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reports by the referees. The Editor-in-Chief makes the final decision regarding the publishing 
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Articles are accepted for publication by the Editor-in-Chief in accordance with the COPE 

(Committee on Publication Ethics). Authors can access this information online via the journals’ 

websites (https://publicationethics.org/). Articles are accepted for publication on the 

understanding that they have not been published and are not going to be considered for 

publication elsewhere. Authors should certify that neither the manuscript nor its main contents 

have already been published or submitted for publication in another journal. 
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authors, editors, and reviewers: 
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• Ensuring a supply of high-quality manuscripts to the journal by identifying important, 

• Increasing the journal’s impact factor and maintaining the publishing schedule, 
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• An editor must evaluate the manuscript objectively for publication, judging each on its quality 

without considering the nationality, ethnicity, political beliefs, race, religion, gender, seniority, 

or institutional affiliation of the author(s). Editors should decline any assignment when there is 

a potential for conflict of interest. 

• Editors must ensure the document(s) sent to the reviewers does not contain information of the 

author(s) and vice versa. 

• Editors’ decisions should be provided to the author(s) accompanied by the reviewers’ 

comments and recommendations unless they contain offensive or libelous remarks. 

• Editors should respect requests (if well reasoned and practicable) from author(s) that an 
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• Editors and all staff members should guarantee the confidentiality of the submitted 

manuscript. 

• Editors should have no conflict of interest with respect to articles they reject/accept. They 

must not have a conflict of interest with the author(s), funder(s), or reviewer(s) of the 

manuscript. 

• Editors should strive to meet the needs of readers and authors and to constantly improve the 
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• Reviewers should keep all information regarding papers confidential and treat them as 

privileged information. 

• Reviews should be conducted objectively, with no personal criticism of the author. 
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clearly with supporting arguments. 

• Reviewers should complete their reviews within a specified timeframe (maximum thirty-five 
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of the manuscript within a stipulated time, then this information must be communicated to the 

editor so that the manuscript could be sent to another reviewer. 

• Unpublished materials disclosed in a submitted manuscript must not be used in a reviewer’s 

personal research without the written permission of the author. Information contained in an 

unpublished manuscript will remain confidential and must not be used by the reviewer for 

personal gain. 

• Reviewers should not review manuscripts in which they have conflicts of interest resulting 

from competitive, collaborative, or other relationships or connections with any of the authors, 
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the author. Reviewers should also notify the Editors of significant similarities and/or overlaps 

between the manuscript and any other published or unpublished material. 

 
Duties of Authors 
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have not transferred elsewhere any rights to the article. 

• The author(s) should ensure the originality of the work and that they have properly cited 

others’ work in accordance with the reference format. 

• The author(s) should not engage in plagiarism or in self-plagiarism. 
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All kinds of research carried out with qualitative or quantitative approaches that require data 
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Use of humans and animals (including material/data) for experimental or other scientific 

purposes, 

• Clinical studies on humans, 

• Studies on animals, 

• Retrospective studies in accordance with the law on the protection of personal data, (Ethics 

committee approval should have been obtained for each individual application, and this 

approval should be stated and documented in the article.) 

Information about the permission (board name, date, and number) should be included in the 

"Method" section of the article and also on the first/last page. 

During manuscript upload, the “Ethics Committee Approval” file should be uploaded to the 

system in addition to the manuscript file. 

In addition, in case reports, it is necessary to include information on the signing of the informed 

consent/ informed consent form in the manuscript.  

• The author(s) should suggest no personal information that might make the identity of the 

patient recognizable in any form of description, photograph, or pedigree. When photographs of 

the patient were essential and indispensable as scientific information, the author(s) have 

received consent in written form and have clearly stated as much. 

• The author(s) should provide the editor with the data and details of the work if there are 

suspicions of data falsification or fabrication. Fraudulent data shall not be tolerated. Any 

manuscript with suspected fabricated or falsified data will not be accepted. A retraction will be 

made for any publication which is found to have included fabricated or falsified data. 

• The author(s) should clarify everything that may cause a conflict of interests such as work, 

research expenses, consultant expenses, and intellectual property. 

• The author(s) must follow the submission guidelines of the journal. 

• The author(s) discover(s) a significant error and/or inaccuracy in the submitted manuscript at 

any time, then the error and/or inaccuracy must be reported to the editor. 

• The author(s) should disclose in their manuscript any financial or other substantive conflicts 

of interest that might be construed to influence the results or interpretation of their manuscript. 

All sources of financial support should be disclosed under the heading of “Acknowledgment” 

or “Contribution”. 

• The corresponding author should ensure that all appropriate co-authors and no inappropriate 

co-authors are included in the paper and that all co-authors have seen and approved the final 

version of the paper and have agreed to its submission for publication. All those who have made 

significant contributions should be listed as co-authors. Others who have participated in certain 

substantive aspects of the research should be acknowledged or listed under the heading of 

“Author Contributions”. 
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published, they can be withdrawn from publication if necessary. The Editor-in-Chief of the 

journal has the right to return or withdraw an article/manuscript in the following situations: 

 

• When the manuscript is not within the scope of the journal, 

• When the scientific quality and/or content of the manuscript do not meet the standards of the 

journal and a referee review is not necessary, 



• When there is proof of ruling out the findings obtained by the research, (When the 

article/manuscript is undergoing an assessment or publication process by another journal, 

congress, conference, etc.,) 

• When the article/manuscript was not prepared in compliance with scientific publication ethics, 
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• When a statement is not submitted indicating that approval of the ethics committee permission 
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has been accepted for publication, i.e. after referee-recommended revisions are complete, the 
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Preparation of Manuscript 

 

Style and Format: Manuscripts should be single column by giving one-spaced with 2.5-cm 

margins on all sides of the page, in Times New Roman font (font size 11). Every page of the 

manuscript, including the title page, references, tables, etc., should be numbered. All copies of 
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Symbols, Units and Abbreviations: Standard abbreviations and units should be used; SI units 

are recommended. Abbreviations should be defined at first appearance, and their use in the title 

and abstract should be avoided. Generic names of chemicals should be used. Genus and species 

names should be typed in italic or, if this is not available, underlined. 

 

Please refer to equations with capitalisation and unabbreviated (e.g., as given in Equation (1)). 
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Formulation of problem, etc.) and subsections should be numbered 1.1., 1.2., etc. Do not 
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possible, divided into the following sections: Introduction, Materials and Methods (or 

Experimental), Results, Discussion, and Conclusion. 

 

Title and contact information 
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Abstract 

The abstract should provide clear information about the research and the results obtained, and 

should not exceed 300 words. The abstract should not contain citations and must be written in 

Times New Roman font with font size 9. 

 

Keywords 

Please provide 3 to 5 keywords which can be used for indexing purposes. 

 

Introduction 

The motivation or purpose of your research should appear in the “Introduction”, where you 

state the questions you sought to answer, and then provide some of the historical basis for those 

questions. 

 

Methods 

Provide sufficient information to allow someone to repeat your work. A clear description of 

your experimental design, sampling procedures, and statistical procedures is especially 

important in papers describing field studies, simulations, or experiments. If you list a product 

(e.g., animal food, analytical device), supply the name and location of the manufacturer. Give 

the model number for equipment used. 

 

Results 

Results should be stated concisely and without interpretation. 

 

Discussion 

Focus on the rigorously supported aspects of your study. Carefully differentiate the results of 

your study from data obtained from other sources. Interpret your results, relate them to the 

results of previous research, and discuss the implications of your results or interpretations. 

 

 

 



Conclusion 

This should state clearly the main conclusions of the research and give a clear explanation of 

their importance and relevance. Summary illustrations may be included. 
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RESEARCH ARTICLE 

 

THE NOWICKI CONJECTURE FOR BICOMMUTATIVE ALGEBRAS 
 

Şehmus FINDIK *   

 
Department of Mathematics, Faculty of Science and Letters, Çukurova University, Adana, Türkiye 

 

ABSTRACT 
 

Let 𝐾 be a field of characteristic zero, and 𝐾[𝑋𝑛, 𝑌𝑛] be the commutative associative unitary polynomial algebra of rank 2𝑛 

generated by the set 𝑋𝑛 ∪ 𝑌𝑛 = {𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛}. It is well known that the algebra 𝐾[𝑋𝑛, 𝑌𝑛]𝛿 of constants of the locally 

nilpotent linear derivation 𝛿 of 𝐾[𝑋𝑛, 𝑌𝑛] sending 𝑦𝑖 to 𝑥𝑖, and 𝑥𝑖 to 0, is generated by 𝑥1, … , 𝑥𝑛 and the determinants of the 

form 𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖; that was first conjectured by Nowicki in 1994, and later proved by several authors. Bicommutative 

algebras are nonassociative noncommutative algebras satisfying the identities (𝑥𝑦)𝑧 = (𝑥𝑧)𝑦 and 𝑥(𝑦𝑧) = 𝑦(𝑥𝑧). In this 

study, we work in the 2𝑛 generated free bicommutative algebra as a noncommutative nonassociative analogue of the 

Nowicki conjecture, and find the generators of the algebra of constants in this algebra. 

 

Keywords: Algebra of constants, Bicommutative algebra, The Nowicki conjecture  
 

 

1. INTRODUCTION 
 

Roots of the Nowicki conjecture dates back to 1900, when the famous German mathematician David 

Hilbert posed 23 unsolved major questions at the Paris International Congress of Mathematicians [1]. 

In the fourteenth problem, he asked the finite generation of the algebra 𝐾[𝑋𝑛]𝐺 of invariants of any 

subgroup 𝐺 of the general linear group consisting of 𝑛 × 𝑛 invertible matrices with entries from a field 

𝐾 of characteristic zero, where 𝐾[𝑋𝑛] is the commutative associative unitary polynomial algebra of 

rank 𝑛.  

 

The negative answer to the fourteenth problem was given by Nagata [2] in 1959, while many partially 

affirmative cases were considered by several authors. One may count the work by Noether [3] who 

showed that 𝐾[𝑋𝑛]𝐺 finitely generated for every finite group 𝐺. Another remarkable approach was 

given by Weitzenböck [4] who considered algebras constants of linear nilpotent derivations 𝛿 of 

𝐾[𝑋𝑛]. He showed that the algebra 𝐾[𝑋𝑛]𝛿 is finitely generated that is equal to the algebra 

𝐾[𝑋𝑛]〈exp𝛿〉 of invariants. However, no information about the explicit forms of generators were 

provided. Many years later in 1994, Nowicki [5] conjectured an explicit generating set for the algebra 

𝐾[𝑋𝑛, 𝑌𝑛]𝛿 of constants of the Weitzenböck derivation 𝛿 sending 𝑦𝑖 to 𝑥𝑖, and 𝑥𝑖 to 0, where 𝐾[𝑋𝑛, 𝑌𝑛] 
is the polynomial algebra of rank 2𝑛 generated by the set 𝑋𝑛 ∪ 𝑌𝑛 = {𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛}. He 

proposed that 𝐾[𝑋𝑛, 𝑌𝑛]𝛿 is generated by 𝑥1, … , 𝑥𝑛 and the elements of the form 𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖, where 

1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Then, the conjecture was verified by many mathematicians [6, 7, 8, 9]. 

 

Noncommutative nonassociative analogues of the Nowicki conjecture have been studied, recently. See 

e.g. [10], in which the authors consider the free metabelian Lie algebra 𝐹2𝑛 of rank 2𝑛 generated by 

𝑋𝑛 ∪ 𝑌𝑛. They gave a finite generating set for the algebra (𝐹2𝑛
′ )𝛿 included in the commutator ideal 𝐹2𝑛

′  

of 𝐹2𝑛 as a 𝐾[𝑋𝑛, 𝑌𝑛]𝛿-module. As a continuation of this work a finite generation set for the algebra of 

constants in the commutator ideal of the free metabelian associative algebra generated by 𝑋𝑛 ∪ 𝑌𝑛 as a 

𝐾[𝑋𝑛, 𝑌𝑛]𝛿-bimodule was given in [11]. In the same work, a set of finite generators was obtained for 

https://orcid.org/0000-0001-5717-4413
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the free algebra in the variety of infinite dimensional Grassmann algebras. There is also the free 

metabelian Possion algebra analogue of the Nowicki conjecture [12]. 

 

In the current study, we consider the free algebra of rank 2𝑛 in the variety of bicommutative algebras 

and determine the generators of the algebra of constants of Weitzenböck derivation that was stated in 

the Nowicki conjecture. 

 

2. PRELIMINARIES 

 

We assume that 𝑲 is a field of characteristic zero throughout the paper. Let 𝑲[𝑿𝒏], 𝑲[𝒀𝒏], and 

𝑲[𝑿𝒏, 𝒀𝒏] be the polynomial algebras generated by sets 𝑿𝒏 = {𝒙𝟏, … , 𝒙𝒏}, 𝒀𝒏 = {𝒚𝟏, … , 𝒚𝒏}, and  

𝑿𝒏 ∪ 𝒀𝒏, respectively. We also fix notations 𝝎(𝑲[𝑿𝒏]) and 𝝎(𝑲[𝑿𝒏]) for augmentation ideals of 

𝑲[𝑿𝒏] and 𝑲[𝒀𝒏], respectively, consisting of the polynomials without constant terms. 

 

We call a noncommutative nonassociative algebra over 𝑲 right symmetric and left symmetric if it 

satisfies the identity (𝒙𝒚)𝒛 = (𝒙𝒛)𝒚 and 𝒙(𝒚𝒛) = 𝒚(𝒙𝒛), respectively. An algebra over 𝑲 is called 

bicommutative if it is left and right symmetric. 

