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Abstract — The concept of µ-statistical convergence of double and multiple se-
quences in topological vector space (tvs for short) valued cone metric spaces is in-
troduced in this paper. The relationships between µ-statistical convergence and con-
vergence in µ-density is investigated.
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1 Introduction
A very important subject of functional analysis “metric space” was first introduced by
Frechet [10, 11]. And there exists various generalizations of metric space in the literature
[28, 15]. The cone metric spaces are the one of these generalizations and it was explored
by Huang and Zhang in 2007 [15]. The generalization, metric space to cone metric space
was made by replacing real numbers with ordered Banach spaces. Cone metric spaces
were defined to generalize the fixed point theorems in metric spaces. Based on this study,
different types of fixed point theorems have been investigated [25, 9, 16, 19, 32]. In
2010, the concept of cone metric space over topological vector space (tvs for short) was
introduced by Du, for the first time [7]. It is shown that a kind of equivalence between
metric and cone metric spaces can be established by using the nonlinear scalarization
function [7]. After that, the studies on cone metric spaces continued as cone metric spaces
over tvs [14, 13, 26, 1]. Recently, Proinov [21] develop the unified theory for cone metric
spaces over a solid vector spaces. In recent years, various interesting generalizations of
cone metric spaces have been introduced based on different ideas. For more details we
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refer to [13, 34]. On the other hand, some basic properties of cone metric spaces are
introduced such as convergence and being Cauchy of sequences [15]. These results lead
to new studies especially on convergence and summability.

As it stated in [4], if the comparison of the sets of ordinary convergent and not ordinary
convergent sequences is done, it can be easily seen that the set of ordinary convergent se-
quences is very small. It is needed a new concept of convergence which includes ordinary
convergence. The first studies on this direction was proposed in [8] and independently
by [27] which introduce the notion of statistical convergence. At the following period
this notion has been studied by Šalát [24], Fridy [12] and many others [5, 6]. In 1990, a
new generalization of the concept of statistical convergence by using two valued ({0, 1})
complete measure µ defined on an algebra on N [2, 3]. These studies are pioneer for a
new research areas [29, 30, 31].

For double sequences, the concept of statistical convergence was first introduced by
Mursaleen and Edely [17] and Móricz [18] independently. Meanwhilee, Móricz investi-
gate the statistical convergence for multiple sequences [18]. The concept of µ−statistical
convergence of double sequences in metric spaces is studied by Das [4, 5]. The conver-
gence of double and multiple sequences is first studied in [23] and the concept of statistical
convergence is first investigated in cone metric spaces by [33, 23].

In this paper, we aim to extend results about the statistical convergence to the µ−statistical
convergence, convergence in µ−density and the relations between µ−statistical conver-
gence and convergence in µ−density of double and multiple sequences in tvs valued cone
metric spaces.

2 Preliminaries
Let E be a Hausdorff tvs with the zero vector θ. A subset P of E is called a (convex) cone
if

i. P is closed, non-empty and P 6= {θ},
ii. ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,

iii. P ∩ (−P ) = {θ}.

For a given cone P ⊂ E, we can define a partial ordering � with respect to P by x � y
if and only if y − x ∈ P . x ≺ y will stand for x � y and x 6= y, while x� y will stands
y−x ∈ intP , where intP denotes the interior of P . For x, y ∈ E such that x � y, the set

[x, y] = {z ∈ E : x � z � y}.

is called as order-interval.
A subset A of E is called as order-convex if [x, y] ⊂ A whenever x, y ∈ A and x � y.

Therefore, it is easy to see that order-intervals are convex.
Ordered topological vector space (E,P ) is order-convex if it has a base of neighbor-

hoods of θ consisting of order-convex subsets. In this case the cone P is said to be normal
[14].

The cone P is called regular if {xn} is a sequence such that

x1 � x2 � · · · � xn � · · · � y

2
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for some y ∈ E, then there is x ∈ E such that lim
n→∞
‖xn − x‖ = 0. It is easy to see that a

regular cone is normal cone [15].
If V is an absolutely convex and absorbent subset of a tvs E, its Minkowski functional

is defined from E to R by

x 7→ qV (x) = inf{λ > 0 : x ∈ λV }.

Assume that (E,P ) be an ordered tvs and e ∈ intP . Then order interval [−e, e] =
(P − e) ∩ (e − P ) = {z ∈ E : −e � z � e} is an absolutely convex neighborhood of
θ; its Minkowski functional q[−e,e] is denoted by qe. It can be easily seen that int[−e, e] =
(intP − e) ∩ (e − intP ). If P is solid and normal, qe is the norm on E. Moreover, it is
increasing function on P [14].

