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A GRAPHICAL TOOL FOR EXTREME VALUE
COPULA SELECTION BASED ON THE PICKANDS

DEPENDENCE FUNCTION

Selim Orhun Susam*
Department of Econometric,

Munzur University,
Tunceli, Turkey

Abstract: We present a graphical tool that was primarily proposed by Michiels et al. [18] and later modified
by Durante et al. [4]. We also improve this method to select the better fit of the given data among some
extreme value copulas based on the Pickands dependence function. We conduct a Monte Carlo simulation
study to investigate its performance. Also, the graphical method is illustrated by a real data example.

Key words : Copula, Pickands function, Extreme value copula.

1. Introduction
A copula is a joint distribution of the random variables U and V , each of which is marginally

uniformly distributed as U(0,1). Sklar’s [20] theorem states that for any bivariate random variables
X,Y with a cumulative distribution function (CDF)

H(x, y) = P (X ≤ x,Y ≤ y)

and the marginal CDF F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) then there exist a copula such as:

H(x, y) =C(F (x),G(y)) =C(u, v),

where u= F (x) and v= g(y). From the modelling perspective, Sklar’s Theorem allows us to sepa-
rate the modelling of the marginal distributions F (x),G(y) from the dependence structure, which
is expressed in C.
One of the most important fields of statistics is the extreme value (EV) theory. The estimation of

the events outside the range of data should be estimated by the EV distributions such as the daily
maximum air temperature, and annual maximum sea levels. The EV distribution is the limiting
distribution for the minimum or the maximum of random observations. Pickands [19] states that
the pair (X,Y ) has an EV dependence if and only if its copula C can be expressed for all u, v ∈ (0,1)

C(u, v) = exp
(
log(uv)A(

log(v)

log(uv)
)
)
,

where A(.) is the Pickands dependence function defined on [0,1]→ [1/2,1]. The Pickand’s depen-
dence function has some properties as follows:

� A(0) =A(1) = 1.
� A is the convex function.
� max(1− t, t)≤A(t)≤ 1 for all t∈ [0,1].

*Corresponding author. E-mail address:orhunsusam@munzur.edu.tr
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The non-parametric estimation of the Pickands dependence is an important issue when dealing
with extreme events. Let {Xi, Yi}ni=1 be a n random observation from the random variablesX and Y
with the joint distribution function H(x, y), copula C(u, v) and the marginal distribution functions
F (x) and G(y). Also, let Ui = F (xi) and Vi =G(yi) then put Si =− log(Ui) and Ti =− log(Vi). For
every t∈ [0,1]

ξi(t) =min(
Si

1− t
,
Ti

t
).

Pickands [19] introduced the non-parametric Pickands dependence function estimator as follows:

ÂP =
( 1

n

n∑
i=1

ξi(t)
)−1

.

This estimator does not satisfy the conditions of the Pickands dependence function A(.). Capéraá
et al. [3] proposed an estimator called the CFG as follows:

ÂCFG = exp
(
− γ− 1

n

n∑
i=1

ξi(t)
)−1

,

where γ is Euler’s constant that is γ = −∫ inf

0
log(x) exp(x)dx. In practice, marginals are rarely

known. Thus, F and G should be estimated by their empirical counterparts F̂n and Ĝn (Genest
et al. [9]). In this paper, we use the corrected estimator ÂCFG that is studied in Gudendorf et al.
[10].
In the past few years, a certain number of papers have emerged which use Bernstein polynomials

for the modelling of the extremal dependence, i.e. (Marcon et al. [16]; Guillotte et al. [11]; Marcon
et al. [17]), to name a few. Also, Ahmadabadi et al. [1] investigated a new nonparametric approach
using the Bernstein copula approximation. They used the Kernel regression method in order to
derive an intrinsic estimator satisfying all the properties of the Pickands dependence function. See
(Vettori et al. [21]) for a review.
The selection of EV copulas is an important issue when dealing with extreme situations. For this

reason, many authors developed a tool for EV copulas selection. Michiels et al. [18] introduced a
graphical tool for copula selection, based on the principal coordinate analysis. The main idea of this
paper is that calculating the distance between the empirical copula and the parametric families of
copulas then the calculated distances are visualized in 2D space via principal coordinate analysis.
Also, Durante et al. [4] proposed the graphical tool in order to detect which families of copulas are
closer to the empirical copula in tail dependence behavior.
In this study, we present a graphical tool that was firstly proposed by Michiels et al. [18] and

later modified by Durante et al. [4]. We also improve this method to select the better fit of the
given data among some extreme value copulas based on the Pickands dependence function. The
EV copulas exhibit a similar upper tail dependence structure in terms of the tail concentration
function. Thus, the tail concentration function proposed in Durante et al. [4] may fail to detect
the tail dependence structure for the extreme value copulas for the same dependence level. In
Figure 1, tail concentration functions of five EV copulas with the same Kendall’s tau (τ = 0.5)
are presented. From this figure, it is hard to distinguish tail concentration function visually for
the same dependence level among all EV copulas. For this reason, we prefer using the Pickands
function in order to select the best suited extremely distributed random variables in the graphical
method proposed in Durante et al. [4]. The extreme value copula is characterized by the Pickands
dependence function; therefore, it can be useful in determining the best-fitted model for the bivari-
ate extreme events. Although the test statistic proposed by Genest et al. [8] are consistent and
effective tools for distinguishing between the symmetric and asymmetric extreme value copulas,
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the processing time is drawn out when dealing with big data because the test procedure involves
the bootstrap method for estimating the p-values of the test statistic. For all these reasons, the
graphical method based on the Pickands function can be used for determining the best-fitted EV
copula for underlying data.
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Figure 1. Tail concentration function for EV copulas with τ = 0.5

The remainder of the study is organized as follows. In section 2, some EV copulas with Pickands
dependence functions are introduced. In section 3, a graphical method to select EV copulas is
presented. Some advantages of the proposed methods are discussed. Also, we performed a graphical
method to show how accurately it works for a simulated data set from the EV copulas. In section
4, we apply the proposed method to the Danube dataset. Finally, the conclusion is given in the
last section.

2. Some parametric extreme value copulas
Constructing a Pickands dependence function is one of the popular methods to obtain an EV

copula. In this section, five EV copulas are introduced. Logistic (L) or Gumbel-Hougaard copula
dating back to Gumbel [12] and Hougaard [13] can be considered as one of the oldest bivariate
extreme value models. The logistic copula is the only copula that is at the same time as the extreme
value and Archimedean copula. The Pickands dependence function of the Logistic copula with the
dependence parameter θ given by:

AL(t) = (tθ +(1− t)θ)
1
θ .

The bivariate Asymmetric Logistic (AL) copulas Pickands dependence function with the depen-
dence parameter 1≤ θ <∞ and asymmetry parameters α, β is given by

AAL(t) = (1−α)(1− t)+ (1−β)t+
(
(αt)θ +(β(1− t))θ

) 1
θ ,

where 0≤ α, β ≤ 1. the Asymmetric Logistic copula adds further exibility to the Logistic copula.
Note that by taking α = β = 1, we can obtain the Logistic model, and by allowing α = β, the
Asymmetric Logistic copula is symmetric. The complete dependence is obtained. The complete
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dependence is obtained when α= β = 1 and θ→ 0. And, also the independence is obtained when
θ= 1 and α= 0 or β = 0.
The bivariate Pickands function of the Negative Logistic (NL) model dating back to Galambos

[7] is given by

ANL(t) = 1− (t−θ +(1− t)−θ)−
1
θ ,

where θ ∈ [0,∞). Independence is obtained as θ = 0 and complete dependence is obtained when
θ→∞.

The bivariate Asymmetric Negative Logistic copula dating back to Joe [15] is an extension of
the Negative Logistic copula. The Joe copula has two parameters α and β which allow the model
to be asymmetric. Pickands dependence function of Asymmetric Negative Logistic copula is given
by

AANL(t) = 1− ((αt)−θ +(β(1− t))−θ)−
1
θ ,

where 0≤ α, β ≤ 1 and θ ∈ (0,∞). Note that if α= β = 1, we obatain the Negative Logistic copula.
If α= β, then the Asymmetric Negative Logistic copula is symmetric. Independence is obtained as
α= β = 0 or θ→ 0 and complete dependence is obtained when α= β = 1 and θ→∞.

The Pickands dependence function of the bivariate Húsler-Reiss copula with parameter θ > 0 is

AHR(t) = (1− t)φ(Z1−t)+ tφ(Zt),

where φ(.) is the standard normal distribution function and Zt =
1
θ
+ θ

2
log( t

1−t
). Independence is

obtained as θ→ 0 and complete dependence is obtained when θ→∞. For more details, see Húsler
[14].
For the basics of the multivariate extreme value distributions and their Pickands dependence

function see Dutfoy et al. [5] and Breachmann [2].

3. Graphical tool to select extreme value copula
In this section, we present a graphical tool that can help in the selection of the appropriate

EV copula for underlying data set. Let (Xi, Yi)
n
i=1 be a random sample from the EV copulas and

(Ui, Vi)
n
i=1 be associated with the pseudo-observations. Consider a set of m EV copula’s Pickands

dependence function A1(.), . . . ,Am(.) which belong to a different EV copula. A dissimilarity between
the empirical estimate of the Pickands function An(.) and the parametric Pickands function Ai(.)
for i= 1, . . . ,m can be defined by

d(An,Ai) =

∫ 1

0

|An(t)−Ai(t)|2dt, i= 1, . . . ,m. (3.1)

Similarly, the dissimilarity between the i-th and the j-th Pickands function is computed as

d(Ai,Aj) =

∫ 1

0

|Ai(t)−Aj(t)|2dt, 1< i �= j <m. (3.2)

Let us give the procedure of graphical tool for selection of appropriate extreme value copula for
the given data set. The procedure can be provided by following:

� For i = 1, . . . ,m estimate dependence parameter(s) of a Pickands dependence function Ai(.)
from the family of the EV copula.

� For i= 1, . . . ,m compute the dissimilarity between Ai(.) and the corrected empirical estimate
Δ(emp,i) = d(ÂCFG,Ai) by using Eq. (3.1).

� For the m EV copulas Pickands function A1, . . . ,Am compute mutual dissimilarities between
Δ(i,j) = d(Ai,Aj) by using Eq. (3.2).
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� Symmetric square matrix of the dimension m+1, D= σ(i,j) can be defined as the following:

σ(1,j) =Δ(emp,j+1), j = 2, . . . ,m+1,
σ(i,j) =Δ(i−1,j−1), i, j = 2, . . . ,m+1, i < j,
σ(i,i) = 0, i= 1, . . . ,m+1.

� Using the dissimilarity matrix D, a non-metric multidimensional scaling (NMDS) technique
can be performed.
Dissimilarity matrix D contains L2− type distances which contain the information about the

relation among the An(.) (empirical Pickands function), A1(.), . . . ,Am(.). In order to obtain a
two-dimensional representation through the ranking of distances between An and A1, . . . ,Am, a
a non-metric multidimensional scaling (MDS) technique can be performed on D. Finally, the m
points pi = (xi, yi) corresponding to Pickands function Ai and pemp = (xemp, yemp) corresponding to
the empirical Pickands dependence function estimation An can be visualized in a two dimensional
graph.
For Figures 1-5, we apply the NMDS method based on the Pickands function for each generated

data sets from EV copulas. The procedure provides a graphical representation of the empirical
Pickands function and the five fitted EV copulas (L: Logistic, AL: Asymmetric logistic, NL: Neg-
ative logistic, ANL: Asymmetric negative logistic, and HR: Husler-Reiss) in two dimensions for a
stress a value lower than 100th of a percent of 0.05. As can be seen from Figures 1-5, the charts
are often useful to determine the true data generating process except for asymmetric EV copulas.
Now, in order to assess the performance of graphical method for EV copulas, we conduct simu-

lation study. Let the five points pi = (xi, yi), i= 1, . . . ,5 be corresponding to Pickands dependence
function Ai(.) of five EV copulas and pemp = (xemp, yemp) be corresponding to empirical estimation
of Pickands dependence function, which are obtained by NMDS method in a 2D graph. We may
define an Euclidean distances d2i from the points pi, i= 1, . . . ,5 to pemp given by following:

d2i = (xi;1 −xemp,1)
2 +(xi;2 −xemp,2)

2, i= 1, . . . ,5.

Thus, the point pi, corresponding to Pickands function Ai, with smallest distance d2i is the best
choice for given data among all possible five EV copulas. By repeating this process K times for the
randomly generated EV copula then we can measure the performance of the graphical method. Let
(Xi,k, Yi,k)

k=1,...,K
i=1,...,n beK Monte Carlo samples of size n from EV copula. Also, Pi,k = (xi,k, yi,k)

k=1,...,K
i=1,...,5

and Pemp,k = (xemp,k, yemp,k)
k=1,...,K be the points obtained by NMDS method in a 2D graph. The

simulation procedure goes as follows. We can define Euclidean distances in 2D space for K Monte
Carlo samples from EV copula as following:

d2i,k = (xi,k;1 −xemp,k;1)
2 +(xi,k;2 −xemp,k;2)

2, i= 1, . . . ,5, k= 1, . . . ,K.

