0)

under f̄ in [P,λ ,µ].

Proof (i) Let the base point (q,a0,b0) and the base line (L,a1,b1) be invariant under the intuitionistic fuzzy collineation
f̄ . Then f̄ (q,a0,b0) = (q,a0,b0). The image point f̄ (p,a1,b1) of the intuitionistic fuzzy point (p,a1,b1) on the base line
(L,a1,b1) is ( f (p),a1,b1) and is on the base line L.



Fundamental Journal of Mathematics and Applications 277

If a0 6= a1 6= a2 is taken, there are at most three membership degrees in [P,λ ,µ].
(ii) Let the base point (q,a0,b0) be invariant and the base line turns into a line other than the base line passing through the

base point [P,λ ,µ]. Since the base point (q,a0,b0) on (L,a1,b1) and f̄ is an intuitionistic fuzzy isomorphism, the image of
the base point (q,a0,b0) is also on the image of the base line ( f (L),a1,b1). Also L 6= f (L) and the line f (L) passes through
points of degree of membership (a2,b2) not on the base line, the membership degree of f (L) is (a2,b2). So, a1 = a2 and
b1 = b2 are obtained. Consequently, [P,λ ,µ] has at most two membership degrees.

(iii) Since the base point is on the base line, its image is on the image of the base line. However, the being invariant of the
base point gives rise to that the image line has to pass through the base point.

Theorem 2.5. Suppose that f̄ is an intuitionistic fuzzy collineation of [P,λ ,µ] defined by the collineation f of the base plane
P and the base point is not invariant and turns into an intuitionistic fuzzy point on the base line under the intuitionistic fuzzy
collineation f̄ .

(i) If the base line is invariant under the intuitionistic fuzzy collineation f̄ of [P,λ ,µ], among the membership degrees
0≤ ai +bi ≤ 1, i = 0,1,2, there is a relationship a0 = a1 ≥ a2 and b0 = b1 ≤ b2.

(ii) If the base point turns into an intuitionistic fuzzy point on the base line other than itself under the intuitionistic fuzzy
collineation f̄ , then there is one membership degree in [P,λ ,µ].

(iii) If the base point of (q,a0,b0) turns into any point not on the base line under the collineation f in P , then there is only
one membership degree in [P,λ ,µ].

Proof (i) Let the base point q of the intuitionistic fuzzy point (q,a0,b0) be not invariant and turn into another point on the
base line L, f̄ (q,a0,b0) = ( f (q),a1,b1).
Suppose that the base line L is invariant under the collineation f . It is clear that the intuitionistic fuzzy point (q,a0,b0) turns
into the intuitionistic fuzzy point (p,a1,b1) with p◦L, q 6= p. Since f̄ is intuitionistic fuzzy isomorphism, a0 = a1 and b0 = b1.
Hence, there are at most two membership degree in [P,λ ,µ].

(ii) Since the intuitionistic fuzzy point (q,a0,b0) turns into the intuitionistic fuzzy point (p,a1,b1), p 6= q on (L,a1,b1). It
is clear that a0 = a1 and b0 = b1. Next suppose that f (L) 6= L. So any intuitionistic fuzzy point different from the base point
on the base line L with membership degree (a1,b1) turns into any other intuitionistic fuzzy point with membership degree
(a2,b2). Since f̄ is intuitionistic fuzzy isomorphism, then a1 = a2 and b1 = b2. Hence, a0 = a1 = a2 and b0 = b1 = b2.

(iii) Since the base point turns into a point not on the base line, the image of (q,a0,b0) under f̄ is (p,a2,b2) with p øL. It is
clearly a0 = a2 and b0 = b2. If we use this equality and the conditions a0 ≥ a1 ≥ a2 and b0 ≤ b1 ≤ b2 among the membership
degrees in [P,λ ,µ], a0 = a1 = a2 and b0 = b1 = b2 are obtained.

Corollary If the base point of (q,a0,b0) turns into any point not on the base line L of (L,a1,b1) under the collineation f , the
base line (L,a1,b1) with base line L of [P,λ ,µ] is not invariant under the intuitionistic fuzzy collineation f̄ .

