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The algebra of thin measurable operators is directly finite

AIRAT M. BIKCHENTAEV*

ABSTRACT. Let M be a semifinite von Neumann algebra on a Hilbert space H equipped with a faithful normal
semifinite trace τ , S(M, τ) be the ∗-algebra of all τ -measurable operators. Let S0(M, τ) be the ∗-algebra of all τ -
compact operators and T (M, τ) = S0(M, τ) + CI be the ∗-algebra of all operators X = A+ λI with A ∈ S0(M, τ)
and λ ∈ C. It is proved that every operator of T (M, τ) that is left-invertible in T (M, τ) is in fact invertible in T (M, τ).
It is a generalization of Sterling Berberian theorem (1982) on the subalgebra of thin operators in B(H). For the singular
value function µ(t;Q) of Q = Q2 ∈ S(M, τ), the inclusion µ(t;Q) ∈ {0}

⋃
[1,+∞) holds for all t > 0. It gives the

positive answer to the question posed by Daniyar Mushtari in 2010.

Keywords: Hilbert space, von Neumann algebra, semifinite trace, τ -measurable operator, τ -compact operator, singular
value function, idempotent.

2020 Mathematics Subject Classification: 16E50, 46L51.

1. INTRODUCTION

In this paper, we extend the Sterling Berberian’s result [2] (see also [12]) on direct finiteness
of the algebra of thin operators on an infinite-dimensional Hilbert space to the Irving Segal’s
non-commutative integration setting [16]. Let M be a semifinite von Neumann algebra on a
Hilbert space H equipped with a faithful normal semifinite trace τ , S(M, τ) be the ∗-algebra
of all τ -measurable operators. Let S0(M, τ) be the ∗-algebra of all τ -compact operators and
T (M, τ) = S0(M, τ) + CI be the ∗-algebra of all operators X = A + λI with A ∈ S0(M, τ)
and a complex number λ. We prove that every operator of T (M, τ) left-invertible in T (M, τ)
is actually invertible in T (M, τ) (Theorem 3.1). Assume that A ∈ S(M, τ) and B ∈ T (M, τ).
We have AB ∈ T (M, τ) if and only if BA ∈ T (M, τ) (Theorem 3.2). For the singular value
function µ(t;Q) of Q = Q2 ∈ S(M, τ), we have µ(t;Q) ∈ {0}

⋃
[1,+∞) for all t > 0 (Theorem

3.3). It is the positive answer to the question by Daniyar Mushtari of year 2010.
The author sincerely thank Vladimir Chilin for useful discussions of the results presented in

this paper.

2. PRELIMINARIES

LetM be a von Neumann algebra of operators on a Hilbert spaceH, let P(M) be the lattice
of projections inM, I be the unit ofM. AlsoM+ denotes the cone of positive elements inM.
A mapping ϕ :M+ → [0,+∞] is called a trace, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X)
for all X,Y ∈ M+, λ ≥ 0 (moreover, 0 · (+∞) ≡ 0); ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace
ϕ is called faithful, if ϕ(X) > 0 for all X ∈ M+, X 6= 0; normal, if Xi ↑ X (Xi, X ∈ M+) ⇒

Received: 28.09.2022; Accepted: 10.01.2023; Published Online: 12.01.2023
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2 Airat Bikchentaev

ϕ(X) = supϕ(Xi); semifinite, if ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for every
X ∈M+.

An operator on H (not necessarily bounded or densely defined) is said to be affiliated to the
von Neumann algebraM if it commutes with any unitary operator from the commutantM′ of
the algebraM. Let τ be a faithful normal semifinite trace onM. A closed operatorX , affiliated
to M and possesing a domain D(X) everywhere dense in H is said to be τ -measurable if, for
any ε > 0, there exists a P ∈ P(M) such that PH ⊂ D(X) and τ(I−P ) < ε. The set S(M, τ) of
all τ -measurable operators is a ∗-algebra under passage to the adjoint operator, multiplication
by a scalar, and operations of strong addition and multiplication resulting from the closure of
the ordinary operations [16], [14]. Let L+ and Lh denote the positive and Hermitian parts of a
family L ⊂ S(M, τ), respectively. We denote by ≤ the partial order in S(M, τ)h generated by
its proper cone S(M, τ)+. If X ∈ S(M, τ), then |X| =

√
X∗X ∈ S(M, τ)+. The generalized

singular value function µ(X) : t→ µ(t;X) of the operator X is defined by setting

µ(s;X) = inf{‖XP‖ : P ∈ P(M) and τ(I − P ) ≤ s}.

Lemma 2.1. (see [10]) We have µ(s+ t;XY ) ≤ µ(s;X)µ(t;Y ) for all X,Y ∈ S(M, τ) and s, t > 0.

The sets U(ε, δ) = {X ∈ S(M, τ) : (‖XP‖ ≤ ε and τ(I − P ) ≤ δ for some P ∈ P(M))},
where ε > 0, δ > 0, form a base at 0 for a metrizable vector topology tτ on S(M, τ), called the
measure topology [14]. Equipped with this topology, S(M, τ) is a complete metrizable topolog-
ical ∗-algebra in whichM is dense. We will write Xn

τ−→ X if a sequence {Xn}∞n=1 converges
to X ∈ S(M, τ) in the measure topology on S(M, τ).

The set of τ -compact operators S0(M, τ) = {X ∈ S(M, τ) : lim
t→∞

µ(t;X) = 0} is an ideal

in S(M, τ). For any closed and densely defined linear operator X : D (X) → H, the null
projection n(X) = n(|X|) is the projection onto its kernel Ker(X), the range projection r(X) is
the projection onto the closure of its range Ran(X) and the support projection supp(X) of X is
defined by supp(X) = I − n(X).

The two-sided ideal F(M, τ) inM consisting of all elements of τ -finite range is defined by

F(M, τ) = {X ∈M : τ(r(X)) <∞} = {X ∈M : τ(supp(X)) <∞}.
Equivalently, F(M, τ) = {X ∈ M : µ(t;X) = 0 for some t > 0}. Clearly, S0(M, τ) is the
closure of F(M, τ) with respect to the measure topology [9].

3. MAIN RESULTS

Throughout the sequel, letM be an arbitrary semifinite von Neumann algebra, with some
distinguished faithful normal semifinite trace τ .

Lemma 3.2. We have |X| ∈ T (M, τ) for every X ∈ T (M, τ).

Proof. The ideal F(M, τ) is a C∗-subalgebra inM. Hence F (M, τ) = F(M, τ)+CI is an unital
C∗-subalgebra inM and if X ∈ F (M, τ), then |X| ∈ F (M, τ). Assume that X ∈ T (M, τ), i.e.,
X = A+λI withA ∈ S0(M, τ) and λ ∈ C. Since F(M, τ) is tτ -dense in S0(M, τ), there exists a
sequence {An}∞n=1 ⊂ F(M, τ) such thatAn

τ−→ A as n→∞. Then the sequenceXn = An+λI ,
n ∈ N, lies in F (M, τ) and tτ -converges to the operator X as n → ∞. According to the results
given above, |Xn| = Bn + |λ|I with some Bn ∈ F (M, τ)h, n ∈ N. Since Xn

τ−→ X as n → ∞,
we have X∗n

τ−→ X∗ as n→∞ by tτ -continuity of the involution in S(M, τ). Then via joint tτ -
continuity of the multiplication in S(M, τ), we have X∗nXn

τ−→ X∗X as n→∞. Therefore, we
obtain |Xn|

τ−→ |X| as n → ∞ by tτ -continuity of the real function f(t) =
√
t, t ≥ 0 [18]. Thus

the sequence {Bn}∞n=1 tτ -converges to a some operator B ∈ S0(M, τ)h and |X| = B + |λ|I . �
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Lemma 3.3. (see [4, Corollary 2.4]) If X ∈ T (M, τ) and XX∗ ≤ X∗X , then XX∗ = X∗X .

Lemma 3.4. The idempotents of T (M, τ) are the operators P , I−P , where P runs over the idempotent
operators of S0(M, τ).

Proof. Assume that X = A+ λI ∈ T (M, τ) and X2 = X . Then A2 + 2λA+ λ2I = A+ λI , i.e.,
λ ∈ {0, 1}. If λ = 0, then A2 = A and A ∈ S0(M, τ) is an idempotent operator. Then I − A ∈
T (M, τ) and is also an idempotent. If λ = 1, then A2 = −A = (−A)2 and −A ∈ S0(M, τ) is an
idempotent operator. Then I − (−A) ∈ T (M, τ) and is also an idempotent. �

Consider F0(M, τ) = {A ∈ S0(M, τ) : τ(r(A)) < +∞} and A(M, τ) = F0(M, τ) + CI .
Then A(M, τ) is a ∗-subalgebra of T (M, τ).

Lemma 3.5. A(M, τ) contains every idempotent of T (M, τ).

Proof. Let Q be an idempotent operator of S(M, τ). Then

(Q+Q∗ − I)2 = I + (Q−Q∗)(Q−Q∗)∗

and by [6, Theorem 2.21] there exists a unique “range” projection Q] ∈ P(M), defined by
the formula Q] = Q(Q + Q∗ − I)−1 with (Q + Q∗ − I)−1 ∈ M and subject to the condition
Q]·S(M, τ) = Q·S(M, τ). By [6, Theorem 2.23], there exists a unique decompositionQ = P+Z,
where P = Q] ∈ P(M) and Z ∈ S(M, τ) is a nilpotent so that Z2 = 0 and ZP = 0, PZ = Z.
ThusQP = P and PQ = Q. Assume thatQ ∈ S0(M, τ). SinceQP = P , we have P ∈ S0(M, τ).
Since the singular function µ(t;P ) = χ(0,τ(P )](t) for all t > 0, we conclude that P ∈ F(M, τ).
Then by equality PQ = Q, we have Q ∈ F0(M, τ) and apply Lemma 3.4. �

Lemma 3.6. F0(M, τ) is a regular ring.

Proof. We show that for every operator A ∈ F0(M, τ) the equation AXA = A possesses a so-
lution in F0(M, τ). For A ∈ F0(M, τ), the range projection r(A) and the support projection
supp(A) lie in F(M, τ). Consider the projection P = r(A)

∨
supp(A) in F(M, τ) and the re-

duced von Neumann algebra MP = PMP , the reduced faithful normal finite trace τP with
τP (X) = τ(PXP ), X ∈ M+

P . The algebraMP is finite, therefore S(MP , τP ) is a regular ring
by [15, Theorem 4.3]. Since A ∈ S(MP , τP ), the equation AXA = A admits a solution in
S(MP , τP ) ⊂ F0(M, τ). �

Idempotents P,Q of a ring R are said to be equivalent (in R), written P ∼ Q, if there exist
elements X,Y ∈ R such that XY = P and Y X = Q (replacing X,Y by PXQ, QY P , one
can suppose that X ∈ PRQ, Y ∈ QRP [13, p. 22]). Projections (=self-adjoint idempotents)
P,Q of a ring with involutions are said to be ∗-equivalent if there exists an element X such that
XX∗ = P and X∗X = Q.

Theorem 3.1. If X,Y ∈ T (M, τ) such that XY = I , then Y X = I .

Proof. In the terms of ring theory, we assert that the ring T (M, τ) is “directly finite” [11, p. 49].
Since F0(M, τ) (by Lemma 3.6) and A(M, τ)/F0(M, τ) ∼= C are both regular rings, A(M, τ)
is a regular ring [11, p. 2, Lemma 1.3]; since, moreover, the involution of A(M, τ) is proper
(AA∗ = 0 implies A = 0), the algebra A(M, τ) is ∗-regular in the sense of von Neumann [1, p.
229].

If X,Y are elements of T (M, τ) such that XY = I , then P = Y X is an idempotent of
T (M, τ) such that P ∼ I in T (M, τ). By Lemma 3.5, we have P ∈ A(M, τ); since A(M, τ)
is ∗-regular, there exists a projection Q ∈ A(M, τ) such that Q · A(M, τ) = P · A(M, τ) [1,
p. 229, Proposition 3]. Then P ∼ Q in A(M, τ) [13, p. 21, Theorem 14], a fortiori P ∼ Q
in T (M, τ); already P ∼ I in T (M, τ), so Q ∼ I in T (M, τ) by transitivity. Since T (M, τ)
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satisfies the “square root” axiom (SR) and contains square roots of its positive elements (see
Lemma 3.2 and [13, p. 90]), it follows that the projections P, I are ∗-equivalent in T (M, τ) [13,
p. 35, Theorem 27], say X ∈ T (M, τ) with XX∗ = P , X∗X = I . By Lemma 3.3, P = I ; then
Q · A(M, τ) = P · A(M, τ) = A(M, τ) shows that P = I , that is, Y X = I . �

Theorem 3.1 can obviously be reformulated as follows: ifA,B ∈ S0(M, τ) andA+B+AB =
0, then AB = BA. On invertibility in S(M, τ), see [17], [7] and [8].

Theorem 3.2. Assume that A ∈ S(M, τ) and B ∈ T (M, τ). Then AB ∈ T (M, τ) if and only if
BA ∈ T (M, τ).

Proof. "⇒". If B ∈ S0(M, τ), then BA ∈ S0(M, τ) ⊂ T (M, τ). Assume that B /∈ S0(M, τ).
Then B = λI +K for some λ ∈ C \ {0} and K ∈ S0(M, τ). Hence,

(3.1) AB = λA+AK = µI +K1

for some µ ∈ C and K1 ∈ S0(M, τ).
Case 1: µ = 0. Then we have A ∈ S0(M, τ) by (3.1); hence BA ∈ S0(M, τ) ⊂ T (M, τ).
Case 2: µ 6= 0. Then by (3.1), we have λA = µI + K2 with K2 = K1 − AK ∈ S0(M, τ).

Therefore, A = µ
λI +

1
λK2 and

BA = (λI +K)
(µ
λ
I +

1

λ
K2

)
= I +K3

with K3 = K1 −AK + µ
λK + 1

λKK1 − 1
λKAK ∈ S0(M, τ). Thus BA ∈ T (M, τ).

"⇐". We know that X ∈ T (M, τ) if and only if X∗ ∈ T (M, τ), and apply the proof given
above to the pair {A∗, B∗}. �

Corollary 3.1. If A ∈ S(M, τ) and B ∈ T (M, τ) \ S0(M, τ) then the following conditions are
equivalent:

(i) AB ∈ T (M, τ);
(ii) BA ∈ T (M, τ);
(iii) A ∈ T (M, τ).

Proof. "(i)⇒(iii)". Let B = λI + K for some λ ∈ C \ {0} and K ∈ S0(M, τ). Then AB =
λA + AK = µI + K1 for some µ ∈ C and K1 ∈ S0(M, τ). Thus λA = µI + K1 − AK and
A = µ

λI +
1
λK1 − 1

λAK ∈ T (M, τ). �

Theorem 3.3. If Q ∈ S(M, τ) is such that Q2 = Q, then µ(t;Q) ∈ {0}
⋃
[1,+∞) for all t > 0. For

the symmetry U = 2Q− I , we have µ(t;U) ≥ 1 for all t > 0.

Proof. For Q = Q2 /∈ S0(M, τ), we have µ(t;Q) ≥ 1 for all t > 0, see [5, Lemma 3.8]. Let
Q = Q2 ∈ S0(M, τ) and P be “the range” projection of the idempotent Q, see the proof of
Lemma 3.5. Since QP = P and P ∈ P(M)

⋂
F(M, τ), by Lemma 2.1 we have

1 = µ(s+ t;P ) = χ(0,τ(P )](s+ t) = µ(s+ t;QP ) ≤ µ(s;P )µ(t;Q) = µ(t;Q)

for all s, t > 0 with s + t ≤ τ(P ). By tending s to 0+, we obtain µ(t;Q) ≥ 1 for all 0 < t <
τ(P ). By the right continuity of the function µ(t; ·), we have µ(τ(P );Q) ≥ 1. If t > τ(P ) then
µ(t;P ) = 0; by the equality PQ = Q and by Lemma 2.1, we obtain

0 ≤ µ(t;Q) = µ(t;PQ) ≤ µ(t− ε;P )µ(ε;Q) = 0

for all ε > 0 with t− ε > τ(P ).
Let Q ∈ S(M, τ) be such that Q2 = Q. For the symmetry U = 2Q − I , we have U2 = I and

by Lemma 2.1 obtain

1 = µ(2t; I) = µ(2t;U2) ≤ µ(t;U)µ(t;U) = µ(t;U)2
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for all t > 0. �

Note that for Q ∈ M such that Q2 = Q the relation µ(t;Q) ∈ {0}
⋃
[1, ‖Q‖] for all t > 0 was

obtained by another way in [3, item 1) of Lemma 3.8]. Theorem 3.3 gives the positive answer
to the question by Daniyar Mushtari of year 2010.

Acknowledgements. The work performed under the development program of Volga Region
Mathematical Center (agreement no. 075-02-2022-882).
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Banach-valued Bloch-type functions on the unit ball of a
Hilbert space and weak spaces of Bloch-type

THAI THUAN QUANG*

ABSTRACT. In this article, we study the space Bµ(BX , Y ) of Y -valued Bloch-type functions on the unit ball BX of
an infinite dimensional Hilbert spaceX with µ is a normal weight onBX and Y is a Banach space. We also investigate
the characterizations of the spaceWBµ(BX) of Y -valued, locally bounded, weakly holomorphic functions associated
with the Bloch-type space Bµ(BX) of scalar-valued functions in the sense that f ∈ WBµ(BX) if w ◦ f ∈ Bµ(BX) for
every w ∈ W, a separating subspace of the dual Y ′ of Y.

Keywords: Operators on Hilbert spaces, Bloch spaces, weak holomorphic.

2020 Mathematics Subject Classification: 47B38, 30H30, 47B02, 47B33, 47B91.

1. INTRODUCTION

The space of classical Bloch functions on the unit disk B1 of the complex plane C was ex-
tended to the higher dimension cases. In 1975, using terminology from differential geometry
[5], K. T. Hahn introduced the notion of Bloch functions on bounded homogeneous domains
in Cn. Further, Bloch functions on bounded homogeneous domains in terms of the Bergman
metric was studied by R. M. Timoney in [12, 13]. In [7], S. G. Krantz and D. Ma considered func-
tion theoretic and functional analytic properties of Bloch functions on strongly pseudoconvex
domain.

Recently, O. Blasco and his colleagues extended the notion to the infinite dimensional setting
by considering Bloch functions on the unit ball of an infinite dimensional Hilbert space (see
[1, 2, 3]) and, after that, Z. Xu continued the study this topic (see [14]). C. Chu, H. Hamada,
T. Honda, G. Kohr generalized the Bloch space to a bounded symmetric domain in a complex
Banach space realized as the open unit ball of a JB∗-triple (see [4]). H. Hamada [6] introduced
Bloch-type spaces on the unit ball of a complex Banach space.

Motivated by the above results, in this article, the space of Banach-valued Bloch-type func-
tions on the unit ball BX of an infinite dimensional Hilbert space X with a normal weight
(say Bloch-type space) is introduced. We will consider two possible extensions of the classi-
cal Bloch space. The first one extends the classical Bloch space by considering the Bloch-type
spaces Bµ(BX , Y ) of holomorphic functions f on BX with values in a Banach space Y such
that supz∈BX µ(z)‖♦f(z)‖ < ∞ where µ is a normal weight on BX and ♦f denotes either the
holomorphic gradient∇f or the radial derivative Rf of f. Basing on the idea in [1] with minor
modifications, we give the connection between functions in Bµ(BX , Y ) and their restrictions
to finite dimensional ones, which leads to the fact that if for a given m ≥ 2, the restrictions of

Received: 28.12.2022; Accepted: 24.02.2023; Published Online: 28.02.2023
*Corresponding author: Thai Thuan Quang; thaithuanquang@qnu.edu.vn
DOI: 10.33205/cma.1243686
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the function to the m-dimensional subspaces have their Bloch-type norms uniformly bounded,
then the function is a Bloch-type one and conversely. The second one gives the characteriza-
tions of the space WBµ(BX) of Banach-valued, locally bounded, weakly holomorphic func-
tions associated with the Bloch-type space Bµ(BX) of scalar-valued functions in the sense that
f ∈ WBµ(BX) if w ◦ f ∈ Bµ(BX) for every w ∈ W, a separating subspace of the dual Y ′ of
Banach space Y.

Finally, some open problems are proposed at the end of the paper.

2. THE BLOCH-TYPE SPACES ON THE UNIT BALL OF A HILBERT SPACE

Throughout the forthcoming, unless otherwise specified, we shall denote by X a complex
Hilbert space with the open unit ball BX and Y a Banach space. By H (BX , Y ), we de-
note the vector space of Y -valued holomorphic functions on BX . We write H (BX) instead
of H (BX ,C). Denote

H ∞(BX , Y ) =
{
f ∈H (BX , Y ) : sup

z∈BX
‖f(z)‖ <∞

}
.

It is easy to check that H ∞(BX , Y ) is Banach under the sup-norm

‖f‖∞ := sup
z∈BX

‖f(z)‖.

Let (ek)k∈Γ be an orthonormal basis of X that we fix at once. Then every z ∈ X can be written
as

z =
∑
k∈Γ

zkek, z =
∑
k∈Γ

zkek.

Given f ∈ H (BX , Y ) and z ∈ BX . We will denote, as usual, by ∇f(z) the gradient of f at z;
that is, the unique element representing the linear operator f ′(z) ∈ L(X,Y ). We can write

∇f(z) =
( ∂f
∂zk

(z)
)
k∈Γ

and hence

f ′(z)(x) =
∑
k∈Γ

∂f

∂zk
(z)(xkek) ∀x ∈ X.

We define the radial derivative of f at z ∈ BX as follows:

Rf(z) :=
∑
k∈Γ

∂f

∂zk
(z)(zkek) = f ′(z)(z).

It is obvious that
‖Rf(z)‖ ≤ ‖∇f(z)‖‖z‖ ∀z ∈ BX

and
‖∇f(z)‖ := sup

u∈Y ′,‖u‖=1

‖∇(u ◦ f)(z)‖, ‖Rf(z)‖ := sup
u∈Y ′,‖u‖=1

|R(u ◦ f)(z)|.

Definition 2.1. A positive, continuous function µ on the interval [0, 1) is called normal if there are
three constants 0 ≤ δ < 1 and 0 < a < b <∞ such that

(W1)
µ(t)

(1− t)a
is decreasing on [δ, 1), lim

t→1

µ(t)

(1− t)a
= 0,

(W2)
µ(t)

(1− t)b
is increasing on [δ, 1), lim

t→1

µ(t)

(1− t)b
=∞.



8 Thai Thuan Quang

If we say that a function µ : BX → [0,∞) is normal, we also assume that it is radial, that is, µ(z) =
µ(‖z‖) for every z ∈ BX .

Then, it follows from (W1) that a normal function µ is strictly decreasing on [δ, 1) and µ(t)→
0 as t→ 1. Note that, for every non-increasing, normal weight µ,

(2.1) Sµ := sup
t∈[0,1)

(1− t)b

µ(t)
<∞.

Throughout this paper, a weight always is assumed to be normal. For a normal weight µ on
BX , we denote

Iµ(z) :=

∫ ‖z‖
0

dt

µ(t)
∀z ∈ BX .

