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Universidad Politécnica de Cartagena
Spain
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School of Foreign Languages, Foreign Languages, Alanya
Alaaddin Keykubat University, Alanya,
Antalya/TURKEY
abdulkadir.unal@alanya.edu.tr

Editorial Secretariat
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Abstract

In our observation, we have used an easy and reliable approach of the reduction perturbation method to obtain the solution of the
ion temperature gradient mode driven linear and nonlinear structures of relatively small amplitude. One can use that methodology
in the more complex environment of the plasma and can obtain a straightforward approach toward his studies. We have studied
different parameter impacts on the linear and nonlinear modes of the ITG by using data from tokamak plasma. Hence, our study is
related to the tokamak plasma and one that can apply to the nonlinear electrostatic study of stiller and interstellar regimes where
such types of plasma environment occur.

Keywords: Ion temperature gradient; soliton; shock; electron-ion plasma; reduction perturbationmethod; linear and nonlinear
structures
AMS 2020 Classiőcation: 70K60; 35A09; 35G20

1 Introduction

Most of the research work has been done on the linear and nonlinear structures over the last few decades and its applications are compared
with the stiller and interstellar spaces where the medium is plasma [1, 2, 3]. For that purpose, many researchers investigated the electron
temperature gradient (ETG) and ion temperature gradient (ITG) drift mode in which some of them used the simplest slab geometry [4, 5]
and the other used some complex geometry like toroidal geometry [6]. Mathematically ITG coefőcient is deőned as ηi = Ln/LT [10] while
LT = 1/∂x lnTio(x) and Ln = 1/∂x lnnio(x) are the ion temperature and ion density scale lengths. For the őrst time, ITG drivenmode was
studied by Sagdeev and Rudakov [4], then the work extended to the nonuniform number density of plasma species with a shear magnetic
őeld where ion kinetic effect was also introduced in their calculation. The same research was extended further with inhomogeneous plasma
conőguration for the instability limits in the toroidal geometry. Further, the pressure effect in the same geometry was also observed [5].
Under the external magnetic őeld applied to the plasma, some of the new properties of the ITGmode were introduced by Hahm and Tang
[8]. Jerman et al. [10] using heat ŕux effect in the energy balancing equation and Braginskii’s equation to derive ITGmode equation for the
simple Maxwellian electron-ion plasma. The ITG and toroidal ITGmodes were studied and coupled by Shukla [11, 12] the same scientists
also obtained theoretical calculations for the dipolar vortices. Zakir et al. [13] calculated the nonlinear structure of dipolar vortices in the
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plasma where electrons species were considered to be super-thermal. Adnan et al. [14] observed low-frequency electrostatic waves in an
inhomogeneous plasma. Whether the instability is of ηe type or ηi type these both are very strong as compared to the gyro-radius (ρe/ρi)
and driven ŕuxes effects [18]. In the ITGmode-driven instability both temperature gradient and number density ŕuctuations are out of
phase, and those types of modes are robust in the non-thermal regime. ηimode instabilities are produced due to the free energy that is
stored in the form of ITGmode [16, 15].

Fluid-like plasma is complex and nonlinear where the nonlinear structures like solitary shock waves can transport heat energy, mass,
andmomentum inside the ŕuid from one to another, bringing instability in the [19, 20, 21, 22]. The nonlinear collision-less structures
were studied by Sabry et al. [23] in a plasma whose constituents are electron-positron and ions. Nonlinear solitary waves were studied by
many authors considering various models of plasma [24, 25], shocks [26] and vortices of the two dimensional by the authors [27, 28, 29].
For the őrst time, Zakir et al. [17] studied the linear and nonlinear solitary and shock waves structure in the ITG drivenmode instability
by considering electron to be Maxwellian and ion dynamic. Khan et al. [30] extended the work by incorporating the entropy drift in the
momentum equation of the ŕuid and the effect of entropy in the ITGmode, his study revealed that entropy is an essential factor in the
transportation of instability in the plasma. Javed et al. [32] theoretically obtained the solitary wave potential solution from the kdv equation
in the ITGmode by homotopy perturbation method (HPM) and compare the solution of the analytical and HPMmethod and gives that both
types of solutions agree with each other if the time interval is taken very small. Aziz et al. [33] observed ITGmode soliton and shock in
electron-positron-ion magneto-plasma by taking electron and positron species as Maxwellian; the same work is carried out by Rehan et al.
[34] and investigated the linear and nonlinear mode in (e-p-i) plasma taking electron to be super-thermal. Zakir et al. [17] studied the
effects on the shock and solitary structure by taking the heat ŕux effect in the energy balancing equation of the ITGmode. Aziz et al. in [35]
studied electron-positron-ion magneto-plasma by considering the entropy effect has study shows that it is one of the dominant factors in
plasma parameters that can change the various linear and nonlinear structures magniőcently in the ŕuid.

To observe different nonlinear structures like a soliton, shock, etc., in various compositions and models of a plasma, we can use the
reduction perturbation technique (RPT). The reduction perturbation technique was őrst introduced theoretically to the problem’s solution
by [36, 37]. RPT has advantages like ŕexibility and algorithmic methodology to solve different problems in various őelds of physics. Taniuti
and Wei [38, 39] suggested RPT to be a generalized technique for obtaining the nonlinear partial differential equation of the corresponding
waves in a model plasma [40]. Different types of waves to which that technique has been successfully applied are ion-acoustic in a hot and
cold plasma, magnetosonic waves in both hot and cold plasma, etc. [41, 42]. As the literature shows us that no one has yet solved the shock
and solitary waves solution in ITGmode by reduction perturbation technique so we for the őrst time investigating the problem of ITGmode
driven soliton and shock formation in the electron-ion plasma by reduction perturbationmethod (RPT). This article is divided into the
following sections: Section 2 gives MHD equations and the linear root calculation by the RPMmethod. In sections 3 and 4, we study the
solitary and shock waves proőles; Section 5 concludes the related article.

2 Theory related to the model

We consider a nonuniform plasma consisting of two species as electron and ion, with a backgroundmagnetic őeld along the z-axis i.e., B0ẑ,
where ẑ represents the unit vector along the z-axis and B0 is the magnitude of the magnetic őeld. We also considered the temperature and
number density gradients in the xśdirection to simplify the calculation of the ion temperature gradient modes driven linear and nonlinear
study i.e., dxni0 ≠ 0 and dxTi0 ̸= 0 for ions, here ni0, Ti0 are the equilibrium number density and ions temperature. The inertial mass for an
electron in comparison to the ion is so small, therefor ions are taken dynamic while electrons are subjected to have Maxwellian distribution.
We assume here low-frequency ITGmode i.e., ∂t ≪ ωci = (eB/mic), ( here e stands for the ion charge,mi is for the ion mass, B is taken for
themagnitude of themagnetic őeld and c denote the speed of light). The ŕuctuations are considered to be electrostatic in nature, so we have
taken∇ × E = 0 in our calculation. The őrst equation of our model plasma for the ion temperature gradient mode is the ionmomentum
equation that is [13, 17],

(∂t + vi.∇)vi = ś
e

mi
E ś

1
mini

(∇pi), (1)

where E = ś∇ϕ. Under the action of some external forces plasma species are driven so the inhomogeneity occurs in different parameters
of the plasma i.e., ni = ni0 + ni1, Ti = Ti0 + Ti1 with ni1 ≪ ni0 and Ti0 ≪ Ti1 (here the quantities with subscript 0 denote the unperturbed
parameters while those with subscript 1 denotes the perturbed plasma parameters). Ion velocity in the limit ∂t ≪ ωci, superposed by
different drifts that is given as [13, 17]

vi = vE + vDi + vpi + vixx̂, (2)

where vE =
c
B0
(ẑ×∇Φ), vDi =

c
eB0ni

(ẑ×∇Pi) and vpi = ś
c

B0ωci
(∂t +vi.∇)ẑ×vi are the E×B drift, ion diamagnetic drift and ion polarization

drift. HereΦ, Pi represents the normalized electrostatic potential, ions pressure, and vix, the drift velocity’s xÐcomponent. Here Pi = niTi
is the ion pressure. The ion continuity equation is given by [13, 17]

∂tni +∇.(nivi) = 0. (3)

The energy balance equation is given as [13, 17]

3
2
(∂t + vi · ∇)Ti + Ti(∇ · vi)ni = ś

1
ni

∇.
[
(5Ti/2eB0)ẑ× ∇Ti

]
, (4)

(5Ti/2eB0)ẑ× ∇Ti is known as Righi-Leduce heat ŕux term for ions due to the ion temperature gradient. Now at the last Poission equation
(that is based on the Gauss’s law for electric ŕux) is as [13, 17]

∇2ϕ = 4πe(ni ś ne). (5)
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Now to incorporate drift speed of ion vi in the equations of (1-5) and after a little manipulation we can get the continuity equation as [13, 17]

DitN + τvni∇Φ ś
1
2
ρ
2
i τ
ś1

∂t∇
2(T + N +Φ) + ∂zviz = 0. (6)

In above expression, the new terms introduced are deőned as Dit = (∂t + vE.∇) [13, 17], vni =
(
cTio
eB0

)
∇ ln nio × ẑ, τ = Teo

Tio
,T = Ti1

Tio
, N = nio1nio

andΦ = eϕ
Teo
. The momentum equation obtained is as

(∂t + viz∂z)viz + c
2
s∇
[
Φ + τ

ś1(T + N)
]
= 0. (7)

here cs = ρsωci. Using the drift approximation in Eq. (4) and neglected the Righi-Leduce heat ŕux term in the same equation we can get
the energy balance equation as

∂tT ś
2
3
∂tN = τ

(
ηi ś

2
3

)
vni.∇Φ. (8)

While the Poisson equation in the form of

∇2Φ = α1

(
ne0
ni0

Φ ś N
)
, (9)

whereα1 =
4πe2ni0
Te

in the Poisson equation which is based on the electric ŕux according to Gauss’s law.

Phase velocity

To get dispersion relation for the ITG mode, we use a compelling reduction perturbation method (RPM). From the dispersion relation,
we then can extract phase velocity for the same mode that will reveal the linear behavior of the ITG mode. To proceed further, we őrst
introduce the stretching coordinate to express all the differential equations of Eqs. (1)-(5) in terms of ξś the coordinate system as did by

[44]. The stretching coordinates are given as ξ = ϵ
1
2 ( xu ś t) and ℓ = ϵ

3
2 twhere the parameter ϵ has a very small value that represents, the

weakness of the mode amplitude and u is the phase velocity of the mode. We write equations (6)-(9) in the stretching coordinate and then
use the following power series for the different normalized quantities i.e.,





N

vix
T

Φ




=





1
0
1
0




+
m∑

n=1

ϵ
n





N(n)

v(n)
ix
T(n)

Φ(n)




, m is a higher order of the perturbation, (10)

which gives a number of equations. To express the lowest order of different normalized quantities in terms of each other we compare ϵ
power one to both sides of each equation in the form of

N(1) =
τvni
u

Φ
(1) +

v1ix
u
, (11)

v(1)
ix
=
c2s
u

[
Φ
(1) + τ

ś1
(
T(1) + N(1)

)]
, (12)

T(1) =
2
3
N(1) ś τ

(
ηi ś

2
3

)
vni
u

Φ
(1), (13)

N1 = Φ
1. (14)

When coupled equations of (11 ś 14), we can get

1 ś
τvni
u
ś
c2s
u2

{
1 +
5τś1

3
ś
(
ηi ś

2
3

)
vni
u

}
= 0. (15)

Eq. (15) is a cubic root equation w.r.t u, where u is the phase velocity for the ITGmode. By a little algebraic calculation, we can őnd easily the
roots of Eq. (15). As the phase velocity is obtained from the linear algebraic equations, we can describe the linear properties of the mode
from the roots. One root of Eq. (15) is as

u =
1
6τ

[
(2vniτ

2 + (2× 3√2τ(v2niτ
3 + c2s (5 + 3τ))))

Γ
+ 2

2
3 × Γ

]
, (16)

where Γ = (s1 + s2)
1
3 , s1 = 33c

2
s vniτ

3 ś 27c2s vniηiτ
3 + 9c2s vniτ

4 + 2v3
ni
τ6 and

s2 =
√

τ3(ś4(v2
ni
τ3 + c2s (5 + 3τ))

3 + v2
ni
τ3(2v2

ni
τ3 + c2s (33 ś 27ηi + 9τ))

2). In Fig. (1), the graph shows the phase velocity against the

electron to ion temperature ratio τ and the ion temperature gradient coefőcient ηi. Observation of the graph shows that by enhancing the
electron to ion temperature ratio, the phase velocity of the ITGmode decreases to the negative values, but the effect reverses as ηi value of
the plasma enlarge in value. On the other side, the phase velocity increases with the ion temperature coefőcientηi. These observations
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Figure 1. ITG drivenmode phase velocity against τ and ηi .

Figure 2. ITG drivenmode phase velocity against τ and vni .

Figure 3. ITG drivenmode phase velocity against τ and ηi .
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remain valid with the mathematical reasoning because τ is related inversely with the ion temperature of the plasma so τ value increase
means that the ion temperature decreases in the plasma, therefore, the mobility of the ion species decreases and also the phase velocity. On
the other hand, the ion temperature coefőcient is related directly to the change of ion temperature of the plasma, so an increase in the ηi
value means increasing the value of the ion temperature in the plasma and the mobility of the ions phase velocity. Fig. (2) shows us that
with vni and τ value the phase velocity of the linear mode can be enhanced here again. The ion drift speed vni related directly with the ion
temperature of the plasma by increasing the vni value means to increase the value of the ion temperature and we can see from the Fig. (2)
that τ value changes byminimal factor but with a signiőcant chance of the vni the phase velocity of the mode change abruptly. Now Fig. (3)
reveals the same variation for the phase velocity against vni and ηi as in the graph őrst of the article for τ and ηi.

3 Solitary waves

Now to obtain a nonlinear structure in the ITG drivenmode (i.e., solitary and shock waves). We compare the next higher power of ϵ in the
magnetohydrodynamics equations (such as in the continuity equation, momentum equation, energy balancing equation, and Poisson
equation). We obtained linear and nonlinear differential equations in the form

∂ξN
(2) ś

τvni
u

∂ξΦ
(2) ś τvni∂ℓΦ

(1) ś
1
2

ρ2i τ
ś1

u2
∂
3
ξ

(
T(1) + N(1) +Φ

(1)
)
+
1
u
∂ξv

(2)
ix
= 0, (17)

ś ∂ξv
(2)
ix
+
v(1)
ix
u

∂ξv
(1)
ix
+
c2s
u
∂ξ

[
Φ
(2) + τ

ś1
(
T(2) + N(2)

)]
+ c2s∂ℓ

[
Φ
(1) + τ

ś1
(
T(1) + N(1)

)]
= 0, (18)

ś ∂ξT
(2) +

2
3
∂ξ N

(2) = τ

(
ηi ś

2
3

)
vni

(
1
u
∂ξΦ

2 + ∂ℓΦ
1
)
, (19)

1
u2α1

∂
2
ξΦ

1 = (N2 śΦ
2), (20)

where, N(1), N(2) are the normalized ion-number density of order őrst and second,Φ(1),Φ(2) are the normalized perturbed potential of

order őrst and second, T(1), T(2) are the normalized ion-temperature of order őrst and second, vix, v
(1)
ix
are the ion-drift x-component of

order őrst and second, vni ion-number density drift, u phase velocity of themode, ρi ion gyro-radius, cs acoustic speed, ηi ion-temperature
gradient coefőcient,α1 = (4πe

2nio)/Te, and τ = Teo/Tio. Now, combining Eqs. (17)-(20) we get the following nonlinear Korteweg-de-Vries
(KdV) type of equation as

A1∂ℓΦ
1 + A2Φ

1
∂ξΦ

1 + A3∂
3
ξ
Φ
1 = 0, (21)

where A1 =
{
τvni + u (1 + τvni) ś

2c2s
u2

(
ηi ś

2
3

)
vni +

c2s
u

(
1 + 5τ

ś1

3

)}
, A2 = śu (u ś τvni)

2 and

A3 =
{
u
α1
+ 12ρ

2
i τ
ś1u

(
8
3 ś τ

(
ηi ś

2
3

)
vni
u

)
+ 53

c2s τ
ś1

u3α1

}
. Dividing both sides of Eq. (21) by A1 coefőcient we get

∂ℓΦ
1 + AΦ1∂ξΦ

1 + B∂3
ξ
Φ
1 = 0, (22)

where A = A2
A1 and B =

A3
A1 . The solution of Eq. (22) can be written (using a new variable asΩ = ξ ś uℓwhere u is the speed of the solitory

waves in the ITGmode) as

Φ = Φ0 sech
2
[
Ω

W

]
, (23)

where 3u
A
= Φ0 and

√
4B
u = W .