Proof Let the base point q turns into any point not on the base line under the collineation f of P . Since the intuitionistic fuzzy
point (q,a0,b0) such that the base point q is on the base line L turns into ( f (q),a2,b2) such that f (q) is not on the base line L,
then the base line L = 〈q, p〉 spanning by the points p and q turns into f (L) = 〈 f (q), f (p)〉 6= L under the intuitionistic fuzzy
collineation f̄ . Hence, (L,a1,b1) is not invariant.

Theorem 2.6. Suppose that f̄ is an intuitionistic fuzzy collineation of [P,λ ,µ] defined by the collineation f of the base plane
P .

(i) If two distinct points p1 and p2 in the base plane P are invariant under the collineation f of P , the intuitionistic fuzzy
line spanned by fuzzy points (p1,α1,β1) and (p2,α2,β2) is invariant under the intuitionistic fuzzy collineation f̄ of [P,λ ,µ] .

(ii) If two distinct lines L1 and L2 in the base plane P are invariant under the collineation f of P and the intersection
point of L1 and L2 is not on the base line L in P , then the intersection point of the intuitionistic fuzzy lines (L1,α1,β1) and
(L2,α2,β2) is invariant under the intuitionistic fuzzy collineation f̄ in [P,λ ,µ].

(iii) Suppose that two distinct lines L1 and L2 different from the base line L in the base plane P are invariant under
the collineation f of P and the intersection point of these lines is on the base line L in P . If the intersection point of the
intuitionistic fuzzy lines (L1,α1,β1) and (L2,α2,β2) is invariant under the intuitionistic fuzzy collineation f̄ in [P,λ ,µ].
There is a relationship a0 = a1 = a2, b0 = b1 = b2 or a1 = a2, b1 = b2 among the membership degrees in [P,λ ,µ].

Proof
(i) Let the base points p1 and p2 in P of (p1,α1,β1) and (p2,α2,β2) in [P,λ ,µ] be invariant under the collineation f

of P . Then by the definition of intuitionistic fuzzy collineation f̄ in [P,λ ,µ], f̄ (p1,α1,β1) = ( f (p1),α1,β1) = (p1,α1,β1)
and f̄ (p2,α2,β2) = ( f (p2),α2,β2) = (p2,α2,β2).
For any pair ((p1,α1,β1),(p2,α2,β2)) of fuzzy points, p1 6= p2, the fuzzy line (〈p1, p2〉 ,α1 ∧ α2,β1 ∨ β2) spanned by
them, also belongs to the intuitionistic fuzzy projective plane [P,λ ,µ]. By using the definition of f̄ of [P,λ ,µ] and
the remaining invariant of the points p1 and p2 under the collineation f in P , the image of the intuitionistic fuzzy line
(〈(p1,α1,β1),(p2,α2,β2)〉) under the intuitionistic fuzzy collineation f̄ is
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( f (〈p1, p2〉),α1∧α2,β1∨β2) = (〈 f (p1), f (p2)〉 ,α1∧α2,β1∨β2) = (〈p1, p2〉 ,α1∧α2,β1∨β2).

Hence, the intuitionistic fuzzy line (〈p1, p2〉 ,α1∧α2,β1∨β2) is invariant under the intuitionistic fuzzy collineation f̄ .
(ii) Let the base lines L1 and L2 in P of (L1,α1,β1) and (L2,α2,β2) in [P,λ ,µ] be invariant under the collineation f of

P . Since L1 6= L2 6= L, the membership degrees αi = a2, and βi = b2 i = 1,2. By the definition of f̄ and being invariant of the
lines L1 and L2 under the collineation f in P , f̄ (L1,a2,b2) = (L1,a2,b2) and f̄ (L2,a2,b2) = (L2,a2,b2). The image of the
intersection intuitionistic fuzzy point (L1∩L2,a2,b2) under f̄ is

( f (L1∩L2),a2,b2) = ( f (L1)∩ f (L2),a2,b2) = (L1∩L2,a2,b2).