In the sequel, when no confusion can arise, we will use the symbol ♦ to denote either ∇ or R.
We define Bloch-type spaces on the unit ball BX as follows:

B♦µ (BX , Y ) :=
{
f ∈H (BX , Y ) : ‖f‖sB♦

µ (BX ,Y ) := sup
z∈BX

µ(z)‖♦f(z)‖ <∞
}
.

It is easy to check ‖ · ‖sB♦
µ (BX ,Y ) is a semi-norm on B♦µ (BX , Y ) and this space is Banach under

the sup-norm
‖f‖B♦

µ (BX ,Y ) := ‖f(0)‖+ ‖f‖sB♦
µ (BX ,Y ).

We also define little Bloch-type spaces on the unit ball BX as follows:

B♦µ,0(BX , Y ) :=
{
f ∈ B♦µ (BX , Y ) : lim

‖z‖→1
µ(z)‖♦f(z)‖ = 0

}
endowed with the norm induced by B♦µ (BX , Y ). In the case Y = C, we write B♦µ (BX), B♦µ,0(BX)

instead of the respective notations. For µ(z) = 1 − ‖z‖2, we write B♦(BX , Y ) instead of
B♦µ (BX , Y ) and when dimX = m, Y = C we obtain correspondingly the classical Bloch space
B♦(Bm).We will show below that the study of Bloch-type spaces on the unit ball can be reduced
to studying functions defined on finite dimensional subspaces.

Now, for each finite subset F ⊂ Γ, in symbol |F | = m < ∞, we denote by B[F ] the unit ball
of span{ek, k ∈ F}. Without loss of generality we may assume that F = {1, . . . ,m}, and hence
B[F ] = Bm. For each m ∈ N, we denote

z[m] := (z1, . . . , zm) ∈ Bm.

For m ≥ 2 by
OSm := {x = (x1, . . . , xm), xk ∈ X, 〈xk, xj〉 = δkj},

we denote the family of orthonormal systems of order m. It is clear that OS1 is the unit sphere
of X. For every x ∈ OSm, f ∈H (BX , Y ), we define

fx(z[m]) = f

( m∑
k=1

zkxk

)
.

Then

(2.2)
∥∥∥∇fx(z[m])

∥∥∥ =

∥∥∥∥∇f( m∑
k=1

zkxk

)∥∥∥∥.
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Definition 2.2. Let B1 be the open unit ball in C and f ∈H (BX , Y ). We define an affine semi-norm
as follows

‖f‖sBaff
µ (BX ,Y ) := sup

‖x‖=1

‖f(·x)‖sBµ(B1,Y ),

where f(·x) : B1 → Y given by f(·x)(λ) = f(λx) for every λ ∈ B1, and

‖f(·x)‖sBRµ (B1,Y ) = sup
λ∈B1

µ(λx)‖f ′(·x)(λ)‖.

It is easy to see that ‖ · ‖sBaff
µ (BX ,Y ) is a semi-norm on Bµ(BX , Y ). We denote

Baff
µ (BX , Y ) := {f ∈ Bµ(BX , Y ) : ‖f‖sBaff

µ (BX ,Y ) <∞}.

It is also easy to check that Baff
µ (BX , Y ) is Banach under the norm

‖f‖Baff
µ (BX ,Y ) := ‖f(0)‖+ ‖f‖sBaff

µ (BX ,Y ).

We also define little affine Bloch-type spaces on the unit ball BX as follows:

Baff
µ,0(BX , Y ) :=

{
f ∈ Baff

µ (BX , Y ) : lim
|λ|→1

sup
‖x‖=1

µ(λx)‖f ′(·x)(λ)‖ = 0
}
.

As the above, for µ(z) = 1 − ‖z‖2 we use notation B and B0 instead of Bµ and Bµ,0, respec-
tively.

Proposition 2.1. Let f ∈H (BX , Y ). The following are equivalent:

(1) f ∈ B∇µ (BX , Y );
(2) sup

x∈OSm
‖fx‖B∇

µ (Bm,Y ) <∞ for every m ≥ 2;

(3) There exists m ≥ 2 such that sup
x∈OSm

‖fx‖B∇
µ (Bm,Y ) <∞.

Moreover, for each m ≥ 2

(2.3) ‖f‖sB∇
µ (BX ,Y ) = sup

x∈OSm
‖fx‖sB∇

µ (Bm,Y ).

Proof. (1)⇒ (2): Let m ≥ 2 and z[m] ∈ Bm. According to (2.2)

∥∥∇fx(z[m]

)∥∥ =

∥∥∥∥∇f( m∑
j=1

zjej

)∥∥∥∥.
Denote µ[m] = µ

∣∣
Bm
. Since

∥∥∑m
j=1 zjej

∥∥ =
∥∥z[m]

∥∥we get

(2.4)

‖fx‖sB∇
µ[m]

(Bm,Y ) = sup
z[m]∈Bm

µ[m](z[m])‖∇fx(z[m])‖

≤ sup
z∈BX

µ[m](z[m])

∥∥∥∥∇f( m∑
j=1

zjej

)∥∥∥∥
≤ ‖f‖sB∇

µ (BX ,Y ).

In particular, we obtain (2).
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(2)⇒ (1): Let z =
∑
k∈Γ zkek. We denote the partial sums of this series by sn. Because f is

holomorphic, ∂f
∂zj

are continuous. Then with e[m] := (e1, . . . , em) we have

‖∇f(z)‖ = sup
u∈Y ′,‖u‖=1

‖∇(u ◦ f)(z)‖

= sup
u∈Y ′,‖u‖=1

lim
n→∞

‖∇(u ◦ f)(sn)‖

≤ sup
u∈Y ′,‖u‖=1

sup
m≥2
‖∇(u ◦ fe[m]

)(z[m])‖

= sup
x∈OSm,m≥2

‖∇fx(z[m])‖.

Then, it follows from the assumption (2) and ‖z[m]‖ ≤ ‖z‖, that

(2.5)
µ[m](z[m])‖∇f(z)‖ ≤ µ[m](z[m])‖∇f(z)‖

≤ sup
x∈OSm,m≥2

µ[m](z[m])‖∇fx(z[m])‖ <∞.

Thus f ∈ B∇µ (BX , Y ).
(2)⇒ (3): It is obvious.
(3) ⇒ (1): Assume that there exists m ≥ 2 such that supx∈OSm ‖fx‖Bµ(BX ,Y ) < ∞. We fix

z ∈ BX , z 6= 0. Consider x = ( z
‖z‖ , x2, . . . , xm) ∈ OSm and put z[m] := (‖z‖, 0, . . . , 0) ∈ Bm.

Then ‖z[m]‖ = ‖z‖ and

(2.6)
∥∥∇fx(z[m])

∥∥ =

∥∥∥∥∇f( m∑
k=1

zkxk

)∥∥∥∥ = ‖∇f(z)‖.

This implies that

(2.7)

‖f‖sB∇
µ (BX ,Y ) = sup

z∈BX
µ(z)‖∇f(z)‖

≤ sup
z∈BX

µ(z[m])‖∇fx(z[m])‖

≤ sup
x∈OSm

‖fx‖Bµ(Bm,Y ) <∞.

Thus f ∈ B∇µ (BX , Y ). On the other hand, it is obvious that

(2.8) sup
x∈OSm

‖fx‖B∇
µ (Bm,Y ) ≤ ‖f‖sB∇

µ (BX ,Y ) ∀m ≥ 2.

Hence, we obtain (2.3) from (2.4), (2.5), (2.7) and (2.8). �

Remark 2.1. The proposition is not true for the case m = 1. Indeed, let X be a Hilbert space with the
orthonormal basis {en}n≥1. Consider f : BX → C given by

f(z) :=

∞∑
n=1

〈z, en〉√
n

∀z ∈ BX .

Then f ∈H (BX) because
∞∑
n=1

|〈z, en〉|2

n
≤
∞∑
n=1

|〈z, en〉|2 = ‖z‖2 < 1.
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For each x =
∑∞
n=1〈x, en〉en ∈ OS1 and for every z[1] := z1 ∈ B1, we have

∇fx(z[1]) = ∇f(z1x1) = ∇f
( ∞∑
n=1

〈z1x1, en〉√
n

)
,

and thus, since ‖∇fx(z[1])‖2 = |x1|2 ≤ 1 we get

sup
x∈OS1

‖fx(z[1])‖B∇(B1) = sup
x∈OS1

(1− ‖z[1]‖2)‖∇fx(z[1])‖ ≤ 1.

However, f 6∈ B∇(BX) because for every z ∈ BX , we have

‖∇f(z)‖2 =

∞∑
n=1

∣∣∣ ∂f
∂zn

(z)
∣∣∣2 =

∞∑
n=1

1

n
.

Proposition 2.2. Let f ∈H (BX , Y ). The following are equivalent:

(1) f ∈ B∇µ,0(BX , Y );
(2) ∀ε > 0 ∃% > 0 ∀z ∈ BX with ‖z[m]‖ > % for every m ≥ 2

sup
m≥2

sup
x∈OSm

µ(z[m])‖∇fx(z[m])‖ < ε;

(3) ∃m ≥ 2 ∀ε > 0 ∃% > 0 ∀z ∈ BX with ‖z[m]‖ > %

sup
x∈OSm

µ(z[m])‖∇fx(z[m])‖ < ε.

Proof. The implications (1)⇒ (2)⇒ (3) are obvious.
(3)⇒ (1): The proof is straight-forward by putting x ∈ OSm and z[m] ∈ Bm as in the proof

of (3)⇒ (1) in Proposition 2.1 for each z ∈ BX with ‖z‖ > %. �

In the next proofs below we need the following lemma.

Lemma 2.1. For every f ∈ B∇µ (BX , Y ) and x ∈ X with ‖x‖ = 1, we have

(2.9) Rf(λx) = λf ′(·x)(λ) ∀λ ∈ B1

and

(2.10) f ′(·x)(λ)(µ) = f ′(λx)(µx) ∀λ, µ ∈ B1.

Proof. First, it follows from the Bessel inequality that every x ∈ X has only a countable number
of non-zero Fourier coefficients 〈x, ej〉. Indeed, for every ε > 0 the set {j ∈ Γ : |〈x, ej〉| >
ε} is finite. Then we still have x =

∑
j∈Γ〈x, ej〉ej =

∑
j∈Γ xjej where the sum is in fact a

countable one, and it is independent of the particular enumeration of the countable number of
non-zero summands. Hence, we can write x =

∑∞
j=1 xjej . Then, by the definitions of f(·x)
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and f ′(·x)(λ), we have∥∥∥∥∥1

t

∞∑
k=1

(
f
( k∑
j=1

λxjej + tλxkek +

∞∑
j=k+1

(λ+ tλ)xjej

)

− f
( k∑
j=1

λxjej +

∞∑
j=k+1

(λ+ tλ)xjej

))
− λf ′(·x)(λ)

∥∥∥∥∥
=

∥∥∥∥∥f((λ+ tλ)x)− f(λx)

h
− λf ′(·x)(λ)

∥∥∥∥∥
=

∥∥∥∥∥f(·x)(λ+ tλ)− f(·x)(λ)

t
− λf ′(·x)(λ)

∥∥∥∥∥→ 0 as t→ 0.

Hence (2.9) is proved.
For λ, η ∈ B1 we have

‖ηf ′(·x)(λ)− f ′(λx)(ηx)‖

=

∥∥∥∥∥f(·x)(λ+ tη)− f(·x)(λ)

t
− ηf ′(·x)(λ)− f(λx+ tηx)− f(λx)

t
+ f ′(λx)(ηx)

∥∥∥∥∥
≤

∥∥∥∥∥f(·x)(λ+ tη)− f(·x)(λ)

t
− ηf ′(·x)(λ)

∥∥∥∥∥+

∥∥∥∥∥f(λx+ tηx)− f(λx)

t
+ f ′(λx)(ηx)

∥∥∥∥∥
→ 0 as t→ 0.

Then f ′(·x)(λ)(η) = ηf ′(·x)(λ) = f ′(λx)(ηx), and (2.10) is proved. �

Proposition 2.3. (1) The spaces BRµ (BX , Y ) and Baff
µ (BX , Y ) coincide. Moreover,

‖f‖sBRµ (BX ,Y ) ≤ ‖f‖sBaff
µ (BX ,Y ) . ‖f‖sBRµ (BX ,Y ) ∀f ∈ BRµ (BX , Y ).

(2) The spaces BRµ,0(BX , Y ) and Baff
µ,0(BX , Y ) coincide.

Proof. (1) Let f ∈ Baff
µ (BX , Y ). In order to prove f ∈ BR(BX , Y ) it suffices to show that

(2.11) Rf(z) = ‖z‖f ′
(
· z

‖z‖

)
(‖z‖) ∀z ∈ BX \ {0}.

It is easy to see that (2.11) follows immediately from (2.9) for y = z
‖z‖ and λ = ‖z‖ for every

z ∈ BX \ {0}. Moreover, it follows from (2.11) that

‖f‖sBRµ (BX ,Y ) ≤ ‖f‖sBaff
µ (BX ,Y ).

Thus, the first inequality in (1) is proved. Now, let f ∈ BRµ (BX , Y ) and x ∈ X be such that ‖x‖ =
1. Since f is holomorphic at 0 ∈ BX , its derivative f ′ : BX → L(X,Y ) is also holomorphic, and
thus there are r ∈ (0, 1) and M > 0 such that

‖f ′(z)‖L(X,Y ) ≤M ∀z ∈ B(0, r) := {u ∈ X : ‖u‖ ≤ r}.
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Then, by (2.10) we have

sup
|λ|≤r

µ(λx)‖f ′(·x)(λ)‖ = sup
|λ|≤r

µ(λx) sup
|η|≤1

‖f ′(·x)(λ)(η)‖

= sup
|λ|≤r

µ(λx) sup
|η|≤1

‖f ′(λx)(ηx)‖

≤ sup
|λ|≤r

µ(λx)‖f ′(λx)‖ ≤M.

For the case where ‖z‖ > r, by (2.9), (2.10) and the increasing monotony of the function 1−t
t ,

similar calculation to [1, Proposition 2.4], we have

(2.12) µ(λx)|f ′(·x)(λ)| ≤
(
µ(λx)

1− r
r

+ µ(λx)
)
‖Rf(λx)‖.

This implies that

sup
|λ|>r

µ(λx)|f ′(·x)(λ)| ≤ 1

r
sup
z∈BX

µ(z)‖Rf(z)‖.

Therefore, f ∈ Baff
µ (BX , Y ), and we also obtain ‖f‖sBµaff (BX ,Y ) ≤ 1

r‖f‖sBRµ (BX ,Y ). Hence, the
second inequality in (1) is proved

(2) Let f ∈ Baff
µ,0(BX , Y ). Then, using (2.11) it is easy to see that f ∈ BRµ,0(BX , Y ). In the

converse direction, it follows from (2.12) that f ∈ Baff
µ,0(BX , Y ) if f ∈ BRµ,0(BX , Y ). �

Next, we will compare the spaces B∇µ (BX , Y ) and BRµ (BX , Y ). We need a vector-valued ver-
sion of Lemma 4.11 in [12]. First we note that

(2.13) f ∈ Bµ(B1, Y ) if and only if u ◦ f ∈ Bµ(B1) for all u ∈ Y ′

and, interchanging the suprema, we have

(2.14) ‖f‖B∇
µ (B1,Y ) � sup

‖u‖=1

‖u ◦ f‖B∇
µ (B1).

Lemma 2.2. Let f ∈ Baff(B2, Y ). If there exists M > 0 such that ‖f(·x)‖sBaff (B1,Y ) ≤ M for any
x = (x1, x2) ∈ B2, then

(2.15) µ((x1, 0))‖∇f(x1, 0)‖ ≤ 2
√

2MRµ ∀x1 ∈ C, |x1| < 1,

where Rµ := 1 + maxt∈[0,δ] µ(t)Iµ(δ).

Proof. We modify the proof of Lemma 4.11 in [12]. Fix u ∈ Y ′ with ‖u‖ = 1. By the hypothesis,
f(·x) ∈ B(B1, Y ). Then it follows from (2.13) that u ◦ f(·x) ∈ Bµ(B1).

‖u ◦ f(·x)‖sB∇
µ
≤ ‖u‖‖f(·x)‖sBaff

µ
≤M.

First of all, the hypotheses imply that

µ((x1, 0))
∣∣∣∂(u ◦ f)

∂x1
(x1, 0)

∣∣∣ ≤M,

and so it is sufficient to show that

µ((x1, 0))
∣∣∣∂(u ◦ f)

∂x2
(x1, 0)

∣∣∣ ≤ 2
√

2M.

Indeed, from the hypotheses, we have

|f(z)− f(0)| =
∣∣∣ ∫ 1

0

〈∇f(tz), z〉dt
∣∣∣ ≤M ∫ ‖z‖

0

dt

µ(t)
= MIµ(z).
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Then, using the Cauchy integral formula and a simple estimate, we obtain

µ((x1, 0))
∣∣∣∂(u ◦ f)

∂x2
(x1, 0)

∣∣∣
≤µ((x1, 0))

1

2π

∫
|w|=1/ 4√2

‖u‖|f(x1, w)− f(0) + f(0)− f(x1, 0)|
|w|2

dw

≤µ((x1, 0))
2MIµ(x1)

2π

∫
|w|=1/ 4√2

dw

w2
≤ 2
√

2MRµ

as required. �

Theorem 2.1. (1) The spaces B∇µ (BX , Y ) and BRµ (BX , Y ) coincide. Moreover,

‖f‖BRµ (BX ,Y ) � ‖f‖B∇
µ (BX ,Y ).

(2) The spaces B∇µ,0(BX , Y ) and BRµ,0(BX , Y ) coincide.

Proof. We prove this theorem by modifying the method of Timoney which was used in [12].
(1) Let us show that ‖f‖sB∇

µ (BX ,Y ) ≤ 2
√

2Rµ‖f‖sBaff
µ (BX ,Y ) and the result follows using Pr-

position 2.3. Fix u ∈ Y ′ with ‖u‖ = 1. Let z ∈ BX and v ∈ X with ‖v‖ = 1 be fixed. We may
assume that dimX ≥ 2. Then there exist orthonormal unit vectors e1, e2 ∈ X and s, t1, t2 ∈ C
with |s| < 1 and |t1|2 + |t2|2 = 1 such that z = se1, v = t1e1 + t2e2. For f ∈ BRµ (BX , Y ) put

F (z1, z2) = (u ◦ f)(z1e1 + z2e2), (z2, z2) ∈ B2.

Then F ∈ H(BX) and it is easy to check that F satisfies the assumptions of Lemma 2.2. Then

µ(z)|∇(u ◦ f)(z)| = µ(s)|∇(u ◦ f)(se1)| = µ(s, 0)|∇F (s, 0)| ≤ 2
√

2MRµ,

hence, ‖f‖sB∇
µ (BX ,Y ) ≤ 2

√
2Rµ‖f‖sBaff

µ (BX ,Y ) as required.
(2) Because ‖Rf(z)‖ < ‖∇f(z)‖ for every z ∈ BX , it suffices to show that BRµ,0(BX , Y ) ⊂

B∇µ,0(BX , Y ). Let f ∈ BRµ,0(BX , Y ) and consider the function F (z1, z2) defined in the proof of
the part (1). In exactly the same estimates in [6, Theorem 2.8(i)] we obtain that

(2.16)
∣∣∣∣ ∂F∂z2

(z1, 0)

∣∣∣∣ ≤ π|z1|
2µ(|z1|)δ

sup
r0≤‖z‖<1

µ(z)|Rf(z)| for |z1| ≥ r0

and

(2.17)
∣∣∣∣ ∂F∂z1

(z1, 0)

∣∣∣∣ =

∣∣∣∣Rf(z1e1)

z1

∣∣∣∣ ≤ 1

µ(|z1|)δ
sup

r0≤‖z‖<1

µ(z)|Rf(z)| for |z1| ≥ r0.

From (2.16) and (2.17), we obtain

(2.18)

µ(z)|〈∇f(z), v〉| = µ(s)|〈∇f(se1), t1e1 + t2e2〉|

= µ(s)

∣∣∣∣t1 ∂F∂z1
(s, 0) + t2

∂F

∂z2
(s, 0)

∣∣∣∣
≤ µ(s)

(∣∣∣∣ ∂F∂z1
(s, 0)

∣∣∣∣2 +

∣∣∣∣ ∂F∂z2
(s, 0)

∣∣∣∣2)1/2

≤ π√
2δ

sup
r0≤‖z‖<1

µ(z)|Rf(z)|, ‖z‖ ≥ r0, ‖v‖ = 1.

Now, by the hypothesis, for every ε > 0 we can find r0 ∈ (δ, 1) such that µ(z)‖Rf(z)‖ < ε
for ‖z‖ > r0. Therefore, it follows from (2.18) that lim‖z‖→1 µ(z)‖∇f(z)‖ = 0, that means f ∈
B∇µ,0(BX , Y ). �
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We can now combine the results of Proposition 2.3 and Lemma 2.2 with an argument analo-
gous to the Theorem 2.6 in [1] and obtain the following theorem:

Theorem 2.2. The spacesB∇µ (BX , Y ),BRµ (BX , Y ) andBaff
µ (BX , Y ) coincide. The spacesB∇µ,0(BX , Y ),

BRµ,0(BX , Y ) and Baff
µ,0(BX , Y ) coincide. Moreover,

‖f‖BRµ (BX ,Y ) ≤ ‖f‖B∇
µ (BX ,Y ) ≤ 2

√
2Rµ‖f‖Baff

µ (BX ,Y ).

Next, we present a Möbius invariant norm for the Bloch-type space B(BX , Y ).Möbius trans-
formations on a Hilbert space X are the mappings ϕa, a ∈ BX , defined as follows:

(2.19) ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉
, z ∈ BX ,

where sa =
√

1− ‖a‖2, Pa is the orthogonal projection from X onto the one dimensional sub-
space [a] generated by a, and Qa is the orthogonal projection from X onto X 	 [a]. It is clear
that

Pa(z) =
〈z, a〉
‖a‖2

a, (z ∈ X) and Qa(z) = z − 〈z, a〉
‖a‖2

a, (z ∈ BX).

When a = 0,we simply define ϕa(z) = −z. It is obvious that each ϕa is a holomorphic mapping
from BX into X. We will also need the following facts about the pseudohyperbolic distance in
BX . It is given by

%X(x, y) := ‖ϕ−y(x)‖ for any x, y ∈ BX .
For details concerning Möbius transformations and the pseudohyperbolic distance, we refer to
the book of K. Zhu [15]. It is well known that, in the case n ≥ 2, the equality ‖f ◦ ϕ‖B∇(Bn,Y ) =
‖f‖B∇(Bn,Y ) is false. Our goal is to find a semi-norm on B(BX , Y ) which is invariant under the
automorphisms of the ball BX .

Definition 2.3. Let X be a complex Hilbert space, Y be a Banach space and f ∈ H(BX , Y ). Consider
the invariant gradient norm

‖∇̃f(z)‖ := ‖∇(f ◦ ϕz)(0)‖ for any z ∈ BX .
We recall the following result of Blasco and his colleagues in [1]:

Lemma 2.3 (Lemma 3.5, [1]). Let f ∈ H(BX). Then

‖∇̃f(z)‖ = sup
w 6=0

|〈∇f(z), w〉|(1− ‖z‖2)√
(1− ‖z‖2)‖w‖2 + |〈w, z〉|2

.

