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Global Solution and Blow-up for a Thermoelastic

System of p-Laplacian Type with Logarithmic Source

Carlos Alberto Raposo da Cunha*, Adriano Pedreira Cattai, Octavio Paulo Vera Villagran,

Ganesh Chandra Gorain and Ducival Carvalho Pereira

Abstract
This manuscript deals with global solution, polynomial stability and blow-up behavior at a finite time for
the nonlinear system

{

u′′ −∆pu+ θ + αu′ = |u|p−2
u ln |u|

θ′ −∆θ = u′

where ∆p is the nonlinear p-Laplacian operator, 2 ≤ p <∞. Taking into account that the initial data is in
a suitable stability set created from the Nehari manifold, the global solution is constructed by means of
the Faedo-Galerkin approximations. Polynomial decay is proven for a subcritical level of initial energy.
The blow-up behavior is shown on an instability set with negative energy values.

Keywords: Global solution; blow-up; thermoelastic system of p-Laplacian type; logarithmic source.

AMS Subject Classification (2020): Primary: 35A01 ; Secondary: 35B40; 74F05; 93D20.

*Corresponding author

1. Introduction

A thermoelastic system is the result of the coupling of a hyperbolic equation with a parabolic equation. As is
well known, these systems describe the elastic and thermal behavior of elastic, heat-conducting media, especially
the interactions between elastic stresses and temperature differences. The pioneering work on thermoelasticity
without p -Laplacian was presented by C. M. Dafermos [1] in 1968. Since then, a great interest has been aroused in
different contexts and nowadays there are many results on global and local solutions, stability, and burst behavior
of solutions in thermoelasticity theory. We can cite [2–11] with references therein.
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Nonlinear hyperbolic problems have always been much studied by mathematicians and physicists. From the math-
ematical point of view, in [12] was investigated the initial boundary value problem of a nonlinear wave equation
with weak and strong damping terms and logarithmic term, and in [13] the viscoelastic wave equation with a
strong damping and nonlinearity logarithmic source was considered. In physics, the nonlinear logarithmic source
|u|p−2u ln |u| arises in inflation cosmology, supersymmetric led theories, quantum mechanics, nuclear physics, and
fluid mechanics, [14–17].

Regarding global solution for wave equation of p-Laplacian type without an additional dissipation term

u′′ −∆pu = 0, (1.1)

for n = 1, M. Derher [18] proved the local in time existence of solution and showed by a generic counter-example
that the global in time solution can not be expected. Adding a strong damping −∆u′ in (1.1) the well-posedness and
asymptotic behavior was studied by J. M. Greenberg [19]. In fact, the strong damping plays an important role on the
existence and stability for p-Laplacian wave equation see for instance for n ≥ 2 [20–27]. Nevertheless, if the strong
damping is replaced by a weaker damping u′, then global existence and uniqueness are only know for n = 1; 2,
see [28]. For the intermediary damping given by (−∆)αu′, with 0 < α ≤ 1, in [29] was proved the global solution
depending on the growth of a forcing term. The background of these problems are in physics, especially in solid
mechanics. The p-Laplacian problem for the electromagnetic effects in high-temperature Type II superconductors
is considered in [30] where authors presented an extension of previous work on relaxation schemes applied to
degenerate parabolic problems. Global boundedness of weak solution in an attraction–repulsion chemotaxis system
with p-Laplacian diffusion was considered in [31]. In [32], the entire blow-up solutions for a quasilinear p-Laplacian
Schrödinger elliptic equation with a non-square diffusion term. By using the dual approach and some new iterative
techniques, the difficulty due to the non-square diffusion term and the p-Laplacian operator is overcome and the
nonexistence and existence of entire blow-up solutions are established.

Thermoelastic problems involving the p-Laplacian are becoming the new object of research. The following thermoe-
lastic system which contains corner-edge Laplacian and p-Laplacian type operators with potential function

u′′ −∆p,Ku− εV (x̃)u+ θ = |u|α−1u,

θ′ −∆Ku = u′,

with α > 1 was studied in [33] where K is the stretched manifold with respect to the manifold K with corner-edge
singularity and x̃ ∈ K. The operator ∆p,K + εV (x̃) with p 6= 2 arises from a diversity of physical phenomena, like in
reaction-diffusion problems, in nonlinear elasticity, in non-Newtonian fluids and petroleum extraction. In [34] the
relationship with non-Newtonian Mechanics was considered. Authors present a full classification of the short-time
behavior of the interfaces and local solutions to the nonlinear parabolic p-Laplacian type reaction-diffusion equation
of non-Newtonian elastic filtration

u′ −
(

|ux|p−2ux
)

x
+ buβ = 0, 1 < p < 2, β > 0.

In [35] was studied the problem for a parabolic equation involving fractional p-Laplacian with logarithmic
nonlinearity. For 2 ≤ p <∞ the existence of a global solution for the thermoelastic system of p-Laplacian type given
by

{

u′′ −∆pu+ θ = |u|r−1u,
θ′ −∆θ = u′.

(1.2)

has been proven in [36]. Later, in [37], by employing the potential well theory, authors discuss the properties of
finite-time blow-up and give the lower and upper bounds of blow-up time to the solutions.

Regarding the model (1.2) in this manuscript, we analyze the competition between the weak damping αu′, α > 0

and the logarithmic source |u|p−2
u ln |u|. To our goal we consider the following system

u′′ −∆pu+ θ + αu′ = |u|p−2
u ln |u| , (x, t) ∈ Ω× R

+, (1.3)

θ′ −∆θ = u′, (x, t) ∈ Ω× R
+, (1.4)

u(x, 0) = u0(x), u
′(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω, (1.5)

u(x, t) = θ(x, t) = 0 on ∂Ω× [0,∞). (1.6)
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This paper is organized as follows. In the Section 2, we introduce the notation and some technical lemmas.
Section 3 deals with the potential well, we introduce some notations and the stability set for the problem. In the
section 4 we introduce a suitable Galerkin basis necessary to deal with the operator p-Laplacian. In the section 5 we
prove the existence of global solution by Faedo-Galerkin method. In section 6 we prove the polynomial. Finally in
section 7 we prove the blow-up in finite time for initial data in the instability set.

2. Preliminaries

The duality pairing between the space W 1,p
0 (Ω) and its dual W−1,p′

(Ω) will be denoted using the form 〈 · , · 〉p.

According to Poincaré’s inequality, the standard norm ‖ · ‖W 1,p
0

(Ω) is equivalent to the norm ‖∇ · ‖p on W 1,p
0 (Ω).

Henceforth, we put ‖ · ‖W 1,p
0

(Ω) = ‖∇ · ‖p. We denote ‖ · ‖L2(Ω) = | · |2 and the usual inner product by ( · , · ).

Let B be a Banach space and u : [0, T ] → B a mensurable function. We denote by

Lp(0, T ;B) =







u :

(

∫ T

0

||u(t)||pB dt
)1/p

<∞, if 1 ≤ p <∞







,

L∞(0, T ;B) =

{

u : sup ess
t∈(0,T )

||u(t)||B <∞, if p = ∞
}

.

The p-Laplacian operator is given by ∆pu = div
(

|∇u|p−2∇u
)

. ∆pu can be extended to a monotone, bounded,

hemicontinuos and coercive operator between the spaces W 1,p
0 (Ω) and its dual by

−∆p : W
1,p
0 (Ω) →W−1,p′

(Ω), 〈−∆pu, v〉p =

∫

Ω

|∇u|p−2∇u · ∇v dx.

We assume that the parameter p satisfies the following assumptions.

(H): p ≥ 2 if n = 1, 2 and 2 ≤ p ≤ 2n− 2

n− 2
if n ≥ 3.

By (H) we have

W
1,2(p−1)
0 (Ω) →֒ H1

0 (Ω) →֒ L2(Ω).

Now, we present some results that will be used in this manuscript.

Lemma 2.1 (Kim [38], Lemma 1.4 ). Let um be a sequence of functions such that as m→ ∞

um
∗
⇀ u in L∞(0, T ;Hβ(Ω)), weakly star,

umt ⇀ ut in L2(0, T ;Hα(Ω)), weakly,

where −1 ≤ α < β ≤ 1. Then, we have

um ⇀ u in C([0, T ] ; Hη(Ω)), for any η < β.

Lemma 2.2 (Lions [39], Lemma 1.3 ). Let Q = Ω × (0, T ), T > 0 a bounded open set of Rn × R and gm, g : Q → R

functions of Lp(0, T ;Lp(Ω)) = L(Q), 1 < p <∞ such that ||gm||Lp(Q) ≤ C, gm → g a.e. in Q. Then

gm ⇀ g in Lp(0, T ;Lp(Ω)) as m→ ∞.

Lemma 2.3 (Lions-Aubin [39], Theorem 5.1). Let T > 0, 1 < p0, p1 <∞. Consider B0 ⊂ B ⊂ B1 Banach spaces, B0, B1

reflexives, B0 with compact immersion in B. Define W = {u | u ∈ Lp0(0, T ;B0) , u
′ ∈ Lp1(0, T ;B1)} equipped with the

norm ||u||W = ||u||Lp0 (0,T ;B0) + ||u||Lp1 (0,T ;B1). Then, W has compact immersion in Lp0(0, T ;B).
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Lemma 2.4 (Martinez [40]). Let E : (0,∞) → (0,∞) be a nonincreasing function and φ : [0,∞) → [0,∞) an increasing
C1 function such that φ(0) = 0 and φ(t) → ∞ as t→ ∞.

Assume that there exist σ > −1 and ω > 0 such that
∫ ∞

S

E1+σ(t)φ′(t) dt ≤ 1

ω
Eσ(0)E(S), 0 ≤ S <∞.

Then

E(t) = 0 ∀t ≥ E(0)σ

ω|σ| , if − 1 < σ < 0,

E(t) ≤ E(0)
( 1 + σ

1 + ωφ(t)

)1/σ ∀t ≥ 0, if σ > 0,

E(t) ≤ E(0)e1−ωφ(t) ∀t ≥ 0, if σ = 0.

Lemma 2.5 (Levine [41], Qin-Rivera [42]). Suppose that φ(t) ∈ C2[0,∞) is a positive function satisfying

φ(t)φ′′(t)− (1 + γ)(φ′(t))2 ≥ −2C1φ(t)φ
′(t)− C2(φ(t)

2,

being C1, C2 ≥ 0 and γ > 0 are constants. If

C1 + C2 ≥ 0, φ(0) > 0, φ′(0) + γ2
1

γ
φ(0) > 0,

then
lim

t→T−

φ(t) = +∞,

where

T ≤ 1

2
√

C2
1 + γC2

ln

[

γ1φ(0) + γφ′(0)

γ2φ(0) + γφ′(0)

]

,

and

γ1 = −C1 +
√

C2
1 + γC2, γ2 = −C1 −

√

C2
1 + γC2.

3. The potential well

In this section we use the potential theory, a power full tool in the study of the global existence of solution to
partial differential equation. See Payne-Sattinger [43]. It is well-known that the energy of a PDE system, in some
sense, splits into the kinetic and the potential energy.

The energy of the problem (1.3)-(1.6) is given by

E(t) =
1

2

∫

Ω

|u′(t)|2 dx+
1

p2

∫

Ω

|u(t)|p dx+
1

2

∫

Ω

|θ(t)|2 dx+
1

p

∫

Ω

|∇u(t)|p dx− 1

p

∫

Ω

|u(t)|p ln |u(t)| dx.

Mutiplying (1.3) by u′, (1.4) by θ, performing integration by parts and using (1.6) we obtain

d

dt
E(t) = −α||u′(t)||22 − ||∇θ(t)||22. (3.1)

We introduce the functional

J(u(t)) =
1

p2

∫

Ω

|u(t)|p dx+
1

p

∫

Ω

|∇u(t)|p dx− 1

p

∫

Ω

|u(t)|p ln |u(t)| dx.

The Nehari functional associated with J(u(t)) is I : W 1,p
0 (Ω) ∩W 1,2(p−1)

0 (Ω) → R defined by

I(u(t)) =

∫

Ω

|∇u(t)|p dx−
∫

Ω

|u(t)|p ln |u(t)| dx. (3.2)
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Associated with the J(λu(t)) we have the well known Nehari Manifold given by

N def
=

{

u(t) ∈W 1,p
0 (Ω) ∩W 1,2(p−1)

0 (Ω)/{0} :

[

d

dλ
I(λu(t))

]

λ=1

= 0

}

=

{

u(t) ∈W 1,p
0 (Ω) ∩W 1,2(p−1)

0 (Ω)/{0} :

∫

Ω

|∇u(t)|p dx =

∫

Ω

|u(t)|p ln |u(t)| dx
}

.

Now, we introduce the potential well (stable set)

W1 =

{

u(t) ∈W 1,p
0 (Ω) ∩W 1,2(p−1)

0 (Ω)/{0} :

∫

Ω

|∇u(t)|p dx >
∫

Ω

|u(t)|p ln |u(t)| dx
}

∪ {0}.

and the unstable set

W2 =

{

u(t) ∈W 1,p
0 (Ω) ∩W 1,2(p−1)

0 (Ω)/{0} :

∫

Ω

|∇u(t)|p dx <
∫

Ω

|u(t)|p ln |u(t)| dx
}

.

We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [44],

d
def
= inf

u(t)∈W 1,p
0

(Ω)/{0}
sup
0≤λ

J(λu(t)).

It is well-known that under H the depth of the well d is a strictly positive constant, see [[45], Theorem 4.2], and

d = inf
u(t)∈N

J(u(t)).

The source term induces a potential energy in the system that act in opposed to effect of the stabilizing mechanism.
In this sense, it is possible that the energy from the source term destabilize all the system and produce a blow-up a
finite time. For provide a global solution, the stability set W1 create a valley or a well of the depth d, see Y. Ye [27],
where the potential energy of the solution can never escape the potential well.

We will prove that W1 is invariant set for sub-critical initial energy.

Proposition 3.1. Let u0 ∈ W1, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω). If E(0) < d then u(t) ∈ W1.

Proof. Let T > 0 be the maximum existence time. From (3.1) we get

E(t) ≤ E(0) < d, for all t ∈ [0, T ).

and then,

1

2

∫

Ω

|u′(t)|2 dx+
1

2

∫

Ω

|θ(t)|2 dx+ J(u(t)) < d, for all t ∈ [0, T ),

that is,

E(t) < d, for all t ∈ [0, T ). (3.3)

Arguing by contradiction, we suppose that there exists a first t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u(t)) > 0 for
all 0 ≤ t < t0, that is,

∫

Ω

|∇u(t0)|p dx =

∫

Ω

|u(t0)|p ln |u(t0)| dx.

From the definition of N , we have that u(t0) ∈ N , which leads to

J(u(t0)) ≥ inf
u(t)∈N

J(u(t)) = d.

By definition of E(t),

1

2

∫

Ω

|u′(t0)|2 dx+
1

2

∫

Ω

|θ(t0)|2 dx+ J(u(t0)) ≥ d, it holds that, E(t0) ≥ d,

which contradicts with (3.3). Then u(t) ∈ W1 for all t ∈ [0, T ).
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4. Galerkin basis

From Sobolev immersion, we have

W ν,q
0 (Ω) →֒W ν−k,qk

0 (Ω),
1

qk
=

1

q
− k

n
.

Choosing qk = p, ν − k = 1, and q = 2, we get

ν = 1 +
n

2
− n

p
= 1 +

n(p− 2)

2p
> 0

and we obtain a Hilbert Space Hν
0 (Ω) such that

Hν
0 (Ω) =W ν,2

0 (Ω) →֒W 1,p
0 (Ω).

Let s an integer for which s > ν. We have

Hs
0(Ω) →֒W 1,p

0 (Ω) →֒W
1,2(p−1)
0 (Ω) →֒ H1

0 (Ω) →֒ L2(Ω).

According to the Rellich-Kondrachov theorem, H1
0 (Ω) →֒ L2(Ω) is compact, so is also the immersion Hs

0(Ω) →֒
L2(Ω). From spectral theory, there exists an operator defined by

{Hs
0(Ω), L

2(Ω), ((·, ·))Hs
0
(Ω)}

and a sequence of eigenvectors (vj)j∈N of this operator such that

((vj , v))Hs
0
(Ω) = λj(vj , v), for all v ∈ Hs

0(Ω)

with λj > 0, λj ≤ λj+1, and λj → +∞ as j → +∞. Moreover (vj)j∈N is a complete orthonormal system in L2(Ω)

and

(

wj =
vj√
λj

)

j∈N

is a complete orthonormal system in Hs
0(Ω). Then (wj)j∈N yields a “Galerkin basis” for both

W 1,p
0 (Ω) and L2(Ω).

5. Global solution

Theorem 5.1. Consider E(0) < d. Given u0 ∈ W1, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω), there exist functions u, θ : Ω× (0, T ) → R

in the class

u ∈ L∞(0, T ;W 1,p
0 (Ω)),

u′ ∈ L∞(0, T ;L2(Ω)),

θ ∈ L∞(0, T ;H1
0 (Ω)),

such that, for all φ ∈W 1,p
0 (Ω), ψ ∈ L2(Ω)

d

dt
(u′, φ) + 〈−∆pu, φ〉p + (θ, φ) = (|u|p−2u ln |u|, φ) in D′(0, T ), (5.1)

d

dt
(θ, ψ) + (−∆θ, ψ) = (u′, ψ) in D′(0, T ), (5.2)

u(x, 0) = u0(x), u
′(x, 0) = u1(x), θ(x, 0) = θ0(x) a.e. in Ω. (5.3)

Proof. Let’s use the Galerkin basis obtained in the previous section. For each m ∈ N, let us put

Vm = Span{w1, w2, . . . , wm}.

We search for functions

um(t) =

m
∑

j=1

fjm(t)wj , θm(t) =

m
∑

j=1

gjm(t)wj ,
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such that any φ, ψ ∈ Vm, um(t) and θm(t) satisfies the following approximate problem

d

dt
(u′m(t), φ)+〈−∆pum(t), φ〉p + (θm(t), φ) = (|um(t)|p−2um(t) ln |um(t)|, φ), (5.4)

d

dt
(θm(t), ψ) + (−∆θm(t), ψ) = (u′m(t), ψ), (5.5)

with the initial conditions um(0) = u0m, u′m(0) = u1m and θm(0) = θ0m, where u0m, u1m and θ0m are choose so that

u0m → u0 ∈ W 1,p
0 (Ω), u1m → u1 in L

2(Ω) and θ0m → θ0 in H
1
0 (Ω). (5.6)

Putting φ = wi, ψ = wi, i = 1, 2, . . . ,m, and using

u′′m(t) =

m
∑

j=1

f ′′jm(t)wj(x), ∆pum(t) =

m
∑

j=1

fjm(t)∆pwj(x),

θ′m(t) =
m
∑

j=1

g′jm(t)wj(x), ∆θm(t) =
m
∑

j=1

gjm(t)∆wj(x),

we observe that (5.4)-(5.5) leads to a system of ODEs in the variable t that has a local solution um(t), θm(t) in a
interval [0, tm) by virtue of Carathéodory’s theorem. In the next step we obtain a priori estimates for the solution
um(t), θm(t) so that they can be extended to the whole interval [0, T ], T > 0.