We can calculate the ranks of d2i,k associated to index i for all K Monte Carlo samples given by
ri,k. Hence, the smallest rank of ri,k, k = 1, . . .K indicates that the Pickands dependence function
Ai(.) is as close as to empirical Pickands dependence function An(.) than other Pickands dependence
function for the Monte Carlo samples of k= 1, . . . ,K in 2D graph. For the overall performance, we
define the mean of ranks ri,k as ri =

∑K

k=1 ri,k/K, i= 1, . . . ,5 for all EV copulas.
Let us consider the bivariate random data from the EV copulas. We simulate the bivariate 1000

Monte sample of sizes 250 and 500 from the Logistic, Asymmetric logistic, Negative logistic, Asym-
metric negative logistic, and Húsler-Reiss EV copula models by using the following combinations:
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Table 1. Mean of the ranks for different EV copulas with n= 250

True Copula rL rAL rHR rNL rANL

L(θ= 0.1) 1.4713 2.9713 1.7459 3.8504 4.9610

L(θ= 0.9) 2.4090 3.4545 2.8363 2.5727 3.7272

AL(θ= 0.1, α= 0.2, β = 0.8) 2.19375 4.5687 2.1375 1.6750 4.4250

AL(θ= 0.1, α= 0.8, β = 0.2) 2.2083 4.5416 2.5000 1.5833 4.1666

AL(θ= 0.1, α= 0.5, β = 0.5) 2.870 2.118 4.538 3.223 2.251

AL(θ= 0.9, α= 0.2, β = 0.8) 2.73 2.99 2.92 2.98 3.38

AL(θ= 0.9, α= 0.8, β = 0.2) 2.9629 3.0740 2.6913 2.9135 3.3580
AL(θ= 0.9, α= 0.5, β = 0.5) 2.4375 2.3125 3.1250 3.1875 3.9375

NL(θ= 10) 3.8619 2.9079 2.0083 1.2887 4.9330

NL(θ= 1) 2.4814 4.0370 2.2592 1.9629 4.2592

ANL(θ= 1, α= 0.2, β = 0.8) 2.2777 3.5222 2.6222 2.3888 4.1888

ANL(θ= 1, α= 0.8, β = 0.2) 2.42 3.52 2.46 2.30 4.30

ANL(θ= 1, α= 0.5, β = 0.5) 1.8401 3.3848 3.5555 2.4986 3.7208

ANL(θ= 10, α= 0.2, β = 0.8) 2.1645 4.6195 2.1413 1.7146 4.3598

ANL(θ= 10, α= 0.8, β = 0.2) 2.181 4.614 2.156 1.703 4.346
ANL(θ= 10, α= 0.5, β = 0.5) 2.341 2.909 4.529 3.175 2.046

HR(θ= 0.1) 3.1612 3.2096 2.6935 2.7580 3.1774

HR(θ= 0.9) 2.5116 4.2558 2.1395 2.2558 3.8372

1. Logistic copula with dependence parameters θ = 0.1 (Strong dependence), θ = 0.9 (Mild
dependence)
2. Asymmetric logistic copula

(a) θ= 0.1, α= 0.2, β = 0.8 (Strong dependence and asymmetric Pickands function with α<
β)

(b) θ= 0.1, α= 0.8, β = 0.2 (Strong dependence and asymmetric Pickands function with α>
β)

(c) θ= 0.1, α= 0.5, β = 0.5 (Strong dependence and asymmetric Pickands function with α=
β)

(d) θ= 0.9, α= 0.2, β = 0.8 (Mild dependence and asymmetric Pickands function with α< β)
(e) θ= 0.9, α= 0.8, β = 0.2 (Mild dependence and asymmetric Pickands function with α> β)
(f) θ= 0.9, α= 0.5, β = 0.5 (Mild dependence and asymmetric Pickands function with α= β)

3. Negative logistic copula with the dependence parameters θ = 10 (Strong dependence), θ = 1
(Mild dependence)
4. Asymmetric negative logistic copula

(a) θ= 10, α= 0.2, β = 0.8 (Strong dependence and asymmetric Pickands function with α< β)
(b) θ = 10, α= 0.8, β = 0.2 (Strong dependence and asymmetric Pickands function with α >

β)
(c) θ= 10, α= 0.5, β = 0.5 (Strong dependence and asymmetric Pickands function with α= β)
(d) θ= 1, α= 0.2, β = 0.8 (Mild dependence and asymmetric Pickands function with α< β)
(e) θ= 1, α= 0.8, β = 0.2 (Mild dependence and asymmetric Pickands function with α> β)
(f) θ= 1, α= 0.5, β = 0.5 (Mild dependence and asymmetric Pickands function with α> β)
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Table 2. Mean of the ranks for different EV copulas with n= 500

True Copula rL rAL rHR rNL rANL

L(θ= 0.1) 1.360 2.784 1.973 3.934 4.949

L(θ= 0.9) 2.0458 4.0917 2.8990 2.2385 3.7247

AL(θ= 0.1, α= 0.2, β = 0.8) 2.2248 4.5574 2.2129 1.5741 4.4306

AL(θ= 0.1, α= 0.8, β = 0.2) 2.2299 4.5328 2.1934 1.5839 4.4598

AL(θ= 0.1, α= 0.5, β = 0.5) 2.509 1.771 4.800 3.567 2.353

AL(θ= 0.9, α= 0.2, β = 0.8) 2.4117 3.3176 3.1529 2.7058 3.4117

AL(θ= 0.9, α= 0.8, β = 0.2) 2.5022 3.3452 3.1748 2.6905 3.2869

AL(θ= 0.9, α= 0.5, β = 0.5) 3.6692 2.4307 2.9000 2.6230 3.3769

NL(θ= 10) 3.9509 2.6666 2.3039 1.0980 4.9803

NL(θ= 1) 2.3617 4.0265 2.6648 1.8510 4.0957

ANL(θ= 1, α= 0.2, β = 0.8) 1.820 4.454 2.508 1.857 4.361

ANL(θ= 1, α= 0.8, β = 0.2) 1.9 4.3 2.4 1.7 4.7

ANL(θ= 1, α= 0.5, β = 0.5) 1.6170 3.4361 4.0212 2.6276 3.2978

ANL(θ= 10, α= 0.2, β = 0.8) 2.1415 4.5752 4.5752 1.6106 4.4247

ANL(θ= 10, α= 0.8, β = 0.2) 2.2788 4.5576 2.1538 1.5769 4.4326
ANL(θ= 10, α= 0.5, β = 0.5) 2.462 2.475 4.797 3.544 1.722

HR(θ= 0.1) 3.2142 3.0357 2.9285 3.0000 2.8214

HR(θ= 0.9) 2.6736 4.621 1.7568 1.9847 3.8736

5. Húsler-Reiss copula with dependence parameters θ= 0.9 (Strong dependence), θ= 0.1 (Mild
dependence)
Tables 1-2 represent rL, rAL, rHR, rNL and rANL which are obtained from 1000 Monte Carlo

samples with 250 and 500 sizes, respectively. From these tables, if the True EV copula possesses
to symmetric dependence structure, graphical method performs well. As an example, when the
data is generated from Logistic copula with θ = 0.1 and n= 250, smallest value of ri, i= 1, . . . ,5
is rL = 1.4713 among five EV copulas. This means that the points which correspond to Pickands
dependence function of Logistic copula (AL(.)) in 2D graph is the closest to points correspond
to An in 2D graph. Also, we can conclude from the Table 1-2, if the true EV copula possesses
to asymmetric dependence structure, the graphical method does not perform well except for EV
copula with equal asymmetry parameters. Also, mean of the ranks is decreased when the sample
of size is increased.
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(b) Logistic Copula with θ= 0.9
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(c) Husler-Reiss Copula with θ= 0.1
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(d) Husler-Reiss Copula with θ= 0.9
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(e) Negative logistic Copula with θ= 1
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(f) Negative logistic Copula with θ= 10

Figure 2. Graphical representation based on the two dimensional NMDS with data generated by Logistic, Husler-
Reiss and Negative logistic copula
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(a) Asymmetric logistic Copula with
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(b) Asymmetric logistic Copula with
θ= 0.9, α= 0.2, β = 0.8

−0.0015 −0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015

−
4

e
−

0
5

−
2

e
−

0
5

0
e

+
0

0
2

e
−

0
5

4
e

−
0

5

stress=2.413465e−14

Dimension 1

D
im

e
n

si
o

n
 2

E

L

AL

HR

NL

ANL

(c) Asymmetric logistic Copula with
θ= 0.1, α= 0.8, β = 0.2
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(d) Asymmetric logistic Copula with
θ= 0.9, α= 0.8, β = 0.2
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(e) Asymmetric logistic Copula with
θ= 0.1, α= 0.5, β = 0.5
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(f) Asymmetric logistic Copula with
θ= 0.9, α= 0.5, β = 0.5

Figure 3. Graphical representation based on the two dimensional NMDS with the data generated by the asymmetric
logistic copula
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(a) Asymmetric negative logistic Cop-
ula with θ= 1, α= 0.2, β = 0.8
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(b) Asymmetric negative logistic Cop-
ula with θ= 10, α= 0.2, β = 0.8
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(c) Asymmetric negative logistic Cop-
ula with θ= 1, α= 0.8, β = 0.2
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(d) Asymmetric negative logistic Cop-
ula with θ= 10, α= 0.8, β = 0.2
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(e) Asymmetric negative logistic Cop-
ula with θ= 1, α= 0.5, β = 0.5
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(f) Asymmetric negative logistic Cop-
ula with θ= 10, α= 0.5, β = 0.5

Figure 4. Graphical representation based on the two dimensional NMDS with the data generated by the asymmetric
negative logistic copula
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4. Real data example
To demonstrate the graphical method for the selection of the best-fitted EV copulas, in this

section, we fit the EV copulas to the Danube data set which is available in the R package copula.
According to this package, the Danube dataset contains ranks of base of observations from the
Global River Discharge project of the Oak Ridge National Laboratory Distributed Active Archive
Centre (ORNL DAAC), a NASA data centre. The measurements are the monthly average of rate
for two stations situated at Scharding (Austria) on the Inn River and Nagymaros (Hungary) on
the Danube.

Table 3. Estimation of dependence and asymmetry parameters for five EV copulas

EV Copula CvM α β θ

L 8.233616× 10−5 — — 0.4872

AL 0.000333 0.8582 0.9992 0.4445

NL 9.257569× 10−5 — — 1.3332

ANL 0.001962 0.9158 0.9995 1.0034

HR 0.000152 — — 1.7981

The scatter plot of the pseudo-observations of the Danube data set is displayed in Figure 5.
From Figure 5, symmetrical dependence structures are observed. Also, the Danube data set has a
heavy right tail dependence structure.
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Figure 5. Scatter plot of danube dataset
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Figure 6. Fiiting results for danube dataset

In Figure 6(a), the parametric and non-parametric estimation of the Pickands dependence func-
tions is displayed. From this figure, we can observe that the Logistic copula’s Pickands dependence
the function is much closer to the empirical Pickands dependence function for the Danube dataset.
Also Table 1 represents the CvM distances between An,AL, . . . ,AHR, and estimation of dependence
parameters for five EV copulas. On the other hand, Figure 6(b) displays the two-dimensional repre-
sentation of the EV copula test spaces with the Danube dataset based the on NMDS method. When
Figure 6(b) is examined; it can be concluded that the Logistic copulas are the most appropriate
EV copulas for the Danube data set.

5. Conclusions
In this study, we proposed a graphical method based on NMDS to select the best-fitted EV

copulas for underlying data. Also, we discussed some advantages of the proposed methods. If
practitioners are interested in modelling for extreme situations which consist of a big data size,
the graphical method can be useful to select the EV copulas. We performed the graphical method
to see how accurately it works for the simulated data set from EV copulas. From the simulation
study, when the dependence structure is symmetric, the procedure is useful to identify the true EV
copula which is data generated. On the other hand when the data has asymmetric dependence the
structure of the graphical procedure fails except for with the Asymmetric EV copula with equal
asymmetry parameters. This problem can be overcome by using the Bernstein polynomial based on
the Pickands dependence function estimator in the procedure of the graphical method. The main
advantage of Bernstein polynomials is their flexibility against data that has a complex structure.
So, Bernstein polynomials can take on an extremely wider range of shapes than simple estimators.
Also, to demonstrate the graphical method for the selection of the best-fitted EV copulas, we fitted
the EV copulas to the real data set. We have shown that the graphical procedure can lead to
acceptable results.
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İsmail Kınacı
Department of Actuarial Science,

Selcuk University,
42250, Konya, Turkey

Abstract: In this paper, a new lifetime distribution is introduced. Motivation is provided to obtain this dis-
tribution. The closed-form expressions of probability density and cumulative distribution functions are pro-
vided. Several distributional properties are obtained and the statistical inference are discussed on unknown
parameters. The most important novelty of this study is to bring a lifetime regression analysis with the
re-parameterized log-transform of the new distribution.
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1. Introduction
In the last two decades, many statistical distributions have been introduced. Most of them

are derived from various compounding methods. [8] introduced a Beta-normal distribution with
cumulative distribution function (cdf) R (G (x)) , where R is beta cdf, and G is normal cdf [15],
[16], and [17] have introduced new distributions by using Gumbel, Fréchet and exponential cdfs
for G in R (G (x)). All these distributions belong to Beta-G family. However, all these works don’t
give cdf in explicit form because of the structure of beta cdf.
In order to get an explicit cdf, [5] considers the Kumaraswamy cdf for R in [8]’s formula and they

obtained different distributions by changing cdf G. The distribution family in [5] is called ”Kw-G
family” [7] and [19] introduced new distributions by using Kw-G family.
[2] introduced a new family of distribution by getting inspired by [8]’s formula. They consider

cdf R (W (G (x))) , where R and G are any cdf of continuous random variables and W is a function
that satisfies certain conditions. It is noted that, If W (x) = x and R and G are assigned as beta
and normal cdfs, respectively, then the distribution in [8] is achieved.

In this paper, we introduce a new distribution, which is a member of [2] family. Some general
distributional and inferential properties of the introduced distribution are studied. Here, there are
two crucial discussions on statistical inference.
The first discussion is related to the confidence intervals (CIs) for unknown parameters. In

general, the CIs for unknown parameters are discussed through asymptotical normality of maximum
likelihood estimates (MLEs). Here, the CIs based on asymptotical normality of MLEs are denoted

*Corresponding author. E-mail address:kkarakaya@selcuk.edu.tr
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by AN CIs. However, the limits of AN CIs sometimes turn out to be outside of the parameter
space. It is an undesired outcome in practice. It should also be remembered that a large sample
is needed to good approximation to the normality of MLEs when the number of the parameter
is more than two. Furthermore, it is also needed a large sample to get true coverage probabilities
(CPs) of AN CIs. In Subsection 3.2, uncorrected likelihood ratio (ULR) type CIs for the unknown
parameters are discussed as an alternative to AN CIs. It is pointed out that the ULR type CIs
have wonderful properties: The limits of ULR type CIs are always within parameter space. In the
simulation given in Subsection 3.2, it is also observed that the CPs of ULR CIs are better than
the CPs of AN CIs.
The second discussion is focused on the lifetime regression issue in the survival data analysis: In

the lifetime regression analysis, a functional relationship between the dependent variable (lifetime
or log-lifetime) and covariates are studied. A common assumption that there is a linear relationship
between the location parameter and covariates in the models. These models can be used to deter-
mine the sign and magnitudes of covariates on the log-lifetimes through the location parameter. In
practice, the survival data obeys to distribution, which has various types of failure rate functions.
From this point of view, there is a demand for new lifetime distributions in the survival analysis.
In this study, a new lifetime distribution is introduced by using the [2]’s method. In order to

obtain a new distribution with explicit cdf, W,R and G are assigned by an identity function,
Unit-Lindley cdf and Weibull cdf, respectively. In Section 2, a new distribution is described with
motivation and exact moments are obtained. In addition, the properties of hazard function and
stochastic ordering are studied. An accepting rejecting algorithm is also provided to generate data
from the new distribution. In Section 3, the several point estimators and CIs of unknown parameters
are discussed through Monte Carlo simulation studies. In Section 4, a lifetime regression analysis
based on introduced distribution is studied, and an extensive simulation study is performed. A
practical real data set is given to illustrate the applicability of the new distribution in Section 5.