Definition 1. [7, 15, 14] Assume that X 6= ∅ and the mapping
d : X ×X → E satisfies the following conditions:

i. θ � d(y, z) for all y, z ∈ X and d(y, z) = θ if and only if x = y,

ii. d(y, z) = d(z, y) for all x, y ∈ X ,

iii. d(y, z) � d(y, w) + d(w, z) for all y, z, w ∈ X .

Then d is called as a cone metric on X , and (X, d) is called a cone metric space.

Throughout the paper, we denote dq = qe ◦ d as a composition of corresponding
Minkowski functional of the set [−e, e] and cone metric d.

Example 1. [15] Let E = R2, P = {(y, z) ∈ E : y, z ≥ 0}, X = R and d(y, z) =
(|y − z|, α|y − z|), where α ≥ 0 is a constant. (X, d) is a cone metric space.

Now, we recall some important definitions related to convergence double sequences.
The concept of convergence for double sequences was introduced by Pringsheim [20]. A
double sequence {xij}i,j∈N is said to be convergent in Pringsheim sense if for every ε > 0
there exists an n0 ∈ N such that |xij − L| < ε for every i, j ≥ n0 and L is called the
Pringsheim limit of {xij}i,j∈N. A double natural density of a set K ⊂ N × N = N2 is
defined as

δ2(E) = lim
n,m→∞

1

mn
|{i ≤ m and j ≤ n : (n,m) ∈ K}| ,

where vertical bars denote the cardinality of enclosed set. Therefore, a double sequence
{xij}i,j∈N is called as statistically convergent to ξ if for each ε > 0, the set

{(i, j) : |xij − ξ| ≥ ε for i ≤ m and j ≤ n}

has double natural density zero [17, 18]. The concept of µ-statistical convergence need
some extra knowledge except the notion of statistical convergence. The main element
measure µ and the definitions of µ-statistical convergence and convergence in µ−density
are as follows: The measure µ is assumed a complete, finite additive, two ({0, 1}) valued
measure defined on algebra Γ ⊂ P (N2) that contains all the subset of N2 and µ(B) = 0
if A is contained in the union of finite number of rows and columns of N2 as in the papers
[4, 5].

3
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Definition 2. [4] Let {xij}i,j∈N be double sequence of real numbers

i. {xij}i,j∈N is called as µ−statistically convergent to ξ if and only if for each ε > 0,

µ ({(i, j), i ≤ m and j ≤ n : |xij − ξ| ≥ ε}) = 0.

ii. {xij}i,j∈N is called as convergent in µ−density to ξ if there exists B ∈ Γ such that
{xij}(i,j)∈B is convergent to ξ.

Definition 3. [4] Let {xij}i,j∈N be double sequence of real numbers

i. {xij}i,j∈N is called as µ−statistically Cauchy sequence if and only if for each ε >
0 there exists B ⊂ N2 with µ(B) = 0 such that (i, j), (k, l) 6∈ B implies that
|xij − xkl| < ε.

ii. {xij}i,j∈N is called as Cauchy sequence in µ−density to ξ if there exists B ⊂ N2

with µ(B) = 1 such that {xij}(i,j)∈A is a ordinary Cauchy double sequence.

Ordinary and statistical convergence of multiple sequences in tvs valued cone metric
spaces have been introduced in [23]. Now, we are ready to introduce the main results.

3 Main Results
In this section, we give the definitions of the µ-statistically convergence and convergence
in µ-density of double sequences in tvs cone metric space. The relationship between
µ-statistically convergence and convergence in µ-density is investigated.

Definition 4. Let {xij}i,j∈N be a double sequence in a cone metric space (X, d). {xij}i,j∈N
is called as µ−statistically convergent to ξ ∈ X if for each pre-assigned c� θ, µ(B(c)) =
0 where B(c) = {(i, j) ∈ N2 : d(xij, ξ) � c}.

If a double sequence {xij}i,j∈N is µ-statistically convergent to ξ in a cone metric space
(X, d) then we write

µ− lim
i,j→∞

d(xij, ξ) = θ

where ξ is called as µ−statistical limit of the sequence {xij}i,j∈N.

Definition 5. Let {xij}i,j∈N be a double sequence in a cone metric space (X, d). {xij}i,j∈N
is called as convergent to ξ ∈ X in µ density if there exists a set B ∈ Γ with µ(B) = 1
such that {xij}(i,j)∈B is convergent to ξ in (X, d).

