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Gürbüz, Burcu
Johannes Gutenberg-University Mainz, Institute of

Mathematics, Germany

i



Hammouch, Zakia
ENS Moulay Ismail University Morocco;
Thu Dau Mot University Vietnam and China Medical
University, Taiwan

Hristov, Jordan
University of Chemical Technology and Metallurgy

Bulgaria

Ibadula, Denis
Ovidius University of Constanta
Romania

Jafari, Hossein
University of Mazandaran, Iran;

University of South Africa, South Africa

Jajarmi, Amin
University of Bojnord
Iran

Jain, Shilpi
Poornima College of Engineering, Jaipur

India

Kaabar, Mohammed K.A.
Washington State University
USA

Kumar, Devendra
University of Rajasthan

India

Kumar, Sunil
National Institute of Technology
India

Lupulescu, Vasile
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Abstract

In this paper, we consider a modiőed SIR (susceptible-infected-recovered/removed) model that describes the evolution in time of
the infectious disease caused by Sars-Cov-2 (Severe Acute Respiratory Syndrome-Coronavirus-2). We take into consideration that
this disease can be both symptomatic and asymptomatic. By formulating a suitable mathematical model via a system of ordinary
differential equations (ODEs), we investigate how the vaccination rate and the fraction of avoided contacts affect the population
dynamics.

Key words: COVID-19; SIR model; asymptomatic cases; avoided contacts; vaccination effect
AMS 2020 Classiőcation: 34A34; 92D30; 92D25

1 Introduction

The mathematical epidemiology research area, related to modeling infectious diseases, began to develop in 1771 having Daniel Bernoulli as
one of the pioneers, [2]. The SIR models and their modiőed versions are simple tools that can be used to better understand the dynamics of
an epidemic, and they gave a signiőcant contribute also for Covid-19 (coronavirus-19 disease) pandemic. The global pandemic status, due
to Sars-Cov-2, has been declared, byWorld Health Organization, at the beginning of 2020, while the virus started to spread around the
globe already at the end of 2019 and beginning of 2020 [1].

In the last year an increasing amount of papers for modeling Covid-19 pandemic was published, only to cite few of them see [3]-[31]. The
modeling approach helped in a better understanding of the epidemic evolution, such as transmission dynamics of Covid-19 [17]-[19],
Covid-19 forecasting, [3], the importance of implementing population-wide interventions, [24]-[25], the role of asymptomatic individuals
in the disease transmission, [30]-[31], the vaccination effect on the pandemic outcome, [32]-[34], etc.

Motivated by the importance of a better understanding of the vaccination effect and of the non-pharmaceutical interventions (NPIs) on
the disease spreading, here, we consider an extended version of the already studied modiőed SIR model, [35], considering susceptible
individuals, infected individuals that can show symptoms (symptomatic) or not (asymptomatic), and recovered/removed individuals,
respectively. The model is characterized by assuming that the infection rate can change depending on NPIs. The novelty here is to consider
also the vaccination rate for the susceptible individuals. For a qualitative analysis of the model we compute the equilibrium points and
we study their stability by analyzing the Jacobianmatrix eigenvalues. We also compute the basic reproduction number. Moreover, for a
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quantitative analysis, via numerical simulation, we investigate how the fraction of avoided contacts and the vaccination rate affects the
model outcome, separately using one parameter bifurcation diagrams and jointly by approximating the two strain parameter surface.

The paper outline is as follows. In the őrst Section, we introduce the model describing all the hypothesis used to build it. In the second
Section, we compute a qualitative analysis of the model. In the third Section, via numerical simulations we investigate the importance of
both vaccination rate and the fraction of avoided contacts, respectively. Last we present the conclusions of the paper.

2 Mathematical model formulation

In this study we introduce a newmathematical model, generalizing the classical SIR model used to describe the transmission and evolution
in time of infectious diseases that leads to the immunization of the diseased individual, for the speciőc case of Sars-Cov-2. In the SIRmodel
we can distinguish three classes of individuals:

SusceptibleH(t) : healthy individuals that can get the disease.
Infected I(t) : individuals that are infected and can transmit the disease.
Removed R(t) : individuals that, after being infected, once they recover become immune to the disease, are isolated or died.

For Sars-Cov-2 transmission we consider two different subgroups of the infective classes:

Asymptomatic A(t) : infected individuals that does not present symptoms. We denote withφ the probability that the disease presents
itself in this form.

Symptomatic S(t) : infected individuals that present symptoms. The probability that the disease manifests itself in this form is 1 śφ.

From now on for simplicity we will abbreviate the newmodel with SASR (Susceptible-Asymptomatic-Symptomatic-Removed). We assume
to have a constant total population in time, N, this is reasonable for two reasons: (i) if we consider the beginning of the epidemic it means
that only a short interval of time will be considered; (ii) while if we consider a long time after the onset of the epidemic we can assume that
themortality rate due to the disease is lower and lower due to a better understanding of the virus and improvement of the effects of the cure.
We also consider the demographic parameters such as constant birth/immigration term,Ω, in the susceptible class and a mortality rate,
µN, due to other causes besides the disease, present in all the considered classes.
The infection rate take into consideration also the effect of non-pharmaceutical interventions (NPIs) by means of a parameterψ, the
fraction of avoided contacts, the infection rate readsβ = λ(1 śψ). Here we assume that the contact rate between susceptible and infected is
reduced thanks to NPIs adopted by individuals or by institutions, in order to avoid the contagion.
Once infected, a fraction 1 śφ of individuals can develop symptoms and the remaining onesφ stay asymptomatic. We also assume that the
asymptomatic individuals can develop symptoms at rate δ. Last, we assume that both asymptomatic and symptomatic individuals can
move in the removed class at rate γA and γS, respectively, and that exist a vaccine and the susceptible individuals can be vaccinated and get
a permanent immunity at rate µ.
Given the assumptions introduced above the model reads:

dH

dt
=Ω śβ

H(A + S)
N

ś µNH ś µH,

dA

dt
= φβ

H(A + S)
N

ś γAA ś µNA ś δA,

dS

dt
= (1 śφ)β

H(A + S)
N

ś γSS ś µNS + δA ś µSS,

dR

dt
= γAA + γSS ś µNR + µH,

(1)

withφ,ψ ∈ [0, 1]. In Figure 1, we have represented a sketch of the main interactions between the four classes of the SASRmodel.

H(t)

A(t)

S(t)

R(t)

φβ

µ

(1 śφ)β

γA

γS

δ

Figure 1. The diagram for the main interaction between the four classes of the SASRmodel, without considering the mortality rates and birth/immigration term.

3 Qualitative analysis of the model

Boundedness

It is important to establish that the variables cannot grow unbounded. We show now that the system’s trajectories remain within a compact
set. We consider the function

ϕ(t) = H(t) + A(t) + S(t) + R(t).
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Summing up the equations in (1), we then have

dϕ(t)
dt

+ µNϕ(t) =Ω ś µSS ⇔
dϕ(t)
dt

+ µNϕ(t) ≤Ω.

Sinceϕ(0) = N, we can solve the corresponding differential equation, and őnd that:

ϕ(t) ≤ max
{

Ω

µN
,N

}

,

which guarantees that every single variable must have the same upper bound as well.

Equilibrium points

In order to őnd the equilibrium points we assume a = γA + µN + δ, b = γS + µS + µN andW =
H(A + S)
N

in (1), and get the new simpliőed

version of the model by equating to zero the right hand side of the obtained model:







































Ω śβW ś µNH ś µH = 0,

φβW ś aA = 0,

(1 śφ)βW ś bS + δA = 0,

γAA + γSS ś µNR + µH = 0,

W =
H(A + S)
N

,

(2)

which is equivalent to



































































H =
Ω śβW
µN + µ

,

A =
φβW

a
,

S =
βW(a(1 śφ) + δφ)

ab
,

γA

(φβW

a

)

+ γS
(βW(a(1 śφ) + δφ)

ab

)

ś µNR + µ
(Ω śβW
µN + µ

)

= 0,

W =

(Ω śβW
µN + µ

)(φβW

a
+
βW(a(1 śφ) + δφ)

ab

)

N
.

(3)

Solving the last equation of (3) we get

W1 = 0

or

W2 =
śφβbΩ ś aβΩ + aβφΩ ś δφβΩ + Nab(µN + µ)

β2(śφb ś a + aφ ś δφ)
.

• ForW1 we get the disease free equilibrium (DFE)

E0 = (H0,A0, S0,R0) =
( Ω

µN + µ
, 0, 0,

µΩ

µN(µN + µ)

)

,

that is always feasible.
• ForW2 we get the coexistence equilibrium

E∗ = (H∗,A∗, S∗,R∗)

with

H∗ =
Nab

β(a(1 śφ) +φ(b + δ))
,

A∗ =
φ[βΩ(a(1 śφ) +φ(b + δ)) ś Nab(µN + µ)]

aβ(a(1 śφ) +φ(b + δ))
,

S∗ =
(a(1 śφ) + δφ)[βΩ(a(1 śφ) +φ(b + δ)) ś Nab(µN + µ)]

abβ(a(1 śφ) +φ(b + δ))
,

R∗ =
(bγAφ + γS(a(1 śφ) + δφ)[Ωβ(a(1 śφ) +φ(b + δ)) ś Nab(µN + µ)] ś µNa

2b2

µNabβ(a(1 śφ) +φ(b + δ))
.

Notice thatH∗ > 0, while
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A∗ > 0 ⇔
φ[βΩ(a(1 śφ) +φ(b + δ)) ś Nab(µN + µ)]

aβ(a(1 śφ) +φ(b + δ))
> 0,

solving the inequality for µwe get that

µ <
βΩ(a(1 śφ) +φ(b + δ))

Nab
ś µN

must hold. Assuming A∗ > 0 also S∗ > 0 and R∗ > 0 hold and the coexistence equilibrium E∗ is feasible.

Jacobianmatrix and characteristic polynomial

In order to study the stability of the equilibrium points we need to compute the eigenvalues of the Jacobian matrix associated to system (1),
evaluated at the equilibrium points. The Jacobian matrix is

J =



















śβ
(A + S)
N

ś µN ś µ śβ
H

N
śβ
H

N
0

φβ
(A + S)
N

φβ
H

N
ś a φβ

H

N
0

(1 śφ)β
(A + S)
N

(1 śφ)β
H

N
+ δ (1 śφ)β

H

N
ś b 0

µ γA γS śµN



















. (4)

We compute the characteristic polynomial associated to J by computing det(J ś xI), and we get

p(x) =
(śµN ś x)

N
·

[

Nx3 + x2(β(A + S ś H) + N(a + b + µN + µ))+

+ x(śβH(µN + µ + a(1 śφ) +φ(b + δ)) +β(A + S)(a + b) + N(ab + (µN + µ)(a + b)))+

śβH((µN + µ)(a(1 śφ) +φ(b + δ))) + abβ(A + S) + Nab(µN + µ)
]

. (5)

Substituting in (5) the values of E0 we get

p0(x) = (µN + x)(µN + µ + x)
[

x2 +
(

a + b ś
βΩ

N(µN + µ)

)

x + ab ś
βΩ[a(1 śφ) +φ(b + δ)]

N(µN + µ)

]

,

that has two negative eigenvalues x1 = śµN e x2 = ś(µN + µ). In order to have a stable DFE we should analyze the sign of the real parts of
the roots of the second degree polynomial

x2 +
(

a + b ś
βΩ

N(µN + µ)

)

x + ab ś
βΩ[a(1 śφ) +φ(b + δ)]

N(µN + µ)
. (6)

Notice that, ∀φ,ψ ∈ [0, 1], the two roots of (6) are real. Imposing the second and the third coefőcients of (6) to be positive and solving with
respect to the vaccination rate,µ, we get the condition

µ > max
{

βΩ

N(a + b)
ś µN,

βΩ[a(1 śφ) +φ(b + δ)]
Nab

ś µN

}

,

that guaranties that the second degree equation, (6), has two negative real roots and thus the stability of E0.
In analogues way we study the stability of the coexistence equilibrium. We evaluate the Jacobian matrix (4) at E∗ and we compute the
associated characteristic polynomial

p∗µ (x) = (µN + x)
(

x3 + a2x
2 + a1x + a0

)

(7)

with

a2 =
1
N

[

Nab

(a(1 śφ) +φ(b + δ))
+
βΩ(a(1 śφ) +φ(b + δ))

ab
+ N(a + b)

]

,

a1 =
1
N

[

śNab(µN + µ)
(a(1 śφ) +φ(b + δ))

+
[βΩ(a(1 śφ) +φ(b + δ))](a + b)

ab

]

,

a0 =
1
N

[

βΩ(a(1 śφ) +φ(b + δ)) ś Nab(µN + µ)
]

.

The root x1 = śµN is always negative while for the coexistence equilibrium to be stable the RouthśHurwitz criterionmust hold a0 > 0 (true
if the equilibrium is feasible), a2 > 0 (true) and a1a2 > a0.
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Table 1. Parameters of the model for data considering Italy. a [36](ISTAT 2018), bΩwas chosen such thatH(0) ≃ Ω/µN,
c [38], d [39], e Fitted using

data from [37].

Parameters Name Value Unit

N total population 60.36× 106 a human

Ω birth and immigration 633780 b human/day

λ infection rate 0.292 c dayś1

ψ fraction of avoided contacts test pure number

φ prob. of undergoing asympt. infection 0.5 d pure number

γA per capita recovery rate A 0.028 dayś1

γS per capita recovery rate S 0.028 e dayś1

µN mortality rate due to other causes 0.0105 a dayś1

µ vaccination rate test dayś1

δ transition from A→ S 0.067 d dayś1

µS mortality rate due Covid-19 0.0069 e dayś1

a γA + µN + δ 0.1055 dayś1

b γS + µS + µN 0.0454 dayś1

Basic reproduction number R0

The basic reproduction number, R0, is "the expected number of secondary cases produced, in a completely susceptible population, by a
typical infective individual", (e.g. [40]). The importance of R0 in the spreading of a disease is related to its value. The ideal scenario isR0 < 1,
in this case the infection cannot grow. This means that on average an infected individual produces less than one new infected individual
over the course of its infectious period. Conversely ifR0 > 1, the disease spread over the population, in fact each infected individual produces,
on average, more than one new infection. We compute the basic reproduction number using the next generation matrix technique, (for a
detailed description of the method see [40], [41]), and we get

R0 =
λ(1 śψ)Ω
(µN + µ)Nab

[

(1 śφ)a +φ(b + δ)
]

, (8)

where we used thatβ = λ(1 śψ). From (8) one can see that also in presence of the vaccine the epidemic can evolve and the stability of
the coexistence equilibrium is reached. In order to have the stability of the DFE the vaccination efőciencymust be greater than a certain
threshold

µ > (R0 ś 1)µN =
λ(1 śψ)Ω(a(1 śφ) +φ(b + δ))

Nab
ś µN . (9)

For values ofµ for which (9) does not hold the disease spread and the coexistence equilibrium stability is reached.

4 Numerical analysis of the model

In this section we will analyze, from a numerical perspective, how the vaccination rate and the fraction of avoided contacts affects the
solutions of the system of ordinary differential equations, deőned in (1). We also őnd the transcritical bifurcation value forµ őxing all the
other parameter values as in Table 1 andψ = 0. Assuming that µ = 0, no vaccination is available, we investigate the importance of the
fraction of avoided contact parameter,ψ. In Figure 2 are reported the solutions of system (1) for 5 different values ofψ in [0, 1] with step
0.2. Notice that ifψ = 1, meaning that the virus does not circulate and the infection rate is zero, the DFE become stable, on the other side
forψ = 0 no measures to avoid contact are taken and the coexistence equilibrium reach its stability. It is worth noting that increasing
the NPIs the maximum value of the peak in the asymptomatic and symptomatic populations not only decrease but is also shifted to the
right, so there is a delay which can give an advantage in those situations where the ICU (Intensive Care Units) are overloads. In Figure 3
we have plotted the six numerical solutions of the ODE system (1), őxing all the parameter values as in Table 1,ψ = 0 and µ assuming 6
different values in the interval [0, 0.5] with step 0.1. Notice that without a vaccine (µ = 0) both asymptomatic and symptomatic individuals
reaches their highest peak, with all the other solution pressed against the abscissa axis, though they are not zero. In fact in Figure 4 we have
reported a zoomed version of this two populations for values ofµmuch closer to 0, that conőrm the stability of the coexistence equilibrium
(for the őrst three lowest values) where the disease it is not yet eradicated and forµ = 0.06 the stability of the DFE. In Figure 5 we have
plotted one parameter bifurcation diagramwith respect toµ (left panel) andψ (right panel), respectively. Forµ ≃ 0.059 (or forψ ≃ 0.81) a
transcritical bifurcation arises and for system (1) the coexistence equilibrium interchanges its stability with the disease free equilibrium. In
Figure 6 we have represented a two strain parameter plot with respect to bothµ andψ. We can see that without vaccination the system
reach the DFE stability only for values of the fraction of avoided contact close to 1, that means strict measures are needed in order to have an
infection rate close to 0. Moreover if we assume that the fraction of avoided contacts is 0, which means no measures are taken, the DFE it is
stable for a vaccination rate higher than 0.06 (⩽ 17 days). In Figure 7 we represented the contour plots of the surfaces introduced in Figure
6.
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Figure 2. The numerical solutions of system (1) őxing all the parameter values as in Table 1,µ = 0 (no vaccination) andψ assuming 6 different values in the interval [0, 1]
with step 0.2. Top row: Susceptible individuals in time (left panel) and asymptomatic individuals in time (right panel). Bottom row: symptomatic individuals in time (left

panel) and recovered/removed individuals in time (right panel).