We define invariant semi-norm as follows

‖f‖sBinv(BX ,Y ) := sup
z∈BX

‖∇̃f(z)‖ = sup
z∈BX

sup
u∈Y ′,‖u‖≤1

‖∇̃(u ◦ f)(z)‖.

We denote
Binv(BX , Y ) := {f ∈ B(BX , Y ) : ‖f‖sBinv(BX ,Y ) <∞}.

It is also easy to check that Binv(BX , Y ) is Banach under the norm

‖f‖Binv(BX ,Y ) := ‖f(0)‖+ ‖f‖sBinv(BX ,Y ).

Now, applying Theorem 3.8 in [1] to the functions u ◦ f for every u ∈ Y ′, we obtain the follow-
ing:

Theorem 2.3. The spaces B∇(BX , Y ), and Binv(BX , Y ) coincide. Moreover,

‖f‖B∇(BX ,Y ) ≤ ‖f‖Binv(BX ,Y ) . ‖f‖B∇(BX ,Y ).
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3. WEAK HOLOMORPHIC SPACES ASSOCIATED WITH BLOCH-TYPE SPACES

Let X,Y be complex Banach spaces andW ⊂ Y ′ be a separating subspace of the dual Y ′ of
Y. Let E ⊂H (BX) be a Banach space. We say that the space

WE := {f : BX → Y : f is locally bounded and w ◦ f ∈ E , ∀w ∈ W}

equipped with the norm

(3.1) ‖f‖WE := sup
w∈W,‖w‖≤1

‖w ◦ f‖E

is the Banach spaceW-associated with E of Y -valued functions.

Remark 3.2. In the case the norm ‖ · ‖E of Banach space E is written in the form

‖f‖ = |f(0)|+ ‖f‖sE ∀f ∈ E

the spaceWE can be equipped with the norm

(3.2) ‖f‖WE+ := sup
w∈W,‖w‖≤1

|w ◦ f(0)|+ sup
w∈W,‖w‖≤1

‖w ◦ f‖sE ∀f ∈ E .

However, it is easy to check thatWE =WE+ and

‖ · ‖WE � ‖ · ‖WE+

onWE where

WE+ :=

{
f : BX → Y : f is locally bounded and sup

w∈W,‖w‖≤1

‖w ◦ f‖sE <∞
}
.

Therefore, byWE we always mean that is (WE , ‖ · ‖WE).

Suppose now that E ⊂H (BX) is a Banach space such that
(e1) E contains the constant functions,
(e2) the closed unit ball BE is compact in the compact open topology τco of BX .

It is easy to check that the properties (e1), (e2) are satisfied by a large number of well-known
function spaces, such as classical Hardy, Bergman, BMOA, and Bloch spaces.

Proposition 3.4. Let X,Y be complex Banach spaces and W ⊂ Y ′ be a separating subspace. Let
E ⊂ H (BX) a Banach space satisfying (e1)-(e2) and WE be the Banach space W-associated with E .
Then, the following assertions hold:
(we1) f 7→ f ⊗ y defines a bounded linear operator Py : E → WE for any y ∈ Y, where (f ⊗ y)(z) =

f(z)y for z ∈ BX ,
(we2) g 7→ w ◦ g defines a bounded linear operator Qw :WE → E for any w ∈ W,

(we3) For all z ∈ BX the point evaluations δ̃z : WE → (Y, σ(Y,W )), where δ̃z(g) = g(z), are
continuous.

In the case the hypothesis “separating” ofW is replaced by a stronger one thatW is “almost norming”,
we obtain the assertion (we3’) below instead of (we3):

(we3’) For all z ∈ BX the point evaluations δ̃z :WE → Y are bounded.

Here, the subspaceW of Y ′ is called almost norming if

qW(x) := sup
w∈W,‖w‖≤1

|w(x)|

defines an equivalent norm on Y.
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Proof. (i) Fix y ∈ Y. In fact, for every f ∈ E we have w ◦ (f ⊗ y) = w(y)f. Then

‖Py(f)‖WE = sup
‖w‖≤1

‖w ◦ (f ⊗ y)‖E = sup
‖w‖≤1

‖w(y)f‖E

≤ ‖w‖ · ‖y‖ · ‖f‖E
≤ ‖y‖ · ‖f‖E .

Thus (we1) holds.
(ii) Fix w ∈ W, for every g ∈ WE we have

‖Qw(g)‖E = ‖w ◦ g‖E = ‖w‖
∥∥∥ w

‖w‖
◦ g
∥∥∥
E

≤ ‖w‖ sup
‖u‖≤1

‖u ◦ g‖E

= ‖w‖ · ‖g‖WE .

Thus (we2) is true.
(iii) Fix z ∈ BX .Note first that since E satisfies (e1) and (e2), then the evaluation maps δz ∈ E ′

for z ∈ BX where δz(f) = f(z) for f ∈ E . It is obvious thatw(δ̃z(g)) = δz(w◦g) for every g ∈ WE
and for every w ∈ W. Let V be a σ(Y,W)-neighbourhood of 0 in Y. Without loss of genarality
we may assume V = {y ∈ Y : |w(y)| < 1} for some w ∈ W. Then δ̃z(‖δz‖−1‖w‖−1BWE) ⊂ V,
where BWE is the unit ball ofWE . Indeed, for every g ∈ BWE we have

|w(δ̃z(‖δz‖−1‖w‖−1g))| = ‖δz‖−1|δz(‖w‖−1w ◦ g)|
≤ ‖δz‖−1‖δz‖ ·

∥∥‖w‖−1w ◦ g
∥∥
E

≤ sup
u∈W,‖u‖≤1

‖u ◦ g‖E

= ‖g‖WE < 1.

Thus, (we3) holds.
In the case where W is almost norming, since qW defines an equivalent norm, there exists

C > 0 such that
‖δ̃z(g)‖ = ‖g(z)‖ ≤ CqW(g(z))

= C sup
w∈W,‖w‖≤1

|w(g(z))|

≤ C sup
w∈W,‖w‖≤1

‖w ◦ g‖

= C‖g‖WE ∀g ∈ WE .
The assertion (we3’) is proved. �

Now letW ⊂ Y ′ be a separating subspace of the dual Y ′. Applying Proposition 2.3, Theo-
rems 2.2 and 2.3 to functionsw◦f for each f ∈ H(BX , Y ) andw ∈ W , we obtain the equivalence
of the norms inW-associated Bloch-type spaces:

‖ · ‖WBRµ (BX)
∼= ‖ · ‖WB∇

µ (BX )
∼= ‖ · ‖WBaff

µ (BX),

‖ · ‖WBR(BX)
∼= ‖ · ‖WB∇(BX)

∼= ‖ · ‖WBaff (BX)
∼= ‖ · ‖WBinv(BX).

Hence, for the sake of simplicity, from now on we write Bµ instead of BRµ . Recall that, the space
WBµ(BX) equipped with the norm in the form either (3.1) or (3.2). It is clear that for every
separating subspaceW of Y ′ we have

B♦µ (BX , Y ) ⊂ WB♦µ(BX), B♦µ,0(BX , Y ) ⊂ WB♦µ,0(BX).
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The main result of this section is the following:

Theorem 3.4. LetW ⊂ Y ′ be a separating subspace. Let µ be a normal weight onBX . ThenWBµ(BX)
andWBµ,0(BX) satisfy (we1)-(we3).

We need the following lemma whose proof parallels that of Lemma 13 in [11] and will be
omitted.

Lemma 3.4. Let µ be a normal weight on BX . Then there exists Cµ > 0 such that

Cµ ≤
µ(r)

µ(r2)
≤ 1 ∀r ∈ [0, 1).

Proof of Theorem 3.4. By Proposition 3.4, it suffices to show that Bµ(BX), Bµ,0(BX) satisfy (e1)
and (e2). It is obvious that Bµ(BX), Bµ,0(BX) satisfy (e1). Because Bµ,0(BX) is the subspace of
Bµ(BX), it suffices to check (e2) for the space Bµ(BX). In order to prove (e2) holds for Bµ(BX),
we will show that the closed unit ball U of Bµ(BX) is pointwise bounded and equicontinuous.

(i) First, we prove that U is pointwise bounded. It suffices to prove that

(3.3) |f(z)| ≤ max
{

1, Iµ(z)
}
‖f‖Bµ(BX) ∀f ∈ Bµ(BX),∀z ∈ BX .

Fix f ∈ Bµ(BX) and put g(z) = f(z) − f(0) for every z ∈ BX . Note that g(0) = 0 and
‖g‖Bµ(BX) = ‖f‖sBµ(BX). As in Lemma 2.2 by Cauchy-Schwarz inequality, we have

|g(z)| ≤
∫ 1

0

‖f‖sBµ(BX)‖z‖
µ(tz)

dt = ‖f‖sBµ(BX)Iµ(z) = ‖g‖Bµ(BX)Iµ(z).

Consequently,
|f(z)| ≤ |f(0)|+ |g(z)| ≤ |f(0)|+ ‖g‖Bµ(BX)Iµ(z)

≤ max
{

1, Iµ(z)
}(
|f(0)|+ ‖f‖sBµ(BX)

)
= max

{
1, Iµ(z)

}
‖f‖Bµ(BX).

(ii) Next, we show that U is equicontinuous. For each f ∈ U, by Proposition 2.1 we can find
m ≥ 2 such that

‖f‖sBµ(BX) = sup
y∈OSm

‖fy‖sBµ(Bm).

Fix e[m] = (e1, . . . , em) ∈ OSm. Then, for every z = (zk)k∈Γ, w = (wk)k∈Γ ∈ BX , we consider
z[m] := (z1, . . . , zm), w[m] := (w1, . . . , wm). By Theorem 3.6 in [15] and Lemma 3.4, we have

|fe[m]
(z[m])− fe[m]

(w[m])|

≤β(z[m], w[m]) sup
x[m]∈Bm

‖∇̃fe[m]
(x[m])‖

≤β(z[m], w[m]) sup
x[m]∈Bm

sup
y∈Bm\{0}

|〈∇fe[m]
(x[m]), y〉|(1− ‖x[m]‖2)√

(1− ‖x[m]‖2)‖y‖2 + |〈y, x[m]〉|2

≤β(z[m], w[m])C
−1
µ sup

x[m]∈Bm

µ[m](‖x[m]‖)|∇fe[m]
(x[m])

√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)

≤β(z[m], w[m])C
−1
µ ‖fe[m]

‖Bµ(Bm)

√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)
,
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where β is the Bergman metric on Bm given by

β(s, t) =
1

2
log

1 + |(ϕm)s(t)|
1− |(ϕm)s(t)|

with (ϕm)s is the involutive automorphism of Bm that interchanges 0 and s. If ‖x[m]‖2 ≤ δ it is
clear that √

1− ‖x[m]‖2

µ[m](‖x[m]‖2)
≤ 1

mµ,δ
<∞,

where mµ,δ = mint∈[0,δ] µ(t) > 0; if ‖x[m]‖2 > δ and b ≥ 1/2, by (2.1) we have√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)
≤

(1− ‖x[m]‖2)b

µ[m](‖x[m]‖2)
< Sµ <∞;

if ‖x[m]‖2 > δ and b < 1/2, we get√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)
=

(1− ‖x[m]‖2)b

µ[m](‖x[m]‖2)
(1− ‖x[m]‖2)1/2−b ≤ Sµ(1− δ)1/2−b <∞.

Consequently,
|fe[m]

(z[m])− fe[m]
(w[m])| ≤ β(z[m], w[m])Ŝµ‖fe[m]

‖Bµ(Bm),

where
Ŝµ := C−1

µ max
{
m−1
µ,δ, Sµ(1− δ)1/2−b}.

Since β(s, t) is the infimum of the set consisting of all `(γ) where γ is a piecewise smooth curve
in Bm from s to t (see [15, p. 25]) we have

|fe[m]
(z[m])− fe[m]

(w[m])| ≤ ‖z[m] − w[m]‖Ŝµ‖fe[m]
‖Bµ(Bm) ≤ Ŝµ‖z − w‖.

Consequently,

|f(z)− f(w)| = lim
m→∞

|fe[m]
(z[m])− fe[m]

(w[m])| ≤ Ŝµ‖z − w‖.

This yields that U is equicontinuous. �

Remark 3.3. In fact, the estimate (3.3) can be written as follows

|f(z)| ≤ |f(0)|+ Iµ(z)‖f‖sBµ .

Finally, we discuss the linearization theorem for spacesWBµ(BX) which will be usefull in
investigation some related problems, especially the theory of operators between these spaces.
In fact, this theorem holds for spaces WE where E ⊂ H (BX) is a Banach space satisfying
(e1)-(e2). In this paper, we will state and prove this theorem for the general case.

Theorem 3.5 (Linearization). Let X,Y be complex Banach spaces and W ⊂ Y ′ be a separating
subspace. Let E ⊂ H (BX) be a Banach space satisfying (e1)-(e2). Then there exist a Banach space ∗E
and a mapping δX ∈ H (BX ,

∗E) with the following universal property: A function f ∈ WE if and
only if there is a unique mapping Tf ∈ L(∗E , Y ) such that Tf ◦ δX = f. This property characterize ∗E
uniquely up to an isometric isomorphism.

Moreover, the mapping
Φ : f ∈ WE 7→ Tf ∈ L(∗E , Y )

is a topological isomorphism.

We will prove this theorem by Mujica’s method [8, Theorem 2.1], which is based on the
Dixmier–Ng theorem, with a little improvement.
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Proof. Let us denote by ∗E the closed subspace of all linear functionals u ∈ E ′ such that u
∣∣
BE

is τco-continuous. As in the proof of Mujica [8, Theorem 2.1], we get the evaluation mapping
δX : BX → ∗E given by δX(x) = δx with δx(g) := g(x) for all g ∈ E , is holomorphic and

(3.4) span{δx : x ∈ BX} is a dense subspace of ∗E .

Now, we show that ∗E and δX have required universal property. First, given a locally bounded
function f : BX → Y. Assume that there exists Tf ∈ L(∗E , Y ) such that Tf ◦ δX = f. Since Tf
is continuous and δX is holomorphic, it follows that u ◦ f ∈ H (BX) for every u ∈ W. Since
W is separating, according to [10, Lemma 4.2] we have f ∈HLB(BX , Y ). Next, it follows from
(∗E)′ = E (see [9]) that u ◦ f ∈ E for each u ∈ W, and then f ∈ WE . Now, we will prove the
converse of the statement. Fix f ∈ WE .

(i) The case of Y = C: We define Tf := Jf, where J : E → (∗E)′ is the evaluation mapping
given by (Jf)(u) = u(f) for all u ∈ ∗E , which is a topological isomorphism by the Ng Theorem
[9, Theorem 1]. Since (Jg) ◦ δX(x) = δx(g) = g(x) for all g ∈ E , x ∈ BX , it implies that
Tf ◦ δX = f. From (3.4) we obtain the uniqueness of Tf .

(ii) The case of Y is Banach: We define Tf : ∗E → W ′ by

(3.5) (Tfu)(ϕ) = Tϕ◦f (u) = u(ϕ ◦ f) ∀u ∈ ∗E , ∀ϕ ∈ W,

i.e. Tϕ◦f is defined as in the case (i).
It is easy to check that Tf ∈ L(∗E ,W ′) and ‖Tf‖ = ‖f‖WE , hence, Φ is a isometric isomor-

phism. Furthermore,
(Tfδx)(ϕ) = (ϕ ◦ f)(x)

for every x ∈ BX and ϕ ∈ W and, therefore, since W is separating we get Tfδx = f(x) ∈ Y
for every x ∈ BX . Then, by (3.4) Tf ∈ L(∗E , Y ). The uniqueness of Tf follows also from the fact
(3.4) that δX(BX) generates a dense subspace of ∗E .

Finally, the uniqueness of ∗E up to an isometric isomorphism follows from the universal
property, together with the isometry ‖Tf‖ = ‖f‖WE . This completes the proof. �

Our results suggest the following questions.
Problems.

(1) Let Ei, i = 1, 2, be spaces of holomorphic functions on the unit ball BX of a Banach
space X and WE i be the Banach spaces W-associated with Ei of Y -valued functions.
Let ψ be a holomorphic on BX and ϕ a holomorphic self-map of BX . Consider the
extended Cesàro composition operators Cψ,ϕ : E1 → E2, C̃ψ,ϕ : WE1 → WE2, and the
weighted composition operators Wψ,ϕ : E1 → E2, W̃ψ,ϕ :WE1 →WE2.

Is there any relationship between the boundedness as well as the (weak) compact-
ness of Cψ,ϕ, Wψ,ϕ and of C̃ψ,ϕ, W̃ψ,ϕ? How does separating subspace W ⊂ Y ′ affect
that relationship?

(2) In the case where E1 = Bν(BX), E2 = Bµ(BX) with ν and µ are normal weights on the
unit ball BX of a infinite dimensional Hilbert space X, is it possible to characterize the
boundedness as well as the (weak) compactness of C̃ψ,ϕ, W̃ψ,ϕ via the estimates for the
restrictions of ψ and ϕ to a m-dimensional subspace of X for some m ≥ 2?
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functions on every compact subset of some domain Θ, and that these functions are analytic continuations of the ratios
of double confluent hypergeometric series in Θ. At the end, several numerical experiments are represented to indicate
the power and efficiency of branched continued fractions as an approximation tool compared to double confluent
hypergeometric series.
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1. INTRODUCTION

This paper deals with branched continued fraction representations for the ratios of the Horn’s
confluent function H6, which occurs in [27] (see also [24, Subsection 5.7.1]) of second-order
hypergeometric series of two variables. The branched continued fraction representations under
consideration will be two-dimensional generalization of the classical Gaussian continued fraction,
or rather its confluent case. Necessarily, due to the convergence of branched continued frac-
tions, this requires restrictions on the allowed values of the parameters of the Horn’s confluent
function H6.

J. Horn [27] listed all convergent hypergeometric series of the second order: 14 complete
series, including Appell’s hypergeometric series F1, F2, F3, and F4, dating back to 1880 [6], and
20 of their confluent cases. In [24, Section 5.9], for each function in Horn’s list a system of two
partial differential equations is given, which has this function as a solution. For the basics of
hypergeometric functions of two variables, see, for instance, [7, Chapter 9], [24, Section 5.9–2.12],
and [25, Chapter 1].

In order for a branched continued fraction to be a representation of a function, it is required
to solve such problems: to construct the branched continued fraction expansion, to prove the
convergence of the constructed expansion, and last, more important, to prove the convergence
of the branched continued fraction to the function of which it is an expansion.

For Appell’s hypergeometric functions, branched continued fraction representations were
derived in [8, pp. 244–252] for F1, in [15] for F3, and in [16, 26] for F4. A branched continued
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fraction expansion for function F2 was constructed in [13], but the problem of its convergence
remains open. In [1], it is represented a branched continued fraction representations for the
Horn’s function H3. At last, in [18], it is indicated which three- and four-term recurrent relations
give similar expansions for the Horn’s function H4. Some interesting and different branched
continued fraction representations of other hypergeometric series can be found in [2, 3, 14, 28, 29,
31], and some special analytic functions of one or several variables in [19, 20, 21, 22, 23, 30, 32].

The contents of this paper are as follows. In Section 2, we derive three different formal
branched continued fraction expansions for three different ratios of the Horn’s confluent func-
tion H6. In Section 3, we establish the estimates of the rate of convergence for the branched
continued fractions mentioned above. We also prove that the branched continued fraction
expansions converge to the functions, which are analytic continuations of Horn’s confluent
function H6 ratios in some domain (here, domain is an open connected set), i.e., our main result
is formulated in the Theorem 3.3. Finally, in Section 4, we present some numerical experiments
to indicate the power and efficiency of branched continued fractions as an approximation tool
compared to double confluent hypergeometric series.

2. EXPANSIONS

The Horn’s confluent function H6 [27] is defined as double power series by

H6(a, c; z) =

∞∑
m,n=0

(a)2m+n

(c)m+n

zm1 z
n
2

m!n!
, |z1| < 1/4,(2.1)

where a, c are complex numbers, c 6∈ {0,−1,−2, . . .}, (·)k is the Pochhammer symbol, z =
(z1, z2) ∈ C2.

Throughout the paper, let [·] be an integer part of a number. We set I0 = {1, 2, 3} and for
k ∈ N we introduce the following sets of multiindices

Ik = {i(k) = (i0, i1, i2, . . . , ik) : i0 ∈ I0, 2− [(ir−1 − 1)/2] ≤ ir ≤ 3− [(ir−1 − 1)/2], 1 ≤ r ≤ k}.

Using the idea of combining several branched continued fraction expansions into one form
using the Kronecker delta symbol, proposed in [1], we will prove the following theorem.

Theorem 2.1. Let for all i0 ∈ I0

Ri0(a, c; z) =
H6(a, c; z)

H6(a+ δ1i0 + δ2i0 , c+ δ2i0 + δ3i0 ; z)
,(2.2)

where δji is the Kronecker delta. Then for each i0 ∈ I0, the ratio Ri0(a, c; z) has a formal branched
continued fraction expansion of the form

1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2) +
. . . ,(2.3)
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where for i(1) ∈ I1
Pi(1)(z) = pi0,i1(a, c; z)

=



−2
a+ 1

c
z1, if i0 = 1, i1 = 2,

−z2
c
, if i0 = 1, i1 = 3,

−(2c− a)(a+ 1)

c(c+ 1)
z1, if i0 = 2, i1 = 2,

− c− a
c(c+ 1)

z2, if i0 = 2, i1 = 3,

a

2c
, if i0 = 3, i1 = 1,
a

2c(c+ 1)
z2, if i0 = 3, i1 = 2,

(2.4)

for i(k + 1) ∈ Ik+1, k ≥ 1,

Pi(k+1)(z) = pik,ik+1

(
a+ k −

k−1∑
r=0

δ3ir , c+ k −
k−1∑
r=0

δ1ir ; z

)

=



−
2(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

c+ k −
∑k−1

r=0 δ
1
ir

z1, if ik = 1, ik+1 = 2,

− z2

c+ k −
∑k−1

r=0 δ
1
ir

, if ik = 1, ik+1 = 3,

−
(2c− a+ k +

∑k−1
r=0(δ3ir − 2δ1ir ))(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
z1, if ik = 2, ik+1 = 2,

−
c− a+

∑k−1
r=0(δ3ir − δ

1
ir

)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
z2, if ik = 2, ik+1 = 3,

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
, if ik = 3, ik+1 = 1,

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k + 1−
∑k−1

r=0 δ
1
ir

)
z2, if ik = 3, ik+1 = 2,

(2.5)

and for i(k) ∈ Ik, k ≥ 1,

Qi(k) = qik

(
a+ k −

k−1∑
r=0

δ3ir , c+ k −
k−1∑
r=0

δ1ir

)

= 1−
a+ k −

∑k−1
r=0 δ

3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
δ3ik .(2.6)

Proof. The formal identities

H6(a, c; z) = H6(a+ 1, c; z)− 2(a+ 1)

c
z1H6(a+ 2, c+ 1; z)− 1

c
z2H6(a+ 1, c+ 1; z),(2.7)

H6(a, c; z) = H6(a+ 1, c+ 1; z)− (a+ 1)(2c− a)

c(c+ 1)
z1H6(a+ 2, c+ 2; z)

− c− a
c(c+ 1)

z2H6(a+ 1, c+ 2; z),(2.8)
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and

H6(a, c; z) =
a

2c
H6(a+ 1, c+ 1; z) +

2c− a
2c

H6(a, c+ 1; z)

+
a

2c(c+ 1)
z2H6(a+ 1, c+ 2; z)(2.9)

are easily verified from (2.1). Dividing (2.7) by H6(a + 1, c; z), (2.8) by H6(a + 1, c + 1; z), and
(2.9) by H6(a, c+ 1; z), we get

R1(a, c; z) = 1− 2(a+ 1)

c
z1

1

R2(a+ 1, c; z)
− 1

c
z2

1

R3(a+ 1, c; z)
,(2.10)

R2(a, c; z) = 1− (a+ 1)(2c− a)

c(c+ 1)
z1

1

R2(a+ 1, c+ 1; z)
− c− a
c(c+ 1)

z2
1

R3(a+ 1, c+ 1; z)
(2.11)

and

R3(a, c; z) =
2c− a

2c
+

a

2c

1

R1(a, c+ 1; z)
+

a

2c(c+ 1)
z2

1

R2(a, c+ 1; z)
,(2.12)

respectively. It is obvious that for i ∈ I0 the identities (2.10)–(2.12) can be written as

Ri(a, c; z) = 1− a

2c
δ3i +

3−[(i−1)/2]∑
j=2−[(i−1)/2]

pi,j(a, c; z)

Rj(a+ 1− δ3i , c+ 1− δ1i ; z)
,(2.13)

where pi,j(a, c; z), (i, j) ∈ I1 are defined as (2.4).
Now, we can construct branched continued fractions for ratios Ri0(a, c; z) for all i0 ∈ I0.