Definition 6. Let {xij}i,j∈N be a double sequence in a cone metric space (X, d). {xij}i,j∈N
is called as µ−statistically Cauchy sequence if and only if for every c ∈ E with c � θ
there exists anB ⊂ N2 with µ(B) = 0 such that (i, j), (i1, j1) 6∈ B implies d (xij, xi1j1) ≺
c.

Definition 7. Let {xij}i,j∈N be a double sequence in a cone metric space (X, d). {xij}i,j∈N
is called as Cauchy sequence in µ−density if and only if there exists an B ⊂ N2 with
µ(B) = 1 such that {xij}(i,j)∈B is a ordinary Cauchy double sequence.

4
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We now give an example of a µ−statistically convergent double sequence in tvs cone
metric spaces.

Example 2. Let d be a cone metric defined as d : R3 × R3 → (R2, P ), where P is the
first of the quadrant of the tvs R2. Assume that µ is a two valued measure on N2 such that
there exists B ⊆ N2 with µ(B) = 0 which is not contained in any finite union of rows and
columns of N2 and the double sequence {xij}i,j∈N is defined by

xij =

{
(i2j, i, ji) if (i, j) ∈ B,
(0, 0, 0) otherwise.

Let ξ = 0. Then for every c� θ{
(i, j) ∈ N2 : d(xij, ξ)� c

}
⊆ B.

Hence
µ
({

(i, j) ∈ N2 : d(xij, ξ)� c
})

= 0.

Thus we obtain
µ− lim
i,j→∞

d(xij, ξ) = 0.

but it is seen that the sequence {xij} is not converge (ordinary) to ξ. It is clear that if B
is contained in any finite union of rows and columns then µ(B) = 0 and the convergence
is also holds.

In a similar way, examples of double sequences which are convergent in µ−density
can be constructed in cone metric spaces. Now, introduce the following lemma which
characterize the convergence in tvs cone metric spaces.

Lemma 1. (X, d) be a tvs cone metric space, e ∈ int P , qe be the Minkowski functional
of [−e, e] and dq = qe ◦ d. Let {xij}i,j∈N be a double sequence in X . Then

i. {xij}i,j∈N is tvs cone converges to ξ if and only if dq(xij, ξ)→ 0 as i, j →∞,

ii. {xij}i,j∈N is tvs cone Cauchy sequence if and only if dq(xij, xnm)→ θ as (i, j, n,m→
∞)

Proof. i. Let ε > 0 choose c � θ such that qe(c) < ε. Then there exists N ∈ N such
that d(xij, ξ) � c for all i, j ≥ N . Since the Minkowski functional is monotone
dq (xij, ξ) = qe (d(xij, ξ)) ≤ qe(c) < ε.
Conversely, let dq (xij, ξ) = qe (d(xij, ξ)) converges to 0 and fix c ∈ intP . Then,
there exists δ > 0, such that qe(t) < δ implies c − t ∈ intP . For this δ there is N ,
such that for all i, j ≥ N , qe (d(xij, ξ)) < δ. Thus, c− d(xij, ξ) ∈ intP . This means
d(xij, ξ)� c. Hence {xij} converges to ξ.

ii. The proof is similar to i.

Now, we provide the following limit operation of double sequences in a cone metric
space (X, d) with µ−statistical sense.

5
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Theorem 1. (X, d) be a tvs cone metric space, e ∈ int P and qe be the Minkowski
functional of [−e, e]. And let {xij}i,j∈N and {yij}i,j∈N be a two double sequence in X and
{xij}i,j∈N is µ−statistical convergent to ξ and {yij}i,j∈N is µ−statistically convergent to
η. Then {d(xij, yij)}i,j∈N is µ−statistically convergent to d(ξ, η) as i, j →∞.

Proof. For every ε, choose c ∈ E with θ � c and qe(c) = ε. From xij → ξ and yij → η,
there exists N such that for all i, j > N , d(xij, ξ)� c and d(yij, η)� c. We have

d(xij, yij) � d(xij, ξ) + d(ξ, η) + d(yij, η)

Hence
d(xij, yij)− d(ξ, η) � d(xij, ξ) + d(xij, ξ)

and{
(i, j) ∈ N2 : qe (d(xij, yij)− d(ξ, η)) ≥ ε

}
⊂

{
(i, j) ∈ N2 : qe (d(xij, ξ)) ≥

1

2
ε

}
∪
{

(i, j) ∈ N2 : qe (d(yij, η)) ≥ 1

2
ε

}
Thus µ ({(i, j) ∈ N2 : qe (d(xij, yij)− d(ξ, η)) ≥ ε}) = 0 and the result follows.