5 Conclusions

In this paper we have introduced a SASR (Susceptible-Asymptomatic-Symptomatic-Recovered/Removed)model to describe the dynamics
of four different classes of individuals where Sars-Cov-2 virus infection is considered. In this model we have also considered the vaccination
rate and a parameter in the infection rate that represent the avoided contacts between individuals due to NPIs. We computed the disease free
equilibrium and the coexistence equilibrium and analyzed their local stability. Moreover we have computed the basic reproduction number.

From the numerical investigation we can conclude that: (i) increasing the fraction of avoided contacts ψ leads to, not only to delay
the peak, but also to lower the maximum value, with a direct consequence on decreasing the pressure on the ICU; (ii) assuming to have an
efőcient vaccine with a permanent immunity, we found a critical value for the vaccination rate, bellowwhich the disease free equilibrium is
locally asymptotically stable, while if above this threshold we have the conőrmation that higher the efőciency of vaccine lower the peak of
infected individuals at the coexistence equilibrium. From the two strain parameter analysis we can conclude that both an efőcient vaccine
and a high fraction of avoided contacts lead to the stability of the disease free equilibrium, but also that higher the efőciency of the vaccine
smaller the fraction of avoided contact must be.
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Figure 3. The numerical solutions of system (1) őxing all the parameter values as in Table 1,ψ = 0 and µ assuming 6 different values in the interval [0, 0.5] with step 0.1. Top
row: Susceptible individuals in time (left panel) and asymptomatic individuals in time (right panel). Bottom row: symptomatic individuals in time (left panel) and

recovered/removed individuals in time (right panel).
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Figure 7. Contour plot of the surfaces represented in Figure 6.
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Abstract

In this paper, we present a mathematical model of stem cells and chemotherapy for cancer treatment, in which the model is
represented by fractional order differential equations. Local stability of equilibrium points is discussed. Then, the existence and
uniqueness of the solution are studied. In addition, in order to point out the advantages of the fractional order modeling, the
memory trace and hereditary traits are taken into consideration. Numerical simulations have been used to investigate how the
fractional order derivative and different parameters affect the population dynamics, the graphs have been illustrated according to
different values of fractional order α and different parameter values. Moreover, we have examined the effect of chemotherapy on
tumor cells and stem cells over time. Furthermore, we concluded that the memory effect occurs as the α decreases from 1 and the
chemotherapy drug is quite effective on the populations. We hope that this work will contribute to helping medical scientists take
the necessarymeasures during the screening process and treatment.

Key words: Fractional-order differential equations; cancer stem cells; immune system; numerical solutions; memory effect;
existence and uniqueness
AMS 2020 Classiőcation: 92D25; 26A33; 34A08

1 Introduction

Cancer is a general term that includes a wide range of diseases that can affect any part of the body. One of the distinguishing features of
cancer is the rapid generation of abnormal cells that grow outside their normal limits and can then invade neighboring parts of the body and
spread to other parts of it. Despite the scientiőc and technological development, cancer is a major cause of death worldwide, and it claimed
the lives of 10 million people in 2020. According to the World Health Organization (WHO), between 30% and 50% of cancer cases can be
prevented by avoiding risk factors for the disease to prevent it. The burden of cancer can also be reduced by detecting the disease early and
providing patients with adequate treatment and care, given that the chances of recovery frommany types of cancer increase if they are
diagnosed early and treated appropriately. Many researchers have described the interactions between the immune system especially effector
cells and tumor cells, where a mathematical modeling was used to clarify the relationship between them as in [1, 2, 3, 30, 31]. Recently,
researches were directed to study the effect of stem cell therapy to reduce the growth of tumor cells due to the importance of stem cells in
blood formation, as they grow into different types of blood cells such as red and white blood cells and platelets that contribute to stimulating
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the patient’s immune system and that were destroyed by Chemotherapy, radiotherapy, or both. A fractional-order model of tumor-immune
system interaction has been proposed in [4], and a Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells
has been given to understand themechanism that underlies AIDS-related cancers in [8]. As in [13, 14, 15, 16] the effectiveness of using
stem cells to boost the patient’s immune system has been shown, which may in the future be a treatment for most types of cancer. In this
work, we extend the study [17]. Taking into account the interaction of stem cells, tumor cells and chemotherapy for the treatment of cancer,
we propose a fractional-order instead of integer-order model to show how effective stem cells are in improving the immune system, which
in turn better őghts tumor cells [10, 11, 12, 18]. Many real life systems are described better by fractional differential equations, e.g. heat
equation, telegraph equation, social systems, medical imaging, pollution control, cancer dynamics, infectious diseases, and a lossy electric
transmission line are all involved with fractional order operators [8, 9, 18, 19]. We propose a model motivated byManar A. Alqudah’s work
[17], Manar presented a study of ordinary differential equations model that describes the stem cells and chemotherapy for treatment of
cancer to show how the stem cells support the effector cells which őghting the tumor cells to improve the immune system of the cancer
patient while the chemotherapy kills the infected cells. The mathematical model of treatment of cancer studied in [17] is presented by:
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= γ1S ś ksMS,
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p1ES
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dt
= śγ2M + V(t).

(1)

In the previous model S(t) stem cells, T(t) tumor cells, E(t) effector cells,M(t) chemotherapy concentration drug, and the initial conditions
are: S(0) = S0 , E(0) = E0 , T(0) = T0 , 0 ≤ t ≤ ∞ andM(0) = 0 if V0 = 0.

In our paper, the fractional order form of the model (1) is considered with the Caputo sense [20]. In addition, so that the system (1) is
dimensionally consistent: the units of measurement from the left- and right-hand sides of the equations agree. It has been achieved by
modifying the parameters involved in the right-hand side of the equations, e.g. raising them to powerα. The new system as follows:
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(2)

with the same initial conditions in (1) andα is the order of the model 0 < α ≤ 1.
The parameters description are summarized in Table 1. Some values are taken arbitrarily to easy solving the model numerically and the
others are taken from [17] to be compatible with the description of model (2). We assumed that all of the parameters to be non-negative
was γ1 non-positive as stated in [17].

Table 1. Parameter values used for numerical analysis

Parameters Description Values Reference

S0 Stem cells initial concentration 1 [17]
T0 Density of free tumors 1 [17]
E0 Effector cells initial concentration 1 [17]
M0 Chemotherapy concentration drug 1 [17]
V0 The time dependent external inŕux of chemotherapy drug 0.18 [17]
r Tumor growth rate 0 [17]
γ1 Decay rate of concentration of stem cells ś0.02825 [17]
γ2 Decay rate of chemotherapy drug 6.4 [17]
σ The rate of produced effector cells 0.17 [17]
µ The natural death rate of the effector cell 0.03 [17]
p1 Maximum rate of effector cells 0.1245 [17]
p2 Decay rate of effector cells killed by tumor cells and chemotherapy 1 [17]
p3 Decay rate of tumor cells killed by effector cells 0.9 [17]
b Carrying capacity of tumor cells 10ś9 [17]
ks Fractional stem cells killed by chemotherapy 1 [17]
kT Fractional tumor cells killed by chemotherapy 0.9 [17]
V(t) The time dependent external inŕux of chemotherapy drug 1 [17]

Motivated by the above discussion, the aim of this study is to investigate a fractional-order mathematical model of stem cell- cancer
cell- immune system interaction. The reason of using fractional order differential equations is that they are naturally related to systems
with memory which exists in cancer cells-immune system interactions. The most essential property of these models is their nonlocal
property which does not exist in the integer order differential operators. Mathematical models, using ordinary differential equations with
integer order have been proved valuable in understanding the dynamics of diseases. But, they have some limitations when compared with
the fractional order derivatives. Integer order derivatives only describe the instantaneous biological events. Fractional order’s nonlocal
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property says that the next stage of a model depends not only upon its current state but also upon all of its historical states. Therefore,
models with fractional order differential equations provide more advantages than integer order mathematical models. In this study, both
fractional modeling has been taken into account and estimated data have been used. Meanwhile, dimensional compatibility has been
considered in order to better reveal the effect of fractional-order in the proposed fractional-order stem cell-cancer cell-immune system
interaction. Additionally, we have aimed to point out the advantages of the fractional order modeling, taking into consideration the
memory trace and hereditary traits which are capable of integrating all past activities and taking into account the long-term history of
the system. In this context, it can be seen that the memory trace dynamics are highly dependent on time. When the fractional-orderα is
decreased from the unit, the memory trace nonlinearly increases from 0. Hence, the fractional-order system dynamics are quite different
from the integer-order dynamics. It is thought that there is no such study in the literature that deals with the stem cell-cancer relation-
ship, andmaking the fractional ordermodel dimensionally consistent, and taking into account thememory effect/hereditary characteristics.

The remaining part of this paper is prepared as follows. In Sec. (2), some deőnitions of a fractional order derivative (FOD) and some
important theorems for FODs are given. In Sec. (3), the existence and uniqueness conditions of the solutions are given. In Sec. (4), stability
theorems for the equilibrium points are examined. In Sec. (5), the numerical simulation and data analysis have been given. In Sec. (6), the
effects of the memory trace on the behaviour of the system (2) are examined. In Sec. (7), to investigate the effects of different parameter
values and different values ofα on the dynamic behavior of the proposed model, the numerical solutions have been carried out. Finally, the
Results and Discussion are given in Sec. (8).

2 Preliminaries

The fractional-order derivation and the fractional-order integration have many deőnitions such that the Riemann-Liouville deőnition,
Caputo deőnition, Hadamard fractional integral, Atangana-Baleanu fractional integral, Riesz derivative, and Generalized Functions
approaches [5, 7, 20, 26]. The most commonly used of these are Riemann-Liouville and Caputo deőnitions. Caputo reformulated the
deőnition of the RiemannśLiouville fractional derivative by switching the order of the ordinary derivative with the fractional integral
operator. By doing so, the Laplace transform of this new derivative depends on integer order initial conditions, differently from the initial
conditions when we use the RiemannśLiouville fractional derivative, which involves fractional order conditions, give a well understanding
of the properties of many physical phenomena whichmakes it applicable to the problems of our real world.

Deőnition 1 [20, 26] The fractional integral of orderα > 0, of the function f(t), t > 0 is given by

Iαf(t) =
∫ t

0

(t ś s)αś1

Γ(α)
f(s)ds.

and the fractional derivative of orderα ∈ (n ś 1,n) of f(t) , t > 0 is given by

Dαf(t) = InśαDnf(t) (D =
d

dt
).

Deőnition 2 [20] Let f : R+ → R continuous function. The Caputo fractional-order derivative is given by

CD
α
t0,tf(t) =

1
Γ(m ś α)

∫ t

0
(t ś τ)mśαś1f(m)(τ)dτ.

wherem ś 1 < α < m ∈ Z+. For the special case of0 < α < 1, we have

CD
α
0,tf(t) =

1
Γ(1 ś α)

∫ t

0
(t ś τ)śαf ′(τ)dτ.

For convenience, we use the notation CD
αf(t) instead of CD

α
0,tf(t) to denote the Caputo fractional-order derivative operator.

Theorem 1 [27, 28] If X∗ is the equilibriumpoint of system (2), then system (2) is

(1) Asymptotically stable ⇐⇒ all the eigenvaluesλi, i = 1, 2, . . . , n of the Jacobianmatrix J(X
∗) satisfy that |arg(λi)| >

απ
2 .

(2) Stable ⇐⇒ it is asymptotically stable or the eigenvaluesλi, i = 1, 2, . . . , n of J(X
∗) that satisfy |arg(λi)| =

απ
2 have the same geometric and

geometricmultiplicity forλi is 1 .

(3) Unstable ⇐⇒ eigenvaluesλi for some i = 1, 2, . . . , n of J(X
∗) satisfy |arg(λi)| <

απ
2 .

3 Existence and uniqueness

Consider system (2) with the initial conditions S(0) = S0, E(0) = E0, T(0) = T0, M(0) = 0 if V0 = 0. System (2) can be written in the
following form:

{

CD
αX(t) = B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ,

X(t0) = X0,
(3)
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where

X(t) =











S(t)
T(t)
E(t)
M(t)











, X(0) =











S(0)
T(0)
E(0)
M(0)











, B1 =











γα
1 0 0 0
0 rα 0 0
0 0 śµα 0
0 0 0 śγα

2











,

B2 =











0 0 0 śkαs
0 0 0 0
0 0 0 0
0 0 0 0











, B3 =











0 0 0 0
0 śbα 0 0
0 0 śpα2 0
0 0 0 0











, B4 =











0 0 0 0
0 śpα3 0 0
pα1
S+1 0 0 0
0 0 0 0











,

B5 =











0 0 0 0
0 śkαT 0 0
0 0 śpα2 0
0 0 0 0











, ϑ =











0
0
σα

V(t)











.

In view of [4, 25, 26] desired deőnitions for the existence and uniqueness are deőned as follows:

Deőnition 3 Let C∗[0,τ] be the class of continuous column vector X(t)whose components S,T,E,M ∈ C∗[0,τ] are the class of continuous
functions on the interval [0,τ]. The normof X ∈ C∗[0,τ] is given by

∥X∥ = sup
t
| eśNtS(t) | + sup

t
| eśNtT(t) | + sup

t
| eśNtE(t) | + sup

t
| eśNtM(t) |,

where N is a natural number andwhen t > δ ≥ m,wewrite C∗δ[0,τ] and Cδ[0,τ].

Deőnition 4 X ∈ C∗[0,τ] is a solution of IVP (3) if

(1) (t,X(t)) ∈ D, t ∈ [0,τ]whereD = [0,τ] × K, K = {(S,T,E,M) ∈ R4+ : |S| ≤ p, |T| ≤ r, |E| ≤ w, |M| ≤ q }; p, r,w, q ∈ R+ are
constants.

(2) X(t) satisőes (3).

Theorem 2 The solution X of IVP (3) is unique and X ∈ C∗[0,τ].

Proof From the properties of fractional calculus, Eq. (3) can be written as

I1śα
d

dt
X(t) = B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ.

Operating by Iα, we obtain

X(t) = X(0) + Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ). (4)

Now let F : C∗[0,τ]→ C∗[0,τ] deőned by

FX(t) = X(0) + Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ). (5)

Then

eśNt(FX ś FY) = eśNtIα(B1(X(t) ś Y(t)) + S(t)B2(X(t) ś Y(t)) + T(t)B3(X(t) ś Y(t)) + E(t)B4(X(t) ś Y(t)) +M(t)B5(X(t) ś Y(t)))

≤ | 1
Γ(α)

∫ t

0
(t ś s)αś1eśN(tśs)(X(s) ś Y(s)) eśNsds| (B1 + pB2 + rB3 +wB4 + qB5)

≤
(B1 + pB2 + rB3 +wB4 + qB5)|γ(α, u)|

Nα
∥X ś Y∥,

where γ(α, u) is the lower incomplete gamma function and u = t ś s. If we choose N such that Nα ≥ |γ(α, u)| B1 + pB2 + rB3 +wB4 + qB5,
then we obtain ∥FX ś FY∥ ≤ ∥X ś Y∥. Operator F in (5) has a őxed point. Thus, (4) has a unique solution X ∈ C∗[0,τ]. From (4) we have

X(t) = X(0) +
tα

Γ(α + 1)

(

B1X(0) + S(0)B2X(0) + T(0)B3X(0) + E(0)B4X(0) +M(0)B5X(0) + ϑ
)

+ Iα+1(B1X
′

(t) + S
′

(t)B2X(t)

+ S(t)B2X
′

(t) + T
′

(t)B3X(t) + T(t)B3X
′

(t) + E
′

(t)B4X(t) + E(t)B4X
′

(t) +M
′

(t)B5X(t) +M(t)B5X
′

(t).

eśNtX
′

= eśNt
[ tαś1

Γ(α)
(B1X(0) + S(0)B2X(0) + T(0)B3X(0) + E(0)B4X(0) +M(0)B5X(0) + ϑ) + Iα(B1X

′

(t) + S
′

(t)B2X(t)

+ S(t)B2X
′

(t) + T
′

(t)B3X(t) + T(t)B3X
′

(t) + E
′

(t)B4X(t) + E(t)B4X
′

(t) +M
′

(t)B5X(t) +M(t)B5X
′

(t)
]

.
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fromwhich we can deduce that X
′

∈ C∗σ[0,τ]. From (4) we get

dX

dt
=
d

dt
Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ).

Operating by I1śα we get

I1śα
dX

dt
= I1śα

d

dt
Iα(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + V(t)C + ϑ).