2. Unit-Lindley-Weibull distribution
In this section, we introduce a new distribution and discuss its distributional properties. Recently,

Unit-Lindley (UL) distribution is introduced by [14]. If T is UL random variable, the pdf and cdf
of T are given, respectively, by

r (t;θ) =

(
θ2

(1+ θ) (1− t)
3

)
exp

(
θt

t− 1

)
I(0,1) (t)

and

R (t;θ) = 1−
(
1− θt

(1+ θ) (t− 1)

)
exp

(
θt

t− 1

)
,

where θ > 0 is a parameter and IA (·) is an indicator function on A. Let us also consider a Weibull
random variable Y with pdf and cdf

g (y;α,β) =
β

α

( y
α

)β−1

exp

(
−
( y
α

)β)
IR+

(y) (2.1)

and

G (y;α,β) = 1− exp

(
−
( y
α

)β)
,

respectively. Let us assign W is an identity function and consider UL cdf and Weibull cdf for R
and G in F (x) =R (W (G (x))), a valid cdf is obtained by

F (x;Ξ) = 1−

⎛
⎜⎜⎝1+

θ

(
1− exp

(
−
(x
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where Ξ = (α,β, θ) ∈ R
3
+ is the parameter vector, α is a scale, β and θ are shape parameters. A

distribution with cdf (2.2) is called unit-Lindley Weibull (ULW) and it is denoted by ULW(Ξ) .
Let X be the ULW(Ξ) random variable with cdf (2.2). Then, the pdf of X is given by

f (x;Ξ) =
βθ2xβ−1

αβ (1+ θ)
exp

{
−θ exp

((x
α

)β)
+ θ+2

(x
α

)β}
IR+

(x) . (2.3)

For some selected values of parameters, the pdf plots of ULW distribution are given in Figure 1. It
is concluded from Figure 1, the pdf of ULW distribution can be unimodal or decreasing. It is also
observed that the pdf can be skewed at right or left.
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θ
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θ
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Figure 1. Probability density function plots for ULW distribution

2.1. Hazard function
The hazard function (hf) of ULW(Ξ) distribution can be written by

h (x;Ξ) =
βxβ−1θ2

αβ exp

(
−
(x
α

)β)(
exp

(
−
(x
α

)β)
+ θ

)IR+
(x) .

For some selected values of parameters, the hf of ULW distribution is plotted in Figure 2. From
Figure 2, it is observed that the hf of ULW distribution has increasing or bathtub shapes. In the
following, we discuss these properties of hf. Let us consider the first-order derivative of hf

h′ (x;Ξ)=

βθ2xβ−2

(
2β
(x
α

)β
+β− 1

)
exp

(
−
(x
α

)β)
+ θ

(
β
(x
α

)β
+β− 1

)

αβ exp

(
−
(x
α

)β)(
exp

(
−
(x
α

)β)
+ θ

)2 .

It can be easily seen that h′ (x;Ξ)> 0 for β > 1 and hence hf is increasing. In addition, h′ (x;Ξ)< 0

for x < α
(

1−β
2β

)1/β
and h′ (x;Ξ) > 0 for x > α

(
1−β
β

)1/β
under the condition β < 1. According to

this discussion, it can be observed that hf decrease at first and increases as time progress for β < 1.
Furthermore, from Figure 2, it is observed that the hf exhibits bath-tube type when β < 1.
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Figure 2. Hazard function plots for ULW distribution

2.2. Motivation for the ULW distribution
The pdf of the ULW distribution given in Eq. (2.3) can be obtained in a different ways using

the method of [18]. Let Y be the Weibull random variable with pdf g (x;α,β) given in Eq. (2.1).
According to [18], the pdf of the weighted random variable Y w is defined by

fw (y) =
w (y;α,β, θ)

E (w (Y ;α,β, θ))
g (y;α,β) IR+

(y) . (2.4)

Let us consider w (y;α,β, θ) = exp

{
−θ exp

(( y
α

)β)
+ θ+3

( y
α

)β}
in Eq. (2.4) and we get

E (w (Y ;α,β, θ)) =
θ+1

θ2
.

Thus, the pdf of Y w is identical to the pdf of introduced ULW(Ξ) distribution with pdf (2.3).

2.3. Moments
In this subsection, exact moments of ULW(Ξ) distribution under a certain conditon. Let us

consider the result of [10] given by

∫ ∞

1

(log (x))
m
xv−1exp (−μx)dx=

∂m

∂vm
{
θ−vΓ(v, θ)

}
.

Under the condition r/β ∈Z
+, the rth moment of a random variable X having ULW(Ξ) is obtained

by

E (Xr) =

∫ ∞

0

xrf (x)dx

=

∫ ∞

0

xr θ
2βα−βxβ−1

1+ θ
exp

(
−θ exp

((x
α

)β)
+ θ+2

(x
α

)β)
dx

=
θ2αreθ

1+ θ

∫ ∞

1

(log (t))
r/β

t exp (−θt)dx
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=
θ2αreθ

1+ θ
× ∂m

∂vm
{
θ−vΓ(v, θ)

}∣∣∣∣
v=2

, r ∈N+

=
αreθ

1+ θ
MeijerG([[1,1], []], [[2], [0,0]], θ),

where Γ(v, θ) is incomplete gamma function, m= r/β and MeijerG is the well-known Meijer G
function which is available in Maple software. Some numerical values of first four moments are
presented in Table 1.

Table 1. The first four moments of the ULW distribution

r β α θ E (Xr)
1 1 3 2 1.3613
2 2.8004
3 7.1059
4 20.6759
1 0.5 3 2 0.9334
2 2.2973
3 8.5639
4 41.3767

2.4. Stochastic ordering
For a positive continuous random variable, stochastic ordering and the other ordering are impor-

tant tools for judging the comparative behavior. The following theorem shows that the ULW
random variables can be ordered with respect to the likelihood ratio.

Theorem 1. Let X ∼ ULW (α,β, θ1) and Y ∼ ULW (α,β, θ2) . If θ1 > θ2 then X is smaller
than Y in the likelihood ratio order, i.e., the ratio function of the corresponding pdfs is decreasing
in x.

Corollary 1. It follows from [21] that X is also smaller than Y in the hazard ratio, mean
residual life and stochastic orders under the conditions given in Theorem 1.

2.5. Data generating algorithm
In this subsection, we give an algorithm to generate data from ULW(Ξ) distribution. Since

the inverse transformation method does not give an explicit formula, we propose an acceptance-
rejection (AR) sampling algorithm. In this algorithm, the Weibull distribution is chosen as a
proposal distribution. The AR algorithm is given as follows:
Algorithm 1.
A1. Generate data on random variable Y from Weibull distribution with pdf g given in Eq. (2.1)
A2. Generate U from standard uniform distribution (independent of Y ).
A3. If

U <
f (Y ;Ξ)

k× g (Y ;α,β)
,

then set X = Y (“accept”); otherwise go back to A1 (“reject”), where pdf f is given as in Eq. (2.3)
and

k=max
z∈R+

f (z;Ξ)

g (z;α,β)
.

The output of this algorithm suggest a random data on X from ULW(Ξ) distribution. It is noted
that Algorithm 1 is used for all simulations in the paper.
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3. Statistical inference on distribution parameters
In this section, we propose several estimators for estimating the unknown parameters of the

ULW(Ξ) distribution. We discuss the maximum likelihood, least-squares, weighted least squares,
Cramér-von Mises type, and Anderson-Darling type estimation methods. Furthermore, the two
types of CIs for the parameters are discussed. Simulation studies are also performed to observe the
performances of the methods discussed here.

3.1. Point estimation
Let X1,X2, . . . ,Xn be a random sample from the ULW(Ξ) distribution and X(1) <X(2) < · · ·<

X(n) denotes the corresponding order statistics. Furthermore, x(i) denotes the observed value of
X(i) for i= 1,2, . . . , n. Based on this sample, the log-likelihood function is given by

� (Ξ) = n log
(
βθ2
)−n log (α (1+ θ))+ (β− 1)

n∑
i=1

log
(xi

α

)

+
n∑

i=1

log

(
exp

(
−θ exp

((xi

α

)β)
+ θ+2

(xi

α

)β))
. (3.1)

Then, the MLEs of α,β and θ are given by

Ξ̂1 = argmax
Ξ

{� (Ξ)} , (3.2)

where Ξ= (α,β, θ) and Ξ̂1 =
(
α̂, β̂, θ̂

)
. Let us define the following functions which are used to

define the different type of estimators:

QLS (Ξ) =
n∑

i=1

(
F
(
x(i)

)− i

n+1

)2

,

QWLS (Ξ) =
n∑

i=1

(n+2)(n+1)2

i(n− i+1)

(
F
(
x(i)

)− i

n+1

)2

,

QCvM (Ξ) =
1

12n
+

n∑
i=1

(
F
(
x(i)

)−2i− 1

2n

)2

and

QAD (Ξ) =−n− 1

n

n∑
i=1

{
(2i− 1) log

(
F
(
x(i)

))}
+
1

n

n∑
i=1

log
{
1−F

(
x(i)

)}
,

where F (·) is cdf of ULW(Ξ) distribution given in Eq. (2.2). Then, the least squares estimator
(LSE), weighted least squares estimator (WLSE), Anderson Darling estimator (ADE) and the
Cramér-von Mises estimator (CvME) of Ξ are given, respectively, by

Ξ̂2 = argmin
Ξ

{QLS (Ξ)} , (3.3)

Ξ̂3 = argmin
Ξ

{QWLS (Ξ)} , (3.4)

Ξ̂4 = argmin
Ξ

{QAD (Ξ)} , (3.5)

Ξ̂5 = argmin
Ξ

{QCvM (Ξ)} . (3.6)

It is noted that these estimates are discussed before in [12], [13], and [23]. All maximization and
minimization problems can be solved by some numerical methods such as Nelder-Mead, BFGS, or
CG. These methods can be easily conducted by optim function in R.
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3.2. Interval estimation
In this subsection, the CIs are discussed for the parameters θ,β and α. In the statistical literature,

CIs are usually constructed by using a pivotal quantity based on MLEs of parameters. However,
an exact CIs can not be obtained since the MLEs are usually obtained by a numerical method to
optimize the likelihood. Consequently, asymptotic CIs based on the asymptotic normality of MLEs
are most popular in the all fields of statistics and it has widespread usage. It is well-known that
the AN of MLEs can be stated by

Ξ̂1
d→N3

(
Ξ,I−1 (Ξ)

)
,

where Ξ̂1 is MLE of Ξ given in Eq. (3.2) and I (Ξ) is Fisher information matrix. Using this result,
the 100 × (1−α)% AN CIs of parameters α,β and θ are constructed, respectively, by

α̂± z1−α
2
× se (α̂) ,

β̂± z1−α
2
× se

(
β̂
)
,

θ̂± z1−α
2
× se

(
θ̂
)
,

where za, is the ath quantile of standard normal distribution, se (α̂) , se
(
β̂
)

and se
(
θ̂
)

are the

roots of the diagonal member of I−1
(
Ξ̂1

)
which is a consistent estimate of I−1 (Ξ) and the se (·)

stands for standard error.
By the way, there is another method called ULR, which is not used in most of statistical software,

but it has interesting properties. AN and ULR CIs are asymptotically equivalent [9]. The ULR CIs
are transformation invariant. It is range preserving that means the CIs it produces will always be
inside of the parameter space. There is no need to compute/estimate the variance of the estimates,
unlike to AN. In addition, the ULR method doesn’t necessarily give symmetric intervals around
MLE.
Under usual regularity assumptions on the likelihood function, if the θ is true parameter, then

−2 log
(
�
(
θ, λ̃
)
− �
(
Ξ̂1

))
distributed χ2 with degrees of freedom 1, where λ = (α,β) are the

nuisance parameters, � is the log-likelihood function as in Eq. (3.1), Ξ̂1 is the joint MLEs of (θ,β,α)

given in Eq. (3.2), λ̃=
(
α̃, β̃
)
is the restricted MLEs of λ given a fixed value of θ. Using this fact,

100 × (1−α)% ULR CI limits (θL, θU) that satisfy

�
(
θ, λ̃
)
= �
(
Ξ̂1

)
− 1

2
χ2
(1) (1−α)︸ ︷︷ ︸

LR Bound

,

with θL < θ and θU > θ, where χ2
(1) (a) is the ath quantile of the χ2 distribution with 1 degrees

of freedom. The 100 × (1−α)% ULR CIs can be produced in the same manner for the other
parameters α and β.

3.3. Simulation study for point estimates
In the simulation study, 5000 trials are used to estimates the bias and mean squared errors

(MSEs) of the MLEs, LSEs, WLSEs, ADEs and CVMEs estimates. Different sample sizes are
considered in the study. Two parameter settings are considered. The results are given in the Tables
2-4.
The simulation study is performed based on the following algorithm (for one cycle):
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Algorithm 2.
A1. Given true parameters, generate the data from ULW(Ξ) distribution by using AR sampling

given in Algorithm 1.
A2. True parameters are used as initial values in optimization.
A3. The numerical method BFGS is used for the optimization problem given in Eq.’s (3.2),

(3.3)-(3.6).
A4. If there is no solution or there is an estimate out of the parameter space, go to A1.
From the Tables 2-4, it is observed that the bias and MSEs of the all estimates decrease to zero

as expected. The MLEs are best estimates in terms of MSEs. In general, the CVMEs have smaller
bias than the others.

3.4. Simulation study for CIs
In the simulation study, 5000 trials are used to predict the CPs of the AN and ULR CIs. The

nominal level is fixed at 0.95. In order to get CPs of ULR CIs, there is no need to obtain the CIs
limits. It is possible that the CPs of ULR CIs can be simulated by a likelihood ratio test on the
true parameter. The simulated CPs of these intervals are given in Table 5. Let us discuss the case
Ξ = (0.5,1,1) . From Table 5, it is observed that the CPs of ULR reach to desired level when the
sample of size greater than 100 for all parameters. However, the CPs of AN can not reach the
desired level even if a large sample of size is available. In the case of Ξ= (2.5,1,1) , CIs of AN CIs
reach to nominal level when the sample of size greater than 300 for parameters α and β. However,
more than 800 sample of size is needed to achive nominal level for parameter θ. The CPs of ULR
of CIs reach to nominal level for the all parameters when the sample of size greater than 200.
Under discussion given here, it is indicated that ULR CIs powerful tool to construct the CIs for

the ULW parameters.
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İSTATİSTİK: Journal of the Turkish Statistical Association 14(2), pp. 51–73, � 2022 İstatistik 59

Table 2. Average bias and MSEs of the estimates for the true parameters Ξ = (0.5,1,1)

Bias MSE
n θ α β θ α β
MLEs 100 -0.1635 -0.3226 -0.1792 0.0419 0.1601 0.0520

250 -0.1585 -0.3016 -0.1683 0.0384 0.1412 0.0443
500 -0.1455 -0.2711 -0.1485 0.0319 0.1141 0.0349
750 -0.1329 -0.2436 -0.1351 0.0263 0.0911 0.0279
1000 -0.1146 -0.2080 -0.1149 0.0211 0.0711 0.0216
1250 -0.1106 -0.1987 -0.1098 0.0195 0.0649 0.0197
1500 -0.0988 -0.1746 -0.0975 0.0156 0.0504 0.0154
2000 -0.0917 -0.1617 -0.0886 0.0135 0.0433 0.0130

LSEs 100 -0.0776 -0.2175 -0.1277 0.0966 0.2323 0.0741
250 -0.0834 -0.2039 -0.1151 0.0682 0.1927 0.0611
500 -0.0474 -0.1452 -0.0771 0.0755 0.1645 0.0511
750 -0.0630 -0.1528 -0.0830 0.0491 0.1340 0.0421
1000 -0.0484 -0.1277 -0.0686 0.0471 0.1237 0.0390
1250 -0.0413 -0.1139 -0.0608 0.0465 0.1158 0.0369
1500 -0.0372 -0.1009 -0.0541 0.0406 0.1028 0.0329
2000 -0.0469 -0.1151 -0.0609 0.0382 0.0958 0.0304