 

Let 𝑭𝟐𝒏 be the free algebra of rank 𝟐𝒏 generated by 𝑿𝒏 ∪ 𝒀𝒏 in the variety of bicommutative algebras 

over the field 𝑲, and let 𝒂 = 𝒂𝟏𝒂𝟐, 𝒃 = 𝒃𝟏𝒃𝟐, 𝒄 ∈ 𝑭𝟐𝒏
𝟐  for some 𝒂𝟏, 𝒂𝟐, 𝒃𝟏, 𝒃𝟐 ∈ 𝑭𝟐𝒏. Then the 

following straightforward computations show that the ideal 𝑭𝟐𝒏
𝟐 = 𝑭𝟐𝒏𝑭𝟐𝒏 of 𝑭𝟐𝒏 is commutative and 

associative.  

 

𝒂𝒃 = (𝒂𝟏𝒂𝟐)(𝒃𝟏𝒃𝟐) = (𝒂𝟏(𝒃𝟏𝒃𝟐))𝒂𝟐 = (𝒃𝟏(𝒂𝟏𝒃𝟐))𝒂𝟐 = (𝒃𝟏𝒂𝟐)(𝒂𝟏𝒃𝟐) = 𝒂𝟏((𝒃𝟏𝒂𝟐)𝒃𝟐)

= 𝒂𝟏((𝒃𝟏𝒃𝟐)𝒂𝟐) = (𝒃𝟏𝒃𝟐)(𝒂𝟏𝒂𝟐) = 𝒃𝒂, 
and 

(𝒂𝒃)𝒄 = 𝒄(𝒂𝒃) = 𝒂(𝒄𝒃) = 𝒂(𝒃𝒄). 
 

Therefore, 𝑭𝟐𝒏 can be considered as a direct sum of the vector space 𝑲(𝑿𝒏 ∪ 𝒀𝒏) = 𝐒𝐩𝐚𝐧{𝑿𝒏 ∪ 𝒀𝒏} 

and 𝝎(𝑲[𝑨𝒏, 𝑩𝒏])𝝎(𝑲[𝑪𝒏, 𝑫𝒏]), where 

 

𝑨𝒏 = {𝒂𝟏, … , 𝒂𝒏}, 𝑩𝒏 = {𝒃𝟏, … , 𝒃𝒏}, 𝑪𝒏 = {𝒄𝟏, … , 𝒄𝒏}, 𝑫𝒏 = {𝒅𝟏, … , 𝒅𝒏} 

 

such that 

𝒙𝒊𝒙𝒋 = 𝒂𝒊𝒄𝒋, 

𝒚𝒊𝒚𝒋 = 𝒃𝒊𝒅𝒋, 

𝒙𝒊𝒚𝒋 = 𝒂𝒊𝒅𝒋, 

𝒚𝒊𝒙𝒋 = 𝒃𝒊𝒄𝒋. 

 

Note that 𝑭𝟐𝒏
𝟐 ≅ 𝝎(𝑲[𝑨𝒏, 𝑩𝒏])𝝎(𝑲[𝑪𝒏, 𝑫𝒏]) contains elements as linear combinations of the form 

 

𝒂𝟏
𝜶𝟏 ⋯ 𝒂𝒏

𝜶𝒏𝒃𝟏
𝜷𝟏 ⋯ 𝒃𝒏

𝜷𝒏𝒄𝟏
𝜸𝟏 ⋯ 𝒄𝒏

𝜸𝒏𝒅𝟏
𝜺𝟏 ⋯ 𝒅𝒏

𝜺𝒏 , 
 

where 𝛼1 + ⋯ + 𝛼𝑛 + 𝛽1 + ⋯ + 𝛽𝑛 > 0, 𝛾1 + ⋯ + 𝛾𝑛 + 𝜀1 + ⋯ + 𝜀𝑛 > 0. We refer to the paper [13] 

for more details. 

 

Now let 𝛿: 𝐹2𝑛 → 𝐹2𝑛 be the locally nilpotent derivation of 𝐹2𝑛 acting linearly on the vector space 

spanned on 𝑋𝑛 ∪ 𝑌𝑛 such that 𝛿(𝑦𝑖) = 𝑥𝑖, 𝛿(𝑥𝑖) = 0 for each 𝑖 = 1, … , 𝑛. Our main result concerns 

with the generators of the subalgebra 
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𝐹2𝑛
𝛿 = {𝑓 ∈ 𝐹2𝑛: 𝛿(𝑓) = 0} 

 

of constants of the derivation 𝛿 in the free bicommmutative algebra 𝐹2𝑛. For this purpose, we will 

work in the algebra 

 

𝐹2𝑛 = 𝐾(𝑋𝑛 ∪ 𝑌𝑛)⨁𝐹2𝑛
2 ≅ 𝐾(𝑋𝑛 ∪ 𝑌𝑛)⨁𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]). 

 

An easy observation gives that 

 

𝐹2𝑛
𝛿 ≅ 𝐾(𝑋𝑛 ∪ 𝑌𝑛)𝛿⨁(𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]))

𝛿
 

                                              = 𝐾𝑋𝑛⨁(𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]))
𝛿

. 
 

Here, we assume that 𝛿 acts on 𝐾(𝐴𝑛 ∪ 𝐵𝑛) and 𝐾(𝐶𝑛 ∪ 𝐷𝑛) same as on 𝐾(𝑋𝑛 ∪ 𝑌𝑛); i.e., 

 

𝛿(𝑏𝑖) = 𝑎𝑖  , 𝛿(𝑎𝑖) = 0 
𝛿(𝑑𝑖) = 𝑐𝑖 , 𝛿(𝑐𝑖) = 0 

 
for each 𝑖 = 1, … , 𝑛. Hence, it is sufficient to determine constants of 𝛿 in the algebra 

 

(𝐹2𝑛
2 )𝛿 = (𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]))

𝛿
. 

 

In the next section, we determine the elements of (𝐹2𝑛
2 )𝛿, and consequently describe the algebra 𝐹2𝑛

𝛿 .  

 

3. MAIN RESULTS 

 

The following theorem and corrollary are our main results. 

 

Theorem 1. The algebra (𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]))
𝛿
  is generated by determinants  

 

|
𝑎𝑖 𝑐𝑗

𝑏𝑖 𝑑𝑗
| = 𝑎𝑖𝑑𝑗 − 𝑏𝑖𝑐𝑗 ,     1 ≤ 𝑖, 𝑗 ≤ 𝑛, 

 

and it is a 𝐾[𝐴𝑛, 𝐶𝑛, 𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗, 𝑐𝑖𝑑𝑗 − 𝑑𝑖𝑐𝑗, 𝑎𝑘𝑑𝑙 − 𝑏𝑘𝑐𝑙: 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 1 ≤ 𝑘, 𝑙 ≤ 𝑛]
𝛿

-module. 

 

Proof. Clearly, 𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]) ⊂ 𝐾[𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛] is a 𝐾[𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛]-module, and 

(𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]))
𝛿
 is a 𝐾[𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛]𝛿-module. It is well known, see e.g. [7], 

that 𝐾[𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛]𝛿 is generated by 𝑎1, … , 𝑎𝑛, 𝑐1, … , 𝑐𝑛 together with 

 

|
𝑎𝑖 𝑎𝑗

𝑏𝑖 𝑏𝑗
| = 𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗 , |

𝑐𝑖 𝑐𝑗

𝑑𝑖 𝑑𝑗
| = 𝑐𝑖𝑑𝑗 − 𝑑𝑖𝑐𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 

 

|
𝑎𝑖 𝑐𝑗

𝑏𝑖 𝑑𝑗
| = 𝑎𝑖𝑑𝑗 − 𝑏𝑖𝑐𝑗 ,    1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

 

It is straightforward to see that a polynomial 𝑝(𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛) ∈ 𝐾[𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛] belongs to 

𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]) if and only if  

 

𝑝(𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛) ≢ 0 (mod 𝐾[𝐴𝑛, 𝐵𝑛]⨁𝐾[𝐶𝑛, 𝐷𝑛]). 
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Since, 

𝑎1, … , 𝑎𝑛 ≡ 0 (mod 𝐾[𝐴𝑛 , 𝐵𝑛]⨁𝐾[𝐶𝑛, 𝐷𝑛]) 

𝑐1, … , 𝑐𝑛 ≡ 0 (mod 𝐾[𝐴𝑛 , 𝐵𝑛]⨁𝐾[𝐶𝑛, 𝐷𝑛]) 

𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗 ≡ 0 (mod 𝐾[𝐴𝑛, 𝐵𝑛]⨁𝐾[𝐶𝑛, 𝐷𝑛]) 

𝑐𝑖𝑑𝑗 − 𝑑𝑖𝑐𝑗 ≡ 0 (mod 𝐾[𝐴𝑛, 𝐵𝑛]⨁𝐾[𝐶𝑛, 𝐷𝑛]) 

𝑎𝑖𝑑𝑗 − 𝑏𝑖𝑐𝑗 ≢ 0 (mod 𝐾[𝐴𝑛, 𝐵𝑛]⨁𝐾[𝐶𝑛, 𝐷𝑛]) 

 

we obtain that (𝜔(𝐾[𝐴𝑛, 𝐵𝑛])𝜔(𝐾[𝐶𝑛, 𝐷𝑛]))
𝛿
 is generated by the elements of the form 𝑎𝑖𝑑𝑗 − 𝑏𝑖𝑐𝑗, 

1 ≤ 𝑖, 𝑗 ≤ 𝑛, and it is a 

 

𝐾[𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛]𝛿 = 𝐾[𝐴𝑛, 𝐶𝑛, 𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗, 𝑐𝑖𝑑𝑗 − 𝑑𝑖𝑐𝑗, 𝑎𝑘𝑑𝑙 − 𝑏𝑘𝑐𝑙: 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 1 ≤ 𝑘, 𝑙 ≤ 𝑛]
𝛿
 

 

-module. 

 

Corollary 2. 𝐹2𝑛
𝛿  is generated by 𝑥1, … , 𝑥𝑛 together with elements of the form 

 

𝑥𝑖𝑦𝑗 − 𝑦𝑖𝑥𝑗 ,  1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

 

Example 3. (𝒊) Let 𝑛 = 1, and the free bicommutative algebra 𝐹2 be generated by 𝑥1 = 𝑥 and 𝑦1 = 𝑦. 

Then the algebra 𝐹2
𝛿 is generated by {𝑥, 𝑥𝑦 − 𝑦𝑥}.  

(𝒊𝒊) Let 𝑛 = 2, and the free bicommutative algebra 𝐹4 be generated by 𝑥1 = 𝑥, 𝑦1 = 𝑦, 𝑥2 = 𝑧, 𝑦2 = 𝑡. 

Then the algebra 𝐹4
𝛿 is generated by {𝑥, 𝑧, 𝑥𝑦 − 𝑦𝑥, 𝑧𝑡 − 𝑡𝑧, 𝑥𝑡 − 𝑦𝑧}. 

 

Remark 4. Note that in the case of commutativity the above example is compatible with the following 

well known results:  

(𝒊) Let 𝑛 = 1. Then 𝐾[𝑥, 𝑦]𝛿  is generated the set {𝑥} in the commutative polynomial algebra 

generated by 𝑥1 = 𝑥 and 𝑦1 = 𝑦.  

(𝒊𝒊) Let 𝑛 = 2. Then 𝐾[𝑥, 𝑦, 𝑧, 𝑡]𝛿  is generated the set {𝑥, 𝑧, 𝑥𝑡 − 𝑦𝑧} in the commutative polynomial 

algebra generated by 𝑥1 = 𝑥, 𝑦1 = 𝑦, 𝑥2 = 𝑧, 𝑦2 = 𝑡. 
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ABSTRACT 
 

Let 𝐾[𝑋4] = 𝐾[𝑥1, 𝑥2, 𝑥3, 𝑥4] be the polynomial algebra with 4 algebraically independent commuting variables over a field 𝐾 

of characteristic zero. The symmetric group 𝑆4 acts on 𝐾[𝑋4] naturally by the action of permutations exchanging the indices 

of variables with respect to the corresponding permutation. It is well known that the algebra 𝐾[𝑋4]𝑆4 of all polynomials 

preserved under the action of 𝑆4 is generated by 4 algebraically independent elements called the elementary symmetric 

polynomials. In this study, we consider the subalgebra 𝐺 of 𝑆4 generated by the transpositions (13) and (24) which is 

isomorphic to the Klein-4 group, and find a free generating set for the algebra 𝐾[𝑋4]𝐺  of 𝐺-invariants.  

 

Keywords: Action, Invariants, Symmetric group 
 

 

 

1. INTRODUCTION 

 

The initiation of study of 𝐺-invariants, where 𝐺 is a subgroup of the general linear group 𝐺𝐿𝑛(𝐾) for a   

field 𝐾 of characteristic zero, dates back to the beginning of the twentieth century. The fourteenth of 

twenty three problems given by David Hilbert [1] is related to the algebra 𝐾[𝑋𝑛]𝐺 of 𝐺-invariants of 

the polynomial algebra 𝐾[𝑋𝑛] in 𝑛 commuting variables 𝑥1, … , 𝑥𝑛 over the field 𝐾. Nagata [2] showed 

that 𝐾[𝑋𝑛]𝐺 is not finitely generated in general, while it is finitely generated for finite subgroups 𝐺 of 

𝐺𝐿𝑛(𝐾) via Noether [3]. 

 

The most interesting group in this theory is the symmetric group 𝑆𝑛. The algebra 𝐾[𝑋𝑛]𝑆𝑛 of 𝑆𝑛-

invariants is called the algebra of symmetric polynomials, and each polynomial in this algebra is called 

a symmetric polynomial. The action of each permutation 𝜋 ∈ 𝑆𝑛 on a monomial is defined as follows. 