CD
αX(t) = B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ),

and

X(0) = X0 + I
α(B1X(t) + S(t)B2X(t) + T(t)B3X(t) + E(t)B4X(t) +M(t)B5X(t) + ϑ).

Therefore, Eq. (4) is equivalent to IVP (3). ■

4 Equilibrium points and stability analysis

To calculate the equilibrium points of system (2) let [29]



























CD
αS(t) = 0,

CD
αT(t) = 0,

CD
αE(t) = 0,

CD
αM(t) = 0.

Thus,































γ
α
1 S ś k

α
s MS = 0,

rα(1 ś bαT)T ś (pα3 E + k
α
TM)T = 0,

σ
α ś µ

αE +
pα1 ES

S + 1
ś pα2 (T +M)E = 0,

ś γ
α
2M + V(t) = 0.

Then the equilibrium points are:

Eq1 = (S1,T1,E1,M1) =(0, 0,
σαγα

2
pα2 V + γα

2 µ
α
,
V

γα
2
),

Eq2 = (S2,T2,E2,M2) =(0,
pα2 V(r

αbα ś kαT ) + r
αγα

2 (p
α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2 r

αbα
,

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 + b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 p
α
3 γ

α
2

,
V

γα
2
),

Eq3 = (S3,T3,E3,M3) =(0,
pα2 V(r

αbα ś kαT ) + r
αγα

2 (p
α
2 ś b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2 r

αbα
,

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 + b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 p
α
3 γ

α
2

,
V

γα
2
),

where a = ((kαTśr
αbα)pα2 Vśγ

α
2 r

α(pα2 +b
αµα), andequilibriumpointsmustverifyEq1, Eq2, Eq3 > 0. Hence, pα2 , p

α
3 ,µ

α ,γα
2 ,σ

α , rα , bα , V, kαT ∈
D1, whereD1 = {(pα2 , p

α
3 ,µ

α,γα
2 ,σ

α, rα, bα, V, kαT ) ∈ R9+ : Vk
α
T ś r

α(bα + γα
2 ) + σαγα

2 > 0} ∩ {(p
α
2 , p

α
3 ,µ

α,γα
2 ,σ

α, rα, bα, V, kαT ) ∈ R9+ :
(Vpα2 (k

α
T ś r

αbα) ś rαγα
2 (p

α
2 + b

αµα))2 ≥ 4σαbαpα2 p
α
3 γ

2α
2 }.

Theorem 3 Let Eq1 ∈ D1 be the equilibriumpoint of system (2) and the following conditions are valid:
γα
1 γ

α
2 < k

α
s V , (p

α
2 V + γα

2 µ
α)(γα

2 r
α + kαT V) < p

α
3 σ

αγ2α2 and pα2 V + γα
2 µ

α > 0.
Then Eq1 is locally asymptotically stable.

Proof The Jacobian matrix of the model (2) at Eq1 is

J(Eq1) =















γα
1 ś k

α
s
V
γα

2
0 0 0

0 rα ś pα3
σαγα

2
pα2 V+γ

α

2 µα
+ kαT

V
γα

2
0 0

pα1
σαγα

2
pα2 V+γ

α

2 µα
śpα2

σαγα

2
pα2 V+γ

α

2 µα
śµα ś pα2

V
γα

2
śpα2

σαγα

2
pα2 V+γ

α

2 µα

0 0 0 śγα
2















.

The characteristic equation is |J(Eq1)śλI| = 0. Hence, (γα
1 ś k

α
s
V
γα

2
śλ)(rαśpα3

σαγα

2
pα2 V+γ

α

2 µα
+ kαT

V
γα

2
śλ)(śγα

2 śλ)(śµαśpα2
V
γα

2
śλ) = 0.
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Eigenvalues of J(Eq1) are λ1 = γα
1 ś k

α
s
V
γα

2
, λ2 = rα ś pα3

σαγα

2
pα2 V+γ

α

2 µα
ś kαT

V
γα

2
, λ3 = śµα ś pα2

V
γα

2
, λ4 = śγ

α
2 . From the conditions we

have λi < 0 for i = 1, 2, 3, 4. Therefore, |arg(λi)| >
απ
2 . By Theorem (1), Eq1 is locally asymptotically stable. ■

Theorem 4 Let Eq2 ∈ D1 be the equilibriumpoint of system (2) and (pα2 , p
α
3 ,µ

α ,γα
2 ,σ

α , rα , bα ,V, kαT ) ∈ D1 ∩ (Q
∗ ∪ P∗) , where

Q∗ = {(pα2 , p
α
3 ,µ

α ,γα
2 ,σ

α , rα , bα , V, kαT ) ∈ R
9
+ : d

2, d1 ≥ 0 ,γα
1 γ

α
2 < k

α
s V and ((2b

α + pα2 )(d+ k
α
T p

α
2 V)r

αγα
2 ś b

αr3αγα
2 (b

αpα2 V ś p
α
2 γ

α
2 +

bαγα
2 µ

α)+r2αγα
2 (śp

2α
2 γα

2 +2b
2α(pα2 V+γ

α
2 µ

α)śbα(d+pα2 ((k
α
T +p

α
2 )V+γ

α
2 (2+µ

α))))śd1) < 0}. P∗ = {(pα2 , p
α
3 ,µ

α ,γα
2 ,σ

α , rα , bα , V, kαT ) ∈
R9+ : d

2 or d1 < 0 ,γα
1 γ

α
2 < k

α
s V and

Re( ((2bα + pα2 )(d + k
α
T p

α
2 V)r

αγα
2 ś b

αr3αγα
2 (b

αpα2 V ś p
α
2 γ

α
2 + b

αγα
2 µ

α) + r2αγ2(śp2α2 γα
2 + 2b

2α(pα2 V +γ
α
2 µ

α) ś bα(d + pα2 ((k
α
T + p

α
2 )V +

γα
2 (2 + µα)))) ś d1)) < 0},

whered =
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + (kα
T
pα2 V ś b

αpα2 r
αV ś pα2 r

αγα
2 ś b

αrαγα
2 µ

α)2 andd1 = (r2αγ2α2 ((śp
α
2 (d+k

α
T p

α
2 Vśp

α
2 r

αγα
2 )+b

2α(ś2+

rα)rα(pα2 V + γα
2 µ

α) + bα(d(ś2 + rα) ś 2kαT p
α
2 V + p

α
2 r

α((kαT + p
α
2 )V + γα

2 (2 ś r
α + µα))))2 ś 8bαpα2

(śk2αT p
2α
2 (ś2+r

α)V2ś2kαT p
α
2 r

αV(śpα2 (ś2+r
α)γα

2 +b
α(pα2 V+γ

α
2 µ

α))+rα(śp2α2 (ś2+r
α)rαγ2α2 +b2αr2α(pα2 V+γ

α
2 µ

α)2+2bαpα2 γ
α
2 (p

α
2 r

αVś
2σαpα3 γ

α
2 + r

αγα
2 µ

α)) + d(śkαT p
α
2 (ś2 + r

α)V + rα(pα2 (ś2 + r
α)γα

2 + b
αrα(pα2 V + γα

2 µ
α)))))).

Then Eq2 is locally asymptotically stable.

Proof The Jacobian matrix of the model (2) at Eq2 is

J(Eq2) =











γα
1 ś k

α
s
V
γα

2
0 0 0

0 j22 j23 j24
j31 j32 j33 j34
0 0 0 śγα

2











,

where

j22 =r
α ś

(

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

pα2 γ
α
2 r

α

)

ś

(

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 + b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2

ś kαT
V

γα
2

)

.

j23 = ś p
α
3

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2 r

αbα

j24 = ś k
α
T

pα2 V
α(rαbα ś kαT ) + r

αγα
2 (p

α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2 r

αbα
.

j31 =p
α
1

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 + b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 p
α
3 γ

α
2

.

j32 =j34 = ś
pα2 V(r

αbα ś kαT ) + r
αγα

2 (p
α
2 + b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα3 γ
α
2

.

j33 = ś µ
α ś p2

(

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2 r

αbα
+
V

γα
2

)

. (6)

The characteristic equation is |J(Eq2) ś λI| = 0. Hence,

(

γ
α
1 śk

α
s
V

γα
2
ś λ

)(

ś γ
α
2 ś λ

)

(

(

rα ś
pα2 V(r

αbα ś kαT ) + r
αγα

2 (p
α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

pα2 γ
α
2 r

α

ś
(pα2 V(r

αbα ś kαT ) + r
αγα

2 (p
α
2 + b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2

)

ś kαT
V

γα
2
ś λ

)

(

(

ś µ
α ś pα2 (

pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2 r

αbα
+
V

γα
2
ś λ

))

ś
pα2 V(r

αbα ś kαT ) + r
αγα

2 (p
α
2 ś b

αµα) ś
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2γα
2 r

αbα

(pα2 V(r
αbα ś kαT ) + r

αγα
2 (p

α
2 + b

αµα) +
√

ś4σαbαpα2 p
α
3 r

αγ2α2 + a2

2pα2 γ
α
2

)

)

= 0.
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Eigenvalues of J(Eq2) are λ1 = γα
1 ś k

α
s
V
γα

2
, λ2 = śγα

2 ,

λ3 =
1

(4bαpα2 r
2αγ2α2 )

((2bα + pα2 )r
α(d + kαT p

α
2 V)γ

α
2 ś b

αr3αγ
α
2 (b

αpα2 V ś p
α
2 γ

α
2 + b

α
γ
α
2 µ

α)+

r2αγ
α
2 (śp

2α
2 γ

α
2 + 2b

2α(pα2 V + γ
α
2 µ

α) ś bα(d + pα2 ((k
α
T + p

α
2 )V + γ

α
2 (2 + µ

α))))

ś√(r2αγ
2α
2 ((śp

α
2 (d + k

α
T p

α
2 V ś p

α
2 r

α
γ
α
2 ) + b

2α(ś2 + rα)rα(pα2 V + γ
α
2 µ

α) + bα(d(ś2 + rα)

ś 2kαT p
α
2 V + p

α
2 r

α((kαT + p
α
2 )V + γ

α
2 (2 ś r

α + µ
α))))2 ś 8bαpα2 (śk

2α
T p

2α
2 (ś2 + r

α)V2

ś 2kαT p
α
2 r

αV(śpα2 (ś2 + r
α)γα

2 + b
α(pα2 V + γ

α
2 µ

α))

+ rα(śp2α2 (ś2 + r
α)rαγ

2α
2 + b2αr2α(pα2 V + γ

α
2 µ

α)2 + 2bαpα2 γ
α
2 (p

α
2 r

αV ś 2σαpα3 γ
α
2 + r

α
γ
α
2 µ

α))

+ d(śkαT p
α
2 (ś2 + r

α)V + rα(pα2 (ś2 + r
α)γα

2 + b
αrα(pα2 V + γ

α
2 µ

α))))))).

λ4 =
1

(4bαpα2 r
2αγ2α2 )

((2bα + pα2 )r
α(d + kαT p

α
2 V)γ

α
2 ś b

αr3αγ
α
2 (b

αpα2 V ś p
α
2 γ

α
2 + b

α
γ
α
2 µ

α)

+ r2αγ
α
2 (śp

2α
2 γ

α
2 + 2b

2α(pα2 V + γ
α
2 µ

α) ś bα(d + pα2 ((k
α
T + p

α
2 )V + γ

α
2 (2 + µ

α))))

+√(r2αγ
2α
2 ((śp

α
2 (d + k

α
T p

α
2 V ś p

α
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From the conditions we have λi < 0 for i = 1, 2, 3, 4. Therefore, |arg(λi)| >
απ
2 by Theorem (1) and Eq2 is locally asymptotically stable. ■

Theorem 5 Let Eq3 ∈ D1 be the equilibrium point of system (2) and (pα2 , p
α
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α
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Then Eq3 is locally asymptotically stable .

Proof The Jacobian matrix of the model (2) at Eq3 is

J(Eq3) =
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The characteristic equation is |J(Eq3) ś λI| = 0. Hence,
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√
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Eigenvalues of J(Eq3) are λ1 = γα
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From the conditions we have λi < 0 for i = 1, 2, 3, 4. Therefore, |arg(λi)| >
απ
2 , and by Theorem (1), Eq3 is locally asymptotically stable. ■

5 A numerical technique for the proposed fractional-order model

In this section, numerical solution of system (3) is carried out using the Predictor-Corrector method of Adams-Bashforth-Moulton [32, 33]
for differentα ∈ (0, 1]. We implement the Caputo fractional operator to provide the numerical simulation of a nonlinear fractional order
system. The following Cauchy-type ODE is taken into account with respect to the Caputo operator of orderα:

CD
α
t D

α
t Φ (t) = f (t,Φ (t)) , Φ(k) (0) = Φ

k
0, 0 < α ≤ 1, 0 < t ≤ τ, (7)

where k = 0, 1, ...,n ś 1, and n = ⌈α⌉ . Equation (7) is equivalent to the following Volterra equation:

Φ (t) =
nś1∑

k=0

Φ
(k)
0
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k!
+

1
Γ (α)

∫ t

0
(t ś s)αś1 f (s,Φ (s)) ds. (8)

By considering this proposed predictor-corrector scheme associated with the Adam-Bashforth-Moulton algorithm [4, 6] to have the
numerical solutions of the proposed model, we can take h = τ/N, tz = zh, and z = 0, 1, ...,N ∈ Z+, by lettingΦz ≈ Φ (tz) , it can be
discretized as follows, i.e., the corresponding corrector formula [6]
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(

pz,q+1
) (

γ
α
1 Sz ś k

α
s MzSz

)

+
hα

Γ (α + 2)
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where

pz,q+1 =











qα+1 ś (q ś α) (q + 1)α , if z = 0,
(q ś z + 2)α+1 + (q ś z)α+1 ś 2 (q ś z + 1)α+1 , if 1 ≤ z ≤ q,
1, if z = q + 1.

(9)

Subsequently, the following step is to construct the coincident predictor formulaΦPFq+1. One can compute the proposed predictor formula as
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where

jz,q+1 = (q + 1 ś z)
α ś (q ś z)α .

6 Memory trace and hereditary traits

To examine the behaviour of the proposed model (2), we use the Caputo operator deőned in (2). Forα ∈ (0, 1] derivative, let the fractional
derivative of variableΦ (t) be

CD
α
t Φ (t) = φ (Φ (t) , t) . (10)

Utilizing the one of most common numerical methods, the L1 scheme [22, 23, 24, 21], the numerical approximation of the FOD ofΦ (t) is

CD
α
t Φ (t) ≈

(

dt
)śα

Γ (2 ś α)





Tś1∑

ρ=0

[

Φ
(

tρ+1
)

śΦ (tρ)
]

[

(T ś ρ)1śα ś (T ś 1 ś ρ)1śα
]



 . (11)

One of the most powerful numerical methods for discretizing the Caputo-FOD in time is L1 scheme. The purpose of implementing the L1
scheme in this research study is its memory term and convergence rate. Memory term is also explicitly present in other numerical methods,
but this memory integration term is more clearly deőned in the L1 scheme. Considering (10) and (11) together, the numerical solution of
Eq. (10) is as follows:

Φ (tT) ≈ CD
α
t Γ (2 ś α)H (Φ (t) , t) +Φ (tTś1) ś





Tś2∑

ρ=0

[

Φ
(

tρ+1
)

śΦ (tρ)
]

[

(T ś ρ)1śα ś (T ś 1 ś ρ)1śα
]



 .

Therefore, the solution of the FOD (fractional-order derivative) can be deőned as the difference between theMarkov term and the memory
trace. The Markov termweighted by the Gamma function is as follows:

Markov term = CD
α
t Γ (2 ś α)H (Φ (t) , t) +Φ (tTś1) . (12)

The memory trace (Φ-memory trace since it is related to variableΦ (t)) is

Memory trace =
Tś2∑

ρ=0

[

Φ
(

tρ+1
)

śΦ (tρ)
]

[

(T ś ρ)1śα ś (T ś 1 ś ρ)1śα
]

. (13)

Thememory trace is capable of integrating all past activities and takes into account the long-term history of the system. Forα = 1, the
memory trace is 0 for any time t. Memory trace dynamics is highly dependent on time. When the fractional-orderα is decreased from the
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Figure 1. Change of the cancer stem cells over time for the varying fractional-order derivative

unit, the memory trace nonlinearly increases from 0. Hence, the fractional-order system dynamics quite different from the integer order
dynamics.