Theorem 2. (X, d) be a tvs cone metric space, e ∈ int P and qe be the Minkowski
functional of [−e, e]. Let {xij}i,j∈N be convergent double sequence in µ-density then it is
µ−statistically convergent.

Proof. Let a double sequence {xij}i,j∈N be a convergent in µ−density. Then we have
B ⊆ N2 with µ(B) = 1 such that {xij}(i,j)∈B is a convergent. Then for every c ∈ E with
c � θ there exists k ∈ N such that d(xij, ξ) � c for all i, j ≥ k and (i, j) ∈ B. Clearly
d (xij, ξ)� c for all i, j ≥ k and (i, j) ∈ B. Thus we obtain {(i, j) ∈ N2 : d (xij, ξ)� c}
⊆ Bc ∪ F where F is the union of the first k rows and first k columns of N2 and so
µ ({(i, j) ∈ N2 : d (xij, ξ)� c}) = 0. Therefore we obtain the desired result.

Theorem 3. Let (X, d) be a tvs cone metric space and {xij}i,j∈N is a µ−statistically
convergent double sequence in (X, d) then it is µ−statistically Cauchy sequence in (X, d).

Proof. Analogously the proof of Theorem 3 in [23], let {xij}i,j∈N be µ-statistically con-
vergent to ξ. Then for every c� θ, such that qe(c) > ε the set

µ ({(i, j) : d(xij, ξ) � c}) = 0

Choose mε and nε such that d(xmcnc , ξ)� c. Let

Mc = {(i, j) : d (xij, xmcnc) � c}
Nc = {(i, j) : d(xij, ξ) � c}
Pc = {(i, j) : d (xmcnc , ξ) � c}

Then Mc ⊆ Nc ∪ Pc and therefore

µ(Mc) ≤ µ(Nc) + µ(Pc) = 0.

Hence, the desired result is obtained.

6
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Remark 1. The inverse of the Theorem 3 is not generally true. Let us consider X =
P [a, b] and standard metric onX . Let us construct the following double sequence {yij}i,j∈N
such that yi1(t) = 1, i ∈ N, yi2(t) = 1− t2

2
, i ∈ N, yi,3(t) = 1− t2

2!
+ t4

4!
, i ∈ N, . . . , yin(t) =

1− t2

2!
+ t4

4!
+ · · ·+(−1)n t2n

(2n)!
, n ∈ N, etc. It can be seen that {yij}i,j∈N is a double Cauchy

sequence and it is µ−statistically Cauchy for any measure µ but it is not µ−statistically
convergent in P [a, b].

Theorem 4. (X, d) be a tvs cone metric space. If {xij}i,j∈N is convergent in µ−density
in (X, d) then it also a double Cauchy sequence in µ−density in (X, d).

Proof. The proof is similar proof of Theorem 3.

Theorem 5. (X, d) be a tvs cone metric space. Every Cauchy double sequence in µ-
density is also µ−statistically Cauchy.

Proof. Assume that {xij}i,j∈N is a Cauchy double sequence in µ−density. Then we have
B ⊆ N2 with µ(B) = 1 such that {xij}(i,j)∈A is a Cauchy double sequence. Moreover, for
every c ∈ E with c� θ there exists m ∈ N such that d(xij, xkl)� c for all i, j, k, l ≥ m
and (i, j), (k, l) ∈ B. Choose (k0, l0) ∈ B with k0, l0 ≥ m. Clearly d (xij, xk0l0) � c
for all i, j ≥ m and (i, j) ∈ B. Hence {(i, j) ∈ N2 : d (xij, xk0l0) � c} ⊆ Bc ∪ F
where F is the union of the first m rows and first m columns of N2 and so we have
µ ({(i, j) ∈ N2 : d (xij, xk0l0) � c}) = 0. Therefore we obtain the desired result.

Theorem 6. Let (X, d) be a tvs cone metric space and x = {xij}i,j∈N be a double se-
quence in (X, d). x is µ−statistically Cauchy if and only if for every c � θ there exists
(k0, k0) ∈ N× N such that

µ
({

(i, j) ∈ N2 : d (xij, xk0k0)� c
})

= 1.