5.1 A priori estimates
Replacing φ = u′m(t), ψ = θm(t) in the approximate equation (5.4), (5.5) we get

(u′′m(t), u′m(t)) + 〈−∆pum(t), u′m(t)〉p + (θm(t), u′m(t)) = (|um(t)|p−2um(t) ln |um(t)|, u′m(t)), (5.7)

(θ′m(t), θm(t)) + (−∆θm(t), θm(t)) = (u′m(t), θm(t)), (5.8)

Let z ∈ D(0, tm). We denote by 〈 · , · 〉 the duality pairing between D′ and D. So we have

〈(u′′m(t), u′m(t)), z〉 =
〈

d

dt

1

2

∫

Ω

|u′m(t)|2 dx, z
〉

, (5.9)

〈〈−∆pum(t), u′m(t)〉p, z〉 =
〈

d

dt

1

p

∫

Ω

|∇um(t)|p dx, z
〉

, (5.10)

〈(u′m(t), u′m(t)), z〉 =
〈
∫

Ω

|u′m(t)|2 dx, z
〉

, (5.11)

〈

(|um(t)|p−2um(t) lnum(t), u′m(t)), z
〉

=

〈

1

p

d

dt

∫

Ω

|um(t)|p lnum(t) dx, z

〉

−
〈

1

p2
d

dt

∫

Ω

|um(t)|p dx, z
〉

, (5.12)

〈(θ′m(t), θm(t)), z〉 =
〈

d

dt

1

2

∫

Ω

|θm(t)|2 dx, z
〉

, (5.13)

〈(−∆θm(t), θm(t)) , z〉 =
〈
∫

Ω

|∇θm(t)|2 dx, z
〉

. (5.14)

Replacing (5.9), (5.10), (5.11), (5.12), (5.13), (5.14) in (5.7) and (5.8) we obtain in D′(0, tm)

d

dt
Em(t) = −

∫

Ω

|∇θm(t)|2 dx−
∫

Ω

|u′m(t)|2 dx, (5.15)

from where follows that the approximate energy

Em(t) =
1

2

∫

Ω

|u′m(t)|2 dx+
1

p2

∫

Ω

|um(t)|p dx+
1

2

∫

Ω

|θm(t)|2 dx+
1

p

∫

Ω

|∇um(t)|p dx− 1

p

∫

Ω

|um(t)|p ln |um(t)| dx

=
1

2

∫

Ω

|u′m(t)|2 dx+
1

2

∫

Ω

|θm(t)|2 dx+ J(u(t))
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satisfies

Em(t) ≤ Em(0)

=
1

2

∫

Ω

|u′m(0)|2 dx+
1

2

∫

Ω

|θm(0)|2 dx+ J(um(0)).

We have that J(um(0)) < d in W1. By to convergence of initial data (5.6), there exists a constant C > 0 independent
of t and m such that

1

2

∫

Ω

|u′m(0)|2 dx+
1

2

∫

Ω

|θm(0)|2 dx ≤ C.

With the estimate Em(t) ≤ Em(0) ≤ C we can extend the approximate solutions um(t), θm(t) to the interval
[0, T ], T > 0. By using (5.15) we deduce
∫ T

0

∫

Ω

|∇θm(t)|2 dx dt+
∫ T

0

∫

Ω

|u′m(t)|2 dx dt ≤
∫ T

0

∫

Ω

|∇θm(t)|2 dx dt+
∫ T

0

∫

Ω

|u′m(t)|2 dx dt+ Em(t) ≤ Em(0) ≤ C.

(5.16)

To prove that (1.4)-(1.6) carrying a good energy structure in W1, we need show that the forcing term isL2(0, T ;L2(Ω)).
Consider Ω = Ω1 ∪ Ω2 where

Ω1 = {x ∈ Ω : |um(t)(x)| ≤ 1} and Ω2 = {x ∈ Ω : |um(t)(x)| > 1}.
From
∫

Ω

||um(t)|p−2um(t) ln |um(t)||2 dx =

∫

Ω1

||um(t)|p−2um(t) ln |um(t)||2 dx+

∫

Ω2

||um(t)|p−2um(t) ln |um(t)||2 dx.

We have
∫

Ω1

||um(t)|p−2um(t) ln |um(t)||2 dx ≤ |Ω|. (5.17)

Note that,
∫

Ω2

||um(t)|p−2um(t) ln |um(t)||2 dx =

∫

Ω2

|um(t)|2p−4|um(t)|2| ln |um(t)||2 dx

≤
∫

Ω2

|um(t)|2p−4|um(t)|4| ln |um(t)||2 dx

=

∫

Ω2

|um(t)|2p| ln |um(t)|2 dx

=

∫

Ω2

||um(t)|p ln |um(t)||2 dx.

Taking into account that um(t) ∈ W1 we obtain
∫

Ω2

||um(t)|p−2um(t) ln |um(t)||2 dx ≤
∫

Ω

|∇u|p dx. (5.18)

From (5.17) and (5.18) we get
∫

Ω

||um(t)|p−2um(t) ln |um(t)||2 dx ≤ |Ω|+
∫

Ω

|∇u|p dx ≤ C. (5.19)

Then we have

um(t) is bounded in L∞(0, T ;W 1,p
0 (Ω)), (5.20)

u′m(t) is bounded in L∞(0, T ;L2(Ω)), (5.21)

u′m(t) is bounded in L2(0, T ;L2(Ω)), (5.22)

|um(t)|p−2um(t) lnum(t) is bounded in L2(0, T ;L2(Ω)), (5.23)

−∆pum(t) is bounded in L∞(0, T ;W−1,p′

(Ω)), (5.24)

θm(t) is bounded in L∞(0, T ;L2(Ω)), (5.25)

−∆θm(t) is bounded in L2(0, T ;L2(Ω)). (5.26)
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Since our Galerkin basis was taken in the Hilbert space L2(Ω) we can use the standard projection arguments
as described in Lions [39], pages 75-76, to obtain an estimate for u′′m(t). Let Pm be the orthogonal projection
Pm : L2(Ω) → Vm, that is

Pmh =

m
∑

n=1

(h,wj)wj , h ∈ L2(Ω).

Approximated problem (5.7) leads to

u′′m(t) = Pm∆pum(t)− Pmθm(t)− Pmu
′
m(t) + Pm|um(t)|p−2um(t) ln |um(t)|.

As −∆pum(t) ∈ L2(0, T ; (W−1,p′

(Ω)), from estimates (5.23), (5.25) we obtain

u′′m(t) is bounded in L∞(0, T ;W−1,p′

(Ω)). (5.27)

5.2 Passage to the limit
From (5.20)-(5.27) going to the suitable subsequence if necessary (which we continue to denote in the same way),

there exist u(t), θ(t) such that

um(t)
∗
⇀ u(t) in L∞(0, T ;W 1,p

0 (Ω)), (5.28)

u′m(t)
∗
⇀ u′(t) in L∞(0, T ;L2(Ω)), (5.29)

u′m(t) ⇀ u′(t) in L2(0, T ;L2(Ω)), (5.30)

−∆pum(t)
∗
⇀ X1(t) in L∞(0, T ;W−1,p′

(Ω)), (5.31)

|um(t)|p−2um(t) lnum(t) ⇀ X2(t) in L2(0, T ;L2(Ω)), (5.32)

θm(t) ⇀ θ(t) in L2(0, T ;L2(Ω)), (5.33)

−∆θm(t)
∗
⇀ −∆θ(t) in L∞(0, T ;L2(Ω). (5.34)

Applying the Lions-Aubin compactness lemma, from (5.27), (5.28) and (5.29) we get

um(t) → u(t) strongly in L2(0, T ;L2(Ω)) and a.e. inQ, (5.35)

u′m(t) → u′(t) strongly in L2(0, T ;L2(Ω)) and a.e. inQ. (5.36)

We need to prove that X1(t) = −∆pu(t). The following elementary inequality

∣

∣|x|p−2x− |y|p−2y
∣

∣ ≤ C
(

|x|p−2 + |y|p−2
)

|x− y| (5.37)

is a consequence of the Mean Value Theorem. Using (5.37) and Hölder generalized inequality with

p− 2

2(p− 1)
+

1

2
+

1

2(p− 1)
= 1,

we deduce, for z ∈ D(0, T ) and v ∈ Vm, that

∣

∣

∣

∣

∣

∫ T

0

〈(−∆pum(t))− (−∆pu(t)), v〉z(t)dt
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

(

|∇um(t)|p−2∇um(t)− |∇u(t)|p−2∇u(t)
)

∇v dxz(t) dt
∣

∣

∣

∣

∣

≤ C|θ|∞
∫ T

0

∫

Ω

(

|∇um(t)|p−2 + |∇u(t)|p−2
)

|∇um(t)−∇u(t)||∇v| dxdt

≤ C1

∫ T

0

(

‖∇um(t)‖p−2
2(p−1) + ‖∇u(t)‖p−2

2(p−1)

)

|∇um(t)−∇u(t)| ‖∇v‖2(p−1)dt,

that leads to
∣

∣

∣

∣

∣

∫ T

0

〈(−∆pum(t))− (−∆pu(t)), v〉p z(t) dt
∣

∣

∣

∣

∣

≤ C

∫ T

0

|∇um(t)−∇u(t)| dt. (5.38)
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Now, from (5.28) and (5.29), by lemma 2.1 we have

um → u in C([0, T ] ; L2(Ω)).

whence
∇um(t) → ∇u(t) a. e. in [0, T ].

Therefore, by (5.31) and (5.38) we have X1(t) = −∆pu, that is

−∆pum(t)⇀ −∆pu(t) in L2(0, T ;W−1,p′

(Ω)), (5.39)

Now we will prove X2(t) = |u(t)|p−2u(t) lnu(t). From (5.19) we have

|um|p−2um ln |um| is bounded in L2(0, T ;L2(Ω)) = L2(Q). (5.40)

Using continuity of function s→ |s|p−2s ln |s| and (5.35) we have

|um|p−2um ln |um| → |u|p−2u ln |u| a.e. in Q. (5.41)

Then, by using Lions’s lemma, (5.40) and (5.41) leads to

|um|p−2um ln |um|⇀ |u|p−2u ln |u| in L2(0, T ;L2(Ω)). (5.42)

Now, with the convergences (5.29), (5.39), (5.42), (5.33) and (5.34) we can pass to the limit in the approximate
system and we get (5.1),(5.2). The verification of the initial data is a routine procedure. The prove of existence is
complete.

6. Polynomial decay for E(0) < d

In this section, we prove the ||u||pp decay polynomially for subcritical level of initial energy.

Theorem 6.1. Let u0 in the stability set W1, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω). If E(0) < d then the weak solution u(t) of the

problem (1.3)-(1.6) decay polynomially. That is,

‖u(t)‖pp ≤ ‖u(0)‖pp
[

1 + σ

1 + ωt

]
1
σ

where σ >
1

2
, ω =

[‖u(0)‖pp]σ
C

, C > 0.

Proof. As ln |u| ≤ |u|, we have
∫

Ω

|u|p ln |u| dx ≤
∫

Ω

|u|p+1 dx = ‖u‖p+1
p+1.

By Hölder inequality we obtain

‖u‖p+1
p+1 ≤ ‖u‖ν(p+1)

p ‖u‖(1−ν)(p+1)
q , ν ∈ (0, 1).

Applying Young inequality

‖u‖p+1
p+1 ≤ ε

p
‖u‖ν(p+1)p

p +
C0(ε)

q
‖u‖q(1−ν)(p+1)

q

with
1

p
+

1

q
= 1, q < p, and then,

‖u‖p+1
p+1 ≤ ε

p
‖u‖ν(p+1)p

p + C(ε)‖u‖q(1−ν)(p+1)
q .

For ν =
1

2
we have

∫

Ω

|u|p ln |u| dx ≤ ‖u‖p+1
p+1 ≤ ε

p
‖u‖[ p+1

2
]p + C(ε)‖u‖[

p+1

2
]q

q . (6.1)
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We define

L(t) = N‖u‖[
p+1

2
]q

q + ‖∇u‖pp −
∫

Ω

|u|p ln |u| dx. (6.2)

As u ∈W1 we get L(t) > 0. By using (6.1) and Poincaré inequality in (6.2) we obtain

L(t) ≥ N‖u‖[
p+1

2
]q

q + Cp‖u‖pp − ‖u‖p+1
p+1

≥ N‖u‖[
p+1

2
]q

q + Cp‖u‖pp −
ε

p
‖u‖[

p+1

2
]p

p − C(ε)‖u‖[
p+1

2
]q

p

≥ (N − C(ε)) ‖u‖[
p+1

2
]q

q + ‖u‖pp
(

Cp −
ε

p

)

‖u‖
p+1

2
p

Choosing N, ε > 0 such that Cp −
ε

p
> C > 0 and N − C(ε) > 0 we have

L(t) ≥ C
[

‖u‖pp
]

p+1

2 .

As p > 2,

p+ 1

2
=
p

2
+

1

2
=
p

2
+

1

2
− 1 + 1 =

p

2
− 1

2
+ 1

= σ + 1, σ >
1

2
.

Then

‖u‖p[
p+1

2
]

p =
[

‖u‖pp
]σ+1

, σ >
1

2
and

we obtain

L(t) ≥ C
[

‖u‖pp
]σ+1

, σ >
1

2
. (6.3)

By other hand
d

dt
‖u(t)‖pp ≤ p2

d

dt
E(t) ≤ 0,

that is, ‖u(t)‖pp is nonincreasing function. Then − d

dt
‖u(t)‖pp ≥ 0. For each ∞ > T > S ≥ 0, let t > 0 such that

t ∈ (S, T ) and define

A =

{

t ∈ (S, T ) ; − d

dt
‖u(t)‖pp > L(t)

}

.

If t ∈ (S, T ) satisfy

− d

dt
‖u(t)‖pp ≤ L(t)

consider 0 < η(t) <∞ such that

− d

dt
‖u(t)‖pp η(t) ≥ L(t),

and take

A =

{

t ∈ (S, T ) ; − d

dt
‖u(t)‖pp η(t) ≥ L(t)

}

.

Let
η = sup{η(t); t ∈ A, 0 < η(t) <∞}.

Then 0 < η <∞ and

∫ T

S

L(t) dt =

∫

A

L(t) dt+

∫

A

L(t) dt

≤ (1 + η)

∫ T

S

− d

dt
‖u(t)‖pp dt

≤ (1 + η)‖u(S)‖pp, ∀ S ≥ 0. (6.4)
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From (6.3) and (6.4)

∫ T

S

[

‖u(t)‖pp
]σ+1

dt ≤ C−1

∫ T

S

L(t) dt

≤ C−1(1 + η)‖u(S)‖pp
≤ 1

ω

[

‖u(0)‖pp
]σ ‖u(S)‖pp

where ω =
[‖u(0)‖pp]σ
C−1(1 + η)

.

From Lemma 2.4, with E(t) = ‖u(t)‖pp and φ(t) = t we obtain

‖u(t)‖pp ≤ ‖u(0)‖pp
[

1 + σ

1 + ωt

]
1
σ

where σ >
1

2
, ω > 0, C > 0.

7. Blow-up in finite time

As in section 3 we can prove that W2 is invariant for sub-critical initial energy, that is,

Proposition 7.1. Let u0 ∈ W2, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω). If E(0) < d then u(t) ∈ W2.

Theorem 7.1. Let u0 in the instability set W2, u1 ∈ L2(Ω), θ0 ∈ H1
0 (Ω) and r > 1 a fixed real number. If ||u0||22 <√

r − 1(u0, u1) and E(0) < d then the weak solution u(t) of the problem (1.3)-(1.6) will blow up at finite time. Namely, the
maximum existence time T <∞ and

lim
t→T−

||u(t)||pp = +∞,

where

T <
1√
r − 1

ln

[

(r − 1)(u0, u1) +
√
r − 1||u0||22

(r − 1)(u0, u1)−
√
r − 1||u0||22

]

.

Proof. By contradiction, suppose that the solution u(t) ∈ W2 is global. That is, we let T = ∞. Let φ(t) = |u(t)|2. We
have φ′(t) = 2(u(t), u′(t)). Applying Hölder inequality we get

2(u(t), u′(t)) ≤ 2|u(t)| |u′(t)|

and
[φ′(t)]2 ≤ 4|u(t)|2 |u′(t)|2

that leads to

[φ′(t)]2 ≤ 4φ(t)|u′(t)|2. (7.1)

We have

(u′′(t), u(t)) = −‖∇u(t)‖pp −
∫

Ω

u(t)θ(t) dx− α

2

d

dt
|u(t)|2 +

∫

Ω

|u(t)|p ln |u(t)| dx.

Note that,

φ′′(t) = 2|u′(t)|2 + 2(u′′(t), u(t))

= 2|u′(t)|2 − 2‖∇u(t)‖pp − 2

∫

Ω

u(t)θ(t) dx− α
d

dt
|u(t)|2 + 2

∫

Ω

|u(t)|p ln |u(t)| dx.

By using

I(u(t)) = ‖∇u(t)‖pp −
∫

Ω

|u(t)|p ln |u(t)| dx
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we get

φ′′(t) = 2|u′(t)|2 − 2I(u(t))− 2

∫

Ω

|u(t)|p ln |u(t)| dx− 2

∫

Ω

u(t)θ(t) dx− α
d

dt
|u(t)|2 + 2

∫

Ω

|u(t)|p ln |u(t)| dx.

that is

φ′′(t) = 2|u′(t)|2 − 2I(u(t))− 2

∫

Ω

u(t)θ(t) dx− α
d

dt
|u(t)|2.

Let r > 0 be a real number. By using (7.1) we obtain

φ(t)φ′′(t)− r + 3

4
(φ′(t))2 ≥ φ(t)

(

2|u′(t)|2 − 2I(u(t))− 2

∫

Ω

u(t)θ(t) dx

)

− αφ(t)
d

dt
|u(t)|2 − (r + 3)φ(t)|u′(t)|2.