WLSEs 100 -0.1061 -0.2618 -0.1515 0.0935 0.2098 0.0703
250 -0.0927 -0.2271 -0.1304 0.1047 0.1828 0.0563
500 -0.0892 -0.1994 -0.1092 0.0545 0.1403 0.0440
750 -0.0981 -0.2003 -0.1115 0.0388 0.1154 0.0362
1000 -0.0836 -0.1732 -0.0960 0.0354 0.1007 0.0311
1250 -0.0599 -0.1377 -0.0757 0.0411 0.0992 0.0312
1500 -0.0751 -0.1503 -0.0839 0.028 0.0802 0.0252
2000 -0.0798 -0.1561 -0.0855 0.0251 0.0747 0.0230

ADEs 100 -0.1330 -0.3050 -0.1767 0.0998 0.2137 0.0684
250 -0.1305 -0.2735 -0.1553 0.0595 0.1751 0.0557
500 -0.0992 -0.2137 -0.1175 0.0527 0.1391 0.0432
750 -0.1107 -0.2189 -0.1221 0.0368 0.1152 0.0358
1000 -0.0973 -0.1923 -0.1069 0.0315 0.0991 0.0305
1250 -0.0819 -0.1668 -0.0924 0.0324 0.0945 0.0294
1500 -0.0806 -0.1581 -0.0883 0.0269 0.0793 0.0247
2000 -0.0852 -0.1639 -0.0899 0.0242 0.0743 0.0229

CvMEs 100 -0.0611 -0.1960 -0.1056 0.1125 0.2445 0.0774
250 -0.0760 -0.1940 -0.1053 0.0731 0.1984 0.0627
500 -0.0453 -0.1412 -0.0726 0.0746 0.1654 0.0514
750 -0.0580 -0.1462 -0.0778 0.0516 0.1376 0.0433
1000 -0.0444 -0.1228 -0.0646 0.0493 0.1269 0.0401
1250 -0.0385 -0.1101 -0.0577 0.0477 0.1175 0.0375
1500 -0.0343 -0.0972 -0.0512 0.0420 0.1049 0.0336
2000 -0.0443 -0.1119 -0.0584 0.0396 0.0977 0.0310
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Table 3. Average bias and MSEs of the estimates for the true parameters Ξ = (2.5,1,1)

Bias MSE
n θ α β θ α β
MLEs 100 -0.9446 -0.3368 -0.1242 1.2437 0.1612 0.0389

250 -0.7282 -0.2465 -0.0928 0.7688 0.0920 0.0207
500 -0.5585 -0.1843 -0.0640 0.4591 0.0504 0.0090
750 -0.4759 -0.1525 -0.0524 0.3332 0.0343 0.0055
1000 -0.4052 -0.1280 -0.0429 0.2417 0.0243 0.0039
1250 -0.3778 -0.1186 -0.0395 0.2176 0.0217 0.0033
1500 -0.3417 -0.1068 -0.036 0.1811 0.0177 0.0028
2000 -0.2916 -0.0899 -0.0292 0.1321 0.0126 0.0018

LSEs 100 -1.1644 -0.4158 -0.2291 1.9877 0.2767 0.0802
250 -0.5859 -0.2103 -0.1212 1.4339 0.1713 0.0368
500 -0.5411 -0.1856 -0.0870 0.8559 0.0970 0.0190
750 -0.3531 -0.1216 -0.0593 0.7588 0.0770 0.0119
1000 -0.3449 -0.1161 -0.0516 0.5621 0.0570 0.0091
1250 -0.3094 -0.1019 -0.0458 0.489 0.0491 0.0071
1500 -0.2766 -0.0903 -0.0406 0.4242 0.0423 0.0058
2000 -0.2576 -0.0823 -0.0330 0.3002 0.0301 0.0038

WLSEs 100 -1.1623 -0.4183 -0.2125 1.8529 0.2536 0.0736
250 -0.7235 -0.2451 -0.1111 0.9373 0.1120 0.0266
500 -0.5608 -0.1853 -0.0743 0.5703 0.0630 0.0121
750 -0.4401 -0.1420 -0.0547 0.4080 0.0423 0.0072
1000 -0.4043 -0.1289 -0.048 0.3226 0.0329 0.0056
1250 -0.3526 -0.1112 -0.0415 0.2766 0.0277 0.0043
1500 -0.3257 -0.1023 -0.0381 0.2347 0.0234 0.0036
2000 -0.2845 -0.0881 -0.0307 0.1723 0.0169 0.0023

ADEs 100 -1.1124 -0.3982 -0.1929 1.7112 0.2314 0.0642
250 -0.7076 -0.2397 -0.1063 0.9011 0.108 0.0250
500 -0.5514 -0.1823 -0.0721 0.5528 0.0613 0.0117
750 -0.4369 -0.1410 -0.0538 0.4007 0.0417 0.0070
1000 -0.4001 -0.1277 -0.0473 0.3188 0.0326 0.0056
1250 -0.3492 -0.1101 -0.0409 0.2711 0.0273 0.0042
1500 -0.3202 -0.1006 -0.0374 0.2302 0.0230 0.0036
2000 -0.2802 -0.0868 -0.0301 0.1698 0.0167 0.0023

CvMEs 100 -1.085 -0.3904 -0.2027 1.8796 0.2588 0.0703
250 -0.5378 -0.1977 -0.109 1.4186 0.1654 0.0338
500 -0.5173 -0.1795 -0.0809 0.8367 0.0941 0.0178
750 -0.3367 -0.1178 -0.0554 0.7528 0.0757 0.0113
1000 -0.3328 -0.1133 -0.0488 0.5568 0.0562 0.0088
1250 -0.2999 -0.0998 -0.0436 0.485 0.0485 0.0069
1500 -0.2686 -0.0885 -0.0387 0.4212 0.0419 0.0056
2000 -0.2517 -0.0810 -0.0317 0.2978 0.0298 0.0037
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Table 4. Average bias and MSEs of the estimates for the true parameters Ξ = (0.9,1,0.7)

Bias MSE
θ α β θ α β

MLEs 100 -0.2621 -0.3343 -0.0937 0.1162 0.1918 0.0203
250 -0.2273 -0.2897 -0.0830 0.0949 0.1552 0.0155
500 -0.1898 -0.2437 -0.0718 0.0748 0.1237 0.0122
750 -0.1538 -0.1953 -0.0570 0.0542 0.0882 0.0084

1000 -0.1395 -0.1767 -0.0509 0.0478 0.0774 0.0072
1250 -0.1239 -0.1566 -0.0449 0.0405 0.0650 0.0059
1500 -0.1104 -0.1393 -0.0396 0.0339 0.0541 0.0048
2000 -0.0919 -0.1161 -0.0331 0.0270 0.0428 0.0037

LSEs 100 0.2081 0.1441 0.0232 0.3023 0.0469 0.0075
250 0.1805 0.1407 0.0307 0.3155 0.0373 0.0047
500 0.3649 0.1114 0.0169 0.6810 0.0269 0.0039
750 0.2607 0.1226 0.0237 0.4100 0.0287 0.0039

1000 0.2486 0.1264 0.0287 0.4820 0.0307 0.0048
1250 0.4196 0.0962 0.0125 0.7386 0.0179 0.0030
1500 0.4022 0.0967 0.0133 0.6763 0.0175 0.0030
2000 0.3701 0.0963 0.0134 0.5429 0.0159 0.0024

WLSEs 100 0.3516 0.1031 0.0115 0.9506 0.0266 0.0062
250 0.3277 0.1029 0.0160 0.6265 0.0201 0.0032
500 0.3996 0.0880 0.0075 0.5159 0.0153 0.0024
750 0.3087 0.0993 0.0140 0.3184 0.0167 0.0023

1000 0.3954 0.0865 0.0083 0.4673 0.0131 0.0019
1250 0.4015 0.0847 0.0075 0.4527 0.0122 0.0017
1500 0.3509 0.0910 0.0114 0.3566 0.0138 0.0019
2000 0.3584 0.0869 0.0091 0.3458 0.0114 0.0013

ADEs 100 0.4130 0.0916 0.0039 0.5834 0.0228 0.0055
250 0.3729 0.0943 0.0105 0.5367 0.0174 0.0030
500 0.4344 0.0820 0.0037 0.5408 0.0137 0.0022
750 0.3527 0.0917 0.0094 0.3573 0.0145 0.0020

1000 0.3881 0.0872 0.0083 0.4336 0.0136 0.0020
1250 0.4220 0.0814 0.0052 0.4631 0.0115 0.0017
1500 0.4142 0.0809 0.0054 0.4339 0.0110 0.0015
2000 0.3807 0.0833 0.0068 0.3633 0.0106 0.0013

CVMEs 100 0.1796 0.1481 0.0387 0.3267 0.0494 0.0089
250 0.1612 0.1442 0.0380 0.3270 0.0392 0.0054
500 0.3530 0.1139 0.0210 0.6981 0.0281 0.0042
750 0.2458 0.1253 0.0271 0.4097 0.0298 0.0042

1000 0.2445 0.1276 0.0306 0.4962 0.0312 0.0049
1250 0.4130 0.0978 0.0145 0.7506 0.0184 0.0031
1500 0.3955 0.0982 0.0151 0.6842 0.0181 0.0031
2000 0.3627 0.0977 0.0148 0.5434 0.0163 0.0025
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Table 5. The CPs of AN and ULR CIs

AN ULR
Ξ n α β θ α β θ
(0.5,1,1) 100 0.8772 0.8136 0.8790 0.9566 0.9564 0.9558

200 0.8254 0.8310 0.8830 0.9470 0.9476 0.9480
300 0.8130 0.8210 0.8750 0.9380 0.9390 0.9382
400 0.8268 0.8372 0.8862 0.9408 0.9402 0.9406
500 0.8370 0.8462 0.8812 0.9434 0.9412 0.9456
600 0.8420 0.8500 0.8834 0.9400 0.9402 0.9394
700 0.8548 0.8612 0.8806 0.9412 0.9422 0.9424
800 0.8450 0.8526 0.8746 0.9382 0.9362 0.9364
900 0.8604 0.8664 0.8800 0.9414 0.9426 0.9430
1000 0.8672 0.8712 0.8830 0.9352 0.9358 0.9344

(2.5,1,1) 100 0.9176 0.9164 0.8858 0.9602 0.9534 0.9630
200 0.9458 0.9386 0.9156 0.9500 0.9496 0.9500
300 0.9520 0.9450 0.9294 0.9516 0.9492 0.9492
400 0.9584 0.9548 0.9342 0.9508 0.9536 0.9528
500 0.9546 0.9552 0.9328 0.9520 0.9552 0.9506
600 0.9604 0.9562 0.9410 0.9562 0.9544 0.9562
700 0.9586 0.9602 0.9378 0.9552 0.9540 0.9538
800 0.9626 0.9542 0.9444 0.9524 0.9522 0.9524
900 0.9618 0.9570 0.9470 0.9520 0.9534 0.9540
1000 0.9608 0.9588 0.9440 0.9544 0.9552 0.9532
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4. ULW regression analysis
The regression models are used in different ways in survival analysis. Sometimes mean or quan-

tiles of underlying distribution are assumed as a linear function of covariates(predictors). When the
mean or quantiles have not explicit form, the location parameter is assumed as a linear function
of covariates by using a suitable link function. The log-location-scale regression models are studied
by several authors such as [1] and [24]. In this section, we describe the use of log-location-scale
ULW regression methodology.
Let X be a ULW(Ξ) random variable. Let us consider are-parameterization by β = 1/σ and

α= exp(μ) and then, the log-lifetime Y = log (X) is a random variable with the pdf

h (y;τ ) =
θ2 exp

(
y−μ
σ

)
exp
{−θ exp

(
exp
(
y−μ
σ

))
+ θ+2exp

(
y−μ
σ

)}
(1+ θ)σ

IR (y) ,

where τ = (μ,σ, θ) , μ and σ are location and scale parameters, respectively. The cdf of Y is also
given by

H (y;τ ) = 1−
(
1+

θ
(
1− exp

(− exp
(
y−μ
σ

)))
(1+ θ) exp

(− exp
(
y−μ
σ

))
)
exp

(
−
(
1− exp

(− exp
(
y−μ
σ

)))
exp
(− exp

(
y−μ
σ

))
)
. (4.1)

It is noted that the random variable Y with cdf (4.1) is denoted LULW(μ,σ, θ), where LULW
stands for log-ULW distribution. Let us consider the regression model

Y=μ+σε, (4.2)

where Y= (Y1, . . . , Yn)
T

and Y1, Y2, . . . , Yn are independent LULW random variables with

parameters
(
μi =Z

T

i β, σ, θ
)
, respectively. Furthermore, β = (β1, . . . , βp)

T
, μ= (μ1, . . . , μn)

T
,

ε=(ε1, . . . , εn)
T
, μi = Z

T

i β and Zi = (Zi1, . . . ,Zip)
T

(= (1,Zi1, . . . ,Zip)
T

when a intercept is
included in a model) are ith values of covariates for i= 1,2, . . . , n. In addition, εi = (Yi −μi)/σ for
i= 1,2, . . . , n is a random error distributed LULW with parameters (μ= 0, σ=1, θ).
Let us discuss the MLEs of parameters η = (β, σ, θ) in the model (4.2) under Type-I right

censoring. Suppose that the log-lifetimes Yi (i= 1,2, . . . , n) are Type-I right censored (at log (ci))
from LULW(μi, σ, θ), where ci is censoring time for lifetime Xi. Let us define

Ti =min{Yi, log (ci)} , i= 1,2, . . . , n.

Hence, the log-likelihood function based on the Type-I right censored sample T1, T2, . . . , Tn is written
by

� (η) =
n∑

i=1

{
ωi log

(
h
(
ti;
(
Z

T

i β, σ, θ
)))

+(1−ωi) log
(
1−H

(
ti;
(
Z

T

i β, σ, θ
)))}

, (4.3)

where

ωi =

⎧⎨
⎩

0 , Ti > log (ci)

1 , Ti ≤ log (ci)

is an indicator function and ti denotes the observed value of Ti, i= 1,2, . . . , n.
The MLE of η can be obtained by maximizing the log-likelihood (4.3). Some numerical methods

such as Nelder-Mead and BFGS can be used for a maximization problem.
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4.1. Simulation study for MLEs of regression parameters
In this subsection, the bias and MSEs of MLEs are discussed for lifetime regression model

parameters through a Monte Carlo simulation with 2000 trials. All simulations are run for the
following model

Yi = β0 +β1Zi1 +β2Zi2 +β3Zi3 +σεi
= ZT

i β+σεi, i= 1,2, . . . , n

where β= (β0, β1, β2, β3)
T
, ZT

i = (1,Zi1,Zi2,Zi3) and εi ∼LUWL(μ= 0, σ=1, θ) , i= 1,2, . . . , n.
In the simulation, we consider β=(−.1,−.1,−.1,−.1) , θ = 1,1.5 and 2. The true parameter

β=(.1, .1, .1, .1) is also considered in the simulation, but no different patterns are observed for the
other one. The covariates Zi, (i= 1,2, . . . , n) are generated in two cases: In the first case, four levels
(there are 4 categories: 1,2,3,4) are considered for Zi1,Zi2 and Zi3. The other case, (Zi1,Zi2,Zi3) are
generated from multivariate normal distribution. In addition, two correlation matrix for covariates
(Zi1,Zi2,Zi3) are considered by

ρ1 =

⎛
⎝ 1 0 0

1 0
1

⎞
⎠ and ρ2 =

⎛
⎝ 1 0.5 0.5

1 0.5
1

⎞
⎠ .