Ti = 0.1Te

Ti = 0.2Te

Ti = 0.3Te

1 2 3 4 5

0.00

0.05

0.10

0.15

ηi

A

Figure 4. ITG drivenmode KDV equation nonlinear coefőcient versus ηi . under the effect of ion to electron temperature ratio.
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Figs. (4) and (5) show that the nonlinear A and dispersion B coefőcients of the kdv equation become smaller in value with the ion to electron
temperature ratio Ti/Te of the electron-ion plasma. So, we can observe the effects of different plasma parameters on the nonlinear and
dispersion coefőcients that will affect the magnitude as well as the sign of the coefőcients hence the solitary and shock wave structure in
the plasma can be changed from the compressional to the refractional type of soliton/shock.

Ti = 0.1Te

Ti = 0.2Te

Ti = 0.3Te

1 2 3 4 5

0.27230

0.27235

0.27240

0.27245

0.27250

0.27255

0.27260

ηi

B

Figure 5. ITG drivenmode KDV equation dispersion coefőcient versus ηi under the effect of ion to electron temperature ratio.

Figure 6. ITG drivenmode solitary wave potential against the phase of the soliton η and ηi .
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Figure 7. ITG drivenmode solitan potential against phase of the solitonΩ and τ.

Figure 8. ITG drivenmode solitary wave potential against phase of the solitonΩ and vni .

B= 1×10-3

B= 2×10-3

B= 3×10-3

B= 4×10-3

-1.0 -0.5 0.0 0.5 1.0

0.00

0.02

0.04

0.06

0.08

Ω

Φ

Figure 9. ITG drivenmode solitary wave potential against phase of the solitonΩ.
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ηi❂ 1

ηi❂ 2

ηi❂ 3

ηi❂ 4

-1.0 -0.5 0.0 0.5 1.0

0.0000

0.0005

0.0010

0.0015

0.0020

Φ

Figure 10. ITG drivenmode solitary wave potential against phase of the solitonΩ.

That observation shows that both types of solitary waves can exist in the ITGmode at the low value ofηiśmode plasma a depth type of
solitary waves are generated. In contrast, for ηi ≥ 1 hump type of solitary waves are generated in the plasma it depends on the sign of the
nonlinear coefőcient of the KdV type of equation for a low value of ion temperature gradient coefőcient its value is negative so refractive
solitary waves are produced. Still, when the ion temperature gradient coefőcient value is more signiőcant than one, the compressive type
of solitary waves is generated in the plasma. Also, dispersive properties of the solitary waves increase with the lowering of the ηi value
while its amplitude is decreased by decreasing ηi value. Fig.(7) has been sketched among the soliton potentialΦ against the soliton phase
Ω, and its phase velocity u, which show that the solitary wave potential enhances in amplitude for low phase velocity while diminishing
for the high phase velocity and also the dispersion properties of the soliton increases with the high phase velocity of the solitary waves
in the electron-ion plasma. Fig. (8) is the graph of solitary wave potential against its phase and ion number density drift vni that shows
the same situation as the previous graph i.e., with the drift velocity of the ion number density soliton potential decreasing in amplitude
but its dispersive properties increases. Maybe the decrease in the amplitude of the solitary wave is due to the ion temperature and greater
ion number density of the plasma because these plasma parameters can change its viscosity and bring more dissipation in the plasma.
In Fig. (9) we have investigated the solitary wave potential against its phaseΩ , which shows that the amplitude of the solitary wave is
independent of the external magnetic őeld applied to the ITGmode driven electron-ionmagnetoplasma. Still, the dispersion properties of
the small amplitude solitary waves decrease with the backgroundmagnetic őeld’s strength. While Fig. (9) shows the relation of the solitary
waves against the soliton phase, with the ion temperature coefőcientηi the amplitude of the solitary wave becomes enhanced, and the
dispersion properties of the waves is also increased with ηi. We can obtain the electric őeld from the solitary wave potential using a basic
deőnition, i.e., E = ś∇Φ.

4 Shock wave

The shock wave can be generated in a ŕuid only when the dissipation effect is larger in a medium as compared to the dispersion. So,

including the dissipative terms (i.e., η1
∂2vi
∂2x
) in the ion momentum equation, we will get a nonlinear Burger-like differential equation

whose solution gives us the shock structure in the medium

A1∂ℓΦ
1 + A2Φ

1
∂ξΦ

1 ś A4∂
2
ξΦ

1 = 0. (24)

A1 =
{
τvni + u (1 + τvni) ś

2c2s
u2

(
ηi ś

2
3

)
vni +

c2s
u

(
1 + 5τ

ś1

3

)}
,

A2 = śu(u ś τvni)
2, and

A4 = η1(u ś τvni) dividing both sides of Eq. (24) we get the nonlinear partial differential equation in the form as

∂ℓΦ
1 + AΦ1∂ξΦ

1 ś C∂2ξΦ
1 = 0, (25)

where A = A2
A1
and C =

A4
A1
the solution of Eq (25). By using a new variable asΩ = ξ ś uℓ is given as

Φ = Φ0

[
1 ś tanh

(
Ω

4C
u

)]
, (26)

here u
A
= Φ0 and

4C
u = Z.
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Figure 11. ITG drivenmode Shock wave potential against phase of the shockΩ and ηi .

Figure 12. ITG drivenmode Shock wave potential against phase of the shockΩ and τ.

Figure 13. ITG drivenmode Shock wave potential against phase of the shockΩ and vni .
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Figure 14. ITG drivenmode Shock wave potential against phase of the shockΩ.
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Figure 15. ITG drivenmode Shock wave potential against phase of the shockΩ.

Fig. (11) is a graph of the shock wave potential against the phase of the shock and ion temperature gradient coefőcient ηi. That őgure
gives a very interesting observation about the shock wave proőle that for ηi < 1 then a rarefaction type of shock waves is produced in the
plasma while compression type of the shock waves is produced when ηi > 1. Here the reason is the same as for the solitary waves because
the nonlinear and dissipation coefőcients of the kdv-Burger equation Eq. (25) can change its sing by changing the values of the plasma
parameters. Fig. (12) reveals that the shock wave amplitude becomes smaller with the electron to ion temperature ratio, possibly, the
high temperature species electron of the plasma presents opposition to the shock wave in the plasma due to the ion species. Similarly,
the effect observed in Fig. (13) where the rise in the drift velocity of the ion can enlarge the shock wave amplitude and vice versa, may be
the high ion number density in the ŕuid offer resistance to the production of the shock wave. In Fig. (14) we have compared the shock
wave against its phase the 2-dimensional plot, here we can see that the amplitude of the shock with the ion temperature coefőcient ηi
increases and the same variation observed in Fig. (15) for the shock wave potential against its phase for the different values of the ion to
electron temperature ratios, here we see the vibration of the shock wave amplitude is larger as compare to the previous Fig. (14). We have
used the following parameters in analyzing the linear dispersion relation, nonlinear shock and solitory wave n = 1014cmś3, B0 = 1× 10ś4,
Ti = 0.1Te, np = 0.001ne , ηi = 2, cs = 10

6 cm
s , ion gyro-frequencyωci = 10

4 rad
s , in ξ-coordinates u = 106 cms ,α = 0.1rad. These values are in

agreement with the previous literature [13, 15, 17, 33, 35].

5 Conclusion

We have studied here the linear and nonlinear properties related to the ion temperature gradient (ITG) drivenmode in the electron-ion
plasma. Ions are observed to have dynamics while electrons follow the Maxwellian distribution in our consideration. We have derived the
linear and nonlinear ITGmodes by using a set ofMHD equations for electron-ion plasma and then using the reduction perturbationmethod
to derive the phase velocity for the mode that was independent of the wavenumber k of the wave, as has been shown in the calculation.
Then we obtained a nonlinear structure in the form of solitary and shock waves in the same electron-ion magneto-plasma. We have shown
in our calculation that different parameters like ion temperature, ion number density, magnetic őeld, etc., can affect the phase velocity as
well as the shock and solitary waves in the electron-ion plasma.
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Abstract

In this paper, we consider the constructive equations of the fractional second-grade ŕuid. The considered ŕuid model is described
by the Caputo derivative. The problem consists to determine the exact analytical solution using the Laplace transformmethod. The
inŕuence of the order of the used fractional operator has been presented in this paper. We also analyze the inŕuence of the Prandtl
number in the dynamics of the temperature distribution according to the variation of the order of the Caputo derivative. The impact
of the second-grade parameter and the Grashof number in the dynamics of the velocity has been presented and discussed. The
inŕuences of the parameters used in the modeling have been interpreted in terms of a fractional context. In general, it is shown
that the order of the fractional operator inŕuences the diffusivity of the considered ŕuid. This inŕuence can cause an increase or
decrease in the temperature and velocity distributions. The main őndings of the paper have been illustrated using the graphical
representations of the considered distributions according to the order of the fractional operator.

Key words: Second-grade ŕuid; Grashof number; Prandtl number; Laplace transforms
AMS 2020 Classiőcation: 26A33; 35C15; 42A38; 35K57

1 Introduction

The őeld of fractional calculus and its application has grownmany attractions these last decade. There exist nowadays many theories and
applications related to the őeld of fractional calculus [1]. The attraction of this newőeld is due to thememory effect and the heredity noticed
in the fractional operators. We have many fractional operators as the Caputo derivative and the Riemann-Liouville derivative which are
known as the fractional derivative with singular kernels [2, 3]. We have also the so-called Atangana-Baleanu fractional operator and the
Caputo-Fabrizio derivative which are known as the fractional operators with non-singular kernels [4, 5]. These singular and non-singular
derivatives appear in many papers with applications to physical modeling [2, 6, 7], biological modeling [8, 9, 10, 11, 12, 13, 14], sciences
and engineeringmodeling [15, 16, 17, 18, 19], mathematical physics modeling [20, 21, 22, 23, 24, 25, 26], physics modeling [24, 27] and
others domains [28, 29, 30, 31, 32]. The őeld of fractional calculus is interesting but there also exist many questions without responses.
The following questions are asked in the őeld of fractional calculus: what is a fractional operator, why fractional operators, what are the
advantages, and the motivations of using the fractional operators? Some of these questions have responses but some of them are still
without concrete responses. Modeling ŕuid, and nanoŕuid with fractional operators have attracted many authors these last decade. The
investigations related to modeling ŕuid and nanoŕuid with the fractional operators can be found in the following papers [20, 33, 34].
The literature concerning the ŕuid and second-grade ŕuid models with fractional operators is long. In this part, we recall the literature
review. In [33], the authors have proposed a model related to free convection ŕow near a vertical plate described by Caputo derivative and
have considered its solution via Laplace transformmethod. In [20], the authors have taken into account the analytical solutions via Laplace
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transform for a fractional double convection problem of fractional viscous ŕuid particularly described by a Caputo fractional operator. Ali
et al. in [35] have proposed the exact analytical solution of MHD free convection ŕow of generalized Walters’-B ŕuidmodel described by
new fractional operator namely Caputo-Fabrizio derivative. In [36], the authors have obtained a solution for the free convection ŕow of
generalized Jeffrey ŕuid described by the Caputo-Fabrizio fractional. In [15], the authors have used the Laplace transform to get the exact
analytical solution of the MHD ŕow of water-based Brinkman type nanoŕuid. In [37], the authors have used the Caputo derivative to model
heat andmass transport of differential type ŕuid and have examined the exact analytical solution using the Laplace transformmethod.
In [38], the authors have studied the unsteadyMHD free convection ŕow of Casson ŕuid past over an oscillating vertical plate embedded in
a porous medium, the Laplace transform has been used in such paper to get the analytical solutions. In [21], the authors have proposed a
comparative study between the Caputo-Fabrizio derivative and Atangana-Baleanu derivative in modeling the generalized Casson ŕuid
model with heat generation and chemical reaction. In [28], Tahir et al. have proposed the analytical solution of the heat transfer ŕow of
Maxwell ŕuid described by Caputo-Fabrizio time-fractional derivative. In [39], the authors have studied the MHD ŕow of a Casson ŕuid
over an exponentially shrinking sheet, the analytical solution of the proposed model has been proposed via the Adomian Decomposition
Method. In the same direction of investigations related to the determination of the analytical solution using Laplace transform for the
models with integer-order derivative see in [40].
In this work, we focus on the analytical solutions of the constructive equations of the second-grade ŕuidmodel described by the Caputo
fractional operator. We use in this paper the Laplace transformmethod for getting the analytical solution. The advantages of the present
investigations arewe use the resolution of second-order differential equationswhich are not difőcult to be performed. The second advantage
of the present paper is the analytical solutions can be rewritten using the exponential function, the Mittag-Lefŕer function, the wright
functions, and the Gaussian error function. The memories effect present in the Caputo derivative will also be an advantage in the present
paper because the order of the Caputo derivative will play accelerations or retardation effect on the dynamics of the velocity and the
temperature distribution of the considered model.
The contents of the present paper are structured as follows. In Section 2, we try to recall the fractional operators most used in the literature
of fractional calculus. It will permit the readers to be familiarized with the fractional operator. In Section 3, we describe the fractional model
using the Caputo derivative. In Section 4, we give the approaches to get the analytical solutions using the Laplace transformmethod. Note
that the Laplace transform of the Caputo derivative will be frequently used. Discussion and the interpretations of the inŕuences of the
parameters utilized in the modeling have been provided in Section 5. We őnish the paper with őnal remarks in Section 6.

2 Fractional operators

This section is devoted to giving the deőnitions of the fractional operators and the functions which will be used in this investigation. For
present works, we need the Caputo fractional operator, the Riemman-Liouville integral, the derivatives with son singular kernels, the
Mittag-Lefŕer functions, the wright function, and others. We also will recall the Laplace transform of the Caputo derivative because this
tool is fundamental in our investigations regarding the method utilized in the present paper. The Riemann-Liouville integral is described
in the following deőnition.

Deőnition 1 [2, 3] The representation of the Riemann-Liouville integral of a considered function g : [0, +∞[ś→ R can be expressed as the

following form

(

Iαg
)

(t) =
1

Γ(α)

∫ t

0
(t ś s)αś1 g(s)ds, (1)

the Γ(...) denotes the Gamma function andwith orderα verifying the condition thatα > 0.

The Riemann-Liouville integral has its associated fractional derivative known as the Riemann-Liouville derivative. We give its deőnition in
the following deőnition. This deőnition can be found in many papers in the literature.

Deőnition 2 [2, 3] The representation of the Riemann-Liouville derivative of the considered function g : [0, +∞[ś→ R, of orderα as the form

Dαg(t) =
1

Γ (1 ś α)
d

dt

∫ t

0
g(s) (t ś s)śα ds, (2)

the time t > 0, is the order of the operator and satisőes the condition thatα ∈ (0, 1) and Γ(...) represents the GammaEuler function.

The Riemann-Liouville derivative has an increasing reputation in the problems related to the existence and the uniqueness, the stability
analysis of the fractional differential problems. In modeling real words problems the initial conditionmakes this operator very limited
because the real-world problems’ initial conditions are not compatible with the Riemann-Liouville derivative. Therefore this derivative
is not used in modeling biological models, fractional chaotic systems, and other real applications. The Caputo derivative is adequate in
modeling real word problems and is deőned in the following deőnition.

Deőnition 3 [2, 3] We denote the Caputo fractional derivative with the considered function g : [0, +∞[ś→ R, of order α as the following

representation

Dαg(t) =
1

Γ (1 ś α)

∫ t

0

dg

ds
(t ś s)śα ds, (3)

with t > 0, and the order of the derivative obeys to the assumption thatα ∈ (0, 1) and Γ(...) is the GammaEuler function.