Setting i = i0, on the first step, from (2.13) for i0 ∈ I0, we obtain

Ri0(a, c; z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

pi0,i1(a, c; z)

Ri1(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)

= 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Ri1(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)
.

It follows from (2.13) that for i1 ∈ I0
Ri1(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)

=qi1(a+ 1− δ3i0 , c+ 1− δ1i0) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

pi1,i2(a+ 1− δ3i0 , c+ 1− δ1i0 ; z)

Ri2(a+ 2−
∑1

r=0 δ
3
ir
, c+ 2−

∑1
r=0 δ

1
ir

; z)

=Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Ri2(a+ 2−
∑1

r=0 δ
3
ir
, c+ 2−

∑1
r=0 δ

1
ir

; z)
,

where Pi(2)(z), i(2) ∈ I2, and Qi(1), i(1) ∈ I1, are defined by (2.5) and (2.6), respectively. Then,
on the second step for i0 ∈ I0, we have

Ri0(a, c; z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1)

+

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Ri2(a+ 2−
∑1

r=0 δ
3
ir
, c+ 2−

∑1
r=0 δ

1
ir

; z)
.
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Next, applying (2.13) after nth steps, for i0 ∈ I0 we get

Ri0(a, c; z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2)

+
. . .

+

3−[(in−2−1)/2]∑
in−1=2−[(in−2−1)/2]

Pi(n−1)(z)

Qi(n−1)

+

3−[(in−1−1)/2]∑
in=2−[(in−1−1)/2]

Pi(n)(z)

Rin(a+ n−
∑n−1

r=0 δ
3
ir
, c+ 2−

∑n−1
r=0 δ

1
ir

; z)
,

where Pi(1)(z), i(1) ∈ I1, Pi(k)(z), i(k) ∈ Ik, 2 ≤ k ≤ n, and Qi(k), i(k) ∈ Ik, 1 ≤ k ≤ n− 1, are
defined by (2.4), (2.5), and (2.6), respectively. Finally, by (2.13), we obtain the formal branched
continued fraction expansions (2.3) for ratios (2.2) for all i0 ∈ I0. �

3. CONVERGENCE

In this section, we consider some question of convergence of the branched continued fractions
(2.3). We refer the readers to [1, 5, 12] for the notations and definitions used below.

Let i0 be an arbitrary index from the set I0. For the ’tails’ of the approximants of the branched
continued fraction (2.3), we set

G
(r)
i(r)(z) = Qi(r), i(r) ∈ Ir, r ≥ 1,(3.14)

and

G
(r)
i(k)(z) = Qi(k) +

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

Pi(k+1)(z)

Qi(k+1) +

3−[(ik+1−1)/2]∑
ik+2=2−[(ik+1−1)/2]

Pi(k+2)(z)

Qi(k+2)

+
. . .

+

3−[(ir−1−1)/2]∑
ir=2−[(ir−1−1)/2]

Pi(r)(z)

Qi(r)
,

where i(k) ∈ Ik, 1 ≤ k ≤ r − 1, r ≥ 2. Then, it is easily seen that relations

G
(r)
i(k)(z) = Qi(k) +

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

Pi(k+1)(z)

G
(r)
i(k+1)(z)

, i(k) ∈ Ik, 1 ≤ k ≤ r − 1, r ≥ 2(3.15)

hold. It follows that for each n ≥ 1 the nth approximant

f (i0)n (z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2)

+
. . .

+

3−[(in−1−1)/2]∑
in=2−[(in−1−1)/2]

Pi(n)(z)

Qi(n)

can be written as

f (i0)n (z) = 1− a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

Pi(1)(z)

G
(n)
i(1)(z)

.



Branched continued fraction representations of ratios of Horn’s confluent function H6 27

In addition, it can be shown (see [12, p. 28]) that for m > n and n ≥ 1

f (i0)m (z)− f (i0)n (z)

=(−1)n
3−[(i0−1)/2]∑

i1=2−[(i0−1)/2]

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

. . .

3−[(in−1)/2]∑
in+1=2−[(in−1)/2]

∏n+1
k=1 Pi(k)(z)∏n+1

k=1 G
(m)
i(k)(z)

∏n
k=1G

(n)
i(k)(z)

,

provided G
(r)
i(k)(z) 6= 0 for all i(k) ∈ Ik, 1 ≤ k ≤ r, r ∈ {m,n}, which for convenience we will

write as

f (i0)m (z)− f (i0)n (z) = (−1)n
3−[(i0−1)/2]∑

i1=2−[(i0−1)/2]

. . .

3−[(in−1)/2]∑
in+1=2−[(in−1)/2]

Pi(1)(z)

G
(q)
i(1)(z)

×
[(n+1)/2]∏

k=1

Pi(2k)(z)

G
(r)
i(2k−1)(z)G

(r)
i(2k)(z)

[n/2]∏
k=1

Pi(2k+1)(z)

G
(q)
i(2k)(z)G

(q)
i(2k+1)(z)

,(3.16)

where q = m, r = n, if n is even, and q = n, r = m, if n is odd.
To prove the main result, we will state the following theorem.

Theorem 3.2. Let a and c be real constants such that

a ≥ 0, c ≥ a+ 1 + δ1i0 for all i0 ∈ I0.(3.17)

Then for each i0 ∈ I0 :

(A) The branched continued fraction (2.3) converges to a finite value f (i0)(z) for each z ∈ Ω, where

Ω = {z ∈ R2 : −L1 ≤ z1 ≤ 0, −L2 ≤ z2 ≤ 0},(3.18)

L1 and L2 are positive constants such that 2L2 < c+ 1, and it converges uniformly on every
compact subset of an interior of Ω.

(B) If f (i0)n (z) denotes the nth approximant of the branched continued fraction (2.3), then for each
z ∈ Ω and n ≥ 1

|f (i0)(z)− f (i0)n (z)| ≤Mi0

(
η

η + 1

)n

,(3.19)

where

Mi0 =



2(a+ 1)L1

c
+

2(c+ 1)L2

c(c+ 1− L2)
, if i0 = 1,

(2c− a)(a+ 1)L1

c(c+ 1)
+

2(c− a)L2

c(c+ 1− L2)
, if i0 = 2,

a

2c
+

aL2

2c(c+ 1)
, if i0 = 3,

(3.20)

and

η = max

{
2L1 +

2L2(c+ 1)

c(c+ 1− L2)
,
c+ 1 + L2

c+ 1− 2L2

}
.(3.21)

Proof. The proof is similar to that of Theorem 1 in [1]. In this case, it follows directly from (2.6)
that for all i(k) ∈ Ik, k ≥ 1, the elements Qi(k) = 1 if ik 6= 3. When ik = 3 from (2.6), we have

Qi(k) = 1−
a+ k −

∑k−1
r=0 δ

3
ir

2c+ 2k − 2
∑k−1

r=0 δ
1
ir

≥ 1

2
for all i(k) ∈ Ik, k ≥ 1.(3.22)
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Since

−
k−1∑
r=0

δ3ir =

k−1∑
r=0

(δ1ir − δ
3
ir )−

k−1∑
r=0

δ1ir for all i(k) ∈ Ik, k ≥ 1,

then to prove the validity of (3.22), provided (3.17), it suffices to show that

k−1∑
r=0

(δ1ir − δ
3
ir ) ≤ δ1i0 for all i(k) ∈ Ik, k ≥ 1.(3.23)

Indeed, if k = 1, then for any i0 ∈ I0 inequalities (3.23) are obvious. If i(k) is a fixed arbitrary
multiindex in Ik, k ≥ 2, then for any r, 1 ≤ r ≤ k− 1, there is a possible pair of indices (ir−1, ir),
such as (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), or (3, 2). It clearly follows that (3.23) is valid in these
cases.

Let z be an arbitrary fixed point in (3.18) and n be an arbitrary natural number. It is easy to
see from (2.4)–(2.6), (3.14), (3.15), and (3.18) that inequalities

G
(n)
i(k)(z) ≥ 1 for all i(k) ∈ Ik, 1 ≤ k ≤ n,(3.24)

hold for all ik 6= 3. By induction on k, we show that the following inequalities

G
(n)
i(k)(z) ≥ c+ 1− L2

2(c+ 1)
for all i(k) ∈ Ik, 1 ≤ k ≤ n,(3.25)

valid for ik = 3.
For k = n and for each i(n) ∈ In, inequalities (3.25) are obvious. By induction hypothesis

that (3.25) hold for k = r + 1, where r + 1 ≤ n, and for each i(r + 1) ∈ Ir+1, using (2.4), (2.5),
(3.14), (3.18), and (3.22) for any i(r) ∈ Ir we get

G
(n)
i(r)(z) = Qi(r) +

Pi(r),1(z)

G
(n)
i(r),1(z)

+
Pi(r),2(z)

G
(n)
i(r),2(z)

≥ Qi(r) −
|Pi(r),2(z)|
G

(n)
i(r),2(z)

≥ 1

2
−

a+ r −
∑r−1

p=0 δ
3
ip

2(c+ r −
∑r−1

p=0 δ
1
ip

)(c+ r + 1−
∑r−1

p=0 δ
1
ip

)
|z2|

≥ c+ 1− L2

2(c+ 1)
.

Next, we prove that

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)G
(n)
i(k)(z)|

≤ η

η + 1
for all i(k) ∈ Ik, k ≥ 1,(3.26)

where η is defined by (3.21), which are equivalent to

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤ η

|G(n)
i(k)(z)| −

3−[(ik−1)/2]∑
ik+1=2−[(ik−1)/2]

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|


for all i(k) ∈ Ik, k ≥ 1. Again, let n be an arbitrary natural number. Since it follows from
(2.4)–(2.6), (3.14), (3.15), (3.18), (3.22), (3.24), and (3.25) that, for any k, 1 ≤ k ≤ n, and i(k) ∈ Ik,
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and for any z ∈ Ω

|G(n)
i(k)(z)| −

3∑
ik+1=2

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
= Qi(k) = 1,

if ik 6= 3, and

|G(n)
i(k)(z)| −

2∑
ik+1=1

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≥ Qi(k) − 2

|Pi(k),2(z)|
|G(n)

i(k),2(z)|

≥ 1

2
−

a+ k − 1−
∑k−2

r=0 δ
3
ir

(c+ k − 1−
∑k−2

r=0 δ
1
ir

)(c+ k −
∑k−2

r=0 δ
1
ir

)
|z2|

≥ 1

2
− |z2|
c+ 1

≥ c+ 1− 2L2

2(c+ 1)
,

if ik = 3, then we obtain

3∑
ik+1=2

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤

2(a+ k −
∑k−1

r=0 δ
3
ir

+ 1)

c+ k −
∑k−1

r=0 δ
1
ir

|z1|+
2(c+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ 1− L2)
|z2|

≤ 2L1 +
2L2(c+ 1)

c(c+ 1− L2)

≤ η,

if ik = 1,

3∑
ik+1=2

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤

(2c− a+ k +
∑k−1

r=0(δ3ir − 2δ1ir ))(a+ k −
∑k−1

r=0 δ
3
ir

+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
|z1|

+
(c− a+

∑k−1
r=0(δ3ir − δ

1
ir

))(2(c+ 1))

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)(c+ 1− L2)
|z2|

≤ 2L1 +
2L2

c+ 1− L2

≤ η,

if ik = 2, and

2∑
ik+1=1

|Pi(k+1)(z)|
|G(n)

i(k+1)(z)|
≤

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
+

a+ k −
∑k−1

r=0 δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
|z2|

≤ 1

2
+

L2

2(c+ 1)

=
c+ 1 + L2

c+ 1− 2L2

c+ 1− 2L2

2(c+ 1)

≤ c+ 1− 2L2

2(c+ 1)
η,
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if ik = 3. Now, it is easy see from (2.4), (3.18), (3.20), (3.24) and (3.25) that

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

|Pi(1)(z)|
|G(q)

i(1)(z)|
≤Mi0 for all i0 ∈ I0 and q ≥ 1.(3.27)

From (3.18), (3.24), and (3.25) it follows that G(q)
i(k)(z) 6= 0 for all i(k) ∈ Ik, 1 ≤ k ≤ q, q ≥ 1, and

for all z ∈ Ω. Hence, applying (3.26) and (3.27) to (3.16) for any m > n ≥ 1 and for any z ∈ Ω,
we obtain

|f (i0)m (z)− f (i0)n (z)| ≤
3−[(i0−1)/2]∑

i1=2−[(i0−1)/2]

|Pi(1)(z)|
|G(q)

i(1)(z)|

(
η

η + 1

)n

≤Mi0

(
η

η + 1

)n

,

where q = m, if n is even, and q = n, if n is odd. From this (A) follows if n→∞. At last, passing
to the limit as m→∞, we get (B). �

Now, we prove our main result.

Theorem 3.3. Let a and c be real constants satisfying the inequalities (3.17), and ν1, ν2, ν3, µ1, µ2, µ3

be positive numbers such that

2ν1
µ2
≤ min

{
1− µ1 −

ν2
cµ3

, 1− µ2 −
ν2

(c+ 1)µ3

}
,

ν3
(c+ 1)µ2

≤ 1

2
− µ3.(3.28)

Then for each i0 ∈ I0 :

(A) The branched continued fraction (2.3) converges uniformly on every compact subset of

Θ = {z ∈ C2 : |z1|+ Re(z1) < 2ν1, |z2|+ Re(z2) < 2ν2, |z2| − Re(z2) < 2ν3}(3.29)

to the function f (i0)(z) holomorphic in Θ.

(B) The function f (i0)(z) is an analytic continuation of (2.2) in the domain (3.29).

Proof. The proof of (A) is similar to the proof of Theorem 2 [1]. Let z be an arbitrary fixed point
in (3.29). Since a and c satisfy (3.17), it follows from the proof of Theorem 2 that inequalities
(3.22) hold for ik = 3, and that for all i(k) ∈ Ik, k ≥ 1, the elements Qi(k) = 1 if ik 6= 3. Now, for
any i(k) ∈ I, k ≥ 1, from (2.4)–(2.6) and (3.29) with ik = 1, we have

|Pi(k),2(z)| − Re(Pi(k),2(z)) =
2(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

c+ k −
∑k−1

r=0 δ
1
ir

(|z1|+ Re(z1))

< 4ν1,

|Pi(k),3(z)| − Re(Pi(k),3(z)) =
|z2|+ Re(z2)

c+ k −
∑k−1

r=0 δ
1
ir

<
2ν2
c
,
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and, thus,
3∑

ik+1=2

|Pi(k+1)(z)| − Re(Pi(k+1)(z))

µik+1

<
4ν1
µ2

+
2ν2
cµ3

≤ 2(1− µ1)

= 2(Re(Qi(k))− µ1).

If ik = 2, we obtain

|Pi(k),2(z)| − Re(Pi(k),2(z))

=
(2c− a+ k +

∑k−1
r=0(δ3ir − 2δ1ir ))(a+ k −

∑k−1
r=0 δ

3
ir

+ 1)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
(|z1|+ Re(z1))

< 4ν1,

|Pi(k),3(z)| − Re(Pi(k),3(z))

=
c− a+

∑k−1
r=0(δ3ir − δ

1
ir

)

(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k −
∑k−1

r=0 δ
1
ir

+ 1)
(|z2|+ Re(z2))

<
2ν2
c+ 1

,

and, thus,
3∑

ik+1=2

|Pi(k+1)(z)| − Re(Pi(k+1)(z))

µik+1

<
4ν1
µ2

+
2ν2

(c+ 1)µ3

≤ 2(Re(Qi(k))− µ2).

At last, if ik = 3 we get

|Pi(k),1(z)| − Re(Pi(k),1(z)) =
a+ k −

∑k−1
r=0 δ

3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)
−

a+ k −
∑k−1

p=r δ
3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)

= 0,

|Pi(k),2(z)| − Re(Pi(k),2(z)) =
a+ k −

∑k−1
r=0 δ

3
ir

2(c+ k −
∑k−1

r=0 δ
1
ir

)(c+ k + 1−
∑k−1

r=0 δ
1
ir

)
(|z2| − Re(z2))

<
2ν3
c+ 1

,

and, thus,
2∑

ik+1=1

|Pi(k+1)(z)| − Re(Pi(k+1)(z))

µik+1

< 2

(
1

2
− µ3

)
≤ 2(Re(Qi(k))− µ3).

Thus, by Lemma 1 [4], for all i(k) ∈ Ik, 1 ≤ k ≤ n, n ≥ 1, and for all z ∈ Θ the following
inequalities hold

Re(G
(n)
i(k)(z)) ≥ µk,

where G(n)
i(k)(z), i(k) ∈ Ik, 1 ≤ k ≤ n, n ≥ 1, are defined by (3.14) and (3.15). The approximants

f
(i0)
n (z), n ≥ 1, of (2.3) form a sequence of functions holomorphic in (3.29).
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At last, it remains to show that the branched continued fraction (2.3) converges uniformly
on compact subsets of Θ. Let K is an arbitrary compact subset of (3.29). Then there exists an
open ball around the origin with radius R, containing K. By (2.4), for the any z ∈ K and for any
n ≥ 1, we get

|f (i0)n (z)| ≤ 1 +
a

2c
δ3i0 +

3−[(i0−1)/2]∑
i1=2−[(i0−1)/2]

|Pi(1)(z)|
µi(1)

= Ci0(K),

where

Ci0(K) =



2(a+ 1)R

cµ2
+

R

cµ3
, if i0 = 1,

(2c− a)(a+ 1)R

c(c+ 1)µ2
+

(c− a)R

c(c+ 1)µ3
, if i0 = 2,

a

2cµ1
+

aR

2c(c+ 1)µ2
, if i0 = 3.

It follows that for each i0 ∈ I0 the sequence {f (i0)n (z)} is uniformly bounded on K, and hence it
is uniformly bounded on every compact subset of the domain (3.29). We set δ = min{c/4, ν1, ν3}.
Then, by Theorem 2, the sequence {f (i0)n (z)} converges in

∆ = {z ∈ C2 : −δ < Re(zk) < 0, Im(zk) = 0, k = 1, 2},

which is the real neighborhood of the point z(0) = (−δ/2,−δ/2) in Θ. Furthermore, it is clear
that ∆ ⊂ Θ. Thus, by Theorem 3 [1] (see also Theorem 2.17 [12]), for each i0 ∈ I0 the branched
continued fraction (2.3) converges uniformly on compact subsets of Θ to the function f (i0)(z)
holomorphic in Θ. This proves (A).

Finally, the proof of (B) is analogous to the proof of Theorem 2 [1]; hence it is omitted. �

Setting a = 0 and i0 = 1 (or i0 = 2 and replacing c by c− 1) in Theorem 3.3, we get a corollary.

Corollary 3.1. Let c be real constant such that c ≥ 2, and ν1, ν2, ν3, µ1, µ2, µ3 be positive numbers
satisfying the inequalities (3.28). Then for i0 = 1 (or i0 = 2):

(A) The branched continued fraction

1

1 +

3∑
i1=2

Pi(1)(z)

Qi(1) +

3−[(i1−1)/2]∑
i2=2−[(i1−1)/2]

Pi(2)(z)

Qi(2) +
. . .

+

3−[(ik−1−1)/2]∑
ik=2−[(ik−1−1)/2]

Pi(k)(z)

Qi(k) +
. . . ,(3.30)

where for i(1) ∈ I1

Pi(1)(z) =

−
2

c
z1, if i1 = 2,

−z2
c
, if i1 = 3,

(3.31)



Branched continued fraction representations of ratios of Horn’s confluent function H6 33

for i(k + 1) ∈ Ik+1, k ≥ 1,

Pi(k+1)(z)

=



−
2(k −

∑k−1
r=1 δ

3
ir

+ 1)

c+ k −
∑k−1

r=1 δ
1
ir
− 1

z1, if ik = 1, ik+1 = 2,

− z2

c+ k −
∑k−1

r=1 δ
1
ir
− 1

, if ik = 1, ik+1 = 3,

−
(2(c− 1) + k +

∑k−1
r=1(δ3ir − 2δ1ir ))(k −

∑k−1
r=1 δ

3
ir

+ 1)

(c+ k −
∑k−1

r=1 δ
1
ir
− 1)(c+ k −

∑k−1
r=1 δ

1
ir

)
z1, if ik = 2, ik+1 = 2,

−
c+

∑k−1
r=1(δ3ir − δ

1
ir

)− 1

(c+ k −
∑k−1

r=1 δ
1
ir
− 1)(c+ k −

∑k−1
r=1 δ

1
ir

)
z2, if ik = 2, ik+1 = 3,

k −
∑k−1

r=1 δ
3
ir

2(c+ k −
∑k−1

r=1 δ
1
ir
− 1)

, if ik = 3, ik+1 = 1,

k −
∑k−1

r=1 δ
3
ir

2(c+ k −
∑k−1

r=1 δ
1
ir
− 1)(c+ k −

∑k−1
r=1 δ

1
ir

)
z2, if ik = 3, ik+1 = 2,

(3.32)

and for i(k) ∈ Ik, k ≥ 1,

Qi(k) = 1−
k −

∑k−1
r=1 δ

3
ir

2(c+ k −
∑k−1

r=1 δ
1
ir
− 1)

δ3ik ,(3.33)

converges uniformly on every compact subset of (3.29) to the function f(z) holomorphic in Θ.
(B) The function f(z) is an analytic continuation of H6(1, c; z) in the domain (3.29).

4. NUMERICAL EXPERIMENTS

From [24, Formula (37), p. 236], it follows that Horn’s confluent function H6(1, 2; z) satisfies
the system of two partial differential equations

(4.34)


z1(1− 4z1)

∂2u

∂z21
+ z2(1− 4z1)

∂2u

∂z1∂z2
− z22

∂2u

∂z22
+ (2− 10z1)

∂u

∂z1
− 4z2

∂u

∂z2
− 2u = 0,

z1
∂2u

∂z1∂z2
+ z2

∂2u

∂z22
− 2z1

∂u

∂z1
+ (2− z2)

∂u

∂z2
− u = 0,

where u = u(z) is an unknown function of independent variables z1 and z2. If the conditions of
Corollary 3.1 are satisfied, the branched continued fraction (3.30) satisfies (4.34).