Hence, it can be observed the multicollinearity effect on the URL regression analysis. The simulation
study is performed based on the following algorithm for one cycle:
Algorithm 3
A1. For a fixed n, generate the covariates with a given correlation matrix (ρ1 or ρ2) and equal

marginal probabilities of four levels. R function ordsample in the package GenOrd is used in our
study. Otherwise, the covariates are generated from a multivariate normal distribution with mean
0 and given correlation matrix (ρ1 or ρ2). R function mvrnorm in the package MASS is used in
our study.

A2. Compute μi =Z
T

i β, i= 1,2, . . . , n.
A3. Set the true parameters αi = exp(μi), β and θ.
A4. For i = 1,2, . . . , n, generate the dependent variable Xi from ULW(Ξi) distribution with

Ξi = (αi, β, θ) using the AR sampling given in Algorithm 1 and set Yi = log (Xi)∼LULW(μi, σ, θ) .
A5. The numerical methods such as Nelder-Mead, BFGS and CG are used to maximize the

log-likelihood given in Eq. (4.3) and the true parameters given A3 are used as initial values.
A6. If there is no solution or estimate out of parameter space, or negative standard error, go to

A4.
Using Algorithm 3, a simulation study is performed with 2000 trials for a sample of size n =

100,200, . . . ,1000 and the nominal level is fixed at 0.95. Figures 3-6 are produced by settings given
at the beginning of this subsection.
From Figures 3-6, the discrete or continuous covariates discussed above, does not affect the

properties of estimates. If the multicollinearity level increase, the MSEs of β̂1, β̂2 and β̂3 increase.
It is an interesting observation from Figures 3-4 that, MSEs of β̂0, σ̂ and θ̂ are not affected by the
degree of multicollinearity within covariates Z1,Z2,Z3. Although the β̂1, β̂2 and β̂3 has a negligible
bias for even if a small sample of size, the estimates β̂0, σ̂ and θ̂ are asymptotically unbiased. The
CPs of AN CIs for β1, β2 and β3 are almost equal to the nominal level for all sample size and
multicollinearity cases. Furthermore, the CPs of AN CIs for θ are greater than nominal level for
small sample size but it reduces to the nominal level when the sample size increases. The CPs of
AN CIs for β0 and σ are less than nominal level for small sample size, but it climbs to the nominal
level when sample size increases. The mean lengths of CIs for all parameters decrease to zero when
the sample size increases. The mean lengths of AN CIs for β1, β2, β3 in the case multicollinearity
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are wider than being uncorrelated covariates. Being multicollinearity does not affect negatively on
the mean lengths of AN CIs for β0, σ and θ.

In Figures 5-6, the behaviors of estimates and CIs are also discussed according to increment in
true parameter θ. When the true parameter θ is 1, bias of β̂0, β̂1, β̂2, β̂3, σ̂ and θ̂ are negligible for
moderate sample size. If θ < 1 (> 1) the bias of β̂0 are positive (negative), but it reduces (increases)
to zero when the sample size increases. If θ < 1 (> 1) the bias of σ̂ are negative (positive) but it
increases (reduce) to zero when the sample size increases. When the θ increases, MSEs of β̂1, β̂2, β̂3

and θ̂ increase. For small sample size, if the θ increases, the MSEs of β̂0 and σ̂ increase. For large
sample size, if the θ increases, the MSEs of β̂0 and σ̂ decrease. The CPs of AN CIs for β1, β2 and β3

are almost equal to nominal level for θ= 0.5,1 and 2. The CPs of AN CIs for β0 are less (greater)
than nominal level when θ < 1 (> 1) . If θ= 1, the CPs of AN CIs for β0 tends to nominal level for
n≥ 300. When the θ increases, CPs of AN CIs of σ are closing to nominal level, but mean lengths
of AN CIs of β1, β2, β3, σ and θ increase.

β

β

β

β

σ

θ

ρ ρ

Figure 3. Average bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when multivariate normal covariates and θ= 1
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β

β

β

β

σ

θ

ρ ρ

Figure 4. Average bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when ordinal covariates and θ= 1

β

β

β

β

σ

θ

θ θ θ

Figure 5. Average bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when multivariate normal covariates with correlation matrix ρ1
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β
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β

β

σ

θ

θ θ θ

Figure 6. Avarage bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when ordinal covariates with correlation matrix ρ1
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5. Real Data Analysis
In this section, the real data application of ULW distribution is given. The distribution fitting

to total milk production data is studied.
The ULW distribution is now fitted to the data about the total milk production in the first birth

of 107 cows from SINDI race. The data is taken from [3] and the data given as follow:
0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058 ,0.6891, 0.5770,

0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707,
0.7131, 0.5853, 0.6768 ,0.5350, 0.4151 ,0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371 ,0.3383, 0.6114,
0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912 ,0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529 ,0.4530,
0.3891, 0.4752, 0.3134, 0.3175 ,0.1167, 0.6750, 0.5113,0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945
,0.4553, 0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188,
0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413,0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111,
0.5349, 0.3751, 0.1546, 0.4517 ,0.2681, 0.4049, 0.5553, 0.5878 ,0.4741 ,0.3598, 0.7629, 0.5941, 0.6174,
0.6860, 0.0609, 0.6488, 0.2747.
It should be pointed out that this data is also analyzed in [6] and [20]. For the comparison, beta,

Weibull (W), the Lindley Weibull (LW), unit-gamma (UG), unit-logistic (ULOG), UL distributions
are considered. It is noted that LW, UG, ULOG and UL are introduced by [4], [11], [14], and [22]
respectively. The pdfs of these distributions are given by

fULW (x) = 1−
⎧⎨
⎩1+

p1

(
1− exp

(
−
(

x
p3

)p2))

(1+ p1) exp
(
−
(

x
p3

)p2)
⎫⎬
⎭ exp

⎧⎨
⎩−

p1

(
1− exp

(
−
(

x
p3

)p2))

exp
(
−
(

x
p3

)p2)
⎫⎬
⎭ IR+

(x)

fW (x) =
p1
p2

−
(

x

p1

)p2−1

exp

(
−
(

x

p1

)p2)
IR+

(x)

fLW (x) =
xp2−1p23p2p

2
1 exp (− (xp1)

p2)

1+ p3
× (1− log (exp (− (xp1)

p2))) (exp (− (xp1)
p2))

p3−1
IR+

(x)

fBeta (x) =
1

β (p1, p2)
xp1−1 (1−x)

p2−1

I(0,1) (x)

fUG (x) =
pp12 xp2−1 (− log (x))

p1−1

Γ(p1)
I(0,1) (x)

fULOG (x) =
p2 exp (p1)x

p2−1 (1−x)
p2−1

(xp2 exp (p1)+ (1−x)
p2)

2 I(0,1) (x)

fUL (x) =
p21 exp

(
− xp1

1−x

)

(1+ p1) (1−x)
3 I(0,1) (x)

The total time on test (TTT) plot is used to determine the hazard behavior of the data. TTT plot
for the total milk production data is given in Figure 7 and it indicates that the total milk production
comes from a distribution with the increasing failure rate. Therefore, the ULW distribution is a
candidate for modeling this data (see, Section 2.1 and Figure 2).
In this section, seven distributions are fitted to the total milk production data with the likelihood

principle. The MLEs of distribution parameters are obtained by numerical methods that try to
maximize the log-likelihood. In most cases, we observe that the different initial values give different
estimates, and one can not conclude which one is treated as a MLE. Therefore, an algorithm is
used to get the almost correct MLEs of parameters given in Table 6. An algorithm is given as
follows:
Algorithm 4.
A1. 1000 (it can be increased by optionally) initial values are uniformly generated from a subset

of parameter space.
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A2. Using initial values generated in Step A1, the numerical methods Nelder-Mead, BFGS, and
CG are used to maximize the log-likelihood.
A3. The likelihoods for all estimates in Step A2 are ordered from large to small.
A4. The estimates with the largest likelihoods are treated as MLEs of parameters.

Figure 7. TTT plot for the total milk production data

The MLEs of parameters and related standard errors for ULW, W, LW, beta, UG, ULOG and
UL distributions are given in Table 6. In this table, some comparison criteria are presented. The
log-likelihood �, −2�, AIC, Bayesian information criterion (BIC), corrected Akaike’ s informa-
tion criterion (CAIC), Hannan–Quinn information criterion (HQIC), Kolmogorov-Smirnov statistic
(KS), Anderson-Darling statistic(AD), Cramér von Mises statistic(CvM) and related p-values(KS
p-value, AD p-value and CvM p-value), the MLE p̂i (i= 1,2,3) of parameter pi with standard error
se (p̂i) and AN intervals (LBpi ,UBpi) are calculated and they are presented in Table 6. It is noted
that some lower limit of AN CI are below the lower bound of parameter space. It can be corrected
with lower bound of parameter space. In the Table 6, initial parameters, and the numerical methods
are given to get MLEs for all models in the analysis. From the Table 6, the ULW distribution has
the smallest values of −2�, AIC, BIC, CAIC, HQIC, KS, AD and CvM. Furthermore, goodness of
fit tests KS, AD and CvM confirm the ULW model validity (p values>0.05 ). From these results, it
is concluded that the ULW distribution is better than the others in terms of all criteria. Figure 9
presents the overlapping of the fitted ULW cdf on the empirical cdf. From Figure 9, it is observed
that fitted cdf of ULW distribution exhibits better than the others.
Using discussion in Subsection 3.2, 95% ULR CIs for θ,α and β are calculated by (0.0560,1.7914),

(0.1515,0.7142) and (0.5473,2.1491), respectively. Figure 8 represents the 95% ULR CI of parameter
θ. A logarithmic scale is used for x-axis to improve the quality of graphical view.
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θ α β =

θ
α

β

θ = θ =θ = θ

Figure 8. Confidence limits for parameter θ based on ULR

Figure 9. Fitted and empirical cdf plots for the total milk production data
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Table 6. Data analysis results for the total milk production data

ULW W LW Beta UG ULOG UL
� 29.1444 21.3475 23.6708 23.7772 23.0467 24.8400 25.3805

-2� -58.2888 -42.6950 -47.3417 -47.5545 -46.0934 -49.6800 -50.7609
AIC -52.2888 -38.6950 -41.3417 -43.5545 -42.0934 -45.6800 -48.7609
BIC -44.2703 -33.3494 -33.3232 -38.2088 -36.7477 -40.3343 -46.0881

CAIC -52.0557 -38.5796 -41.1087 -43.4391 -41.9780 -45.5646 -48.7229
HQIC -49.0382 -36.5280 -38.0911 -41.3874 -39.9263 -43.5129 -47.6774

KS 0.0459 0.0832 0.0653 0.0910 0.0939 0.0571 0.1096
AD 0.2332 1.4841 1.0403 1.3853 1.4997 0.8646 1.3116

CVM 0.0292 0.1895 0.1104 0.2282 0.2450 0.0771 0.2286
KS p value 0.9778 0.4487 0.7518 0.3384 0.3021 0.8767 0.1532
AD p value 0.9785 0.1804 0.3366 0.2064 0.1766 0.4364 0.2286

CVM p value 0.9792 0.2891 0.5371 0.2190 0.1949 0.7095 0.2184
p̂1 0.4091 0.5236 3.0722 2.4125 2.6767 0.2073 1.2001
p̂2 1.1486 2.6012 2.2558 2.8297 2.9774 1.9104
p̂3 0.3454 0.5823

LBp1 -0.2404 0.4839 0.8143 1.7961 1.9994 -0.1166 1.0258
LBp2 0.3768 2.1899 1.7933 2.0958 2.1489 1.6022
LBp3 -0.0211 -0.1751
UBp1 1.0586 0.5633 5.3301 3.0289 3.3541 0.5311 1.3743
UBp2 1.9205 3.0124 2.7182 3.5635 3.8060 2.2185
UBp3 0.7119 1.3397
SEp̂1 0.3314 0.0202 1.1520 0.3145 0.3456 0.1652 0.0889
SEp̂2 0.3938 0.2098 0.2359 0.3744 0.4228 0.1572
SEp̂3 0.1870 0.3864

Numerical Method BFGS BFGS BFGS CG CG BFGS CG
Inital value for p̂1 46.5515 91.4019 16.6926 10.4744 91.4145 61.8622 45.8126
Inital value for p̂2 55.8020 24.2207 13.9139 16.9355 95.3848 47.9454
Inital value for p̂3 4.5296 22.7243
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6. Conclusions
In this paper, a new lifetime regression analysis with a newly introduced distribution is provided.

The simulation study given in Subsection 4.1 indicates that proposed regression analysis can be
used without any doubt.
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The authors thank to Professor Necip Doğanaksoy and Professor Hassan Bakouch for constructive
comments on our manuscript.

References
[1] Altun, E., Yousof, H.M. and Hamedani, G.G. (2018). A new log-location regression model with influence

diagnostics and residual analysis. International Journal of Applied Mathematics and Statistics, 33(3),
417-449.

[2] Alzaatreh, A., Lee, C. and Famoye, F. (2013). A new method for generating families of continuous
distributions. Metron, 71, 63-79.

[3] Brito, R.S. (2009). Estudo de expansoes assintoticas, avaliacao numerica de momentos das distribuicoes
beta generalizadas, aplicacoes em modelos de regressao e analise discriminante. [Master’s thesis, Univer-
sidade Federal Rural de Pernambuco].
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Appendix Proof of Theorem 1
For any x> 0, the ratio of the densities is given by

g (x) =

θ21 (1+ θ2) exp

(
−θ1 exp

((x
α

)β)
+ θ1 +2

(x
α

)β)

θ22 (1+ θ1) exp

(
−θ2 exp

((x
α

)β)
+ θ2 +2

(x
α

)β) .

Consider the derivative of log (g (x)) in x

d log (g (x))

dx
=

(θ2 − θ1)β
(x
α

)β
exp

((x
α

)β)

x
< 0

for θ1 > θ2 and hence proof is completed.
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Abstract: The fiducial inference idea was firstly proposed by Fisher [8] as a powerful method in statistical
inference. Many authors such as Weeranhandi [24] and Hannig et. al. [12] improved this method from different
points of view. Since the Bayesian method has some deficiencies such as assuming a prior distribution when
there was little or no information about the parameters, the fiducial inference is used to overcome these
adversities. This study deals with the generalized fiducial inference for the shape parameters of the Chen’
s two-parameter lifetime distribution with bathtub shape or increasing failure rate [4]. The method based
on the inverse of the structural equation which is proposed by Hannig et. al. [12] is used. We propose the
generalized fiducial inferences of the parameters with their confidence intervals. Then, these estimations
are compared with their maximum likelihood and Bayesian estimations. Simulation results show that the
generalized fiducial inference is more applicable than the other methods in terms of the performances of
estimators for the shape parameters of the Chen distribution. Finally, a real data example is used to illustrate
the theoretical outcomes of these estimation procedures.