Applying Young inequality we get

φ(t)φ′′(t)− r + 3

4
(φ′(t))2 ≥ φ(t)

[

−(r + 1)|u′(t)|2 − 2I(u(t))− |u(t)|2 − |θ(t)|2
]

− αφ(t)
d

dt
|u(t)|2. (7.2)

From,

E(t) =
1

2
|u′(t)|2 + 1

2
|θ(t)|2 + J(u(t)).

we get

1

2
|u′(t)|2 =− 1

2
|θ(t)|2 + E(t)− J(u(t)),

≤− 1

2
|θ(t)|2 + E(0)− J(u(t)),

≤− 1

2
|θ(t)|2 + d− J(u(t)).

Then,

−(r + 1)|u′(t)|2 ≥ (r + 1)|θ(t)|2 + 2(r + 1)(J(u(t))− d). (7.3)

By using (7.3) in (7.2) we obtain

φ(t)φ′′(t)− r + 3

4
(φ′(t))2 ≥ φ(t)

[

(r + 1)|θ(t)|2 − |θ(t)|2
]

+ φ(t)
[

2(r + 1)(J(u(t))− d)
]

+ φ(t)
[

− 2I(u(t))
]

− αφ(t)
d

dt
|u(t)|2 − φ(t)|u(t)|2.

Now, observe that
[

(r + 1)|θ(t)|2 − |θ(t)|2
]

> 0, −2I(u(t)) > 0 in W2, and J(u(t))− d > 0 because

d = inf
u∈N

J(u).

Namely, we have
φ(t)φ′′(t)− (1 + γ)(φ(t))2 ≥ −2c1φ(t)φ

′(t)− c2(φ(t))
2,

where c1 =
α

2
, c2 = 1, γ =

r − 1

4
. By

√
r − 1(u0, u1) > |u0|2, c1 + c2 > 0, φ(0) > 0 we get φ′(0) + γ2γ

−1φ(0) > 0, for

γ1 =

√
r − 1

2
and γ2 = −

√
r − 1

2
.

Finally, from Lemma 2.5 we concludes that

lim
t→T−

‖u(t)‖pp ≥ c lim
t→T−

|u(t)|2 = +∞,

where

T <
1√
r − 1

ln

[

(r − 1)(u0, u1) +
√
r − 1|u0|2

(r − 1)(u0, u1)−
√
r − 1|u0|2

]

,

which contradicts T = ∞. Then u(t) blows up in finite time.
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8. Final comment

In recent years, results on global well-posedness, local well-posedness, blow-up, and asymptotic behavior of
thermoelastic system have been studied. However, when considering the p-Laplacian operator, few results are
known. We analyze the competition between the logarithmic source and the stabilization power given by the
temperature difference. We show the existence of a global solution and the polynomial decay in a suitable stability
set created from the Nehari Manifold. On the other hand, we prove the blow-up in finite time out of the stability set.
We hope that the results presented here will be a font of inspiration for future research related to the topic.
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Abstract
Fixed-figure problem has been introduced as a generalization of fixed circle problem and investigated a
geometric generalization of fixed point theory. In this sense, we prove new fixed-figure results with some
illustrative examples on metric spaces. For this purpose, we use KMK-type contractions, that is, Kannan
type and Meir-Keeler type contractions.
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1. Introduction

In recent years, fixed-point theory has been generalized using the geometric approaches. For this purpose, fixed-
circle problem has been occurred as a geometric generalization to the fixed-point theory when the self-mapping
T : X → X has more than one fixed point [1]. In many studies, there are different solutions to this problem with
applications on metric and some generalized metric spaces (for example, see [2], [3], [4], [5], [6], [7], [8] and [9]).
After than, this problem has been extended to fixed-figure problem [10]. For this problem, the following notions
were defined (see [11], [12], [1] and [10]).

Let (X, d) be a metric space, T : X → X a self-mapping and x0, x1, x2 ∈ X, r ∈ [0,∞). Then,
(a) the circle Cx0,r is defined by

Cx0,r = {x ∈ X : d(x, x0) = r} .

(b) the disc Dx0,r is defined by
Dx0,r = {x ∈ X : d(x, x0) ≤ r} .

(c) the ellipse Er(x1, x2) is defined by

Er(x1, x2) = {x ∈ X : d (x, x1) + d (x, x2) = r} .
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(d) the hyperbola Hr(x1, x2) is defined by

Hr(x1, x2) = {x ∈ X : |d (x, x1)− d (x, x2)| = r} .

(e) the Cassini curve Cr(x1, x2) is defined by

Cr(x1, x2) = {x ∈ X : d (x, x1) d (x, x2) = r} .

(f) the Apollonius circle Ar(x1, x2) is defined by

Ar(x1, x2) =

{

x ∈ X− {x2} :
d (x, x1)

d (x, x2)
= r

}

.

(g) the k-ellipse E [x1, x2, . . . , xk; r] is defined by

E [x1, x2, . . . , xk; r] =

{

x ∈ X :
k

∑

i=1

d (x, xi) = r

}

.

A geometric figure F contained in the fixed point set Fix (T) = {x ∈ X : x = Tx} is called a fixed figure (a fixed
circle, a fixed disc, a fixed ellipse, a fixed hyperbola, a fixed Cassini curve, etc.) of the self-mapping T (see [10]).
Some fixed-figure results were obtained using different aspects (see [13], [11], [12], [3], [10], [14] and [15] for more
details).

In this paper, we investigate some solutions to the fixed-figure problem on metric spaces. To do this, we modify
the Kannan type and Meir-Keeler type contractions used in the fixed-point theorems. We give some illustrative
examples related to the proved fixed-figure results.

2. Main results

In this section, we present some solutions to the fixed-figure problem using Kannan type (see [16] and [17]) and
Meir-Keeler type (see [18]) contractions on metric spaces. To do this, we inspire the used approaches in [19] and
[20].

In the sequel, let T : X → X be a self-mapping of a metric space (X, d) and the number r defined as

r = inf {d(x,Tx) : x /∈ Fix(T)} . (2.1)

Also, in the examples of this section, we use the usual metric d.
The following theorem can be considered as a new fixed-disc or fixed-circle theorem.

Theorem 2.1. If there exist x0 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ
[d(x, x0)]

1−γ
<

r

2
+ δ(r) =⇒ d(Tx, x0) ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < [d(x,Tx0)]
γ
[d(x0,Tx)]

1−γ ,

for all x ∈ X− Fix(T), then we have
(i) x0 ∈ Fix(T),
(ii) Dx0,r ⊆ Fix(T),
(iii) Cx0,r ⊆ Fix(T).

Proof. (i) Let x0 ∈ X− Fix(T). Using the condition (b), we have

1 ≤ d(x0,Tx0) < [d(x0,Tx0)]
γ
[d(x0,Tx0)]

1−γ
= d(x0,Tx0),

a contradiction. So it should be x0 ∈ Fix(T).
(ii) If r = 0, then we have Dx0,r = {x0} and from the condition (i), we get Dx0,r ⊆ Fix(T).
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Let r > 0 and x ∈ Dx0,r such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < [d(x,Tx0)]
γ
[d(x0,Tx)]

1−γ (2.2)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ
[d(x, x0)]

1−γ
<

r

2
+ δ(r) =⇒ d(Tx, x0) ≤ r. (2.3)

If we combine the inequalities (2.2) and (2.3), we obtain

1 ≤ d(x,Tx) < [d(x,Tx0)]
γ
[d(x0,Tx)]

1−γ ≤ r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get Dx0,r ⊆ Fix(T).
(iii) It can be easily seen that Cx0,r ⊆ Fix(T) since Cx0,r is a boundary of Dx0,r.

Example 2.1. Let X = {−1, 0, 1, 2}. Define the self-mapping T : X → X as

Tx =

(

−1 0 1 2
−1 0 1 1

)

,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.1 for x0 = 0, γ = 1

2
and δ(r) = 2. Also, we have

r = inf {d(x,Tx) : x = 2} = 1

and
Fix(T) = {−1, 0, 1}

Consequently, 0 ∈ Fix(T), D0,1 = {−1, 0, 1} ⊆ Fix(T) and C0,1 = {−1, 1} ⊆ Fix(T).

Theorem 2.2. If there exist x1, x2 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x, T x)]

γ
[d(x, x1) + d(x, x2)]

1−γ
<

r

2
+ δ(r)

=⇒ d(Tx, x1) + d(Tx, x2) ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < [d(x,Tx1) + d(x,Tx2)]
γ
[d(x1,Tx) + d(x2,Tx)]

1−γ ,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Er(x1, x2) ⊆ Fix(T).

Proof. Let r = 0. Then we have Er(x1, x2) = {x1} = {x2}. From the condition (c), we get

Er(x1, x2) ⊆ Fix(T).

Let r > 0 and x ∈ Er(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < [d(x,Tx1) + d(x,Tx2)]
γ
[d(x1,Tx) + d(x2,Tx)]

1−γ (2.4)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ
[d(x, x1) + d(x, x2)]

1−γ
<

r

2
+ δ(r) (2.5)

=⇒ d(Tx, x1) + d(Tx, x2) ≤ r.

If we combine the inequalities (2.4) and (2.5), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Er(x1, x2) ⊆ Fix(T).
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Example 2.2. Let X = {−1, 1, 2, 3}. Define the self-mapping T : X → X as

Tx =

(

−1 1 2 3
−1 1 2 1

)

,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.2 for x1 = −1, x2 = 1, γ = 1

2
and δ(r) = 2. Also, we have

r = inf {d(x,Tx) : x = 3} = 2

and
Fix(T) = {−1, 1, 2}

Consequently, −1, 1 ∈ Fix(T) and E2(−1, 1) = {−1, 1} ⊆ Fix(T).

Theorem 2.3. If there exist x1, x2 ∈ X, γ ∈ (0, 1) and r > 0 such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ |d(x, x1)− d(x, x2)|1−γ
<

r

2
+ δ(r)

=⇒ |d(Tx, x1)− d(Tx, x2)| ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < |d(x,Tx1)− d(x,Tx2)|γ |d(x1,Tx)− d(x2,Tx)|1−γ ,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Hr(x1, x2) ⊆ Fix(T).

Proof. Let x ∈ Hr(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < |d(x,Tx1)− d(x,Tx2)|γ |d(x1,Tx)− d(x2,Tx)|1−γ (2.6)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ |d(x, x1)− d(x, x2)|1−γ
<

r

2
+ δ(r) (2.7)

=⇒ |d(Tx, x1)− d(Tx, x2)| ≤ r.

If we combine the inequalities (2.6) and (2.7), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Hr(x1, x2) ⊆ Fix(T).

Example 2.3. Let X =
{

−1, 1

2
1, 2, 5

2
, 3, 4

}

. Define the self-mapping T : X → X as

Tx =

(

−1 1

2
1 2 5

2
3 4

−1 5

2
1 2 5

2
3 4

)

,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.3 for x1 = −1, x2 = 1, γ = 1

3
and δ(r) = 2. Also, we have

r = inf

{

d(x,Tx) : x =
1

2

}

= 2

and

Fix(T) =

{

−1, 1, 2,
5

2
, 3, 4

}

Consequently, −1, 1 ∈ Fix(T) and H2(−1, 1) =
{

−1, 1, 2, 5

2
, 3, 4

}

⊆ Fix(T).
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Theorem 2.4. If there exist x1, x2 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ
[d(x, x1)d(x, x2)]

1−γ
<

r

2
+ δ(r)

=⇒ d(Tx, x1)d(Tx, x2) ≤ r,

for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) < [d(x,Tx1)d(x,Tx2)]
γ
[d(x1,Tx)d(x2,Tx)]

1−γ ,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Cr(x1, x2) ⊆ Fix(T).

Proof. Let r = 0. Then we have Cr(x1, x2) = {x1} = {x2}. From the condition (c), we get

Cr(x1, x2) ⊆ Fix(T).

Let r > 0 and x ∈ Cr(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) < [d(x,Tx1)d(x,Tx2)]
γ
[d(x1,Tx)d(x2,Tx)]

1−γ (2.8)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ
[d(x, x1)d(x, x2)]

1−γ
<

r

2
+ δ(r) (2.9)

=⇒ d(Tx, x1)d(Tx, x2) ≤ r.

If we combine the inequalities (2.8) and (2.9), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Cr(x1, x2) ⊆ Fix(T).

Example 2.4. Let X =
{

−
√
3,−1, 0, 1,

√
3, 2

}

. Define the self-mapping T : X → X as

Tx =

(

−
√
3 −1 0 1

√
3 2

−
√
3 1 0 1

√
3 0

)

,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.4 for x1 = −1, x2 = 1, γ = 8

9
and δ(r) = 4. Also, we have

r = inf

{

d(x,Tx) : x =
1

2

}

= 2

and
Fix(T) =

{

−
√
3,−1, 0, 1,

√
3
}

Consequently, −1, 1 ∈ Fix(T) and C2(−1, 1) =
{

−
√
3,
√
3
}

⊆ Fix(T).

Theorem 2.5. If there exist x1, x2 ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ

[

d(x, x1)

d(x, x2)

]1−γ

<
r

2
+ δ(r) =⇒ d(Tx, x1)

d(Tx, x2)
≤ r,
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for all x ∈ X− Fix(T),
(b)

1 ≤ d(x,Tx) <

[

d(x,Tx1)

d(x,Tx2)

]γ [
d(x1,Tx)

d(x2,Tx)

]1−γ

,

for all x ∈ X− Fix(T),
(c) x1, x2 ∈ Fix(T),

then we have
Ar(x1, x2) ⊆ Fix(T).

Proof. Let r = 0. Then we have Ar(x1, x2) = {x1} = {x2}. From the condition (c), we get

Ar(x1, x2) ⊆ Fix(T).

Let r > 0 and x ∈ Ar(x1, x2) such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) <

[

d(x,Tx1)

d(x,Tx2)

]γ [
d(x1,Tx)

d(x2,Tx)

]1−γ

(2.10)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ

[

d(x, x1)

d(x, x2)

]1−γ

<
r

2
+ δ(r) =⇒ d(Tx, x1)

d(Tx, x2)
≤ r. (2.11)

If we combine the inequalities (2.10) and (2.11), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

Ar(x1, x2) ⊆ Fix(T).

Example 2.5. Let X =
{

−1, 0, 1

3
, 1, 2, 3

}

. Define the self-mapping T : X → X as

Tx =

(

−1 0 1

3
1 2 3

−1 0 1

3
1 0 3

)

,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.5 for x1 = −1, x2 = 1, γ = 8

9
and δ(r) = 4. Also, we have

r = inf

{

d(x,Tx) : x =
1

2

}

= 2

and

Fix(T) =

{

−1, 0,
1

3
, 1, 3

}

Consequently, −1, 1 ∈ Fix(T) and A2(−1, 1) =
{

1

3
, 3
}

⊆ Fix(T).

Theorem 2.6. If there exist x1, x2, . . . xk ∈ X and γ ∈ (0, 1) such that
(a) There exists a δ(r) > 0 so that

r

2
< [d(x,Tx)]

γ

[

k
∑

i=1

d(x, xi)

]1−γ

<
r

2
+ δ(r)

=⇒
k

∑

i=1

d(Tx, xi) ≤ r,

for all x ∈ X− Fix(T),
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(b)

1 ≤ d(x,Tx) <

[

k
∑

i=1

d(x,Txi)

]γ [
k

∑

i=1

d(Tx, xi)

]1−γ

,

for all x ∈ X− Fix(T),
(c) x1, x2, . . . xk ∈ Fix(T),

then we have
E [x1, x2, . . . , xk; r] ⊆ Fix(T ).

Proof. Let r = 0. Then we have E [x1, x2, . . . , xk; r] = {x1} = . . . = {xk}. From the condition (c), we get

E [x1, x2, . . . , xk; r] ⊆ Fix(T).

Let r > 0 and x ∈ E [x1, x2, . . . , xk; r] such that x ∈ X− Fix(T). Using the condition (b), we get

1 ≤ d(x,Tx) <

[

k
∑

i=1

d(x,Txi)

]γ [
k

∑

i=1

d(Tx, xi)

]1−γ

(2.12)

and by the condition (a), we have

r

2
< [d(x,Tx)]

γ

[

k
∑

i=1

d(x, xi)

]1−γ

<
r

2
+ δ(r) (2.13)

=⇒
k

∑

i=1

d(Tx, xi) ≤ r.

If we combine the inequalities (2.12) and (2.13), we obtain

1 ≤ d(x,Tx) < r ≤ d(x,Tx),

a contradiction. It should be x ∈ Fix(T). Consequently, we get

E [x1, x2, . . . , xk; r] ⊆ Fix(T).

Example 2.6. Let X = {−1, 0, 1, 2}. Define the self-mapping T : X → X as

Tx =

(

−1 0 1 2
−1 0 1 0

)

,

for all x ∈ X. Then T validates the hypotheses of Theorem 2.6 for x1 = −1, x2 = 0, x3 = 1, γ = 1

2
and δ(r) = 4. Also,

we have

r = inf

{

d(x,Tx) : x =
1

2

}

= 2

and
Fix(T) = {−1, 0, 1}

Consequently, −1, 0, 1 ∈ Fix(T) and E[−1, 0, 1; 2] = {0} ⊆ Fix(T).

3. Conclusion and future works

This paper is an example of the geometric approaches to fixed-point theory. The aim of this paper is to gain new
solutions to the fixed-figure problem. For this paper, we use KMK-type contractions, that is, Kannan type and
Meir-Keeler type contractions on metric spaces. This problem can be studied with different approaches on both
metric spaces and some generalized metric spaces (for example, see [21], [22], [23] and the references therein).
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Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous
reviewers for their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and
approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is
published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organi-
zations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study,
scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References
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1. Introduction

Let A (j) denote the class of analytic functions of the form

f(z) = z +

∞
∑

k=j+1

akz
k (j ∈ N = {1, 2, 3, ...}) (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and let A (1) = A. For functions f(z) given by (1.1)
and g(z) given by

g(z) = z +

∞
∑

k=j+1

bkz
k (j ∈ N) , (1.2)
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the Hadamard product or convolution of f(z) and g(z) is defined by

(f ∗ g) (z) = z +
∞
∑

k=j+1

akbkz
k = (g ∗ f) (z). (1.3)

Quantum calculus or q−calculus is an ordinary calculus without limit. In recent years, the study of q−theory
attracted the researches due to its applications in various branches of mathematics and physics, for example, in
the areas of special functions, ordinary fractional calculus, q−difference, q−integral equations and in q−transform
analysis (see, for instance, [1], [2], [3], [4], [5], [6], [7], [8], [9] and [10]).