It is implies that the intuitionistic fuzzy point (L1∩L2,a2,b2) remains invariant under the intuitionistic fuzzy collineation f̄ .
(iii) Let different base lines L1 and L2 of (L1,α1,β1) and (L2,α2,β2) be invariant under the collineation f in P . Since

L1 6= L2 6= L, αi = a2, and βi = b2 i = 1,2. The intersection point of (L1,a2,b2) and (L2,a2,b2) is the base point (q,a0,b0) or
any intuitionistic fuzzy point (p,a1,b1) on the base line (L,a1,b1) of [P,λ ,µ]. If the intersection point is (q,a0,b0), then
a0 = a1 = a2 and b0 = b1 = b2. If the intersection point is (p,a1,b1), then a1 = a2 and b1 = b2 are obtained.

Theorem 2.7. Suppose that f̄ is any intuitionistic fuzzy collineation of [P,λ ,µ] defined by the collineation f of the base
plane P . In this case,

(i) If M is a pointwise invariant line under the collineation f in the base projective plane P , then the corresponding
intuitionistic fuzzy line (M,γ,σ) is also pointwise invariant under the intuitionistic fuzzy collineation f̄ in [P,λ ,µ].

(ii) If two distinct lines L1 and L2 are pointwise invariant under the collineation f of the base plane P , then the intersection
point of the intuitionistic fuzzy lines (L1,γ1,σ1) and (L2,γ2,σ2) is invariant under the intuitionistic fuzzy collineation f̄ .

(iii) If the base line L and L1, L1 6= L are pointwise invariant lines under the collineation f of the base plane P , then the
intuitionistic fuzzy collineation f̄ is identity collineation in [P,λ ,µ].

Proof (i) Let the base line M of the intuitionistic fuzzy line (M,γ,σ) in [P,λ ,µ] be pointwise invariant under the
collineation f of P . From the definition of f̄ and being pointwise invariant of M under collineation f , f̄ (p,α,β ) =
( f (p),α,β ) = (p,α,β ) for every fuzzy point (p,α,β ) on (M,γ,σ). Hence the fuzzy line (M,γ,σ) is pointwise invari-
ant in [P,λ ,µ].

(ii) Let the base lines L1 and L2 of the intuitionistic fuzzy lines (L1,γ1,σ1) and (L2,γ2,σ2) in [P,λ ,µ] be pointwise
invariant under the collineation f of the base plane P , respectively. From (i), the fuzzy lines (L1,γ1,σ1) and (L2,γ2,σ2) are
pointwise invariant under the intuitionistic fuzzy collineation f̄ of [P,λ ,µ]. Since (Li,γi,σi) are pointwise invariant and
(p,α,β ) is on (Li,γi,σi), i = 1,2, hence the intersection point of (L1,γ1,σ1) and (L2,γ2,σ2) is invariant.

(iii) Let the base line L and L1, L1 6= L be pointwise invariant under the collineation f of P . So γ1 = a2 and σ1 = b2 are
obtained. It is well-known that if there are two distinct pointwise lines under a collineation of projective plane P , then the
collineation f is identity collineation. From i) (L,a1,b1) and (L1,a2,b2), are pointwise invariant. The image of (p,a2,b2) such
that p øL and p øL1 is f̄ (p,a2,b2) = ( f (p),a2,b2) = (p,a2,b2) under f̄ . Hence every intuitionistic fuzzy point in [P,λ ,µ]
are invariant, and this means that f̄ is the identity collineation of [P,λ ,µ].

Corollary If f is identity collineation of P , f̄ is identity collineation of [P,λ ,µ].

3. Conclusion

The concepts of intuitionistic fuzzy isomorphism and intuitionistic fuzzy collineations between two intuitionistic fuzzy
projective planes are introduced and then some important results are obtained. It is seen that the intuitionistic fuzzy collineations
of intuitionistic fuzzy projective planes cannot hold the intuitionistic fuzzy versions of some classical properties related to
collineations of projective plane. The properties of intuitionistic fuzzy projective plane left invariant under the intuitionistic
fuzzy collineations are characterized depending on the base point, base line and the membership degrees of intuitionistic fuzzy
projective plane. Consequently, these obtained results on intuitionistic fuzzy isomorphism and intuitionistic fuzzy collineation
have an important effect on enriching the theory of intuitionistic fuzzy geometries.
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