Key words : Bayesian inference, Generalized fiducial inference, Interval estimation, Chen distribution,
Point estimation.

1. Introduction

The fiducial idea is firstly proposed by Fisher [8] as a powerful method in statistics. It is known

that assuming a prior distribution in the case of insufficient information about the parameters

causes adversities in Bayesian inference. The main idea of Fisher [8] with the fiducial method was

to overcome this deficiency in the Bayesian framework. Then, some deficiencies in the fiducial

inference and the philosophical concerns regarding the interpretation of fiducial probability were

handled by various authors (See Zabell [28] for more details.). Thus, the idea of fiducial inference

was improved by various authors. Recently, Hannig [11, 10] handled generalized fiducial inference.

Then, Hannig et al. [12] defined the generalized fiducial inference method based on the inverse

of the structural equation. The generalized fiducial inference is actually similar to the likelihood

approach. It differs from the likelihood method by switching the role of the parameters and the

observed data.

In statistics theory, there are several applications of fiducial inference. For example; Wandler and

Hannig [21, 22] considered generalized fiducial inference on the largest mean of a multivariate nor-

mal distribution and also inference on the parameters and the extreme quantiles of the generalized

Pareto distribution, respectively. Wang et al. [23] handled fiducial inference to construct prediction

intervals for an arbitrary probability distribution. Further; O’Reilly and Rueda [17] studied the

truncated exponential distribution, Li and Xu [15] studied inference of Birnbaum-Saunders distri-

bution, Yan and Liu [27] studied generalized exponential distribution with the fiducial inference

method.

*Corresponding author. E-mail address:ccetinkaya@bingol.edu.tr
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On the other hand, Chen [4] proposed a two-parameter distribution with bathtub shaped or
increasing hazard function. Chen [4] proposed using this model to analyze the lifetime datasets
flexibly. It has the following probability density (pdf), distribution (cdf) and failure rate functions

f(x;λ,β) = λβxβ−1ex
β

eλ(1−ex
β
), x > 0, λ, β > 0,

F (x;λ,β) = 1− eλ(1−ex
β
),

and
h(x;λ,β) = λβxβ−1ex

β

.

The Chen distribution has a bathtub shape failure rate when β < 1 and also has an increasing
failure rate function when β ≥ 1 (see Figure 1).
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Figure 1. Failure rate functions when λ= 0.5

Hence it provides an appropriate conceptual model for some electronic and mechanical products
as well as the lifetime of humans. In addition to its positively skewed shape, it also has some other
flexible properties (Chen, [4]). Further;

� It leads to the exponential power distribution when λ= 1.
� If X ∼CH(λ,β), then Y = (eX

β − 1)∼Exp(λ) and Y = (eX
β − 1)

1
θ ∼Weibull(λ, θ).

� It leads to the Gompertz(1, λ) distribution when β = 1.
Many authors handled the Chen distribution in terms of statistical inference. For instance; Wu et

al. [25] studied the estimation of its shape parameter. Then, Wu [26] studied its parameter estima-
tions under progressive censoring. Sarhan et al. [19] obtained estimations of its parameters. Rastogi
and Tripathi [18] handled parameter estimations under hybrid censored data. Ahmed [2] obtained
Bayesian estimations and compared them with non-Bayesian estimations under progressive Type-
II censoring scheme. Kayal et. al. [14] handled Chen distribution under progressive censoring and
Kayal et al. [13] studied inference of its parameters under progressive first-failure censoring.
It should be noted that all cited references are based on classical and Bayesian estimation

methods for both complete and censored data sets. The generalized fiducial inference method has
never been considered in comparative inference studies based on the Chen distribution. It is known
that Newton-Raphson (NR) method can provide unsatisfactory performances explained by the
fact that it does not converge in some cases. Since the MLE of β needs some iterative methods
such as NR, alternative inference methods for the parameters of the Chen distribution are needed
to evaluate. On the other hand, determining a prior distribution in the case of insufficient prior
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information about the parameters affects the Bayesian inference performance. Consequently, the
generalized fiducial method can be worthwhile to overcome these adversities.
In this study, we consider the generalized fiducial inference (GFI) method based on the inverse

of the structural equation which is proposed by Hannig et. al. [12]. We obtain the estimation of
the unknown parameters of the Chen distribution with the GFI method as an alternative to the
maximum likelihood estimation (MLE) and Bayesian estimation methods. We also provide the
MLE and Bayesian estimation methods to compare the performances of the estimates and their
corresponding confidence intervals. All theoretical outcomes are illustrated with simulation studies
and a real-data example.

2. Maximum likelihood estimations (MLE)
The likelihood function of the observed sample from the Chen distribution is given as

L (x, λ, β) = λnβne(β−1)
∑n

i=1 log(xi)e
∑n

i=1 x
β
i eλ

∑n
i=1

(
1−e

x
β
i

)

and the corresponding log-likelihood function is given as

�(x, λ, β) = n log(λ)+n log(β)+ (β− 1)

n∑
i=1

log(xi)+

n∑
i=1

xβ
i +λ

n∑
i=1

(
1− ex

β
i
)
.

To obtain the MLEs of the parameters, denoted by λ̂ and β̂ we should equate the partial derivates
of �(x, λ, β) to zero with respect to λ and β respectively. Then we obtain the MLE of λ as given
in the following

λ̂=
n∑n

i=1

(
ex

β̂
i − 1

) ,

where β̂ is the solution of the following non-linear equation

ξ(β) =
n

β
+

n∑
i=1

log(xi)+
n∑

i=1

xβ
i log(xi)−

n
∑n

i=1

(
ex

β
i xβ

i log(xi)

)

∑n

i=1

(
ex

β
i − 1

) .

Since β̂ is a fixed point solution of the nonlinear equation ξ(β), it can be obtained by using
numerical methods such as the Newton-Raphson algorithm. Further, the confidence interval for λ
and β can be obtained by the following asymptotic normality when the MLE and its large sample
theory exist. That is

(λ̂, β̂)T −→N
(
(λ,β)T , I−1

n

)
,

where

I−1
n =−

(
∂2�
∂λ2

∂2�
∂λ∂β

∂2�
∂β∂λ

∂2�
∂β2

)−1

=

(
Var(λ̂) Cov(λ̂, β̂)

Var(β̂)

)
.

The inverse of the expected Fisher information matrix can be obtained by mle.tools package
[16] in R [6] software. The presentation of the derivatives is skipped for the sake of simplicity.
Thus, the asymptotic 100(1−α)% confidence intervals (ACI) for λ and β are

Iλ : λ̂± z1−α/2

√
Var(λ̂) and Iβ : β̂± z1−α/2

√
Var(β̂),

where zδ denotes 100δ% percentile of the standard normal distribution.
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3. Generalized fiducial inference (GIF)
The main structure of the generalized fiducial inference (GFI) is similar to the likelihood method.

It differs from the likelihood method by switching the roles of the data x and the model parameters
θ. Let suppose that the data generating equation be

x=G(U,θ),

where x is the data, θ is the parameters, U is a complete known random vector and G is called
the structural equation. It is seen from Eq. (3), the distribution of x is determined by using the
parameters θ and random vector U . Under some differentiability conditions, Hannig et al. [12]
showed that the generalized fiducial distribution for θ is absolutely continuous with the density

fF (θ) =
L(x | θ)J(x;θ)∫

L (x | θ′)J (x;θ′)dθ′
,

where L(x|θ) denotes the joint likelihood function of observed data and

J(x, θ) =
∑

(i1,...,ip)

∣∣∣det
((

∂
∂u
G(u,θ)

)−1 ∂
∂θ
G(u, θ)

)∣∣∣
u=G−1(x,θ)

(3.1)

where the above sums go
(
n
p

)
over of p-tuples of indexes i= 1≤ i1 < · · ·< ip ≤ n, ∂G(u, θ)/∂θ and

∂G(u, θ)/∂u are respectively n×p and n×n Jacobian matrices. For the Chen distribution, we have

Ui = F (xi;λ,β) , i= 1, . . . , n, (3.2)

where F (xi;λ,β) ≡ 1− eλ
(
1−ex

β
)
is the distribution function of the Chen model and Ui denotes

the sample from uniform distribution on the range (0,1). Further, the data generating equation,
x=G(U,θ), can be obtained from Eq. (3.2) and the ith component xi =G(Ui, λ, β) can be obtained
as

xi =
[
ln
(
1− (1/λ) ln(1−u)

)]1/β
,

and we have

∂Gi

∂λ

∣∣∣∣
ui=1−e

λ

(
1−ex

β
) = 1

λβ

(
e−x

β
i − 1

)
x1−β
i and

∂Gi

∂β

∣∣∣∣
ui=1−e

λ

(
1−ex

β
) =−xi ln(xi)

β
. (3.3)

Then, by replacing (3.3) in (3.1) we obtain

J(x;λ,β) =
1

λβ2

∑
1≤i<j≤n

|g(xi, xj, λ)| ,

where
g(xi, xj, β) = x1−β

j

(
e−x

β
j − 1

)
xi ln(xi)−x1−β

i

(
e−x

β
i − 1

)
xj ln(xj)

in that J(x;λ,β) plays a similar role with the prior distribution in the Bayesian inference and it
reveals like a data dependent prior. The joint likelihood function of the observed data is obtained
as

fF (λ,β)∝ λn−1βn−2e(β−1)
∑n

i=1 log(xi)e
∑n

i=1 x
β
i eλ

∑n
i=1

(
1−e

x
β
i

) ∑
1≤i<j≤n

|g(xi, xj, β)| .

Thus, the conditional fiducial density function of λ can be obtained in form of the gamma density
as

fF (λ|β,x) = λn−1e−λ
∑n

i=1

(
e
x
β
i −1

)
GA

(
n,

n∑
i=1

(
ex

β
i − 1

))
.
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Then, the conditional fiducial density function of β is

fF (β|λ,x) = βn−2e(β−1)
∑n

i=1 log(xi)+
∑n

i=1 x
β
i +λ

∑n
i=1

(
1−e

x
β
i

) ∑
1≤i<j≤n

|g(xi, xj, β)| .

It is clearly seen that estimates of the parameters can be obtained by using the Gibbs algorithm
since their conditional densities are obtained. The conditional estimates of λ can be easily generated
from the gamma density. However, the density of β in fF (β|λ,x) can not be reduced analytically to
well known distributions and therefore it is not possible to sample directly by standard methods.
The conditional posterior density of β is observed that, it is likely to be the Gaussian distribution.
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Figure 2. The posterior fiducial density of β for n= 20 (up) and n= 50 (down)

In this case, we propose to use the Metropolis-Hasting (M-H) sampling in Gibbs algorithm with
normal proposal distribution (see Figure 2) as suggested by Tierney [20]. The Gibbs algorithm
with the M-H sampling for the fiducial inference of the Chen distribution can be given as follows:

� Step 1: Start by using the initial values of λ(0) and β(0).
� Step 2: Set t= 1.

� Step 3: Generate λ(t) from GA

(
n,

∑n

i=1

(
ex

β
i − 1

))
.

� Step 4: Draw a candidate β(t) from fF (β|λ,x) by using Metropolis-Hastings methods with
normal proposal.

� Step 5: Repeat 2-4, M times.
It is known that a Markov chain algorithm naturally generates autocorrelated samples (Zhang,

[29]) and so we should use a thinning operation to reduce the produced autocorrelation. We discard
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the first B0 values as burn-in period and take every L−th (as an integer) observation from the
remaining (M −B0) variates as an independent and identically distributed (i.i.d.) observation in
thinning procedure. Thus, we obtainM

′
= (M−B0)/L i.i.d. observations. If we denote the thinning

procedure applied observations as α
(t

′
)

i and λ
(t

′
)

i for i = (B0 + L,B0 + 2L,B0 + 3L, · · · ,M), we
obtain the fiducial inferences of the parameters as

λ̂F =
1

M ′

M∑
i=B0+L

λ
(t

′
)

i and β̂F =
1

M ′

M∑
i=B0+L

β
(t

′
)

i .

Then, the 100(1−α)% the fiducial cofidence intervals are

I λ̂F
∼=
[
λ̂α/2, λ̂1−α/2

]
and I β̂F

∼=
[
β̂α/2, β̂1−α/2

]
,

where λ̂α and β̂α are the 100α%th quantile of the λ
(t

′
)

i and β
(t

′
)

i .

4. Bayesian inference
This section deals with the Bayesian inference to provide comparative estimates for the fiducial

and maximum likelihood inference of the parameters. Since J(x;λ,β) plays a similar role with
the prior distribution in the Bayesian context and similarity of the mathematical structure of the
fiducial inference process, the Bayesian inference method is handled as an alternative inference
procedure. For this purpose, we first assume that the unknown parameters λ and β follow inde-
pendent gamma priors such that π(λ)∼GA(a1, b1) and π(β)∼GA(a2, b2) with density functions
are given as in the following

π(λ)∝ λa1−1e−λb1 and π(β)∝ βa2−1e−βb2 ,

where hyper parameters ai and bi, (i= 1,2) are assumed as non-negative and known.
The joint posterior density function of data, λ and β can be obtained by using the observed

sample and the prior distributions for the parameters as in the following

L(X,λ,β) =L(X|λ,β)π(λ)π(β)
and the joint posterior density of λ and β given data is obtained by

L(λ,β|X) =
L(X|λ,β)π(λ)π(β)∫∞

0

∫∞
0

L(X|λ,β)π(λ)π(β)dλdβ
and for the Chen distribution we have the following joint posterior density of the parameters

L(λ,β|X)∝ λn+a1−1βn+a2−1e−β

(
b2−

∑n
i=1 log(xi)

)
e
∑n

i=1 x
β
i e

−λ

(
b1+

∑n
i=1

(
e
x
β
i −1

))
.

Then, it is easily seen that the conditional posterior density functions of λ and β, denoted by
fB(λ|β,x) and fB(β|λ,x), are obtained as

fB(λ|β,x)∝ λn+a1−1e
−λ

(
b1+

∑n
i=1

(
e
x
β
i −1

))
∝GA(n+ a1,

n∑
i=1

(
ex

β
i − 1

)
+ b1)

and

fB(β|λ,x)∝ βn+a2−1eβ
(∑n

i=1 log(xi)−b2

)
+
∑n

i=1 x
β
i +λ

∑n
i=1

(
1−e

x
β
i

)
.
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As in the fiducial process, we can easily generate samples of λ from the gamma density and

Metropolis-Hasting with normal proposal is needed distribution for β. Thus, the point estimates

of the parameters, λ̂B and β̂B, can be obtained using the Gibbs sampling algorithm which was

described in the fiducial process. Finally, the highest posterior density (HPD) 100(1−γ)% credible

intervals for the Bayesian estimates proposed by Chen and Shao [3] can be constructed as

I λ̂B
∼=
(
λ̂B[ γ2 (M−B0)]

, λ̂B[(1− γ
2 )(M−B0)]

)
and I β̂B

∼=
(
β̂B[ γ2 (M−B0)]

, β̂B[(1− γ
2 )(M−B0)]

)

where [γ
2
(M −B0)] and [(1− γ

2
)(M −B0)] are the smallest integers less than or equal to γ

2
(M −B0)

and (1− γ
2
)(M −B0), respectively.