For f ∈ A (j) given by (1.1) and 0 < q < 1, the q−derivative of f is defined by (see [11], [12], [13], [14], [15] and
[16])

Dq,jf(z) =







f ′(0) if z = 0,
f(z)− f(qz)

(1− q)z
if z 6= 0,

(1.4)

and D2
q,jf(z) = Dq,j (Dq,jf(z)). From (1.1) and (1.4), we deduce that

Dq,jf(z) = 1 +
∞
∑

k=j+1

[k]q akz
k−1 (j ∈ N; z 6= 0), (1.5)

where [k]q is q−integer number k defined by

[k]q =
1− qk

1− q
= 1 + q + q2 + ...+ qk−1 (0 < q < 1) . (1.6)

We note that Dq,1f(z) = Dqf(z) and

lim
q→1−

Dq,jf(z) = lim
q→1−

f(z)− f(qz)

(1− q)z
= f ′(z),

for a function f which is differentiable in a given subset of C. As a right inverse, the q−integral of f is introduced by

∫ z

0

f (t) dqt = z (1− q)
∞
∑

k=0

qkf
(

zqk
)

,

provided that the series converges (see [17] and [18]). For a function f given by (1.1), we observe that

∫ z

0

f (t) dqt =
z2

[2]q
+

∞
∑

k=j+1

akz
k+1

[k + 1]q

and

lim
q→1−

∫ z

0

f (t) dqt =
z2

2
+

∞
∑

k=j+1

akz
k+1

k + 1
=

∫ z

0

f (t) dt,

where
∫ z

0
f (t) dt is the ordinary integral.

Making use of the q−derivative Dq,jf(z), we introduce the subclasses Sq,j (α) and Cq,j (α) of the class A (j) for
0 < q < 1, j ∈ N and 0 ≤ α < 1 as follows:

Sq,j (α) =

{

f ∈ A (j) : ℜzDq,jf(z)

f (z)
> α, z ∈ U

}

, (1.7)

Cq,j (α) =
{

f ∈ A (j) : ℜDq,j(zDq,jf(z))

Dq,jf(z)
> α, z ∈ U

}

, (1.8)

From (1.7) and (1.8), we have
f ∈ Cq,j (α) ⇔ zDq,jf ∈ Sq,j (α) .
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We note that Sq,1 (α) = Sq (α) and Cq,1 (α) = Cq (α) (see [16]) and

lim
q→1−

Sq,1 (α) = S (α) and lim
q→1−

Cq,1 (α) = C (α) ,

where S (α) and C (α) are, respectively, the classes of starlike of order α and convex of order α in U.
Now, we define the q−analogue of multiplier transformation operator

Jm
q,j (l) : A (j) → A (j) (l > −1;m ∈ N0 = N ∪ {0} ; j ∈ N) ,

as follows:

J−m
q,j (l) f (z) =

[l + 1]q
zl

z
∫

0

tl−1J−(m−1)
q,j (l) f (t) dqt (z ∈ U) ,

.

.

.

J−2
q,j (l) f (z) =

[l + 1]q
zl

z
∫

0

tl−1J−1
q,j (l) f (t) dqt (z ∈ U) ,

J−1
q,j (l) f (z) =

[l + 1]q
zl

z
∫

0

tl−1f (t) dqt (z ∈ U) ,

J 0
q,j (l) f (z) = f (z) (z ∈ U) ,

J 1
q,j (l) f (z) =

z1−l

[l + 1]q
Dq,j

(

zlf (z)
)

(z ∈ U) ,

J 2
q,j (l) f (z) =

z1−l

[l + 1]q
Dq,j

(

zlJ 1
q,j (l) f (z)

)

(z ∈ U) .

.

.

.

Jm
q,j (l) f (z) =

z1−l

[l + 1]q
Dq,j

(

zlJm−1
q,j (l) f (z)

)

(z ∈ U) .

We see that for f ∈ A (j), we have

Jm
q,j (l) f (z) = z +

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m

akz
k (1.9)

(0 < q < 1; l > −1;m ∈ Z = {0,±1,±2, ...} ; j ∈ N) .

It is readily verified from (1.9) that

ql zDq,j

(

Jm
q,j (l) f (z)

)

= [l + 1]q Jm+1
q,j (l) f (z)− [l]q Jm

q,j (l) f (z) (m ∈ Z) . (1.10)

We observe that the operator Jm
q,j (l) generalize several previously familiar operators, and we will show some of the

interesting particular cases as follows:

(i) Jm
q,j (0) f (z) = Sm

q,jf (z) and Jm
q,1 (0) f (z) = Sm

q f (z) (m ∈ N0) (see [19]);

(ii) limq→1− Jm
q,1 (0) f (z) = Dmf (z) (m ∈ N0) (see [20], [21], [22] and [23]);

(iii) limq→1− Jm
q,j (l) f (z) = Im

l,jf (z) and limq→1− Jm
q,1 (l) f (z) = Im

l f (z) (l ≥ 0;m ∈ N0) (see [24] and [25]);

(iv) limq→1− Jm
q,1 (1) f (z) = Dmf (z) (m ∈ N0) (see [26]);

(v) limq→1− J−m
q,1 (1) f (z) = Imf (z) (m ∈ N0) (see [27]);
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(vi) limq→1− J−1
q,1 (c) f (z) = Fcf (z) = 1+c

zc

z
∫

0

tc−1f (t) dt (c > −1) is the well-known Bernardi integral operator

[28].

With the help of the operator Jm
q,j (l), we say that a function f belonging to the class A (j) is in the class

Lm
q (l, λ, α; j) if and only if

ℜ
{

zDq,j

(

Jm
q,j (l) f (z)

)

+ λqz2D2
q,j

(

Jm
q,j (l) f (z)

)

(1− λ)Jm
q,j (l) f (z) + λzDq,j

(

Jm
q,j (l) f (z)

)

}

> α (1.11)

(z ∈ U;m ∈ Z; 0 < q < 1; l > −1; 0 ≤ λ ≤ 1; 0 ≤ α < 1) .

Let T (j) denote the subclass of A (j) consisting of functions of the form:

f(z) = z −
∞
∑

k=j+1

akz
k (ak > 0; j ∈ N) (1.12)

Further, we define the class Hm
q (l, λ, α; j) by

Hm
q (l, λ, α; j) = Lm

q (l, λ, α; j) ∩ T (j) .

We note that

(i) limq→1− Hm
q (0, λ, α; j) = P (j;λ, α,m) (m ∈ N) (Aouf and Srivastava [29]);

(ii) limq→1− H0
q (0, 0, α; 1) = S (α) and limq→1− H0

q (0, 1, α; 1) = C (α) (Silverman [30]);

(iii) limq→1− H0
q (0, 0, α; j) = S (α; j) and limq→1− H0

q (0, 1, α; j) = C (α; j) (Chatterjea [31] and Srivastava et al.
[32]);

(iv) Hm
q (0, λ, α; j) = Hm

q (λ, α; j)

=

{

f ∈ T (j) : ℜ
{

zDq,j

(

Sm
q,jf (z)

)

+ λqz2D2
q,j

(

Sm
q,jf (z)

)

(1− λ)Sm
q,jf (z) + λzDq,j

(

Sm
q,jf (z)

)

}

> α

}

;

(v) limq→1− Hm
q (l, λ, α; j) = Hm (l, λ, α; j)

=











f ∈ T (j) : ℜ











z
(

Im
l,jf (z)

)
′

+ λz2
(

Im
l,jf (z)

)
′′

(1− λ) Im
l,jf (z) + λz

(

Im
l,jf (z)

)′











> α











.

The present paper aims at providing a systematic investigation of the various interesting properties and
characteristics of the general class Hm

q (l, λ, α; j).

2. Coefficient estimates

Unless otherwise mentioned, we assume throughout this section that m ∈ Z, j ∈ N, 0 < q < 1, l > −1, 0 ≤ λ ≤ 1,
0 ≤ α < 1, z ∈ U and [k]q is given by (1.6).

Theorem 2.1. Let the function f be defined by (1.12). Then f ∈ Hm
q (l, λ, α; j) if and only if

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

ak ≤ 1− α. (2.1)
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Proof. Assume that the inequality (2.1) holds true. Then we find that

∣

∣

∣

∣

∣

zDq,j

(

Jm
q,j (l) f (z)

)

+ λqz2D2
q,j

(

Jm
q,j (l) f (z)

)

(1− λ)Jm
q,j (l) f (z) + λzDq,j

(

Jm
q,j (l) f (z)

) − 1

∣

∣

∣

∣

∣

≤
∞
∑

k=j+1

(

[l+k]q
[l+1]q

)m

([k]q −1){1+([k]q−1)λ}ak|z|
k−1

1−
∞
∑

k=j+1

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}ak|z|
k−1

≤
∞
∑

k=j+1

(

[l+k]q
[l+1]q

)m

([k]q −1){1+([k]q−1)λ}ak

1−
∞
∑

k=j+1

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}ak

≤ 1− α.

This shows that the values of the function

φ (z) =
zDq,j

(

Jm
q,j (l) f (z)

)

+ λqz2D2
q,j

(

Jm
q,j (l) f (z)

)

(1− λ)Jm
q,j (l) f (z) + λzDq,j

(

Jm
q,j (l) f (z)

) (2.2)

lie in a circle which is centered at w = 1 and whose radius is 1− α. Hence f satisfies the condition (1.11).
Conversely, assume that the function f is in the class Hm

q (l, λ, α; j). Then we have

ℜ
{

zDq,j

(

Jm
q,j (l) f (z)

)

+ λqz2D2
q,j

(

Jm
q,j (l) f (z)

)

(1− λ)Jm
q,j (l) f (z) + λzDq,j

(

Jm
q,j (l) f (z)

)

}

= ℜ















1−
∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}

ak |z|k−1

1−
∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}

ak |z|k−1















> α, (2.3)

for some α (0 ≤ α < 1), m ∈ Z, 0 < q < 1, l > −1, 0 ≤ λ ≤ 1 and z ∈ U. Choose values of z on the real axis so that φ
given by (2.2) is real. Upon clearing the denominator in (2.3) and letting z → 1− through real values, we can see that

1−
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}

ak

≥ α



1−
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}

ak



 . (2.4)

Thus we have the inequality (2.1). This completes the proof of Theorem 2.1.

Corollary 2.1. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α; j). Then

ak ≤ 1− α
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
) (k ≥ j + 1; j ∈ N) (2.5)

The equality in (2.5) is attained for the function f given by

f (z) = z − 1− α
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)zk (k ≥ j + 1; j ∈ N) . (2.6)

Theorem 2.2. If 0 ≤ α1 < α2 < 1, then

Hm
q (l, λ, α2; j) ⊆ Hm

q (l, λ, α1; j) . (2.7)



q−Analogue of of multiplier transformation operator 143

Proof. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α2; j). Then, by Theorem 2.1, we have

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α2

)

ak ≤ 1− α2 (2.8)

and
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}

ak ≤ 1− α2

[j + 1]q − α2
< 1. (2.9)

Consequently,

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α1

)

ak

=

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α2

)

ak

+(α2 − α1)
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}

ak

≤ 1− α1. (2.10)

This completes the proof of Theorem 2.2 with the aid of Theorem 2.1.

Theorem 2.3. If 0 ≤ λ1 ≤ λ2 ≤ 1, then

Hm
q (l, λ2, α; j) ⊆ Hm

q (l, λ1, α; j) . (2.11)

Proof. It follows from Theorem 2.1 that

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ1

}(

[k]q − α
)

ak

≤
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ2

}(

[k]q − α
)

ak

≤ 1− α.

for f ∈ Hm
q (l, λ2, α; j). This completes the proof of Theorem 2.3

Similarly we can prove

Theorem 2.4. If m ∈ Z, then
Hm+1

q (l, λ, α; j) ⊆ Hm
q (l, λ, α; j) .

3. Distortion theorems and convex linear combinations

Theorem 3.1. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α; j). Then, for |z| < r < 1,

r − 1− α
(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
)rj+1 ≤ |f (z)|

≤ r +
1− α

(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
)rj+1. (3.1)

The equality in (3.1) is attained for the function f given by

f (z) = z − 1− α
(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
)zj+1. (3.2)
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Proof. It is easy to see from Theorem 2.1 that

(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
)

∞
∑

k=j+1

ak

≤
∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[j + 1]q − α
)

ak ≤ 1− α,

so that
∞
∑

k=j+1

ak ≤ 1− α
(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
) . (3.3)

Making use of (3.3), we have

|f(z)| ≥ r −
∞
∑

k=j+1

ak r
k ≤ r − rj+1

∞
∑

k=j+1

ak

≥ r − (1− α)
(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
)rj+1

and

|f(z)| ≤ r +
∞
∑

k=j+1

ak r
k ≤ r + rj+1

∞
∑

k=j+1

ak

≤ r +
(1− α)

(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − α
)rj+1

which prove the assertion (3.1). Finally, we note that the equality in (3.1) is attained for the function f defined by
(3.2). This completes the proof of Theorem 3.1.

Now, we shall prove that the class Hm
q (l, λ, α; j) is closed under convex linear combinations.

Theorem 3.2. Hm
q (l, λ, α; j) is a convex set.

Proof. Let the functions

fv(z) = z −
∞
∑

k=j+1

av.kz
k (av,k > 0; v = 1, 2; j ∈ N) (3.4)

be in the class Hm
q (l, λ, α; j). It is sufficient to show that the function h (z) defined by

h (z) = (1− γ) f1 (z) + γf2 (z) (0 ≤ γ ≤ 1) (3.5)

is also in the class Hm
q (l, λ, α; j). Since, for 0 ≤ γ ≤ 1,

h (z) = z −
∞
∑

k=j+1

{(1− γ) a1,k + γa2,k} zk, (3.6)

with the aid of Theorem 2.1, we have

∞
∑

k=2

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

{(1− γ) a1,k + γa2,k} ≤ 1− α, (3.7)

which implies that h ∈ Hm
q (l, λ, α; j). Hence Hm

q (l, λ, α; j) is a convex set.



q−Analogue of of multiplier transformation operator 145

Theorem 3.3. Let fj (z) = z and

fk (z) = z − 1− α
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)zk (k ≥ j + 1; j ∈ N) . (3.8)

Then f is in the class Hm
q (l, λ, α; j) if and only if it can be expressed in the form:

f (z) =
∞
∑

k=j

µkz
k



µk ≥ 0, k ≥ j;
∞
∑

k=j

µk = 1



 . (3.9)

Proof. Assume that

f (z) =
∞
∑

k=j

µkz
k = z −

∞
∑

k=j+1

1− α
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)µkz

k. (3.10)

Then it follows that

∞
∑

k=j+1

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
1−α

1−α
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
µk

=

∞
∑

k=j+1

µk = 1− µj ≤ 1

So, by Theorem 2.1, f ∈ Hm
q (l, λ, α; j).

Conversely, assume that the function f defined by (1.12) belongs to the class Hm
q (l, λ, α; j). Then

ak ≤ 1− α
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
) (k ≥ j + 1; j ∈ N) (3.11)

Setting

µk =

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
(k ≥ j + 1; j ∈ N) (3.12)

and

µj = 1−
∞
∑

k=j+1

µk,

we can see that f can be expressed in the form (3.9). This completes the proof of Theorem 3.3.

4. Radii of close-to-convexity, starlikeness and convexity

Theorem 4.1. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α; j). Then f is close-to-convex of order

ρ (0 ≤ ρ < 1) in |z| < r1, where

r1 = inf
k

[

(1−ρ)
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
k(1−α)

]
1

k−1

(k ≥ j + 1) . (4.1)

The result is sharp, the extremal function f being given by (2.6).

Proof. We must show that
∣

∣

∣
f

′

(z)− 1
∣

∣

∣
≤ 1− ρ for |z| < r1,

where r1 is given by (4.1). Indeed we find from the definition (1.12) that

∣

∣

∣
f

′

(z)− 1
∣

∣

∣
=

∞
∑

k=j+1

kak |z|k−1
.
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Thus ∣

∣

∣
f

′

(z)− 1
∣

∣

∣
≤ 1− ρ,

if
∞
∑

k=j+1

k

1− ρ
ak |z|k−1 ≤ 1. (4.2)

But, by Theorem 2.1, (4.2) will be true if

k

1− ρ
ak |z|k−1 ≤

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
,

that is, if

|z| ≤







(1− ρ)
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

k (1− α)







1
k−1

(k ≥ j + 1) . (4.3)

Theorem 4.1 follows easily from (4.3).

Theorem 4.2. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α; j). Then f is starlike of order ρ (0 ≤ ρ < 1) in

|z| < r2, where

r2 = inf
k

[

(1−ρ)
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
(k−ρ)(1−α)

]
1

k−1

(k ≥ j + 1) . (4.4)

The result is sharp, the extremal function f being given by (2.6).

Proof. It is sufficient to show that
∣

∣

∣

∣

∣

zf
′

(z)

f (z)
− 1

∣

∣

∣

∣

∣

≤ 1− ρ for |z| < r2,

where r2 is given by (4.4). Indeed we find, again from the definition (1.12), that

∣

∣

∣

∣

∣

zf
′

(z)

f (z)
− 1

∣

∣

∣

∣

∣

=

∞
∑

k=j+1

(k − 1) ak |z|k−1
.

1−
∞
∑

k=j+1

ak |z|k−1

Thus
∣

∣

∣

∣

∣

zf
′

(z)

f (z)
− 1

∣

∣

∣

∣

∣

≤ 1− ρ,

if
∞
∑

k=j+1

k − ρ

1− ρ
ak |z|k−1 ≤ 1. (4.5)

But, by Theorem 2.1, (4.5) will be true if

k − ρ

1− ρ
ak |z|k−1 ≤

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
,

that is, if

|z| ≤







(1− ρ)
(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

(k − ρ) (1− α)







1
k−1

(k ≥ j + 1) . (4.6)

Theorem 4.2 follows easily from (4.6).
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Similarly, we can prove the following theorem.

Theorem 4.3. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α; j). Then f is convex of order ρ (0 ≤ ρ < 1) in

|z| < r3, where

r3 = inf
k

[

(1−ρ)
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
k(k−ρ)(1−α)

]
1

k−1

(k ≥ j + 1) . (4.7)

The result is sharp, the extremal function f being given by (2.6).