7 Numerical simulations and data analysis

In this section, for the system (2), the numerical solutions are achieved using the Adams-Bashforth-Moulton Predictor-Corrector
method [34] for the parameters in Table 1. With the help of numerical simulations, we have investigated the effects of changes in
parameters on the system (2) and how different values of the fractional derivative α affect the behavior of the system. The parameter
values that have been used for numerical simulations are given in Table 1. In Fig. 1, the variation of cancer stem cells with time for different
fractional derivatives have been observed. As theα decreases from 1, that is, in the case of the Caputo fractional derivative, it takes a longer
time for the stem cells to reach the equilibrium point. In Fig. 2, the change of tumor cells with time for different fractional derivatives
have been observed. It has been seen that tumor cells disappear in a short time for the integer order case. In addition, since the fractional
derivative decreases from 1 to zero (does not equal to zero) , the amount of decrease in tumor cells per unit time also decreases. In Fig. 3,
it has been seen that the concentration of effector cells decreases in a short time, then their concentration suddenly increases and then
reaches the equilibrium point. In addition, asα decreases from 1, it takes a longer time for effector cells to reach the equilibrium point. In
Fig. 4, the variation of chemotherapy concentration drug with time for different fractional derivatives has been illustrated. It is understood
from Fig. 4 that, the fractional order predicts more chemotherapy concentration drugs. Moreover, in Figs. 5,6,7, the changes of tumor cells
and cancer stem cells with time have been investigated for different values of parameters. It is understood from Fig. 5 that as the γ2 (decay
rate of chemotherapy drug) increases, there is a signiőcant increase in the number of tumor stem cells. In addition, we vary the parameter
ks and keep other parameters őxed in order to explore the effects of this parameter in Fig. 6. From Fig. 6, it has been shown that as ks
decreases, the number of stem cells also increases. In addition, it is clear from Fig. 7 that as kT decreases, the number of tumor cells also
increases. We also explore the effect of the memory trace in Figs. 8,9,10, 11. One can conclude that whenα = 1, the memory effect in the
system is zero and as theα increases to 1 the memory effect of the system also emerges.

8 Results and discussion

In this paper, we have considered the Caputo fractional order cancer-immune systemmodel that is given as a systemof fractional differential
equations (2) which have Caputo fractional derivative. We explore the local asymptotic stability of the tumor-free and tumor-infection
őxed points of the system and we show that the equilibrium points of the model (2) is asymptotically stable under some certain conditions.
Then, we have examined the existence and uniqueness of the solution. Moreover, we have achieved the numerical simulations to verify
the theoretical results. In order to explore the effects of variation of the fractional order derivative and to examine the behavior of the
system, we have obtained the őgures for differentα values. It is seen that asα decreases from 1, the cells reach the equilibrium points
faster. In addition, we have investigated the effect of the memory trace, which is very important for biological models. When examining
the effects of the memory trace, it is seen that there is no memory effect forα = 1. However, asα decreases from 1, the memory effect of
the system emerges. From the őgures, we have concluded that the Caputo fractional derivative givesmore realistic results than integer
order derivatives. Although, there have beenmany studies that discuss the tumor-immune interaction in the literature, our model differs
from them in terms of exploring the interaction between stem cells, tumor cells, effector cells and chemotherapy concentration drugs. In
addition, also, it differs from other models in terms of the mathematical studies presented above.
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Figure 2. Change of the Tumor Cells over time for the varying fractional-order derivative
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Figure 3. Change of the effector cells over time for the varying fractional-order derivative
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Figure 4. Change of the Chemotherapy drug concentration over time for the varying fractional-order derivative
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Figure 6. Change of the stem cells over time for the varying ks values,α = 0.9
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Figure 8. Change of the stem cells over time for the varying fractional-order derivative
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Figure 9. Change of the effector cells over time for the varying fractional-order derivative
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Figure 10. Change of the tumor cells over time for the varying fractional-order derivative
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Figure 11. Change of the chemotherapy drug concentration over time for the varying fractional-order derivative
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Chemotherapy concentration drug plays an important role in the prevention of tumor growth. According to the results, if the chemotherapy
concentration drugs are high, then the tumor cells undergo a considerable loss. When the simulation results have been examined, it has
been observed that asα changes, the stem cells, the number of tumor cells, number of effector cells and chemotherapy concentration drug
also change signiőcantly. We hope that this study will make very high contributions to academics both dealing with mathematics and
working in the őeld of medicine.
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Abstract

Calcium is a vital element in our body and plays a crucial role to moderate the calcium signalling process. Calcium-dependent
protein and ŕux through the sodium-calcium exchanger are also involved in signalling process to perform and execute necessary
cellular activities. The loss or alteration in this cellular activity starts the early progress of Parkinson’s disease. Amathematical
calciummodel is developed in the form of the Hilfer fractional reaction-diffusion equation to examine the calcium diffusion in the
cells. The effect of calcium-dependent protein and ŕux through the sodium-calcium exchanger is incorporated in the model. The
solution of the Hilfer fractional calciummodel is obtained by using the Sumudu transform technique in the form of the Wright
function and Mittag-Lefŕer function. The graphical results are obtained for the different amounts of proteins, presence, and
absence of sodium-calcium exchanger, and various orders of Hilfer derivative. The obtained results show that themodiőed calcium
model is a function of time, position, and Hilfer fractional derivative. Thus the modiőed Hilfer calciummodel provides a rich
physical interpretation of a calciummodel as compared to the classical calciummodel.

Key words: Calcium; sodium-calcium exchanger; Parkinson’s disease; Hilfer fractional derivative; Sumudu transform
AMS 2020 Classiőcation: 26A33; 35Q92; 35R11; 92B05

1 Introduction

Neurons a main component of the brain also refer as nerve cells that transfer the message from the brain to other parts in the form of
electrochemical gradient and vice versa. The major part of a neuron is made by a combination of a cell body, axon, and dendrite. Dendrite is
a long tree like structure that receives information from the other neurons and is passed to the cell body. The cell body is a central part of
the neuron that analyzed the received information and prepared a necessary outcome. The axon received the outcomes and carries them to
other neurons. This is the basic life cycle of a typical neuron. Our brain consists of around 80-90 billion neurons so it made a complex
neuronal network to perform and execute cellular activities [1]. Besides neuron, astrocytes and glial cells are also supports andmoderate
the requisite cellular activities [2].

Calcium is also known as the secondmessenger and it is found in almost all kinds of nerve cells such as a neuron, astrocytes, oocytes, and
many others. Calcium diffusion is a very dynamic process in the cells to understand the calcium signalling phenomena. Calcium diffuses
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into the cell and reacts with protein, channels, pumps, andmany other cellular entities. Due to the complexity, we have incorporated the
ŕux through a sodium calcium exchanger in the presence of protein only. They diffused and produce the calcium depending protein as
per a requirement of the calcium signalling process. The cytosol feels like a full of free calcium then the calcium buffering phenomena
convert the level of free calcium into calcium dependent protein. That generated protein is utilized for fertilization, cell differentiation,
synaptogenesis, and so on [3, 4]. The sodium calcium exchanger is also one of the major sources to transform free calcium from the cytosol
to cells. They exchange three sodium ions against one calcium ion. That is three sodium ions enter into the cytosol and one calcium ion
exists from the cytosol. In the present study, we have considered the sodium calcium exchanger with an exchange ratio of 3Na+ : 1Ca++

[5, 6, 7]. The alteration in the process tomanage free calcium in the cells for long periodsmay result in various neurological diseases namely
Parkinson’s, Alzheimer’s, Amyotrophic lateral sclerosis, etc [8, 9]. Parkinson’s disease (PD) is a disorder of the nervous system strongly
associated with the dysfunction or alteration of calcium signalling. There is numerous factor associated with it such as environmental
effect, age, gene mutation, misfolded protein sequence, calcium homeostasis, etc [10, 11, 12].

Panday and Pardasani have employed the őnite elementmethod to study the role of sodium calcium exchanger on calcium diffusion in
oocytes cells [5]. Tewari and Pardasani have employed Gear’s method to study the role of sodium calcium exchanger, calcium channel,
plasmamembrane, sodium pump and buffer on calcium diffusion in neuron cells [6]. Jha et al. have employed the őnite elementmethod to
study the role of sodium calcium exchanger by considering a point source and line source of calcium ŕux on calcium diffusion in neuron
cells [7]. Also, there have been several experimental attempts that were performed in the past to identify the role and physiological impact
of sodium calcium exchangers on various cells [13, 14, 15, 16]. Beside this a researches has explored the role of parameters of calcium
toolkits on astrocytes [17, 18, 19, 20, 21, 22], neuron [23, 24, 25, 26, 27, 28, 29, 30], oocytes [31, 32], myocytes [33, 34, 35], hepatocytes
[36], and T lymphocytes cells [37, 38]. Thus a very little amount of work has attempted to study parameters of calcium toolkits by using
the fractional calculus approach. Also, the literature suggests that none of the researchers and scientists has studied the effect of sodium
calcium exchanger and protein on calcium diffusion and related to Parkinson’s disease. Therefore, in this paper, we have studied the role of
sodium calcium exchanger and calcium dependent protein on calcium diffusion by using the fractional calculus approach.

The fractional calculus is a generalization of the integer-order calculus and it provides more accurate results as compared to classical
calculus. Hence, it is widely used in mathematical modelling of science and engineering, medical, and almost all area of education
[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Nowadays, numbers of the fractional derivative are
available to deal with real-world problems such as Caputo derivative, Caputo-Fabrizio derivative, Atangana-Baleneu derivative, Hilfer
derivative, Weyl derivative, Conformable derivative and manymore. We have used the Hilfer fractional derivative in this study because it is
a generalization of the Caputo and Riemann-Liouville derivatives [61]. Also, there are a number of effective methods such as differential
transformmethod, double Laplace transform, Fourier transformmethod, Sumudu transformmethod, iterative method, Adomian de-
compositionmethod, homotopy transformmethod, andmanymore. We have used the Sumudu transformmethod in this study because
it is best to our problems and it provides a closed form solution of the calciummodel in terms ofWright function andMittag-Lefŕer function.

The structure of this study is as follows. In Section 2, we provide some basic deőnitions that are used in this study. In Section 3, we develop
amathematical formulation of the calciummodel then, wemodify themodel in the sense of the Hilfer fractional calciummodel. The results
are obtained in Section 4 for different amounts of calcium protein and sodium calcium exchanger. In the last Section 5, some conclusions
are derived from the proposed results.

2 Mathematical preliminaries

Themathematical model developed in the present study is solved by using the Hilfer fractional derivative and Sumudu transform technique.
The basic deőnitions of the Hilfer derivative and Sumudu transform are provided here that can be used to solve the model [61, 62, 63, 64].

Deőnition 1 The Riemann-Liouville fractional order integral for a function y(t) is deőned as

Iua(y(t)) =
1
Γ(u)

t∫

a

(t ś ξ)uś1y(ξ)dξ, (1)

where t > a, and R(u) > 0.

Deőnition 2 The Riemann-Liouville fractional order derivative for a function y(t) of order u is deőned as

RL
a D

u
t (y(t)) =

(

d

dt

)n

(Inśua y(t)), (2)

where R(u) > 0.

Deőnition 3 The Caputo fractional order derivative for a function y(t) of order u is deőned as

C
aD
u
t (y(t)) =











1
Γ(mśu)

t∫

a

ym(ξ)
(tśξ)u+1śm

dξ, m ś 1 < u ≤ m,

dm

dtm
y(t), u = m,

(3)

where R(u) > 0 andm ∈ N.



86 | MathematicalModelling andNumerical Simulationwith Applications, 2021, Vol. 1, No. 2, 84ś94

Deőnition 4 TheHilfer fractional derivative for a function y(t) is deőned as

H
a D
u,v
t (y(t)) = Iv(1śu)t

∂

∂t
(I(1śv)(1śu)t y(t)), 0 < u < 1, 0 ≤ v ≤ 1. (4)

Remark 1 TheHilfer fractional derivative is a generalization of the Riemann-Liouville and Caputo fractional deőnition. The Riemann-Liouville

and Caputo fractional deőnitions are recovered by setting v = 0 and v = 1 respectively in equation (4).

Deőnition 5 Let consider a set A over the function y(t) as

A = {y(t) : ∃M,τ1,τ2 > 0, |y(t)| < Me
t/τj , t ∈ (ś1)j × [0,∞)}, (5)

then the Sumudu transform of function y(t) over the set A is deőned as

S{y(t)} = Y(p) =

∞∫

0

1
p
e
ś tp y(t)dt, p ∈ (śτ1,τ2). (6)

Deőnition 6 The inverse Sumudu transform of function Y(p) is deőned as follows

Sś1{Y(p)} = y(t) =
1
2πi

γ+i∞∫

γśi∞

e
t
p Y(p)dp, (7)

whereγ ∈ R is a őxed number.

3 Mathematical formulation of the calciummodel

The calcium in the cytosol is diffuse with protein and produces a different chemical species that modulate the cellular process and is
represented by the chemical equation as

Ca2+ + Bi
k+
↔
kś
CaBi, (8)

where Ca2+ represents calcium ion, Bi represents the proteins calbindin-D28k, and CaBi represents the produced calcium dependent protein.

The calcium ŕow in the cell at any position and time is determined by the following partial differential equation [23, 31, 32, 33]

∂

∂t
[Ca2+] = DCa

∂2

∂x2
[Ca2+] +

∑

i

Ri + f . (9)

The rate of change of calcium is denoted by the őrst order derivative with time, the diffusion of calcium is denoted by the Laplacian operator,
DCa is the diffusion coefőcient, f denoted the calcium source from cellular entities, whereas the summation corresponds tomultiple proteins
and reaction term is a combination of chemical reactant and it is described as

Ri = śk
+[Bi][Ca

2+] + kś[CaBi]. (10)

The similar chemical reaction for the proteins and calcium dependent protein follows the Fickian diffusion mechanism and is deőned as
[65, 66]

∂

∂t
[Bi] = DB ·

∂2

∂x2
[Bi] + Ri, (11)

∂

∂t
[CaBi] = DCaBi ·

∂2

∂x2
[CaBi] ś Ri, (12)

where DB and DCaBi represent a diffusion coefőcient of proteins and calcium dependent protein, respectively.

Thus to identify the calcium ŕow in the cell at anymoment it is necessary to solve the given system of partial differential equation

∂
∂t [Ca

2+] = DCa
∂2

∂x2
[Ca2+] +

∑

i
Ri + f,

∂
∂t [Bi] = DB · ∂

2

∂x2
[Bi] + Ri,

∂
∂t [CaBi] = DCaBi ·

∂2

∂x2
[CaBi] ś Ri.

(13)
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Modiőed calciummodel in form of Hilfer fractional derivative

The classical model is replaced by Hilfer fractional model to catch the memory of cells that increase the complexity of a model but
simultaneously increase the accuracy of a model. The classical calciummodel (13) become as

H
0D
α,β
t [Ca2+](x, t) = DCa

∂2

∂x2
[Ca2+](x, t) +

∑

i
Ri + f(x, t),

H
0D
α,β
t [Bi](x, t) = DB · ∂

2

∂x2
[Bi](x, t) + Ri(x, t),

H
0D
α,β
t [CaBi](x, t)=DCaBi ·

∂2

∂x2
[CaBi](x, t) ś Ri(x, t),

(14)

where 0 < α < 1, 0 ≤ β ≤ 1.

Themolecular weight of calcium is very small as compared to proteins and calcium dependent proteins. Hence by using this assumption we
have DB = DCaBi = Di and we get the following equation

H
0D
α,β
t [Bi]T(x, t) = Di

∂2

∂x2
[Bi]T(x, t), (15)

where [Bi]T = [Bi] + [CaBi].

The background concentration of proteins and calcium dependent protein in the terms of a total concentration and dissociate constant are
given as [66]

[Bi]∞ =
K[Bi]T

K + [Ca2+]∞
, (16)

and

[CaBi]∞ =
[Ca2+]∞[Bi]T
K + [Ca2+]∞

, (17)

where K = kś/k+.

Thus by combining equations (15-17) the model (14) is converted to a Hilfer fractional reaction diffusion equation which is given as

H
0D
α,β
t [Ca2+](x, t) = DCa

∂2

∂x2
[Ca2+](x, t) ś

∑

i

k+i [Bi]∞([Ca
2+](x, t) ś [Ca2+]∞) + f(x, t), (18)

where 0 < α < 1, 0 ≤ β ≤ 1.

The sodium calcium exchanger ŕux is considered in the model whose electrochemical gradient is involved in the signalling phenomena.
There are two valence ions of calcium they provide the given equation [5, 6, 7]

∆µCa = ZFVm + RT ln
(

Cai
Cao

)

. (19)

Similarly, there is one valence ion of sodium they generate the following equation as a result of electrochemical gradient as

∆µNa = ZFVm + RT ln
(

Nai
Nao

)

. (20)

The exchange ratio of sodium and calcium ion is 3:1 that is three sodium ions enter into the cytosol and one calcium ion removed from the
cytosol. The mathematical expression of the sodium calcium exchange ratio is given as

3∆µNa = 1∆µCa. (21)

By combining the electrochemical gradient and sodium calcium exchange ratio the equation (19-21) becomes as

2FVm + RT ln
(

Cai
Cao

)

= 3FVm + 3RT ln
(

Nai
Nao

)

. (22)

The rearrangement of equation (22) gives us the following equation

Cai
Cao

=
(

Nai
Nao

)3
e
FVm
RT . (23)

Thus the mathematical expression for the sodium calcium ŕux becomes

fNCX = Cao
(

Nai
Nao

)3
e
FVm
RT , (24)
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where Cai,Cao,Nai and Nao are the intracellular and extracellular ŕux from the respective ions. By incorporating the ŕux through sodium
calcium exchanger into the model the equation (18) becomes

H
0D
α,β
t [Ca2+](x, t) = DCa

∂2

∂x2
[Ca2+](x, t) ś

∑

i

k+i [Bi]∞([Ca
2+](x, t) ś [Ca2+]∞) ś fNCX . (25)

The initial and boundary conditions of a problem are as

lim
x→0

(

śDCa
∂

∂x
[Ca2+]

)

= σCa,t > 0, (26)

lim
x→∞

(

[Ca2+]
)

= [Ca2+]∞,t ≥ 0, (27)

[Ca2+]
∣

∣

∣

t=0
= 0, 0 ≤ x <∞. (28)

For sake of simplicity the equation (25) rewritten as

H
0D
α,β
t C(x, t) = DCa

∂2

∂x2
C(x, t) ś ξ · C(x, t) +ψ, (29)

where 0 < α < 1, 0 ≤ β ≤ 1,ξ = k+[Bi]∞, andψ = k
+[Bi]∞C∞ ś Cao

(

Nai
Nao

)3
e
FVm
RT .