Setting c = 2, ν1 = ν2 = ν3 = 1/20, and µ1 = µ2 = µ3 = 1/5 it is easy to see that the
conditions (3.28) are satisfied. Thus, by Corollary 3.1, the approximations of (3.30) with c = 2
can be used to approximate the solution of (4.34) in the domain (3.29). From (3.31)–(3.32), we
have such the approximations as

f1(z) = 1, f2(z) =
3

3− 3z1 − 2z2
, etc. .

The values of these approximations fn(z) are given in Table 1 together with the values of the
partial sums Sn(z) of H6(1, 2, z) for 1 ≤ n ≤ 10 and for the various values of z. This table shows
the rate of convergence of fn(z) and Sn(z) to u(z) as n increases. We also see that the branched
continued fraction gives better approximations of the solution of (4.34) than double confluent
hypergeometric series.
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TABLE 1. Approximation of the solution of (4.34) by branched continued frac-
tion (3.30) with c = 2 and confluent hypergeometric series H6(1, 2, z)

n fn(−0.2,−0.04) Sn(−0.2,−0.04) fn(0.04, 0.04) Sn(0.04, 0.04)
1 1 0.78 1 1.06
2 0.8152173913043479 0.8682666666666666 1.0714285714285714 1.0650666666666666
3 0.8436283082662936 0.824104 1.066142202005891 1.0655813333333333
4 0.8390655552756958 0.8488421546666667 1.0656278844624396 1.0656393813333334
5 0.8397705605715909 0.8339969065244445 1.0656448968469723 1.0656463745422222
6 0.8396627464248548 0.8433291477625905 1.065647430637354 1.0656472558998347
7 0.8396790254380795 0.8372627668078485 1.0656473978749492 1.0656473706761305
8 0.8396765860675122 0.8413072281608152 1.0656473883827595 1.0656473859992222
9 0.8396769494594616 0.8385568865940254 1.0656473883916724 1.0656473880852033
10 0.839676895549416 0.8404571814141544 1.0656473884206237 1.0656473883736706

From [17, §3.4], it follows that

H6(1, 2, z) =

∫ 1

0

(
(1− 4tz1)−1/2

B(1, 1)
1F2

(
1

2
;

1

2
, 1;

t(1− t)z22
1− 4tz1

)
+

2(t− t2)1/2z2
(1− 4tz1)B(1/2, 3/2)

1F2

(
1;

3

2
,

3

2
;
t(1− t)z22
1− 4tz1

))
dt.(4.35)

(A) � – 5th, � – (4.35), � – 10th (B) � – 5th, � – (4.35), � – 10th

FIGURE 1. The plots of values of the nth approximants of (3.30)

In Figure 1 (A)–(B), we can see the plots of the values of 5th and 10th approximations of (3.30)
approaches to the plot of the function (4.35). Figure 2 (A)–(D) shows the plots where the 10th
approximants of (3.30) guarantees certain truncation error bounds for function (4.35). Finally, in
Table 2, we can see that the 5th approximant of (3.30) is eventually a better approximation to
(4.35) than the corresponding 5th partial sum of (2.2).
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FIGURE 2. The plots where the 10th approximants of (3.30) guarantees certain
truncation error bounds for (4.35)

TABLE 2. Relative errors of 5th partial sum and 5th approximant for the Horn’s
confluent function H6(1, 2, z)

z (4.35) (2.2) (3.30)
(−0.01, 0.01) 0.9951138277 3.8606× 10−08 8.8026× 10−09

(−0.1, 0.1) 0.9593510752 6.2346× 10−05 9.4458× 10−06

(−0.1,−0.01) 0.9118965224 1.1498× 10−04 6.5181× 10−06

(0.09, 0.05) 1.1425549298 1.1470× 10−04 5.0158× 10−06

(−0.15,−0.2) 0.8094560924 2.3880× 10−03 2.0638× 10−04

(0.2, 0.2) 1.5918307333 2.6823× 10−02 2.7319× 10−03

(0.2,−5.0) 0.1998004145 2.0382× 10+00 2.5676× 10−03

(−5.0, 0.3) 0.3782185176 3.1579× 10+05 2.0912× 10−01

(−10.0,−10.0) 0.0932899388 7.0858× 10+07 3.8248× 10−02

(−25.0,−25.0) 0.0395665845 1.6635× 10+10 6.6127× 10−01
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5. CONCLUSIONS

The paper considers the problem of representing the ratios of the confluent hypergeometric
Horn’s function H6 by branched continued fractions. It is proved that the branched continued
fractions converge to the ratios of the confluent hypergeometric series of which they are expan-
sions, but the conditions of their convergence impose additional restrictions on the parameters
of the function. The expediency and effectiveness of using branched continued fractions as
an approximation tool are confirmed by numerical experiments. Nevertheless, the problems
of improving and developing new methods of researching the convergence of such and sim-
ilar branched continued fractions are open. Along the way, let us note the recent interesting
and promising ideas regarding the study of the convergence of branched continued fractions
proposed in papers [9, 10, 11].
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discontinuous weight function
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ABSTRACT. Functions with discontinuities appear in many applications such as image reconstruction, signal pro-
cessing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation
and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares
approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to
control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation
point, but also with respect to the discontinuities of the underlying function. We also provide an error estimate on
a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived
theoretically.

Keywords: MLS approximation, Meshfree methods, variably scaled discontinuous kernels, discontinuous function
approximation.
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1. INTRODUCTION

In practical applications, over a wide range of studies such as surface reconstruction, nu-
merical solution of differential equations and kernel learning [6, 10, 15], one has to solve the
problem of reconstructing an unknown function f : Ω −→ R sampled at some finite set of data
sites X = {xi}1≤i≤N ⊂ Ω ⊂ Rd with corresponding data values fi = f(xi), 1 ≤ i ≤ N . Since
in practice the function values fi are sampled at scattered points, and not at a uniform grid,
Meshless (or meshfree) Methods (MMs) are used as an alternative of numerical mesh-based
approaches, such as Finite Elements Method (FEM) and Finite Differences (FD). The idea of
MMs could be traced back to [18]. Afterwards, multivariate MMs existed under many names
and were used in different contexts; interested readers are referred to [23] for an overview over
MMs. In a general setting, MMs are designed, at least partly, to avoid the use of an underlying
mesh or triangulation. The approximant of f at X can be expressed in the form

(1.1) sf,X(x) =

N∑
i=1

αi(x)fi.

One might seek a function sf,X that interpolates the data, i.e. sf,X(xi) = fi, 1 ≤ i ≤ N , and
in this case αi(x) will be the cardinal functions. However, one might consider a more gener-
alized framework known as quasi-interpolation in which sf,X only approximates the data, i.e.,
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sf,X(xi) ≈ fi. The latter case means that we prefer to let the approximant sf,X only nearly fits
the function values. This is useful, for instance, when the given data contain some noise, or the
number of data is too large. The standard approach to deal with such a problem is to compute
the Least-Squares (LS) solution, i.e., one minimizes the error (or cost) function

N∑
i=1

[sf,X(xi)− fi]2.(1.2)

A more generalized setting of LS is known as the weighted LS , in which (1.2) turns to

(1.3)
N∑
i=1

[sf,X(xi)− fi]2w(xi),

which is ruled by the weighted discrete `2 inner product. In practice, the role of w(xi) is to
add more flexibility to the LS formulation for data fi that influence the approximation process,
which are supposed, for example, to be affected by some noise. However, these methods are
global in the sense that all data sites have influence on the solution at any evaluation point
x ∈ Ω. Alternatively, for a fixed evaluation point x, one can consider only n-th closest data
sites xi, i = 1, . . . , n of x such that n� N . The Moving Least-Squares (MLS) method, which is a
local variation of the classical weighted least-squares technique, has been developed following
this idea. To be more precise, in the MLS scheme, for each evaluation point x one needs to solve
a weighted least-squares problem, minimizing

(1.4)
N∑
i=1

[sf,X(xi)− fi]2w(x,xi)

by choosing the weight functions w(x,xi) : Rd×Rd −→ R to be localized around x, so that few
data sites are taken into account. The key difference with respect to (1.3) is that the weight func-
tion is indeed moving with the evaluation point, meaning that it depends on both the xi and
x. Consequently, for each evaluation point x, a small linear system needs to be solved. Also,
one can let w(·,xi) be a radial function i.e., w(x,xi) = ϕ(‖x− xi‖2) for some non-negative uni-
variate function ϕ : [0,∞) −→ R. Doing in this way, w(·,xi) inherits the translation invariance
property of radial basis functions. We mention that (1.4) could be generalized as well by letting
wi(·) = w(·,xi) moves with respect to a reference point y such that y 6= x, (See e.g [13, Chap
22]).

The earliest idea of MLS approximation technique can be traced back to Shepard’s sem-
inal paper [25], in which the author considered the approximation by constants. Later on,
the general framework of MLS was introduced by Lancaster and Salkauskas in [16], where
they presented the analysis of MLS methods for smoothing and interpolation of scattered data.
Afterwards, in [8] the author analyzed the connection between MLS and the Backus-Gilbert
approach [4], and showed that the method is effective for derivatives approximations as well.
Since then, MLS method showed its effectiveness in different applications [20, 21]. The error
analysis of MLS approximation has been provided by some authors, mainly based on the work
of Levin [17]. In [27, Chap. 3 & 4] and [26], the author suggested error bounds that take into
account the so-called fill-distance, whose definition is recalled in Subsection 2.1. Other works
focusing on the theoretical aspects of MLS method include [3], in which the authors provided
error estimates in L∞ for the function and its first derivatives in the one dimensional case, then
[2], where they generalized this approach to the multi-dimensional case. In both these works,
the error analysis is based on the support of the weight functions and not on the fill distance.
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More recently, in [19] the author obtained an error estimate for MLS approximation of func-
tions that belong to integer or fractional-order Sobolev spaces, which shows similarities to the
bound previously studied in [22] for kernel-based interpolation.

The MLS method has rarely been used for approximating piecewise-continuous functions,
i.e, functions that possess some discontinuities or jumps. In this case, it would be essential
that the approximant takes into account the location of the discontinuities. To this end, in this
paper, we let the weight function be a Variably Scaled Discontinuous Kernel (VSDK) [12]. VSDK
interpolant have been employed to mitigate the Gibbs phenomenon, outperforming classical
kernel-based interpolation in [11]. Similarly in MLS approximation framework, the usage of
VSDK weights allows the construction of data-dependent approximants (as discussed in [17,
§4]) that are able to overcome the performances of classical MLS approximants, as indicated by
a careful theoretical analysis and then assessed by various numerical experiments.

The paper is organized as follows. In Section 2, we recall necessary notions of the MLS, VS-
DKs and Sobolev spaces. Section 3, presents the original contribution of this work, consisting in
the use of variably scaled discontinuous weights for reconstructing discontinuous functions in
the framework of MLS approximation. The error analysis shows that the MLS-VSDKs approxi-
mation can outperform classical MLS schemes as the discontinuities of the underlying function
are assimilated into the weight function. In Section 4, we discuss some numerical experiments
that support our theoretical findings, and in Section 5, we draw some conclusions.

2. PRELIMINARIES ON MLS AND VSKS

2.1. Moving Least Squares (MLS) approximation. In this introduction to MLS, we resume
and deepen what outlined in the previous section. The interested readers are also referred to
[13, Chap. 22].

Let Ω be a non-empty and bounded domain in Rd and X be the set of N distinct data sites
(or centers). We consider the target function f , and the corresponding function values fi as
defined above. Moreover, Pd` indicates the space of d-variate polynomials of degree at most
` ∈ N, with basis {p1, ..., pQ} and dimension Q =

(
`+d
d

)
.

Several equivalent formulations exist for the MLS approximation scheme. As the standard
formulation, the MLS approximant looks for the best weighted approximation to f at the eval-
uation point x in Pd` (or any other linear space of functions U), with respect to the discrete `2
norm induced by the weighted inner product 〈f, g〉wx =

∑N
i=1 w(xi,x)f(xi)g(xi). Mathemat-

ically speaking, the MLS approximant will be the linear combination of the polynomial basis
i.e.,

(2.5) sf,X(x) =

Q∑
j=1

cj(x)pj(x),

where the coefficients are obtained by locally minimizing the weighted least square error in
(1.4), which is equivalent to minimizing ‖f − sf‖wx . We highlight that the local nature of
the approximant is evident from the fact that the coefficient cj(x) must be computed for each
evaluation point x.

In another formulation of MLS approximation known as the Backus-Gilbert approach, one
considers the approximant sf,X(x) to be a quasi interpolant of the form (1.1). In this case, one
seeks the values of the basis functions αi(x) (also known as generating or shape functions) as
the minimizers of

1

2

N∑
i=1

α2
i (x)

1

w(xi,x)
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subject to the polynomial reproduction constraints
N∑
i=1

p(xi)αi(x) = p(x) for all p ∈ Pd` .

Such a constrained quadratic minimization problem can be converted to a system of linear
equations by introducing Lagrange multipliers λ(x) = [λ1(x), ..., λQ(x)]T . Consequently (e.g
see [27, Corollary 4.4]), the MLS basis function αi evaluated at x is given by

(2.6) αi(x) = w(x,xi)

Q∑
k=1

λk(x)pk(xi), 1 ≤ i ≤ N,

such that λk(x) are the unique solution of

(2.7)
Q∑
k=1

λk(x)

N∑
i=1

w(x,xi)pk(xi)ps(xi) = ps(x), 1 ≤ s ≤ Q.

We observe that the weight function wi(x) = w(x,xi) controls the influence of the center xi
over the approximant, so it should be small when evaluated at a point that is far from x, that is
it should decay to zero fast enough. To this end, we may let wi(x) be positive on a ball centered
at x with radius r, B(x, r), and zero outside. For example, a compactly supported radial kernel
satisfies such a behaviour. Thus, let I(x) = {i ∈ {1, . . . , N}, ‖x − xi‖2≤ r} be the family of
indices of the centers X , for which wi(x) > 0, with |I|= n � N . Only the centers xi ∈ I
influence the approximant sf,X(x). Consequently, the matrix representation of (2.6) and (2.7)
is

α(x) = W (x)PTλ(x),

λ(x) = (PW (x)PT )−1p(x),

where α(x) = [α1(x), ..., αn(x)]T , W (x) ∈ Rn×n is the diagonal matrix carrying the weights
wi(x) on its diagonal, P ∈ RQ×n such that its k-th row contains pk evaluated at data sites in
I(x), and p(x) = [p1(x), ..., pQ(x)]T . More explicitly, the basis functions are given by

(2.8) α(x) = W (x)PT (PW (x)PT )−1p(x).

Moreover, it turns out that the solution of (2.5) is identical to the solution offered by the Backus-
Gilbert approach (see e.g. [27, Chap. 3 & 4]).

In the MLS literature, it is known that a local polynomial basis shifted to the evaluation point
x ∈ Ω leads to a more stable method (see e.g. [27, Chap. 4]). Accordingly, we let the polynomial
basis to be {1, (· − x), . . . , (· − x)`}, meaning that different bases for each evaluation point are
employed. In this case, since with standard monomials basis we have p1 ≡ 1 and pk(0) = 0 for
2 ≤ k ≤ Q, then p(x) = [1, 0, ..., 0]T .

To ensure the invertibility of PW (x)PT in (2.8), the centers in I(x) needs to be Pd` -unisolvent.
Then as long aswi(x) is positive, PW (x)PT will be a positive definite matrix, and so invertible;
more details are available in [13, Chap. 22].

Furthermore, thanks to equation (2.6), it is observable that the behaviour of αi(x) is heavily
influenced by the behaviour of the weight functions wi(x), in particular it includes continuity
and the support of the basis functions αi(x). Another significant feature is that the weight
functionswi(x) which are singular at the data sites lead to cardinal basis functions i.e., αi(xj) =
δi,j , i, j = 1, ..., n, meaning that MLS scheme interpolates the data (for more details see [17,
Theorem 3]).

We also recall the following definitions that we will use for the error analysis.
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(1) A set Ω ⊂ Rd is said to satisfy an interior cone condition if there exists an angle Θ ∈
(0, π/2) and a radius r > 0 so that for every x ∈ Ω a unit vector ξ(x) exists such that the
cone

C(x, ξ,Θ, r) = {x + ty : y ∈ Rd, ‖y‖2= 1, cos(Θ) ≤ yT ξ, t ∈ [0, r]}

is contained in Ω.
(2) A set X = {x1, ...,xN}with Q ≤ N is called Pd` -unisolvent if the zero polynomial is the

only polynomial from Pd` that vanishes on X .
(3) The fill distance is defined as

hX,Ω = sup
x∈Ω

min
1≤j≤N

‖x− xj‖2.

(4) The separation distance

qX =
1

2
min
i 6=j
‖xi − xj‖.

(5) The set of data sites X is said to be quasi-uniform with respect to a constant cqu > 0 if

qX ≤ hX,Ω ≤ cquqX .

2.2. Sobolev spaces and error estimates for MLS. Assume k ∈ N0 and p ∈ [1,∞), then the
integer-order Sobolev spaceW k

p (Ω) consists of all uwith distributional (weak) derivativesDδu ∈
Lp, |δ|≤ k. The semi-norm and the norm associated with these spaces are

|u|Wk
p (Ω):=

( ∑
|δ|=k

‖Dδu‖pLp(Ω)

)1/p

, ‖u‖Wk
p (Ω):=

( ∑
|δ|≤k

‖Dδu‖pLp(Ω)

)1/p

.

Moreover, letting 0 < s < 1, the fractional-order Sobolev space W k+s
p (Ω) is the space of the

functions u for which semi-norm and norm are defined as

|u|Wk+s
p (Ω) :=

( ∑
|δ|=k

∫
Ω

∫
Ω

|Dδu(x)−Dδu(y)|p

|x− y|d+ps

)1/p

‖u‖Wk+s
p (Ω) :=

(
‖u‖Wk

p (Ω)+|u|Wk+s
p (Ω)

)1/p

.

Consider certain Sobolev spaces W k
p (Ω) with the condition that 1 < p < ∞ and k > m + d/p

(for p = 1 the equality is also possible), then according to [22, Theorem 2.12] the sampling
inequality

‖u‖Wm
p (Ω)≤ Ch

k−m−d(1/p−1/p)+

X,Ω ‖u‖Wk
p

holds for a function u that satisfies u(X) = 0, with hX,Ω being the fill distance associated with
X and (y)+ = max {0,y}. For more information regarding Sobolev Spaces and sampling in-
equalities, we refer the reader to [1, 7] and [24], respectively.

Getting back to the MLS scheme, let Dδ be a derivative operator such that |δ|≤ ` (we re-
call that ` is the maximum degree of the polynomials). Assuming w ∈ C`(Ω), [19, Theorem
3.11] shows that {Dδαi(x)}1≤i≤n forms a local polynomial reproduction in a sense that there exist
constants h0, C1,δ, C2 such that for every evaluation point x

•
∑N
i=1D

δαi(x)p(xi) = p(x) for all p ∈ Pd`
•
∑N
i=1|Dδαi(x)|≤ C1,δh

−|δ|
X,Ω

• Dδαi(x) = 0 provided that ‖x− xi‖2> C2hX,Ω
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for all X with hX,Ω ≤ h0.
The particular case of |δ|= 0 was previously discussed in [27, Theorem 4.7] in which it is

shown that {αi(x)}1≤i≤n forms a local polynomial reproduction. However, in this case the
basis functions {αi(·)}1≤i≤n could be even discontinuous but it is necessary that wi(x) are
bounded (for more details see [27, Chap 3,4]). Consequently, we restate the the MLS error
bound in Sobolev Spaces developed in [19].

Theorem 2.1. [19, Theorem 3.12] Suppose that Ω ⊂ Rd is a bounded set with a Lipschitz boundary.
Let ` be a positive integer, 0 ≤ s < 1, p ∈ [1,∞), q ∈ [1,∞] and let δ be a multi-index satisfying
` > |δ|+d/p for p > 1 and ` > |δ|+d for p = 1. If f ∈ W `+s

p (Ω) and w ∈ C`(Ω), there exist
constants C > 0 and h0 > 0 such that for all X = {x1, ...,xN} ⊂ Ω which are quasi-uniform with
hX,Ω ≤ min{h0, 1}, the error estimate holds

(2.9) ‖f − sf,X‖W |δ|
q (Ω)

≤ Ch`+s−|δ|−d(1/p−1/q)+

X,Ω ‖f‖W `+s
p (Ω).

The employed polynomial basis are shifted to the evaluation point x and scaled with respect to the fill
distance hX,Ω, and wi(·) is positive on [0, 1/2], supported in [0, 1] such that its even extension is non-
negative and continuous on R.

Remark 2.1. The above error bounds holds also when s = 1. However, recalling the definition of (semi-
)norms in fractional-order Sobolev space, we see that in this case we reach to an integer-order Sobolev
space of ` + 1. Therefore, it requires that ` + 1 > |δ|+d/p for p > 1 or ` + 1 > |δ| for p = 1 in order
that (2.9) holds true. The key point is that in this case, the polynomial space is still Pd` and not Pd`+1.

2.3. Variably Scaled Discontinuous Kernels (VSDKs). Variably Scaled Kernels (VSKs) were
firstly introduced in [9]. The basic idea behind them is to map the data sites from Rd to Rd+1 via
a scaling function ψ : Ω −→ R and to construct an augmented approximation space in which
the data sites are {(xi, ψ(xi)) i = 1, ..., N} (see [9, Def. 2.1]). Though the first goal of doing so
was getting a better nodes distribution in the augmented dimension, later on in [12] the authors
came up with the idea of also encoding the behavior of the underlying function f inside the
scale function ψ. Precisely, for the target function f that possesses some jumps, the key idea is
the following.

Definition 2.1. Let P = {Ω1, ...,Ωn} be a partition of Ω and let β = (β1, ..., βn) be a vector of real
distinct values. Moreover, assume that all the jump discontinuities of the underlying function f lie on⋃n
j=1 ∂Ωj . The piecewise constant scaling function ψP,β with respect to the partition P and the vector

β is defined as

ψP,β(x)|Ωj
= βj , x ∈ Ω.

Successively, let Φε be a positive definite radial kernel on Ω × Ω that depends on the shape parameter
ε > 0. A variably scaled discontinuous kernel on (Ω× R)× (Ω× R) is defined as

(2.10) Φεψ(x,y) = Φε
(
Ψ(x),Ψ(y)

)
, x,y ∈ Ω

such that Ψ(x) = (x, ψ(x)).

Moreover, we point out that if Φε is (strictly) positive definite then so is Φεψ , and if Φε and ψ
are continuous then so is Φεψ [9, Theorem 2.2]. Figure 1 shows two different choices for the dis-
continuous scale function for the univariate case. In any case, it matters that the discontinuities
of the target function f are assimilated into the kernel ΦεΨ.
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FIGURE 1. Discontinuous scale functions

3. MLS-VSDKS

Let f be a function with some jump discontinuities defined on Ω, P and ψP,β as in Definition
2.1. We look for the MLS approximant with variably scaled discontinuous weight function such that

(3.11) wψ(x,xi) = w(Ψ(x),Ψ(xi)).