5. Modified Hadamard products and integral operator

Let the functions fv (v = 1, 2) be defined by (3.4). The modified Hadamard product of f1 and f2 is defined by

(f1 ∗ f2) (z) = z −
∞
∑

k=j+1

a1,ka2,kz
k. (5.1)

Theorem 5.1. Let each of the functions fv (z) (v = 1, 2) defined by (3.4) be in the class Hm
q (l, λ, α; j). Then

(f1 ∗ f2) (z) ∈ Hm
q (l, λ, β; j) ,

where

β =

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−[j+1]

q
(1−α)2

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−(1−α)2

. (5.2)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [33], we need to find the largest β such that

∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − β
)

1− β
a1,ka2,k ≤ 1. (5.3)

Since
∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
a1,k ≤ 1 (5.4)

and
∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
a2,k ≤ 1, (5.5)

by the Cauchy-Schwarz inequality, we have

∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α

√
a1,ka2,k ≤ 1. (5.6)

Thus it is sufficient to show that
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−β)
1−β

a1,ka2,k ≤
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
1−α

√
a1,ka2,k (5.7)

that is, that

√
a1,ka2,k ≤

(1− β)
(

[k]q − α
)

(1− α)
(

[k]q − β
) (k > j + 1) . (5.8)

Note that √
a1,ka2,k ≤ 1−α

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
(k ≥ j + 1) . (5.9)
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Consequently, we need only to prove that

1−α
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
≤ (1−β)([k]q−α)

(1−α)([k]q−β)
(k ≥ j + 1) , (5.10)

or, equivalently, that

β ≤
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−[k]

q
(1−α)2

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−(1−α)2

(k ≥ j + 1) . (5.11)

Since

Ψq (k) =

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−[k]

q
(1−α)2

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−(1−α)2

(k ≥ j + 1) (5.12)

is an increasing function of k (k ≥ j + 1), letting k = j + 1 in (5.12). we obtain

β ≤ Ψq (j + 1) =

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−[j+1]

q
(1−α)2

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−(1−α)2

(5.13)

which proves the main assertion of Theorem 5.1. Finally, by taking the functions

fi (z) = z − 1−α
(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

zj+1 (i = 1, 2) , (5.14)

we can see that the result is sharp.

Theorem 5.2. Let fi ∈ Hm
q (l, λ, αi; j) (i = 1, 2). Then (f1 ∗ f2) ∈ Hm

q (l, λ, δ; j), where

δ =

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α1)([j+1]

q
−α2)−[j+1]

q
(1−α1)(1−α2)

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α1)([j+1]

q
−α2)−(1−α1)(1−α2)

. (5.15)

The result is the best possible for the functions

fi (z) = z − 1− αi
(

[l+j+1]
q

[l+1]
q

)m {

1 +
(

[j + 1]q − 1
)

λ
}(

[j + 1]q − αi

)zj+1 (i = 1, 2) . (5.16)

Proof. Proceeding as in the proof of Theorem 5.1, we get

δ ≤
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α1)([k]q−α2)−[k]
q
(1−α1)(1−α2)

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α1)([k]q−α2)−(1−α1)(1−α2)
(k ≥ j + 1) . (5.17)

Since the right-hand side of (5.17) is an increasing function of k, setting k = j + 1 in (5.17), we obtain (5.15). This
completes the proof of Theorem 5.2.

Theorem 5.3. Let each of the functions fi (i = 1, 2) defined by (3.4) be in the class Hm
q (l, λ, α; j). Then the function

h (z) = z −
∞
∑

k=j+1

(

a21,k + a22,k
)

zk (5.18)

belongs to the class Hm
q (l, λ, ζ; j), where

ζ =

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−2[j+1]

q
(1−α)2

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−2(1−α)2

. (5.19)

The result is sharp for the functions fi (i = 1, 2) defined by (5.14).
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Proof. By virtue of Theorem 2.1, we obtain

∞
∑

k=j+1







(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α







2

a21,k

≤







∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
a1,k







2

≤ 1 (5.20)

and

∞
∑

k=j+1







(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α







2

a22,k

≤







∞
∑

k=j+1

(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α
a2,k







2

≤ 1. (5.21)

It follows from (5.20) and (5.21) that

∞
∑

k=j+1

1

2







(

[l+k]
q

[l+1]
q

)m {

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

1− α







2

(

a21,k + a22,k
)

≤ 1 (5.22)

Therefore, we need to find the largest ζ such that

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−ζ)
1−ζ

≤ 1

2

[
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
1−α

]2

(5.23)

that is,

ζ ≤
(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−2[k]

q
(1−α)2

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−2(1−α)2

(k ≥ j + 1) . (5.24)

Since

χq (k) =

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−2[k]

q
(1−α)2

(

[l+k]q
[l+1]q

)m{1+([k]q−1)λ}([k]q−α)
2
−2(1−α)2

(5.25)

is an increasing function of k (k ≥ j + 1), we readily have

ζ ≤ χq (j + 1) =

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−2[j+1]

q
(1−α)2

(

[l+j+1]q
[l+1]q

)m{1+([j+1]
q
−1)λ}([j+1]

q
−α)

2
−2(1−α)2

(5.26)

and Theorem 5.3 follows at once.

Theorem 5.4. Let the function f defined by (1.12) be in the class Hm
q (l, λ, α; j), and let c be a real number such that c > −1.

Then the function

J−1
q,j (c) f (z) = Fc,q,j (z) =

[c+ 1]q
zc

z
∫

0

tc−1f (t) dqt (c > −1) (5.27)

also belongs to the class Hm
q (l, λ, α; j).
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Proof. From the representation (5.27) of Fc,q,j (z), it follows that

Fc,q,j (z) = z −
∞
∑

k=j+1

bkz
k,

where bk =
[c+1]

q

[c+k]
q

ak (see [34] and [35]). Therefore, we have

∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

bkz
k

=
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
) [c+ 1]q
[c+ k]q

akz
k

≤
∞
∑

k=j+1

(

[l + k]q
[l + 1]q

)m
{

1 +
(

[k]q − 1
)

λ
}(

[k]q − α
)

akz
k

≤ 1− α,

since f ∈ Hm
q (l, λ, α; j). Hence, by Theorem 2.1, Fc,q,j ∈ Hm

q (l, λ, α; j).

Remark 5.1. Taking l = 0,m ∈ N0 and q → 1− in the above results, we obtain the results of Aouf and Srivastava [29]
for the class P (j;λ, α,m).

Remark 5.2. Putting l = 0 in the above results, we obtain the the corresponding results for the class Hm
q (λ, α; j)

involving an operator Sm
q,j .

Remark 5.3. Putting q → 1− in the above results, we obtain the corresponding results for the class Hm (l, λ, α; j)
involving multiplier transformation operator Im

l,j .
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1. Introduction

We deal with the following nonlinear Kirchhoff-type viscoelastic problem:














utt −M
(

‖∇u‖
2
)

∆u+
t
∫

0

g (t− s)∆u (s) ds+ |u|
υ
∂j (ut) = |u|

r−1
u in Ω× (0,+∞) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) on x ∈ Ω,
u (x, t) = 0 on x ∈ ∂Ω,

(1.1)

here ∂j (s) denotes the sub-differential j (s) [1], Ω is a bounded domain in Rn with a smooth boundary ∂Ω. M(α) is
a nonnegative C1 function for α ≥ 0 satisfying

M (α) = 1 + ακ, κ > 0.

The Kirchhoff type equations orginated from the nonlinear vibration of an elastic string and was firstly considered
by Kirchhoff for f = g = δ = 0 :

ρh
∂2u

∂t2
+ δ

∂u

∂t
+ g

(

∂u

∂t

)

=

{

ρ0 +
Eh

2L

∫ L

0

(

∂u

∂x

)2

dx

}

∂2u

∂x2
+ f (u) , (1.2)
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where 0 < x < L, t ≥ 0.
Now, we focus on a chronological literature overview. Eq. (1.2) with f = g = 0 was investigated by Nishihara

and Yamada [2]. The author studied the global solvability of solution for non-analytic initial data. In [3], Ikehata and

Matsuyama investigated Eq.(1.2) with δ = 0, g = δ |ut|
p−1

ut and f = |u|
r−1

u, and employed the global solvability
and the energy decay of solution. Moreover, Ono [4] studied Eq. (1.2) with g = 0, the author employed the local and
the global existence, decay properties of solutions for degenerate and non-degenerate equations with a dissipative
term. Also, the author studied the blow up of solution with nonpositive and positive initial energy. The other work
related to Kirchhoff type equations is Taniguchis’s work. Taniguchi [5] considered the existence of local solution,
also discuss the global existence and exponential asymptotic behaviour of solutions for weakly damped Eq. (1.2).

In case of M ≡ 1, the problem (1.1) discussed by Han and Wang [6] and the authors proved the global existence
of generalized solutions, weak solutions. Moreover, they studied finite time blow-up of solutions with negative
initial energy.

Furthermore, in case of M ≡ 1 and g = 0, the problem (1.1) becomes the following form

utt −∆u+ |u|
υ
∂j (ut) = |u|

r−1
u,

has been studied by some authors see [7–11].
In [12], Ekinci and Pişkin studied following equation:

utt +∆2u−M
(

‖∇u‖
2
)

∆u+ |u|
υ
∂j (ut) = |u|

r−1
u, (1.3)

with initial and boundary conditions. They studied blow up of solutions with arbitrary positive initial energy by
constructing a energy perturbation function.

In the work [13], Piskin investigated the following equation:

utt +∆2u−M
(

‖∇u‖
2
)

∆u+ |ut|
p−1

ut = |u|
r−1

u (1.4)

and proved the existence, decay and blow up of the solution. Then, Pişkin and Irkıl [14] investigated the same
problem treated in [13] and studied blow up results for positive initial energy. In 2018, Pişkin and Yüksekkaya [15]
considered problem (1.4) in case p = 1 and proved the blow up of solutions with positive and negative initial energy.
Furthermore, Periera et al. [16] discussed problem (1.4) in case p = 1 and studied existence of the global solutions
via the Faedo-Galerkin method. The authors also obtained the asymptotic behavior via the Nakao method. Then, in
2021, Periera et al. [17] investigated the existence and the energy decay estimate of global solutions for problem
(1.4) in case p ≥ 1.

The hyperbolic models with degenerate damping also are of much interest in material science and physics.
It particularly appears in physics when the friction is modulated by the strains. There are a lot of studies have
Kirchhoff-type viscoelastic problem with degenerate damping term. But, most of these studies are system problem.
For instance, Pişkin and Ekinci [18] investigated the following system







utt −M(‖∇u‖
2
)∆u+

∫ t

0
g1(t− s)∆u(s)ds+

(

|u|
k
+ |v|

l
)

|ut|
p−1

ut = f1 (u, v) ,

vtt −M(‖∇v‖
2
)∆v +

∫ t

0
g2(t− s)∆v(s)ds+

(

|v|
θ
+ |u|

̺
)

|vt|
q−1

vt = f2 (u, v) ,
(1.5)

in Ω × (0, T ) . The authors discussed global existence, general decay and blow up results of solutions. Recently,
Piskin and Ekinci [19] considered same problem and proved local existence result. In [20], the author studied blow
up of solutions with positive initial energy for problem (1.5) without viscoelastic term. In addition, they gave some
estimates for lower bound of the blow up time. On the other hand, the other some studies with degenerate damping
terms are see (see [21–29]).

The equation (1.5) in case M ≡ 1, Pişkin et al. [29] studied local existence and uniqueness of the solution by
using the Faedo-Galerkin method. Furthermore, they proved the blow up of weak solutions.

To the best of our knowledge too many system problems with Kirchhoff type and degenerate damping terms.
But there are a few studies as single equation with degenerate damping and Kirchhoff type. Motivated by previous
works, we prove several results concerning the blow up and exponential growth of solution for the problem (1.1).

To analyze the blow up and growth of solution for problem (1.1), we are interested in effect caused by the source

term |u|
r−1

u, memory
∫ t

0
g(t− s)∆u(s) ds and degenerate damping |u|υ∂j(ut). In our problem is that the source
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term of type |u|r−1u overcomes the stabilizing mechanisms, memory
∫ t

0
g(t− s)∆u(s) ds and degenerate damping

|u|υ∂j(ut), thus causing a destabilization of the model with the blow up of the solution at a finite time [30].

The remaining part of this paper is organized as follows: In the next section, we introduce some assumptions,
notations and present a lemma needed in the proof of our results. In Section 3, we prove the blow up of solution
with negative initial energy. In Section 4, we prove the exponential growth of solution with negative initial energy.

2. Preliminaries

Now, we present some preliminary material which will be helpful in the proof of our results. Throughout this
paper, we denote the standart L2 (Ω) norm by ‖.‖ = ‖.‖L2(Ω) and Lq (Ω) norm ‖.‖q = ‖.‖Lq(Ω) .

(A1) υ, p ≥ 0, r > 1; υ ≤ n
n−2 , r + 1 ≤ 2n

n−2 if n ≥ 3. There exists positive constants c, c0, c1 such that for all

s, k ∈ R j (s) : R → R be a C1 convex real function satisfies

• j (s) ≥ c |s|
p+1

,

• j′ (s) is single valued and |j′ (s)| ≤ c0 |s|
p
,

• (j′ (s)− j′ (k)) (s− k) ≥ c1 |s− k|
p+1

.

(A2) u0 (x) ∈ H1
0 (Ω) , u1 (x) ∈ L2 (Ω) .

(A3) Assume g (τ) : R+ → R+ satisfies

g (τ) ≥ 0, g′ (τ) ≤ 0,

for all τ ∈ R+ and
∫ t

0

g (τ) dτ < 1.

(A4)
∫ t

0
g (s) ds < r−1

r+1 .

We use the following notations

l = 1−

∫ t

0

g (τ) dτ,

(g ⋄ θ) (t) =

∫ t

0

g (t− τ)

∫

Ω

|θ (t)− θ (τ)| dxdτ.

Lemma 2.1. Suppose that (A1) , (A2) and (A3) hold. Let u be a solution of (1.1). Then, E (t) is nonincreasing, namely,

E′ (t) ≤ 0.

Proof. A multiplication of Eq.(1.1) by ut and integration over Ω give

E′ (t) = −
1

2
g (t) ‖∇u‖

2
+

1

2
(g′ ⋄ ∇u) (t)−

∫ t

0

∫

Ω

|u (τ)|
υ
j (ut) (τ) dxdτ ≤ 0, (2.1)

where

E (t) =
1

2

[

‖ut‖
2
+

(

1−

∫ t

0

g (s) ds

)

‖∇u‖
2

]

+
1

2

[

1

κ+ 1
‖∇u‖

2(κ+1)
+ (g ⋄ ∇u) (t)

]

−
1

r + 1
‖u‖

r+1
r+1 (2.2)

Thus, we have

E (t) ≤ E (0) . (2.3)
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3. Blow up

In this section, we shall prove the blow up of solutions for problem (1.1).

Theorem 3.1. Let (A1)-(A4) hold. u be a any solution to (1.1) on the interval [0, T ] . Assume further that r > υ + p,
E (0) < 0 and

∫ t

0

g (s) ds ≥
κ

κ+ 1
.

Then T is necessarily finite, i.e. u can’t be continued for all t > 0.

Proof. Set

H (t) = −E (t) . (3.1)

By using (2.1), we have

H ′ (t) = −E′ (t)

=
1

2
g (t) ‖∇u‖

2
−

1

2
(g′ ⋄ ∇u) (t) +

∫

Ω

|u (t)|
υ
j (ut)utdx

≥

∫

Ω

|u (t)|
υ
j (ut)utdx

≥ c0

∫

Ω

|u (t)|
υ
|ut|

p+1
dx. (3.2)

Thus, we arrive at

0 < H (0) ≤ H (t) ≤
1

r + 1
‖u‖

r+1
r+1 , t ≥ 0. (3.3)

Now, we define

L (t) = H1−ρ (t) + ε

∫

Ω

uutdx,

where ρ = min
{

r−p−υ
p(r+1) ,

r−1
2(r+1)

}

and ε is a positive constant.

By derivating L(t) and using Eq.(1.1), we obtain

L′ (t) = (1− ρ)H−ρ (t)H ′ (t) + ε ‖ut‖
2
− ε ‖∇u‖

2
− ε ‖∇u‖

2(κ+1)

+ε

∫ t

0

g (t− s)

∫

Ω

∇u (s)∇u (t) dxds

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1

= (1− ρ)H−ρ (t)H ′ (t) + ε ‖ut‖
2
− ε ‖∇u‖

2

−ε ‖∇u‖
2(κ+1)

− ε

∫ t

0

g (s) ds ‖∇u‖
2

+ε

∫ t

0

g (t− s)

∫

Ω

∇u (t) (∇u (s)−∇u (t)) dxds

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1 . (3.4)

By applying Young’s inequality to estimate the fifth term of (3.4) as follows

∣

∣

∣

∣

∫ t

0

g (t− s)

∫

Ω

∇u (t) (∇u (s)−∇u (t)) dxds

∣

∣

∣

∣

≤

∫ t

0

g (s) ds ‖∇u‖
2
+

1

4
(g ⋄ ∇u) (t) .
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From (A3), since 0 < l ≤ 1. Then it follows from the definition of H(t) that

−‖∇u‖
2

=
2

l
H (t) +

1

l
‖ut‖

2
+

1

l
(g ⋄ ∇u) (t)

+
1

l (κ+ 1)
‖∇u‖

2(κ+1)
−

2

l (r + 1)
‖u‖

r+1
r+1 . (3.5)

Combining (3.4)-(3.5), we obtain

L′ (t) ≥ (1− ρ)H−ρ (t)H ′ (t) + ε

(

1 +
1

l

)

‖ut‖
2

+ε
2

l
H (t) + ε

(

1

l
−

1

4

)

(g ⋄ ∇u) (t) + ε

(

1

l (κ+ 1)
− 1

)

‖∇u‖
2(κ+1)

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε

(

1−
2

l (r + 1)

)

‖u‖
r+1
r+1 . (3.6)

By condition
∫ t

0
g (s) ds < r−1

r+1 , we have 1− 2
l(r+1) > 0.