The Caputo derivative is themost used derivative in the literature of fractional calculus. Themotivation is due to the fact that this derivative
is compatible with the initial conditions used in modeling real word problems. In this paper the Laplace transformmethod is used for
getting the exact analytical solutions, therefore we deőne in the following line the Laplace transform of the Caputo derivative. We have the
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following representation [2, 3]

L
{(

Dαc g
)

(t)
}

= sαL
{

g(t)
}

ś sαś1g(0). (4)

with the orderα satisőes the condition thatα ∈ (0, 1). The symbol L denotes the Laplace transform. The Laplace transform in Eq. (4) will
play a fundamental role in the present investigation.
Before closing this section, we recall the deőnitions of the fractional operators with non-singular kernels. These derivatives have many
applications these decades andmany papers have beenwritten to illustrate the applications of these derivatives inmodeling physics, biology
models, science, and engineering.

Deőnition 4 [5]We represent by the following equation of the Caputo-Fabrizio derivative of the function g : [0, +∞[ś→ R, of orderα in the

following term

Dα,CFg(t) =
CF(α)
1 ś α

∫ t

0
g′(s) exp

(

ś
α

1 ś α
(t ś s)

)

ds, (5)

where the following the condition t > 0, the order of the fractional derivative obeys toα ∈ (0, 1) and CF(...) denotes the normalization termand
respects to the condition CF(0) = CF(1) = 1.

Deőnition 5 [4] The deőnition of the Atangana-Baleanu derivative of the function g : [0, +∞[ś→ R, of orderα, that is

Dα,ABg(t) =
AB(α)
1 ś α

∫ t

0
g′(s)Eα

(

ś
α

1 ś α
(t ś s)α

)

ds, (6)

respecting the condition that t > 0, the order of the fractional derivativeα ∈ (0, 1) and AB(...) is the normalization term and obeys to the condition
AB(0) = AB(1) = 1.

We őnish this section by recalling the special functions which are used to express the analytical exact solutions in this paper. We have the
Mittag-Lefŕer function and the wright function represented in the following expressions [33],

Eα,β (x) =
∞∑

k=0

xk

Γ(αk +β)
, (7)

withα > 0,β ∈ R and x ∈ C, and we deőne the Wright function [33] with three parameters as the following

φ (β, śσ, x) =
∞∑

n=0

xn

Γ (n + 1) Γ (β ś σn)
, (8)

with the following conditions σ ∈ (0, 1),β ∈ R and x ∈ C.

3 Fractional model under Caputo derivative

This section is devoted to the presentation of the second-grade ŕuid model subject of our investigations. To arrive at our end, we describe
the following procedure. The sketch of modeling can be found in the literature in the following papers [20, 33], the signiőcant difference in
the model is the initial condition which play important role in the form of the analytical solutions. We take the plate vertical at x-direction
and we take y-direction perpendicular to the plane generated by the plane. We consider that at the initial time, then the ŕuid and the plate
are at rest to the constant temperature T∞. At starting time, we suppose that the heat transfer from the plate to the considered ŕuid is
proportional to a local surface temperature denoted by T. For the rest of our modeling, we consider the use of the Boussinesq approximation
and then we get the following partial differential equations

∂u

∂t
=

(

ν +
α1
ρ

∂

∂t

)

∂2u

∂y2
+ gβ (T ś T∞) , (9)

∂T

∂t
=

κ

ρcp

∂2T

∂y2
. (10)

The initial and boundary conditions adopted in this present investigations are described as follows

v(u, 0) = 0, T(x, 0) = T∞, (11)

T(0, t) = 0, T(0, t) = T∞ +
[

Tw ś T∞
]

[

t

t0

]

. (12)

The problem consists to get the exact analytical solutions of the model (9)-(10), and then we needmore simpliőcations of the previous
model. Therefore we introduce the following changes variables

y∗ =
yh

k
, t∗ =

t
1

ν
(

k
h

)2

, u∗ =
u
g

ν
(

k
h

)2

, ψ
∗ =

T ś T∞
T∞

, (13)

Gr = βT∞, Pr =
ρcp
κ
, β

∗ =
α1
ρ

(

h

k

)2
. (14)
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We use the dimensionless variable described in Eq. (13) and Eq. (14) into Eq.(9) to Eq. (12), we get a more simpliőed form of the ŕuid model
considered in this paper, it is represented by the following

∂u

∂t
=

∂2u

∂y2
+β

∂3u

∂t∂y2
+ Grψ, (15)

∂ψ

∂t
=

1
Pr

∂2ψ

∂y2
. (16)

with initial and boundaries dimensionless conditions given

u(y, 0) = ψ(y, 0) = 0, (17)

u(0, t) = 0, (18)

ψ(0, t) = t. (19)

Replacing the integer-order derivative by the Caputo derivative in Eqs. (15)-(16) due to the memory effect and the heredity of the Caputo
derivative and the generalization of the integer-order derivative to non-integer partial differential equations, we get the followingmodel
which will be the subject of our investigations

Dατ u =
∂2u

∂y2
+βDα

(

∂2u

∂y2

)

+ Grψ, (20)

Dατψ =
1
Pr

∂2ψ

∂y2
. (21)

As initial and boundaries conditions which the velocity and the temperature satisfy, we consider the following relationships

u(y, 0) = ψ(y, 0) = 0, (22)

u(0, t) = 0, (23)

ψ(0, t) = t. (24)

Furthermore, we add the supplementary conditions that both the temperature (ψ) and the velocity (v) converge to zero when the y tends to
inőnity. In the following Table 1, the names of the parameters used in our modeling described in this Section 3 are provided.

Table 1. Parameter descriptions

Parameters Descriptions

Pr Prandtl number
Gr Grashof number
cp Heat at a constant pressure
g Acceleration constant
β Volumetric coefőcient of thermal expansion
ν Kinematics viscosity of the ŕuid
κ Thermal conductivity of the ŕuid
α1 Second grade parameter
ρ Fluid density

4 Analytical approaches

In this section, we consider the initial and boundary conditions in Eqs. (22)-(24) to give the analytical solution of equations (20) and (21)
via the Laplace transformmethod. The basic tool here is solving the second-order differential equations via the Laplace transform. The
sketch of the proof consists in őrst getting the exact analytical solution of Eq. (21) and using this solution to determine also the analytical
solution of Eq. (20).

Here we begin with Equation (21) under initial and boundary conditions described in Eqs. (22)-(24). Applying the Laplace transform to
both sides of Eq. (21), we have that

sαψ̄ ś sαś1ψ(y, 0) =
1
Pr

∂2φ̄

∂y2
,

sαψ̄ =
1
Pr

∂2ψ̄

∂y2
,

∂2ψ̄

∂y2
ś Prsαψ̄ = 0. (25)

Before continuing the resolution we also apply the Laplace transform to the boundary condition (24), we get thatψ (0, s) = 1/s2. Then the
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analytical solution of the second-order differential equation (21) in terms of Laplace transform is given as the following form

ψ̄ (x, s) =
exp

[

śx
√
Prsα

]

s2
. (26)

The determination of the inverse of the Laplace transformneeds to use the calledwright function. This function is recalled to the preliminary
section. Then the inverse of the Laplace transform given by Eq. (26) is given by

ψ (x, t) = tφ
(

2,śα/2, śx
√

Prtśα/2
)

. (27)

We now consider a special case obtained when the order of the Caputo derivative converges to one, that isα = 1. We repeat the procedure of
the solution with Eq. (25). Let consider this equation with the caseα = 1, we have the following relationship

ψ̄ (x, s) =
exp

[

śx
√
Prs
]

s2
. (28)

The őnal step of the resolution consists to apply the inverse of the Laplace transform to both sides of Eq. (28), it yields that

ψ (x, t) =

(

x2Pr

2
+ t

)

erfc

(

x
√
Pr

2
√
t

)

ś
x
√
Prt

2
√
π
exp

(

ś
x2Pr

4t

)

. (29)

The second step of the determination of the exact analytical solution of our model will őnish with the resolution of Eq. (20). The method is
similar to the procedure previously applied with the temperature distribution. In the step of the determination of the velocity, we apply the
Laplace transform to both sides of equation (20), we get that

sαū ś sαś1ū(y, 0) =
(

1 +βsα
) ∂2ū

∂x2
+ Grψ̄,

sαū =
(

1 +βsα
) ∂2ū

∂y2
+ Grψ̄,

∂2ū

∂y2
ś

sα

1 +βsα
ū = ś

Gr

1 +βsα
exp

[

śx
√
Prsα

]

s2
. (30)

The solution in terms of the Laplace transform of the second-order differential equation (30) with initial and boundary conditions taken
into account is given by the following relationship

ū (x, s) = C







exp
[

śx
√
Prsα

]

sα
ś
exp

[

śx
√

sα
1+βsα

]

sα






, (31)

where C is given as

C = śGr

[

sś2

1 +βsα
ś

Prsś2

βPrsα + Pr ś 1

]

. (32)

To get the analytical solution, we have to apply the inverse of the Laplace transform to both sides of Eq.(31) and use the convolution product
properties. We have the following analytical solution

u (x, t) =
∫ t

0
a(t ś τ)

(

b(x,τ) ś c(x,τ)
)

dτ. (33)

For obtaining the form of function, we apply the inverse of Laplace transform of the function C, we need to utilize the Mittag-Lefŕer
function. That is

a (x, t) = ś
Grt1+α

β

[

Eα,2+α

(

ś
1
β
tα
)

ś Eα,2+α

(

ś
Pr ś 1
βPr

tα
)]

. (34)

We continue with the inverse of the Laplace transform of the function represented as the following form

b̄ (x, s) =
exp

[

śx
√
Prsα

]

sα
, (35)

which needs somemanipulations. The inverse of the Laplace transform is given by the following relationship

b (x, t) = tαś1φ
(

α, śα/2, śy
√

Prtśα/2
)

. (36)
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We őnish this procedure of inverse of the Laplace transforms by inverting the function deőned as the form

c̄ (x, s) =
exp

[

śx
√

sα
1+βsα

]

sα
, (37)

and then propose the analytical solution of the Eq. (20). The inverse of the Laplace transform to both sides of Eq. (37) is given by the
following representation

c (x, t) =
∫
∞

0
m(y, u)φ

(

0,śα, utśα
)

du, (38)

where

m (y, u) = 1 ś
2

π
√

β

∫
∞

0

sin(yu)

u
(

u2 + 1/
√

β
) exp





śu2ut

β
(

u2 + 1/
√

β
)



 du. (39)

We now consider a special case obtained when the order of the Caputo derivative converges to 1 that isα = 1, and the parameterβ = 0. Note
that the parameterβ is zero whenα1 = 0 in Eq. (14). In this case, we consider the Laplace transform described in Eq. (31) with the previous
assumptions, there is

ū (x, s) =
Gr

Pr ś 1





exp
[

śx
√
s
]

s3
ś
exp

[

śx
√
Prs
]

s3



 . (40)

We now apply the inverse of the Laplace transform, which is given by the following analytical form

u (x, t) =
Gr

Pr ś 1

∫ t

0
(t ś τ) erfc

(

x

2
√
τ

)

dτ (41)

ś
Gr

Pr ś 1

∫ t

0
(t ś τ) erfc

(

x
√
Pr

2
√
τ

)

dτ. (42)

Before closing this section it is important to mention the method to get the Nusselt number. This number is obtained with the temperature
distribution by the following formula

Nu = śLś1
[

lim
x→0

∂φ̄ (x, s)
∂x

]

. (43)

5 Discussion on the őndings

In this section, we discuss the őndings of the paper. We analyze the impact of the Caputo order derivative in the dynamics of the temperature
and the velocity distribution. The impact of the Prandtl number, Grashof number, time, and second-grade coefőcient will be discussed in
terms of the variation of the Caputo derivative in detail.

The temperature distribution

We begin the discussion with the temperature distribution. In this part, the fractional-order and the Prandtl number will be analyzed in
terms of their impacts on the dynamics of the temperature distribution. In this section, we consider Eq. (27) in the graphical representations.
We őx the time t = 0.6 for Figures 1a, 1b and t = 10 for Figures 2a, 2b, and also we consider different values of the order of the Caputo
fractional operator. We have the following graphical results: We now analyze the behaviors of the dynamics presented in the previous
őgures. Let the time t less than one, this assumption corresponds to Figures 1a, 1b. We observe that when the order of the Caputo derivative
increases with the increase of the state y, we note that, the temperature distribution decreases. These dynamics can be explained by the
fact for a short time the accumulation of the memory and heredity affects the diffusivity of the considered model. The increase in the order
increases the diffusivity which generates a decrease in the temperature of the ŕuid. The second conclusion concerns thatwhen the time is
greater than 1, see Figures 2a, 2b, in this case, the accumulation of the memory effect and hereditymakes the systemmore diffusive which
affects the temperature distribution 2a, 2b and causes its increase. In the considered cases in this part, we note that the Caputo derivative
plays an acceleration effect in the dynamics of the temperature distribution.
Let us now analyze the impact of the Prandtl number in the dynamics of the considered ŕuid particularly on the temperature distribution.
We take two different times t = 0.6 for Figures 3a, 3b, and t = 10 for Figures 4a, 4b, different orders of the derivative have been considered
and we increase the values of the Prandtl number. We have the following graphical representations:
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Figure 1. Temperature distribution for different values of the orderαwith Pr = 6 (a) and Pr = 12 (b).
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Figure 2. Temperature distribution for different values of the orderαwith Pr = 6 (a) and Pr = 12 (b).
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Figure 3. Temperature distribution for different values of the Prandtl number withα = 0.75 (a) andα = 0.95 (b).

The graphical representations 3a, 3b, 4a, 4b inform us that when the values of the Pr increase then temperature distribution decreases as
well. These behaviors can be explained by the fact when the order of the fractional operator increases and the Prandtl number increases
then the diffusivity of the system is reduced, thus its impact on the temperature distribution decreases. Let us now see what happens
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Figure 4. Temperature distribution for different values of the Prandtl number withα = 0.75 (a) andα = 0.95 (b).

with the temperature distribution when the time varies signiőcantly and the Prandtl number increases. We have the following őgures
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Figure 5. Temperature distribution for different values of Prwith t = 5 (a) and t = 10.
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Figure 6. Temperature distribution for different values of Prwith t = 15 (a) and t = 20 (b).
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Comparing the Figures 5a, 5b, 6a, 6b, we can observe that when the Pr number increases, then the temperature distribution decreases.
In conclusion, the time does not play a role if the Prandtl number increase. For all considered times the increase of the Prandtl number
generates a decrease in the temperature distribution.

The velocity distribution

In this sub-section, we try to explain and interpret the dynamics generated by the velocity. We őrst consider analyzing the inŕuence of
the fractional-order in the dynamics. In this section, we condition Eq. (33) in the graphical representations. In the second part, we will
analyze the inŕuence of the parameters as the Grashof number Gr and second-grade coefőcientβ. Let us represent the dynamics of the
velocity for different values of the Caputo fractional order in the following Figures 7a, 7b, 8a, 8b. Let that t = 5, we have the following
graphics 7a, 7b, 8a, 8b for the velocity The inŕuence of the order of the fractional derivative is analyzed in terms of the variation of the
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Figure 7. Velocity distribution for different values of the orderαwith Pr = 5 (a) Pr = 10 (b).
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Figure 8. Velocity distribution for different values of the orderαwith Pr = 15 (a) Pr = 20 (b).