5. Simulation studies

In this section, we perform some simulation studies to evaluate the performances of the general-

ized fiducial (GFI), ML and Bayesian estimators for the shape parameters of the Chen distribution.

We consider three different combinations of the parameters (λ,β) as (1.25,1.25), (0.50,0.75) and

(2.00,1.00). Small, moderate and larger sample sizes are considered as 10, 25 and 50, respectively.

We run Markov chain with 3500 iteration, the first 500 values are discarded as Burn-in period then

every third observation are taken in thinning procedure to generate uncorrelated and independent

Markov chains. We replicate each chain 1000 times. The estimations are evaluated with their biases

and mean squared errors (MSE). Further, we provide 95% approximate confidence intervals of the

estimations and evaluated them according to their average lengths (AL) and coverage probabil-

ities (CP). In the Bayesian estimations, we use the small and non-negative hyper-parameters as

a1 = a2 = b1 = b2 = 0.0001 suggested by Congdon ([5], page 69) which are almost like Jeffrey’s priors

but they are proper, inversely. The biases and the MSEs of the estimates are reported in Table 1

and 2 then the corresponding credible intervals with their ALs and CPs are given in Table 3 and

4.

Table 1. The performances of estimations for β based on GFI, MLE and Bayesian methods

β̂ Bias MSE
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 0.02782 0.23687 0.08564 0.15144 0.22183 0.17905
1.25 1.25 25 0.01232 0.09554 0.04193 0.05587 0.06492 0.05984
1.25 1.25 50 0.00273 0.04103 0.01636 0.02553 0.02742 0.02650
0.50 0.75 10 0.02556 0.11549 0.02966 0.03893 0.05390 0.04403
0.50 0.75 25 0.01128 0.04732 0.01714 0.01466 0.01632 0.01521
0.50 0.75 50 0.00267 0.02032 0.00608 0.00666 0.00702 0.00682
2.00 1.00 10 0.02283 0.18994 0.06587 0.10344 0.14840 0.11809
2.00 1.00 25 0.00790 0.07682 0.03285 0.03770 0.04354 0.03988
2.00 1.00 50 0.00290 0.03294 0.01268 0.01755 0.01881 0.01809
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Table 2. The performances of estimations for λ based on GFI, MLE and Bayesian methods

λ̂ Bias MSE
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 0.16140 0.33639 0.23991 2.14111 2.36967 2.26649
1.25 1.25 25 0.05823 0.10341 0.07452 1.10221 1.14054 1.11397
1.25 1.25 50 0.01813 0.03750 0.02475 0.73433 0.74718 0.73594
0.50 0.75 10 0.06494 0.03236 0.05080 0.75997 0.74430 0.74981
0.50 0.75 25 0.02384 0.00724 0.01654 0.45178 0.44779 0.44844
0.50 0.75 50 0.00997 0.00145 0.00619 0.31458 0.31361 0.31244
2.00 1.00 10 0.39813 0.85419 0.64314 4.67404 5.32950 5.25041
2.00 1.00 25 0.13142 0.25914 0.18812 2.16615 2.27428 2.21826
2.00 1.00 50 0.04035 0.09662 0.06515 1.38913 1.42470 1.39976

Table 3. The performances of aproximate confidence intervals for β based on GFI, MLE and Bayesian methods

β̂ AL CP
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 1.54294 1.62707 1.59565 94.60 96.30 95.20
1.25 1.25 25 0.90351 0.91553 0.90552 95.30 95.20 95.40
1.25 1.25 50 0.60660 0.61492 0.60934 93.70 94.40 94.00
0.50 0.75 10 0.79377 0.80036 0.79757 94.70 93.70 95.50
0.50 0.75 25 0.45399 0.45716 0.45258 95.10 94.10 95.10
0.50 0.75 50 0.30712 0.30958 0.30627 93.20 93.90 93.40
2.00 1.00 10 1.25740 1.33258 1.29795 94.50 95.90 96.00
2.00 1.00 25 0.74608 0.75799 0.74957 95.50 95.60 95.70
2.00 1.00 50 0.50429 0.51124 0.50675 93.40 94.20 93.80

Table 4. The performances of aproximate confidence intervals for λ based on GFI, MLE and Bayesian methods

λ̂ AL CP
λ β n GFI MLE BYS GFI MLE BYS

1.25 1.25 10 2.14111 2.36967 2.26649 96.90 95.90 95.60
1.25 1.25 25 1.10221 1.14054 1.11397 96.20 96.20 95.50
1.25 1.25 50 0.73433 0.74718 0.73594 95.10 95.30 94.60
0.50 0.75 10 0.75997 0.74430 0.74981 96.30 92.10 95.20
0.50 0.75 25 0.45178 0.44779 0.44844 94.80 94.00 94.30
0.50 0.75 50 0.31458 0.31361 0.31244 94.90 94.00 95.50
2.00 1.00 10 4.67404 5.32950 5.25041 95.70 96.40 95.60
2.00 1.00 25 2.16615 2.27428 2.21826 95.80 97.50 95.60
2.00 1.00 50 1.38913 1.42470 1.39976 95.00 96.80 95.10

We observe satisfying consistency in the performances of the estimators. The biases, MSEs and
the ALs of the confidence intervals decrease parallel to increasing sample sizes in all sets of the
parameters. In whole cases, the GFI estimates have smaller biases, MSEs and ALs even in the
small samples that are powerful side of the Bayesian estimation method. The differences between
the performances of the proposed estimators are decreasing with the increasing sample sizes. In
the whole case, the CPs are pretty close to their actual value 0.95. Many various values of the
parameters are performed but only a few of them are reported here.
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6. Numerical example
In this section, a real-life data is illustrated to compare different estimation procedures studied

in this study. The data set which is given by Hand et al. [9] is handled. This data represents the
survival period of 45 patients treated with chemotherapy. This data set is also fitted for the Chen
distribution by Kayal et al. [13]. The data is given below as

1 63 105 129 182 216 250 262 301 301 342 354 356 358 380 383 383
388 394 408 460 489 499 523 524 535 562 569 675 676 748 778 786

797 955 968 1000 1245 1271 1420 1551 1694 2363 2754 2950

We divided data points by 3000 to simplify computations. Then, we fit this dataset with the
Chen distribution by using the MLE, GFI and Bayesian inference methods.
We also evaluate the convergence of the Markov chains. We perform Markov chains 100 500

times and we discard the first 500 values as burn-in period and we count in every tenth variate
as independent and uncorrelated samples. Thus, we obtain 10 000 uncorrelated and independent
samples. In the Bayesian procedure, we use very small non-negative values of the hyper-parameters,
i.e. a1 = a2 = b1 = b2 = 0.0001, as suggested by Congdon ([5], page 69) which are almost like Jeffrey’s
priors but they are proper, inversely.
The parameter estimates of the parameters and their corresponding confidence intervals are

obtained as given in Tables 5-6, respectively.

Table 5. Estimations, K-S test values and p- values for the real data example

MLE GFI Bayes
λ 3.1979 3.0759 3.1290
β 0.9804 0.9444 0.9571

K-S 0.1778 (0.4756) 0.1556 (0.6476) 0.2222 (0.2165)

Table 6. Confidence intervals with their lengths for the real data example

ACI FCI BCI

λ
(1.9157,4.4803) (1.9810,4.4835) (1.9921, 4.5752)

2.5646 2.5025 2.5831

β
(0.7348,1.2261) (0.7108,1.2014) (0.7212,1.2079)

0.4914 0.4906 0.4867

The Kolmogorov–Smirnov (KS) test statistics and the associated p-values for all inference pro-
cedures are obtained as bigger than 0.05. Therefore, we can not reject the null hypothesis that this
data set comes from the Chen distribution. Also, the estimated density and the emprical cdf plots
support this observation as seen in Figure 3.
Further, the convergence of the Markov chains is evaluated with trace (Figures 4-5), density

(Figures 6-7) and running mean (ergodic average) ( Figures 8-9) plots. A trace plot is a plot of
the parameter values in each iteration of the Markov chain against the iteration number. It is
expected to observe that the Markov chain disperses around its center with a similar variation.
In our example, trace plots of the Markov chains provide expectations and fluctuate around their
centers with similar variations. Further, the posterior density plots of λ and β via GFI and Bayesian
methods obtained almost symmetrical and in the shapes of unimodal. The trace, density and
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Figure 3. Estimated density and empirical cdf for real-data example fitted by the Chen distribution

running mean plots can be drawn using by the traplot, denplot and rmeanplot functions in
library mcmcplots (Curtis et al., [7]) in R [6] software.
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Figure 4. Trace plots for λ via GFI (on left) and the Bayesian (on right) methods
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Figure 5. Trace plots for β via GFI (on left) and the Bayesian (on right) methods
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Figure 6. Density plot for the posterior distribution of λ via GFI (on left) and the Bayesian (on right) methods
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Figure 7. Density plot for the posterior distribution of β via GFI (on left) and the Bayesian (on right) methods
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Figure 8. Running mean plot for λ via GFI (on left) and the Bayesian (on right) methods
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Figure 9. Running mean plot for β via GFI (on left) and the Bayesian (on right) methods

7. Conclusions
On the basis of this study, the generalized fiducial inference is considered for the parameter

estimates of the Chen distribution. Further, the MLE and Bayesian procedures are handled as
alternative methods to this inference method. The performances of the simulation schemes show
that the GFI method has superiority in parameter estimations of the Chan distribution over the
classical and Bayesian estimation methods. The GFI method provides better results than MLE
and Bayesian methods in most cases even in the case of small, moderate or large sample sizes. The
theoretical findings are also evaluated on a real data example. Additionally, the convergence of the
Markov chains generated in the GFI and Bayesian procedures are provided. These observations
are supported by the graphical methods. Consequently, the generalized fiducial inference method
based on the inverse of the structural equation which is proposed by Hannig et. al. [12] should be
proposed as a more efficient estimator for the parameter estimation of the Chen distribution.
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Abstract: Recently, collection of huge amount of data and analysis of that much data have vital importance
for human activities in many different application areas. Advanced statistical methods play crucial role for
modeling of such data when the data contains outliers. Although there are number of outlier detection
methods for revealing outlier observations in data, most of them may not be reasonable and appropriate for
prediction purposes due to structural and requirements of modeling. In this study, density based clustering
algorithm named Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is considered in
order to detect the location of outlier observations effectively with respect to form of the model for given
data set. Based on obtained results, the Mean Shift Outlier Model (MSOM) is constructed as a robust linear
model. This newly proposed computational approach based on DBSCAN uses power of data clustering and
also minimize the impact of the outlier observations by MSOM. The numerical examples are also presented
to reveal the performance of the proposed approach in this study.

Key words : Outlier problem, Mean shift outlier model, Density based clustering.

1. Introduction
Recently, collection of huge amount of data and analysis of that much data have vital importance

for human activities in many different application areas. Most of the statistical applications involve
regression models for doing estimation and prediction. Among regression models, Linear Regression
Model (LRM) is one of the most used ones by many researchers who prefer well-established form,
ease of application and interpretability of the model [11]. Generally, LRM is used to investigate the
relationship between a response (dependent) variable and explanatory (predictor or independent)
variable(s) through estimation parameter(s). Moreover, parameter estimation of LRM is mainly
based on a least squares method which can be seriously hindered by the presence of outlier obser-
vation(s) [15, 16].

Outliers occur because of changes in system behavior, human or machine error, or natural devia-
tions in observations. In fact, these observations reduce and affect the information that we may get
from the source. For this reason, it is very important to identify the existing outlier observations
in given dataset [2]. Although there are number of outlier detection methods for revealing outlier
observations in the dataset, most of them may not be reasonable and appropriate for prediction or
estimation [9]. Thus, advanced methods play crucial role for outlier identification.
In this study, outlier observations are considered as the data points that distorting model and

reducing model performance. For the detection of such outlier observations, existing statistical
methods can be categorized into two which are traditional and advanced approaches. The first
approach, generally, provides good result for small or relatively medium size dataset, but they
fail when the dataset is high dimensional. The second approach, on the other hand, gives good
performance with very low computational time on any size of dataset but especially it provides
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very good results on high-dimensional datasets. Therefore, advanced methods play crucial role for
outlier identification [3, 6, 12, 21, 22, 23]. In this study, the new approach is proposed for outlier
identification with advanced data mining tool named clustering.
There are different types of clustering algorithms such as hierarchical clustering, partitioning

clustering and density based clustering. Among them density based clustering is appropriate to
find outliers since it captures the data structure well with respect to regional density [8]. The most
popular density based clustering algorithm named Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) is preferred in this study for outlier identification [7, 24]. Based on obtained
results via DBSCAN, these observations are modeled with Mean Shift Outlier Model (MSOM)
which is a robust linear model.
This paper is organized as follows: Section 2 briefly reviews linear models and then MSOM is

presented in detail. Section 3 presents some outlier identification methods. A background on clus-
tering and a new outlier detection approach based on DBSCAN algorithm are also provided in the
same section. Section 4 includes applications and comparisons of the new approach against existing
alternative in order to illustrate the efficacy of the proposed approach. Section 5 summarizes and
concludes the paper.

2. Improvements on linear model with mean shift outlier model
There are various way of modeling to handle outlier observation(s) within a dataset of interest

using Linear Models (LMs). The general form of the LRM with n observations and p independent
variables is given by:

Y = β0 +

p∑
j=1

βjXj + ε, (2.1)

where Y is the response variable and Xj (j = 1,2, ..., p) are the predictor variables. The vector
of predictors is represented by X = (X1,X2, ...,Xp)

T
. The coefficient (unknown parameter) β0 is

the intercept and the rest of the unknown parameters βj are the regression coefficients of the
independent variables Xj (j = 1,2, ..., p), and ε is the random error term which is generally called
noise [16]. If the response values (yi) and predictor vectors (x i (i= 1,2, . . . , n)) are inserted into
the model in Eq. (2.1), the following linear system will be obtained:

y =Xβ+ ε. (2.2)

Here, y is an (n× 1)-vector of the response variable, x i (i= 1,2, ..., n) is a (1× (p+1)) row
vectors of X matrix which is a full rank (n× (p+1))-matrix of predictor variables and β is a
((p+1)× 1)-vector of coefficients. Moreover, ε is an (n× 1)-vector of independently, identically dis-
tributed random errors. The corresponding mean and standard deviation are given by E (ε | X ) = 0
and Var (ε | X ) = σ2I . Here, σ is an unknown parameter and I is the n dimensional identity

matrix. Based on the least squares estimates, β and σ are given by β̂ =
(
X TX

)−1
X Ty and

σ=
√
yT (I −H )y/ (n− p− 1), where H :=X

(
X TX

)−1
X T is called hat operator [17]. In order

to handle outlier observation(s) for LMs, there are two main approaches called Direct Approaches
(DA) and Indirect Approaches (IA). These approaches are based on residuals from the robust
regression. In general, the robust regression provides more stable results than LRM in the presence
of outliers. There are three different types of outlier problems: Problems with outliers occurred in
the vertical direction, problems with outliers occurred in the horizontal direction, and problems
with outliers occurred at leverage points [1, 9, 18]. Figure 1 shows simple demonstration of the out-
liers in vertical direction (×), horizontal direction (+) and at leverage point (•). The mostly used
robust regression methods to deal with outlier observation(s) in a dataset are M estimation [13],
Least Trimmed Square estimation [18] and MSOM [5, 14]. In this study, the MSOM is employed
in order to model the dataset consists of outliers which is describe next.