In order to estimate fifth term in (3.6), since r > υ + p, from assumption (A1) and thanks to Holder’s inequality
and Young’s inequality, we get

∣

∣

∣

∣

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx

∣

∣

∣

∣

≤

∫

Ω

|u (t)|
υ+1− υ+p+1

p+1 |u (t)|
υ+p+1
p+1 |ut (t)|

p
dx

≤ C0

(
∫

Ω

|u (t)|
υ
|ut (t)|

p+1
dx

)

p

p+1
(
∫

Ω

|u (t)|
υ+p+1

dx

)
1

p+1

≤ C0 |Ω|
r−υ−p

r+1

(
∫

Ω

|u (t)|
υ
|ut (t)|

p+1
dx

)

p

p+1

‖u (t)‖
υ+p+1
p+1

r+1

≤ β (H ′ (t))
p

p+1 ‖u (t)‖
υ+p+1
p+1

r+1

≤ β
(

δ−
1
pH ′ (t) + δ ‖u (t)‖

υ+p+1
r+1

)

, (3.7)

where constant δ > 0 is specified later and β = C0C
−

p

p+1

1 |Ω|
r−υ−p

r+1 .

Hence, (3.6) becomes

L′ (t) ≥
[

(1− ρ)H−ρ (t)− εβδ−
1
p

]

H ′ (t)

+ε

(

1 +
1

l

)

‖ut‖
2
+ ε

(

1

l (κ+ 1)
− 1

)

‖∇u‖
2(κ+1)

+ε
2

l
H (t) + ε

(

1

l
−

1

4

)

(g ⋄ ∇u) (t)

+ε

(

1−
2

l (r + 1)

)

‖u‖
r+1
r+1 − εβδ ‖u (t)‖

υ+p+1
r+1 . (3.8)

The choice of δ
(

i.e. δ = 1
β

(

1
2 − 1

l(r+1)

)

‖u‖
r−υ−p
r+1

)

, then

εβδ ‖u (t)‖
r+p+1
r+1 = ε

(

1

2
−

1

l (r + 1)

)

‖u‖
r+1
r+1 .
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Furthermore, since ‖u‖r+1 ≥ [(r + 1)H (0)]
1

r+1 by (3.3) and υ + p− r + p (r + 1) ρ ≤ 0, then

(1− ρ)H−ρ (t)− εβδ−
1
p

= H−ρ (t)
[

1− ρ− εβδ−
1
pHρ (t)

]

≥ H−ρ (t)

[

1− ρ− εβ1+ 1
p

(

1

2
−

1

l (r + 1)

)

−
1
p

(r + 1)
−ρ

‖u‖
p+υ−r+p(r+1)ρ

p

r+1

]

≥ H−ρ (t)

[

1− ρ− εβ1+ 1
p

(

1

2
−

1

l (r + 1)

)

−
1
p

(r + 1)
−ρ−

r−p−υ

p(r+1) H (0)
ρ−

r−υ−p

p(r+1)

r+1

]

≥ H−ρ (t)
[

1− ρ− εβ1+ 1
pχ
]

, (3.9)

where χ =
(

1
2 − 1

l(r+1)

)

−
1
p

(r + 1)
ρ−

r−p−̺

p(r+1) H (0)
ρ−

r−υ−p

p(r+1)

r+1 . Now, we choose ε to be sufficiently small such that

1− ρ− εβ1+ 1
pχ > 0.

Then (3.9) and (3.8) yield

L′ (t) ≥ εC
[

H (t) + ‖ut (t)‖
2
+ ‖u‖

r+1
r+1 + (g ⋄ ∇u) (t)

]

, (3.10)

where C > 0 is a constant that does not depended on ε. Especially, (3.10) means that L (t) is increasing on [0, T ),
with

L (t) = H1−ρ (t) + ε

∫

Ω

uutdx ≥ H1−ρ (0) + ε

∫

Ω

u0u1dx.

We also select ε to be sufficiently small such that L (0) > 0, thus L (t) ≥ L (0) > 0 for t ≥ 0.
Let η = 1

1−ρ
. Since 0 < ρ < 1

2 , it is evident that 2 > η > 1. By using the following inequality

|x+ y|
η
≤ 2η−1 (|x|

η
+ |y|

η
) for η ≥ 1,

applying Young’s inequality, we get

Lη (t) ≤ 2η−1 (H (t) + ε ‖u (t)‖
η
‖ut (t)‖

η
)

≤ C

(

H (t) + ‖ut (t)‖
2
+ ‖u (t)‖

1
1
2
−ρ

r+1

)

. (3.11)

By the choice of ρ, we have 1
2 − ρ > 1

r+1 . Now applying the inequality

aσ ≤

(

1 +
1

b

)

(b+ a) , a ≥ 0, 0 ≤ σ ≤ 1, b > 0,

and taking a = ‖u (t)‖
r+1
r+1 , η = 1

( 1
2−ρ)(r+1)

< 1, and b = H (0) , we obtain

‖u (t)‖

1
1
2
−ρ

r+1 ≤

(

1 +
1

H (0)

)

(

H (0) + ‖u (t)‖
r+1
r+1

)

≤ C
(

H (t) + ‖u (t)‖
r+1
r+1

)

. (3.12)

Combining (3.11) and (3.12) gives the inequality

Lη (t) ≤ C
(

H (t) + ‖ut (t)‖
2
+ ‖u (t)‖

r+1
r+1

)

≤ C
(

H (t) + ‖ut (t)‖
2
+ ‖u (t)‖

r+1
r+1 + (g ⋄ ∇u) (t)

)

. (3.13)

Thus, (3.10) and (3.13) arrive at
L′ (t) ≥ CLη (t) , t ∈ [0, T ] . (3.14)

In the end, from (3.14) and η = 1
1−ρ

> 1, we see that L (t) = H1−ρ (t) + ε
∫

Ω
uutdx blow up in finite time. This

completes the proof.
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4. Exponential growth

In this section, we aim to indicate that the energy grow up as an exponential function as time as goes to infinity.

Theorem 4.1. Let (A1)-(A3) hold. u be a any solution to (1.1). Suppose further that r > υ + p and E (0) < 0 and

∫ t

0

g (s) ds ≥
κ

κ+ 1/2

Then, the solution to (1.1) grows exponentially.

Proof. We define

̥ (t) = H (t) + ε

∫

Ω

uutdx, (4.1)

where H (t) = −E (t) and choose 0 < ε ≤ 1 in this interval to obtain small perturbation of E(t) and we will indicate
that ̥ (t) grows exponentialy, namely F (t) satisfies a differential inequality of the form

dF (t)

dt
≥ ΓF (t) .

By derivating (4.1) and using Eq.(1.1), we have

F ′ (t) = H ′ (t) + ε ‖ut‖
2
− ε ‖∇u‖

2
− ε ‖∇u‖

2(κ+1)

+ε

∫ t

0

g (t− s)

∫

Ω

∇u (s)∇u (t) dxds

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1

= H ′ (t) + ε ‖ut‖
2
− ε ‖∇u‖

2

+ε

∫ t

0

g (s) ds ‖∇u‖
2
− ε ‖∇u‖

2(κ+1)

+ε

∫ t

0

g (t− s)

∫

Ω

∇u (t) (∇u (s)−∇u (t)) dxds

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1 . (4.2)

Terms in (4.2) is estimated as follows:

∣

∣

∣

∣

∫ t

0

g (t− s)

∫

Ω

∇u (t) (∇u (s)−∇u (t)) dxds

∣

∣

∣

∣

≤
1

2

∫ t

0

g (s) ds ‖∇u‖
2
+

1

2
(g ⋄ ∇u) (t) .
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F ′ (t) ≥ H ′ (t) + ε ‖ut‖
2
− ε

(

1−
1

2

∫ t

0

g (s) ds

)

‖∇u‖
2

−ε ‖∇u‖
2(κ+1)

− ε
1

2
(g ⋄ ∇u) (t)

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1

≥ H ′ (t) + ε ‖ut‖
2
− ε

(

1− 1
2

∫ t

0
g (s) ds

1−
∫ t

0
g (s) ds

)

l ‖∇u‖
2

−ε ‖∇u‖
2(κ+1)

− ε
1

2
(g ⋄ ∇u) (t)

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1 .

≥ H ′ (t) + ε ‖ut‖
2
− εζl ‖∇u‖

2

−ε ‖∇u‖
2(κ+1)

− ε
1

2
(g ⋄ ∇u) (t)

−ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx+ ε ‖u‖

r+1
r+1 , (4.3)

where ζ =
1− 1

2

∫
t

0
g(s)ds

1−
∫

t

0
g(s)ds

.

By using the assumption (A3) and the definition H (t) , we have 0 < l ≤ 1 and

F ′ (t) ≥ H ′ (t) + ε (1 + ζ) ‖ut‖
2
+ ε

(

ζ

κ+ 1
− 1

)

‖∇u‖
2(κ+1)

+ε

(

ζ −
1

2

)

(g ⋄ ∇u) (t) + ε

(

1−
2ζ

γ + 1

)

‖u‖
r+1
r+1

+2εζH (t)− ε

∫

Ω

|u (t)|
υ
u (t) ∂j (ut) (t) dx.

By using (3.7), we get

F ′ (t) ≥
[

1− εβδ−
1
p

]

H ′ (t) + ε (1 + ζ) ‖ut‖
2

ε

(

ζ

κ+ 1
− 1

)

‖∇u‖
2(κ+1)

+2εζH (t) + ε

(

ζ −
1

2

)

(g ⋄ ∇u) (t)

+ε

(

1−
2ζ

r + 1

)

‖u‖
r+1
r+1 − εβδ ‖u (t)‖

υ+p+1
r+1 . (4.4)

The choice of δ
(

i.e. δ = 1
β

(

1
2 − ζ

r+1

)

‖u‖
r−υ−p
r+1

)

, then

εβδ ‖u (t)‖
υ+p+1
r+1 = ε

(

1

2
−

ζ

r + 1

)

‖u‖
r+1
r+1 .

Furthermore, since ‖u‖r+1 ≥ [(r + 1)H (0)]
1

r+1 by (3.3) and assumption υ + p− r ≤ 0, then

1− εβδ−
1
p

≥ 1− εβ1+ 1
p

(

1

2
−

ζ

r + 1

)

−
1
p

(r + 1)
−

r−p−υ

p(r+1) H (0)
−

r−υ−p

p(r+1)

r+1

≥ 1− εβ1+ 1
pK,

where K =
(

1
2 − ζ

r+1

)

−
1
p

(r + 1)
−

r−p−υ

p(r+1) H (0)
−

r−υ−p

p(r+1)

r+1 . Now, we choose ε to be sufficiently small such that

1− εβ1+ 1
pK > 0.
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Thus,

F ′ (t) ≥ εC
[

H (t) + ‖ut (t)‖
2
+ ‖u‖

r+1
r+1 + (g ⋄ ∇u) (t)

]

(4.5)

where C > 0 is a constant that does not depended on ε.
Now, applying Young’s inequality, and Sobolev Poincare inequality we have

F (t) ≤ H (t) + ε ‖u‖ ‖ut‖

≤ C
(

H (t) + ‖ut‖
2
+ ‖u‖

2
)

.

Now, in order the estimate ‖u‖
2 term we apply the inequality al ≤ (a + 1) ≤ (1 + 1

b
)(a + b) for a = ‖u‖

r+1
r+1 ,

l = 2/r + 1 < 1, b = H(0), we have

‖u‖
2

≤ C ‖u‖
2
r+1

= C
(

‖u‖
r+1
r+1

)
2

r+1

≤

(

1 +
1

H(0)

)

(

‖u‖
r+1
r+1 +H(0)

)

≤ C
(

‖u‖
r+1
r+1 +H(t)

)

. (4.6)

Thus,

F (t) ≤ C
[

H (t) + ‖ut (t)‖
2
+ ‖u‖

r+1
r+1 + (g ⋄ ∇u) (t)

]

. (4.7)

Therefore, (4.5) and (4.7) arrive at

F ′ (t) ≥ ξF (t) , t ≥ 0

This completes the proof.

5. Conclusion

As far as we know, there is not any blow up and exponential growth results in the literature known for
viscoelastic Kirchhoff type equation with degenerate damping term. Our work extends the works for some
viscoelastic Kirchhoff type equations treated in the literature to the viscoelastic Kirchhoff equations with degenerate
damping terms.
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[15] Pişkin, E., Yüksekkaya, H.: Non-existence of solutions for a Timoshenko equations with weak dissipation. Mathematica
Moravica. 22(2), 1-9 (2018).

[16] Pereira, D. C., Nguyen, H., Raposo, C. A., Maranhao, C. H. M.: On the solutions for an extensible beam equation
with internal damping and source terms. Differential Equations & Applications. 11(3), 367-377 (2019).

[17] Pereira, D. C., Raposo, C. A., Maranhao, C. H. M., Cattai, A. P.: Global existence and uniform decay of solutions
for a Kirchhoff beam equation with nonlinear damping and source term. Differential Equations and Dynamical
Systems.(2021). https://doi.org/10.1007/s12591-021-00563-x
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[21] Pişkin, E., Ekinci, F.: Global existence of solutions for a coupled viscoelastic plate equation with degenerate damping
terms. Tbilisi Mathematical Journal. 14, 195-206 (2021).
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[26] Ekinci, F., Pişkin, E.: Growth of solutions for fourth order viscoelastic system. Sigma Journal of Engineering and
Natural Sciences. 39(5), 41-47 (2021).
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Abstract
In this paper, the structures of the linear codes over a family of the rings At =
Z4 [u1, . . . , ut]

/〈
u2
i − ui, uiuj − ujui

〉
are given, where i, j = 1, 2, . . . , t, i 6= j, Z4 = {0, 1, 2, 3}. A map

between the elements of the At and the alphabet {A, T,C,G}
2t is constructed. The DNA codes are

obtained with three different methods, by using the cyclic, skew cyclic codes over a family of the rings At

and θi-set, where θi is a non trivial automorphism on Ai, for i = 1, 2, . . . , t.
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1. Introduction

There are many methods in order to obtain DNA codes. In [1], it was used the cyclic codes over the finite ring
F2[u]/〈u

4 − 1〉 in order to obtain DNA codes. The sufficient and necessary conditions of cyclic codes over the finite
ring satisfying the reverse complement constraints was given. By introducing a map, the DNA codes were obtained
from these types codes. In different method, it was used the skew cyclic codes over Z4[u, v]/〈u

2 −u, v2 − v, uv− vu〉
in order to obtain reversible DNA codes, in [2]. Thanks to this, reversibility problem was solved for DNA 4-bases.
This problem arises from the fact that the pairing of nucleotides in two different strands of a DNA sequence is done
in opposite direction and reverse order. For example, take t = 1. Let (α1, α2) ∈ A2

1 be a codeword corresponding to
CTCG, where A1 = Z4 + u1Z4, u

2
1 = u1. The reverse of (α1, α2) is (α2, α1). The vector (α2, α1) corresponding to

CGCT . It is not reverse of CTCG. The reverse of CTCG is GCTC. In order to solve reversibility problem, there is
a different approach. In [3], it was used θ-set, where θ is a non trivial automorphism on F2[u, v]/〈u

2, v2 − v, uv− vu〉
in order to obtain reversible and reversible complement DNA codes.
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Moreover, there are similar papers in the literature, [4–6]. Motivated from all these works in which were
considered the codes over one ring and were used one method in order to DNA codes, we decide to consider the
codes over a family of rings and use three methods in order to obtain DNA codes.

In this paper, we use the cyclic, skew cyclic codes over a family of the rings At = Z4[u1, . . . , ut]/〈u
2
i − ui, uiuj −

ujui〉, where i, j = 1, 2, . . . , t, i 6= j and Z4 = {0, 1, 2, 3} and θi-set, where θi is a non trivial automorphism on Ai, for
i = 1, 2, . . . , t in order to obtain DNA codes. Section 2 includes some knowledge about a family of the rings At. A

map φi is defined from Ai to A2
i−1, for i = 1, 2, . . . , t. A map ξi is defined from Ai to {A, T,C,G}2

i

, for i = 1, 2, . . . , t.
A Gray map is defined on Ai, for i = 1, . . . , t. In the section 3 and 4, the structures of linear and cyclic codes over At

are given, respectively. In the section 5.1 and 5.2 the sufficient and necessary conditions of cyclic codes over At

satisfying the reverse and reverse complement constraints are given, respectively. The DNA codes are obtained
with first method. In the section 6, by defining a non trivial automorphism on Ai for i = 1, . . . , t, the skew cyclic
codes over a family of the finite rings are introduced. By using the skew cyclic codes over At, the DNA codes are
obtained with second method. In the section 7, by using the θi-set, where θi is a non trivial automorphism on Ai,
for i = 1, 2, . . . , t, the DNA codes are obtained with third method.

2. Preliminaries

A family of the finite rings At = Z4[u1, . . . , ut]/〈u
2
i − ui, uiuj − ujui〉, where i, j = 1, 2, . . . , t, i 6= j contains the

commutative the finite rings with characteristic 4 and cardinality 42
t

. The finite rings of the family are written as
recursively

Ar = Ar−1 + urAr−1

where r = 1, 2, . . . , t and A1 = Z4 + u1Z4, u
2
1 = u1, where A0 = Z4 = {0, 1, 2, 3}.

We define a map as follows for every ai = xi−1 + uiyi−1 ∈ Ai,

φi : Ai −→ A2
i−1

ai 7−→ φi (ai) = (xi−1, xi−1 + yi−1)

where i = 1, 2, . . . , t and

φ1 : A1 −→ A2
0

a1 = x0 + u1y0 7−→ φ1 (a1) = (x0, x0 + y0)

where A0 = Z4.

The map φi can be extended to An
i naturally, for i = 1, . . . , t.

Let SD4
= {A, T,C,G} represent the DNA alphabet. The Watson Crick Complement is given Ac = T, T c =

A,Gc = C,Cc = G. We use the same notation for the set SD16
= {AA, TT, . . . , CG} which was presented in [7].

It is extended the notation to the elements of SD16
such that AAc = TT,AT c = TA, . . . , GGc = CC. By using the

matching the elements of A0 and SD4
= {A, T,C,G} which is given as ξ0(0) = A, ξ0(1) = T, ξ0(3) = C, ξ0(2) = G

and by using the map φ1 from A1 = Z4 + u1Z4 to Z2
4 , we defined a ξ1 correspondence between the elements of the

finite ring A1 = Z4 + u1Z4 and DNA double pairs by a1 = x0 + u1y0 7→ (ξ0(x0), ξ0(x0 + y0)) in [7],
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Elements a1 DNA double pairs ξ1(a1)
0 AA
1 TT
2 GG
3 CC
u1 AT

1 + u1 TG
u1 + 2 GC
u1 + 3 CA
2u1 AG

1 + 2u1 TC
2 + 2u1 GA
3 + 2u1 CT
3u1 AC

1 + 3u1 TA
2 + 3u1 GT
3 + 3u1 CG

Table 1. Identifying codons with the elements of the ring A1.