Prandtl number. We observe that when the order of the Caputo derivative increases, the velocity increases. Thus, the fractional-order has
an acceleration effect in the present case. We also notice that when the Prandtl number increase, the velocity decreases, as well. The Prandtl
number has the same inŕuence on the temperature distribution and the velocity. We now consider a second case where the time is greater
than 1 (t = 10) and the variation of the Grashof number is assumed. We have the following graphical representations 9a, 9b, 10a, 10b We can
observe that with the previous őgures the increase in the order of the Caputo derivative generates an increase in the velocity. The increase
in the velocity is due to the fact when time is greater than 1, the Caputo derivative generates accumulation in the memory which causes an
increase in the value of the velocity. Here, the order of the Caputo derivative has an acceleration effect. We analyze the impact of the Grashof
number Gr, we can do it by analyzing the previous Figures 9a, 9b, 10a, 10b. Comparing the Figures 9a, 9b, 10a, 10b, we can observe that
when the Grashof number increases, it generates an increase in velocity. This increase in the velocity is explained by the fact that when the
Grashof number increases then we have increased in the thermal buoyancy force. Let us now analyze the second-grade parameter. We have
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Figure 9. Velocity distribution for different values of the orderαwith Gr = 5 and Gr = 10.
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Figure 10. Velocity distribution for different values of the orderαwith Gr = 15 and Gr = 20.

the following graphical representations 11a, 11b, 12a, 12b, when the value of the second-grade parameter increases Whenwe compare the
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Figure 11. Velocity distribution for different values of the orderαwithβ = 0 (a) andβ = 0.5 (b).

values of the velocity in Figures 11a, 11b, 12a, 12b, we notice when the values of the second-grade parameter increase, then the velocity
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Figure 12. Velocity distribution for different values of the orderαwithβ = 0 (a) andβ = 0.5 (b).

decreases as well. This behavior is explained by the fact that in general the increase of the thickness of the boundary layer is caused by the
decrease of the second-grade parameter. The present investigations are similar to the investigations provided by Shah et al in [41]. In [41],
the authors consider the samemodel addressed in this paper with the fractional derivative with the exponential kernel. The main őndings
in [41] and the results in the present paper are in good agreement. One of the main advantages of the present investigations regarding the
investigations existing in the literature is here we use the Caputo derivative which the application of the Laplace transform and its inverse
is trivial and the expressions of the exact analytical solutions of the considered ŕuid model can easily be expressed via Gaussian function,
exponential function, andMittag-Lefŕer function.

6 Conclusion

In this paper, we have discussed the exact analytical solutions of the second-grade ŕuid model described by the Caputo fractional operator.
After modeling the ŕuid model via Caputo derivative, we have used the Laplace transformmethod to get the analytical solutions of the
ŕuid model considered in this paper. Many results have been proposed in our present paper. As the őrst őnding, the order of the fractional
operator accelerates the diffusion or can have a retardation effect, that depends on the considered time. We noticed that with the increase of
the Prandtl number for a speciőc order of the Caputo derivative then the temperature distribution of the considered ŕuid decreases as
well. This behavior is due to the reduction of the diffusivity as previouslymentioned in the paper. Note that with the increase of Grashof
number Gr then it generates an increase in the velocity distribution of the considered ŕuid. For the future direction of researches, the same
second-grade ŕuid model can be described by non-singular fractional operators as the Atangana-Baleanu derivative and Caputo-Fabrizio
derivative, and getting the exact solutions with the Laplace transform constitutes an open problem and can be focused on in the future.
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Abstract

Several models based on discrete and continuous őelds have been proposed to comprehend residential criminal dynamics. This
study introduces a two-dimensional model to describe residential burglaries diffusion, employing Lévy ŕights dynamics. A
continuous model is presented, introducing bidimensional fractional operator diffusion and its differences with the 1-dimensional
case. Our results show, graphically, the hotspot’s existence solution in a 2-dimensional attractiveness őeld, even fractional
derivative order is modiőed. We also provide qualitative evidence that steady-state approximation in one dimension by series
expansion is insufőcient to capture similar original system behavior. At least for the case where series coefőcients have a linear
relationship with derivative order. Our results show, graphically, the hotspot’s existence solution in a 2-dimensional attractiveness
őeld, even if fractional derivative order is modiőed. Two dynamic regimes emerge inmaximum and total attractivenessmagnitude
as a result of fractional derivative changes, these regimes can be understood as considerations about different urban environments.
Finally, we add a Law enforcement component, embodying the łCops on dotsž strategy; in the Laplacian diffusion dynamic, global
attractiveness levels are signiőcantly reduced by Cops on dots policy but lose efőcacy in Lévy ŕight-based diffusion regimen. The
four-step Preditor-Corrector method is used for numerical integration, and the fractional operator is approximated, getting the
advantage of the spectral methods to approximate spatial derivatives in two dimensions.

Key words: Residential burglary; Lévy ŕights; fractional operator; anomalous diffusion; hotspots; law enforcement

AMS 2020 Classiőcation: 60K50; 26A33; 34D20

1 Introduction

The present work is motivated by the impact that insecurity produces for an urban area; evidently, there are different types of crimes,
and each onemust be studied to later design prevention policies. This work studies criminal agents’ displacement effect, specialized in
house robbery, with the possibility of making long journeys in a short time, described by Lévy Flights in a two-dimensional environment.
We consider that this way of describing criminal diffusion is more realistic thanmodels based on conventional diffusion. Understanding
the mobility of certain social groups within an urban area is of great relevance for policymakers, especially displacements at speciőc
geographical locations detrimental to security and forming speciőc patterns [1]. Several of today’s models focus on the displacement of
residential burglaries, this from the pioneering work by Short et al. [2, 3]. Both approximations showmore signiőcant criminal activity
areas, known as hotspots. This work inspired numerous modiőcations, generalizations, and theoretical studies that described dynamical
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properties, as in references [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In thesemodels, a local randomwalkwith a certain degree of statistical bias deőnes
diffusion dynamics among the criminal population. The core of model dynamics is that home thief’s agents have a higher stochastical
preference for speciőc targets known as the highest attractive zones. Several studies have been used to assess the stability of certain kinds
of solutions to crime phenomena, as presented in references [12, 13, 14, 15]. This dynamic belongs to the so-called reaction-diffusion
models, which are known to comprise a broad set of spatial distribution patterns [16]. Biased Brownianmotion displacement is the kernel
of the agent version when the agents are sensitive to environmental gradients. In the continuum limit, this phenomenon is modeled by of
cross-diffusion equation. It is represented by Keller-Segel operator [17, 18]. One of the cross-diffusion attributes is that the increments
represent a local displacement, where the criminal agent moves from site i to site j, and j is in the neighborhood of i. Amore general model
allows agents to travel to sites outside the neighborhood. These models are known as non-local diffusion and belong to the so-called
anomalous diffusion models.

A non-local diffusion model would assume that criminals can make long jumps in a short time, thus moving towards more attractive areas.
For example, motorized mobility is an inŕuencing factor. The cause that house burglars would incur greater riskwhen leaving a familiar
area may be due to real-time information received by other thieves. Sharing/receiving this information dynamicallywith other criminals
they compete with may seem unlikely. However, Calvo et al. [19] provide an analysis of conditions under which different criminal agents
are likely to collaborate. According to this, it is established that, once a home robbery agent hasmoved away to a speciőc area, he again uses
randomwalking as a strategy to locate a target. Chaturapruek et al. [6] propose that so-called Lévy ŕights can describe that above dynamic,
where the probability distribution of jumps length of robbery agents follows an inverse power law distribution. Thus, criminal agents
canmove from site i to j, where j is no longer part of the i neighborhood. Considering continuous limit, the fractional Laplacian operator
appears analogously to the fractional Gierer Meinhardt model [20]. A particular property of fractional operator hotspots solutions is that
they decay algebraically. Chaohao et al. [11] show that if the jump length is truncated, then a version of the conventional Laplacian diffusion
model is obtained. It is considered that criminal agents do not leave a speciőc area, and the unique modiőcation occurs in the diffusion
coefőcient. That study is carried out in one dimension for discrete and continuous cases; it also incorporates police effects on the criminal’s
attractiveness perception. S. Crúz-García et al. [21] propose an alternative method to Lévy ŕights, applying stochastic interference to the
Jones et al. model [4], which contemplates large jumps from a small set of criminal agents at each time step. S. Crúz also found that if
police presence is increased numerically in central hotspots, they will fragment into smaller areas. Other studies are based on discrete
agent algorithms that incorporate Lévyŕights in twodimensions and analyzepatterns formation, dependingon themodel’s parameters [22].

The police dissuasive inŕuence is a multifaceted problem, and there are various proposals to be addressed, depending on the environmental
conditions and the police agency’s resources [23]. To illustrate this, the work of Jones [4] shows how police presence affects attractiveness
when this is incorporated into the law enforcement scheme. Jones analyzes different strategies, among which Cops on the dots and
Peripheral interdiction stand out; results from these studies depend on the urban environment’s characteristics. Camacho [9] also compares
these two strategies with one based on region partitioning into smaller areas (beats), within which cops canmove, although they are not
able to cross borders. Law enforcement has also been incorporated into one-dimensional fractional diffusion [6], based on the cops on the
dots strategy; however, the parameter of criminal density diffusion are modiőed. In his work, Chaohao [11] also incorporates two forms of
police agent’s motion, one governed by biased Brownian diffusion and the second by Lévy ŕights. The main difference is that police shifts
based on Lévy ŕights reach the steady-state solution in a shorter time.

The present work shows a two-dimensional extension of the Chaturapruek continuousmodel, incorporating law enforcement with Cops on
dots strategy. These models have been published at the agent level (discrete) for the two-dimensional case, using Lévy ŕights, for example
Brantingham et. al. [1], but this work proposes a deduction for the continuous two-dimensional case based on the one alreadymade by
Chaturapruek for one dimension. An interesting aspect is that it appears in our deduction, it is a new function that is the equivalent of
Riemman’s ζ for two dimensions, and that modiőes the criminal diffusion coefőcient. The main aim is to show numerically that hotspot
solutions in attractiveness bi-dimensional őelds are preserved by varying derivative order (in not truncated Lévy ŕights) using a spectral
approximation to bi-dimensional fractional derivative operator. However, theymay change shape or intensity. We also present criminal
population spatial distribution patterns that reveal a more complex dynamic than the attractiveness őeld and exhibit strong dependence
on the fractional order. The Cops on the dots strategy assumes that police ofőcers have restricted movements, this differentiates the
modeling behavior between house burglars with law enforcement. The investigatory police, who work within broader limits when apply-
ing their authority, represent a group that Lévy’s ŕightsmight bettermodel. However, in the presentwork, we do not consider this approach.

This paper is divided as follows; in Section 2, we introduce a model deduction for a two-dimensional problem. Subsection 2 presents the
numerical method for model integration. Section 3 presents a qualitative analysis for stationary solutions, using a simpliőed attractiveness
version in one dimension. A numerical sensitivity analysis of the model concerning the derivative order is performed in Section 4. In
Section 5, we deduce the component that models law enforcement and present numerical results by changing fractional order, holding the
Cops on dots strategy. In the őnal of this manuscript, a nomenclature section is presented.

2 Continuum fractional model formulation

The two-dimensionalmodel is deduced regarding an analogous formulation of a one-dimension problem byChaturapruek [6]. The scenario
occurs in a latticeΩwith size N × N, and the lattice spacing is l = 1/N. To simplify, we initiate the model derivation without including law
enforcement. The position of each site d inΩ is represented by d = (d1, d2) ∈ R

2. At site d and time t, there is an attractiveness Ad(t), which
is made of two components, Ad(t) = A

0
d
+ Bd(t), where A

0
d
is the intrinsic attractiveness and Bd(t) is time-dependent attractiveness. The

evolution of Ad(t) depends on whatever occurs around it, i.e., a criminal agent can change attractiveness in a time interval δt by deciding
whether or not to attack a d site, and he does so with the probability

pd(t) =
ϵAd(t)

1 + ϵAd(t)
, (1)
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where ϵ > 0 represents the effectiveness of the attractiveness at site d. Therefore, an increase in Bd in the time interval δt depends on Ed(t),
which indicates the number of criminal attacks on the same site during the same time interval

Bd(t + δt) = Bd(t) + θEd(t),

here θ is the enhancement in attractiveness for a single criminal agent. Without considering that a criminal attack can exert inŕuence in
neighborhood (broken window effect [24]), the expression for Bd(t) is

Bd(t + δt) = Bd(t)(1 śωδt) + θEd(t),

whereω represents attractiveness decay rate. Permitting the inclusion of the diffusive term for attractiveness, we have

Bd(t + δt) =
[

(1 ś η
∗)Bd(t) +

η∗

d′

∑

d′

Bd′ (t)
]

(1 śωδt) + θnd(t)pd(t), (2)

here η∗ > 0 represents of attractiveness inŕuence in position d to its immediate neighbors d′, for this work, a regular Cartesian lattice
is used, with d′ = 4. Therefore, replacing in Eq. (2) the number of criminal attacks on site d in the time interval δtwith the number of
criminals nd(t), also replacing the probability that they will attack pd(t) and take the limit l,δt→ 0, keeping őxed the radius l2/δt, and
a new parameter ϵ∗ = θδt, which represents the inŕuence of the criminal presence in each position d, in a time interval (t, t + δt) (the
detailed derivation can be seen in the work of Short et al. [2]), we have

∂B(x, t)
∂t

=
η∗l2

4δt
∆B(x, t) śωB(x, t) + ϵ

∗ l
2

δt
ρ(x, t)A(x, t), (3)

where ρ(x, t) = liml→0 nd(t)/l
2 is the criminal density, and the position x ∈ [0, 1]× [0, 1] is deőned as

x = (x1, x2) = lim
N→∞,l→0

(d1l, d2l), d1, d2 ∈ [1,N].

For modeling criminal displacement agents in 2-D, we have the probability that a criminal will arrive at site d = (d1, d2) from i = (i1, i2),
analogously to that deőned by Chaohao et al. [11] for 1-D

qi→d(t) =
wi→d∑

j∈Z2,j̸=i wi→j
, (4)

the relative weightwi→d is deőned as

wi→d(t) =







Ai(t)
lµ||iśd||µ

, 1 ≤ ||i ś d|| <∞

0, other case
, (5)

with || · || the Euclidean norm. Lévy ŕight is an anomalous diffusion, where the density function of jump length probability possesses an
algebraic decay [20], so µ is the exponent of the underlying power law. Thus, can be expressed the following

∑

j∈Z2,j̸=i

wi→j =
∑

j∈Z2,j̸=i

Aj(t)

lµ||i ś j||µ
=

∑

j∈Z2,j̸=i

Aj(t) ś Ai(t)

lµ||i ś j||µ
+

∑

j∈Z2,j̸=i

Ai(t)

lµ||i ś j||µ
. (6)

On the other hand, bearing in mind the Riemann sum deőnition, on the continuum limit l << 1 for D dimensions, the operator L can be
expressed as

Lf(x) =
1

lD

∫

y∈RD

f(y) ś f(x)

||y ś x||µ
dy ≈

∑

d∈ZD,d̸=i

f(y) ś f(x)

lµ||y ś x||µ
. (7)

Eq. (7) can be compared with respect to the fractional operator deőnition in D dimensions [20]

ś(ś∆)sf(x) = CD,2s

∫

RD

f(y) ś f(x)

||y ś x||D+2s
dy, CD,2s = 2

2s Γ((D + 2s)/2)

πD/2|Γ(śs)|
, 0 < s, (8)

where f(x) : RD → R. To simplify notation, it is deőned ś(ś∆)s = ∆s [6], therefore, is possible to relate Lwith∆s as follows

Lf(x) = lśDCD,2s∆
sf(x), and µ = D + 2s. (9)

For bi-dimensional case (D = 2) implies µ ∈ (2,∞) (4 coincide with the usual Laplacian operator). For cases where the order of the
derivative s ∈ Z, the operator∆s is a local property (conventional differentiability) and loses this local property when s is a non-integer
[25]. A notable difference between cases 1 and 2-dimensions is explained in the following table:
Prefactors 2 and 4 in Table 1 are a consequence of the characteristic symmetries of the corresponding dimension. Non-integer values in the
norm have their origin in diagonals that connect the point iwith j.
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Type of neighbors D = 1 D = 2
(i, j) |i ś j| = ||i ś j|| =

őrst 1 1,
√
2

second 2 2,
√
5, 2

√
2

third 3 3,
√
10,

√
13, 3

√
2

r-th r r,
√
r2 + 12,

√
r2 + 22, ..., r

√
2

∑
j∈ZD,j̸=i

1
||iśj||µ

= 2
∑∞
r=1

1
rµ 4

∑∞
r=1

1

[
∑r

α=0

√
(r2+α2)]µ

Table 1. The development in a series of accessible distances between the position iwith j is shown.

Proposition 1 Forµ ≥ 2 and r ≥ 1 the following inequality is satisőed:

1
rµ

≥
1

[
∑r

α=0

√
r2 + α2]µ

.