Fatma Yerlikaya-Özkurt: A new computational approach based on density clustering for outlier problems in linear models
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Figure 1. Graphical representation of outliers occurred in vertical direction, horizontal direction and at leverage
point

2.1. Mean shift outlier model
The general form of the MSOM is given by:

Y =X Tβ+Θθ+ ε,

where Θ∈ {0,1} is a constant term, and θ is the coefficient for outlier observation. In the absence
of an outlier, Θ = 0, and the contribution of an outlier is represented by the value θ. The linear
system takes the following form after inserting all data values to the model:

y =Xβ+ e iθ+ ε,

where e i is the ith unit vector, i.e., e i = (0, ...,1,0, ...,0)
T
(i= 1,2, ..., n). In this linear system, it

is assumed that either yi or x iβ deviates systematically from the model yi = x iβ + εi by some
value θ. Then, the ith observation (yi,x iβ) would have a different intercept than the remaining
observation, and (yi,x iβ) would hence be an outlier [5, 14].
After detecting the m outliers (m<n) in the dataset, the MSOM can be written as:

y =Xβ+Eθ+ ε,

where X , β and ε have same descriptions as in Eq. (2.2). On the other hand, E is an (n×m)-
matrix with m indicator variables, and θ is an (m× 1)-vector of the coefficients of the indicator
variables. More compact form of the MSOM is rewritten as:

y =X ∗β∗ + ε, (2.3)

where X ∗ = (X | E) is an (n× (p+1+m)) block matrix constructed by the matrices X and E ,

and β∗ =
(
βT ,θT

)T
is an ((p+1+m)× 1)-vector constructed by the vectors β and θ.

It should be noted that MSOM (as presented in Eq. (2.3)) gives the same residual sum of squares
as the model fitted after omitting the outlier observations [20]. Therefore, MSOM is particularly
convenient and preferred instead of the linear regression model in the presence of outliers.

3. Outlier identification methods
Identification of outliers is the key step before modeling with MSOM. In order to build MSOM

with having good predictions, outliers should be carefully analyzed. Otherwise, the prediction
model may give misleading results. Although there are various outlier detection methods, most of
these methods are useless when modeling is taken into account. In this study, model based outlier
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identification methods are focused on. For this purposes, firstly traditional then advanced methods
are introduced.
For a given dataset with n observations, the m outliers (m < n) can be detected by direct

approaches such as Likelihood-Ratio Test Statistic, Cooks Distance or Studentized Residuals which
are described below [16].
Likelihood-Ratio Test Statistic (Fi):

Fi =
(RSS1 −RSS2)/1

RSS2/ (n− p− 1)
.

Here, RSS1 is the residual sum of squares obtained by using all the n observations in the model
y =Xβ+ ε and RSS2 is the residual sum of squares in the model y =Xβ+ e iθ+ ε
Cooks Distance (CDi):

CD−i =

(
ŷ − ŷ−i

)T (
ŷ − ŷ−i

)
pσ̂2

,

where ŷ and ŷ−i represent the response vector and the estimated response vector after omission
of the ith observation, respectively. And σ̂2 is obtained by sum of square error divided by (n− p)
[20].
Studentized Residuals (ri):

ri =
ε̂i

σi

√
(1−hii)

(i= 1,2, ..., n) ,

where σi is the standard deviation of the ith residual and ε̂= (I −H )y , ε̂i = eT
i ε̂, and eT

i He i = hii.
An observation is defined as an outlier if it has larger Cook’s distance and Studentized residual

values. In order to find all potential outliers, the following steps are applied to a given dataset and
repeated until all of the outlier observations are defined.
1. The LRM is constructed to fit the data.
2. The fitted values and ordinary residuals are obtained to check the better prediction.
3. The direct approaches described above are calculated to extract potential outliers.
4. The potential outlier is removed from the dataset, and the first three steps are repeated until

detecting all potential outliers.
These steps are computationally slow for analyzing and detecting outlier(s) in a dataset, espe-

cially, in case of large scale dataset. These steps also contain a high error rate. Thus, it is important
to have an accurate, reliable, and fast computational method for the identification of the outliers.
At this stage advanced data mining tools, especially, clustering techniques play crucial role.

3.1. A background on clustering
Clustering is a data mining technique to identify the group of unlabeled data points of a data set

that are similar and dissimilar to each other. Clusters are formed by assigning most similar objects
(data points, entities) to the same group and dissimilar ones to the separate groups as much as
possible [8].

There are different types of clustering such as hierarchical clustering, partitioning clustering and
density based clustering and each preferred for different purposes. Hierarchical clustering aims to
construct clusters that have an ordering from bottom to top like a tree structure. As a result it
produce the hierarchical relation between the created clusters. There are two kinds of hierarchical
clustering named divisive and agglomerative. Divisive clustering is splitting the single all inclusive
cluster into two until having only clusters with one data point. Whereas agglomerative clustering
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(bottom-up approaches) is starting from the single data point as an individual cluster and merging
clusters at each iteration until getting a single all inclusive cluster [24].
Partitioning clustering is based on clustering of n unlabeled data points to k clusters in which

each cluster contains at least one data points. The purpose of the partitioning clustering is to
minimize the distances of data points in a cluster whereas to maximize the distances between the
separated clusters. In partitioning clustering, after defining number of clusters (k), the next step
is to assign k random initial centers. The cluster centers are updated based on the data points
assigned to a given cluster. This procedure repeatedly continues until the assigned cluster points
of a sample can not be updated [24].
On the other hand, density based clustering is a clustering method that identify the arbitrarily

shaped clusters in data according to the idea of a cluster is being a region with high density and
separated from the other such clusters by regions of low density. Although, this type of clustering
algorithms have high complexity, they can easily identify outliers in the data set. Moreover, they
can handle noise and can detect the clusters automatically since they can scan the data well [8]. The
most popular density-based clustering algorithm that proposed in this study to identify outliers is
Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

3.1.1. DBSCAN to identify outlier
DBSCAN is a density-based clustering algorithm based on the density of the data points or

closeness of the data points [7]. The points outside the dense regions are extracted and treated as
outliers. This property of the DBSCAN algorithm makes it a powerful method for outlier detection.
The other clustering algorithms such as k-means clustering lack this property and are very sensitive
to outliers since existence of outliers can easily influence the construction of the clusters [6, 12].

DBSCAN starts with the estimation of density over a dataset with n observations. It estimates
the density around each observation using epsilon neighborhood concept (eps). DBSCAN depends
on the eps and a threshold value (MinPts) to detect dense regions into dataset and to classify the
observation as a core, a border, or an outlier. Illustration of the concept of DBSCAN algorithm is
given in Figure 2 [10].

Figure 2. Illustration of the concept of DBSCAN algorithm given by Hahsler et. al. (2019)

The DBSCAN constructs all clusters by defining all core points which have high density and
expanding each cluster to all reachable points by retrieving their epsilon neighborhood. The search
continues until no more core points are found in the expanded neighborhood. End of the search, the
cluster is constructed and the observations that are outside of the cluster are assigned as outliers
[7, 10].
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4. Applications and results
In this section, in order to apply the proposed approach, firstly, the datasets used in this study

are introduced. Then, the well-known prediction performance measures are provided in the follow-
ing subsections. Finally, the details of the applications and results and are presented in the last
subsection. It should be noted that all computational parts of the DBSCAN, LRM and MSOM
are conducted through R programming. Specifically, the R packages “dbscan” and “devtools” are
installed for running DBSCAN algorithm while detecting outlier observations [10].

4.1. Data sets

4.1.1. Real world data set
The first dataset, a stack loss data, is selected from SAS Customer Support [19]. It is well-known

and -studied for outlier analysis in LM. This dataset is about the operation of a plant for the oxida-
tion of ammonia to nitric acid. It contains n= 21 observations, p= 3 explanatory variables which
are the rate of operation (X1), the cooling water inlet temperature (X2), and the acid concentration
(X3). The response variable (Y ) is the stack-loss. All variables’ observations of this dataset are
shown below:

X1: 80 80 75 62 62 62 62 62 58 58 58 58 58 58 50 50 50 50 50 56 70

X2: 27 27 25 24 22 23 24 24 23 18 18 17 18 19 18 18 19 19 20 20 20

X3: 89 88 90 87 87 87 93 93 87 89 89 88 82 93 89 86 72 79 80 82 91

Y : 42 37 37 28 18 18 19 20 15 14 14 13 11 12 8 7 8 8 9 15 15

4.1.2. Simulation data set
For the simulation dataset, the data generation is based on the LM given in Eq. (2.1). The

matrix of predictors is obtained from a multivariate normal distribution with zero mean and one
constant (N (0, 1)). The random error vector is obtained from again normal distribution with N (0,
1). For one dimensional vector of unknown parameter, the randomly generated value between zero
and ten are preferred. In order to demonstrate the outlier identification ability of the proposed
approach relatively large size dataset is chosen (n= 1000). After finalizing data generation, ran-
domly 40 observations are defined and shifted with some values in order to convert them as outlier
observations.

4.2. Prediction performance measures
The performance measures with their formulas used in this study are given as follows [15]:

Residual Sum of Squares (RSS)=:
∑n

i=1(yi − ŷi)
2,

Mean Squared Error (MSE)=: 1
n

∑n

i=1(yi − ŷi)
2,

Root Mean Square Error (RMSE)=:
√

1
n

∑n

i=1(yi − ŷi)2,

Multiple Coefficient of Determination (R2)=: 1−
(∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2

)
,

Adjusted R2 (AdjR2)=: 1−
(

(1−R2)(1−n)

n−p−1

)
,

Correlation Coefficient (r)=:
√
R2,
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where yi is ith observed response value, ŷi is ith fitted response value, ȳ represents mean response
value.

4.3. Results and findings
For the first dataset, after applying carefully the outlier detection steps given in Section 3, the

observations 1, 2, 3, 4 and 21 are defined as outliers. It take quite long time to identify these outliers
since these steps require high human intervention and they are not conducted automatically.
The linear model and related performance results obtained in the presence of all observations

are given below and in Table 1, respectively.

YLM =−42.1062+0.7124X1 +1.2625X2 − 0.1159X3.

The performance results obtained after each potential observation (observations 1, 2, 3, 4 and
21) is removed from the data one by one, are presented in Table 1. In addition, the performance
results obtained after removing all potential observations from the dataset are presented in the
same table.

Table 1. Performance results of LM and MSOM & performance results obtained after removing each or all of the
potential outlier observation(s) from the dataset

Measures MSE RMSE R2 AdjR2 r
LM 8.7338 2.9553 0.9114 0.8957 0.9547
Outlier(1) 8.3682 2.8928 0.9401 0.8837 0.8620
Outlier(2) 8.9394 2.9899 0.9450 0.8930 0.8730
Outlier(3) 7.9168 2.8137 0.9514 0.9052 0.8875
Outlier(4) 7.2903 2.7001 0.9620 0.9254 0.9114
Outlier(21) 5.3198 2.3065 0.9739 0.9484 0.9387
All Outliers 1.0059 1.0029 0.97050 0.9419 0.9274
MSOM 0.7664 0.8754 0.9922 0.9870 0.9961

However, if DBSCAN algorithm is applied to given data set with eps=8 and MinPts=4 parame-
ters, exactly same outlier observations are detected in less than a minute. The graphical represen-
tation of the clusters and outliers is given in Figure 3. In this figure, the outliers are demonstrated
by black points.
After detecting all outliers for the given dataset, MSOM is built and same performance measures

are calculated and given in Table 1.

YMSOM = −36.6978+0.6658X1 +0.5673X2 − 0.0103X3

+9.2070O1 +4.2172O2 +8.6601O3 +9.9131O4 − 7.1848O21,

where Oi for i= 1,2,3,4,21 represents the ith outlier observation. In addition, if the coefficients
of the outlier observations are compared against the coefficients of independent variables, the
contributions of outlier variables to the model are much more than independent variables. If the
performance results of LM and MSOM are compared according to all performance measures, it is
obvious that MSOM based on DBSCAN is much more better than LM and the LM that obtained
even after removing all outlier observations.
Moreover, another application of the proposed approach is conducted by using simulated dataset

which contains 40 outlier observations that randomly constructed. The DBSCAN algorithm is
applied to this dataset with eps=0.3 and MinPts=10 parameters. All outliers are correctly defined
and represented in Figure 4.
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Figure 3. Graphical representation of outliers and clusters for stack loss dataset.

Figure 4. Graphical representation of outliers and clusters for simulated dataset

After detection of outliers for the simulated dataset, LM and MSOM are constructed. Perfor-
mance results of the models are given in Table 2. The results in this table show that the proposed
approach is still a much better than traditional approaches as the data size increases or the number
of outliers in the dataset increases.
To summarize, for the computational process of outlier detection, we use DBSCAN algorithm.

By using this clustering algorithm, the MSOM is improved in terms of CPU time and user effort.
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Table 2. Performance results of LM and MSOM based on simulated dataset

Measures MSE RMSE R2 AdjR2 r
LM 0.0473 0.2175 0.7278 0.7276 0.8531
MSOM 0.0112 0.1057 0.9357 0.9330 0.9973

5. Conclusion
Main goal of this study is proposing a new approach for a robust LM estimation within the

existence of outliers. This new computational approach is based on DBSCAN and MSOM methods.
DBSCAN is used for detecting the location of outlier observations effectively since it is fast, stable
under perturbations on data and appropriate also for high dimensional dataset. On the other hand,
MSOM is constructed as a robust linear model to overcome instability in modeling, and it also
does not ignore outlier observations that are necessary to model the data adequately. The proposed
method has been performed on real world and simulated datasets. It is observed that this approach
performs quite well in terms of computational time and accurate detecting ability of the outlier
observations than the traditional methods.
It is always possible to improve this new approach for future applications. Recommendations

can be summarized as follows:
� In this study, MSOM is used as a robust model. In future, in order to capture nonlinear

structure in the dataset, instead of independent variables, MSOM can be formed by using data
based basis functions.

� In future applications, it is also possible to apply this new approach for classification type of
datasets.

� This approach can also be effectively applied to high dimensional datasets in the existence of
outliers.
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