 

𝜋(𝑥𝑖1
⋯ 𝑥𝑖𝑘

) = 𝑥𝜋(𝑖1) ⋯ 𝑥𝜋(𝑖𝑘). 

 

It is well known by Cayley's Theorem that every group is a subgroup of 𝑆𝑛 (see e.g., [4]). In this study, 

we realize the Klein-4 group 𝐺 as a subgroup of 𝑆4 generated by two transpositions (13) and (24), 

and describe the algebra 𝐾[𝑋4]𝐺 by providing its generators. 

 

2. THE KLEIN-4 INVARIANTS 

 

In this section, we investigate the algebra 

 

𝐾[𝑋4]𝐺 = {𝑝 ∈ 𝐾[𝑋4]: 𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑝(𝑥3, 𝑥2, 𝑥1, 𝑥4) = 𝑝(𝑥1, 𝑥4, 𝑥3, 𝑥2)}, 
 

where 

 

https://orcid.org/0000-0001-5717-4413
https://orcid.org/0000-0001-7407-9178
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𝐺 = 〈(13), (24)〉 = {(1), (13), (24), (13)(24)}

= {(

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) , (

0 0
0 1

1 0
0 0

1 0
0 0

0 0
0 1

) , (

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

) , (

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

)}, 

 

that is isomorphic to the Klein-4 group. Then, we give a finite generating set for 𝐾[𝑋4]𝐺 .  

 

Lemma 1. 𝐾[𝑋4]𝐺 = 𝐾[𝛼𝑎𝑏 , 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏] , such that  

 

𝛼𝑎𝑏 = 𝑥1
𝑎𝑥3

𝑏 + 𝑥1
𝑏𝑥3

𝑎  , 
𝛽𝑎𝑏 = 𝑥2

𝑎𝑥4
𝑏 + 𝑥2

𝑏𝑥4
𝑎 , 

 

where 0 ≤ 𝑎, 𝑏. 

 

Proof. Let 𝑝 ∈ 𝐾[𝑋4] be an arbitrary polynomial. One may express 

 

𝑝(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑ 𝜀𝑎𝑏𝑐𝑑𝑥1
𝑎𝑥2

𝑏𝑥3
𝑐𝑥4

𝑑

0≤𝑎,𝑏,𝑐,𝑑

= ∑ 𝜀𝑎𝑏𝑐𝑑𝑋𝑎𝑏𝑐𝑑

0≤𝑎,𝑏,𝑐,𝑑

 , 𝜀𝑎𝑏𝑐𝑑 ∈ 𝐾, 

 

as = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 , where 𝑝1, 𝑝2, 𝑝3, 𝑝4 are of the form 

 

𝑝1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑ 𝜀𝑎𝑎𝑎𝑎𝑋𝑎𝑎𝑎𝑎

0≤𝑎

 

𝑝2(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= ∑ (𝜀𝑎𝑏𝑏𝑏𝑋𝑎𝑏𝑏𝑏 + 𝜀𝑏𝑏𝑎𝑏𝑋𝑏𝑏𝑎𝑏) + (𝜀𝑏𝑎𝑏𝑏𝑋𝑏𝑎𝑏𝑏 + 𝜀𝑏𝑏𝑏𝑎𝑋𝑏𝑏𝑏𝑎)

0≤𝑎<𝑏

+ (𝜀𝑏𝑎𝑎𝑎𝑋𝑏𝑎𝑎𝑎 + 𝜀𝑎𝑎𝑏𝑎𝑋𝑎𝑎𝑏𝑎) + (𝜀𝑎𝑏𝑎𝑎𝑋𝑎𝑏𝑎𝑎 + 𝜀𝑎𝑎𝑎𝑏𝑋𝑎𝑎𝑎𝑏)

+ (𝜀𝑎𝑎𝑏𝑏𝑋𝑎𝑎𝑏𝑏 + 𝜀𝑏𝑎𝑎𝑏𝑋𝑏𝑎𝑎𝑏 + 𝜀𝑏𝑏𝑎𝑎𝑋𝑏𝑏𝑎𝑎 + 𝜀𝑎𝑏𝑏𝑎𝑋𝑎𝑏𝑏𝑎) + 𝜀𝑎𝑏𝑎𝑏𝑋𝑎𝑏𝑎𝑏

+ 𝜀𝑏𝑎𝑏𝑎𝑋𝑏𝑎𝑏𝑎 = ∑ 𝑝2,1 + ⋯ + 𝑝2,7

0≤𝑎<𝑏

 

𝑝3(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= ∑ (𝜀𝑎𝑎𝑏𝑐𝑋𝑎𝑎𝑏𝑐 + 𝜀𝑏𝑎𝑎𝑐𝑋𝑏𝑎𝑎𝑐 + 𝜀𝑏𝑐𝑎𝑎𝑋𝑏𝑐𝑎𝑎 + 𝜀𝑎𝑐𝑏𝑎𝑋𝑎𝑐𝑏𝑎)

0≤𝑎<𝑏<𝑐

+ (𝜀𝑎𝑎𝑐𝑏𝑋𝑎𝑎𝑐𝑏 + 𝜀𝑐𝑎𝑎𝑏𝑋𝑐𝑎𝑎𝑏 + 𝜀𝑐𝑏𝑎𝑎𝑋𝑐𝑏𝑎𝑎 + 𝜀𝑎𝑏𝑐𝑎𝑋𝑎𝑏𝑐𝑎)

+ (𝜀𝑎𝑏𝑎𝑐𝑋𝑎𝑏𝑎𝑐 + 𝜀𝑎𝑐𝑎𝑏𝑋𝑎𝑐𝑎𝑏) + (𝜀𝑏𝑎𝑐𝑎𝑋𝑏𝑎𝑐𝑎 + 𝜀𝑐𝑎𝑏𝑎𝑋𝑐𝑎𝑏𝑎)

+ (𝜀𝑏𝑏𝑎𝑐𝑋𝑏𝑏𝑎𝑐 + 𝜀𝑎𝑏𝑏𝑐𝑋𝑎𝑏𝑏𝑐 + 𝜀𝑎𝑐𝑏𝑏𝑋𝑎𝑐𝑏𝑏 + 𝜀𝑏𝑐𝑎𝑏𝑋𝑏𝑐𝑎𝑏)

+ (𝜀𝑏𝑏𝑐𝑎𝑋𝑏𝑏𝑐𝑎 + 𝜀𝑐𝑏𝑏𝑎𝑋𝑐𝑏𝑏𝑎 + 𝜀𝑐𝑎𝑏𝑏𝑋𝑐𝑎𝑏𝑏 + 𝜀𝑏𝑎𝑐𝑏𝑋𝑏𝑎𝑐𝑏)

+ (𝜀𝑏𝑎𝑏𝑐𝑋𝑏𝑎𝑏𝑐 + 𝜀𝑏𝑐𝑏𝑎𝑋𝑏𝑐𝑏𝑎) + (𝜀𝑎𝑏𝑐𝑏𝑋𝑎𝑏𝑐𝑏 + 𝜀𝑐𝑏𝑎𝑏𝑋𝑐𝑏𝑎𝑏)

+ (𝜀𝑐𝑐𝑎𝑏𝑋𝑐𝑐𝑎𝑏 + 𝜀𝑎𝑐𝑐𝑏𝑋𝑎𝑐𝑐𝑏 + 𝜀𝑎𝑏𝑐𝑐𝑋𝑎𝑏𝑐𝑐 + 𝜀𝑐𝑏𝑎𝑐𝑋𝑐𝑏𝑎𝑐)

+ (𝜀𝑐𝑐𝑏𝑎𝑋𝑐𝑐𝑏𝑎 + 𝜀𝑏𝑐𝑐𝑎𝑋𝑏𝑐𝑐𝑎 + 𝜀𝑏𝑎𝑐𝑐𝑋𝑏𝑎𝑐𝑐 + 𝜀𝑐𝑎𝑏𝑐𝑋𝑐𝑎𝑏𝑐)

+ (𝜀𝑐𝑎𝑐𝑏𝑋𝑐𝑎𝑐𝑏 + 𝜀𝑐𝑏𝑐𝑎𝑋𝑐𝑏𝑐𝑎) + (𝜀𝑎𝑐𝑏𝑐𝑋𝑎𝑐𝑏𝑐 + 𝜀𝑏𝑐𝑎𝑐𝑋𝑏𝑐𝑎𝑐)

= ∑ 𝑝3,1 + ⋯ + 𝑝3,12

0≤𝑎<𝑏<𝑐
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𝑝4(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= ∑ (𝜀𝑎𝑏𝑐𝑑𝑋𝑎𝑏𝑐𝑑 + 𝜀𝑎𝑑𝑐𝑏𝑋𝑎𝑑𝑐𝑏 + 𝜀𝑐𝑏𝑎𝑑𝑋𝑐𝑏𝑎𝑑 + 𝜀𝑐𝑑𝑎𝑏𝑋𝑐𝑑𝑎𝑏)

0≤𝑎<𝑏<𝑐<𝑑

+ (𝜀𝑎𝑏𝑑𝑐𝑋𝑎𝑏𝑑𝑐 + 𝜀𝑎𝑐𝑑𝑏𝑋𝑎𝑐𝑑𝑏 + 𝜀𝑑𝑏𝑎𝑐𝑋𝑑𝑏𝑎𝑐 + 𝜀𝑑𝑐𝑎𝑏𝑋𝑑𝑐𝑎𝑏)

+ (𝜀𝑎𝑐𝑏𝑑𝑋𝑎𝑐𝑏𝑑 + 𝜀𝑎𝑑𝑏𝑐𝑋𝑎𝑑𝑏𝑐 + 𝜀𝑏𝑐𝑎𝑑𝑋𝑏𝑐𝑎𝑑 + 𝜀𝑏𝑑𝑎𝑐𝑋𝑏𝑑𝑎𝑐)

+ (𝜀𝑏𝑎𝑐𝑑𝑋𝑏𝑎𝑐𝑑 + 𝜀𝑏𝑑𝑐𝑎𝑋𝑏𝑑𝑐𝑎 + 𝜀𝑐𝑎𝑏𝑑𝑋𝑐𝑎𝑏𝑑 + 𝜀𝑐𝑑𝑏𝑎𝑋𝑐𝑑𝑏𝑎)

+ (𝜀𝑏𝑎𝑑𝑐𝑋𝑏𝑎𝑑𝑐 + 𝜀𝑏𝑐𝑑𝑎𝑋𝑏𝑐𝑑𝑎 + 𝜀𝑑𝑎𝑏𝑐𝑋𝑑𝑎𝑏𝑐 + 𝜀𝑑𝑐𝑏𝑎𝑋𝑑𝑐𝑏𝑎)

+ (𝜀𝑐𝑎𝑑𝑏𝑋𝑐𝑎𝑑𝑏 + 𝜀𝑐𝑏𝑑𝑎𝑋𝑐𝑏𝑑𝑎 + 𝜀𝑑𝑎𝑐𝑏𝑋𝑑𝑎𝑐𝑏 + 𝜀𝑑𝑏𝑐𝑎𝑋𝑑𝑏𝑐𝑎)

= ∑ 𝑝4,1 + ⋯ + 𝑝4,6

0≤𝑎<𝑏<𝑐

 

 

such that 𝑝𝑖,𝑗 counts the sum in the paranthesis indicated as a sum in the expression of 𝑝𝑖  , 𝑖 = 1,2,3,4. 

 

Now let 𝑝 ∈ 𝐾[𝑋4]𝐺. Then, clearly 𝑝 = 𝜋(𝑝) gives that 

 

𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 𝜋(𝑝1 + 𝑝2 + 𝑝3 + 𝑝4) = 𝜋(𝑝1) + 𝜋(𝑝2) + 𝜋(𝑝2) + 𝜋(𝑝2) 

 

and that 𝜋(𝑝1) = 𝑝1, 𝜋(𝑝2) = 𝑝2, 𝜋(𝑝3) = 𝑝3, 𝜋(𝑝4) = 𝑝4, 𝜋 ∈ 𝐺, since the elements of the form 𝑝𝑖 

are 𝐺-invariants for each 𝑖 = 1,2,3,4, due to the number of distinct powers of the variables in the 

monomials of corresponding summands. 

 

Initially, 

 

𝑋𝑎𝑎𝑎𝑎 = 𝑥1
𝑎𝑥2

𝑎𝑥3
𝑎𝑥4

𝑎 = (
𝛼11𝛽11

4
)

𝑎

= 𝜎4
𝑎 

 

that means 

 

𝑝1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑ 𝜀𝑎𝑎𝑎𝑎𝜎4
𝑎

0≤𝑎

∈ 𝐾[𝜎4]. 

 

Secondly, let us consider 𝑝2 = ∑ (𝑝2,1 + ⋯ + 𝑝2,7)0≤𝑎<𝑏 . Recall that 

 

𝑝2,1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑ (𝜀𝑎𝑏𝑏𝑏𝑋𝑎𝑏𝑏𝑏 + 𝜀𝑏𝑏𝑎𝑏𝑋𝑏𝑏𝑎𝑏)

0≤𝑎<𝑏

. 