Proof 1 In essence, it is necessary to show rµ ≤ [
∑r

α=0

√
r2 + α2]µ, in particular forµ ≥ 2 , expanding the series and factorizing terms, we need to

prove

r ≤
r∑

α=0

√

r2 + α2 = r

√

r

[

r(r + 1)(2r + 1)
6

]

,

but, r(r + 1)(2r + 2)/6 = 1 + 22 + 32 . . . + r2 ≥ 1 and r ≥ 1, then

√

r

[

r(r + 1)(2r + 1)
6

]

≥ 1,

therefore is satisőed rµ ≤ [
∑r

α=0

√
r2 + α2]µ and the Proposition 1.

Using Proposition 1, it is possible to show

∞∑

r=1

1
rµ

≥
∞∑

r=1

1

[
∑r

α=0

√

(r2 + α2)]µ
,

thus, we can deőne

z(µ) = 2
∞∑

r=1

1
rµ
= 2ζ(µ), and Z(µ) = 4

∞∑

r=1

1

[
∑r

α=0

√

(r2 + α2)]µ
, (10)

where ζ(µ) is the Riemann function and Z(µ) is a new function adapted to the 2-dimensional case, and is satisőed 12Z(µ)≤z(µ) for µ > 2,
this implies that Z(µ) is well deőned, therefore,

∑

j∈Z2,j̸=i

wi→j = LAi(t) + l
śµZ(µ)Ai(t),

so, the probability qi→d could be expressed in terms ofL and Z = Z(µ)

qi→d =
Ad(t)

||i ś d||µ

( 1

ZAi(t)
ś

LAi(t)l
µ

Z2A2
i
(t)

)

. (11)

The result of Eq. (11) is used below in Eq. (13). The derivation of the 2-Dmodel, in essence, is the one developed by Chaturapruek [6] for 1-D,
which is clearly explained. However, an outline of the deduction is shown below.

The criminal dynamics agents can be highly complex, so limiting the model’s scope is required. For this, the following assumptions are
proposed:

• At position i for each time interval δt, two things are possible: (a) Each criminal commits a crime with probability Aiδt, (b) He moves to
another location direction that is biased by the attractiveness distribution őeld.

• New criminals are being created everywhere, with a Γ spawn rate. This property allows a regular population of criminals to move
continuously to more attractive places.

• House burglars can onlymove from a site i to a site d bymeans of qi→d or otherwise be generated at d, at a rate Γ .
• A portion λ, proportional to house burglars ni(t), can cease to operate, leaving without committing a crime.

Expression (12) models the criminal dynamics, established on previous assumptions, such that

nd(t + δt) =
∑

i∈Z2,i̸=d

ni(t)(1 ś Ai(t)δt) · qi→d ś λnd(t)δt + Γδt, (12)
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subtracting nd(t) from both sides and dividing everything by δt, we have

nd(t + δt) ś nd(t)

δt
=
1
δt

[

∑

i∈Z2,i̸=d

ni(t)(1 ś Ai(t)δt) · qi→d ś nd(t)

]

ś λnd(t) + Γ , (13)

considering only the term into the brackets of the previous equation, and replacing qi→d from Eq. (11)

∑

i∈Z2,i̸=d

ni(t)(1 ś Ai(t)δt)

[

Ad(t)

||i ś d||µ

( 1

ZAi(t)
ś

LAi(t)l
µ

Z2Ai(t)
2

)

]

ś nd(t)

=Ad(t)

[(

∑

i∈Z2,i̸=d

ni(t)

Ai(t)
(1 ś Ai(t)δt)

1

||i ś d||µZ

)

ś
nd(t)

Ad(t)

]

(14)

ś
∑

i∈Z2,i̸=d

ni(t)(1 ś Ai(t)δt)
Ad(t)

||i ś d||µ
LAi(t)l

µ

Z2A2
i
(t)
,

based on the fact that nd(t) =
∑
i∈Z2,i̸=d

ni(t)
||iśd||µZ

, truncating to orderO(lµ,δt) and neglecting termsO(lµδt, l2µ) [6], we have

≈Ad(t)
∑

i∈Z2,i̸=d

[
ni(t)
Ai(t)

ś
nd(t)
Ad(t)

||i ś d||µZ
ś

ni(t)

||i ś d||µ

(LAi(t)l
µ

A2
i
(t)Z2

)

ś δt
ni(t)

||i ś d||µZ

]

,

using the right side of the deőnition of operatorL in equation (7)

≈ Ad(t)

[

lµ

Z
L
( nd(t)

Ad(t)

)

ś nd(t)
LAd(t)l

µ

A2
d
(t)Z

ś δtnd(t)

]

, (15)

substituting the last result (15) in Eq. (13), applying the limit l,δt→ 0, and using Eq. (9) that relates the operator L, with∆s, we have

nd(t + δt) ś nd(t)

δt
=

lµ

δtZC2,2s

[

A(x, t)∆s
( n(x, t)

A(x, t)

)

ś
n(x, t)

A(x, t)
∆
s(A(x, t))

]

ś n(x, t)A(x, t) ś λn(x, t) + Γ , (16)

in agree to equation (8) for the case D = 2

C2,2s =
22sΓ(s + 1)

π|Γ(śs)|
,

dividing Eq. (16) by l2, using the limit δt, l→ 0, and the deőnition ρ(x, t) = liml→0 nd(t)/l
2, we obtain the Lévy FlightModel approximation

for criminal density ρ(x, t), as shown in Eq. (18). On the other hand, from equation (3), is obtained directly Eq. (17) (using A(x, t) =
B(x, t) + A0(x)), as follows

∂A(x, t)
∂t

= η∆(A(x, t) ś A0(x)) śω(A(x, t) ś A0(x)) + ϵρ(x, t)A(x, t), (17)

∂ρ(x, t)
∂t

= M

[

A(x, t)∆s
(

ρ(x, t)

A(x, t)

)

ś
ρ(x, t)

A(x, t)
∆
s
(

A(x, t)
)

]

ś A(x, t)ρ(x, t) ś λρ(x, t) + γ.

(18)

With the following deőnitions:

η =
η∗l2

4δt
, ϵ = ϵ

∗l2, M =
lµś2

δtZC2,2s
, γ =

Γ

l2
. (19)

Numerical integration

A straightforward way to approximate the two-dimensional fractional Laplacian operator is by Fast Fourier Transform (FFT) properties
[26, 27]. The underlying factor that allows us to take advantage of the Fourier transform is that by projecting the fractional Laplacian
operator to the Fouriermodes space, differential operations are transformed into algebraic operations, which is relatively simple to compute.
Subsequently, the inverse transform is applied, thus completing the cycle to approximate the fractional operator. Therefore, the spectral
approximation [28] to∆s is expressed as follows:

∆
sA = real

{

Fś12D
{

ś (kx2s + ky2s)F2D{A}
}}

,
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δt

µ = 3.0 ◦

µ = 2.5 ∗

(a)

eδt δt2|λi|

i

(b)

2.868

Figure 1. (a) Relative error approximation edt as function of δt = {0.5, 0.05, 0.01, 0.001} after integrating a time t = 200 using parameters deőned in Fig. 2. (b) Values δt
2|λi|,

i = 1 . . .N2 of discrete space operator of attractiveness. It can be seen that the stability condition δt2|λmax| < 2.868 is satisőed, with λmax = max{λi}.

F2D represents the Fourier transform in two dimensions, and kx, ky ∈ Z, are the wavenumbers in each orthogonal direction, respectively.
Time derivatives (∂A/∂t, ∂ρ/∂t) are solved via a succession between an explicit and an implicit method, as explained below. Let

f(At,ρt) =

(

∂A(x,t)
∂t

∂ρ(x,t)
∂t

)

.

Step 1: A predictive step is made according to the explicit Adams-Bashforth method [29]

(Ãt+δt, ρ̃t+δt) = (At,ρt) +
dt

24

[

55f(At,ρt)) ś 59f(Atśδt,ρtśδt) + 37f(Atś2δt,ρtś2δt) ś 9f(Atś3δt,ρtś3δt)
]

. (20)

Step 2: A correction stage is now implemented, following the implicit Adams-Moultonmethod

(At+δt,ρt+δt) = (At,ρt) +
dt

24
[9f(Ãt+δt, ρ̃t+δt) + 19f(At,ρt) ś 5f(Atśδt,ρtśδt) + f(Atś2δt,ρtś2δt)]. (21)

A successive combination at each time step into explicit (20), and implicit (21) integration procedure, conforms a four-step Predictor-
Corrector method (PC4) [30]. Three additional steps are generated by applying a fourth-order Runge-Kutta method (RK4) to initiate
the integration process. The reason for using PC4 is because of its lower computational cost compared to RK4 [31]. However, exists
alternatives, for example, the proposed by C. Tadjeran andM. Meerschaert [32], explicitly designed for fractional operators. To evaluate
the convergence of the numerical solution, the deőnition of relative error eδt = max{[At+δt ś At]/At} is used. The calculations of eδt
with δt = {0.5, 0.05, 0.01, 0.001} are presented in graph (a) of Fig. 1 for µ = {2.5, 3}, the rest of parameters are deőned in Fig. 2. One
method to determine spectral stability in time depending on partial differential equations is to calculate the eigenvaluesλi, i = 1 . . .N

2

of the spatial discretization of the operator∆∗ = η∆ śω + ϵρ(t,x) scaled by δt2 (two dimensions) [28]. Stability condition for PC4 is
δt2|λmax| < 720/251 ≈ 2.868 [33]. In graph (b) of Fig. 1, the eigenvalues of the discretization of the spatial operator of attractiveness A
scaled by δt2 are shown.

In Fig. 2 initial condition and numerical integration is shown. The parameter values are őxed inN = 256, dt = 1× 10ś3, integration t = 200,
and η∗ = 3.94, λ = 0.05,ω = 0.05, Γ = 0.019, ϵ = 0.10. (a) Initial condition is an attractiveness randommap, the initial burglaries density
ρ(x)0, is a homogeneous distribution őxed at 0.2 and boundary conditions are periodic. In (b)µ = 4.40 correspondswith s = 1.20. Maximum
attractiveness intensity showed an increase compared to the initial condition, achieving a maximum of≈ 0.8. (c) µ = 2.50 corresponding
with derivative order s = 0.25, in this case, dominate Lévy ŕights over Gaussian diffusion, it can be seen how attractiveness is concentrated
in two principal regions (central hotspots) achieving amaximum of≈ 1.6. The non-local effect of fractional operator explains that this
plays a relevant role in how the crime őeld inŕuences attractiveness distribution.

The preceding numerical examples show relatively distant cases compared to the fractional order. Themost relevant aspect is the formation
of intense fewhotspots (central hotspots) in issueswhere Lévyŕights dominate. For example, this result has particular interest formodeling
metropolitan areas where attractiveness does not manifest homogeneous space of small hotspots distribution. Still, instead, a few hotspots
rise, as is usually the case with city centers, as shown in [21]. In the case of s ≈ 1 were recovered Laplacian diffusion results.

3 Approximate analysis for stationary solutions in one dimension

For some nonlinear phenomena under speciőc continuity conditions, can be done a study through a power series approximation. This idea
is based on the assumption that solutions are analytical functions concerning some of their parameters. The series length is inőnite, but an
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(a) Initial condition

A(x, t = 200)

(b) s = 1.20

A(x, t = 200)

(a) s = 0.25

A(x, t = 200)

Figure 2. (a) Initial condition and (b-c) őnal state after integrating equations (17), (18) for a time t = 200. Boundary conditions are periodic for both examples. The parameters

are őxed in N = 256, η∗ = 3.94, λ = 0.05,ω = 0.05, Γ = 0.019 and ϵ = 0.10. Case (b) µ = 4.40 corresponding with s = 1.20, the number of hotspots has been reduced

compared to the initial condition, but the magnitude of the intensity has increased. (c)µ = 2.50 equivalent to s = 0.25, in this instance Lévy ŕights (anomalous diffusion),

dominate over Laplacian diffusion, the formation of hotspots with a mayor intensity is observed (respect to (b)). These can be explained as the non-spatial locality effect of

the fractional operator, which allows the crime density őeld ρ to have a more signiőcant inŕuence on the appearance of a few high-intensity hotspots in the attractiveness A.

approximatemodel is obtained by truncating to a speciőc power order. The precision radius is usually a function of the power order trimmed
in the series. Expanding series analysis is applied to estimate the local phenomenology of the original system through an approximate
model. There are studies using series expansion on stationary solutions for the Short model [2, 7, 10]. Other studies have also been made to
assess their stability [3, 8, 15, 34] and bifurcation analysis [35, 36]. Our study proposes a series expansion analysis, considering the density
home burglaries őeld as an analytical function of attractiveness. A comparable analysis is undertaken in reference [6], although the ansatz
for expansion is different from the one suggested here, as shown below. Using equation (17) in the steady-state i.e. ∂A/∂t = 0, also, consider
special case A0 = α̃ (constant in allΩ), we propose

η∆A śωA + ϵAρ(A) +ωα̃ = 0, and ρ(A) =
∞∑

i=0

β̃i(s)A
i. (22)

Replacing ρ(A), dividing by η, and ordering by powers of A, we have

∆A ś
(ω ś ϵβ̃0)

η
A +

ϵβ̃1
η
A2 +

ϵβ̃2
η
A3 + . . . = ś

ωα̃

η
,

renaming the coefőcients, asβ1 =
(ωśϵβ̃0)

η , for i ≥ 2βi =
ϵβ̃iś1

η andα = ωα̃
η , therefore,

∆A śβ1(s)A +β2(s)A
2 +β3(s)A

3 + . . . = śα.

For qualitative analysis, we will work on one dimension (∆A = Axx), and the last expression is truncated to the third power in A. Which
provides us with a non-homogeneous and non-linear ordinary differential equation

Axx śβ1(s)A +β2(s)A
2 +β3(s)A

3 = śα. (23)

For the analysis, we propose changing the second-order differential equation (23) for two őrst-order equations, as follows:

Ax = M,

Mx = β1(s)A śβ2(s)A
2 śβ3A

3 ś α. (24)

One further approximation is required to introduce the functional relationship betweenβi=1,2,3, with respect to the derivative order s. In
a small disturbances scheme (concerning intrinsic attractiveness), a linear relationship is suggested for the three functions, such that
βi(s) = ais. Fig. 3 presents the numerical solution for this approximation level. In Fig. 3 (a) the conőguration spaceM(x) vs A(x) is plotted
for several values of derivative order s ∈ [0.2, 1.4]. In Fig. 3 (b) Solution of eqs. (24) is shown with coefőcients a1 = 100, a2 = 8, a3 = 8,
which resemble spike solutions. (c) For the complete model (eqs. (17)-(18) in 1-Dimension) is shownM(x) vs A(x), with parameters
η = 3.874,ω = 0.05, λ = 0.09, Γ = 5× 10ś6, ϵ = 0.04, s ∈ [0.2, 1.4], the initial conditions are A(x, 0) = (1 ś cos(2πx)), ρ(x, 0) = 0.1 and the
subjacent attractivenessα = A0(x) = 0.1. (d) Are shown solutions of A(x, t = 200), for different derivative order values s ∈ [0.2, 1.4]. In sub
Figs. (a)-(d), curves with the maximum amplitude correspond with lower values of s, and the amplitude decrease when s is incremented.
Visually, it can be seen that the behavior of the real and approximate solutions are qualitatively different. By tuning the parameters in the
approximate model, the amplitude and width of the curves can be adjusted, however, to modify the shape of the curve a different model is
required. With this observation, we can say that an approximation by a few terms is not enough to capture the dynamic of the attractiveness
represented by Eq. (17). Also, the linear relationship between the coefőcientsβi=1,2,3 and the order of the derivative s, seems not to be
adequate to approximate the behavior of the system.
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M(x)

A(x)

s = 0.2

s = 1.4

(a)

A(x)

x
(b)

s = 0.2

s = 1.4

(a)

M(x)

A(x)(c)

s = 0.2

s = 1.4

A(x)

x
(d)

s = 0.2

s = 1.4

Figure 3. Graphical comparison between complete (eqs. (17) and (18) in 1-dimension) and approximated model (Eq. (24)). (a) Evolution of different derivative order values

s ∈ [0.2, 1.4] forM(x) = ∂A(x)/∂x vs A(x). (b) Spatial distribution of A(x) for s ∈ [0.2, 1.4]. (c) Solution of the complete model (eqs. (17), (18) in 1-dimension) for derivative

order s ∈ [0.2, 1.4]. (d) Spatial distribution of the solution A(x, t = 200) for s ∈ [0.2, 1.4]. The parameters of the approximation (Eq. (24)) areβi(s) = aiswith a1 = 100, a2 = 8,

a3 = 8. Parameters of the eqs. (17) and (18) are η = 3.874,ω = 0.05, λ = 0.09, Γ = 5× 10ś6, ϵ = 0.04 andα = A0(x) = 0.1. It is appreciated that an approximation of a few

terms and linear relations of theβi=1,2,3 coefőcients and s does not consistently capture the dynamics of the complete model. However, the relation between curve amplitude

and fractional derivative is represented in a qualitative way.
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A(x, t = 200)

(a) s = 0.17

A(x, t = 200)

(b) s = 0.25

A(x, t = 200)

(c) s = 0.29

ρ(x, t = 200)

(d) s = 0.17

ρ(x, t = 200)

(e) s = 0.25

ρ(x, t = 200)

(f) s = 0.29

Figure 4. Numerical attractiveness solution A(x, t), after integrating for t = 200. (a), (b) and (c) represent the attractiveness őeld for s = {0.17, 0.25, 0.29} respectively. Figures

(d), (e) and (f) correspond to the criminal density distribution őeld for (a), (b) and (c) respectively. The three scenarios show in the attractiveness őeld a hotspot’s existence,

coupled spacially with hotspots in the criminal density őeld. For case (a)-(d), the attractiveness hotspots have a localized and intense dot at the center, and the criminal

density őeld exhibits similar behavior. In (b)-(d) appears an intense ring around the center of the hotspot. Those phenomena occur in attractiveness and criminal density

őelds. In őgures (c) -(f), the attractiveness increases marginally concerning the previous cases. The hotspots in crime density are less intense than (a)-(c) and (b)-(e).