The corresponding initial and boundary condition are

lim
x→0

(

∂C

∂x

)

= ś
σCa
DCa

,t > 0, (30)

lim
x→∞

C(x, t) = C∞,t ≥ 0, (31)

C(x, 0) = 0, 0 ≤ x <∞. (32)

Applying Sumudu transform on both sides of equation (29) with respect to time then we get

sśαC̄(x, s) ś sś1+β(1śα)
0∑

k=0

∂k

∂xk

(

I(1śβ)(1śα)0 C(x, 0)
)

=DCa
∂2

∂x2
C̄(x, s) ś ξ · C̄(x, s) +ψ, (33)

Using the initial condition (32), equation (33) can be written as

sśαC̄(x, s) = DCa
∂2

∂x2
C̄(x, s) ś ξ · C̄(x, s) +ψ, (34)

The equation (34) can be rewritten as

∂2

∂x2
C̄(x, s) ś

1
DCa

(

sśαC̄(x, s) ś ξ · C̄(x, s) +ψ
)

= 0, (35)

Further simpliőcation of equation (35) lead us to the given equation

∂2

∂x2
C̄(x, s) ś

sśα ś ξ
DCa

C̄(x, s) ś
ψ

DCa
= 0, (36)

Thus the Sumudu transform of the equation (29) is obtained as

C̄(x, s) = C1 exp

(√

sśα ś ξ
DCa

)

x + C2 exp

(

ś

√

sśα ś ξ
DCa

)

x ś
ψ

sśα ś ξ
, (37)

By Applying the Sumudu transform on the boundary conditions (30-31), we get

∂

∂x
C̄(0, s) = ś

σCa
DCa

, (38)
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and

lim
x→∞

C̄(x, s) = 0. (39)

By using equations (38-39), equation (37) turns out to be

C̄(x, s) =
σCa
√

DCa
sα/2 exp

(

ś

√

sśα ś ξ
DCa

)

x ś
ψ

sśα ś ξ
, (40)

To invert the Sumudu transform of equation (40) we use the following inequalities [64]

Sś1
(

pα/2eśλp
śα/2

)

= tα/2W
(

ś
α

2
,
α

2
+ 1,śλtśα/2

)

, (41)

and

Sś1
(

pβś1

1 ś λpα

)

= tβś1Eα,β(λt
α), (42)

By using equations (41-42) the inverse Sumudu transform of equation (40) gives the following results

C(x, t) =
σCa
√

DCa
e

√

ξ

DCa tα/2W

(

ś
α

2
,
α

2
+ 1,ś

x
√

DCa
tśα/2

)

śψtαEα,α+1(ξt
α), (43)

whereW (α,β,γ) and Eα,β(z) are the Wright function andMittag-Lefŕer function for two parameters respectively [61, 62, 63].

4 Results and discussion

The numerical values for the physical parameters are given in Table 1 and are used in the computation of the calcium proőle.

Table 1. Values of physical parameters [5, 6, 7, 66]

Parameters Values of parameters

Diffusion coefőcient (DCa) 200-300 (µm2/s)
Buffer associate rate (k+) 75 (µMś1sś1)
Concentration of protein ([Bi]∞) 100-360 (µM)
Intracellular sodium ([Na+])i 12 (mM)
Extracellular sodium ([Na+])o 145 (mM)
Intracellular calcium ([Ca2+])i 0.1 (µM)
Extracellular calcium ([Ca2+])o 1.8 (mM)
Source amplitude of calcium (σCa) 1.4 (µMś1sś1)
Faraday’s constant (F) 96485 (C/mol)
Gas constant (R) 8.314 (J)
Temperature (T) 310 (oK)
Membrane potential (Vm) -0.06 (V)

The solution (43) of the modiőed calciummodel (14) in form of Hilfer fractional derivative is used to obtain a graphical calcium proőle for
low and high proteins level and sodium calcium exchanger. The calcium proőle simulated for the valuesDCa = 250µm

2/s, low protein level
[Bi]∞ = 120µM, high protein level [Bi]∞ = 340µM and for various values ofα in Figures 1 to 6. Figures 1-3 show variations of calcium
versus time for different biophysical parameters whereas Figures 4-6 show variations of calcium versus position for different biophysical
parameters.

In Figure 1 we show calcium proőle versus time near the source x = 0 for the low level of proteins level and presence of sodium calcium
exchanger. The calcium proőle is high for the lower values of fractional order up to 0.35 seconds then the calcium proőle is high for the
higher values ofα and after 0.7 seconds the calcium proőle achieves the steady level.

Figure 2 shows calcium proőle versus time near the source x = 0 for a high level of proteins and presence of sodium calcium exchanger. The
proőle suddenly attains the peak near 0.1 second due to high level of proteins then decrease gradually to attain a steady level. The peak
level of calcium proőle in őgure 2 is less compared to őgure 1. This happened due to high proteins reacting with calcium in cytosol and
producing calcium dependent protein that reduce the peak values of calcium proőle and protect the neuron cells from the high level of
calcium. A high level of calcium for large periods is toxic for cells and generates the symptoms of Parkinson’s disease.

Figure 3 represents the calcium proőle versus time for the low level of proteins level and absence of sodium calcium exchanger. The proőle
gradually rise and achieved a peak value due to low protein level. The proőle attains more peak values as compared to Figure 1 due to the
absence of sodium calcium exchanger as it removed the calcium from the cells against sodium. Thus the presence of sodium calcium
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Figure 1. Calcium proőle versus time for low amount of proteins at different values ofα
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Figure 2. Calcium proőle versus time for high amount of proteins at different values ofα

exchanger plays a signiőcant role in the presence of low proteins as high protein level reduces the signiőcance of sodium calcium exchanger.

In Figure 4 we show calcium proőle versus position for a t = 0.5 second at low proteins level and presence of sodium calcium exchanger. The
calcium proőle is high at the mouth of channels and slowly decrease as the position is increased. The proőle is high for large values ofα in
the cells as the fractional order decreases the calcium proőle also decreases and attains a steady level.

Figure 5 shows calcium proőle versus position at t = 0.5 second for high proteins level and presence of sodium calcium exchanger. The
proőle is high at the mouth of the channel due to the high level of proteins then decreasing gradually to attain a steady level. The peak level
of calcium proőle in őgure 5 is less compared to őgure 4. The physiological results for this are the same as given in őgure 2 that is high
level proteins react with calcium and produce calcium protein that reduces the calcium proőle and protect the cells from toxic level and
symptoms of Parkinson’s disease.

Figure 6 shows calcium proőle versus position for low proteins level and absence of sodium calcium exchanger. The proőle is at a peak
level at the beginning due to the absence of sodium calcium exchanger as it did not remove the free calcium from the cells. The absence
of sodium calcium exchanger and low proteins level results in an elevation in the calcium proőle. It is observed that the sodium calcium
exchanger is a good source of calciumŕux to control the free calcium level in the cells and ultimately protect cells against Parkinson’s disease.

The obtained results (43) show that the modiőed calciummodel (14) is a function of time, position and Hilfer fractional derivative. Also, the
graphical results show that the modiőed Hilfer calciummodel provides a rich physical interpretation of a calciummodel as compared to the
classical calciummodel.
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Figure 3. Calcium proőle versus time for low amount of proteins and in absence of sodium calcium exchanger at different values ofα
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Figure 4. Calcium proőle versus position for low amount of proteins at different values ofα
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Figure 5. Calcium proőle versus position for high amount of proteins at different values ofα
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Figure 6. Calcium proőle versus position for low amount of proteins and in absence of sodium calcium exchanger at different values ofα

5 Conclusion

Hilfer fractional calciummodel is a novel modiőcation of the classical calciummodel for neuron cells. We developed a Hilfer fractional
calciummodel to examine the role of calcium dependent protein, sodium calcium exchanger on calcium diffusion and related to Parkinson’s
disease. We obtained a closed form solution of the calciummodel in the terms of Wright function andMittag-Lefŕer function by using the
Sumudu transform technique and Hilfer fractional derivative. High level proteins react with the calcium in cytosol and produce calcium
dependent proteins that reduce the peak values of calcium proőle and protect the neuron cells from the high level of calcium. A high level of
calcium for large periods is toxic for cells and generates the symptoms of Parkinson’s disease. The signiőcant effect of sodium calcium
exchanger has been observed for the low level of calcium dependent protein. The calcium dependent protein and sodium calcium exchanger
play a crucial role to control the calcium level in the cytosol. Thus the amalgamation of the calcium dependent protein and sodium calcium
exchanger control the calcium level and provide protection to neuron cell from the toxicity produced by the Parkinsonic cells. Thus Hilfer
calciummodel provides a rich physical interpretation of a calciummodel as compared to the classical calciummodel. The presentmodel can
be extended by considering the ŕux through various calcium channels, pumps, and receptors. A novel fractional model will be developed by
considering the ŕux through all these parameters and expresses the obtained results with Parkinson’s disease.

Declarations

Consent for publication

Not applicable.

Conŕicts of interest

The authors declare that they have no conŕict of interests.

Funding

Not applicable.

Author’s contributions

H.J.: Conceptualization, Methodology, Investigation, Visualization, Writing, Software, Original draft preparation, Validation, Writing-
Reviewing and Editing. B.K.J.: Conceptualization, Supervision, Validation, Writing-Reviewing and Editing. All authors discussed the results
and contributed to the őnal manuscript.

Acknowledgements

The authors would like to thank the editor and reviewers for their fruitful comments and suggestions that improve the quality of the
manuscript.

References

[1] Squire L.R., Berg D., Bloom F. E., Du Lac S., Ghosh A., and Spitzer N. C., Fundamental Neuroscience, (Vol. 4). Elsevier Inc., (2012).
[2] Verkhratsky A. & Butt A. Glial neurobiology: a textbook, JohnWiley and Sons, (2007).



Joshi and Jha | 93

[3] Petersen, O.H., Michalak, M. & Verkhratsky A. Calcium signalling: past, present and future. Cell Calcium, 38(3-4), 161ś169, (2005).
[CrossRef]

[4] Clapham, D.E. Calcium Signaling.Cell, 131(6), 1047ś1058, (2007). [CrossRef]
[5] Panday, S. & Pardasani, K.R. Finite elementmodel to study effect of advection diffusion and Na +/Ca2+ exchanger on Ca2+ distribution

in oocytes. Journal ofMedical Imaging andHealth Informatics, 3(3), 374ś379, (2013). [CrossRef]
[6] Tewari, S.G. & Pardasani, K.R. Modeling effect of sodium pump on calcium oscillations in neuron cells. Journal ofMultiscaleModelling,

4(3), 1250010, (2012). [CrossRef]
[7] Jha, A., Adlakha, N. & Jha, B.K. Finite element model to study effect of Na+ - Ca2+ exchangers and source geometry on calcium

dynamics in a neuron cell. Journal ofMechanics inMedicine and Biology, 16(2), 1ś22, (2015). [CrossRef]
[8] Mattson, M.P. Calcium and neurodegeneration.Aging Cell, 6(3), 337ś350, (2007). [CrossRef]
[9] Bezprozvanny, I. Calcium signaling and neurodegenerative diseases.Trends inmolecularmedicine, 15(3), 89ś100, (2009). [CrossRef]
[10] Surmeier, D.J. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease.The Lancet Neurology, 6(10), 933ś938, (2007).

[CrossRef]
[11] Zaichick, S.V., McGrath, K.M. & Caraveo, G. The role of Ca2+ signaling in Parkinson’s disease.DiseaseModels &Mechanisms, 10(5),

519ś535, (2017). [CrossRef]
[12] Calì, T., Ottolini, D. & Brini, M. Calcium signaling in Parkinson’s disease.Cell and tissue research, 357(2), 439ś454, (2014). [CrossRef]
[13] Blaustein,M.P. & Lederer, W.J. Sodium/calcium exchange: Its physiological implications.Physiological Reviews, 79(3), 763ś854, (1999).

[CrossRef]
[14] Sato, D., Despa, S. &Bers, D.M. Can the sodium-calciumexchanger initiate or suppress calciumsparks in cardiacmyocytes? Biophysical

journal, 102(8), L31śL33, (2012). [CrossRef]
[15] Philipson, K.D. & Nicoll, D.A. Sodium-calcium exchange: a molecular perspective.Annual review of physiology, 62(1), 111ś133, (2000).

[CrossRef]
[16] Noble, D., Noble, S.J., Bett, G.C.L., Earm, Y.E., Ho, W.K. & So, I.K. The Role of Sodium - Calcium Exchange during the Cardiac Action

Potential a.Annals of the NewYork Academy of Sciences, 639(1), 334ś353, (1991). [CrossRef]
[17] Jha, B.K., Adlakha, N. &Mehta, M.N. Two-Dimensional Finite ElementModel To Study CalciumDistribution in Astrocytes in Presence

of VGCC and Excess Buffer. International Journal ofModeling, Simulation, and Scientiőc Computing, 4(2), 1250030, (2013).
[18] Jha, B.K. & Jha, A. Two dimensional őnite element estimation of calcium ions in presence of NCX and Buffers in Astrocytes. Boletim da

Sociedade Paranaense deMatemática, 36(1), 151ś160, (2018). [CrossRef]
[19] Jha, B.K., Jha, A. & Adlakha, N. Three-Dimensional Finite Element Model to Study Calcium Distribution in Astrocytes in Presence of

VGCC and Excess Buffer.Differential Equations andDynamical Systems, 28(3), 603ś616,(2020).
[20] Jha, B.K., Adlakha, N. &Mehta, M.N. Two-dimensional őnite elementmodel to study calcium distribution in astrocytes in presence of

excess buffer. International Journal of Biomathematics, 7(03), 1450031, (2014).
[21] Gill, V., Singh, Y., Kumar, D. & Singh, J. Analytical study for fractional Ordermathematicalmodel of concentration of Ca2+ in astrocytes

cell with a composite fractional derivative. Journal ofMultiscaleModelling, 11(3), 2050005, (2020). [CrossRef]
[22] Devi, A. & Jakhar, M. Analysis of Concentration of Ca2 + Arising in Astrocytes Cell. International Journal of Applied and Computational

Mathematics, 7(1), 1ś9, (2021). [CrossRef]
[23] Jha, A. & Adlakha, N. Two-dimensional őnite elementmodel to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and

SERCA. International Journal of Biomathematics, 8(01), 1550002, (2015). [CrossRef]
[24] Joshi, H. & Jha, B.K. Fractionally delineate the neuroprotective function of calbindin-28k in Parkinson’s disease. International Journal

of Biomathematics, 11(08), 1850103, (2018). [CrossRef]
[25] Joshi H. and Jha B. K. Generalized Diffusion Characteristics of CalciumModel with Concentration andMemory of Cells: A Spatiotem-

poral Approach. Iranian Journal of Science and Technology, Transactions A: Science, 1ś14, (2021). [CrossRef]
[26] Joshi, H. & Jha, B.K. On a reactionśdiffusion model for calcium dynamics in neurons with MittagśLefŕer memory.The European

Physical Journal Plus, 136(6), 1ś15, (2021). [CrossRef]
[27] Joshi, H.& Jha, B.K.Modeling the spatiotemporal intracellular calciumdynamics innerve cellwith strongmemoryeffects. International

Journal of Nonlinear Sciences andNumerical Simulation, (2021). [CrossRef]
[28] Joshi, H. & Jha, B.K. Fractional-order mathematical model for calcium distribution in nerve cells.Computational and AppliedMathe-

matics, 39(2), 1ś22, (2020). [CrossRef]
[29] Jha, B.K., Joshi, H. & Dave, D.D. Portraying the Effect of Calcium-Binding Proteins on Cytosolic CalciumConcentration Distribution

Fractionally in Nerve Cells. Interdisciplinary Sciences: Computational Life Sciences, 10(4), 674ś685, (2018). [CrossRef]
[30] Dave, D.D. & Jha, B.K. Mathematical Modeling of Calcium Oscillatory Patterns in a Neuron. Interdisciplinary Sciences: Computational

Life Sciences, 13(1), 12ś24, (2021). [CrossRef]
[31] Naik, P.A. & Pardasani, K.R. Finite elementmodel to study calcium distribution in oocytes involving voltage gated Ca2 + channel,

ryanodine receptor and buffers. Alexandria Journal ofMedicine, 52(1), 43ś49, (2016). [CrossRef]
[32] Naik, P.A. & Pardasani, K.R. Three-dimensional őnite elementModel to Study Effect of RyR Calcium Channel, ER Leak and SERCA

Pump on calcium distribution in oocyte cell. International Journal of ComputationalMethods, 16(01), 1850091, (2019). [CrossRef]
[33] Pathak, K. & Adlakha, N. Finite elementmodel to study two dimensional unsteady state calcium distribution in cardiacmyocytes.