 

The orbit of the monomial 𝑋𝑎𝑏𝑏𝑏 is  

 

𝑋𝑎𝑏𝑏𝑏 , 𝑋𝑏𝑏𝑎𝑏 , 𝑋𝑎𝑏𝑏𝑏 , 𝑋𝑏𝑏𝑎𝑏 

 

with respect to the group 𝐺. Similarly the orbit of the monomial 𝑋𝑏𝑏𝑎𝑏 is 

 

𝑋𝑏𝑏𝑎𝑏 , 𝑋𝑎𝑏𝑏𝑏 , 𝑋𝑏𝑏𝑎𝑏 , 𝑋𝑎𝑏𝑏𝑏 . 
Hence, 

𝜋(𝑝2,1) ∈ span𝐾{𝑋𝑎𝑏𝑏𝑏 , 𝑋𝑏𝑏𝑎𝑏}, 
 

or 𝜋(𝑝2,1) = 𝑝2,1, for 𝜋 = (13), (24). This implies that 

 

𝜀𝑎𝑏𝑏𝑏𝑋𝑎𝑏𝑏𝑏 + 𝜀𝑏𝑏𝑎𝑏𝑋𝑏𝑏𝑎𝑏 = (13)(𝜀𝑎𝑏𝑏𝑏𝑋𝑎𝑏𝑏𝑏 + 𝜀𝑏𝑏𝑎𝑏𝑋𝑏𝑏𝑎𝑏) = 𝜀𝑎𝑏𝑏𝑏𝑋𝑏𝑏𝑎𝑏 + 𝜀𝑏𝑏𝑎𝑏𝑋𝑎𝑏𝑏𝑏 , 



………….. / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo.Sci. XX (X) – 20XX 

 

112 

 

or 

(𝜀𝑎𝑏𝑏𝑏 − 𝜀𝑏𝑏𝑎𝑏)𝑋𝑎𝑏𝑏𝑏 + (𝜀𝑏𝑏𝑎𝑏 − 𝜀𝑎𝑏𝑏𝑏)𝑋𝑏𝑏𝑎𝑏 = 0, 
 

for each pair (𝑎, 𝑏). Thus, 𝜀𝑎𝑏𝑏𝑏 = 𝜀𝑏𝑏𝑎𝑏, 0 ≤ 𝑎 < 𝑏. Therefore,  

 

𝜀𝑎𝑏𝑏𝑏𝑋𝑎𝑏𝑏𝑏 + 𝜀𝑏𝑏𝑎𝑏𝑋𝑏𝑏𝑎𝑏 = 𝜀𝑎𝑏𝑏𝑏(𝑋𝑎𝑏𝑏𝑏 + 𝑋𝑏𝑏𝑎𝑏)

= 𝜀𝑎𝑏𝑏𝑏𝑋𝑎𝑎𝑎𝑎(𝑋0(𝑏−𝑎)(𝑏−𝑎)(𝑏−𝑎) + 𝑋(𝑏−𝑎)(𝑏−𝑎)0(𝑏−𝑎))

= 𝜀𝑎𝑏𝑏𝑏𝜎4
𝑎𝑋0(𝑏−𝑎)0(𝑏−𝑎)(𝑋00(𝑏−𝑎)0 + 𝑋(𝑏−𝑎)000) = 𝜀𝑎𝑏𝑏𝑏𝜎4

𝑎
𝛽(𝑏−𝑎)(𝑏−𝑎)

2
𝛼(𝑏−𝑎)0 

 

and thus  

𝑝2,1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ∑ 𝜀𝑎𝑏𝑏𝑏𝜎4
𝑎

𝛽(𝑏−𝑎)(𝑏−𝑎)

2
𝛼(𝑏−𝑎)0

0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑎: 0 ≤ 𝑎]. 

 

Similar arguments gives that 𝜋(𝑝2,𝑖) = 𝑝2,𝑖, 𝑖 = 2, … ,7, 𝜋(𝑝3,𝑗) = 𝑝3,𝑗, 𝑗 = 1, … ,12, 𝜋(𝑝4,𝑘) = 𝑝4,𝑘, 

𝑘 = 1, … ,6, for 𝜋 = (13), (24), and that 

 

𝑝2,2 = ∑ 𝜀𝑏𝑎𝑏𝑏(𝑋𝑏𝑎𝑏𝑏 + 𝑋𝑏𝑏𝑏𝑎)

0≤𝑎<𝑏

= ∑ 𝜀𝑏𝑎𝑏𝑏𝜎4
𝑎

𝛼(𝑏−𝑎)(𝑏−𝑎)

2
𝛽(𝑏−𝑎)0

0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛼𝑎𝑎, 𝛽𝑎0: 0 ≤ 𝑎], 

 

𝑝2,3 = ∑ 𝜀𝑏𝑎𝑎𝑎(𝑋𝑏𝑎𝑎𝑎 + 𝑋𝑎𝑎𝑏𝑎)

0≤𝑎<𝑏

= ∑ 𝜀𝑏𝑎𝑎𝑎𝜎4
𝑎𝛼(𝑏−𝑎)0

0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛼𝑎0: 0 ≤ 𝑎], 

 

𝑝2,4 = ∑ 𝜀𝑎𝑏𝑎𝑎(𝑋𝑎𝑏𝑎𝑎 + 𝑋𝑎𝑎𝑎𝑏)

0≤𝑎<𝑏

= ∑ 𝜀𝑏𝑎𝑎𝑎𝜎4
𝑎𝛽(𝑏−𝑎)0

0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛽𝑎0: 0 ≤ 𝑎], 

 

𝑝2,5 = ∑ 𝜀𝑎𝑎𝑏𝑏(𝑋𝑎𝑎𝑏𝑏 + 𝑋𝑏𝑎𝑎𝑏 + 𝑋𝑏𝑏𝑎𝑎 + 𝑋𝑎𝑏𝑏𝑎)

0≤𝑎<𝑏

= ∑ 𝜀𝑎𝑎𝑏𝑏𝜎4
𝑎𝛼(𝑏−𝑎)0𝛽(𝑏−𝑎)0

0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎0: 0 ≤ 𝑎], 
 

𝑝2,6 = ∑ 𝜀𝑎𝑏𝑎𝑏𝑋𝑎𝑏𝑎𝑏

0≤𝑎<𝑏

= ∑ 𝜀𝑎𝑎𝑏𝑏𝜎4
𝑎

𝛽(𝑏−𝑎)(𝑏−𝑎)

2
0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛽𝑎𝑎: 0 ≤ 𝑎], 

 

 

𝑝2,7 = ∑ 𝜀𝑏𝑎𝑏𝑎𝑋𝑏𝑎𝑏𝑎

0≤𝑎<𝑏

= ∑ 𝜀𝑏𝑎𝑏𝑎𝜎4
𝑎

𝛼(𝑏−𝑎)(𝑏−𝑎)

2
0≤𝑎<𝑏

∈ 𝐾[𝜎4, 𝛼𝑎𝑎: 0 ≤ 𝑎], 

 

𝑝3,1 = ∑ 𝜀𝑎𝑎𝑏𝑐(𝑋𝑎𝑎𝑏𝑐 + 𝑋𝑏𝑎𝑎𝑐 + 𝑋𝑏𝑐𝑎𝑎 + 𝑋𝑎𝑐𝑏𝑎)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑎𝑎𝑏𝑐𝜎4
𝑎𝛼(𝑏−𝑎)0𝛽(𝑐−𝑎)0

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎0: 0 ≤ 𝑎], 
 

𝑝3,2 = ∑ 𝜀𝑎𝑎𝑐𝑏(𝑋𝑎𝑎𝑐𝑏 + 𝑋𝑐𝑎𝑎𝑏 + 𝑋𝑐𝑏𝑎𝑎 + 𝑋𝑎𝑏𝑐𝑎)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑎𝑎𝑏𝑐𝜎4
𝑎𝛼(𝑐−𝑎)0𝛽(𝑏−𝑎)0

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎0: 0 ≤ 𝑎], 
 

𝑝3,3 = ∑ 𝜀𝑎𝑏𝑎𝑐(𝑋𝑎𝑏𝑎𝑐 + 𝑋𝑎𝑐𝑎𝑏)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑎𝑏𝑎𝑐𝜎4
𝑎𝛽(𝑐−𝑎)(𝑏−𝑎)

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
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𝑝3,4 = ∑ 𝜀𝑏𝑎𝑐𝑎(𝑋𝑏𝑎𝑐𝑎 + 𝑋𝑐𝑎𝑏𝑎)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑎𝑏𝑎𝑐𝜎4
𝑎𝛼(𝑐−𝑏)(𝑏−𝑎)

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎𝑏: 0 ≤ 𝑎, 𝑏], 

𝑝3,5 = ∑ 𝜀𝑏𝑏𝑎𝑐(𝑋𝑏𝑏𝑎𝑐 + 𝑋𝑎𝑏𝑏𝑐 + 𝑋𝑎𝑐𝑏𝑏 + 𝑋𝑏𝑐𝑎𝑏)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑏𝑏𝑎𝑐𝜎4
𝑎𝛼(𝑏−𝑎)0𝛽(𝑐−𝑎)(𝑏−𝑎)

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
 

𝑝3,6 = ∑ 𝜀𝑏𝑏𝑐𝑎(𝑋𝑏𝑏𝑐𝑎 + 𝑋𝑐𝑏𝑏𝑎 + 𝑋𝑐𝑎𝑏𝑏 + 𝑋𝑏𝑎𝑐𝑏)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑏𝑏𝑐𝑎𝜎4
𝑎𝛼(𝑐−𝑎)(𝑏−𝑎)𝛽(𝑏−𝑎)0

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎𝑏 , 𝛽𝑎0: 0 ≤ 𝑎, 𝑏], 
 

𝑝3,7 = ∑ 𝜀𝑏𝑎𝑏𝑐(𝑋𝑏𝑎𝑏𝑐 + 𝑋𝑏𝑐𝑏𝑎)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑏𝑎𝑏𝑐𝜎4
𝑎

𝛼(𝑏−𝑎)(𝑏−𝑎)

2
𝛽(𝑐−𝑎)0

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎𝑎 , 𝛽𝑎0: 0 ≤ 𝑎], 
 

𝑝3,8 = ∑ 𝜀𝑎𝑏𝑐𝑏(𝑋𝑎𝑏𝑐𝑏 + 𝑋𝑐𝑏𝑎𝑏)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑎𝑏𝑐𝑏𝜎4
𝑎𝛼(𝑐−𝑎)0

𝛽(𝑏−𝑎)(𝑏−𝑎)

2
0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑎: 0 ≤ 𝑎], 
 

𝑝3,9 = ∑ 𝜀𝑐𝑐𝑎𝑏(𝑋𝑐𝑐𝑎𝑏 + 𝑋𝑎𝑐𝑐𝑏 + 𝑋𝑎𝑏𝑐𝑐 + 𝑋𝑐𝑏𝑎𝑐)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑐𝑐𝑎𝑏𝜎4
𝑎𝛼(𝑐−𝑎)0𝛽(𝑐−𝑎)(𝑏−𝑎)

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
 

𝑝3,10 = ∑ 𝜀𝑐𝑐𝑏𝑎(𝑋𝑐𝑐𝑏𝑎 + 𝑋𝑏𝑐𝑐𝑎 + 𝑋𝑏𝑎𝑐𝑐 + 𝑋𝑐𝑎𝑏𝑐)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑐𝑐𝑏𝑎𝜎4
𝑎𝛼(𝑐−𝑎)(𝑏−𝑎)𝛽(𝑐−𝑎)0

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎𝑏 , 𝛽𝑎0: 0 ≤ 𝑎, 𝑏], 
 

𝑝3,11 = ∑ 𝜀𝑐𝑎𝑐𝑏(𝑋𝑐𝑎𝑐𝑏 + 𝑋𝑐𝑏𝑐𝑎)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑐𝑎𝑐𝑏𝜎4
𝑎

𝛼(𝑐−𝑎)(𝑐−𝑎)

2
𝛽(𝑏−𝑎)0

0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎𝑏 , 𝛽𝑎0: 0 ≤ 𝑎, 𝑏], 
 

𝑝3,12 = ∑ 𝜀𝑎𝑐𝑏𝑐(𝑋𝑎𝑐𝑏𝑐 + 𝑋𝑏𝑐𝑎𝑐)

0≤𝑎<𝑏<𝑐

= ∑ 𝜀𝑎𝑐𝑏𝑐𝜎4
𝑎𝛼(𝑏−𝑎)0

𝛽(𝑐−𝑎)(𝑐−𝑎)

2
0≤𝑎<𝑏<𝑐

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
 

𝑝4,1 = ∑ 𝜀𝑎𝑏𝑐𝑑(𝑋𝑎𝑏𝑐𝑑 + 𝑋𝑎𝑑𝑐𝑏 + 𝑋𝑐𝑏𝑎𝑑 + 𝑋𝑐𝑑𝑎𝑏)

0≤𝑎<𝑏<𝑐<𝑑

= ∑ 𝜀𝑎𝑏𝑐𝑑𝜎4
𝑎𝛼(𝑐−𝑎)0𝛽(𝑑−𝑎)(𝑏−𝑎)

0≤𝑎<𝑏<𝑐<𝑑

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
 

𝑝4,2 = ∑ 𝜀𝑎𝑏𝑑𝑐(𝑋𝑎𝑏𝑑𝑐 + 𝑋𝑎𝑐𝑑𝑏 + 𝑋𝑑𝑏𝑎𝑐 + 𝑋𝑑𝑐𝑎𝑏)

0≤𝑎<𝑏<𝑐<𝑑

= ∑ 𝜀𝑎𝑏𝑑𝑐𝜎4
𝑎𝛼(𝑑−𝑎)0𝛽(𝑐−𝑎)(𝑏−𝑎)

0≤𝑎<𝑏<𝑐<𝑑

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
 

𝑝4,3 = ∑ 𝜀𝑎𝑐𝑏𝑑(𝑋𝑎𝑐𝑏𝑑 + 𝑋𝑎𝑑𝑏𝑐 + 𝑋𝑏𝑐𝑎𝑑 + 𝑋𝑏𝑑𝑎𝑐)