By using the map φ2 and ξ1, we established ξ2 correspondence between the elements of A2 and DNA 4-bases by
a2 = x1 + u1y1 7→ (ξ1(x1), ξ1(x1 + y1)) as follows in [2],

Elements a2 DNA 4-bases ξ2(a2)
0 AAAA
1 TTTT
2 GGGG
3 CCCC
u1 ATAT
u2 AATT
...

...

Table 2. Identifying codons with the elements of the ring A2.

By using the map φi and ξi−1, we can establish ξi correspondence between the element of Ai and DNA 2i-bases for
i = 1, .., t as follows.

ξi : Ai −→ A2
i−1 −→ {A, T,C,G}2

i

ai = xi−1 + uiyi−1 7−→ φi (ai) = (xi−1, xi−1 + yi−1) 7−→ γi (φi (ai)) = (ξi−1(xi−1), ξi−1(xi−1 + yi−1))

where ξi = γiφi and the map γi is defined from A2
i−1 to DNA 2i-bases as follows,

γi(si−1, ti−1) = (ξi−1(si−1), ξi−1(ti−1))

where si−1, ti−1 ∈ Ai−1, for i = 1, ..., t.
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We established ξi correspondence between the elements of Ai and DNA 2i-bases as follows

Elements ai DNA 2i-bases ξi(ai)
0 AA . . . A

︸ ︷︷ ︸

2i times

1 TT . . . T
︸ ︷︷ ︸

2i times

2 GG . . .G
︸ ︷︷ ︸

2i times

3 CC . . . C
︸ ︷︷ ︸

2i times

u1 ATAT . . . AT
︸ ︷︷ ︸

2i times
...

...

Table 3. Identifying codons with the elements of the ring Ai.

for i = 1, . . . , t.
We can also express an element of At as follows uniquely.

Let B ⊆ {1, 2, . . . , t} and uB =
∏

i∈B

ui. In particular u∅ = 1. Each element of At is of the form
∑

B∈Pt

αBuB , where

αB ∈ Z4, Pt is the power set of the set {1, 2, . . . , t}. For A,B ⊆ {1, 2, . . . , t}, we have that uAuB = uA∪B which gives

that
∑

B∈Pt

αBuB .
∑

C∈Pt

βCuC =
∑

D∈Pt

(
∑

B∪C=D

αBβC

)

uD. Moreover,

eu∅
= 1 + (−1)|B|

∑

B∈Pt

uB

and the number of eu∅
is
(
t
0

)
.

eui
= ui + (−1)|B|+1

∑

i∈B∈Pt,
|B|≥2

uB

for i = 1, 2, . . . , t and the number of eui
is
(
t
1

)
.

euiuj
= uiuj

i<j

+ (−1)|B|+2
∑

i,j∈B∈Pt,
|B|≥3

uB

for i, j = 1, 2, . . . , t and the number of euiuj
is
(
t
2

)
.

euiujus
= uiujus

i<j<s

+ (−1)|B|+3
∑

i,j,s∈B∈Pt,
|B|≥4

uB

for i, j, s = 1, 2, . . . , t and the number of euiujus
is
(
t
3

)

...

eu1u2...ut
= u1u2 . . . ut

and the number of eu1u2...ut
is
(
t
t

)
.

Then we have
∑

B∈Pt

euB
= 1, (euB

)2 = euB
and euB

euA
= 0 if A 6= B for any A,B ⊆ {1, 2, . . . , t}. Hence

At =
⊕

B∈Pt

AteuB
∼=

⊕

B∈Pt

Z4euB
. So every element z of At can be uniquely expressed as z =

∑

B∈Pt

auB
euB

, where

auB
∈ Z4.
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Example 2.1. Let t be 3. Then A3 = Z4 + u1Z4 + u2Z4 + u3Z4 + u1u2Z4 + u1u3Z4 + u2u3Z4 + u1u2u3Z4. Consider
the elements of A3 below

eu∅
= e1 = 1− u1 − u2 − u3 + u1u2 + u1u3 + u2u3 − u1u2u3

eu1
= u1 − u1u2 − u1u3 + u1u2u3

eu2
= u2 − u1u2 − u2u3 + u1u2u3

eu3
= u3 − u1u3 − u2u3 + u1u2u3

eu1u2
= u1u2 − u1u2u3

eu1u3
= u1u3 − u1u2u3

eu2u3
= u2u3 − u1u2u3

eu1u2u3
= u1u2u3

We can also define Gray map as follows,

Ψt : At −→ Z2t

4

z =
∑

B∈Pt

auB
euB

7−→ Ψt(z) = γ

where γ =







∑

B=∅

auB
,

∑

B⊆{1}

auB
, . . . ,

∑

B⊆{t}

auB
,

∑

B⊆{1,2}

auB
,

∑

B⊆{1,3}

auB
, . . . ,

∑

B⊆{i,j},
i<j

auB
,

∑

B⊆{1,2,3}

auB
, . . . ,

∑

B⊆{i,j,s},
i<j<s

auB
, . . . ,

∑

B⊆{1,2,...,t}

auB







and auB
∈ Z4, for i, j, s, . . . ∈

{1, 2, . . . , t}.

The map Ψt can be extended from An
t , naturally.

Example 2.2. Let t = 3. Then

Ψ3 : A3 −→ Z8
4

z =
∑

B∈P3

auB
euB

7−→ Ψ3(z) = γ

where γ = (a1, a1 + au1
, a1 + au2

, a1 + au3
, a1 + au1

+ au2
+ au1u2

, a1 + au1
+ au3

+ au1u3
, a1 + au2

+ au3
+ au2u3

, a1 +
au1

+ au2
+ au3

+ au1u2
+ au2u3

+ au1u3
+ au1u2u3

).

The Lee weight on Z4, denoted wL, is defined as wL(p) = 0 if p = 0, wL(p) = 1 if p = 1 or p = 3, wL(p) = 2 if
p = 2. For any x =

∑

B∈Pt

auB
euB

∈ At, the Gray weight of x is defined as

wG(x) = wL(Ψt(x)) =

2t∑

i=1

wL(xi)

where Ψt(x) = (x1, . . . , x2t) and xi ∈ Z4 for i = 1, 2, . . . , 2t. The Gray weight of a vector a = (a1, . . . , an) ∈ An
t is

defined to be a rational sum of the Gray weight of its components. Moreover, for any c,d ∈ An
t , the Gray distance

between c and d is defined as dG(c,d) = wG(c− d).

Theorem 2.1. The map Ψi is a linear and distance preserving map, for i = 1, . . . , t.
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3. Linear codes over At

A non empty subset C ⊆ An
t is called linear code over At if C is a submodule of At.

Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) be two vectors in An
t . The Euclidean inner product of x

and y is defined by

〈x,y〉 =
n−1∑

j=0

xjyj

where the operations are performed in the ring At.
Dual of the code C ⊆ An

t is the code

C⊥ = {x ∈ An
t : 〈x,y〉 = 0, ∀y ∈ C}.

Clearly, C⊥ is also linear.
Denote r = (r(0), . . . , r(n−1)) ∈ An

t , where r(i) =
∑

B∈Pt

aiuB
euB

for i = 0, 1, 2, . . . , n− 1. Then r can be uniquely

expressed as r =
∑

B∈Pt

auB
euB

, where auB
= (a0uB

, a1uB
, . . . , an−1uB

), each B ∈ Pt.

Let
R1 ⊕ . . .⊕R2t = {r1 + . . .+ r2t |ri ∈ Ri, i = 1, . . . , 2t},

R1 ⊕ . . .⊕R2t = {(r1, . . . , r2t)|ri ∈ Ri, i = 1, . . . , 2t}.

Define the codes CuB
as follows

Cu∅
= C1 = {au∅

∈ Zn
4 |∃auB ,B 6=∅ ∈ Zn

4 ,
∑

B∈Pt

auB
euB

∈ C}

Cu1
= {au1

∈ Zn
4 |∃auB ,B 6={1} ∈ Zn

4 ,
∑

B∈Pt

auB
euB

∈ C}

Cu2
= {au2

∈ Zn
4 |∃auB ,B 6={2} ∈ Zn

4 ,
∑

B∈Pt

auB
euB

∈ C}

...

Cut
= {aut

∈ Zn
4 |∃auB ,B 6={t} ∈ Zn

4 ,
∑

B∈Pt

auB
euB

∈ C}

Cu1u2
= {au1u2

∈ Zn
4 |∃auB ,B 6={1,2} ∈ Zn

4 ,
∑

B∈Pt

auB
euB

∈ C}

...

Cu1u2...ut
= {au1u2...ut

∈ Zn
4 |∃auB ,B 6={1,...,t} ∈ Zn

4 ,
∑

B∈Pt

auB
euB

∈ C}.

The number of CuB
is 2t. Clearly CuB

is a linear code of length n over Z4. C can be uniquely decomposed into

C =
⊕

B∈Pt

CuB
euB

and hence we have |C| =
∏

B∈Pt

|CuB
|.

The following theorems can be proved as in [8].

Theorem 3.1. Let C =
⊕

B∈Pt

CuB
euB

be a linear code of length n over At. Then the dual C⊥ =
⊕

B∈Pt

CuB

⊥euB
is also a

linear code of length n over At.
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Theorem 3.2. If C is a (n,M, dG) linear code over Ai, then Ψi(C) is a (2in,M, dL) linear code over Z4 for i = 1, . . . , t,
where dG = dL.

Theorem 3.3. Let C be a linear code of length n over Ai. Then Ψi(C) =
⊗

B∈Pi

CuB
, for i = 1, . . . , t.

4. Cyclic codes over At

In [9], the structures of cyclic codes of length n over Z4 were determined as follows. By using this, we will obtain
the structures of cyclic codes over Ai for i = 1, . . . , t.

Theorem 4.1. [9] Let C be a cyclic code of length n over Rn = Z4[x]/〈x
n − 1〉.

1. If n is odd, then Rn is a principal ideal ring and C = 〈g(x), 2a(x)〉 = 〈g(x) + 2a(x)〉, where g(x) and a(x) are polynomials
with a(x)|g(x)|xn − 1 ( mod 4) .
2. If n is not odd, then

i. If g(x) = a(x), then C = 〈g(x) + 2a(x)〉, where g(x)|xn − 1 ( mod 2), g(x) + 2a(x)|xn − 1 ( mod 4),

ii. C = 〈g(x) + 2p(x), 2a(x)〉, where g(x), a(x) and p(x) are polynomials with g(x)|xn − 1 ( mod 2) and

a(x)|p(x) (xn − 1/g(x)) ( mod 2), deg a(x) > deg p(x).

Theorem 4.2. Let C =
⊕

B∈Pt

CuB
euB

be a linear code over At. Then C is a cyclic code over At if and only if CuB
are cyclic

codes over Z4 for all B ∈ Pt. Moreover, if C is a cyclic code over At, then

C = 〈f1(x)e1, fu1
(x)eu1

, . . . , fut
(x)eut

, fu1u2
(x)eu1u2

, . . . , fu1u2...ut
(x)eu1u2...ut

〉

where fuB
(x) are generator polynomials of CuB

, for all B ∈ Pt, respectively.

Proof. This can be proven similarly to [7].

5. The reversible codes and reversible complement codes

In [7], the sufficient and necessary conditions of cyclic codes over A1 satisfying the reverse constraint and reverse
complement constraint were given. In this section, the sufficient and necessary conditions of cyclic codes over Ai

satisfying the reverse constraint and reverse complement constraint are given for i = 2, . . . , t.

Definition 5.1. A cyclic code C of length n over At is said to be reversible if xr = (xn−1, . . . , x0) ∈ C, for all
x = (x0, . . . , xn−1) ∈ C.

Definition 5.2. For each polynomial c(x) = c0 + c1x+ . . .+ cmxm with cm 6= 0, the reciprocal polynomial of c(x) is
defined to be the polynomial c∗(x) = xmc(x−1). The polynomial c(x) and c∗(x) always have the same degree. The
polynomial c(x) is called reciprocal if and only if c(x) = c∗(x).

Lemma 5.1. Let f(x) and g(x) be polynomials in At[x]. Suppose that degf(x)-deg g(x) = m, then

(f(x).g(x))∗ = f∗(x)g∗(x)

and
(f(x) + g(x))∗ = f∗(x) + xmg∗(x).

5.1 The reversible codes
In [9], the author studied the reversible codes over Z4 as follows, by using this, the sufficient and necessary

conditions of cyclic codes over Ai satisfying the reverse constraint are given for i = 2, . . . , t.

Lemma 5.2. [9] Let C = 〈g(x), 2a(x)〉 = 〈g(x) + 2a(x)〉 be a cyclic code of odd length n over Z4. Then C is reversible if
and only if both g(x) and a(x) are self reciprocal.

Theorem 5.1. [9] Let C = 〈g(x) + 2p(x)〉 be a cyclic code of even length n over Z4. Then C is reversible if and only if

i. g(x) is self reciprocal,
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ii. a(x)|
(
xip∗(x) + p(x)

)
, where i =deg g(x)- deg p(x).

Theorem 5.2. [9] Let C = 〈g(x) + 2p(x), 2a(x)〉 with g(x)|xn−1 ( mod 2), a(x)|g(x) ( mod 2), a(x)|p(x)| (xn − 1/g(x)) ( mod 2)
and deg a(x) > deg p(x) be a cyclic code of even length n over Z4. Then C is reversible if and only if

i. g(x) and a(x) are self reciprocal,

ii. a(x)|(xip∗(x) + p(x)), where i =deg g(x)-deg p(x).

Theorem 5.3. Let C =
⊕

B∈Pt

CuB
euB

be a cyclic code of length n over At. Then C is reversible if and only if CuB
are

reversible, where CuB
are cyclic codes over Z4, for all B ∈ Pt.

Proof. This can be proven similarly to [7].

5.2 The reversible complement codes

In this section, the sufficient and necessary conditions of cyclic codes over Ai satisfying the reverse complement
constraint are given for i = 2, . . . , t and DNA codes are obtained by using cyclic DNA codes over At.

Definition 5.3. A cyclic code C of length n over At is said to be complement if xc = (xc
0, . . . , x

c
n−1) ∈ C, for all

x = (x0, . . . , xn−1) ∈ C.
A cyclic code C of length n over At is said to be reversible complement if xrc = (xc

n−1, . . . , x
c
0) ∈ C, for all

x = (x0, . . . , xn−1) ∈ C.
A cyclic code C of length n over At that has reversible complement property is said to be cyclic DNA code.

Lemma 5.3. The following conditions hold,

i. For any element ai ∈ Ai, a
c
i = (xi−1 + uiyi−1)

c = xc
i−1 + 3uiyi−1, where xi−1, yi−1 ∈ Ai−1, i = 1, 2, . . . , t.

ii. For all a ∈ At, we have a+ ac = 1.

iii. For all a, b ∈ At, we have (a+ b)c = ac + bc + 3.

Proof. i., ii. According the tables, the computations are easy.
iii. Let a, b ∈ At. From ii., (a+ b)c = 1− (a+ b) = (1− a) + (1− b)− 1 = ac + bc + 3.

Theorem 5.4. Let C =
⊕

B∈Pt

CuB
euB

be a cyclic code of length n over At. Then C is reversible complement if and only if C

is reversible and (0c, . . . , 0c) ∈ C, where CuB
are cyclic codes over Z4, for all B ∈ Pt.

Proof. This can be proven similarly to [7].

Corollary 5.1. Let C be a cyclic DNA code of length n over At and minimum Hamming distance d. Then ξt(C) is a DNA
code of length 2tn over the alphabet {A,C,G, T} with minimum Hamming distance at least d.

6. Skew cyclic codes over At

For i = 2, the reversibility problem was solved in [2]. In this section, by using the skew cyclic codes over Ai, the
reversibility problem for DNA 2i-mers is solved for i = 1, 3, . . . , t.

Definition 6.1. Let B be a finite ring and θ be a non trivial automorphism over B. A subset C of Bn is called a skew
cyclic code of length n if C satisfies the following conditions,

i. C is a submodule of Bn

ii. If c = (c0, . . . , cn−1) ∈ C, then σθ(c) = (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C,

where σθ is the skew cyclic shift operator.
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By defining a non trivial automorphism on At as follows, we can define the skew cyclic codes over At.

θi : Ai −→ Ai

xi−1 + uiyi−1 7−→ θi−1(xi−1 + yi−1)− uiθi−1(yi−1)

and

θ1 : A1 −→ A1

x0 + u1y0 7−→ (x0 + y0)− u1y0

where i = 2, 3, . . . , t. The order of θi is 2, where i = 1, 2, . . . , t.

The rings

Ai[x, θi] = {bi0 + bi1x+ . . .+ bin−1x
n−1 : bij ∈ Ai, n ∈ N, i = 1, . . . , t, j = 0, . . . , n− 1}

are called skew polynomial rings with the usual polynomial addition and the multiplication as follows

(̺xs)(ηxv) = ̺θsi (η)x
s+v

where i = 1, . . . , t. They are non commutative rings.
The set Aθi,n = Ai[x, θi]/ 〈x

n − 1〉 = {fi(x) + 〈xn − 1〉 : fi(x) ∈ Ai[x, θi]} is a left Ai[x, θi]-module with the
multiplication from left as follows,

ri(x)(fi(x) + 〈xn − 1〉) = ri(x)fi(x) + 〈xn − 1〉

where for any ri(x) ∈ Ai[x, θi], for i = 1, . . . , t.
A code Ci over Ai of length n is a skew cyclic code if and only if Ci is a left Ai[x, θi]-submodule of Aθi,n, where

i = 1, . . . , t. Let fi(x) be a polynomial in Ci of minimal degree. If the leading cofficient of fi(x) is a unit in Ai, then
Ci = 〈fi(x)〉 , where fi(x) is a right divisor of xn − 1.

We can express the matching the elements A1 and SD16
= {AA, TT, . . . , GG} by means of the automorphism θ1

as follows.
Each element α1 = x0 + u1y0 ∈ A1 and θ1(α1) are mapped to DNA 2-bases which are reverse of each other. Let

ξ1 be a correspondence the elements of the finite ring A1 and DNA 2-bases. For example

ξ1(u1) = AT, while ξ1 (θ1(u1)) = TA

By using a map ξi = γi ◦ φi, where the map γi is defined from A2
i−1 to DNA 2i-bases as foolows

γi(si−1, ti−1) = (ξi−1(si−1), ξi−1(ti−1))

where si−1, ti−1 ∈ Ai−1, for i = 1, . . . , t, we can explain a relationship between skew cyclic codes and DNA codes.
Actually, ξi(ri) and ξi (θi(ri)) are DNA reverse of each other, where ri = ai−1 + uibi−1, ai−1, bi−1 ∈ Ai−1 for
i = 1, . . . , t.