Alexandria Journal ofMedicine, 52(3), 261ś268, (2016). [CrossRef]
[34] Chen, W., Aistrup, G., Wasserstrom J.A. & Shiferaw, Y. Amathematical model of spontaneous calcium release in cardiac myocytes.

American Journal of Physiology-Heart and Circulatory Physiology, 300(5), H1794-H1805, (2011). [CrossRef]
[35] Singh, N. & Adlakha, N. A mathematical model for interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte.

NetworkModeling Analysis in Health Informatics and Bioinformatics, 8(1), 1ś15, (2019). [CrossRef]
[36] Jagtap, Y. & Adlakha, N. Numerical study of one-dimensional buffered advectionśdiffusion of calcium and IP 3 in a hepatocyte cell.

NetworkModeling Analysis in Health Informatics and Bioinformatics, 8(1), 1ś9, (2019). [CrossRef]
[37] Naik, P.A. & Zu, J. Modeling and simulation of spatial-temporal calcium distribution in T lymphocyte cell by using a reaction-diffusion

equation. Journal of bioinformatics and computational biology, 18(2), 2050013, (2020). [CrossRef]
[38] Naik, P.A. Modeling the mechanics of calcium regulation in T lymphocyte: A őnite element method approach. International Journal of

Biomathematics, 13(05), 2050038, (2020). [CrossRef]

https://doi.org/10.1016/j.ceca.2005.06.023
https://doi.org/10.1016/j.cell.2007.11.028
https://doi.org/10.1166/jmihi.2013.1184
https://doi.org/10.1142/S1756973712500102
https://doi.org/10.1142/S0219519416500184
https://doi.org/10.1111/j.1474-9726.2007.00275.x
https://doi.org/10.1016/j.molmed.2009.01.001
https://doi.org/10.1016/S1474-4422(07)70246-6
https://doi.org/10.1242/dmm.028738
https://doi.org/10.1007/s00441-014-1866-0
https://doi.org/10.1152/physrev.1999.79.3.763
https://doi.org/10.1016/j.bpj.2012.03.051
https://doi.org/10.1146/annurev.physiol.62.1.111
https://doi.org/10.1111/j.1749-6632.1991.tb17323.x
https://doi.org/10.5269/bspm.v36i1.29137
https://doi.org/10.1142/S1756973720500055
https://doi.org/10.1007/s40819-020-00944-w
https://doi.org/10.1142/S1793524515500023
https://doi.org/10.1142/S1793524518501036
https://doi.org/10.1007/s40995-021-01247-5
https://doi.org/10.1140/epjp/s13360-021-01610-w
https://doi.org/10.1515/ijnsns-2020-0254
https://doi.org/10.1007/s40314-020-1082-3
https://doi.org/10.1007/s12539-016-0202-7
https://doi.org/10.1007/s12539-020-00401-8
https://doi.org/10.1016/j.ajme.2015.02.002
https://doi.org/10.1142/S0219876218500913
https://doi.org/10.1016/j.ajme.2015.09.007
https://doi.org/10.1152/ajpheart.01121.2010
https://doi.org/10.1007/s13721-019-0198-0
https://doi.org/10.1007/s13721-019-0205-5
https://doi.org/10.1142/S0219720020500134
https://doi.org/10.1142/S1793524520500382


94 | MathematicalModelling andNumerical Simulationwith Applications, 2021, Vol. 1, No. 2, 84ś94

[39] Yavuz, M., Coşar, F.Ö., Günay F., & Özdemir, F.N. A newmathematical modeling of the COVID-19 pandemic including the vaccination
campaign. Open Journal ofModelling and Simulation, 9(3), 299ś321, (2021). [CrossRef]

[40] Özkose, F. & Yavuz M. Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case
study in Turkey. Computers in biology andmedicine, 105044, (2021). [CrossRef]

[41] Abboubakar, H., Kumar, P., Erturk V.S. & Kumar, A. A mathematical study of a tuberculosis model with fractional derivatives.
International Journal ofModeling, Simulation, and Scientiőc Computing, 2150037, (2021). [CrossRef]

[42] Kumar, P. & Erturk, V.S. Environmental persistence inŕuences infection dynamics for a butterŕy pathogen via new generalised
Caputo type fractional derivative. Chaos, Solitons & Fractals, 144, 110672, (2021). [CrossRef]

[43] Abboubakar, H., Kumar, P., Rangaig, N.A. & Kumar, S. Amalaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives.
International Journal ofModeling, Simulation, and Scientiőc Computing, 12(2), 2150013, (2021). [CrossRef]

[44] Abu-Shady, M. & Kaabar, M.K. A Generalized Deőnition of the Fractional Derivative with Applications.Mathematical Problems in
Engineering, 2021, (2021). [CrossRef]

[45] Debbouche, N., Ouannas, A., Batiha, I.M., Grassi, G., Kaabar, M.K., Jahanshahi, H., ... & Aljuaid, A.M. Chaotic Behavior Analysis of a
New Incommensurate Fractional-Order Hopőeld Neural Network System. Complexity, 2021, (2021). [CrossRef]

[46] Mohammadi, H., Kaabar, M.K.A, Alzabut, J., Selvam, A. & Rezapour, S. A Complete Model of Crimean-Congo Hemorrhagic Fever
(CCHF) Transmission Cycle with Nonlocal Fractional Derivative. Journal of Function Spaces, 2021, (2021). [CrossRef]

[47] Kumar, P., Erturk, V.S., Banerjee, R., Yavuz, M. & Govindaraj, V. Fractional modeling of plankton-oxygen dynamics under climate
change by the application of a recent numerical algorithm. Physica Scripta, 96(12), 124044, (2021). [CrossRef]

[48] Bonyah, E., Yavuz, M., Baleanu, D. & Kumar, S. A robust study on the listeriosis disease by adopting fractal-fractional operators.
Alexandria Engineering Journal, 61(3), 2016-2028, (2021). [CrossRef]

[49] Veeresha, P. A Numerical Approach to the Coupled Atmospheric Ocean Model Using a Fractional Operator.MathematicalModelling and
Numerical Simulationwith Applications (MMNSA), 1(1), 1ś10, (2021). [CrossRef]

[50] Erturk, V.S., Godwe, E., Baleanu, D., Kumar, P., Asad, J. & Jajarmi, A. Novel Fractional-Order Lagrangian to Describe Motion of Beam
on Nanowire. Acta Physica Polonica, A., 140(3), 265ś272, (2021). [CrossRef]

[51] Allegretti, S., Bulai, I.M., Marino, R., Menandro, M.A. & Parisi, K. Vaccination effect conjoint to fraction of avoided contacts for a
Sars-Cov-2 mathematical model.MathematicalModelling andNumerical Simulationwith Applications (MMNSA), 1(2), 56ś66, (2021).
[CrossRef]

[52] Hammouch, Z., Yavuz, M. & Özdemir N. Numerical Solutions and Synchronization of a Variable-Order Fractional Chaotic System.
MathematicalModelling andNumerical Simulationwith Applications (MMNSA), 1(1), 11ś23, (2021). [CrossRef]

[53] Naik, P.A., Yavuz, M., Qureshi, S., Zu, J. & Townley, S. Modeling and analysis of COVID-19 epidemics with treatment in fractional
derivatives using real data from Pakistan. The European Physical Journal Plus, 135(10), 1-42, (2020). [CrossRef]

[54] Dasbasi, B. Stability Analysis of an Incommensurate Fractional-Order SIR Model.MathematicalModelling andNumerical Simulation
with Applications (MMNSA), 1(1), 44ś55, (2021). [CrossRef]

[55] Yokuş, A. ConstructionofDifferentTypesofTravelingWaveSolutionsof theRelativisticWaveEquationAssociatedwith theSchrödinger
Equation.MathematicalModelling andNumerical Simulationwith Applications (MMNSA), 1(1), 24ś31, (2021). [CrossRef]

[56] Kumar, P., Erturk, V.S., Yusuf, A. & Kumar, S. Fractional time-delaymathematical modeling of Oncolytic Virotherapy. Chaos, Solitons &
Fractals, 150, 111123, (2021). [CrossRef]

[57] Kumar, P., Ertürk, V.S. & Nisar, K.S. Fractional dynamics of huanglongbing transmission within a citrus tree.MathematicalMethods in
the Applied Sciences, 44(14), 11404ś11424, (2021). [CrossRef]

[58] Kumar, P., Erturk, V.S., Yusuf, A., Nisar, K.S. & Abdelwahab, S.F. A study on canine distemper virus (CDV) and rabies epidemics in the
red fox population via fractional derivatives. Results in Physics, 25, 104281, (2021). [CrossRef]

[59] Odibat, Z., Erturk, V.S., Kumar, P. & Govindaraj, V. Dynamics of generalized Caputo type delay fractional differential equations using a
modiőed Predictor-Corrector scheme.Physica Scripta, 96(12), 125213, (2021). [CrossRef]

[60] Kumar, P., Erturk, V.S. & Almusawa, H. Mathematical structure of mosaic disease using microbial biostimulants via Caputo and
AtanganaśBaleanu derivatives. Results in Physics, 24, 104186, (2021). [CrossRef]

[61] Hilfer, R.Applications of Fractional Calculus in Physics, World Scientiőc: Singapore, (2000).
[62] Oldham, K.B. & Spanier, J.The Fractional Calculus: Theory and Applications of differentiation and integration of arbitrary Order, Elsevier,

(2006).
[63] Podlubny, I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, tomethods of their

solution and some of their applications, (Vol.1), Academic Press, Elsevier, (1998).
[64] Watugala, G.K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems.

International Journal ofMathematical Education in Science and Technology, 24(1), 35ś43, (1993). [CrossRef]
[65] Crank, J. TheMathematics of Diffusion, (Vol.2), Oxford University Press: Oxford, (1975).
[66] Sherman, A., Smith, G.D., Dai, L. &Miura, R.M. Asymptotic analysis of buffered calcium diffusion near a point source. SIAM Journal on

AppliedMathematics, 61(5), 1816ś1838, (2001). [CrossRef]

Mathematical Modelling and Numerical Simulation with Applications (MMNSA) (http://www.mmnsa.org)

Copyright: © 2021 by the authors. This work is licensed under a Creative Commons Attribution 4.0 (CC BY) International License.
The authors retain ownership of the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute,
and/or copy articles in MMNSA, so long as the original authors and source are credited. To see the complete license contents, please visit
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.4236/ojmsi.2021.93020
https://doi.org/10.1016/j.compbiomed.2021.105044
https://doi.org/10.1142/S1793962321500379
https://doi.org/10.1016/j.chaos.2021.110672
https://doi.org/10.1142/S1793962321500136
https://doi.org/10.1155/2021/9444803
https://doi.org/10.1155/2021/3394666
https://doi.org/10.1155/2021/1273405
https://doi.org/10.1088/1402-4896/ac2da7
https://doi.org/10.1016/j.aej.2021.07.010
https://doi.org/10.53391/mmnsa.2021.01.001
https://doi.org/10.12693/APhysPolA.140.265
https://doi.org/10.53391/mmnsa.2021.01.006
https://doi.org/10.53391/mmnsa.2021.01.002
https://doi.org/10.1140/epjp/s13360-020-00819-5
https://doi.org/10.53391/mmnsa.2021.01.005
https://doi.org/10.53391/mmnsa.2021.01.003
https://doi.org/10.1016/j.chaos.2021.111123
https://doi.org/10.1002/mma.7499
https://doi.org/10.1016/j.rinp.2021.104281
https://doi.org/10.1088/1402-4896/ac2085
https://doi.org/10.1016/j.rinp.2021.104186
https://doi.org/10.1080/0020739930240105
https://doi.org/10.1137/S0036139900368996
http://www.mmnsa.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/.


Mathematical Modelling and Numerical Simulation
with Applications, 2021, 1(2), 95ś101

https://www.mmnsa.org

ISSN Online: 2791-8564 / Open Access

https://doi.org/10.53391/mmnsa.2021.01.009

R E S E ARCH PA PER

Flip and generalized ŕip bifurcations of a

two-dimensional discrete-time chemical model

Parvaiz Ahmad Naik ID 1,*,‡, Zohreh Eskandari ID 2,‡ and Hossein Eskandari
Shahraki ID 3,‡

1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China, 2Department of
Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran, 3Amirkabir University of Technology,
Faculty of Physics and Energy Engineering, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran

*Corresponding Author
‡naik.parvaiz@xjtu.edu.cn (Parvaiz Ahmad Naik); z.eskandari@sku.ac.ir (Zohreh Eskandari); hes30377@aut.ac.ir (Hossein
Eskandari Shahraki)

Abstract

This paper focuses on introducing a two-dimensional discrete-time chemical model and the existence of its őxed points. Also,
the one and two-parameter bifurcations of the model are investigated. Bifurcation analysis is based on numerical normal forms.
The ŕip (period-doubling) and generalized ŕip bifurcations are detected for this model. The critical coefőcients identify the
scenario associated with each bifurcation. To conőrm the analytical results, we use the MATLAB package MatContM, which
performs based on the numerical continuation method. Finally, bifurcation diagrams are presented to conőrm the existence of ŕip
(period-doubling) and generalized ŕip bifurcations for the glycolytic oscillator model that gives a better representation of the
study.

Key words: Bifurcation; normal form; numerical continuation method; one-parameter bifurcation; two-parameter bifurcation
AMS 2020 Classiőcation: 00A71; 80A30; 92C45

1 Introduction

Mathematical modelling is a powerful tool for understanding, designing, and predicting processes and process equipment in the chemical
industry, including the conservation of momentum, energy, andmaterial. Detailed modelling of complex reaction systems is becoming
increasingly important in the development, analysis, design, and control of chemical reaction processes [1]. Numerical computer modelling
can describe chemical reactions, composition, ŕuid ŕow, and temperature distribution in three dimensions and time. Chemical engineers
frequently used fundamental dynamicmodels to develop new chemical processes and to predict the behavior of existing industrial processes
accurately. For example, models can be used to simulate how a process will behave under new operating conditions, to indicate how new
products can be made using an existing plant, to investigate product quality enhancements, and to achieve production rate improvements
[2]. The systems of ordinary differential equations (ODEs) are involved in modelling the dynamics of reaction networks to track the time
evolution of chemical concentrations for the species in the network. Through the differential equations using the theoretical results of
dynamical systems, or numerical simulations, the study of the properties of the dynamics (e.g. stability of steady states, the existence of
multiple steady states, etc.) are obtained [3].
Carden et al. [3] introduced a set of mathematical techniques for describing and characterizing a series of chemical processes (enzyme-
substrate, protein-protein, etc.) that cells used to sense and respond to diverse stimuli during the progression and cellular behavior of
cancers. Mahdy et al. [4], in their paper, combined the Sumudu decompositionmethod and the Hermite collocationmethod for the solutions
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of a nonlinear biochemical reaction model. They have represented the signal ŕow graph and Simulink ofMATLAB of the model in the
paper. Besides, the stability of the equilibrium point was also studied. They show that the Sumudu decompositionmethod and Hermite
collocation method are extremely symmetrical and similar. Apart from modelling chemical processes, mathematical modelling is not
limited to any particular őeld but őnds applications in different őelds [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Alidousti et al. [19]
studied the dynamic behaviors of the discrete Bonhoeffer-van der Pol (BVP) model. Through their results, It was shown that the BVP
model undergoes codimension one (codim-1) bifurcations such as pitchfork, fold, ŕip (period-doubling), and Neimark-Sacker. Instead of
codimension one (codim-1) bifurcations, the codimension two (codim-2) bifurcations including resonance 1:2, 1:3, 1:4, and Chenciner were
also achieved.
Bifurcation analysis can divide the parameter space into more regions and depict more complex dynamic behaviors. Bifurcation analysis
traces time-varying change(s) at a particular state of the system in a multidimensional space where each dimension represents a particular
concentration of the biochemical factor involved. It can happen that a slight variation in a parameter can have a signiőcant impact on
the solution. Bifurcation analysis őnds application in different őelds. Ghori et al. [20], in their paper, studied the global dynamics and
bifurcation analysis of a fractional-order SEIR epidemic model with a saturation incidence rate. The outcome of their study reveals that
the model undergoes a transcritical bifurcation and a Hopf bifurcation at the equilibrium points under certain conditions for all model
parameters at fractional-orderα = 1. Wang and Jia [21] studied the stability and bifurcation analysis of a generalized Gray-Scott chemical
reaction model. The results of their study show that the system exhibits abundant dynamical behaviors and the chemical reaction in the
reactor will be in balance in the end under certain conditions. Khan [22], in his paper, studied the local dynamics and Neimark-Sacker
bifurcation of a two-dimensional glycolytic oscillator model. It was found that the model has a unique equilibriumpoint for allα andβ.
Also, some bifurcation diagrams and the corresponding maximum Lyapunov exponent were presented for the model to verify the obtained
results. Recently, Naik et al. [23] investigated the multiple bifurcations of a discrete-time prey-predator model with a mixed functional
response. They detected the ŕip, Neimark-Sacker and strong resonance bifurcations of the model. The complex dynamical behavior of the
model up to the 16th iteration was investigated.
Although researchers tried to obtain the bifurcation results of the chemical model, none in the literature obtained the ŕip bifurcations of
the model that motivates the authors to carry out this work and becomes the novelty of the present study. In this paper, we provide the
dynamics of the glycolytic oscillator chemical model through the ŕip and generalized ŕip bifurcations analytically as well as numerically.
Further, we calculate the critical coefőcients of each bifurcation. The two-dimensional discrete-time chemical model under consideration
is given as follows [22]




xCh 7→ śxCh

(
yCh
)2
śβ xCh + α + xCh,

yCh 7→ xCh
(
yCh
)2
+β xCh,

(1)

where xCh and yCh are the substrate concentrations at time t andα andβ are the dimensionless parameters.
The structure of the current study can be presented as follows. In Section 1, the introduction of the study is given. In Section 2, the analytical
bifurcation results of the model are carried out in the form of theorems and proofs. Section 3 contains the numerical bifurcation analysis of
the model to verify the analytical results. Finally, the concluding remarks about the proposed work are given in Section 4.
In the following section, we provide the existence of different types of bifurcations of the system (1).