0≤𝑎<𝑏<𝑐<𝑑

= ∑ 𝜀𝑎𝑐𝑏𝑑𝜎4
𝑎𝛼(𝑏−𝑎)0𝛽(𝑑−𝑎)(𝑐−𝑎)

0≤𝑎<𝑏<𝑐<𝑑

∈ 𝐾[𝜎4, 𝛼𝑎0, 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], 
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𝑝4,4 = ∑ 𝜀𝑏𝑎𝑐𝑑(𝑋𝑏𝑎𝑐𝑑 + 𝑋𝑏𝑑𝑐𝑎 + 𝑋𝑐𝑎𝑏𝑑 + 𝑋𝑐𝑑𝑏𝑎)

0≤𝑎<𝑏<𝑐<𝑑

= ∑ 𝜀𝑏𝑎𝑐𝑑𝜎4
𝑎𝛼(𝑐−𝑎)(𝑏−𝑎)𝛽(𝑑−𝑎)0

0≤𝑎<𝑏<𝑐<𝑑

∈ 𝐾[𝜎4, 𝛼𝑎𝑏 , 𝛽𝑎0: 0 ≤ 𝑎, 𝑏], 
 

𝑝4,5 = ∑ 𝜀𝑏𝑎𝑑𝑐(𝑋𝑏𝑎𝑑𝑐 + 𝑋𝑏𝑐𝑑𝑎 + 𝑋𝑑𝑎𝑏𝑐 + 𝑋𝑑𝑐𝑏𝑎)

0≤𝑎<𝑏<𝑐<𝑑

= ∑ 𝜀𝑏𝑎𝑑𝑐𝜎4
𝑎𝛼(𝑑−𝑎)(𝑏−𝑎)𝛽(𝑐−𝑎)0

0≤𝑎<𝑏<𝑐<𝑑

∈ 𝐾[𝜎4, 𝛼𝑎𝑏 , 𝛽𝑎0: 0 ≤ 𝑎, 𝑏], 
 

𝑝4,6 = ∑ 𝜀𝑐𝑎𝑑𝑏(𝑋𝑐𝑎𝑑𝑏 + 𝑋𝑐𝑏𝑑𝑎 + 𝑋𝑑𝑎𝑐𝑏 + 𝑋𝑑𝑏𝑐𝑎)

0≤𝑎<𝑏<𝑐<𝑑

= ∑ 𝜀𝑐𝑎𝑑𝑏𝜎4
𝑎𝛼(𝑑−𝑎)(𝑐−𝑎)𝛽(𝑏−𝑎)0

0≤𝑎<𝑏<𝑐<𝑑

∈ 𝐾[𝜎4, 𝛼𝑎𝑏 , 𝛽𝑎0: 0 ≤ 𝑎, 𝑏]. 
 

This yields that 𝐾[𝑋4]𝐺 ⊆ 𝐾[𝛼𝑎𝑏 , 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏]. Conversely, it is straightforward to show that the 

elements 𝛼𝑎𝑏 , 𝛽𝑎𝑏, 0 ≤ 𝑎, 𝑏, are 𝐺-invariants, which completes the proof. 

 

Remark 2. Note that 𝐾[𝑋4]𝑆4 = 𝐾[𝜎1, 𝜎2, 𝜎3, 𝜎4] ⊆ 𝐾[𝑋4]𝐺 = 𝐾[𝛼𝑎𝑏 , 𝛽𝑎𝑏: 0 ≤ 𝑎, 𝑏], where 

 

𝜎1 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 , 
𝜎2 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4 , 

𝜎3 = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 , 
𝜎4 = 𝑥1𝑥2𝑥3𝑥4 , 

 

which can be verified by the simple computations given below. 

 

𝜎1 = 𝛼10 + 𝛽10 , 𝜎2 = 𝛼10𝛽10 +
𝛼11

2
+

𝛽11

2
 , 

𝜎3 =
𝛼11𝛽10 + 𝛼10𝛽11

2
 , 𝜎4 =

𝛼11𝛽11

4
 . 

 

The next theorem is our main result. 

 

Theorem 3. The algebra 𝐾[𝑋4]𝐺 is freely generated by the set {𝛼10, 𝛼11, 𝛽10, 𝛽11}. 

 

Proof. Firstly, direct computations give that 

 

𝛼𝑎𝑏 =
𝛼11𝛼(𝑎−1)(𝑏−1)

2
 , 𝛽𝑎𝑏 =

𝛽11𝛽(𝑎−1)(𝑏−1)

2
 

 

for 1 ≤ 𝑎, 𝑏. This yields that the elements of the form 𝛼𝑎𝑏 , 𝛽𝑎𝑏 , 1 ≤ 𝑎, 𝑏, are included in the algebra 

generated by 𝛼11, 𝛽11, 𝛼𝑛0, 𝛽𝑛0, 1 ≤ 𝑛, by induction. 

 

Let 2 ≤ 𝑛 = 2𝑚 be an even positive integer. Then by binomial expansion, we have that 

 

𝛼10
𝑛 = 𝛼𝑛0 + 𝑛(𝑥1

𝑛−1𝑥3 + 𝑥1𝑥3
𝑛−1) + ⋯ + (

𝑛
𝑚 − 1

) (𝑥1
𝑚+1𝑥3

𝑚−1 + 𝑥1
𝑚−1𝑥3

𝑚+1) + (
𝑛
𝑚

) (
𝛼11

2
)

𝑚

 

𝛼𝑛0 = 𝛼10
𝑛 − 𝑛𝛼(𝑛−2)0

𝛼11

2
− ⋯ − (

𝑛
𝑚 − 1

)
𝛼11

2
𝛼𝑚(𝑚−2) − (

𝑛
𝑚

) (
𝛼11

2
)

𝑚

 

 

and hence, 𝛼𝑛0 = 𝛼(2𝑚)0 is included in the algebra generated by the elements 𝛼10, 𝛼11 by induction. 

 

Now let 3 ≤ 𝑛 = 2𝑚 + 1 be an odd positive integer. Then,  
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𝛼10
𝑛 = 𝛼𝑛0 + 𝑛(𝑥1

𝑛−1𝑥3 + 𝑥1𝑥3
𝑛−1) + ⋯ + (

𝑛
𝑚

) (𝑥1
𝑚+1𝑥3

𝑚−1 + 𝑥1
𝑚−1𝑥3

𝑚+1) 

𝛼𝑛0 = 𝛼10
𝑛 − 𝑛𝛼(𝑛−2)0

𝛼11

2
− ⋯ − (

𝑛
𝑚

)
𝛼11

2
𝛼𝑚(𝑚−2) 

 

and thus, 𝛼𝑛0 = 𝛼(2𝑚+1)0 is included in 𝐾[𝛼10, 𝛼11]. Similarly one may show that 𝛽𝑛0 ∈ 𝐾[𝛽10, 𝛽11] 

for all 2 ≤ 𝑛.  

 

The rest is to show that the elements 𝛼10, 𝛼11, 𝛽10, 𝛽11 are algebraically independent. For this purpose, 

we apply the Jacobian criterion [5]. The determinant  

 

|

1 𝑧
0 0

0 0
1 𝑡

1 𝑥
0 0

0 0
1 𝑦

| 

 

filled by the entries with respect to the partial derivatives of the corresponding elements is nonzero, 

that completes the proof.  
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ABSTRACT 
 

The 26Mg(p,ɣ)27Al reaction is important in nuclear astrophysics as it  play a crucial role in understanding the nucleosynthesis 

processes in red giants and Wolf-Rayet stars. The 26Mg(p,ɣ)27Al reaction is responsible for the production of 27Al in these stars, 

while the 26Mg(3He,d)27Al reaction provides information on the asymptotic normalization coefficient for the ground state of 
27Al.The asymptotic normalization coefficient (ANC) method is an indirect method that provides information on the 

normalization of the overlap functions for a given reaction. This information is crucial for nuclear astrophysics as it allows for 

the calculation of the direct component of the reaction rate at astrophysical relevant energies.In this work, the angular 

distribution of the 26Mg(3He,d)27Al reaction have been analyzed using separate sets of optical potentials via the Distorted Wave 

Born Approximation which allows for a better understanding of the reaction mechanism and the determination of the ANC. 

Consequently,thecross section and Astrophysical S factor for 27Al→26Mg + p have been calculated for the direct capture.  

 

Keywords: Direct reaction, DWBA analysis, Asymptotic normalization coefficient, Nuclear astrophysics 
 

 

1. INTRODUCTION 
 

Nuclear astrophysics is a field that seeks to understand the processes involved in the production, 

evolution, and distribution of chemical elements in the universe. One of the challenges in this field is to 

explain the origin and abundance of heavier elements, such as those beyond iron, which are formed 

through processes involving fusion, neutron capture, and explosive events such as supernovae[1]. 

One important element in this regard is Aluminum-26 (26Al), half-life of26Al is determined as 

a(t1/2=7.2*105 y) [2]. This isotope is produced primarily through the Mg-Al cycle [2], a series of nuclear 

reactions that occur in the interiors of massive stars. Understanding the production and distribution of 
26Al is important because its decay produces gamma rays that are observable in the galaxy.The 

abundance of stable aluminum-27 (27Al) is also an important consideration in nuclear astrophysics. This 

isotope is not produced in significant quantities through nuclear fusion, but rather through the slow 

capture of neutrons in the s-process [3], a type of nucleosynthesis that occurs in the orduring to later 

stages of stellar evolution. The ratio of 27Al to 26Al in the galaxy can provide insights into the 

correspondingadditions of the s-process and the Mg-Al cycle to the production of these isotopes [2]. 

Another challenge in nuclear astrophysics is to realizethe galactic distribution of26Al. Observations have 

shown that the proportion of the ground level to the isomeric level in 26Al varies acrossdifferent regions 

of the galaxy[4]. This ratio may be influenced by the destruction of 26Si [4], which can decay into 26Al. 

This process may occur in novae, which are explosive events that can produce significant amounts of 
26Al. Understanding the details of these processes is important for accurately modelling the production 

and distribution of 26Al in the galaxy. 

 

mailto:aihsan.kilic@ogu.edu.tr
https://orcid.org/0000-0003-2762-3913


Kılıç / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 11 (2) – 2023 

 

117 

2. ASYMPTOTIC NORMALIZATION COEFFICIENT 

 

 

 

 

 

Figure 1: Sketch of a general transfer function 

The ANC method, together with the DWBA formalism, permit to extract information on the nuclear 

structure of the initial and final states involved in the transfer reaction, and on the strength and energy 

dependence of the direct capture process A+a→B+γ at astrophysical energies. This information is 

important to understand the nucleosynthesis of heavy elements in stars and other astrophysical 

environments.It should be noted that the ANC method has some limitations and assumptions, such as 

the validity of the DWBA approximation, the neglect of higher-order effects in the transfer reaction, the 

assumption of a single-particle model for the bound state wave functions, and the dependence of the 

results on the choice of the potential model used to describe the nuclear interaction. Therefore, it is 

important to compare the results obtained with the ANC method with other experimental and theoretical 

approaches, and to carefully assess the uncertainties and systematic errors in the data analysis. In 

particular, the reactionA+a→B+γ can be studied via ANC in term of the radial overlap integral of a 

suitable one-particle transfer reaction A(X,Y)B, in which X=Y+A and B=A+a depicted in (Fig.1).This 

method has been carried out to a number of transfer reactions involvingα-particles [6], protons [4], 

neutrons [5], and indirect methods can be used to investigate nuclear reactions for astrophysics at the 

Gamow energies [7,8, 9].  

One nucleon nuclear transfer reaction could be parameterized employing the distorted wave Born 

approximation (DWBA)[10]. This can be made as the spectroscopic factors -S relative to the initial and 

final states related to a particular bound state: 

 𝑑𝜎

𝑑Ω
= ∑ 𝑆𝐴𝑎,𝑙𝐵,𝑗𝐵𝑗𝐵,𝑗𝑋

𝑆𝑌𝑎,𝑙𝑋,𝑗𝑋
𝜎𝑙𝐵,𝑗𝐵,𝑙𝑋,𝑗𝑋

𝐷𝑊𝐵𝐴 . 

 

(1) 

the differential cross section can be expressed as 

𝑑𝜎

𝑑Ω
= ∑ (𝐶𝐴𝑎,𝑙𝐵,𝑗𝐵

𝐵 𝐶𝑌𝑎,𝑙𝑋𝑗𝑋

𝑋 )
2

𝐴𝑎,𝑙𝐵,𝑗𝐵

××
𝜎𝑙𝐵,𝑗𝐵 ,𝑙𝑋,𝑗𝑋

𝐷𝑊𝐵𝐴

𝑏𝐴𝑎,𝑙𝐵,𝑗𝐵

2 𝑏𝑌𝑎,𝑙𝑋,𝑗𝑋

2 . 
(5) 

 

In Equation 5, the function 𝜎𝑙𝐵,𝑗𝐵,𝑙𝑋,𝑗𝑋

𝐷𝑊𝐵𝐴 is the cross-section and it could be used to reproduce the angular 

DWBA.The ANC theory, as stated in the introduction, has an extension that allows determining the 

ANC’s for the mirror nuclei. In the case of a proton transfer, in fact, the coefficients for the process 

A+p→B can be extracted from its appropriatemirror partner reaction D+n→E,D and having inverted 

number of protons and neutrons with respect to A and B (the vice versa is also valid) [11-12]. Therefore 

possible to extract the ANC’s for the direct capture into bound states and the and the Γpfor the resonant 

ones of 26Mg(p,γ)27Al, applying the ANC method on data for the 26Mg(3He,d)27Al reaction.  