We assume that the node points that remain in the support of the weight functions after the
scaling retain the unisolvency with respect to Pd` . In this case PW (x)PT is positive definite,
meaning that (2.8) is solvable and so, the basis functions α(x) uniquely exist. However, with
new weight functions, from (3.11) also α(x) might be continuous or discontinuous regarding
to the given data values fi. Therefore, our basis functions are indeed data-dependent thanks
to (3.11). From now on, we call this scheme MLS-VSDK, and we will denote the corresponding
approximant as sψf,X .

Since the basis functions are data dependent, one might expect that the space in which we
express the error bound should be data dependent as well. Towards this idea, for k ∈ Z, k ≥ 0,
and 1 ≤ p ≤ ∞, we define the piecewise Sobolev Spaces

Wk
p (Ω) = {f : Ω −→ R s.t. f|Ωj

∈W k
p (Ωj), j ∈ {1, ..., n}},

where f|Ωj
denotes the restriction of f to Ωj , and W k

p (Ωj) denote the Sobolev space on Ωi. We
endowWk

p (Ω) with the norm

‖f‖Wk
p (Ω)=

n∑
j=1

‖f‖Wk
p (Ωj).

When k = 0 we simply denoteW0
p (Ω) by Lp(Ω), which is the space that contains functions that

are piecewise Lp on Ω. Moreover, it could be shown that for any partition of Ω the standard
Sobolev space W k

p (Ω) is contained inWk
p (Ω) (see [11] and reference therein). We assume that

every set Ωj ∈ P satisfies Lipschitz boundary conditions which will be essential for our error
analysis.

Lemma 3.1. Let P be as in Definition 2.1 and set the derivative order δ = 0. Then, by assuming
` > d/p (equality also holds for p = 1) and using Theorem 2.1, the error satisfies the inequality

(3.12) ‖f − sψf,X‖L2(Ωj)≤ Cjh
`+1−d(1/p−1/2)+

X,Ωj
‖f‖W `+1

p (Ωj) for all Ωj ∈ P
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with hX,Ωj
< min{h0, 1} the fill distance with respect to Ωj .

Proof. Recalling Definition 2.1, we know that the discontinuities of f and subsequentlywi(·) are
located only at the boundary and not on the domain Ωj , meaning that wi(·) is C` Ωj . Further-
more, the basis {αi(x)}1≤i≤n forms a local polynomial reproduction i.e., there exists a constant
C such that

∑N
i=1|αi|≤ C. Letting s = 1 and q = 2, by noticing that W 0

q (Ωj) = Lq(Ωj), then the
error bound (3.12) is an immediate consequence of Theorem 2.1 and the Remark 2.1. �

From the above proposition, it could be understood that sψf,X behaves similarly to sf,X in
the domain Ωj , where there is no discontinuity. This is in agreement with Definition 2.1. Con-
sequently, it is required to extend the error bound (3.12) to the whole domain Ω.

Theorem 3.2. Let f , P , ψP,β be as before, and the weight functions as in (3.11). Then, for f ∈
W`+1
p (Ω), as long as ` > |δ|+d/p (equality also holds for p = 1), the MLS-VSDK approximant sψf,X

error can be bounded as follows:

(3.13) ‖f − sψf,X‖L2(Ω)≤ Ch`+1−d(1/p−1/2)+‖f‖W`+1
p (Ω),

where h = max{hX,Ω1 , ..., hX,Ωn} such that hX,Ωj is the fill distance associated to the subdomain Ωj .

Proof. By Lemma 3.1, we know that (3.12) holds for each Ωj . Let hX,Ωj
and Cj be the fill

distance and a constant associated with each Ωj , respectively. Then, we have
n∑
j=1

‖f − sψf,X‖L2(Ωj)≤
n∑
j=1

Cjh
`+1−d(1/p−1/2)+

X,Ωj
‖f‖W `+1

p (Ωj).

By definition, we get
∑n
j=1‖f−s

ψ
f,X‖L2(Ωj)= ‖f−sψf,X‖L2(Ω). Moreover, lettingC = max{C1, ..., Cn}

and h = max{hX,Ω1 , ..., hX,Ωn}, then the right hand side can be bounded by

Ch`+1−d(1/p−1/2)+‖f‖W`+1
p (Ω).

Putting these together we conclude. �

Some remarks are in order.
(1) One might notice that the error bound in (2.9) is indeed local (the basis functions are

local by assumption), meaning that if f is less smooth in a subregion of Ω, say it pos-
sesses only `

′ ≤ ` continuous derivatives there, then the approximant (interpolant) has
order `

′
+ 1 in that region and this is the best we can get. On the other hand according

to (3.13), thanks to the definition of piecewise Sobolev space, the regularity of the un-
derlying function in the interior of the subdomain Ωj matters. In other words, as long
as f possesses regularity of order ` in subregions, say Ωj and Ωj+1, the approximant
order of `+ 1 is achievable, regardless of the discontinuities on the boundary of Ωj and
Ωj+1.

(2) Another interesting property of the MLS-VSDK scheme is that it is indeed data depen-
dent. To clarify, for the evaluation point x ∈ Ωj take two data sites xi, xi+1 ∈ B(x, r)
with the same distance from x such that xi ∈ Ωj and xi+1 ∈ Ωj+1. Due to the Definition
(2.10), wψ(x,xi+1) decays to zero faster than wψ(x,xi) i.e., the data sites from the same
subregion Ωj pay more contribution to the approximant (interpolant) sψf,X , rather than
the one from another subregion Ωj+1 beyond a discontinuity line. On the other hand in
the classical MLS scheme, this does not happen as the weight function gives the same
value to both xi and xi+1.
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(3) We highlight that in MLS-VSDK scheme we do not scale polynomials and so the poly-
nomial space Pd` is not changed. We scale only the weight functions and thus, in case the
given function values bear discontinuities, the basis functions {αi(·)}1≤i≤n are modi-
fied.

We end this section by recalling that the MLS approximation convergence order is achievable
only in the stationary setting, i.e., the shape parameter ε must be scaled with respect to the
fill distance. It leads to peaked basis functions for densely spaced data and flat basis function
for coarsely spaced data. In other words, the local support of the weight functions B(x, r), and
subsequently basis functions must be tuned with regards to the hX,Ω using the shape parameter
ε. Consequently, this holds also in MLS-VSDK scheme, meaning that after scaling wi we still
need to take care of ε. This is different with respect to VS(D)Ks interpolation, where ε = 1 was
kept fixed [9, 12].

4. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the MLS-VSDK with respect to the classical
MLS method. In all numerical, tests we fix the polynomials space up to degree 1. Considering
the evaluation points as Z = {z1, ..., zs}, we compute root mean square error and maximum
error by

RMSE =

√√√√1

s

s∑
i=1

(f(zi)− sf,X(zi))2, MAE = max
zi∈Z
|f(zi)− sf,X(zi)|.

We consider four different weight functions to verify the convergence order of sψf,x to a given
f , as presented in Theorem 3.2.

(1) w1(x,xi) = (1 − ε‖x − xi‖)4
+ · (4ε‖x − xi‖+1), which is the well-known C2 Wendland

function. Since each w1
i is locally supported on the open ball B(0, 1), then it verifies the

conditions required by Theorem 3.2.
(2) w2(x,xi) = exp(−ε‖x−xi‖2), i.e. the Gaussian RBF. We underline that when Gaussian

weight functions are employed, with decreasing separation distance of the approxima-
tion centers, the calculation of the basis functions in (2.8) can be badly conditioned.
Therefore, in order to make the computations stable, in this case we regularize the sys-
tem by adding a small multiple, say λ = 10−8, of the identity to the diagonal matrix
W .

(3) w3(x,xi) = exp(−ε‖x−xi‖)(15+15‖x−xi‖+6‖x−xi‖2+‖x−xi‖3), that is a C6 Matérn
function.

(4) w4(x,xi) = (exp (ε‖x− xi‖)2 − 1)−1, suggested in [17], which enjoys an additional
feature which leads to interpolatory MLS, since it possesses singularities at the centers.

One might notice that w2, w3 and w4 are not locally supported. However, the key point is
that they are all decreasing with the distance from the centers and so, in practice, one can
overlook the data sites that are so far from the center x. As a result, one generally considers a
local stencil containing n nearest data sites of the set Z of evaluation points. While there is no
clear theoretical background concerning the stencil size, in MLS literature, one generally lets
n = 2×Q (see e.g [5]). However, it might be possible that in some special cases one could reach
a better accuracy using different stencil sizes. This aspect is covered by our numerical tests,
which are outlined in the following.

(1) In Section 4.1, we present an example in the one-dimensional framework, where the
stencil size is fixed to be n = 2×Q. Moreover, we consider w1, w2 and w3.
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(2) In Section 4.2, we move to the two-dimensional framework and we keep the same sten-
cil size. Here, we restrict the test to the weight function w1 and verify Theorem 3.2.

(3) In Section 4.3, we remain in the two-dimensional setting but the best accuracy is achieved
with n = 20. Moreover, in addition to w2 and w3, we test the interpolatory case by con-
sidering w4 as weight function.

(4) In Section 4.4, we present a two-dimensional, experiments where the data sites have
been perturbed via some white noise. We fix n = 25 and w2, w3 are involved.

4.1. Example 1. On Ω = (−1, 1), we assess MLS approximant for

f1(x) =


e−x, −1 < x < −0.5

x3, −0.5 ≤ x < 0.5

1, 0.5 ≤ x < 1

with discontinuous scale function

ψ(x) =

{
1, x ∈ (−1, 0.5) and [0.5, 1)

2, x ∈ [−0.5, 0.5) .

We note that the function ψ is defined only by two cases. The important fact is that has a jump
as f1.

To evaluate the approximant consider the evaluation grid of equispaced points with step
size 5.0e − 4. Tables 1 and 2 include RMSE of f1 approximation using w1 as the weight
function. Again, in order to investigate the convergence rate, consider two sets of uniform

number of centers ε value RMSE MLS-VSDK RMSE classic MLS
9 0.25 3.58e-1 3.95e-1

17 0.5 1.99e-1 3.02e-1
33 1 3.10e-3 2.17e-1
65 2 8.42e-4 1.54e-1

257 4 5.67e-5 7.68e-2
513 8 1.43e-5 5.35e-2

TABLE 1. Comparison of the RMSE for f1 approximation at uniform data sites

number of centers ε value RMSE MLS-VSDK RMSE classic MLS
9 0.25 3.53e-1 3.77e-1

17 0.5 1.99e-1 3.01e-1
33 1 3.08e-3 2.17e-1
65 2 8.39e-4 1.54e-1

257 4 5.67e-5 7.73e-2
513 8 1.43e-5 5.41e-2

TABLE 2. Comparison of the RMSE for f1 approximation at Halton data sites

and Halton nodes with the size from Table 1. In order to generalize our results to globally
supported weight functions, we take into account w2 and w3, Gaussian and Matérn C6 ra-
dial functions, respectively. For the uniform data sites let the shape parameter values to be
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εUGA = [5, 20, 40, 80, 160, 320] and εUMat = [5, 10, 20, 40, 80, 160] for w2 and w3. Our compu-
tation shows convergence rates of 2.54 and 2.26 for MLS-VSDK scheme, shown in Figure 2.
Accordingly, for Halton points let εHMat = [5, 10, 20, 50, 200, 400], εHGA = [10, 20, 30, 50, 100, 200].
The corresponding convergence rates are 2.38 and 2.33. On the other hand, using non-scaled

FIGURE 2. Convergence rates for approximating f1 with MLS-VSDK and
MLS-Standard schemes using uniform data sites (left) and Halton data sites
(right)

weight functions, the standard MLS scheme can hardly reach an approximation order of 1, in
both cases.

4.2. Example 2. Consider on Ω = (−1, 1)2 the discontinuous function

f2(x, y) =

{
exp(−(x2 + y2)), x2 + y2 ≤ 0.6

x+ y, x2 + y2 > 0.6

and the discontinuous scale function

ψ(x, y) =

{
1, x2 + y2 ≤ 0.6

2, x2 + y2 > 0.6
.

As evaluation points, we take the grid of equispaced points with mesh size 1.00e− 2. Figure 3
shows both the RMSE and absolute error for the classical MLS and MLS-VSDK approximation
of f2 sampled from 1089 = 332 uniform data sites taking w1 as the weight function. Figure 3
shows that using classical MLS, the approximation error significantly increases near the dis-
continuities, while using MLS-VSDK the approximant can overcome this issue. In order to
investigate the convergence rate, we consider increasing sets of {25, 81, 289, 1089, 4225, 16641}
Halton and uniform points as the data sites. To find an appropriate value for the shape pa-
rameter, we fix an initial value and we multiply it by a factor of 2 at each step. Thus, let
ε = [0.25, 0.5, 1, 2, 4, 8] be the vector of shape parameter which is modified with respect to the
number of the centers in both cases of uniform and Halton data sites. The left plot of Figure 4
shows a convergence rate of 2.58 for the MLS-VSDK and only 0.66 for classical MLS methods,
while these values are 2.04 and 0.70 in the right plot.
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FIGURE 3. RMSE and abs-error of f2 MLS (left) and MLS-VSDK (right) aprox-
imation schemes using w1 weight function

FIGURE 4. Convergence rates for approximation of function f2 with MLS-
VSDK and MLS standard schemes using Uniform data sites (left) and Halton
data sites (right)
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4.3. Example 3. Consider the following function

f3(x, y) =


2
(
1− exp(−(y + 0.5)2)

)
, |x|≤ 0.5, |y|≤ 0.5

4(x+ 0.8), −0.8 ≤ x ≤ −0.65, |y|≤ 0.8

0.5, 0.65 ≤ x ≤ 0.8, |y|≤ 0.2

0, otherwise

defined on Ω = (−1, 1)2. Regarding the discontinuities of f3, the scale function is considered
to be

ψ(x, y) =


1, |x|≤ 0.5, |y|≤ 0.5

2, −0.8 ≤ x ≤ −0.65, |y|≤ 0.8

3, 0.65 ≤ x ≤ 0.8, |y|≤ 0.2

0, otherwise

Moreover, let the centers and evaluation points be the same as the Example 4.1. Table 3 and
4 shows RMSE of MLS-VSDK and conventional MLS approximation of f3 using w4 which
interpolates the data. We underline that our experiments show that the stencil of size n =
20 leads to the best accuracy. Figure 5 shows RMSE and Absolute Error for standard MLS

number of centers ε value RMSE MLS-VSDK RMSE classic MLS
25 1 3.67e-1 1.47e+0
81 2 3.68e-1 8.86e-1

289 4 1.49e-2 7.44e-1
1089 8 4.23e-3 7.72e-1
4225 16 1.06e-3 6.64e-1

16641 32 2.65e-4 5.25e-1
TABLE 3. RMSE of f3 interpolation with uniform data sites

number of centers ε value RMSE MLS-VSDK RMSE classic MLS
25 1 8.84e-1 1.53e+0
81 2 8.95e-2 1.05e+0

289 4 1.42e-2 8.74e-1
1089 8 4.18e-3 6.48e-1
4225 16 1.09e-3 6.68e-1

16641 32 3.02e-4 7.07e-1
TABLE 4. RMSE of f3 interpolation with Halton data sites

and MLS-VSDK approximation of f3 sampled from 1089 uniform points using w4 as weight
function. Once again, Figure 5 shows how MLS-VSDK scheme can improve the accuracy by
reducing the error near the jumps. Eventually, letting εUGA = [2, 4, 8, 16, 32, 64] and εUMat =
[10, 20, 40, 80, 160, 320], Figure 6 shows that h2 convergence is achievable. To be more precise,
the rate of convergence in the left plot is 2.54 and 2.69 for w2 and w3, respectively. On the other
hand, letting εHGA = [1, 2, 4, 8, 16, 32] and εHMat as the uniform case, convergence rates of 2.50
and 2.73 is achievable when Halton data sites are employed.
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FIGURE 5. RMSE and abs-error of f3 MLS(left) and MLS-VSDK(right) aproxi-
mation(interpolation) schemes using w4 weight function

FIGURE 6. Convergence rates for approximation of function f3 with MLS-
VSDK and MLS standard schemes using Uniform data sites (left) and Halton
data sites (right)

4.4. Example 4. In applications, the discontinuities are likely to be unknown. To overcome this
problem, one can consider edge detector method to extract the discontinuities. However, in this
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way the approximation depends also on the performance of the edge detector method as well
[11]. In this direction, in this final experiment the location of the discontinuities are not exact.
This is modeled by adding some noise drawn from the standard normal distribution multiplied
by 0.01 to the edges of Ωi ∈ P . We take the test function f2 and the data sites in Section 4.2. We
fix n = 25, and εGA = [0.25, 0.5, 1, 2, 4, 8], εMat = [1, 2, 4, 816, 32] for both Halton and uniform
centers. Figure 7 shows that the suggested MLS-VSDK is still able to obtain a good convergence
rate compared to classical MLS even when the discontinuities are not known exactly.

FIGURE 7. Convergence rates for approximation of function f2, based on noisy
given data values, with MLS-VSDK and MLS standard schemes using Uniform
data sites (left) and Halton data sites (right)

5. CONCLUSIONS

To approximate a discontinuous function using scattered data values, we studied a new
technique based on the use of discontinuously scaled weight functions, that we called the MLS-
VSDK scheme, that is the application of discontinuous scaled weight functions to the MLS.
It enabled us to move toward a data-dependent scheme, meaning that MLS-VSDK is able to
encode the behavior of the underlying function. We obtained a theoretical Sobolev-type error
estimate which justifies why MLS-VSDK can outperform conventional MLS. The numerical
experiments confirmed the theoretical convergence rates. Besides, our numerical tests showed
that the suggested scheme can reach high accuracy even if the position of the data values are
slightly perturbed.
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ABSTRACT. Rational functions have deep system-theoretic significance. They represent the natural way of model-
ing linear dynamical systems in the frequency (Laplace) domain. Using rational functions, the goal of this paper to
compute models that match (interpolate) given data sets of measurements. In this paper, the authors show that using
special rational orthonormal systems, the Malmquist-Takenaka systems, it is possible to write the rational interpolant
r(n,m), for n = N−1,m = N using only N sampling nodes (instead of 2N nodes) if the interpolating nodes are in the
complex unit circle or on the upper half-plane. Moreover, the authors prove convergence results related to the rational
interpolant. They give an efficient algorithm for the determination of the rational interpolant.
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1. INTRODUCTION

Rational functions have deep system-theoretic significance. They represent the natural way
of modeling linear dynamical systems in the frequency (Laplace) domain, because the Laplace
transform of a sum of complex exponentials is a rational function; more precisely, the transfer
functions (or frequency responses) of such systems are rational functions. Using rational func-
tions, our goal is to compute models that match (interpolate) given data sets of measurements.

We give first a short summary related to the general solution of the rational interpolation
problem. Let us consider a function f : H → C, H ⊂ C, and a general rational function of the
form:

r(n,m)(x) =

∑n
i=0 αix

i∑m
j=0 βjx

j
,

where αi, βj , x ∈ C , and m and n are not necessarly equal natural numbers. To find a rational
interpolant r(n,m) of type (n,m) requires n+m+ 1 sample points (or in other word nodes), be-
cause we have to determine the αi and βj coefficients (one coefficient can be set to 1). Knowing
(xk, f(xk)), k = 1, . . . , n+m+ 1, we search the solution of the interpolation problem satisfying
the following conditions

r(n,m)(xk) = f(xk), k = 1, . . . , n+m+ 1.

In this paper, we show that using special rational orthonormal systems, the Malmquist-Takenaka
systems, it is possible to write the rational interpolant r(n,m), for m = N,n = N − 1 using only
N sampling nodes (instead of 2N nodes) if the interpolating nodes are in the unit circle or on
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the upper half-plane, moreover we can prove convergence results related to the rational inter-
polant. We give an efficient algorithm for the determination of the rational interpolant. We
will introduce new rational interpolation operators of type (N − 1, N) using N special nodes
in the closed unit disc. These nodes are solutions of certain equation related to the Malmquist-
Takenaka systems and its dual systems, and we will study the properties of the new interpola-
tion operators. We will study the analogue of the problem also for the closed upper half-plane.
Before we present our results, let us revise the classical method to find r(n,m) (see for example
Berrut, Trefethen or Ionita [1, 11] and the reference list therein). We write our interpolation
conditions in the following form:( n∑

i=0

αix
i
k

)
− f(xk)

( m∑
j=0

βjx
j
k

)
= 0.

In matrix form, this is equivalent to
Ab = 0,

where

A :=



1 x0 x2
0 . . . xn0 −f(x0) −f(x0)x0 −f(x0)x2

0 . . . −f(x0)xm

1 x1 x2
1 . . . xn1 −f(x1) −f(x1)x1 −f(x1)x2

1 . . . −f(x1)xm

...
...

... . . .
...

...
...

... . . .
...

1 xM x2
M . . . xnM −f(xM ) −f(xM )xM −f(xM )x2

M . . . −f(xM )xmM


and

b := [α0, α1, α2, . . . , αn, β0, β1, β2, . . . βm]T .

However, there is no any guarantee that the solution exists, and it is unique. It is possible that
there are more b vectors satisfying the equation -if it exists at all. When β0 = 1, β1 = β2 = . . . =
βm = 0, then the problem reduces to the construction of a polynomial interpolant. In this case,
if the nodes xk are different from each other and we have M = n + 1 samples, the problem
has unique solution. If we want to express the interpolation polynomial r(n,0)(x) = Pn(x) =∑n
i=0 cix

i in the basis Φk(x) = xk satisfying the condition Pn(x) = f(xk), k = 1, . . . ,M = n+1,
then the solution c = (c0, c1, . . . , cn) of the system is c = Φ−1f, where f = (f(x1), . . . , f(xn+1))T

and

Φ = V (x0, x1, . . . , xn) =

1 x1
0 . . . xn0

...
...

. . .
...

1 x1
n . . . xnn

 .
We don’t have to solve the linear equation system if we write the interpolation polynomial in
Lagrange form. In this way, we reduce the number of operations. Let us consider the Lagrange
interpolation polynomials corresponding to the n+ 1 sample points defined by

li(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
=

∏n
j=0,j 6=i(x− xj)∏n
j=0,j 6=i(xi − xj)

.

Because

(1.1) li(xk) = δik =

{
1 if i = k

0 if i 6= k,
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the solution of the interpolation problem has the following form:

Pn(x) = Ln(x) =

n∑
i=0

li(x)f(xi).

The set {li(x), i = 0, . . . , n} is the so-called Lagrange basis, thus the resulted interpolation
polynomial is the linear combination of the Lagrange basis. There is only one unique Lagrange
polynomial basis perfectly fitting to the set of different sample points {(xi, f(xi)), i = 0, . . . , n}.
Unfortunately, using the Lagrange method, the basis have to be recalculated when we add a
new sample point, requiring O(n2) operations. A solution for this problem, to diminish the
number (cost) of the operations, is the Barycentric Lagrange polynomial interpolation. Using
the divided differences method, we get a much faster algorithm than the Lagrange interpola-
tion, mainly when we have a new, additional sample point. First let us consider the Lagrange
polynomial of constant function 1:

en(x) =

n∑
i=0

{ ∏n
j=0,j 6=i(x− xj)∏n
j=0,j 6=i(xi − xj)

}
= 1.

Using this, we can write for any function f the interpolant Ln(x) in the following form:

Ln(x) =
Ln(x)

en(x)
=

∑n
i=0

{ ∏n
j=0,j 6=i(x−xj)∏n
j=0,j 6=i(xi−xj)f(xi)

}
∑n
i=0

{ ∏n
j=0,j 6=i(x−xj)∏n
j=0,j 6=i(xi−xj)

} .