2 Bifurcation analysis

Our őrst step is to obtain the őxed points of model (1) in order to investigate its bifurcations. Solving equations




śxCh

(
yCh
)2
śβ xCh + α + xCh = xCh,

xCh
(
yCh
)2
+β xCh = yCh,

yields that model (1) has a unique őxed point

xCh∗ =
α

α2 +β
, yCh∗ = α.

Analyzing the bifurcations of map

(
xCh

yCh

)
7→ MCh(X ,Λ) =


śx

Ch
(
yCh
)2
śβ xCh + α + xCh

xCh
(
yCh
)2
+β xCh


 , (2)

is discussed in this section, whereX = (xCh, yCh)T andΛ = (α,β)T .
Jacobian matrix, second-order multi-linear form, and third-order multi-linear form of (2) are as follows:

ACh(X ,Λ) =



ś
(
yCh
)2
śβ + 1 ś2 xChyCh

(
yCh
)2
+β 2 xChyCh


 ,

BCh(X̂Ch, ŶCh) =



ś2 yCh (x1y2 + x2y1) ś 2 xChx2y2

2 yCh (x1y2 + x2y1) + 2 xChx2y2


 ,
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CCh(X̂Ch, ŶCh, ẐCh) =



ś2 x1y2z2 ś 2 x2y1z2 ś 2 x2y2z1

2 x1y2z2 + 2 x2y1z2 + 2 x2y2z1


 ,

where X̂Ch = (x1, x2)T, ŶCh = (y1, y2)T and ẐCh = (z1, z2)T .

Flip bifurcation of XCh∗

The bifurcation parameterβ and the őxed parameterα are considered here.

Theorem 1 Atα = αPD = śα
2 + 1 +

√
4α2 + 1, a ŕip bifurcation occurs forXCh∗ .

Proof As we can see, the multipliers of

ACh(XCh∗ ,ΛPD) =



ś
√
4α2 + 1 ś2 α2

1+
√
4α2+1

1 +
√
4α2 + 1 2 α2

1+
√
4α2+1


 , ΛPD = (α,βPD)

T ,

whereΛPD = (αPD,β)
T, are the following

λ
PD
1 = ś1, λ

PD
2 = ś1/2

√
4α2 + 1 + 1/2.

If λPD2 ̸= ±1, ACh(XCh∗ ,ΛPD) has a simple multiplier ś1 on the unit circle. SoM
Ch(XCh∗ ,ΛPD) is possible to write as

η 7→ śη + b̂PDη
3 +O(η4),

where

b̂PD =
1
6

〈
wPD,C

Ch(vPD, vPD, vPD) + 3B
Ch
(
vPD,

(
I2 ś A

Ch(XCh∗ ,ΛPD))
)ś1

BCh(vPD, vPD)
)〉

,

and

ACh(XCh∗ ,ΛPD) vPD = śvPD,
(
ACh(XCh∗ ,ΛPD)

)T
wPD = śwPD,

〈
wPD, vPD

〉
= 1.

As a result

vPD =



ś1/2

1


 , wPD =



2 1+

√
4α2+1√

4α2+1ś3

2
√
4α2+1ś1√
4α2+1ś3


 ,

and

b̂PD = ś4
2α2

√
4α2 + 1 ś 2α2 ś

√
4α2 + 1 ś 1

(
1 +
√
4α2 + 1

)2 (√
4α2 + 1 ś 3

) .

b̂PD ≠ 0 yields a generic bifurcation. This bifurcation is supercritical (subcritical) if b̂PD > 0 (b̂PD < 0) and 2-period points bifurcated from

XCh∗ are stable (unstable). For more details see [24, 25, 26]. ■

Generalized ŕip bifurcation of XCh∗

The bifurcation parametersβ andα are considered here.

Theorem 2 Atα = αGPD = 1/2
√
2 + 2

√
2 andβ = βGPD = 3/2 + 1/2

√
2, a generalized ŕip bifurcation occurs forXCh∗ .

Proof Based on an assumption

α = αGPD = 1/2
√
2 + 2

√
2, β = βGPD = 3/2 + 1/2

√
2,

the Jacobian matrix

ACh(XCh∗ ,ΛGPD) =



ś1 ś

√
2 ś

√
2+1

2+
√
2

2 +
√
2

√
2+1

2+
√
2


 , ΛGPD = (αPD,βPD)

T ,
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has a simple critical multiplier λGPD1 = 1, and no other multiplier is not on the unit circle and b̂PD = 0. SoM
Ch(XCh∗ ,ΛGPD) is possible to

write as

η 7→ śη + ĉGPDη
5 +O(η6),

where

ĉGPD =
1
120

〈
wGPD, 5B

Ch(vGPD,h
Ch
4 ) + 10C

Ch(vGPD, vGPD,h
Ch
3 ) + 10B

Ch(hCh2 ,h
Ch
3 )

+15CCh(vGPD,h
Ch
2 ,h

Ch
2 )
〉
,

hCh2 = (I2 ś A
Ch)ś1BCh(vGPD, vGPD),

hCh3 = ś(ACh + I2)
INV

(
CCh(vGPD, vGPD, vGPD) + 3B

Ch(vGPD,h
Ch
2 )
)
,

hCh4 = (I2 ś A
Ch)ś1

(
4BCh(vGPD,h

Ch
3 ) + 3B

Ch(hCh2 ,h
Ch
2 ) + 6C

Ch(vGPD, vGPD,h2)
)
,

and

ACh(XCh∗ ,ΛGPD) vPD = śvGPD,
(
ACh(XCh∗ ,ΛGPD)

)T
wGPD = śwGPD,

〈
wGPD, vGPD

〉
= 1.

As a result

vGPD =



ś1/2

1


 , wGPD =



ś(2+

√
2)

√
2√

2ś1

ś2
(√
2 ś 1

)ś1


 ,

hCh2 =




√
2+2

√
2(

√
2+1)

(2+
√
2)2

0


 , hCh3 =

(
0
0

)
, hCh4 =



ś12

√
2+2

√
2(

√
2+1)

(2+
√
2)3

0


 .

So ĉGPD can be obtained as follows:

ĉGPD = ś1.

Since ĉGPD, the generalized ŕip is generic. ■

3 Numerical continuation ofMCh(X ,Λ)

To conőrm the analytical results, we useMatcontM, a toolbox ofMatlab and works based on the numerical continuationmethod, for
more details, see [27, 28]. Hereα andβ are considered as a free parameter and a őxed parameter, respectively. Here we considerα = 1, by
varyingβ the ŕip bifurcations occurs atXCh∗ = (.309017, 1.00000) forββPD = 2.23606 where b̂PD = ś3.05573× 10

ś1. According to the sign

of b̂PDresult in the ŕip bifurcation is sub-critical. Continuation ofX
Ch
∗ in (xCh,β)śspace is shown in Figure 1.
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0.3
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C

h
 PD  

Figure 1. Continuation ofXCh
∗
in (xCh,β)śspace.
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Selecting this PD point and starting the continuation of a PD bifurcation curve in two control parametersα andβ, yield a generalized ŕip
bifurcation atXCh∗ = (0.321797, 1.098684) forα = αGPD = 1.098684 andβ = βGPD = 2.207106 with ĉGPD = ś6.400000× 10ś1, see Figure 2.

1.02 1.04 1.06 1.08 1.1 1.12

2.2

2.205

2.21

2.215

2.22

2.225

2.23

2.235

GPD 

Figure 2. Flip bifurcation curve.

We compute a branch of fold points of the second iterate by switching at theGPD point, see Figure 3.
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PD curve
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2
 curve

Figure 3. A curve of fold bifurcations of the second iterate, LP2, which emanates tangentially at a GPD point on a ŕip curve.

4 Conclusion

In this paper, we provided the dynamics of the glycolytic oscillator chemical model through the ŕip and generalized ŕip bifurcations
analytically as well as numerically. To investigate the bifurcations of this model, we calculated the critical coefőcients of each bifurcation.
These coefőcients determined whether a bifurcation is non-degenerate and determined the scenario of each bifurcation. The results
obtained in Sections 2 and 3 show excellent agreement between the analytical predictions and the numerical observations. From the
obtained results, it is concluded that the model shows ŕip and generalized ŕip bifurcation indicating that the substrate concentrations vary
from one period to another. Although the current paper studied a standard two-dimensional discrete-time chemical model but can be
extended to fractional-order derivatives with the operators known as Caputo, Atangana-Gomez, Atangana-Baleanu, Caputo-Fabrizio, and
others discover more causative factors that are not covered in this paper, such is left for future research direction.
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Abstract

In this paper, we simulate an epidemic model of cholera disease in the sense of generalized Liouville-Caputo fractional derivative.
We provide the results related to the existence of a unique solution by using some well-known theorems. Numerical solutions
of the givenmodel are derived by using two different numerical methods along with their importance. A number of graphs are
plotted to understand the given cholera disease dynamics. The main motivation to do this research is to understand the given
disease dynamics as well as the efőciency of both methods which are very recent to the literature.

Keywords: Cholera disease; mathematicalmodel; generalized Liouville-Caputo fractional derivative; numericalmethods; graphical
simulations
AMS 2020 Classiőcation: 26A33; 34C60; 92C60; 92D30

1 Introduction

The bacterium ’Vibrio Cholerae’ causes cholera, which is a bacterial illness. This bacterium is commonly found in contaminated foods.
It’s a Gram-negative bacteria which is curved and comma-shaped. It may be found in sewage and coastal saltwater environments. It’s
also found where there aren’t enough sanitary facilities. During the 1800s, this illness was initially discovered in the United States. For
hundreds of years, humans have been suffering from cholera sickness. If left untreated, this condition can cause severe diarrhoea and
dehydration in the body. It can sometimes result in a deadly condition. They cling to shellősh, crabs, and other creatures’ shells. Various
illnesses, including cholera, are spread by drinking polluted water. This bacteria dwells in the human body’s small intestine and releases
an exotoxin, which induces a ŕowofwater and electrolytes into the small intestine, including sodiumbicarbonate, chloride, and others [1, 2].

Causes of cholera: (i) It is brought on by causes such as a polluted water source. (ii) It occurs as a result of the intake of tainted foods and
beverages offered by street vendors. (iii) Vegetables that are cultivated with the help of human waste and water. (iv) Contaminated seafood,
which has been contaminated by sewage. (v) Foods that have an adverse effect on the digestive system are to blame. Some of the symptoms
of Cholera are: (i) High fever. (ii) Weight loss. (iii) Increased thirst. (iv) Feeling of Nausea. (v) Vomiting sensation. (vi) A kind bloating in
the belly. (vii) Blood pressure becomes low. (viii) The elasticity of the skin is lost. (ix) Develop cramps in themuscles. (x) A rapid increase in
the heart rate. (xi) Dryness in the mouth, nose, and eyelids. (xii) Formation of blood or mucus or sometimes undigested materials in the
stool [1, 2].

Replacement of lost ŕuid and electrolytes is part of the cholera therapy. Dehydration may be avoided by drinking enough of ORS (Oral
Rehydration Solution). Intravenous ŕuid replacementmay be necessary if the disease worsens. Antibiotics and zinc supplements may be
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prescribed by doctors to treat diarrhoea. Recently, some novel mathematical studies have been come out to deőne the dynamics of cholera.
In [3], a cholera disease model with optimal control treatment is deőned. Authors in ref. [4] have given somemathematical modelling
related analysis on the dynamics of cholera. Study given in ref. [5] describes the transmission dynamics of cholera by using a mathematical
modeling along with control strategies. In [6], spatial synchrony in fractional order metapopulation cholera transmission is given.

As we know that the fractional derivatives [7, 8] are helpful operators to study real-world problems in the sense of mathematical mod-
eling. Recently, a number of studies have been coming to the literature on this topic. In the epidemic modelings, disease like COVID-19
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18], cancer therapy [19], tuberculosis [20], malaria [21], lassa hemorrhagic fever [22], and canine dis-
temper virus [23], etc. have been successfully studied. Applications of fractional derivatives in psychology [24], ecology [25, 26], and
plant epidemiology [27, 28] have been derived bymany researchers. Several novel fractional-order mathematical models for studying
the calcium distribution in nerve cells are introduced in refs. [29, 30, 31, 32]. Also, some novel recent applications of fractional-order
computational methods in different real-world problems can be studied from refs. [33, 34, 35, 36, 37]. Nowadays, scientists use different
types of fractional derivatives with or without singular kernels in a huge amount to solve various types of real-world problems. In our
study, we use the generalised Liouville-Caputo fractional derivative to simulate a mathematical model of the cholera epidemic. The novelty
of thiswork is to explore thegivendiseasedynamics aswell as the efőciencyofbothnumerical schemeswhichare very recent to the literature.

This article is divided into number of sections. After deőning cholera epidemic, we mention two necessary deőnitions in Section 2.
In Section 3, a cholera model followed by the fractional model is proposed. In Section 4, results related to existence and uniqueness analysis
are given. The solution of the model by using two different numerical methods is given in Section 5. All results and discussion are explained
in Section 6. Finally, concluding remarks are given in the last Section 7.

2 Preliminaries

Here we recall the deőnitions of two fractional derivatives.

Deőnition 1 [8] The Liouville-Caputo non-integer order derivative ofL ∈ Cdś1 is deőned by

Dϱt L (t) =







dqL(t)
dζq

, ϱ= q ∈ N

1
Γ(qśϱ)

∫t
0 (t ś ϑ)qśϱś1L(q) (ϑ) dϑ, q ś 1 <ϱ< q , q ∈ N.

(1)

Deőnition 2 [38] The generalized Liouville-Caputo-type non-integer order derivative, Dϱ,ρ
d+
of order ϱ> 0 is given by

(Dϱ,ρ
d+

L)(ξ) =
ρϱśq+1

Γ(qś ϱ)

∫ξ

d
sρś1(ξρ ś sρ)qśϱś1

(

s1śρ
d

ds

)q
L(s)ds, ξ > d, (2)

whereρ > 0, d ≥ 0, and q ś 1 <ϱ≤ q.

3 Model description

Nowwe describe the dynamics of the mathematical model used to study the cholera epidemic. Recently, authors in ref. [4] proposed an
integer-order mathematical model consisting following ordinary differential equations



























S
′

= b ś dS śβSI + νV + γR,

I
′

= śdI +βSI ś σI śωI ś αI,

R
′

= śdR + αI ś γR,

V
′

= σI ś νV,

(3)

whereN = S + I +R + V. In this model, the cholera disease is distributed into four classes. S is for susceptible class, I is for infected individuals
at contact rateβ, R is for recovered humans at a rateα and V is for the environment. A brief description of all parameter values is given in
Table 1. The disease-free equilibrium is deőned by

(S∗, 0, 0, 0) =
(

b

d
, 0, 0, 0

)

. (4)

The endemic equilibrium is

(S∗∗, I∗∗,R∗∗,V∗∗) =
(

(d +ω + σ + α)
β

,
(d + γ)R∗

α
,
(d +βI∗)S∗ ś b

γ
,
σ(d + γ)R∗

να

)

, (5)

and then the basic reproductive number is calculated as

R0 =
βb

d
ś (d +ω + σ + α). (6)
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Table 1. Parameter values cited from [4]

Parameter Description Values

b Recruitment rate 0.000096274
d Natural death rate 0.00002537
ω Disease induced death rate 0.0004
α Recovery rate 0.2
γ Rate of recovered humans return to the susceptible class 0.002
σ Rate of infectious humans contaminate the environment 0.1
ν Environment infect humans with the bacteria at a rate 0.075
β Contact rate with infectious humans 0.011

To capture thehysteresismemoryeffects in thegivenmodel, the generalizationof theproposedmodel (3) in thegeneralisedLiouville-Caputo
sense is described as follows:



























CDϱ,ρt S = b ś dS śβSI + νV + γR,
CDϱ,ρt I = śdI +βSI ś σI śωI ś αI,
CDϱ,ρt R = śdR + αI ś γR,
CDϱ,ρt V = σI ś νV.