3.  DWBA METHOD 

The 26Mg (3He, d) 27Al low energy nuclear reaction has been interpreted with the help of the DWBA, In 

the DWBA formalism, the scattering amplitude is obtained by multiplying the distorted wave functions 
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of the incoming and outgoing particles with the transition matrix element, which describes the 

probability of transferring a nucleon from the projectile to the target nucleus. The distorted wave 

functions are obtained by solving the Schrödinger equation with the appropriate optical 

potentials[10].The DWBA calculation also requires knowledge of the spectroscopic factor, which 

describes the overlap between the wave function of the initial state of the projectile and the final state 

of the residual nucleus[10].The full finite-range approximation takes into account the finite range of the 

nuclear interaction and improves the accuracy of the DWBA calculation. The DWUCK-5 and FRESCO 

codes are widely used for DWBA calculations in nuclear physics.In this paper, I applied full finite-range 

approximation using DWUCK-5[13], and FRESCO code [14] within the DWBA. The DWBA 

calculation with the full finite-range approximation and the appropriate optical potentials and 

spectroscopic factors provides a powerful tool for understanding the structure of nuclei and the 

mechanisms of the 26Mg (3He, d) 27Al nuclear reactions.Here, the entrance channel optical potential 

parameters were taken from the experimental [15],and exit channel optical potential parameters were 

obtained from the experimental d+27Al[15].  The optical potential model parameters could be shown in 

the real and imaginary part oftotal potential  

  𝑈 = 𝑉𝐶(𝑟𝐶) − 𝑉0(𝑓(𝑥0)) +
ħ2

𝑚𝜋𝑐
𝑉𝐿𝑆(𝐿𝑆)

1

𝑟

𝑑

𝑑𝑟
𝑓(𝑥𝐿𝑆) − 𝑖 [𝑊𝑣(𝑥𝑣) − 4𝑤𝐷

𝑑

𝑑𝑥𝐷
 𝑓(𝑥𝐷)] (6) 

 

In the optical potential formula of (6), real potential is responsible for scattering and imaginer potential 

is responsible for absorbing.  Here, Vo, VLSand VC (rC) representsthe real part of potential, the spin-orbit 

term and the Coulomb potential, respectively. WV and WD are the depth of the volume term and the 

depth of surface term for the imaginary part of the potential, respectively. In order to calculate DWBA, 

the radial dependence of form of the Woods – Saxon volume potential was used. Obtained parameters 

for Wood- Saxon are that Real potential-V0 = - 47.56, Coulomb radius-rC= 1.25 and diffuseness 

parameter- aC=0.65  

Table 1. Optical potential parameters for of 26Mg (3He,d)27Al reaction and corresponding to SF and ANC coefficient . 

 

Parameter 3He D-I D-II D-III 

Vr (MeV) 217.6 76.75 89.17 85.81 

rr 1.15 1.25 1.13 1.13 

ar 0.636 0.737 0.8 0.75 

WW 32.5 -------- ------- ------ 

WS --------- 13.5 12.35 12.35 

ri 1.4 1.25 1.4 1.325 

ai 0.936 0.738 0.6 0.55 

Vso 6.2 6.2 6.2 6.2 

rso 1.01 1.01 1.01 1.01 

aso 0.75 0.75 0.75 0.75 

rc 1.25 1.25 1.25 1.25 

SF -------- 0.37 0.34 0.3 

     

Optical potential parameters for exit and entrance channel are presented in Table.1. The results of 

DWBA calculation compared to the different experimental data are presented in Figures 2. a,b and c. 

Thetheoretical astrophysical S- factor quantity in MeV has been calculated inoperating the RADCAP 

code [17], employing a potential model for the Woods-Saxon well of the 26Mg + p compound system. 

The potential is adjusted to match the ANC value. This calculation shows that the S(E) is nearly constant 

between 0 and 2 MeV. This range was selectedtaking into account the Gamow windows and Gamow 

energies (EG) for the process at the temperatures reported in [18]. 
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Figure 2 (a) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (c) 

 

Figure 2. The experimental and theoretical 26Mg (3He,d)27Al reaction differential cross sections for the 

transitions leading to the ground state in27Al with the incident energy of 25 MeV. Blue square dots refer 

to experimental angular distributions from Vernotte[15]. FRESCO and DWUCK-5 codes were 

compared black curve and red dashed line. D-I,  D-II and D-III optical potential used for producing 

theoretical angular distributions depicted in Figure 2. (a) and Figure 2. (b), and Figure 2. (c), 

respectively.  



Kılıç / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 11 (2) – 2023 

 

120 

4. SUMMARY AND CONCLUSION 

 

This paper describes a study on the one proton transfer reaction 26Mg(3He,d)27Al, which is important for 

determining nuclear asymptotic normalization coefficients (ANCs) and investigating astrophysical S-

factors and cross sections. The paper reanalyses the experimental angular distribution for this reaction, 

leading to the ground state of 27Alin 1d5/2 were shown in Figures 2. (a,b-c). 

 

Using the extracted ANC, the 26Mg(p,ɣ) S-factors and cross section for capture to the ground state were 

calculated depicted in Figune 4. And Figure 5.  without the need for additional normalization constants.  

In order to get ANC coefficient, angular momentum transfer at low angle is crucial, one can understand 

that DWBA theory explain very well experimental data at low angles. DWBA method and experimental 

data consisted at very low angles.  The squares of proton asymptotic normalization coefficient (ANC) 

for 27Al → 26Mg + p is extracted to be 8.2 ± 2 fm-1from the angular distributions of the 26Mg(3He,d)27Al 

reaction leading to ground state of 27Al based on DWBA theory. The ANC coefficient of projectile 4He 

interrelated to the vertex 3He →d+p in the channel is recognised with the high certainty and its value is 

also determined as a (CHe
4)2= 3.90 ± 0.06 fm-1. [20].This parameter used for analysis of determining 

ANC of 27Al. 

 

The paper also discusses the extraction of the proton ANC of 27Al → 26Mg + p using the wave function 

of 27Al presented in Figure3. The calculations show that applying the FR-DWBA with the suitable 

optical potential angular distributions for the ground state of 27Al are able to theoretically reproduce the 

experimental data in the locality of the first peak, which was sufficient for determining an ANC of 27Al 

from the reaction. The theoretical angular distributions were obtained using Dwuck-5 and Fresco codes, 

which showed the same behaviour and results which are depicted in Figures 2. (a-b-c). We also 

calculated spectroscopic factor depending on different optical potential sets which is crucial for 

determination of ANC presented in Table-1. 

 

However, I also note that the contribution of the reaction rate 27Al → 26Mg + p mainly comes not only 

from direct contribution but also from resonance contributions such as JΠ=5/2+, JΠ=1/2+, and JΠ=3/2-. 

Therefore, additional computations were needed to include these other resonance contributions in the 

total S-factor and reaction rate calculation. 

 

In summary, the ANC method is a useful indirect technique for studying nuclear reactions, especially 

direct capture, and has been successfully applied to transfer reactions involving protons, neutrons, and 

α-particles. The method involves determining the radial overlap integral of a suitable one-particle 

transfer reaction, which can be parameterized using the distorted wave Born approximation and 

spectroscopic factors. The radial overlap function can also be described in the asymptotic limit using 

the Wittaker function and Sommerfeld parameter[21]. The ANC method can be extended to determine 

ANC's for mirror nuclei, and can be used to extract ANC's for direct capture and resonant states in 

nuclear reactions which is  26Mg(p,γ)27Al, using data from the 26Mg(3He,d)27Al reaction.  Because of 

lacking experimental  data for ground state transition of 26Mg(p,γ)27Al reaction, i presented here just 

theoretical S-factor and Cross section data. Furthermore, this reaction has special interest for nuclear 

astrophysics and we plan to investigate experimental investigation of 26Mg(p,γ)27Al reaction in near 

future to get experimental S-factor and cross section for ground state contribution.  
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Figure 3.  Extracted wave functions in terms of different optical potential parameters of  Set –I, II and III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Direct contribution cross-section of 26Mg (p, g) 27 Al reaction calculated using ANC method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Direct contribution S- factor of 26Mg (p, g) 27 Al reaction calculated using ANC method. 
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4. SUMMARY AND CONCLUSION 

 

This paper describes a study on the one proton transfer reaction 26Mg(3He,d)27Al, which is important for 

determining nuclear asymptotic normalization coefficients (ANCs) and investigating astrophysical S-

factors and cross sections. The paper reanalyses the experimental angular distribution for this reaction, 

leading to the ground state of 27Alin 1d5/2 were shown in Figures 2. (a,b-c). 

 

Using the extracted ANC, the 26Mg(p,ɣ) S-factors and cross section for capture to the ground state were 

calculated depicted in Figure 4. And Figure 5.  without the need for additional normalization constants.  

In order to get ANC coefficient, angular momentum transfer at low angle is crucial, one can understand 

that DWBA theory explain very well experimental data at low angles. DWBA method and experimental 

data consisted at very low angles.  The squares of proton asymptotic normalization coefficient (ANC) 

for 27Al → 26Mg + p is extracted to be 8.2 ± 2 fm-1from the angular distributions of the 26Mg(3He,d)27Al 

reaction leading to ground state of 27Al based on DWBA theory. The ANC coefficient of projectile 4He 

interrelated to the vertex 3He →d+p in the channel is recognised with the high certainty and its value is 

also determined as a (CHe
4)2= 3.90 ± 0.06 fm-1. [20].This parameter used for analysis of determining 

ANC of 27Al. 

 

The paper also discusses the extraction of the proton ANC of 27Al → 26Mg + p using the wave function 

of 27Al presented in Figure 3. The calculations show that applying the FR-DWBA with the suitable 

optical potential angular distributions for the ground state of 27Al are able to theoretically reproduce the 

experimental data in the locality of the first peak, which was sufficient for determining an ANC of 27Al 

from the reaction. The theoretical angular distributions were obtained using Dwuck-5 and Fresco codes, 

which showed the same behaviour and results which are depicted in Figures 2. (a-b-c). We also 

calculated spectroscopic factor depending on different optical potential sets which is crucial for 

determination of ANC presented in Table-1. 

 

However, I also note that the contribution of the reaction rate 27Al → 26Mg + p mainly comes not only 

from direct contribution but also from resonance contributions such as JΠ=5/2+, JΠ=1/2+, and JΠ=3/2-. 

Therefore, additional computations were needed to include these other resonance contributions in the 

total S-factor and reaction rate calculation. 

 

In summary, the ANC method is a useful indirect technique for studying nuclear reactions, especially 

direct capture, and has been successfully applied to transfer reactions involving protons, neutrons, and 

α-particles. The method involves determining the radial overlap integral of a suitable one-particle 

transfer reaction, which can be parameterized using the distorted wave Born approximation and 

spectroscopic factors. The radial overlap function can also be described in the asymptotic limit using 

the Wittaker function and Sommerfeld parameter[21]. The ANC method can be extended to determine 

ANC's for mirror nuclei, and can be used to extract ANC's for direct capture and resonant states in 

nuclear reactions which is  26Mg(p,γ)27Al, using data from the 26Mg(3He,d)27Al reaction. Because of 

lacking experimental  data for ground state transition of 26Mg(p,γ)27Al reaction, i presented here just 

theoretical S-factor and Cross section data. Furthermore, this reaction has special interest for nuclear 

astrophysics and we plan to investigate experimental investigation of 26Mg(p,γ)27Al reaction in near 

future to get experimental S-factor and cross section for ground state contribution.  
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ABSTRACT 
 

By employing the Scaled Quantum Mechanics Force Field (SQMFF) methodology, a comprehensive analysis was conducted 

to assign the vibrational spectra of three antimony (III) compounds, [1a-3a], that possess pyridine and pyrimidine ligands. The 

potential energy distribution (PED) was calculated and utilized to assign the IR spectra of the antimony (III) compounds. The 

theoretical frontier molecular orbital descriptors, the partial and total density of state distribution (TDOS, PDOS), molecular 

electronic potential surface map (MEP), nonlinear optical properties (NLO) of these complexes also were computed and 

investigated. The DFT/B3LYP/GEN (C, H, N, Cl: 6-31G(d,p) and Sb: LanL2DZ) level was utilized for all DFT calculations 

using the Gaussian 09W program. Furthermore, theoretical frontier molecular orbital descriptors, including electronegativity, 

chemical potential, softness, electrophilicity index, and electron affinity for six antimony (III) compounds were calculated 

([1a/1b-3a/3b]). The results showed that, the ionization potential energy value of the [3a], which had the lowest experimental 

Leishmania activity, was also found to be the lowest among the others. 

 

Keywords: Antimony (III) compounds, Scaled Quantum Mechanical Force Field, Nonlinear Optics, Infrared Spectra, Density 

Functional Theory 
 

 

1. INTRODUCTION 
 

Although antimony is known to be poisonous and carcinogenic, it has been used in medicine for several 

centuries [1]. The use of antimony complexes ranges from cosmetics to medicine to ancient Egypt [2,3]. 

The use of antimony in medicine has been widely reported in publications since ancient times [4,5]. 

Antimony compounds against microbes and parasites are widely used in many applications in medicine 

[6–9]. Strong antiproliferative activity is shown by antimony(III) complexes against human cancer cells. 

Some pentavalent antimony compounds are now used effectively in medicine to treat leishmaniasis [10]. 

Medical practice studies on the use of antimony compounds for anti-leishmania disease have already 

been published [11–13]. The use of antimony compounds as anthelminthic [10], antitrypanosomal 

[13,14], antibacterial [15,16], antifungal [17], and anticancer [18–21] agents is just one of the many 

possible applications for these compounds in the fields of medicine and pharmacy. Additionally, 

antimony compounds are widely used as catalysts in organic synthesis [14–16]. 