Simplifying by
∏n
j=0(x − xj), if we consider that

∏n
j=0,j 6=i(x − xj) =

∏n
j=0(x − xj) 1

x−xi
, we

arrive to the following:

Ln(x) =

∑n
i=0

{
1∏n

j=0,j 6=i(xi−xj)
f(xi)
x−xi

}
∑n
i=0

{
1∏n

j=0,j 6=i(xi−xj)
1

x−xi

} .
Let be 1∏n

j=0,j 6=i(xi−xj) = λi, then

Ln(x) =

∑n
i=0

{
λi
f(xi)
x−xi

}
∑n
i=0

{
λi

1
x−xi

}
is called polynomial Barycentic formula. After the determination of each λi, it is relatively
fast to calculate the polynomial in this form, it requires O(n) operations. Another advantage
of the Barycentric formula is that it is numerically stable. In case if we choose λi freely, we
get a rational interpolant r(n,n) fitting to the sample points (when λi = 1∏n

j=0,j 6=i(xi−xj) , we get
the Lagrange polynomial Ln(x)). These rational functions satisfy the interpolation condition
r(n,n)(xk) = f(xk), k = 0, . . . , n. These rational interpolants are called Lagrange rational inter-
polants. Freely choosing the λi-s, there are more rational functions fitting to the sample points.
In order to determine r(n,n) uniquely, we need to fix n+ 1 more λi-s. We can get the Lagrange
rational interpolation which satisfies

r(n,n)(xk) = f(xk), k = 1, . . . , 2n+ 1

without solving the system of equation in the following way:
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1. We have to divide the 2n+1 sample points {xj} into two subgroups, n+1 Lagrange nodes
denoted by ηi and the remaining n sample points denoting by (µj). Similarly, also the set of the
corresponding function values ({f(xj)} ) has to be partitioned.

2. We express r(n,n) with the Lagrange basis
∏n
j=0,j 6=i(x − ηj) associated to the Lagrange

nodes ηi in the following form:

r(n,n)(x) =

∑n
i=0

{
ai
∏n
j=0,j 6=i(x− ηj)

}
∑n
i=0

{
bi
∏n
j=0,j 6=i(x− ηj)

} .
This rational function can be written in barycentric form:

r(n,n)(x) =

∑n
i=0

{
ai

1
x−ηi

}
∑n
i=0

{
bi

1
x−ηi

} .
Similarly to the polynomial barycentric formula, also this rational barycentric formula requires
only O(n) operations. When x = ηi, then r(n,n)(ηi) = ai

bi
= f(ηi), so if we set ai = bif(ηi), then

r(n,n) will exactly interpolate f at the ηi nodes and we get back our earlier formula when the
coefficients were the same in the numerator and denominator.

3. Now, what we have to do is only to determine the unknown coefficients bi using the re-
maining n sample points (µj) and the corresponding f(µj) values (which were still not used).
Using that ai = bif(ηi), for the µj points j = 1, . . . , n the rational function satisfies the follow-
ing:

r(n,n)(µj) = f(µj) =

∑n
i=0

{
bif(ηi)
µj−ηi

}
∑n
i=0

{
bi

µj−ηi

} .
Rearranging these equations, we get the equivalent forms for j = 1, . . . , n:

n∑
i=0

{
bif(µj)

µj − ηi

}
=

n∑
i=0

{
bif(ηi)

µj − ηi

}
,

n∑
i=0

{
bi(f(µj)− f(ηi))

µj − ηi

}
= 0.

These conditions can be written in a matrix form:
(f(µ0)−f(η0))

µ0−η0 . . . (f(µ0)−f(ηn))
µ0−ηn

...
. . .

...

(f(µn−1)−f(η0))
µn−1−η0 . . . (f(µn−1)−f(ηn))

µn−1−ηn


b0...
bn

 = 0.

The matrix is called Loewner matrix (L) and it is an n · (n+ 1) matrix.
4. The Loewner matrix and its null space has to be computed using the partitioned nodes

and the corresponding sample values solving the Lb = 0 equation. In this way, we get the b
vector of the coefficients.
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5. After the above-mentioned steps, we can form the Lagrange rational polynomial using
the barycentric formula:

r(n,n)(x) =

∑n
i=0

{
bif(ηi)
x−ηi

}
∑n
i=0

{
bi

x−ηi

} .

If the number of sample points is large, then the number of operations to determine the rational
interpolant fitting the data is still high. Our goal is to find new methods to write the rational
interpolant using less initial data and to reduce the number of operations if it is possible.

The paper is organized as follows. In Section 2, we present rational interpolation using
Malmquist-Takenaka systems for the unit disc and also for the upper half plane. In both cases,
we give the algorithms how the rational interpolant can be described. We study also the con-
vergence properties of the interpolants. In Section 3, we introduce new rational interpolation
operators with special nodes related to discrete biorthogonality of Malmquist-Takenaka sys-
tems and we study their properties.

2. RATIONAL INTERPOLATION USING MALMQUIST-TAKENAKA SYSTEMS

In what follows, we focus on the determination of a rational interpolant of type (N − 1, N).
According to the algorithms presented in the previous section, to write a rational interpolant
of type (N − 1, N) in general, we would need 2N nodes and the values of the function in
these nodes. In this section, we show that choosing a good basis of rational functions, the
Mamquist-Takenaka system, we can reduce the number of the data and we can avoid to solve
the system of equations associated to the interpolation problem. We will work with some
assumptions regarding the nodes and the function f . We assume that the nodes are in the unit
disc or in the upper half-plane and the function f belongs to the Hardy space of the unit disc
or the Hardy space of the upper half-plane, respectively. Using the corresponding Malmquist-
Takenaka systems, we show that it is possible to write a rational interpolant of type (N −
1, N) using only N nodes and the values of the function in these nodes. Moreover, we give
an algorithm for the determination of the rational interpolant, and we study the convergence
properties of the rational interpolant.

2.1. Rational interpolation with nodes in the unit disc related to Malmquist-Takenaka sys-
tem of the unit disc. Let D denote the open and D denote the closed unit disc, D := {z ∈ C :

|z| < 1}, D := {z ∈ C : |z| ≤ 1}, and let us denote the unit circle with T, T = {z ∈ C : |z| = 1}.
Let us denote the set of analytic functions over D with A(D), the Hardy space of the unit disc
with

H2(D) =

{
f ∈ A(D) : ‖f‖H2(D) = sup

r<1

(
1

2π

∫ π

−π
|f(reit)|2dr

)1/2

<∞

}
.

For every function f ∈ H2(D) and for a.e. t ∈ [−π, π), there exists the finite limit f(eit) :=
limr→1 f(reit). Moreover for the limit function holds that f ∈ L2(T), and ‖f‖H2(D) = ‖f‖L2(T).
The set of the limit functions of H2(D) is the Hardy space of the unit circle denoted by H2(T).
The Malmquist–Takenaka system ([13, 20]) is an orthonormal system of rational functions,
products of Blaschke factors, in the Hardy space of unit disc, which contains as special case
the classical ”trigonometric” system. In system identification, it is frequently applied in order
to approximate the transfer functions of the systems. Let us consider a sequence a = (a1, a2, . . .)
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of complex numbers, an ∈ D of the unit disc D, and denote the Blaschke functions by

ba(z) :=
z − a
1− az

(a ∈ D, z ∈ C, 1− bz 6= 0).

The Malmquist-Takenaka (MT) system Φn = Φan (n ∈ N∗) is defined by

(2.2) Φ1(z) =

√
1− |a1|2
1− a1z

, Φn(z) =

√
1− |an|2
1− anz

n−1∏
k=1

bak(z), n ≥ 2.

When all parameters are equal, i.e., an = a, n ∈ N∗, we obtain the so called discrete Laguerre
system and particularly, when an = 0, n ∈ N∗, we obtain the trigonometric system. Conse-
quently, these systems can be viewed as extensions of the trigonometric system on the unit
circle. These functions form an orthonormal system on the unit circle, i.e.,

〈Φn,Φm〉 =
1

2π

∫ 2π

0

Φn(eit)Φm(eit)dt = δmn (m,n ∈ N∗).

If the sequence a = (a1, a2, . . .) satisfies the non-Blaschke condition

(2.3)
∑
n≥1

(1− |an|) = +∞,

then the corresponding MT system is complete in the Hardy space of the unit disc. Let us
consider the orthogonal projection operator of orderN of an arbitrary function f ∈ H2(T) with
respect to the MT system:

(2.4) PNf(z) =

N∑
k=1

〈f,Φk〉Φk(z).

For a special sequence a = (a1, a2, . . .), Pap proved in [15] that the analytic continuation in
the unit disc of the projection PNf is at the same time a rational interpolation operator in the
unit disc for the analytic continuation of f in the unit disc. In this paper, we show that this
interpolation property is true in general for any sequence a = (a1, a2, . . .), with elements from
D, different from each other.

Theorem 2.1. Let us consider a sequence a = (a1, a2, . . .), with elements from D, different from each
other (ak 6= aj , k 6= j). For every f ∈ H2(T), the projection operator PNf is a rational interpolation
operator of type (N − 1, N) at the points a1, a2, . . . , aN for the analytic continuation of f in the unit
disc.

Proof. In order to prove the interpolation property of PNf , let us consider the kernel function
of this projection operator:

(2.5) KN (z, ξ) =

N∑
k=1

Φk(ξ)Φk(z).

According to the Christoffel-Darboux formula (see [12, 16, 2]), the kernel function can be writ-
ten in closed form

(2.6) KN (z, ξ) = (1− zξ)−1

1−
N∏
k=1

ξ − ak
1− akξ

N∏
k=1

z − ak
1− akz

 .
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From this relation, it follows that the values of the kernel-function at the points (am, m =
1, . . . , N) are equal to localized Cauchy kernels

K(am, ξ) =
1

1− amξ
.

From this property and the Cauchy integral formula, we get that the interpolation property
holds, i.e.,

PNf(am) = 〈f,KN (., am)〉 =
1

2π

∫ 2π

0

f(eit)

1− ame−it
dt = f(am) (m = 1, . . . , N).

�

For special choice of a = (a1, a2, . . .), ai ∈ D, i ∈ {1, . . . , N} (in Pap [15]), it has been shown
that the coefficients of the projection operator PNf can be computed exactly if we know f at
a1, a2, . . . , aN . We show that this algorithm can be extended in general, when we can measure
f at a1, a2, . . . , aN ∈ D with ai 6= aj , i 6= j, i, j,∈ {1, . . . , N}. Consequently, PNf can be written
exactly if we know the values of f(ai). We present here the steps of the algorithm.

1. Step: For k = 1, . . . , N , we write the partial fraction decomposition of Φk:

Φk(ξ) =

k∑
k′=1

ckk′
1

1− ak′ξ
.

Using the orthonormality of the functions {Φk′ , k′ = 1, . . . , k} and the Cauchy formula, we get
that

δkn = 〈Φn,Φk〉 =

k∑
k′=1

ckk′Φn(ak′), (n = 1, . . . , k).

If we order these equality’s so that we write first the relations for n = k then for n = k − 1 etc.,
this is equivalent to

1
0
0
.
.
.
0


=


Φk(ak) 0 0 0 . . . 0

Φk−1(ak) Φk−1(ak−1) 0 0 . . . 0
Φk−2(ak) Φk−2(ak−1) Φk−2(ak−2) 0 . . . 0

...
...

Φ1(ak) Φ1(ak−1) Φ1(ak−2) . . . Φ1(a1)




ckk
ckk−1

ckk−2

...
ck1

 .

2. Step: We solve the previous system of equations. Because of the elements from the main
diagonal are different from zero, this system has a unique solution

(ckk, ckk−1, ckk−2, . . . , ck1)T .

3. Step: For k = 1, . . . , N , we determine the vectors (ckk, ckk−1, ckk−2, . . . , ck1)T , then based
on Cauchy formula, we can compute the exact value of 〈f,Φk〉 knowing the values of f on the
set a1, . . . , aN . Indeed, using again the partial fraction decomposition of ψk and the Cauchy
integral formula, we get that

〈f,Φk〉 =

k∑
k′=1

ckk′

〈
f(ξ),

1

1− ak′ξ

〉

=

k∑
k′=1

ckk′f(ak′).
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FIGURE 1. The first 85 elements of the sequence a

4. Step: We write

PNf(z) =

N∑
k=1

〈f,Φk〉Φk(z),

which is in the same time a projection operator and a rational interpolation operator of type
(N − 1, N) at the points a1, a2, . . . , aN . A Matlab code was developed for the interpolation
process on the unit disc (see code). In the code, we defined the sequence a = (a1, a2, . . .) as it is
given in [15], in equations (2.4), (2.6) and (2.7), where the points of the sequence form concentric
circles. For k = 3, we get the first 85 elements of the sequence (see on Figure 1). We apply the
Steps 1–4 mentioned above to create Pnf for the function

f(z) =
1

2− z2
.

We plot the function f and the projection operator PNf at the points zi = ai. As one can see on
Figure 2, the values of the function and the projection operator are equal at these points, as it
was stated in Theorem 2.1. In general, it is a hard task to study the convergence properties of
an interpolation operator. In this case using that PNf is at the same time projection operator,
we can derive more easily convergence results. The properties of orthogonal projection PNf
on the unit circle were studied by Malmquist and Takenaka [13, 20]. If the sequence a is non-
Blaschke sequence, i.e.,

∑∞
n=0(1−|an|) =∞, then the Malmquist-Takenaka system is complete

in the Hp(T) for 0 < p < ∞ (it follows from K. Hoffman, (1962, pp. 64) [10], J. B. Garnett,
(1981, pp. 53) [9] and Z. Szabó [19, 18]), and PNf converge to f in norm on the circle and the
convergence is compactly uniform on the disc for every f ∈ H2(D).

2.2. Rational interpolation with nodes on the upper half-plane related to the Malmquist-
Takenaka systems on the upper half-plane. Let us denote the upper half-plane with C+, C+ =
{z ∈ C : =z > 0}. Let us denote the set of analytic functions over C+ with A(C+), respectively,

https://github.com/ratinterpolation2023/RationalInterpolationMalmquistTakenaka
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FIGURE 2. The interpolated function f (star) and the interpolation operator
PNf (circle) at zi = ai

and consider the Hardy space of the upper half-plane

H2(C+) =

{
f ∈ A(C+) : ‖f‖H2(C+) = sup

0<y

(∫
|f(x+ iy)|2dx

)1/2

<∞

}
.

If f ∈ H2(C+), for a.e. x ∈ R there exist the finite limit f(x) := limy→0+
f(x + iy), the limit

function of f satisfies the following conditions f ∈ L2(R) and ‖f‖L2(R) = ‖f‖H2(C+). The set
of limit functions is the Hardy space of the real line denoted by H2(R). The Hardy space of the
upper half-plane and the Hardy space of the unit disc H2(D) may be connected through the
Cayley transform. The conformal mapping from C+ to D defined by

(2.7) C(ω) =
i− ω
i+ ω

(ω ∈ C+)

is called Cayley transform and it extends continuously as a bijective mapping from the ex-
tended real line to T. With the Cayley transform, the linear transformation from H2(D) to
H2(C+) defined for f ∈ H2(D) by

(2.8) Tf(z) :=
1√
π

1

i+ z
(f ◦ C)(z)

is an isomorphism. Consequently, the theory of the real line is a close analogy with what
we have for the circle. Using the Caley transform given by (2.7) and (2.8), we can make the
transition of MT system to the upper half-plane. The system

Ψn(z) := cn(TΦn)(z) = (Tf)(z) := cn
1√
π

1

i+ z
Φn(C(z)) (=z ≥ 0, n ∈ N∗)

is the analogue of the Malmquist-Takeneka system for the upper half-plane. It is easy to check
that for a ∈ D with a∗ := 1/a,

(2.9) λa := C−1(a) = i
1− a
1 + a

∈ C+, λa∗ = λa,

√
1− |a|2
|1 + a|

=
√
=λa,
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and

(2.10) b̃a(z) = ba(−1)
z − λa
z − λa

, r̃a(z) = ra(−1)
z + i

z − λa
(z ∈ C+).

This implies that the functions Ψn = cnTΦn (n ∈ N∗), cn =

√
=λan

Φn(−1) are of the form

(2.11) Ψ1(z) =
1√
π

√
=λa1

z − λa1
, Ψn(z) =

1√
π

√
=λan

z − λan

n−1∏
k=1

z − λak
z − λak

.

The system of functions {Ψn}∞n=1 is orthonormal on the entire axis in the following sense

(2.12)
∫ +∞

−∞
Ψn(t)Ψm(t)dt = δmn.

Moreover, if the following non-Blaschke condition for the upper half-plane is satisfied
∞∑
k=1

=λak
1 + |λak |2

=∞,

then (Ψn, n ∈ N∗) is a complete orthonormal system for H2(C+). Let us consider the or-
thogonal projection operator of order N of an arbitrary function f ∈ H2(C+) with respect to
ΨN = {Ψn, n = 1, 2, · · ·, N} given by

(2.13) QNf(z) =

N∑
k=1

〈f,Ψk〉Ψk(z).

Let us consider the kernel function of this projection operator

K̃N (ω,w) =

N∑
k=1

Ψk(w)Ψk(ω).

Then the projection operator can be expressed as a scalar product:

(2.14) QNf(z) =

∞∫
−∞

f(t)K̃N (z, t)dt = 〈f(.), K̃N (., z)〉.

According to [3], the kernel function can be written in the following form:

K̃(ω,w)N =

N∑
k=1

Ψk(w)Ψk(ω) =
1− B̃N (w)B̃N (ω)

2iπ(w − ω)
, ω 6= w,

where

B̃N (ω) =

N∏
k=1

ω − λak
ω − λak

τk, τk =
|1 + λ2

ak
|

1 + λ2
ak

is the Blaschke product on the upper half-plane. Eisner and Pap [4] proved the following
interpolation property of the projection operator:

Theorem 2.2 (Eisner, Pap [4]). For any f ∈ H2(C+), the projection operator QNf is an interpolation
operator of type (N − 1, N) on the set {λak , j, k = 1, . . . , N}, λak 6= λaj , k 6= j, i.e.

QNf(λak) = f(λak) (k = 1, . . . , N).
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If condition (2.2) is satisfied, {Ψk, k = 1, . . .∞} is a complete orthonormal set in the Hilbert
space H2(C+) and we have ‖f − QNf‖H2(C+) → 0 as N → ∞. Since convergence in H2(C+)
implies uniform convergence to the analytic continuation of f on the upper half-plane on every
compact subset, we conclude that QNf → f uniformly on every compact subset of the upper
half-plane. For λa = (λa1 , λa2 , . . .), λan ∈ C+ and λan 6= λak , n 6= k, we show that the coef-
ficients of the projection operator QNf can be computed exactly if we know f in λa1 , λa2 , . . ..
Consequently, QNf can be written exactly if we know the values of f(λai). We present here the
steps of the algorithm.

1. Step: For k = 1, . . . , N , we write the partial fraction decomposition of Φk:

Ψk(ξ) =

k∑
k′=1

bkk′
1

ξ − λak′
.

Using the orthonormality of the functions {Ψk′ , k
′ = 1, . . . , k} and the Cauchy formula, we get

that

δkn = 〈Ψn,Ψk〉 =

k∑
k′=1

bkk′Ψn(λak′ ) (n = 1, . . . , k).

If we order these equality’s so that we write first the relations for n = k then for n = k − 1 etc.,
this is equivalent to

1
0
0
.
.
.
0


=


Ψk(λak) 0 0 0 . . . 0

Ψk−1(λak) Ψk−1(λak−1
) 0 0 . . . 0

Ψk−2(λak) Ψk−2(λak−1
) Ψk−2(λak−2

) 0 . . . 0
...

...
Ψ1(λak) Ψ1(λak−1

) Ψ1(λak−2
) . . . Ψ1(λa1)




bkk
bkk−1

bkk−2

...
bk1

 .

2. Step: We solve the previous system of equations. Because of the elements from the main
diagonal are different from zero, this system has a unique solution

(bkk, bkk−1, bkk−2, . . . , bk1)T .

3. Step: If we determine the vector (bkk, bkk−1, bkk−2, . . . , bk1)T , then based on Cauchy for-
mula, we can compute the exact value of 〈f,Ψk〉 knowing the values of f on the set λa1 , . . . , λan .
Indeed, using again the partial fraction decomposition of Ψk and the Cauchy integral formula
for upper half-plane, we get that

〈f,Ψk〉 =

k∑
k′=1

bkk′

〈
f(ω),

1

ω − λak′

〉

=

k∑
k′=1

bkk′f(λak′ ).

4. Step: We write

QNf(z) =

N∑
k=1

〈f,Ψk〉Ψk(z),

which is in the same time a projection operator and a rational interpolation operator of type
(N−1, N) at the points λa1 , λa2 , . . . , λan . We also developed a Matlab code for the interpolation
process on the upper half-plane (see code). In the code, we use the sequence a = (a1, a2, . . .)
as it is given in [15], in equations (2.4), (2.6) and (2.7), and we defined the λa = (λa1 , λa2 , . . .)

https://github.com/ratinterpolation2023/RationalInterpolationMalmquistTakenaka
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FIGURE 3. The first 21 elements of the sequence λa

FIGURE 4. The interpolated function f (star) and the interpolation operator
QNf (circle) at zi = λai

sequence with Cayley transformation, see in (2.9). On Figure 3, the first 21 elements of the λa
sequence can be seen. Following Steps 1–4 mentioned above, we create QNf for the function

f(z) =
1

2− z2
.

Representing the function f and the projection operator QNf at the points zi = λai , we can see
that the values are equal at these points as it was stated in Theorem 2.2 (see Figure 4).

3. RATIONAL INTERPOLATION WITH SPECIAL NODES RELATED TO DISCRETE
BIORTHOGONALITY OF MAMQUIST-TAKENAKA SYSTEMS

Discretization results connected to MT systems for unit disc and the upper half-plane were
published in [16, 17, 4, 8]. Based on these results, an analogue of discrete Fourier transform
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(DFT) was developed and the discrete versions was applied successfully for compression and
representation of human ECG signals [5, 6]. In paper [7], Fridli and Schipp introduced the dual
of the Malmquist-Takenaka system on the unit disc and proved discrete biorthogonal property
on a set of points of the unit disc. Nagy-Csiha and Pap recently introduced the dual system of
the Malmquist-Takenaka system on the upper half-plane and proved discrete biorthogonality
result on a set of discretization points on upper half-plane [14].

In this section, using the discretization points as nodes on closed disc and on closed upper
half-plane respectively, we introduce new rational interpolation operators and we study their
properties.

3.1. Rational interpolation based on the dual of the Mamquist-Takenaka system in the unit
disc and discrete biorthogonality. Let us denote by z∗ = 1/z. Let Q denote the set of rational
functions. For any f ∈ Q, the domain will be extended to C := C ∪ {∞} by f(a) = ∞ if a is a
pole of f and f(∞) := limz→∞ f(z). Let us consider the following two types of inversions:

f∗(z) := (f(z))∗, f?(z) := f(z∗) (z ∈ C, f ∈ Q).

It is obvious that for any z ∈ T, we have

z = z∗. f∗(z) = f?(z) = f(z) (f ∈ Q).