4 Numerical analysis of fractional order in 2-dimensions

Using the integrationmethod explained in Subsection 2, several bi-dimensional scenarios were calculated, while varying s. The initial
condition A0(x) for all cases is composed of an array with 4 × 4 Gaussian distributions on the domainΩ = [0, 1] × [0, 1] and periodic
boundary conditions. In Fig. 4, the őnal state is shown after integrating by t = 200 for s = {0.19, 0.25, 0.29}, with parameters η = 3.947∗,
ω = 0.05, λ = 0.05, Γ = 0.0019, ϵ = 0.10. As observed in Figs (a)-(c) (attractiveness) and (d)-(f) (density criminal agents), exist different
behavior regimes for values of s < 0.45, which is where the Lévy ŕights dominate over conventional diffusion. Although there are not quite
signiőcant changes in the attractiveness hotspots magnitude in (a)-(c), there are more noticeable changes in criminal agents density
distribution (d)-(f). To explain this change is necessary to understand criminal density dynamics, as we hypothesized below. In the space
of criminal density, Figs. (d)-(f) a descending difference in themagnitude of the hotspot can be observed, while s increases, simultaneously
the hotspot base becomes wider. The hypothesis is that stochastic ŕights are longer and directed to themost attractive areas, with greater
precision, while s < 1. When derivative order s increases, Lévy ŕights exist, but now they compete with Laplacian diffusion.

In agreement with numerical observations (Fig. 4), there are two-dimensional periodic solutions for different derivative order values
s. However, there are considerable differences between them, analogous to the one-dimensional case reported by Chaturapruek et al.
[6]. The magnitude and spatial distribution of the attractiveness őeld and the criminal density constitute most of these differences. The
results interpretation is that for s < 1, the fractional operator∆s manifests its non-local nature. From graphs of Fig. 4, the maximum
attractiveness intensity variation is observed by changing parameter s. The two-dimensional system solutions are determined numerically
for s ∈ [0.17, 1.20]. To analyse results, we determine global properties max[A]/max[A0] (max for all x onΩ), as a function of s.

In Fig. 5 it is observed how the total attractiveness I[As], deőned in equation (25) shifts with respect to the total attractiveness of the initial
condition I[A0]. In graphs (a) and (b) of Fig. 5, both properties are shown, as well as the integration time t = 200. Graph (a) for s < 0.5
corresponds to a regime where Lévy ŕights dominate Laplacian diffusion. TheMaximum attractiveness reaches high values compared
to the rest of the graph. The region 0.5 < s showsmaxAs/maxA0 has small variations, but it shows a local maximum at s ≈ 1. In graphs
(a)-(b), it is observed that in the case s > 0.5, the attractiveness magnitude remains low (respect to the case s < 0.5) and continues with
this trend, for s explored in this experiment. The hypothesis to explain these two regimens is a behavior change between them from Lévy
ŕights diffusion to one where the Laplacian diffusion has relevant effects or dominates. As a result of the analysis of graphs, it can be said
that in an environment where criminal agents have highmobility, attractiveness increases signiőcantly for usual Laplacian diffusion.

I[As] =
∫

Ω

As(x, t = Tc)dx and I[A0] =
∫

Ω

A0(x)dx. (25)

In Fig. 5 the substantial increase in both global attractiveness properties, for values of s < 0.45 reveals a signiőcant criminal population is
leaving its neighborhood and is continuallymoving to the most attractive areas. This mechanism is reinforced by a cyclical process and
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max[As]/max[A0]

s(a)

I[As]/I[A0]

s(b)

Figure 5. In both graphs the parameters are őxed at Tc = 200, η = 3.947,ω = 0.05, λ = 0.05, Γ = 0.0019, ϵ = 0.10 and s ∈ [0.17, 1.20]. (a) Evolution ofmax[As]/ max[A0],

whichmeasures the maximum attractiveness values inΩ. Graph (b) shows I[As]/I[A0], which represents a total attractiveness measurement inΩ. As the previous graph,

this shows two attractiveness regimes with a transition zone between them, for the same values ofΩ, although, there is a signiőcant decrease when s = 1, which corresponds

to the usual Laplacian diffusion. In both graphs, there is evidently a region for values of s < 0.4 where essentially there is great attractiveness, both at the maximum intensity

level, as in case (a), and global attractiveness, as in case (b). The explanation for this increase in attractiveness relates to greater mobility among the criminal population.

is only limited by local diffusion. In fact, for s ≲ 0.37, the numerical solutions show a remarkable increase, as local criminal diffusion is
not enough to delocalize the high attractiveness concentration, and the integration process is numerically unstable. Another exciting
aspect is the apparition of a local maximum for s ≈ 1 because evidence of a substantial change occurs within the usual Laplacian diffusion
regime (for the case s = 1, the conventional deőnition of the Laplacian operator is used) in this regime, an intense local diffusion increase
the attractiveness. In Fig. 5 (b) is shown the total attractiveness onΩ, it has a similar trend to that of the graph (a), that is, the global
attractiveness also changes as a function of s.

5 Law enforcement of fractional bi-dimensional model

How police ofőcers engage with the attractiveness őeld is fundamental to the model dynamics. As mentioned before, there are several law
enforcement strategies for Laplacian diffusion, and each one produces different results [4, 9, 11], particularly in the work of N. Rodriguez
[37], a complete study is made of different patterns on hotspot policing. The usual Laplacian diffusionmodels primarily represent these,
and those fractional models represent only one dimension. Two main components maintain the incorporation of police ofőcers: (a)
Displacement dynamics over the environment, i.e., displacement rules. (b) The way criminals interact with the environment; what makes
criminals perceive particular sites as less attractive. The strategy applied in this work is cops on the dots, considering this as a typical law
enforcement example. Therefore, police agents’ existence modiőes criminal attractiveness perception in the following way

Ãd(t) = e
śχkd(t)Ad(t), (26)

where χ > 0 represents police inŕuence on criminal perception. The probability that a criminal agent performs an attack on the site d ∈ Ω

at time t + δt is expressed as

p̃d(t) =
ϵÃd(t)

1 + ϵÃd(t)
.

A similar deduction to that described by the equations (1) and (3), is made, for attractiveness in the police presence A(x, t), and residential
burglaries ρ(x, t). In the continuous limit, we have

∂A(x, t)
∂t

= η∆A(x, t) śω(A(x, t) ś A0) + ϵθÃ(x, t)ρ(x, t). (27)

In the case of ρ(x, t), the attractiveness change, expressed in equation (26), is exhibited in a variety of probability qi,d to go from a site i to d
in a (t, t + δt) period, as follows:

qi→d =
wi→d∑

d∈Z,d̸=i wi→d
,

where the weightwi→d is deőned as

wi→d =
Ãd(t)

lµ||i ś d||µ
,
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and the sum of the weights is

∑

d∈Z2,d̸=i

wi→d =
∑

d∈Z2,d̸=i

Ãd(t) ś Ãi(t)

lµ||i ś d||µ
+

∑

d∈Z2,d̸=i

Ãi(t)

lµ||i ś d||µ
.

Using equation (9) for the operator L, and with a similar deduction to that shown in section 2, then we have:

∂ρ(x, t)
∂t

= D

[

Ã(x, t)∆s
(

ρ(x, t)

A(x, t)

)

ś
ρ(x, t)

Ã(x, t)
∆
s
(

Ã(x, t)
)

]

ś Ã(x, t)ρ(x, t) + γ. (28)

Values for D and γ are speciőed in equation (19). A relevant aspect of the cops on the dots strategy is that those police ofőcers are biased
towards the most attractive areas. These phenomena generate a masking effect that reduces the attractiveness perception of criminals
concerning speciőc places, thus forcing them to move to less attractive areas or disappear from the scene without ever committing a crime.
The probability that a police ofőcer will move from site i to site d is

qi→d(t) =
Ad(t)∑
i∼d Ai(t)

,

the expected number k of police agents at site d over time t + δt is expressed as

kd(t + δt) =
∑
ki(t)qi→d(t).

Chaohao [11] make a similar deduction for the continuous limit, which, if adapted to the two-dimensional case, can be expressed as:

∂k

∂t
= D̃∇ ·

[

∇k ś
2k
A

∇A
]

, (29)

where D̃ = ωD. The equations (27)-(29) represent the fractional diffusion model with law enforcement, which will be used for the
simulations below. The model parameters were set in Tc = 200, η∗ = 3.94, λ = 0.05,ω = 0.05, Γ = 0.019, ϵ = 0.15, s ∈ [0.17, 1.20] and
the effect of the law enforcement χ = 0.0, 0.86, 3.86. Similar to the section 4, the maximum and the attractiveness total sum overΩ, is
determined integrating and divided by the maximum and the total sum, respectively, of the initial condition A0.

A relevant aspect to the law enforcement incorporate, then integration of the system (Eqs. (27)-(29)) becomes unstable for s < 0.5, although
it also depends on the value ofχ. This phenomenon is notorious because the system shows a large ring formation around the hotspot center
before blowing up.

In Fig. 6 (a) the max[As]/max[A0] for χ = 0.0, 0.86, 3.86 indicated with blue, green and red colors respectively, are shown. Themissing
points correspond to the cases with law enforcementχ = 0.96, 3.86 and, it is where the model could not be integrated numerically for a
time t = 200 as observed for values s < 0.45, the maximum attractiveness magnitude, grows with the police presence, at least for case
χ = 0.86, i.e., attenuation in the attractiveness by law enforcement was expected, but in a nonintuitive response of the system, it was
increased (s < 0.45). Reading this result is not easy and possibly not unique, but one interpretation is that criminal agentsmove relatively
easily to hotspots, while police ofőcers move by Laplacian diffusion and therefore are slower. Thus, the police agents slowly concentrate on
some hotspots, but the criminals can create new hot zones without allowing the police agents to react adequately. For values s > 0.45, the
maximum attractiveness is reduced by the police presence, which is an expected result. Fig. (b), representing the total attractiveness in
Ω, shows similar behavior to Fig. (a). A rapid criminal diffusion based on Lévy ŕights, and a slow police response, have increased global
attractiveness levels. It can be concluded that both graphs in Fig. 6 show two types of attractiveness response to law enforcement: First, for
a certain intensity of Lévy ŕights, the attractiveness increases with the law enforcement, and second, the attractiveness is attenuated when
the criminal diffusion is comparable to the police diffusion. It shows that different surveillance strategies should be evaluated to őnd an
effective response of police agents to avoid criminal attacks.

Fig. 7 (a)-(b) presents stable attractiveness results A(x, t = 200), for the values of s = 0.31 with χ = 0.86 and s = 0.45 with χ = 3.86
respectively. These results correspond to the őrst points on the left of the graphs in Fig. 6 with χ > 0. In (a), a ring with less angular
symmetry is shown, and the intensity of attractiveness drops suddenly for a critical radius. In addition, isolated spots are observed inside
the ring. In numerical tests for values of s < 0.31, these isolated points growwithout limit. The attractiveness dynamic resulting in the
spatial distribution observed in (a) is difőcult to explain. However, a hypothesis is that a weak police presence in an environment of high
criminal mobility fragments usual hotspots into a more complex structure. In Fig. (b), conventional hotspots are observed, the deterrent
police inŕuence can be appreciated too, in the attractiveness magnitude. However, a symmetry break has occurred. The upper right corner
hotspot began to growmore than the rest. For s < 0.45 and χ = 3.86, structures similar to case (a) appear, but they blow up before the
integration time reaches t = 200.



Martínez-Farías et al. | 37

max[As]/max[A0]

s(a)

∗ χ = 0.00

◦ χ = 0.86

× χ = 3.86

I[As]/I[A0]

s(b)

∗ χ = 0.00

◦ χ = 0.86

× χ = 3.86

Figure 6. In both graphs the parameters are őxed in Tc = 200, η = 3.94, λ = 0.05,ω = 0.05, Γ = 0.019, ϵ = 0.15, s ∈ [0.17, 1.20]. (a) Evolution ofmax[As]/ max[A0] (A0 is the

initial condition), Which is a measure of the maximum attractiveness values inΩ, for χ = 0.0, 0.86, 3.86. Graph (b) shows I[As]/I[A0], which represents a measure of total

attractiveness inΩ to χ = 0.0, 0.86, 3.86. Like the previous graph, the existence of two attractiveness regimes exists, the őrst (s < 0.45) is dominated by Lévy ŕights, and the

second (s > 0.45) corresponds to a more conventional diffusion.

A(x, t)

(a)

ρ(x, t)

(b)

Figure 7. Spatial distribution for the χ = 3.86 and s = 0.31 cases, the rest of the parameters are those speciőed in Fig. 6. (a) Field of attractiveness: A type of hotspot with a

shape that varies from the classic one (circular) is visible. (b) The result of the integration is amore conventional hotspot distribution, however, some hotspots have started to

growmore than others.
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6 Conclusions

Wehavemade anumerical studyof the fractionalmodel for the bi-dimensional case ofhome thieves dynamics, incorporating the police effect
and using the Cops on dots strategy. The fractional operator was approximated through two-dimensional Fourier transform properties. It is
observed that applying a Predictor-Corrector 4 schedule to a random initial attractiveness distribution, the number and hotspot magnitude
are related to the derivative order s of the fractional operator. In a 1-dimensional scenario, stationary solutions analysis found that a series
expansion and linear relations between series coefőcients with derivative order are not adequate to approximate the functional relationship
between attractiveness and criminal density population, inclusive for the small attractiveness amplitudes. A global properties analysis is
made, the maximum and total attractiveness were used as estimators of the system evolution. The results from 2-dimensional scenarios
reveal two regions with highly contrasting attractiveness behavior. The hypothesis is that Lévy ŕights dominate the powerful attractiveness
region when derivative order (s < 0.45 super diffusive regimen). In the interval s ∈ [0.45, 0.5], the dynamics combine the impact of Lévy
ŕights with Laplacian diffusion. An appreciable variation emerges due to a smooth change in global maximums attractiveness for s = 1; It is
explained by the functional form of the coefőcient Ds. Still, the interpretation is that the local diffusion of criminal agents is based entirely
on Brownian motion and produces its maximum effect on attractiveness. Incorporating dissuasive police effect into the model, maximums
and total attractiveness are signiőcantly reduced for s > 0.5. In case s < 0.5, which corresponds to a regimen where Lévy ŕights coexist
or dominate, it is observed that surveillance type cops on the dots increase attractiveness levels in localized areas, with a more complex
structure than hotspots. Also, it is interesting that the police presence induces an abrupt change in the system’s evolution concerning the
derivative order (s < 0.5). Numerical results with police inŕuence showed an attractiveness distribution with a different symmetry than the
classical hotspots with circular symmetry. However, a more detailed study is required to determine its dynamical properties. Extending the
fractional model to the 2-dimensional case brings us closer to a possible application in realistic urban environments, implementing an
optimal control investigation. Furthermore, it can be adequate for government agencies to identify attractive home zones and implement
optimal surveillance strategies.