In 2007, Khalil et al., in their study with antimony complexes of planar tridentate pyridine ligands, 

showed that 2-acetylpyridine and tridentate Schiff base ligands derived from various acid hydrazides 

and Sb complexes are soluble in water. It has been concluded that it can be useful in the treatment of 

various health problems as it is water soluble [17]. Six new SbBr3-Py (Py: Pyridine) crystalline 

complexes were obtained and structurally characterized in the literature [18]. The structural 

characteristics of two novel SbCl3-Py crystalline complexes were obtained by Dovydova et al. [19].  
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To investigate vibrational and electronic properties, Density functional theory (DFT) evaluation of 

complicated inorganic molecules such as Antimony (III) coordination compounds before 

experimentation can save valuable resources and time, and increase the probability of obtaining 

meaningful results. Antimony (III) containing complexes have been found to exhibit greater efficacy in 

treating when compared to free ligands. Theoretical studies with antimony complexes are very few in 

the literature. Theoretical DFT-based QSAR research and glutathione reductase inhibitory action of the 

title complexes were reported by Tunç et al [20–22]. Tunç et al. synthesized and studied several novel 

antimony(III) complexes, and they looked into the compounds' anti-leishmanial properties [21,22]. In 

vitro, research was done on the inhibitory effects of promastigote and glutathione reductase. They 

describe the antibacterial, DNA-cleaving, and glutathione reductase inhibitory activities of fourteen 

novel antimony(III) complexes [20]. The vibrational harmonic frequencies of the antimony (III) 

compounds [1a-3a] were calculated in this study using the DFT/B3LYP/GEN (C, H, N, Cl: 6-31G(d,p) 

and Sb: LanL2DZ) level and the Gaussian 09W program. To acquire a satisfactory assignment for the 

observed IR spectra of the complexes in the solid phase, the calculated frequency was refined using the 

Scaled Quantum Mechanical (SQM) approach and Total Energy Distribution (TED). Electronic 

properties (partial density of states, molecular electrostatic potential and nonlinear optical effect) of the 

bis(L1,2,3)trichloroantimony(III) and bis(L1,2,3)tribromoantimony(III) complexes (L1:2-aminopyridine, 

L2: 2-amino-5-methylpyridine and L3: 2-aminopyrimidine [1a/1b-3a/3b]) have not been done yet. The 

same level was used to determine the frontier molecular orbital descriptors, total and partial density of 

state distribution (TDOS, PDOS), molecular electronic potential surface map (MEP), and nonlinear 

optical properties (NLO) hyper-polarizability effects of six antimony (III) compounds [1a/1b-3a/3b].  

 

2. MATERIALS and METHODS 

 

2.1.  Theoretical Calculations 

 

Utilizing the advanced analytical tool Gaussian 09W quantum chemical software [27] and the Lee-

Yang-Parr correlation functional (B3LYP) [28–30] approaches with the C, H, N, Cl: 6-31G(d,p) and Sb: 

LanL2DZ basis set [31–33], the molecular structure of the title compounds was optimized. Gaussian 

09W quantum chemical software was used in all simulated calculations with B3LYP/GEN (C, H, N, Cl: 

6-31G(d,p) and Sb: LanL2DZ) [23]. The total and partial density of states (TDOS and PDOS) have been 

determined to estimate the moieties' contributions to frontier orbitals. Gauss Sum 2.2.1 program 

generated TDOS and PDOS data are used to determine the contribution of groups to molecular orbitals 

[24]. 

 

The visual technique known as molecular electrostatic potential (MEP) enables us to identify the 

position of the electron density. A well-known instrument for displaying the reactive behaviors of 

molecules is the electrical potential: V(r) 

 

V(r) = ∑
𝑍𝐴

(𝑅𝐴−𝑟)
−𝐴 ∫

𝜌(𝑟′)

(𝑟′−𝑟)
d(𝑟′) (1) 

 

Where 𝜌(𝑟′) is the electronic density function, the nucleus A's charge, called ZA, is situated at RA [25–

27]. Using theoretical calculations, the map of molecular electrostatic potential was examined to observe 

and gather information about the molecule's variable-charged areas. 

 

Based on the finite field technique [28], the first static hyperpolarizability (β)  and related properties 

(dipole moment, mean polarizability, and anisotropy of polarizability) have been estimated at the DFT/ 

B3LYP method and GEN (C, H, N, Cl: 6-31G(d,p) and Sb: LanL2DZ) level.  
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For the relevant optimized structure, the cartesian coordinates force fields were translated to the internal 

coordinates [29,30]. Scaled factors were used to scale the elements of the internal force constant matrix 

(Fij(scaled)) (si and sj). 

 

Fij(scaled)=(si)1/2Fij(sj)1/2 (2) 

 

The scaling factor is required to align each theoretical vibrational frequency with the experimental data. 

The scaling factors were used from the Computational Chemistry Comparison and Benchmark Database 

(CCCBDB) and subsequently applied to the obtained vibrational frequencies. The Scaled Quantum 

Mechanic (SQM) [31] tool was used to scale the quantum mechanical force fields to obtain these internal 

coordinate forces (Table 1).  

 

For fitting the calculated fundamental wavenumbers to the appropriate experimental, scaled the F=[Fij] 

matrix was used.  

 
Table 1. Scale factors (si) 

 

Vibrations  Bonds Final Scale factor 

Stretching 1 X-X 1.073 
 2 C-H 0.794 
 3 Cl-Sb 0.964 
 4 N-H 1.043 

Bending 5 C-C-H 0.961 
 6 C-X-X 1.001 
 7 C-N-Sb 1.072 

Torsion 8 X-X-X-X 0.887 

 

The merit function 𝜒2 defines the scaling factor optimization strategy; 

 

𝜒2(𝑠𝑖) = ∑{[𝜐𝑖
𝑒𝑥𝑝

− 𝜐𝑖
𝑡ℎ𝑒𝑜𝑟(𝑠𝑖)]𝑤𝑖}

2  
 (3) 

 

The percentages of stretching, bending, or torsion that contribute to a specific normal mode were 

determined by the potential energy distribution (PED). 

 

2.2. Experimental studies 

 

Sigma-Aldrich (USA) was used to purchase all reagents, compounds, and solvents. The synthesis of 

chlorine and bromine-linked antimony was obtained in this study, as it was synthesized by Tunç et al. 

in 2016, according to the procedure in previous studies [22]. Synthesis of the complex compounds were 

done as in the literature [20–22]. In this study, Antimony(III) chloride was dissolved in the same solvent 

at a mole ratio of 2:1 in hydrochloric acid, and 25 mL of the ligand solution was added. After being 

refluxed for two days at 60 C, the mixture was concentrated to a third of its original volume and left to 

stand at room temperature for crystallization. Filters were used to create colorless, yellow, and pink 

crystals, which were then dried in the air. The syntheses of [1a-3a] complexes were obtained 

experimentally. The Perkin Elmer Spectrum Two with U-ATR spectrometer was used to observe the 

Fourier Transform-Infrared Spectra (FT-IR). 

 

3. RESULTS and DISCUSSION 

 

3.1. General Remarks on Geometry 

 

Pyridine and pyrimidine ligands with the formation of SbX3L2 (X: Cl and Br, L1:2-aminopyridine, L2: 

2-amino-5-methylpyridine and L3: 2-aminopyrimidine) complexes given in the list below.  
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[1a]: [Sb(2-aminopyridine)2Cl3] 

[1b]: [Sb(2-aminopyridine)2Br3] 

[2a]: [Sb(5-methyl-2-aminopyridine)2Cl3] 

[2b]: [Sb(5-methyl-2-aminopyridine)2Br3] 

[3a]: [Sb(2-aminopyrimidine)2Cl3] 

[3b]: [Sb(2-aminopyrimidine)2Cl3] 

 

The geometrical characteristics of Sb-L2 and Sb-X3 fragments in the complexes are similar. The atom 

labelling scheme is shown in Figure 1 and the calculated geometric parameters (bond lengths and angles) 

are summarized in Table 2. The density functional theory at B3LYP/GEN (C, H, N, Cl: 6-31G(d,p) and 

Sb: LanL2DZ) was used to thoroughly optimize the ground state structures.  

 

 
 

Figure 1. The ground state optimized structure of the complexes. 

 

When we look at the structural parameters of metal halide, Sb-Cl bond length is about 2.66 Å, while Sb-

Br bond length is 2.80-2.90 Å. is in the range. All three molecules have a similar structure and trans 

geometry. The equatorial angles (N-Sb-N) are in varied from 167-172°. Cl-Sb-Cl angle is in the range 

of 176-179°, planar.  
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Table 2. Selected calculated structural parameters of the complexes (X = Cl, Br) 

 

R [1a] [1b]   R [2a] [2b]   R [3a] [3b] 
C1-C2 1.41 1.42 

 
C1-C2 1.42 1.42 

 
C1-N5 1.36 1.36 

C1-N6 1.36 1.35  C1-N6 1.37 1.37  C1-N9 1.35 1.35 
C1-N10 1.37 1.37  C1-N10 1.37 1.37  C1-N28 1.35 1.35 
C2-C3 1.38 1.38  C2-C3 1.39 1.39  C2-C3 1.40 1.40 
C2-H8 1.09 1.09  C2-H8 1.09 1.09  C2-H6 1.09 1.09 
C3-C4 1.40 1.42  C3-C4 1.42 1.42  C2-N28 1.33 1.33 
N6-Sb14 2.47 2.49  N6-Sb13 2.47 2.48  N5-Sb12 2.47 2.49 
Sb14-X28 2.66 2.80  Sb13-X26 2.66 2.91  Sb12- X24 2.65 2.80 
Sb14-X29 2.66 2.80  Sb13-X27 2.66 2.91  Sb12-X25 2.65 2.80 
Sb14-X30 2.43 2.57  Sb13-X28 2.50 2.68  Sb12-X26 2.43 2.57 
(°) [1a] [1b]   (°) [2a] [2b]   (°) [3a] [3b] 
C2-C1-N6 120 120   C2-C1-N6 120 120   N5-C1-N9 119 119 
N6-C1-N11 119 119  N6-C1-N10 119 119  N9-C1-N28 117 117 
C1-C2-C3 120 120  C1-C2-C3 120 120  C1-C2-H6 121 121 
C5-C4-H9 120 120  C5-C4-C33 121 121  N5-C4-H8 116 117 
C4-C5-N6 123 123  C4-C5-N6 124 124  C1-N5-C4 118 118 
N6-Sb14-X28 92 94  N6-Sb13-X26 92 93  N5-Sb12-X26 83 86 
N6-Sb14-X29 87 87  N6-Sb13-X27 88 87  N18-Sb12-X24 87 94 
N6-Sb14-X30 84 86  N6-Sb13-X28 84 86  N18-Sb12-X25 93 85 
N22-Sb14-X28 88 88  N20-Sb13-X26 88 87  N18Sb12-X26 83 92 
N22-Sb14-X29 92 92  N20-Sb13-X27 92 93  N24-Sb12-X26 89 92 
N-Sb-N 168 172  N-Sb-N 167 172  N-Sb-N 166 170 
X-Sb-X 177 179   X-Sb-X 178 176   X-Sb-X 178 179 

 

3.1. Frontier Molecular Orbital Parameters and PDOS 
 

In this section, Frontier molecular orbital parameters and the partial density of state results are given. 

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), 

sometimes known as frontier molecular orbitals, are particularly well-liked quantum chemical 

characteristics. They determine a molecule's light-absorbing capacity and molecular reactivity. 

According to Koopmans theorem equations, these descriptors can be expressed as chemical potential 

μ=(EHOMO+ELUMO)/2, chemical hardness η=(EHOMO-ELUMO)/2, global softness S=1/η and electrophilicity 

index = μ2/2η  from the orbital energy gap [32,33].  
 

Table 3 contains a list of descriptors for the antimony (III) compounds [1-3a/b]. Additionally, the table 

includes information on the anti-leishmanial activity of these compounds. Notably, [3a] exhibits the 

strongest anti-leishmanial activity among the tested compounds, as evidenced by its highest HOMO 

value, lowest energy gap, and lowest chemical hardness. The global hardness value is directly related to 

the stability of the chemical system. [3b] has the highest electrophilicity index (ω).  
 

Table 3. Global reactivity properties and antileishmanial activity 
 

Molecular Properties (eV) [1a] [2a] [3a] [1b] [2b] [3b] 
ELUMO -1.69 -1.62 -2.05 -1.76 -1.69 -2.07 

EHOMO -6.43 -6.23 -6.69 -6.04 -5.97 -6.28 

ΔEHOMO-LUMO -4.74 -4.61 -4.64 -4.28 -4.28 -4.21 

Ionisation Potential (IP) 6.43 6.23 6.69 6.04 5.97 6.28 

Electron Affinity (EA) 1.69 1.62 2.05 1.76 1.69 2.07 

Chemical Hardness (η) 2.37 2.31 2.32 2.14 2.14 2.11 

Electronegativity (χ) 4.06 3.93 4.37 3.90 3.83 4.18 

Chemical Potential (μ) -4.06 -3.93 -4.37 -3.90 -3.83 -4.18 

Softness (S) ev-1 0.42 0.43 0.43 0.47 0.47 0.48 

Electrophilicity index (ω) 3.48 3.34 4.12 3.55 3.43 4.14 

LC50 (M)* 2.19x10-5 1.40x10-4 1.47x10-5       

*Antileishmanial activity  [34] 
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The population analysis was calculated and presented in Figure 2. In PDOS plots and the structure of 

fragment orbitals that are a part of molecular orbitals demonstrated. Where, the groupings of N-Sb-

Cl/Br, Ring, N-H, and other atoms have been divided at the PDOS. A bonding interaction supported the 

PDOS's positive value, whereas an anti-bonding interaction contends that are negative values and non-

binding interactions imply values very near to zero. 
 