Moreover, in case of Blaschke-products BN (z) =
∏N
k=1 bak(z), the operations coincide:

B∗N (z) = B?N (z) = BN (z∗) (z ∈ C).

Let us consider the following functions:

(3.15)

Φ?1 = z

√
1− |a1|2
z − a1

= r?a1(z),

Φ?n = Φn(z∗) = z

√
1− |an|2
z − an

n−1∏
k=1

1− akz
z − ak

= r?an(z)

n−1∏
k=1

b?ak(z) (n ∈ N∗), z ∈ C \ D.

The system Φ? := ((Φn)?, n ∈ N∗) is called the dual of the MT system Φ = (Φn, n ∈ N∗). If
z ∈ T, then Φ?n = Φn, n ∈ N∗. If |u| ≤ 1, it is easy to see that the equation BN (z) = u has exactly
N solutions in the closed unit disc counting with multiplicities. In particular, if u ∈ T, then all
of the roots are of multiplicity one and they are on the unit circle. If |u| ≥ 1, then |u∗| ≤ 1. In
that case BN (z) = u if and only if B∗N (z) = u∗. But B∗N (z) = BN (z∗), which implies that the
equation BN (z) = u has N solutions outside of the open unit disc. In the following, we will
consider an u ∈ D for which the equation has N distinct roots. Let us introduce the set:

Za
N,u := {z ∈ C : BN (z) = u, (BN )′(z) 6= 0} (0 < |u| ≤ 1).

If it has N different elements, denote the elements by zk and Za
N,u = {zk, k = 1, . . . , N}. We

recall Theorem 2.1. of Fridli and Schipp in [7]. It is easy to verify (see the proof in [7]) that the
following theorem holds not just for 0 < |u| ≤ 1 as it is mentioned in [7], but for u ∈ C \ {0}.

Theorem 3.3 (Fridli, Schipp [7]). Let 0 < |u| ≤ 1 be a parameter for which the setZa
N,u has N different

elements. Then the Φn,Φ
?
n (1 ≤ n ≤ N) systems are biorthogonal with respect to the following discrete

scalar product

[Φn,Φ
?
m]a,u :=

∑
z∈Za

N,u

Φn(z)Φ?m(z)/KN (z, z∗) = δmn (1 ≤ m,n ≤ N),
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where KN (z, z∗) is the Dirichlet kernel,

KN (z, z∗) =

N∑
k=1

Φk(z)Φk(z∗) =

N∑
k=1

(1− |ak|2)z

(1− akz)(z − ak)
.

On the unit circle, the MT system is orthonormal with respect to the continuous measure,
i.e. ∫

T
Φn(z)Φm(z)dz =

1

2π

∫ 2π

0

Φn(eit)Φm(eit)dt = δmn.

From the definition of the dual system, it follows that the original system and the dual system
are equal on the unite circle T, i.e., if z ∈ T, then Φ?n = Φn, n ∈ N. As a consequence, on the
unit circle the original system and the dual system are biorthogonal with respect to the scalar
product generated by the continuous measure:∫

T
Φn(z)Φ?m(z)dz =

1

2π

∫ 2π

0

Φn(eit)Φ?m(eit)dt = δmn.

The continuous projection operators connected to the MT and dual MT system for f ∈ H2(D)
are the following:

PNf(z) =

N∑
k=1

〈f,Φ?k〉Φk(z), z ∈ D, f ∈ H2(D),

P •Nf(z) =

N∑
k=1

〈f,Φk〉Φ?k(z), z ∈ C \ D, f ∈ H2(C \ D),

where
〈f,Φk〉 =

∫
T
f(z)Φk(z)dz =

∫
T
f(z)Φ?k(z)dz = 〈f,Φ?k〉.

Taking into account, that on the circle Φk = Φ?k, the projection PNf is the same projection
which was studied in the previous section and the projections are related to each other in the
following way:

P •Nf(z) =

N∑
k=1

〈f,Φ?k〉Φ?k(z) =

N∑
k=1

〈f,Φ?k〉Φk(z∗) = PNf(z∗), z ∈ C \ D.

For z ∈ T, the two projection operator are the same: P •Nf(z) = PNf(z). Consequently, it
is enough to study the properties of PNf(z), z ∈ D. In the previous section, we proved that
PNf(z) is a rational interpolant of type (N − 1, N) of f in ak, k = 1, . . . , N . Then P •Nf(z) will
interpolate the analytic continuation of f (if this exists) outside of the disc in a∗k, k = 1, . . . , N .
In analog way, we can consider the discrete projection operator associated to the discrete scalar
product denoted by P ◦Nf , expressed as follows:

P ◦Nf(z) =

N∑
k=1

[f,Φ?k]a,uΦk(z),

where the coefficients are expressed by the discrete scalar product as follows

[f,Φ?k]a,u =
∑

zj∈Za
N,u

f(zj)Φ?k(zj)

KN (zj , z∗j )
.

The question naturally arises, weather P ◦Nf is an interpolation operator or not. In what follows,
we will study the properties of this discrete projection operator. In [19], Szabó studied the
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properties of P ◦Nf for u = 1 and z ∈ T. For this special case, he proved that this projection
operator is also an interpolation operator on the set of discretazation points

Za
N,1 := {z ∈ C : BN (z) = 1},

which are on the the unit circle. In this paper, we will extend the results obtained by Szabó for
P ◦Nf(z) when u ∈ D \ {0}, z ∈ D and the discretization point are in the closed unit disc.

Theorem 3.4. Let 0 < |u| ≤ 1 be a parameter for which the set Za
N,u has N different elements and

P ◦Nf defined as before. For every f ∈ C(D), the projection operator P ◦Nf is a Lagrange type rational
interpolation operator of type (N − 1, N) at zk ∈ Za

N,u, i.e.,

P ◦Nf(zk) = f(zk), zk ∈ Za
N,u.

Proof. Let us consider the kernel function of the discrete projection operator:

(3.16) K◦N (z, ξ) :=
N∑
k=1

Φ?k(ξ)Φk(z) =

N∑
k=1

Φk(ξ∗)Φk(z) = KN (z, ξ∗).

The discrete projection can be expressed using K◦N (z, ξ) and the discrete scalar product more
explicitly:

P ◦Nf(z) = [f(.),K◦N (z, ·)]a,u =
∑

zj∈Za
N,u

KN (z, z∗j )

KN (zj , z∗j )
f(zj).

Let us consider

`N,ξ(z) =
KN (z, ξ∗)

KN (ξ, ξ∗)
.

From the definition, it follows that `N,ξ(ξ) = 1. According to the Christoffel-Darboux formula
for z 6= ξ, the kernel function can be written in closed form

(3.17) KN (z, ξ∗) = (1− zξ∗)−1
(

1−BN (ξ∗)BN (z)
)
.

`N,ξ(z) is a rational function in z of type (N − 1, N). Because of BN (z∗) = B∗N (z) = 1/BN (z),

`N,ξ(z) =
1− Ba

N (z)
Ba

N (ξ)

KN (ξ, ξ∗)(1− zξ∗)
.

From here and the definition of `N,ξ(z), we get that for zj , zk ∈ Za
N,u, zj 6= zk we have

`N,zj (zk) = δjk, so these functions, behave like the Lagrange interpolation polynomials. Con-
sequently, P ◦Nf has the following interpolation property

P ◦Nf(zk) =
∑

zj∈Za
N,u

KN (zk, z
∗
j )

KN (zj , z∗j )
f(zj) = f(zk), zk ∈ Za

N,u.

�

We consider `N,z∗ , the dual of `N,z . For these functions, we can prove the following orthog-
onality properties.

Theorem 3.5. Let 0 < |u| ≤ 1 be a parameter for which the set Za
N,u has N different elements. For

zj , zm ∈ Za
N,u, the functions `N,z∗ , and `N,z satisfy the following biorthogonality relation

1

2π

∫ 2π

0

`N,zj (eit)`N,z∗m(eit)dt =
1

KN (zm, z∗m)
δmj .
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In addition, `N,z satisfies the following discrete orthogonality relation:

[`N,zn , `N,zm ]a,u = δnm
1

Ka
N (zn, z∗n)

.

Proof.

〈`N,zj , `N,z∗m〉 =
1

2π

∫ 2π

0

`N,zj (eit)`N,z∗m(eit)dt

=
1

2π

∫ 2π

0

KN (eit, z∗j )

KN (zj , z∗j )

(
KN (eit, zm)

KN (z∗m, zm)

)
dt

=
1

2π

1

KN (zj , z∗j )KN (zm, z∗m)

∫ 2π

0

N∑
k=1

Φk(eit)Φk(z∗j )

N∑
k′=1

Φk′(eit)Φk′(zm)dt

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

N∑
k′=1

1

2π

∫ 2π

0

Φk(eit)Φk(z∗j )Φk′(eit)Φk′(zm)dt

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

N∑
k′=1

Φk(z∗j )Φk′(zm)
1

2π

∫ 2π

0

Φk(eit)Φk′(eit)dt

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

N∑
k′=1

Φk(z∗j )Φk′(zm)δkk′

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

Φk(z∗j )Φk(zm)

=
1

KN (zj , z∗j )KN (zm, z∗m)
KN (zm, z

∗
j ).

From here if zm = zj , then 〈`N,zm , `N,z∗m〉 = 1
KN (zm,z∗m) . If zm 6= zj , then

KN (zm, z
∗
j ) =

1−BN (zm)BN (z∗j )

1− zmz∗j
=

1−BN (zm)B∗N (zj)

1− zmz∗j
=

1− uu∗

1− zmz∗j
= 0.

We get that for every u ∈ D \ {0}

1

2π

∫ 2π

0

`N,zj (eit)`N,z∗m(eit)dt =
1

KN (zm, z∗m)
δmj .

If u ∈ T, then zj ∈ T for every j = 1, . . . , N , consequently `N,zj = `N,z∗j . In this case, we
have that the system

{
`N,zj , j=1,...,N

}
is orthogonal. If specially u = 1, then we get the result

of Szabó [19]. The discrete orhtogonality of the system
{
`N,zj , j = 1, . . . , N

}
is true for every

u ∈ D \ {0}. Indeed

[`N,zn , `N,zm ]a,u =
∑

zj∈Za
N,u

`N,zn(zj)`N,zm(zj)
1

Ka
N (zj , z∗j )

=
∑

zj∈Za
N,u

δnjδmj
1

Ka
N (zj , z∗j )

= δnm
1

Ka
N (zn, z∗n)

.
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�

Beside the interpolation property, PNf and P ◦Nf reconstruct f exactly in some cases if we
measure the function in the N interpolation points. Let us denote by Pk the space of poly-
nomials of degree at most k. Let us consider the polynomials of the following form: η(z) =∏N
n=1(1− zan) and the set

RN :=

{
p

η
: p ∈ PN−1

}
.

The system
ΦaN = {Φn, n = 1, . . . , N}

forms an orthonormal basis inRN :

RN = span{Φl, l = 1, . . . , N}.

For every f ∈ RN , we have f = PNf = P ◦Nf . Indeed, if f(z) =
N∑
k=1

ckΦk(z), the continuous

biorthogonality implies that

〈f,Φ?j 〉 =

N∑
k=1

ck〈Φk,Φ?j 〉 =

N∑
k=1

ckδkj = cj ,

from which we get that f = PNf . Similarly, from discrete biorthogonality, we get

[f,Φ?j ]a,u =

N∑
k=1

ck[Φk,Φ
?
j ]a,u =

N∑
k=1

ckδkj = cj ,

which implies that f = P ◦Nf .

3.2. Rational interpolation based on the dual of the Mamquist-Takenaka system on the up-
per half-plane and discrete biorthogonality. Recently Nagy-Csiha and Pap introduced the
dual system for the Malmquist-Takenaka system on the upper half-plane. It was proved that
these systems are also discrete biorthogonal with respect to the discrete inner product over a
set of discratization points in closed upper half-plane (see [14]). In this subsection, we prove
that on the discretisation nodes belonging to the closed upper half-plane, we can construct an
interpolation operator of type (N − 1, N).

First, we introduce the notations and we present a short summary of the discrete biorthogo-
nality of Malmquist-Takenaka and it’s dual on the upper half-plane. We consider the isometric
transform of the Malmquist-Takenaka and it’s dual to the upper half-plane. With straightfor-
ward computation, it is easy to see that for

ak = K(λk) =
i− λk
i+ λk

, λk ∈ C+, k = 1, . . . ,∞

the dual system of (2.11) is equal to

Ψ̃λ
1 (z) :=

i+ z

i+ z

√
=λ1√
π

z − λ1

=
i+ z

i+ z
Ψλ

1 (z),

Ψ̃λ
n(z) =

i+ z

i+ z

√
=λn√
π

z − λn

n−1∏
k=1

z − λk
z − λk

=
i+ z

i+ z
Ψλ
n(z).
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For arbitrary values of the variables ω and w from C+ and for any N , 1 ≤ N < ∞, the kernel
function corresponding to the system (2.11) and its dual can be written also in closed form as
follows [3]:

K̃N (ω,w) =

N∑
k=1

Ψλ
k(ω)Ψ̃λ

k(w) =

(
i+ w

i+ w

) N∑
k=1

Ψλ
k(ω)Ψλ

k(w) =
w − i
w − i

1− B̃N (w)B̃N (ω)

2iπ(w − ω)
, ω 6= w,

K̃N (ω, ω) =

N∑
k=1

Ψλ
k(ω)Ψ̃λ

k(ω) =:
1

ρ̃N (ω)
=
w − i
w − i

N∑
k=1

=λk
π(ω − λk)(ω − λk)

.

For ak = K(λk) = i−λk

i+λk
, we assume that the following equation has N different solutions

denoted by zk:

(3.18)
z − a1

1− a1z

z − a2

1− a2z
. . .

z − aN
1− aNz

= u, u ∈ D \ {0}.

We present the analogue of Theorem 3.3 for the upper half-plane. Let us consider tk, where
zk = K(tk) = i−tk

i+tk
is the solution of the equation (3.18), and the following set of nodes on the

closed upper half-plane

(3.19) CN = {tk : k = 1, . . . , N}.

Let us denote by ω = K−1(z) = i 1−z
1+z , w = K−1(ξ) = i 1−ξ

1+ξ , ak = K(λk) = i−λk

i+λk
, zk = K(tk) =

i−tk
i+tk

. Then

(3.20)

(
i 1−ξ

1+ξ − λk
i 1−ξ

1+ξ − λk
|1 + λ2

k|
1 + λ2

k

)
i 1−z

1+z − λk
i 1−z

1+z − λk
|1 + λ2

k|
1 + λ2

k

=

(
ξ − ak
1− akξ

)
z − ak
1− akz

.

According to (3.20) and the property w = K−1(ξ∗), we get

B̃N (w)B̃N (ω) = BN (ξ∗)BN (z).

From this and the definition of zk, it follows that

(3.21) B̃N (tj)B̃N (ti) = BN (z∗j )BN (zi) =
u

u
= 1.

Consider the following discrete scalar product:

〈F,G〉N =
∑
t∈CN

F (t)G(t)ρ̃N (t).

Theorem 3.6 (Nagy-Csiha, Pap, [14]). The finite collection of Ψλ
n, (1 ≤ n ≤ N) and Ψ̃λ

n, (0 ≤ n ≤
N) are discrete biorthogonal systems with respect to the scalar product

〈F,G〉N =
∑
t∈CN

F (t)G(t)ρ̃N (t),

namely
〈Ψλ

m, Ψ̃
λ
n〉N = δmn (1 ≤ m,n ≤ N).

For ω ∈ R, Ψλ
n(ω) = Ψ̃λ

n(ω). If we choose in the proof of the theorem u ∈ T, then the discreti-
sation points are all real numbers, i.e., tk ∈ R, k = 1, . . . , N , and from Theorem 3.6, we reobtain
Theorem 2.2 of Eisner and Pap [4]. For the Hardy space of the upper half-plane, it is possible
to introduce similar projection operators by using the biorthogonal systems (Ψn, Ψ̃n, n ∈ N∗).
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They are also biorthogonal with respect to the continuous measure on the real line. Indeed, for
t ∈ R, we have that Ψ̃λ

k(t) = Ψλ
k(t), consequently∫ ∞

−∞
Ψλ
n(t)Ψ̃λ

m(t)dt =

∫ ∞
−∞

Ψλ
n(t)Ψλ

m(t)dt = δmn.

Similarly as in the case of unit disc, we can consider the following projection operators:

QNf(t) =

N∑
k=1

〈f, Ψ̃λ
k〉Ψλ

k(t), t ∈ C+, f ∈ H2(C+),

Q•Nf(t) =

N∑
k=1

〈f,Ψλ
k〉Ψ̃λ

k(t), t ∈ C \ C+, f ∈ H2(C \ C+),

where

(3.22) 〈f, Ψ̃λ
k〉 = 〈f,Ψλ

k〉 =

∫ ∞
−∞

f(t)Ψλ
k(t)dt.

If t ∈ R, then the two projection operators are the same, QNf(t) = Q•Nf(t), and for t ∈ C+

we have i+t
i+t

QNf(t) = Q•Nf(t). In the previous section, we saw that QNf(z) is a rational inter-
polant of type (N−1, N) of f in λk, k = 1, . . . , N . WithQ•Nf(z), we can construct interpolation
for the analytic continuation of f (if this exists) outside of the disc with nodes λk, k = 1, . . . , N .
In the case of the upper half-plane, the discrete projection operator is the following:

Q◦Nf(t) =

N∑
k=1

〈f, Ψ̃λ
k〉NΨλ

k(t),

where

〈f, Ψ̃λ
k〉N =

N∑
tj∈CN

f(tj)Ψ̃λ
k(tj)

K̃N (tj , tj)
.

The question, whether Q◦Nf is an interpolation operator or not, naturally arises. In what fol-
lows, we will study the properties of this discrete projection operator.

Theorem 3.7. Assume that CN defined by (3.19) has N different elements. For every f ∈ C(C+),
the projection operator Q◦Nf is a Lagrange type rational interpolation operator of type (N − 1, N) at
tk ∈ CN , i.e.,

Q◦Nf(tk) = f(tk), tk ∈ CN .

Proof. Let us consider the kernel function of the discrete projection operator:

(3.23) K̃◦N (z, ξ) :=
N∑
k=1

Ψ̃λ
k(ξ)Ψλ

k(z) = K̃N (z, ξ).

The discrete projection can be expressed also by the kernel function, i.e.,

Q◦Nf(t) = 〈f(.), K̃◦N (t, .)〉N =
∑
tj∈CN

K̃N (t, tj)

K̃N (tj , tj)
f(tj).

Let us consider

qN,ξ(t) =
K̃N (t, ξ)

K̃N (ξ, ξ)
.
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If t 6= ξ, then

qN,ξ(t) =
ξ − i
ξ − i

1− B̃N (ξ)B̃N (t)

K̃N (ξ, ξ)2iπ(ξ − t)
.

If u 6= 0, then for tj , tk ∈ CN , according to (3.21), we have qN,tj (tk) = δik, so these ratio-
nal functions behave like the Lagrange interpolation polynomials. Consequently, the discrete
projection operator Q◦Nf has the following interpolation property

Q◦Nf(tk) =
∑
tj∈CN

K̃N (tk, tj)

K̃N (tj , tj)
f(tj) = f(tk), tk ∈ CN .

�

We introduce qN,t, the dual of qN,t. Similarly to the disc, a biorthogonal property and a
discrete orthogonality of these functions can be proved for these functions.

Theorem 3.8. Assume that CN defined by (3.19) has N different elements. For tj , tm ∈ CN , the
functions qN,tm , and `N,tj satisfy the following biorthogonality relation

〈qN,tj , qN,tm〉 =

∫ ∞
−∞

qN,tj (t)qN,tm(t)dt =
tm − i
tm − i

1

K̃(tm, tm)
δjm.

In addition, qN,tn satisfies the following discrete orthogonality relation:

〈qN,tn , qN,tm〉N = δnm
1

K̃N (tn, tn)
.

Proof. We have

〈qN,tj , qN,tm〉 =

∫ ∞
−∞

qN,tj (t)qN,tm(t)dt =

∫ ∞
−∞

K̃N (t, tj)

K̃N (tj , tj)

K̃N (t, tm)

K̃N (tm, tm)
dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

∫ ∞
−∞

K̃N (t, tj)K̃N (t, tm)dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

∫ ∞
−∞

N−1∑
k=0

Ψλ
k(t)Ψ̃λ

k(tj)

N−1∑
k′=0

Ψλ
k′(t)Ψ̃

λ
k′(tm)dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

N−1∑
k=0

N−1∑
k′=0

Ψ̃λ
k(tj)Ψ̃

λ
k′(tm)

∫ ∞
−∞

Ψλ
k(t)Ψλ

k′(t)dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

N−1∑
k=0

N−1∑
k′=0

Ψ̃λ
k(tj)Ψ̃

λ
k′(tm)δkk′

=
1

K̃N (tj , tj)K̃N (tm, tm)

N−1∑
k=0

Ψ̃λ
k(tj)Ψ̃

λ
k(tm)

=
1

K̃N (tj , tj)K̃N (tm, tm)

i+ tm
i+ tm

N−1∑
k=0

Ψ̃λ
k(tj)Ψ

λ
k(tm)

=
1

K̃N (tj , tj)K̃N (tm, tm)

i+ tm
i+ tm

K̃N (tm, tj).
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If tm 6= tj , then if u 6= 0, according to (3.21),

K̃N (tm, tj) =
tj − i
tj − i

1− B̃N (tj)B̃N (tm)

2iπ(tj − tm)
= 0.

Since

K̃N (tm, tm) =

N−1∑
k=0

Ψλ
k(tm)Ψ̃λ

ktm)

=

N−1∑
k=0

i+ tm
i+ tm

Ψ̃λ
k(tm)

i+ tm
i+ tm

Ψλ
j (tm)

=
i+ tm
i+ tm

tm − i
tm − i

N−1∑
k=0

Ψλ
k(tm)Ψ̃λ

k(tm)

=
i+ tm
i+ tm

tm − i
tm − i

K̃(tm, tm),

then for every u ∈ D \ {0}, we get∫ ∞
−∞

qN,tj (t)qN,tm(t)dt =
tm − i
tm − i

1

K̃(tm, tm)
δjm.

When the nodes tm are all on the real line, then tm = tm, we obtain that the system {qN,tj (t), tj ∈
CN} is orthogonal, and we reobtain the result proved by Eisner, Pap in [4]

〈qN,tn , qN,tm〉N =
∑
tj∈CN

K̃N (tj , tn)

K̃N (tn, tn)

(
K̃N (tj , tm)

K̃N (tm, tm)

)
1

K̃N (tj , tj)
= δnm

1

K̃N (tn, tn)
.

�

Beside the interpolation property QNf and Q◦Nf reconstruct exactly f in some cases if we
measure the function in the N interpolation points. If f has the form f(t) =

∑N
k=1 ckΨλ

k(t),
then the continuous biorthogonality implies that

〈f, Ψ̃λ
j 〉 =

N−1∑
k=0

ck〈Ψλ
k , Ψ̃

λ
j 〉 =

N−1∑
k=0

ckδkj = cj ,

therefore we get that f = QNf . From discrete orthogonality, we get that

[f, Ψ̃λ
j ]λ,u =

N−1∑
k=0

ck[Ψλ
k , Ψ̃

λ
j ]λ,u =

N−1∑
k=0

ckδkj = cj ,

which implies, that
f = Q◦Nf.
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