Nomenclature

Ω 2-dimension lattice
N Size ofΩ in each dimension
l Lattice space
d Position in coordinates (d1, d2), d1, d2 = 1l, 2l, . . .Nl
t time
Ad(t) Attractiveness at position d at time t
A0d Intrinsic attractiveness at site d
Bd(t) Time t dependent attractiveness at site d
δt Minimal time interval
Pd(t) Probability of a criminal attack at site d in time δt
ϵ Effectiveness of the attractiveness at site d
Ed(t) Number of criminal attacks on site d during a time δt
θ Enhancement in attractiveness for a single criminal agent attack
ω Attractiveness time decay rate
η∗ Attractiveness inŕuence in position d to its immediate neighbors
d′ Number of neighbors of position d
nd(t) Number of criminals at site d at time t
ϵ∗ Inŕuence of the criminal presence in each position d
ρ(x, t) Criminal density in position x at time t
x Position in 2-dimension domain x = (x1, x2)
D Dimension
qi→d(t) Probability that a criminal will arrive at site d from i at time δt
wi→d Relative weight of going from site i to site d
µ Exponent of the underlying power law in the Lévy distribution
L Conventional fractional operator
∆s Fractional operator derived from Lévy ŕight diffusion
s Fractional order s > 0
ζ(µ) Riemann function
Z(µ) Adapted function to the 2-dimensional fractional case
Γ Crime population growth rate across all sites
λ Rate of house burglars leaving without committing a crime in δt time
A(x, t) Attractiveness in position x = (x1, x2) at time t
A0(x) Initial condition of attractiveness
η Rescaled attractiveness diffusion
γ Rescaled Crime population growth rate
M Criminal fractional diffusion
I[As] Total attractiveness in [0, 1]× [0, 1]
Ãd(t) Modiőed criminal attractiveness perception
χ Police inŕuence on criminal perception
kd(t) Expected police agents at site d at time t
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Abstract

A three-dimensional system is introduced in this paper and its local stability is analyzed. Our study establishes the validity
and uniqueness of the linear feedback control for the proposed system and proves its existence and uniqueness. The numerical
simulation algorithm described by Atanackovic and Stankovic is őnally applied. The analytical results are analyzed and the
dynamics of the system are explored in more detail.
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1 Introduction

Modeling and investigating actual phenomena can be accomplished with fractional dynamical systems. A dynamical systemmay exhibit
chaos as one of its important dynamics. Dynamical chaos disappears when the fractional order falls below a threshold in a fractional-order
chaotic system. There have been several articles discussing the minimum effective dimension belowwhich the system remains chaotic,
[1, 2, 3, 4, 5, 6, 7].

Chaos theory is a őeld ofmathematics that has already attracted the attention ofmany researchers from different őelds of science, engineer-
ing andmedicine. Chaos theory describes the behavior of certain dynamical systems whose state evolves with time and are highly sensitive
to initial conditions. Because of the complexity of chaotic behavior in dynamical systems, it őnds applications in a variety of őelds, such as
science, technology andmedicine [8, 9, 10, 11, 12, 13, 14]. Studying chaotic systems can be a very valuable endeavor. Sene [15] in his paper
studied the applications of the fractional-order chaotic system in the sense of Caputo fractional derivative. The presence or absence of chaotic
behaviors of their model was presented in terms of the Lyapunov exponents. For the model description, the circuit schematic was drawn
and simulated. Naik et al. [16] in their paper studied the chaotic dynamics of a fractional-order cancer model. A detailed analysis of the
equilibriumpointswas also considered. Theyalso calculated the Lyapunovexponents that give the existence of chaotic behavior of themodel.

Leibniz in 1695 was the őrst to introduce the fractional calculus followed by Liouville in 1834, Riemann in 1892 and others [17]. Fractional
calculus represents the generalization of integrals and derivatives to non-integer order. After Leibniz fractional calculus has gained
increasing popularity and őnds applications in various őelds of science, technology andmedicine [18, 19, 20, 21, 22, 23]. Recently, Ozkose
and Yavuz [24] in their paper studied in fractional-order case the relations between COVID-19 and diabetes diseases under the hereditary
traits then validated their model by the real data from Turkey. The Adams-Bashforth-Moulton predictor-correctormethod was employed
for the numerical solution of their model. For the advantages of the fractional-order derivative, they considered the memory trace and
hereditary traits in the model. Fractional model, similar electrode-electrolyte, electromagnetic, and wave models have been found to
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explain many systems in the physical, chemical, and biological processes.

The rest of the paper is decorated as: after the introduction in Section 1, Section 2 gives some preliminaries and discusses a chaotic
three-dimensional system. Section 3 examines whether or not a proposed system solution exists and is unique. In Section 4, we introduced
the stability conditions of the equilibrium points of the system. The linear feedback control system studied in Section 5 is based on the
Routh-Hurwitz method. In Section 6, we present numerical simulations based on algorithmic methods and discuss the obtained results.
Finally, in Section 7, we conclude the study.

2 Preliminaries

Manywell known fractional derivatives including Riemann-Liouville, Grunwald-Letnikov as well as Caputo exist in the literature and are
all common fractional derivative deőnitions. As a result, we investigate the fractional derivative of Caputo, as deőned in [25]:

Dηg(τ) =
1

Γ(m ś η)

∫ t

0
(τ ś σ)mśηś1g(m)(σ)dσ (1)

= jmśη
(

dm

dτm
g(τ)

)

. (2)

It is deőned as follows:m is integer,m ś 1 < η < m and Γ is the Gamma function, and jθ is Riemann-Liouville integral operator.

jθg(τ) =
1

Γ(θ)

∫ t

0
(τ ś σ)θś1g(m)(σ)dσ, τ > 0. (3)

Theorem 1 [26] An autonomous linear system

Dηx = L x, x(0) = x0,

where L is am×mmatrix and0 < η < 1 is asymptotically stable if and only if |arg(µ)| > ηπ
2 for all eigenvaluesµ of L. The components of the

solution x(τ) decay to zero in this case, each component of solution x(τ) decays toward or likeτśη. Also, this linear system is stable if and only if
|arg(µ)| ≥ ηπ

2 and those critical eigenvalues that satisfy |arg(µ)| =
ηπ
2 that geometricmultiplication is one. In Ref. [27], a chaotic system in three

dimensions is described by:















x′1(τ) = ax1 ś x2x3,

x′2(τ) = śbx2 + x1x3,

x′3(τ) = ścx3 + x
2
1 ,

(4)

where x1, x2, x3 are state variables, a, b, c ∈ R
+ are constant parameters. For a = 6, b = 12 , c = 14, the chaotic attractors for system (4) are displayed

in Fig. 1.

Three equilibrium points exist in the system

O = (0, 0, 0), Q1 =
(

4√
abc2, 4

√

a3c2/b,
√

ab
)

, Q2 =
(

ś
4√
abc2, ś 4

√

a3c2/b, ś
√

ab
)

.

3 Solution’s existence and uniqueness

Taking into account the initial value problem:

DηW(τ) = g(τ,W(τ)), 0 < τ <Ω, W(k)(0) = W(k)0 , k = 0, 1, . . . ,m ś 1. (5)

Theorem 2 (Existence [28]) Let us consider

E := [0,W∗]× [W(0)0 ś ε,W(0)0 + ε],

with someW∗ > 0 and some ε > 0, and the function g : E→ Rχ := min{χ∗, (εΓ(η + 1)/||g||
1
η

∞
}. Then, there exists a functionW : [0,χ]→ R

which solves the initial value problem (5).

Theorem 3 (Uniqueness [28]) Let us consider

E := [0,χ∗]× [W(0)0 ś ε,W(0)0 + ε],

with someχ∗ > 0 and someε > 0. Therefore the function f : E→ R is surrounded on E and regard the second variable, meet the Lipschitz condition,

i.e.,

|g(τ,W) ś g(τ,V)| ≤ J|W ś V|,
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Figure 1. The chaotic attractors for system (4)

with constant J > 0 independentτ,W and V. Then, describeχ as Theorem (2), there exists one functionW : [0,χ]→ R solving the initial value

problem (5).

Theorem 4 In the fractional-order three-dimensional system (4), the initial value problem can be expressed as follows:

Dηx(τ) = Ax(τ) + x1(τ)Bx(τ) + x2(τ)Cx(τ), x(0) = x0, (6)

where0 < τ <Ω, x(τ) = (x1(τ), x2(τ), x3(τ))Ω ∈ R
3, x(0) = (x10, x20, x30)

A =







a 0 0
0 śb 0
0 0 śc






, B =







0 0 0
0 0 1
1 0 0






, C =







0 0 ś1
0 0 0
0 0 0






.

If

Ω := min{Ω∗, (εΓ(η + 1)/||g||∞)
1
η }, Ω

∗ > 0,

there exists a unique solution for (6).

Proof Consider

g(x(τ)) = A x(τ) + x1(τ)Bx(τ) + x2(τ)Cx(τ), x(τ) ∈ [0,Ω∗]× [x0 ś ε, x0 + ε],
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for anyΩ∗, ε > 0. Moreover, one has

|g(x) ś g(y)| = |A(x ś y) + x1Bx ś y1By + x2Cx ś y2Cy|

≤ ||A|||(x ś y)| + |x1Bx ś y1By| + |x2Cx ś y2Cy|,
(7)

where y(τ) ∈ [0,Ω∗]× [x0 ś ε, x0 + ε], and | · | represents the matrix vector norm. Clearly

|x1Bx ś y1By| = |x1Bx ś y1Bx + y1Bx ś y1By|

= |(x ś x)ś)Bx + y1B(x ś y)|

≤ ||B||(|x| + |y1|)(|x ś y|).

Likewise, one has the following result:

|x2Cx ś y2Cy| ≤ ||C||(|x| + |y2|)(|x ś y|).

Eq. (7) gives the result that

|g(x) ś g(y)| ≤ [||A|| + ||B||(|x| + |y1|) + ||C||(|x| + |y2|)](|x ś y|)

≤ [||A|| + (||B|| + ||C||)(2|x0| + 2ϵ)](|x ś y|)

≤ L(||x ś y||),

where J = ||A|| + (||B|| + ||C||)(2|x0| + 2ε) > 0. Hence, the fractional-order dimensional system is Lipschitz-satisfying. Then, compatible
to the existence and uniqueness theorem of the fractional-order dimensional system the initial value problem of the commensurate order
system (6) has a unique solution in the interval

Ω := min{Ω∗, (εΓ(η + 1)/||g||∞))
1
η }.

■

4 Conditions for the stability of equilibrium points

The characteristic equation of system (4) is determined by

p(µ) = µ
3 + r1µ

2 + r2µ + r3 = 0, (8)

whose discriminant D(p) is deőned by

D(p) = R(p, p′), (9)

and

D(p) = 18r1r2r3 + r
2
1 r
2
2 ś 4r3r

3
1 ś 4r

3
2 ś 27r

3
3. (10)

If∆1,∆2 and∆3 are Routh-Hurwitz determinants∆1 = r1,∆2 =

∣

∣

∣

∣

∣

r1 1
r3 r2

∣

∣

∣

∣

∣

and∆3 = r3. Thus we have the following stability conditions [28].

(I) If D(p) < 0, a1 > 0, a2 > 0, a1a2 = a3, then the equilibrium point is locally asymptotically stable for all η ∈ (0, 1).
(II) The condition r3 > 0, is the necessary condition for the equilibrium point to be locally asymptotically stable.

Some stability conditions for the equilibrium points Q0,Q1 and Q2

The characteristic polynomial of equilibrium point Q0 is given by:

p(µ) = µ
3 + µ

2(c + b ś a) + µ(bc ś ac) ś abc. (11)

It is clear that r3 = śabc < 0, thus applying the stability condition (II) to characteristic equation (11) implies that E0 in unstable. Similary,
the equilibrium point Q1 and Q2 have the same characteristic polynomial, which given as:

p(µ) = µ
3 + (c + b ś a)µ2 + (ac + bc)µ + 4abc = 0. (12)

Thus, applying the Routh-Hurwitz conditions and the necessary stability condition part (I), imply that equilibrium points Q1,Q2 are
unstable.
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5 Linear feedback control of the chaotic system

Here, the control of fractional three-dimensional chaotic system (4) is discussed by using the linear feedback control.
The controlled fractional order chaotic system (4) is given by:















Dηx1(t) = ax1 ś x2x3 ś k1(x1 ś x̄1)

Dηx2(t) = śbx2 + x1x3 ś k2(x2 ś x̄2)

Dηx3(t) = ścx3 + x21 ś k3(x3 ś x̄3),

(13)

where (k1, k2, k3) are feedback control and k1, k2, k3 > 0 and by suitable choice of feedback control according to stability conditions (I, II),
we can drive the system (13) trajectories to unstable equilibrium point Q1.

Controlling chaos for the equilibrium point Q1

In this section, we apply stability condition of chaotic system to study chaos control. For this, we obtain the characteristic equation of the
controlled system (13) evaluated at the equilibrium point by:

µ
3 + µ

2(s1 + s2 + k2 + b) + µ(s1s2 + 2bs2 + k2s1 + k2s2) + (s1s2)k2 + bs1(c + k2), (14)

where s1 = (k1 ś a) and s2 = (k3 + c). By applying the Routh-Hurwitz conditions (I, II) to equilibrium point (13) we őnd that: k1, k2, k3, are
all positive and deőned by equation (13).
Furthermore, the inequality is enough conditions for stabilizing the controlled system (13) to the equilibrium point Q1 and Q2: In the
system (13) we consider the őxed parameters a = 6, b = 12, c = 4 and using the feedback control gains (k1, k2, k3) = (2.88, 1.33, 0.52).
For the above mentioned value parameters and feedback control gains, it becomes clear that the trajectories of controlled system (13) with
fractional order η converge to the equilibrium point Q1.
Fig. 2 shows the trajectories of controlled fractional system for η = 0.98, which converges to the equilibrium point Q1.
However, when η = 1 the controlled system (13) is not stable near equilibrium point Q1 (see Fig. 3).

6 Numerical simulations and discussion

For solving system (4), we employ a numerical technique developed by Atanackovic and Stankovic [29] to solve the fractional differential
equation, and we depict trajectories of system (4) using the well known Runge-Kutta method of order fourth for parameters a = 6, b = 12,
c = 4. We have the equilibrium point Q1 = (135.764, 67.882, 8.485) and Q2 = (ś135.764,ś67.882,ś8.485).
Fig. 1 presents numerical values for system (4) for different values. An analysis of the local stability of a three-dimensional system is
presented in this paper. This study aims to verify the validity and uniqueness of linear feedback control for the proposed system and prove
its existence and uniqueness. An algorithm is őnally applied to the numerical simulation.
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Figure 2. The trajectories of the controlled system (13) byη = 0.98
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Figure 3. The trajectories of the controlled system (13) byη = 1

7 Conclusions

In the present paper, we examined a three-dimensional fractional order chaotic system. The conditions that ensure the existence and
uniqueness of its solution were identiőed. We employed Routh-Hurwitz method to determine the stability conditions. We also employed
the feedback control of the chaotic systemwith fractional order. Through the numerical simulations, the performance and authenticity of
the proposed method were presented. The trajectories of the model (4) through the well known Runge-Kutta method of order fourth were
depicted. It is concluded from the obtained results that the fractional power of the derivative has a signiőcant effect on the dynamic process.
Also, it is observed that the smaller fractional power of the derivative is the chaotic behavior of the system.
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Abstract

This paper addresses the mathematical modelling of aircraft landing gear based on the shock absorber system’s dynamics and
examination of results depending on different touchdown scenarios and design parameters. The proposedmethodology relies
on determining an analytical formulation of the shock absorber system’s equation of motion, modelling this formulation on the
model-based environment (Matlab/Simulink), and integrating with an accurate aircraft nonlinear dynamic model to observe the
performance of landing gear in different touchdown or impact velocities. A suitable landing performance depends on different
parameters which are related to the shock absorber system’s working principle. There are three subsystems of the main system
which are hydraulic, pneumatic, and tire systems. Subsystems create a different sort of forces and behaviors. The air in the
pneumatic system is compressed by the impact effect so it behaves like a spring and creates pneumatic or air spring force so the
most effective parameter in this structure is determined as initial air volume. Hydraulic oil in the receptacle of the hydraulic system
ŕow in an oriőce hole when impact occurs so it behaves as a damper and creates damping or hydraulic force. The same working
principle is acceptable for the air in the tire. The relationship between tire and ground creates a friction force based on dynamic
friction coefőcient depending on aircraft dynamics. As a result of this study effect of the impact velocity and initial air volume
parameters on the system are examined and determined by optimization according to maximum initial load limits of aircraft and
displacement of strut and tire surface.