(7)

where CDϱ,ρt is the notation of generalised Caputo type fractional derivative operator with fractional order ϱ and the extra parameter ρ.

4 Existence and uniqueness analysis

In this section, we do the analysis for the existence of a unique solution to the proposed model with the help of the consequences of őxed
point theory. We perform the analysis for class S(t) and it is relevant to write that the same analysis will be applicable for the rest of the
equations of model (7). Let us write the model (7) in the following compact form:



























CDϱ,ρt S(t) = L1(t, S),
CDϱ,ρt I(t) = L2(t, I),
CDϱ,ρt R(t) = L3(t,R),
CDϱ,ρt V(t) = L4(t,V),

(8)

with the initial conditions S(0) = S0, I(0) = I0,R(0) = R0, and V(0) = V0.
For proving the analysis for S(t) class, deőne the initial value problem (IVP)

CDϱ,ρt S(t) = L1(t, S), (9a)

S(0) = S0. (9b)

The relative Volterra integral equation of the above IVP is

S(t) = S(0) +
ρ1śϱ

Γ(ϱ)

∫ t

0
θ
ρś1(tρ ś θ

ρ)ϱś1L1(θ, S)dθ. (10)

Nowwe proceed to the following results:

Theorem 1 [39, 40] Let0 <ϱ≤ 1, S0 ∈ R, K > 0 and T∗ > 0.ConsiderL := {(t, S) : t ∈ [0,T∗], |Sś S0| ≤ K} and let the functionL1 : L → R be

continuous. Also, letM := sup(t,S)∈L
|L1(t, S)| and

T =















T∗, if M = 0,

min{T∗,
(

KΓ(ϱ +1)ρϱ

M

)

1
ϱ } otherwise.

(11)

Then, there exists a function S ∈ C[0,T] that satisőes the IVP (9a) and (9b).

Theorem 2 [39, 40] Let S(0) ∈ R, K > 0, T∗ > 0, 0 <ϱ≤ 1. Deőne the setL as in Theorem 1 and let the functionL1 : L → R be continuous and

satisőes a Lipschitz conditionwith respect to the second variable, i.e.

|L1(t, S1) ś L1(t, S2)| ≤ L|S1 ś S2|,

for some constants L > 0 independent to t, S1, and S2.Then, there exists a unique solution S ∈ C[0,T] for the IVP (9a) and (9b).
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5 Numerical solution of the model

Solution of the projected model usingmodiőed Predictor-Corrector algorithm

Nowadays, a number of numerical methods are available in the literature. Recently, a modiőed version of the Predictor-Corrector (P-C)
scheme to solve delay-type fractional initial value problems has been proposed in ref. [41]. In this part of the study, we write the numerical
solution of the proposed cholera model with the help of the generalised P-C method investigated in ref. [38]. The reason to use this
generalised Liouville-Caputo derivative is its features to generate more varieties in the graphical observations in the presence of both
parameters ϱ and ρ. Now őrst we consider the solution for the őrst equation of the cholera model (7) by taking equivalent Volterra integral
equation

S(t) = S(0) +
ρ1śϱ

Γ(ϱ)

∫ t

0
θ
ρś1(tρ ś θ

ρ)ϱś1L1(θ, S)dθ. (12)

Now by dividing the interval [0,T] into N unequal sub-intervals {[tk, tk+1], k = 0, 1, ...,N ś 1} taking the mesh points







t0 = 0,

tk+1 = (t
ρ

k
+ h)1/ρ, k = 0, 1, ...,N ś 1,

(13)

where h =
Tρ

N
. Now, to evolute the approximations Sk, k = 0, 1, ...,N, we are assuming that we have already derived the approximations

Sj ≈ S(tj)(j = 1, 2, ..., k), and we want to calculate the approximation Sk+1 ≈ S(tk+1) bymeans of the integral equation

S(tk+1) = S(0) +
ρ1śϱ

Γ(ϱ)

∫ tk+1

0
θ
ρś1(tρ

k+1
ś θ

ρ)ϱś1L1(θ, S)dθ. (14)

Let us take z = θρ, we get

S(tk+1) = S(0) +
ρśϱ

Γ(ϱ)

∫ tρ
k+1

0
(tρ
k+1
ś z)ϱś1L1(z

1/ρ, S(z1/ρ))dz. (15)

That is

S(tk+1) = S(0) +
ρśϱ

Γ(ϱ)

k∑

j=0

∫ tρ
k+1

tρ
j

(tρ
k+1
ś z)ϱś1L1(z

1/ρ, S(z1/ρ))dz. (16)

To approximate the right-hand side of Eq. (16), we use the trapezoidal quadrature rule with respect to the weight function (tρ
k+1
ś z)ϱś1, by

replacing the function L1(z1/ρ, S(z1/ρ)) by its piecewise linear interpolant with nodes chosen at the t
ρ

j
(j = 0, 1, ..., k + 1), then we obtain

∫ tρ
k+1

tρ
j

(tρ
k+1
ś z)ϱś1L1(z

1/ρ, S(z1/ρ))dz ≈
hϱ

ϱ (ϱ +1)

[(

(k ś j)ϱ+1 ś (k ś jś ϱ)(k ś j + 1)ϱ
)

L1(tj, S(tj))

+
(

(k ś j + 1)ϱ+1 ś (k ś j+ ϱ +1)(k ś j)ϱ
)

L1(tj+1, S(tj+1))
]

.

(17)

Now putting the above approximations into Eq. (16), we obtain the corrector formula for S(tk+1), k = 0, 1, ...,N ś 1,

S(tk+1) ≈ S(0) +
ρśϱhϱ

Γ(ϱ +2)

k∑

j=0

aj,k+1L1(tj, S(tj)) +
ρśϱhϱ

Γ(ϱ +2)
L1(tk+1, S(tk+1)), (18)

where

aj,k+1 =

{

kϱ+1 ś (kś ϱ)(k + 1)ϱ if j = 0,
(k ś j + 2)ϱ+1 + (k ś j)ϱ+1 ś 2(k ś j + 1)ϱ+1 if 1 ≤ j ≤ k.

(19)

In order to obtain the predictor value SP(tk+1), we apply the one-step Adams- Bashforth method to the integral equation (15). In this case,

by replacing the function L1(z1/ρ, S(z1/ρ)) by the quantityL1(tj, S(tj)) at each integral in Eq. (16), we get

SP(tk+1) ≈ S(0) +
ρśϱ

Γ(ϱ)

k∑

j=0

∫ tρ
j+1

tρ
j

(tρ
k+1
ś z)ϱś1L1(tj, S(tj))dz

= S(0) +
ρśϱhϱ

Γ(ϱ +1)

k∑

j=0

[(k + 1 ś j)ϱ ś (k ś j)ϱ]L1(tj, S(tj)).

(20)
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Now replacing S(tk+1) given in the right side of (18) by S
P(tk+1), our P-C algorithm, for őnding the approximation Sk+1 ≈ S(tk+1), is

completely expressed by the formula

Sk+1 ≈ S(0) +
ρśϱhϱ

Γ(ϱ +2)

k∑

j=0

aj,k+1L1(tj, Sj) +
ρśϱhϱ

Γ(ϱ +2)
L1(tk+1, S

P
k+1), (21)

where Sj ≈ S(tj), j = 0, 1, ..., k, and the predicted value S
P
k+1 ≈ S

P(tk+1) is given in Eq. (20) with the weights aj,k+1 being deőned according to

(19).
So, the Predictor-Corrector formulae for the system (7) are given by

Sk+1 ≈ S(0) +
ρśϱhϱ

Γ(ϱ +2)

k∑

j=0

aj,k+1L1(tj, Sj) +
ρśϱhϱ

Γ(ϱ +2)
L1(tk+1, S

P
k+1),

Ik+1 ≈ I(0) +
ρśϱhϱ

Γ(ϱ +2)

k∑

j=0

aj,k+1L2(tj, Ij) +
ρśϱhϱ

Γ(ϱ +2)
L2(tk+1, I

P
k+1),

Rk+1 ≈ R(0) +
ρśϱhϱ

Γ(ϱ +2)

k∑

j=0

aj,k+1L3(tj,Rj) +
ρśϱhϱ

Γ(ϱ +2)
L3(tk+1,R

P
k+1),

Vk+1 ≈ V(0) +
ρśϱhϱ

Γ(ϱ +2)

k∑

j=0

aj,k+1L4(tj,Vj) +
ρśϱhϱ

Γ(ϱ +2)
L4(tk+1,V

P
k+1),

(22)

where

SP(tk+1) ≈ S(0) +
ρśϱhϱ

Γ(ϱ +1)

k∑

j=0

[(k + 1 ś j)ϱ ś (k ś j)ϱ]L1(tj, S(tj)),

IP(tk+1) ≈ I(0) +
ρśϱhϱ

Γ(ϱ +1)

k∑

j=0

[(k + 1 ś j)ϱ ś (k ś j)ϱ]L2(tj, I(tj)),

RP(tk+1) ≈ R(0) +
ρśϱhϱ

Γ(ϱ +1)

k∑

j=0

[(k + 1 ś j)ϱ ś (k ś j)ϱ]L3(tj,R(tj)),

VP(tk+1) ≈ V(0) +
ρśϱhϱ

Γ(ϱ +1)

k∑

j=0

[(k + 1 ś j)ϱ ś (k ś j)ϱ]L4(tj,V(tj)).

(23)

Theorem 3 [39] Assume thatL1(t, S), L2(t, I), L3(t,R), L4(t, V) satisfy the Lipschitz condition and Sj, Ij, Rj, Vj (j = 1, ..., k + 1) are the solutions
of the Predictor-Correctormethod (22) and (23). Then, the proposed numerical scheme is conditionally stable.

Solution of the model by Kumar-Erturk (K-E) fractional numerical algorithm

Nowweutilize onemoremethodwhich is a very recent numericalmethod given byKumaret al. in [42] to simulate nonlinear fractional-order
IVPs. The scheme is deőned by the following theorem:

Theorem 4 Recall the IVP (9a)-(9b). Let

F(ν, S∗(ν)) = L1

(

{

tρ ś (tϱ ś νΓ(ϱ +1)ρϱ)
1
ϱ

} 1
ρ

, S(tρ ś (tϱ ś νΓ(ϱ +1)ρϱ)
1
ϱ )

1
ρ

)

,

with the assumption of Theorem 1 hold. Then, a solution of (9a)-(9b) is deőned by

S(t) = S∗(tϱρśϱ/Γ(ϱ +1)),

where S∗(ν) is a solution of classical differential equations

dS∗(ν)
dν

= F(ν, S∗(ν)), (24)

and

S∗(0) = S0. (25)
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Proof Let us assume from Theorem 1 that S(t) is a solution of (9a)-(9b) which also satisőes (10). Let τρ = tρ ś (tϱ ś νΓ(ϱ +1)ρϱ)1/ϱ. Then
Eq. (10) can be re-written as

S(t) = S0 +
∫ tϱρśϱ/Γ(ϱ+1)

0
L1

(

{

tρ ś (tϱ ś νΓ(ϱ +1)ρϱ)
1
ϱ

} 1
ρ

, S(tρ ś (tϱ ś νΓ(ϱ +1)ρϱ)
1
ϱ )

1
ρ

)

dν

= S0 +
∫ tϱρśϱ/Γ(ϱ+1)

0
F(ν, S∗(ν))dν.

(26)

Also, every solution of (24)-(25) is the solution of the VIE given below and vice versa.

S∗(ν) = S0 +
∫ν

0
F(s, S∗(s))ds, 0 ≤ ν ≤ aϱρśϱ/Γ(ϱ +1). (27)

Since, 0 ≤ tϱρśϱ/Γ(ϱ +1) ≤ aϱρśϱ/Γ(ϱ +1), the right-hand side of equation (26) is equal to S∗(tϱρśϱ/Γ(ϱ +1)). ■

Nowwe derive the numerical solution of the considered model (7) based on the above methodology. Firstly, the corresponding classical
model is

dS∗
dν

= b ś S∗ śβS∗I∗ + νV∗ + γR∗,

dI∗
dν

= śdI∗ +βS∗I∗ ś σI∗ śωI∗ ś αI∗,

dR∗
dν

= śdR∗ + αI∗ ś γR∗,

dV∗
dν

= σI∗ ś νV∗.

(28)

If the solution of this system is (S∗(ν), I∗(ν),R∗(ν)),V∗(ν)), then the solution of the model is (S∗(tϱ/Γ(ϱ +1)), I∗(tϱ/Γ(ϱ +1)),R∗(tϱ/Γ(ϱ
+1)),V∗(tϱ/Γ(ϱ +1))).

Remark 1 Thismethod is one of the fast numericalmethods as compared to other availablemethods to solve the fractional-order initial value

problems. The output processing time of the algorithm is very less,whichmeans the scheme gives the outputs in a very short of time. Also, it is very

easy to code this algorithm via any software like,Mathematica,Maple orMATLAB.

6 Simulation results

Nowwe perform the analysis for the given cholera model (7) with the help of real parameter values given in Table 1. For the initial values
of all four classes of cholera model, we assume S(0) = 20000, I(0) = 30,R(0) = 0 and V(0) = 1000000. In Figure 1, we plotted the graphs
of infectious class I(t) versus time variable t at various fractional order values along with the őxed values of extra parameter ρ = 0.75 by
using both (K-E and P-C) numerical methods. Where-from sub-őgure 1a we can observe the variations in the infected individuals by K-E
method and from sub-őgure 1b by using P-Cmethod. We can see that the outputs of both methods are slightly different. In the case of K-E
method, as much as time increasing, the infectious population is converging to the lower values much faster than the case of P-Cmethod.

(a) Output via K-Emethod (b) Output via modiőed P-Cmethod

Figure 1. Dynamics of infectious class I(t) at fractional-order values ϱ= 1, 0.95, 0.90.
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(a) Output via K-Emethod (b) Output via modiőed P-Cmethod

Figure 2. Dynamics of recovered class R(t) at fractional-order values ϱ= 1, 0.95, 0.90.

(a) Output via K-Emethod (b) Output via modiőed P-Cmethod

Figure 3. Dynamics of enviroment V(t) at fractional-order values ϱ= 1, 0.95, 0.90.

In Figure 2, the graphs of recovered class R(t) versus time variable t at various fractional orders along with ρ = 0.75 by using both numerical
methods are given. From sub-őgure 2a, we can see the variations in the recovered individuals by K-Emethod and from sub-őgure 2b
by using P-C method. Again the outputs of both methods are slightly different. In the case of K-E method, the recovered population
is increasing much faster then the case of P-C method. Similarly, decrement in the environmental infection or the number of bacteria
concentrations V(t) can be observed from Figure 3 (sub-őgure 3a via K-Emethod and sub-őgure 3b via P-Cmethod). For understanding
the role of extra parameter ρ, we plotted the group of Figures 4, 5, and 6. Here we notice that the variations caused by extra parameter ρ in
K-Emethod (sub-őgures 4a, 5a, 6a) are totally reverse to the variations caused byρ in P-Cmethod (sub-őgures 4b, 5b, 6b). It means that
both methods process the role of ρ in a different way, whichmakes their comparisonmore interesting.

(a) Output via K-Emethod (b) Output via modiőed P-Cmethod

Figure 4. Variations caused by extra parameter ρ in class I(t) at fractional-order ϱ= 0.95.
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(a) Output via K-Emethod (b) Output via modiőed P-Cmethod

Figure 5. Variations caused by extra parameter ρ in class R(t) at fractional-order ϱ= 0.95.

(a) Output via K-Emethod (b) Output via modiőed P-Cmethod

Figure 6. Variations caused by extra parameter ρ in class V(t) at fractional-order ϱ= 0.95.

From the above given graphical simulations, we can see that bothmethods performwell to simulate the dynamics of the given cholera
model. The outputs of bothmethods are slightly different which justify the importance of both schemes in this study. But whenwe compare
the processing speed of both methods then K-Emethod is very fast as compared to P-C scheme because it takes only 1/4th processing time
of the P-Cmethod. The stability of the given P-Cmethod is available as mentioned in Theorem 3 but the analysis related to the stability of
K-Emethod still needs to be studied.

7 Conclusion

In this research work, we have investigated a mathematical model of cholera disease in the sense of the generalised Liouville-Caputo
fractional derivative. We have proved the results for the existence of a unique solution. Numerical solutions to the considered model have
been derivedwith the help of two differentmethods and the importance of both schemes has been justiőed. A couple of őgures are simulated
to explore the given cholera disease dynamics. Themain aim of this work has been to explore the given disease dynamics as well as the
efőciency, accuracy, and differences of both numerical methods. In the future, the given model can be solved by using any other fractional
derivatives and the proposed schemes can be utilized to solve different types of non-linear fractional order models.
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