For ri = ai−1 + uibi−1 ∈ Ai, we have

ξi(ri) = γi (φi(ai−1 + uibi−1)) = γi (ai−1, ai−1 + bi−1)

= (ξi−1(ai−1), ξi−1(ai−1 + bi−1))

On the other hand,

ξi (θi(ri)) = ξi (θi−1(ai−1 + bi−1)− uiθi−1(bi−1))

= γi (φi (θi−1(ai−1 + bi−1)− uiθi−1(bi−1)))

= γi (θi−1(ai−1 + bi−1), θi−1(ai−1))

= (ξi−1 (θi−1(ai−1 + bi−1)) , ξi−1 (θi−1(ai−1)))

where i = 1, . . . , t.
This map can be extended as follows. For any si = (si0, . . . , s

i
n−1) ∈ An

i ,

(
ξi
(
si0
)
, ξi

(
si1
)
, . . . , ξi

(
sin−1

))r
=

(
ξi
(
θi
(
sin−1

))
, . . . , ξi

(
θi
(
si1
))

, ξi
(
θi
(
si0
)))

where i = 1, 2, . . . , t.
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Example 6.1. If r2 = 1 + u1 + u2 (2 + 3u1) ∈ A2, then we have

ξ2 (r2) = γ2 (φ2 (r3)) = γ2 (1 + u1, 3)

= (ξ1 (1 + u1), ξ1 (3))) = (TG,CC)

On the other hand,

ξ2 (θ2(r2)) = ξ2 (θ1(3)− u2θ1(2 + 3u1))

= γ2(θ1(3), θ1(1 + u1))

= (ξ1(θ1(3)), ξ1(θ1(1 + u1)))

= (CC,GT )

Definition 6.2. Let Ci be a code of length n over Ai, for i = 1, . . . , t. If ξi(c)
r ∈ ξi(Ci) for all c ∈ Ci, then Ci or

equivalently ξi(Ci) is called a reversible DNA code, for i = 1, . . . , t.

The skew cyclic code of odd length over Ai with respect to θi is a cyclic code, as the order of θi is 2 for i = 1, . . . , t.
So we will take the length n to be even.

Definition 6.3. Let gi(x) = bi0 + bi1x+ bi2x
2 + . . .+ bisx

s be a polynomial of degree s over Ai, for i = 1, . . . , t. gi(x) is
called a palindromic polynomial if bij = bis−j for all j ∈ {0, 1, . . . , s}. gi(x) is called a θi-palindromic polynomial if

bij = θi(b
i
s−j) for all j ∈ {0, 1, . . . , s}, for i = 1, . . . , t.

Theorem 6.1. Let Ci = 〈fi (x)〉 be a skew cyclic code of length n over Ai, for i = 1, 3, . . . , t, where fi(x) is a right divisor of
xn − 1 and deg(fi(x)) is odd. If fi(x) is a θi-palindromic polynomial then ξi(Ci) is a reversible DNA code.

Proof. Let fi(x) be a θi-palindromic polynomial and fi(x) = ai0+ ai1x+ . . .+ ai2s−1x
2s−1. So aij = θi(a

i
2s−1−j), for all

j = 0, 1, . . . , s−1, i = 1, 3, . . . , t. Let hi(x) = hi
0+hi

1x+ . . .+hi
2k−1x

2k−1. Let bij be the coefficient of xj in hi(x)fi(x).
For any κ < n/2, the coefficient of xκ in hi(x)fi(x) is

biκ =
κ∑

j=0

hi
jθ

j
i (a

i
κ−j)

and the coefficient of x(n−1)−κ is bi(n−1)−κ
=

κ∑

j=0

hi
2k−1−jθ

2k−1−j
i (ai2s−1−(κ−j)), for i = 1, 3, . . . , t.

The polynomial hi(x)fi(x) =
2k−1∑

p=0
hi
px

pfi(x) corresponds a vector b = (bi0, b
i
1, . . . , b

i
n−1) ∈ Ci, for i = 1, 3, . . . , t.

The vector ξi (b)
r =

((
ξi
(
bi0
)
, ξi

(
bi1
)
, . . . , ξi

(
bin−1

)))r
is equal to the vector ξi (z), where the vector z corresponds

the polynomial
2k−1∑

p=0
θi(h

i
p)x

2k−1−pfi(x),for i = 1, 3, . . . , t. So ξi(Ci) is a reversible DNA code.

Theorem 6.2. Let Ci = 〈fi (x)〉 be a skew cyclic code of length n over Ai, for i = 1, 3, . . . , t, where fi(x) is a right divisor of
xn − 1 and deg(fi(x)) is even. If fi(x) is a palindromic polynomial then ξi(Ci) is a reversible DNA code.

Proof. Let fi(x) be a palindromic polynomial with even degree. fi(x) = ai0 + ai1x+ . . .+ ai2sx
2s and aip = ai2s−p, for

all p = 0, 1, . . . , s, for i = 1, 3, . . . , t. Let hi(x) = hi
0 + hi

1x+ . . .+ hi
2kx

2k. Let bip be the coefficient of xp in hi(x)fi(x).
For any κ < n/2, the coefficient of xκ in hi(x)fi(x) is

biκ =

κ∑

j=0

hi
jθ

j
i (a

i
κ−j)

and the coefficient of x(n−1)−κ is bi(n−1)−κ
=

κ∑

j=0

hi
(2k)−j

θ
(2k)−j
i (ai2s−(κ−j)), for i = 1, 3, . . . , t.

The polynomial hi(x)fi(x) =
2k∑

p=0
hi
px

pfi(x) corresponds a vector b = (bi0, b
i
1, . . . , b

i
n−1) ∈ Ci, for i = 1, 3, . . . , t.

The vector ξi (b)
r =

((
ξi
(
bi0
)
, ξi

(
bi1
)
, . . . , ξi

(
bin−1

)))r
is equal to the vector ξi (z), where the vector z corresponds

the polynomial
2k∑

p=0
θi(h

i
p)x

2k−pfi(x). So ξi(Ci) is a reversible DNA code.
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7. θi−set

In this section, we will obtain DNA codes by using θi−set, where θi is a non trivial automorphism on Ai for
i = 1, ..., t.

Definition 7.1. Let f0,1, . . . , f0,2i be polynomials dividing xn − 1 over Z4 and let fi−1,1, fi−1,2 be polynomials with
deg fi−1,1 = di−1,1, deg fi−1,2 = di−1,2 and both are over Ai−1 for i = 1, 2, . . . , t. Let

fi = uifi−1,1 + (1 + ui)fi−1,2 ∈ Ai[x]

and

fi−1,1 = ui−1fi−2,1 + (1 + ui−1)fi−2,2

fi−1,2 = ui−1fi−2,3 + (1 + ui−1)fi−2,4

fi−2,1 = ui−2fi−3,1 + (1 + ui−2)fi−3,2

fi−2,2 = ui−2fi−3,3 + (1 + ui−2)fi−3,4

fi−2,3 = ui−2fi−3,5 + (1 + ui−2)fi−3,6

fi−2,4 = ui−2fi−3,7 + (1 + ui−2)fi−3,8

...

f1,1 = u1f0,1 + (1 + u1)f0,2

f1,2 = u1f0,3 + (1 + u1)f0,4

...

f1,2i−1 = u1f0,2i−1 + (1 + u1)f0,2i

Let mi = min{n− di−1,1, n− di−1,2}. The set L(fi) is called a θi-set and is defined as

L(fi) = {E0, E1, . . . , Emi−1, F0, F1, . . . , Fmi−1}

where Ej = xjfi, Fj = xjθi(hi), 0 ≤ j ≤ mi − 1, i = 1, 2, . . . , t.
If deg f0,2s ≥ deg f0,2s−1,

hi,1,s = u1x
deg f0,2s−deg f0,2s−1f0,2s−1 + (1 + u1) f0,2s

otherwise
hi,1,s = u1f0,2s−1 + (1 + u1)x

deg f0,2s−1−deg f0,2sf0,2s

where s = 1, 2, . . . , 2i−1 and
If deg hi,1,2t ≥ deg hi,1,2t−1,

hi,2,t = u2x
deg fii,1,2t−deg fi,1,2t−1hi,1,2t−1 + (1 + u2)hi,1,2t

otherwise
hi,2,t = u2hi,1,2t−1 + (1 + u2)x

deg fi,1,2t−1−deg fii,1,2thi,1,2t

where t = 1, 2, . . . , 2i−2 and
...

If deg hi,i−2,2v ≥ deg hi,i−2,2v−1,

hi,i−1,v = ui−1x
deg hi,i−2,2v−deg hi,i−2,2v−1hi,i−2,2v−1 + (1 + ui−1)hi,i−2,2v

otherwise
hi,i−1,v = ui−1hi,i−2,2v−1 + (1 + ui−1)x

deg hi,i−2,2v−1−deg hi,i−2,2vhi,i−2,2v

where v = 1, 2 and
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If deg hi,i−1,2 ≥ deg hi,i−1,1,

hi = uix
deg hi,i−1,2−deg hi,i−1,1hi,i−1,1 + (1 + ui)hi,i−1,2

otherwise
hi = uihi,i−1,1 + (1 + ui)x

deg hi,i−1,1−deg hi,i−1,2hi,i−1,2.

L(fi) generates a linear code Ci over Ai, where i = 1, 2, . . . , t. It will be denoted by Ci = 〈fi〉θi or Ci = 〈L(fi)〉.

It means that it is Ai-submodule generated by the set L(fi), where i = 1, 2, . . . , t. Let fi = ai0 + ai1x+ . . .+ aipx
p ∈

Ai[x], θi(hi) = bi0 + bi1x+ . . .+ bisx
s, where i = 1, 2, . . . , t. The Ai-submodule can be considered to be generated by

the rows of the following matrix

L(fi) =














E0

F0

E1

F1

E2

F2

...














=










ai0 ai1 ai2 · · · aip 0 · · · · · · · · · 0
bi0 bi1 · · · · · · bip bip+1 · · · bis 0 · · · 0
0 ai0 ai1 ai2 · · · aip 0 0 · · · 0
0 bi0 bi1 · · · · · · · · · · · · · · · bis · · · 0
... · · · · · · · · ·

... · · · · · · · · · · · ·
...










Theorem 7.1. Let f0,1, . . . , f0,2i be self reciprocal polynomials dividing xn − 1 over Z4. Then Ci = 〈L(fi)〉 is a linear code

over Ai and ξi(Ci) is a reversible DNA code, where the map ξi is from Ci to S2in
D4

, for i = 1, 2, . . . , t.

Proof. It is proved as in the proof of the Theorem 4.3 in [3].

Corollary 7.1. Let f0,1, . . . , f0,2i be self reciprocal polynomials dividing xn − 1 over Z4 and Ci = 〈L(fi)〉 be a cyclic code

over Ai for i = 1, . . . , t. If xn−1
x−1 ∈ Ci, then ξi(Ci) is a reversible complement DNA code.

Example 7.1.

f0,1(x) = 2 (x+ 1)

f0,2(x) = x4 − x3 + x2 − x+ 1

where all of them divide x10 − 1 over Z4. Hence,

f1 = u1f0,1 + (1 + u1) f0,2

over A1. That is
f2 = (1 + u1)x

4 − (1 + u1)x
3 + (1 + u1)x

2 − (1− u1)x+ 1 + 3u1.

We get h1 = u1x
3h1,0,1+(1+u1)h1,0,2 = (1 + 3u1)x

4−(1− u1)x
3+(1 + u1)x

2−(1 + u1)x+1+u1. So, θ1 (h1) =

u1x
4−u1x

3+(2 + 3u1)x
2−(2 + 3u1)x+2+3u1. Since m1 = 6, we consider the generator matrix of C














E0

F0

E1

F1

...
E5

F5














, where

E0 = f1, E1 = xf1, E2 = x2f1, E3 = x3f1, E4 = x4f1, E5 = x5f1, F0 = θ1 (h1) , F1 = xθ1 (h1) , F2 = x2θ1 (h1) , F3 =
x3θ1 (h1) , F4 = x4θ1 (h1) , F5 = x5θ1 (h1). If we take α0 = 0, α1 = 1, α2 = u1, α3 = 0, α4 = 0, α5 = 0, β0 = 1, β1 =
0, β2 = 1, β3 = 0, β4 = 0, β5 = 3, then α0E0+α1E1+α2E2+α3E3+α4E4+α5E5+β0F0+β1F1+β2F2+β3F3+β4F4+
β4F4 = 3u1x

9+u1x
8+(2+u1)x

7+(2 + 2u1)x
6+(3 + 3u1)x

5+(1 + u1)x
4+(3+u1)x

3+(3+3u1)x
2+3x+2+3u1.

It corresponds to the codeword

d1 = (2 + 3u1, 3, 3 + 3u1, 3 + u1, 1 + u1, 3 + 3u1, 2 + 2u1, 2 + u1, u1, 3u1)

Hence, ξ1(d1) = GTCCCGCATGCGGAGCATAC. Moreover, θ1 (α0)F5 + θ1 (α1)F4 + θ1 (α2)F3 + θ1 (α3)F2 +
θ1 (α4)F1 + θ1 (α5)F0 + θ1 (β0)E5 + θ1 (β1)E4 + θ1 (β2)E3 + θ1 (β3)E2 + θ1 (β4)E1 + θ1 (β5)E0 = (1 + u1)x

9 +
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3x8 + (2 + u1)x
7 + 3u1x

6 + (2 + 3u1)x
5 + (2 + u1)x

4 + 2u1x
3 + (3 + 3u1)x

2 + (1 + 3u1)x+ 3 + u1 corresponds to
the codeword

d2 = (3 + u1, 1 + 3u1, 3 + 3u1, 2u1, 2 + u1, 2 + 3u1, 3u1, 2 + u1, 3, 1 + u1)

Hence, ξ1(d2) = CATACGAGGCGTACGCCCTG. So, (ξ1(d2))
r
= ξ1(d1).

Example 7.2.

f0,1(x) = x+ 1

f0,2(x) = x2 + x+ 1

f0,3(x) = x6 + x3 + 1

f0,4(x) = x+ 1

where all of them divide x9 − 1 over Z4. Hence,

f2 = u2 (u1f0,1 + (1 + u1) f0,2) + (1 + u2)

over A2. That is

f2 = u1 (1 + u2)x
6 + u1 (1 + u2)x

3 + u2 (1 + u1)x
2 + (1 + u1 + 2u2 + 3u1u2)x+ 1 + 2u1 + 2u2.

Since h2,1,1 = u1xf0,1 + (1 + u1)f0,2 and h2,1,2 = u1f0,3 + x5(1 + u1)f0,4, we get h2 = u2x
4h2,1,1 + (1 +

u2)h2,1,2 = (1 + 2u1 + 2u2)x
6 +(1 + u1 + 2u2 + 3u1u2)x

5 +(1+u1)u2x
4 +(1+u2)u1x

3 +u1(1+u2). So, θ2 (h2) =
(1 + 2u1 + 2u2)x

6+(3 + 3u2 + 3u1u2)x
5+(2 + 3u1 + 2u2 + u1u2)x

4+(2 + 2u1 + 3u2 + u1u2)x
3+(2 + 2u1 + 3u2 + u1u2).

Since m2 = 3, we consider the generator matrix of C











E0

F0

E1

F1

E2

F2











, where E0 = f2, E1 = xf2, E2 = x2f2, F0 =

θ2 (h2) , F1 = xθ2 (h2) , F2 = x2θ2 (h2). If we take α0 = 0, α1 = 0, α2 = 3, β0 = 0, β1 = 2, β2 = 0, then
α0E0 + α1E1 + α2E2 + β0F0 + β1F1 + β2F2 = 3u1(1 + u2)x

8 + 2x7 + (2 + 2u2 + 2u1u2)x
6 + (u1 + u1u2)x

5 +
(u2 + u1u2)x

4 + (3 + 3u1 + 2u2 + u1u2)x
3 + (3 + 2u1 + 2u2)x

2 + (2u2 + 2u1u2)x. It corresponds to the codeword

d1 =

(
0, 2u2 + 2u1u2, 3 + 2u1 + 2u2, 3 + 3u1 + 2u2 + u1u2,
u2 + u1u2, u1 + u1u2, 2 + 2u2 + 2u1u2, 2, 3u1 + 3u1u2

)

Hence, ξ2(d1) = AAAAAAGACTTCCGTTAATGATAGGGAGGGGGACAG. Moreover, θ2 (α0)F2+θ2 (α1)F1+
θ2 (α2)F0+θ2 (β0)E2+θ2 (β1)E1+θ2 (β2)E0 = 2u1(1+u2)x

7+(3 + 2u1 + 2u2)x
6+(1+u2+u1u2)x

5+(2+3u1+
2u2 + u1u2)x

4 + (2 + 2u1 + 3u2 + u1u2)x
3 + (2 + 2u1 + 2u1u2)x

2 + 2x+ 2 + 2u1 + u2 + 3u1u2 corresponds to the
codeword

d2 =

(
2 + 2u1 + u2 + 3u1u2, 2, 2 + 2u1 + 2u1u2, 2 + 2u1 + 3u2 + u1u2,

2 + 3u1 + 2u2 + u1u2, 1 + u2 + u1u2, 3 + 2u1 + 2u2, 2u1 + 2u1u2, 0

)

Hence, ξ2(d2) = GACAGGGGGAGGGATAGTAATTGCCTTCAGAAAAAA. So, (ξ2(d2))
r
= ξ2(d1).

8. Conclusion

The DNA codes are obtained with three different methods by using cyclic, skew cyclic codes and θi-set over

a family of the rings At. A one to one correspondence between At and {A, T,C,G}2
t

is constructed by using a
map.The sufficient and necessary conditions of cyclic codes over At satisfying the reverse and reverse complement
constraints are given, respectively. By defining a non trivial automorphism θi on At, the skew cyclic codes are
introduced. By using the skew cyclic codes over At and the θi-set, the DNA codes are obtained. In a future work, it
can be identified the new ring family and its associated Gray map reversible and reversible complement codes to
search for optimal DNA codes that meet all or some of the constraints.
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