Key words: Shock absorber; landing-touchdown performance; oleo-pneumatic and strut; aircraft landing loads

AMS 2020 Classiőcation: 37M05; 37N35; 93C10; 93C35.

1 Introduction

Shock absorber systems have essential roles in aircraft structure. Accidents occur during both landing and takeoff. Shock absorber systems
in landing gear can absorb the touchdown loads. This system needs to be designed and controlled as it can provide a health touchdown
condition before themanufacturing process. There are two controlling ways observe the system’s qualiőcation. The őrst one is an empirical
way that needs to test apparatuses [1]. Applying this way is expensive because there is a mechanic system to observe touchdown condition.
The second way is the analytic or simulation method. In this method, the dynamics of shock absorber systems, equations of motions, tire
behaviors etc. are simulated in computer programs (Matlab/Simulink) [2, 3, 4, 5].

In addition, according to international regulations and literature, there are a few landing conditions (three-point landing, two-point
landing) [6, 7, 8]. These conditions directly affect the response of the system. In one-gear landing conditions, the aircraft is in the level
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attitude. In this condition aircraft contact the runway on one main landing gear and touchdown velocity is themost important parameter
for the shock absorber to healthy landing. In two-point landing conditions, load factors and pitching accelerations are changed by time.
Main gear landing loads are critical in this condition. Changes in load factors are caused to differences in landing gear systems design
parameters. Examples of these parameters are hydraulic characteristics and oleo length. In three-point landing conditions, pitching
acceleration is equal to zero. the nose gear system and its structures are generally critical in this condition and the nose landing gear carries
%15 of the total weight of the aircraft in the static position [9]. One of the main function of the landing gear systems is the compensation of
the maximum critical load. The critical parameter which is the most important input to the model is a vertical component of touchdown
velocity. It directly affects the motion. Some experiments show the critical touchdown velocity is between the 3 ś 5m/s [10].

The discharge coefőcient which is determining the buffer damping force is generally determined between 0.8-0.82 which is related to the
hydraulic ŕowmotion [1]. The oleo-pneumatic shock absorber system has a few subsystems. In this system, the air is directly used to store
the impact energy. Air works like a spring and produces a spring force (air spring force). Air spring force depends on a few parameters.
For instance, the initial pressure of air which is generally determined őrstly is can be calculating if the air vehicle mass is known. So,
initial pressure is a main design parameter. Desired air spring deŕection is observed in static position of the air vehicle may determine
this parameter. The other store part for impact energy is the hydraulic damping. The behavior of hydraulic oil during corresponding
impact force is the product of hydraulic force. The tire which is working as a spring is needed to bear all produced forces. The tire spring
characterize is the most important parameter that can directly affect the tire behavior [11].

Different coefőcients of friction in different runway conditions cause frictional force variation between the aircraft and the runway. Change
in friction force affects the friction force which is normal to the axis of the shock strut and friction force at the tire in the horizontal direction.
The dynamic friction coefőcient between the tire and the runway is not a constant value and can be expressed as a dependent function of
forward velocity (u), the forward speed of the aircraft in the x direction. There is an inverse proportion between forward speed and dynamic
friction coefőcient.

the shock absorber landing gear system is simulated with the integration of aircraft non-linear dynamic model in this paper. Themost
important parameter that is impact velocity, is considered when landingmaneuver scenarios creates. In this study, we want to develop a
generical model of the nose andmain landing gears.

2 Methodology

In this section, the oleo-pneumatic shock strut system dynamic is explained and modelled. Figure 1 shows the schematic view of the
oleo-pneumatic shock strut where Aa is the net pneumatic area, An is the net oriőce area, Ah is the net hydraulic area.

Figure 1. Schematic view of the oleo-pneumatic shock strut [15].

Mathematical model

Pneumatic force

Themathematical model of the pneumatic force in shock strut is given as:

Fa = AaPa0

(

vo
v0 ś SsAa

)n
, (1)

Ss =
Z1 ś Z2
cosφ

, (2)
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where Fa is the pneumatic force (air-spring force), Aa is the pneumatic area, pa0 is the initial strut air pressure, v0 is the initial air volume,
n is the effective polytropic exponent for the nitrogen-compression process, Ss is the deŕection of the shock strut, Z1 and Z2 are the vertical
displacement of sprung (aircraft structure) and the unsprungmass respectively andα is the anteversion angle of the strut [12, 13].

There are many reasons why nitrogen is used instead of air in the damper system. Firstly, since the air contains oxygen and hydrogen,
moisture formation may be observed during operation and this may increase the risk of cavitation. Therefore, using nitrogen is more
advantageous. Secondly, during operation, the nitrogen internal pressure is more consistent than the air internal pressure. Thirdly, since
the density of nitrogen is greater than the density of air, it can keep the damper pressure longer period of time. Finally, since nitrogen is an
inert gas, it does not react with other damper components [14].

Hydraulic force

Themain oriőce hydraulic force is:

Fh = ρ





A3
h

2A20C
2
d



 |Ṡ|Ṡ, (3)

1
Cd
=

1

0.827 ś 0.0085 l
d

+
20
Re

(

1 + 2.25
l

d

)

, (4)

where Fh is the hydraulic force, ρ is the density of the ŕuid, Ah is the hydraulic area, A0 is the sectional area of the oriőce inlet, Cd is the
discharge coefőcient, Ṡ is the stroke telescoping velocity, Re is the Reynold number, l is the oriőce length, d is the oriőce diameter. Hydraulic
force is the measurement of the pressure loss between the ends of the shock absorber. The discharge coefőcient is calculated to őnd the
relationship between the shock absorber hydraulic force and the strut telescoping velocity. In this paper, the l/d ratio was assumed as greater
than 2. In line with the assumptions, the formula in Eq. 4 was used. According to the researches, Cd value was determined approximately
0.8 and the Cd value was assumed as 0.8 in [1, 15].

Friction force

The internal friction force in shock strut is;

Ff =
Ṡ

|Ṡ|
|FNα|

[

(µ1 + µ2)
l2 ś S

l1 + S
+ µ2

]

, (5)

FNα =
w

g
Z̈1 sinα + Fvg sinα śW2 sinα ś Fhg cosα, (6)

Fhg = Fvgµgr, (7)

where Ff is the friction force, Ṡ is the stroke telescoping velocity, FNα is the force normal to the axis of the shock strut applied at axle,µ1 is

the friction coefőcient between inlet cylinder and stroke surface above the oriőce area,µ2 is the friction coefőcient between inlet cylinder
and stroke surface at below the oriőce area, l1 is the distance between the axle and oriőce area, l2 is the distance between oriőce area and
upper of landing gear,α is the anteversion angle of shock strut, Fvg is the vertical force of tire, Fhg is the horizontal force of tire, µgr is the

friction coefőcient between ground and tire. There are two sources of friction which are tightness of seal and deformation of shock strut.
The friction forces acting on the direction of strut were considered [16].

Tire force

Vertical tire force which is acting during the landing progress results from the tire compression is given by:

Fvg = (1 + Ż2CT)fZ2, (8)

where Ż2 is the tire hub vertical velocity, CT is the vertical damping coefőcient of the tire, fZ2 is the tire static compression curve. Figure 2
shows the tire footprint. Where P is the internal tire pressure, RL is the loaded radius, D0 is the diameter of tire, d is the collapse distance.
The dynamic friction coefőcient changes depending on the forward speed of the aircraft in the x direction. The equation for the variable
dynamic friction coefőcient is given in below;

µ(λ,ν) = eC4λν[C1(1 ś e
śC2λ) ś C3λ], (9)

where C1 is the friction curve maximum value, C2 is the friction curve shape, λ is the slip ratio, µ is the aircraft forward speed, C3 is the
difference between the maximum value at λ = 1 and the maximum value of the friction curve, C4 is in the range of 0.02 ś 0.04s/m . For dry
concrete condition parameters which used in this paper are: C1 = 1.2801, C2 = 23.99, C3 = 0.52 and C4 = 0.03s/m [17]. Figure 3 shows the
relationship between slip ratio and friction coefőcient.
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Figure 2. Tire footprint.

Figure 3. Relationship between λ and µ at different horizontal landing speeds [17].

Equations of motions

Tire rotation and deformation in horizontal direction are not considered, the nonlinear equations ofmotions are given below;

m1Ż1 = m1g ś (Fa + Fh + Ff ) cos(α), (10)

m2Ż2 = m2g + (Fa + Fh + Ff ) cos(α) ś Fµ, (11)

where Z1 and Z2 are the vertical displacements of sprung (aircraft structure) and unsprungmass respectively [1]. Figure 4 shows the landing
gear forces. R

(l,u)(x,y)
is the bearing reaction force at lower and upper, FH is the hydraulic force, FA is the air spring force, Ff is the friction

force, Fvg and Ft are vertical and horizontal forces,α is anteversion angle of shock strut [18]. Figure 4 shows the free body diagram of the
total system as two degrees of freedom.
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Figure 4. Forces on landing gear [1] and free body diagram of landing system.

3 Plant model development

Figure 5 shows the schematic of Simulink model. There is not any pneumatic force effect on aircraft at the initial time because there should
be a reaction force of the pneumatic system to hold the airspring force. There is a pneumatic force but it does not affect aircraft force
equilibrium. So, the initial force of the pneumatic system subtracts from the total strut force which directly affects the equations of motion.
Figure 5 also shows the schematic of the ŕight dynamic model and dynamic friction coefőcient connection. Since the forward speed of the
aircraft ν is a parameter that affects the dynamic friction coefőcient function, the aircraft non-linear dynamic model is also considered in
this paper. Figure 6 shows the results of dynamic friction coefőcient’s results depends on aircraft dynamics.

Figure 5. Schematic of Simulinkmodel.

Figure 6. Dynamic friction coefőcient results.
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Table 1 shows the values of shock absorber system parameters.

Table 1. Parameter values and units

Parameters Values Units

Aa 0.014 m2

Ah 0.013 m2

An 0.0006412 m2

n 1.6 ś

φ 0 deg

k 950000 N/m

CT 25000 Ns/m

µ1 0.006 ś

µ2 0.006 ś

4 Simulation results

To assess the optimum landing performance of an aircraft without any structural damage this section presents a series of simulation results
that illustrate the behavior of the shock absorber system reacting to different impact velocities and initial air pressure in pneumatic system.
According to the results of applying different impact velocities (2 m/s, 3 m/s, 4 m/s) to system, the displacement of sprung and unsprung
mass increase proportionally with increase of impact velocities. Maximum displacement in sprung (strut) mass determined as 37.55 cm
and displacement of unsprung (tire) mass determined as 15.31 cm in 4m/s condition. Maximum loading on sprungmass that is critical
structure was determined as -5.6 g and loading on unsprungmass was determined as -11.85 g. The passing time of damping of systems is
inversely proportional to impact velocities because higher impact velocity creates more energy to absorb as shown on Figure 7 and Figure 8.
According to the examination of these results, optimum impact velocity is determined as 3 m/s. Because, according to the design limits of
sprungmass, the maximum load should be under -4.5 g. To reach the optimum performance, the impact velocity should be determined
according to minimum damping time, maximum load below structural limits. Forces acting on the system according to different impact
velocities as shown in Figure 9 and Figure 10.

       
        

 

   

   

   

   

 
 
   

  
  
  
  

 

                                                                                             

                        
                        
                        

       
        

  

  

 

 

 

 
 
   

  
  
  
 
 
  
  
  
  
 
  
 

                             
                             
                             

       
        

  

  

  

 

 

 

 
 
   

  
  
  
  

 

                            
                            
                            

Figure 7. Sprungmass equations of motion results according to different impact velocities.
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Figure 8. Unsprungmass equations of motion results according to different impact velocities.

Figure 9. Forces acting on the system results according to different impact velocities.
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Figure 10. Forces acting on the system results according to different impact velocities.

       
        

 

   

   

   

   

 
 
   

  
  
  
  

 

                                                                                                

                       
                       
                       

       
        

  

 

 

 

 
 
   

  
  
  
  

  
  
  
  
 
  
 

                            
                            
                            

       
        

  

  

 

 

 
 
 
 
  
 
  
 

                           
                           
                           

Figure 11. Sprungmass equations of motion results according to different initial air pressure.
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Figure 12. Unsprungmass equations of motion results according to different initial air pressure.

Figure 13. Forces acting on the system results according to different initial air pressure.
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The system has also been simulated by applying 5 MPa, 6 MPa and 7 MPa initial air pressures with the 3 m/s impact velocity scenario,
damping occurs in a short time of the displacement of sprung and unsprung mass in 7 MPa initial air pressure condition. In addition, when
initial air pressure increases, the pneumatic force dramatically increases. Themaximum sprungmass displacement was observed in 5
MPa initial air pressure condition as value of 32.15 cm as shown in Figure 11. The maximum unsprungmass displacement is observed in 7
MPa initial air pressure condition as value of 15.32 cm shown in Figure 12. The maximum loading on sprungmass ismeasured as -4.3 g at
sprungmass in 7 MPa initial air pressure condition. The loading on unsprungmass is measured as -8.99 g at unsprungmass in 5 MPa
initial air pressured shock absorber. According to the result of applying different initial air pressure, low pressure is more effective for
sprungmass, high pressure is more effective for unsprungmass. Because high pressure in the pneumatic system behaves high spring
coefőcient, it creates more force and more loading but low pressure creates more oscillations and high damping time as shown in Figure 13.
To sum up of the results, the most effective parameter on loading is determined as impact velocity so it is determined őrstly, initial air
pressure is scaled for reach optimum loading, tire deŕection and damping time.

Figure 14. Forces acting on the system results according to different initial air pressure.

5 Conclusion

Landing gear shock absorber systems have a critical role in aircraft touchdown conditions. Because, there is an impact energy that
needs to damping. It is important for safe landing condition. Landing gear shock absorber system dynamics have to be modelled before
the manufacturing process to observe systems response. Thus, critical conditions can be predicted before a real ŕight and landing.
Traditionally, landing gear characteristic observes with test apparatuses. This way takes a long time andmore cost. However, landing gear
dynamics which is modelled in model based environment such as Matlab/Simulink is cheaper and saves time. The paper has presented a
perspective for shock absorber landing gear systems integrated to aircraft dynamics performance criteria. The proposedmethodology
relies on determining an analytical formulation of shock absorber system’s equation of motion, modelling this formulation onmodel based
environment (Matlab/Simulink) and integrating it with accurate aircraft nonlinear dynamic model to observe the performance of landing
gear in different touchdown or impact velocities. Air spring force, hydraulic force, tire force, friction force and stroke position are the most
important outputs of system to examine the results. The behavior of the system under different initial air pressure and impact velocities
are investigated and determined with results for suitable landing gear performance. The relationship between tire and ground creates a
friction force based on dynamic friction coefőcient depending on aircraft dynamics. The quality of the result obtained clearly indicates that
the approximation of founding optimum impact velocity and initial air pressure are suitable to aircraft and landing gear design limits.
In this paper, the performance of the designed landing gear under different impact velocities and different design parameters has been
investigated. In studies on landing gear design and optimization, the effect of changes in parameters such as air pressure and impact
velocities on the system can be examined and system outputs can be compared with reference to this article. Therefore, this study will
contribute to the developing and designing process of a landing gear for a new aircraft with decreasing time and economical aspects in the
future.
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