Proof. Let {xij}i,j∈N be a µ-statistically Cauchy sequence in cone metric space (X, d).
Then for every c � θ there exists an B ⊂ N2 with µ(B) = 0 such that (i, j) ,
(i1, j1) 6∈ B implies that d(xij, xi1j1) � c. Then if d(xij, xi1j1) � c for (i, j), (i1, j1) ∈
N2, then at least one of indices (i, j), (i1, j1) must be in A. Since Bc 6= ∅, choose
(m0, n0) ∈ Bc. Then d(xij, xm0n0) � c implies that (i, j) ∈ B. Hence we obtain
{(i, j) ∈ N2 : d(xij, xm0,n0) � c} ⊆ B, which implies the following results

µ
({

(i, j) ∈ N2 : d(xij, xm0n0) � c
})

= 0

and
µ
({

(i, j) ∈ N2 : d(xij, xm0n0)� c
})

= 1.

Suppose that for a given c� θ there exists (k0, k0) ∈ N2 such that

µ
({

(i, j) ∈ N2 : d (xij, xk0l0)� c
})

= 1.

Then there exists (k0, l0) ∈ N2 such that B =
{

(i, j) ∈ N2 : d(xij, xk0l0) � 1
2
c
}

with
µ(B) = 0. Let (i, j) , (i1, j1) 6∈ B. Then d(xij, xk0l0)� 1

2
c and d(xi1j1 , xk0l0)� 1

2
c and

consequently d(xij, xi1j1) � c. Thus {xij}i,j∈N is a µ− statistically Cauchy sequence.

Remark 2. The inverse of the Theorem 6 is not generally true. It can be seen by consid-
ering the example given in Remark 1.

7
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4 Generalization to Multiple Sequences
In this section, we give the definitions of µ− statistical convergence (convergence in
µ−density) and being µ−statistical Cauchy (Cauchy in µ density) sequence for n−tuple
sequences in tvs cone metric spaces analogously F. Moricz [18] and [23]. The definitions
and obtained results of double sequences can be extended to n−tuple sequences. Let n is
a fixed positive integer and Nn be the set of n−tuples j := (j1, j2, . . . , jn) with nonneg-
ative integers for coordinates ji. Two tuples j and m := (m1,m2, . . . ,mn) are distinct if
and only if ji 6= mi for at least on i. Nn is partially ordered by agreeing that j ≤ m if and
only if ji ≤ mi for each i = 1, . . . , n. Before defining the concept of µ−statistical conver-
gence and being µ−statistical Cauchy and convergence and being Cauchy in µ−density
for multiple sequences, we rearrange the definition of measure µ as follows: µ is as-
sumed a complete, finite additive, two ({0, 1}) valued measure defined on algebra Γ ⊂
P (Nn) that contains all the subset of Nn that are contained in the union of finite number
of sets such that {j ∈ Nn : j = (j1, j2, . . . , jk−1, jk = constant, jk+1 . . . , in), 1 ≤ k ≤ n}
and µ(B) = 0 if the set B is contained in the union of finite number of sets such that
{j ∈ Nn : j = (j1, j2, . . . , jk−1, jk = constant, jk+1 . . . , jn), 1 ≤ k ≤ n} as in Das’s pa-
pers [4, 5].

We say that a n-tuple sequence {xj}j∈Nn is µ-statistically convergent to ξ if for each
c� θ,

µ ({j ∈ Nn : d(xj, ξ) � c}) = 0 (4.1)

and {xj}j∈Nn is convergent to ξ ∈ X in µ density if there exists a set M ∈ Γ with
µ(M) = 1 such that {xj}j∈M is convergent to ξ in tvs cone metric space (X, d).

Furthermore, we say that {xj}j∈Nn is µ−statistically Cauchy if for each c ∈ E c � 0

there exists k := (k1, k2, . . . , kn) ∈ Nn and

µ ({j ∈ Nn : d(xj, xk) � c}) = 0, (4.2)

and {xj}j∈Nn is called as a Cauchy sequence in µ−density if and only if there exists an
B ⊂ Nn with µ(B) = 1 such that {xj}j∈B is a ordinary Cauchy n−tuple sequence in tvs
cone metric space (X, d).

Subsequently, it is possible to generalize the Theorems 1, 2, 3, 4, 5 and 6 to n−tuple
sequences which can be done by replacing the double indices by n−tuple indices.

5 Conclusion
In the study, the concepts of µ−statistical convergence and µ−density convergence of a
multiple sequence in a tvs valued cone metric space. Moreover, the notion of µ−statistical
Cauchy sequence and Cauchy sequence in -density is introduced and some important
results are established regarding these concepts.

The question of summability of multiple sequences in tvs valued cone metric spaces
left for future studies.
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