Figure 2. The partial density of state diagrams 

 

As shown in Figure 2, the partial density of state plot (PDOS) primarily illustrates the structure of the 

fragment orbitals that contribute to the molecular orbitals. The HOMO LUMO orbital distributions of 

each compound are shown in the graph Figure 2. Table 4 shows the calculated contribution percentages 
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of the molecular orbitals. The partial density of state plot (PDOS) mainly presents the composition of 

the fragment orbitals contributing to the molecular orbitals which is seen from Figure 2. The calculated 

contribution percentage of the structures are listed in Table 4. As seen in the Table 4, HOMO-LUMO 

orbitals are localized on the N-Sb-X (X=Cl, Br) and their contributions are about 59-90 %.  
 

Table 4. The calculated contribution percentage of the complexes from PDOS 

 
The contribution percentage 

    eV N-Sb-Cl Ring N-H 

[1a] 
LUMO -1.69 81 18 0 
HOMO -6.43 89 8 3 

      N-Sb-Br Ring N-H 

[1b] 
LUMO -1.76 75 20 5 
HOMO -6.04 68 26 6 

      N-Sb-Cl Ring CH3 N-H 

[2a] 
LUMO -1.62 81 18 0 
HOMO -6.23 62 30 8 

      N-Sb-Br Ring CH3 N-H 

[2b] 
LUMO -1.69 61 38 0 
HOMO -5.97 59 41 0 

      N-Sb-Cl Ring N-H 

[3a] 
LUMO -2.05 65 35 0 
HOMO -6.69 90 9 1 

      N-Sb-Br Ring N-H 

[3b] 
LUMO -2.07 78 12 0 
HOMO -6.28 60 40 0 

 

3.2. Molecular Electronic Potential Surface 
 

A method for illustrating the distribution of electrostatic potential is the molecular electrostatic potential 

(MEP) surface. Different colours are used to represent the various electrostatic potential levels at the 

surface. Potential increases from red-orange-yellow-green-blue, with blue denoting the highest 

electrostatic potential energy and red denoting the lowest. Molecular electrostatic potential (MEP) 

provide the distribution, molecular structure, size, and dipole moments of the complexes, and allowing 

the reader to comprehend electrophilic attack and nucleophilic interactions. In Figure 3, the negative 

(red) portions of MEP were linked to electrophilic reactivity, whereas the positive (blue) regions were 

linked to nucleophilic reactivity. The negative (red) and positive (blue) regions of MEP were connected 

to electrophilic and nucleophilic reactivity, respectively. According to Figure 3, there are two possible 

targets for electrophilic attack on complex compounds, negative areas are mostly around N-Sb-X (X: 

Cl, Br), while the positive ones around the nitrogen atoms. 
 

 
Figure 3. Molecular electronic potential surface of the complexes 
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3.3. First Hyperpolarizability 
 

For emerging technologies in fields like communication, signal processing, and optical interconnections, 

such as frequency shifting, optical modulation, switching, and logic, nonlinear optical (NLO) activity 

provides essential functions [35,36]. The first hyperpolarizability of a system in the presence of an 

applied electric field is a third-rank tensor that may be characterized by a 3x3x3 matrix, and the energy 

of a system is a function of the electric field. Using the x, y, and z components, the total static dipole 

moment (µ), mean polarizability (<αtot>), anisotropy of polarizability (∆α), and first-order 

hyperpolarizability (βtot) can be determined as follows: 

 

µ = (µx
2+ µy

2 + µz
2)1/2 (4) 

 

<αtot>= 1/3 (αxx + αyy + αzz) (5) 

 

Δα =2-1/2[(αii-αjj)2+(αii-αkk)2+(αjj-αkk)2+6αxx2]1/2 (6) 

 

βi = (βiii+ βijj+ βikk) and  i, j, k = x, y, z (7) 

 

βtot = (βx+βy+βz)1/2 (8) 

 

With the calculating by using the schemes of the B3LYP/GEN value of electric dipole moment, 

polarizabilities and first hyperpolarizabilities for the title complexes were tabulated in Table 5 

(Δαtot×10−23 esu and βtot×10−31 esu). αi, βikk components of the polarizability and first hyperpolarizability 

can be seen in Table S1 (Supplementary Information). Since the polarizabilities and 

hyperpolarizabilities of the Gaussian 03 outputs are presented in atomic units (a.u.), the predicted values 

have been transformed into electrostatic units by using α: 1a.u. = 0.1482 × 10−24 esu and β; 1a.u. = 

8.6393 × 10−33 esu, respectively. Along the z-axis, the highest dipole moment was identified for all 

complexes. Among the complexes, the largest dipole moment is µ=10.77 Debye [2b] and the lowest 

molecular dipole moment is µ=0.25 Debye [3b]. At the same time [3b] complex has βtot=241.85 a.u. and 

it has a relatively higher average polarizability Δα (a.u.) value than the others. x, y, and z components 

of dipole (µ), polarizability (α), and first-order hyperpolarizability (β) were given in the Table S1 

(Supplementary information). 

 
Table 5. The calculated dipole moment, polarizabilities and first-order hyperpolarizabilities of the complexes 

 

µ&α [1a] [2a] [3a] [1b] [2b] [3b] 
µ (Debye) 1.24 1.02 0.64 1.13 10.77 0.25 
<α> (a.u.) 216.33 243.56 207.36 240.49 473.20 231.43 
Δ (×10−23 esu) 7.73 8.60 7.40 8.19 21.40 7.86 
βx 6.03 2.15 -0.63 -3.22 2.84 -7.37 
βy -8.12 -10.79 -5.01 -3.99 -0.07 -0.39 
βz 15.76 24.63 115.98 105.06 -1851.43 241.73 
βtot (a.u.) 18.73 26.98 116.09 105.19 1851.44 241.85 
βtot (×10−31 esu) 1.62 2.33 10.03 9.09 159.95 20.89 
α (1 a.u.) = 0.1482 × 10−24 esu; β (1 a.u.) = 8.6393 × 10−33 esu  

 

Table S1. x, y, and z components for dipole (µ), polarizability (α), and first-order hyperpolarizability (β) 

 

µαβ [1a] [2a] [3a] [1b] [2b] [3b] 
µx 1.00E-07 -1.90E-06 2.20E-06 1.48E-05 2.79E-05 1.19E-05 
µy 4.30E-06 7.70E-06 -5.10E-06 -1.16E-05 8.19E-05 3.00E-06 
µz -1.24 -1.02 -0.45 -1.13 -10.77 -0.25 

αxx 292.32 326.24 279.32 311.69 786.73 298.55 
αxy -16.48 -16.98 -19.28 -18.80 70.06 -22.13 
αyy 207.55 228.73 206.32 235.56 362.80 233.35 
αxz 0.00 0.00 0.00 0.00 0.00 0.00 
αyz 0.00 0.00 0.00 0.00 0.00 0.00 
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αzz 149.11 175.70 136.44 174.23 270.07 162.39 
βxxx 0.67 -0.78 -0.38 -2.81 0.93 -0.94 
βxxy -2.15 -3.12 -2.89 -0.34 0.49 0.09 
βxyy 3.14 4.80 -1.92 0.18 0.67 -2.74 
βyyy -7.06 -6.89 -1.58 -2.49 0.65 1.07 
βxxz -2.72 28.97 86.18 46.61 512.11 153.95 
βxyz 135.92 -119.45 -111.91 -139.97 -829.97 -115.28 
βyyz 136.47 76.27 148.80 181.00 -1592.29 193.04 
βxzz 2.22 -1.87 1.67 -0.59 1.24 -3.69 
βyzz 1.08 -0.77 -0.54 -1.16 -1.21 -1.56 
βzzz -117.99 -80.61 -118.99 -122.55 -771.25 -105.25 

 

 

3.4. Vibrational Spectral Analysis 
 

The title compound's vibrational frequencies were made, and the calculated results were contrasted with 

experimental FT-IR spectra in this section. The scaled quantum mechanical force field (SQM-FF) 

methodology has been applied to the theoretically anticipated wavenumbers using the SQM program. 

Depending on the type of Hessian calculations, it is expected that the harmonic wavenumbers estimated for 

a molecule will greatly exceed the corresponding actual wavenumbers. The SQM-FF method, which applies 

an effective empirical scaling process to the calculated harmonic wavenumbers or, more preferably, to the 

calculated harmonic force constants, can successfully correct these overestimations even though they are not 

completely systematic [27, 28]. These findings suggest that the calculated expected frequencies match the 

observed infrared values quite well. According to the SQMFF technique, the average percentage error RMS 

was found to be 11.09, 12.64, and 14.26 for the [1a-3a] complexes, respectively (see Table 6).  
 

Table 6.  RMS values of SQM calculation 
 

 [1a] [2a] [3a] 
RMS error 11.09 12.64 14.26 
Pre-fingerprint region 4.51      1.59 12.71 
Fingerprint region (500-2500 cm-1) 12.60      11.69 15.62 
Post-fingerprint region  2.35 16.55 11.30 

 

Total Energy Distribution (TED), which is produced by the SQMFF technique, was used to create 

characterized normal mode descriptions and interpret them. The TED components quantify the 

contribution of each internal coordinate to the external coordinates. The descriptions of the internal 

coordinates utilized in the TED computations are provided in Table S2-S4. Experimental and calculated-

SQM infrared spectrums of the complexes [1a-3a] shown in the Figure 4, 5 and 6. 

 
Table S2. The vibrational wavenumbers, harmonic and scaled (SQM) frequencies (cm−1), IR intensities, TED and 

assignments of [1a] 
 

  B3LYP SQM Exp.   

       
No   FreqHar IIR FreqSQM IIR

SQM IRExp   Mode Description and TED>%5 
1 A 27 1.25 26 1.4   HClClH(52)+SbClHN(28)+ClSbN(12)+ClHN(12) 
2 A 28 4.08 28 4.1   SbClHN(36)+HClClH(71) 
3 A 40 2.28 40 2.3   SbClHN(242)+HNCC(16) 
4 A 46 0.28 46 0.3   SbClHN(135)+ClHN(28)+HNC(11) 
5 A 71 1.15 70 1.1   HClSbCl(60)+SbClHN(58)+SbClH(16) 
6 A 85 1.20 84 1.1   ClHNC(78)+tClHNH(145)+tHNCN(88) 
7 A 97 3.31 97 3.4   HNCl(52)+SbClH(14)+SbClHN(50) 
8 A 113 4.14 112 3.5   HClSb(52)+ClHNC(50)+ClHNH(32)+HClSbCl(20) 
9 A 123 39.13 121 0.4   SbClH(65)+HNCN(26) 
10 A 125 0.66 123 44.6   ClH(64)+HClSb(30)+ClSbCl(13)+SbClNH(27) 
11 A 135 18.12 133 13.8   ClHN(76)+ClSbCl(27) 
12 A 136 0.42 135 0.2   ClH(83)+HSb(11)+ClHNC(62)+ClHNH(40) 
13 A 141 14.31 143 14.5   ClH(83)+HSb(11)+ClHNC(62)+ClHNH(40) 
14 A 171 0.11 170 101.8   SbCl(17)+SbH(15)+HClSbCl(25)+ClHNC(12)+ClHNH(11) 
15 A 172 108.82 171 0.4   ClHN(27)+ClHNC(164)+ClHNH(119)+HCLCLH(9) 
16 A 216 43.30 210 29.7   ClSb(11)+CCCN(18)+CNCN(10)+ClHNC(15) 
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17 A 220 2.84 216 2.8   ClSb(30)+CCCN(14)+SbClHN(30) 
18 A 235 0.55 233 0.0   ClSb(31)+ClH(15)+SbClHN(26) 
19 A 241 88.27 240 104.9   ClSb(69)+ClH(11) 
20 A 313 30.63 318 28.7   ClSb(95) 
21 A 430 16.98 405 17.0   CCN(36) 
22 A 433 10.09 409 5.4   CCC(16)+CCN(16)+SbClHN(16) 
23 A 437 26.99 432 22.0   NCC(62)+ClHNH(13) 
24 A 438 2.37 434 10.9   CCN(30)+CNC(25)+ClHNH(36) 
25 A 475 26.42 458 32.5   HNCN(22)+HNCN(20)+ClHNH(36)+ClHNC(11) 
26 A 479 88.01 461 96.5   NCC(11)+HNCC(21)+HNCN(21) 
27 A 529 7.90 501 8.7 496 m Ring(54) 
28 A 529 29.63 501 24.0   Ring(54) 
29 A 571 0.28 558 2.3 549 w CCN(22) 
30 A 572 13.14 559 16.8   CCN(22)+ClHNC(25)+ClHNH(15) 
31 A 652 73.29 646 145.4 626 m SbClHN(100) 
32 A 653 33.11 648 199.3   SbClHN(100) 
33 A 659 78.11 654 1.0 653 m ClHNC(22) 
34 A 663 250.82 656 72.6   CCC(13)+ClHNC(28)+SbClHN(76) 
35 A 755 10.70 720 13.3 719 w  Ring(44)+SbClHN(13) 
36 A 756 0.07 721 8.1   CCCH(15)+CNCC(15)+tHCCN(14)+tSbClHN(13) 
37 A 781 39.69 749 37.2   CCCH(48)+HCCN(25) 
38 A 782 77.09 749 74.0 763 m CCCH(48)+HCCN(25) 
39 A 862 22.09 824 45.0   CN(53)+CC(8)+CCC(13) 
40 A 864 1.11 827 0.0   CN(53)+CC(8)+CCC(13) 
41 A 864 6.35 831 2.8   CCCH(14)+HCCH(13)+HCCN(18) 
42 A 864 4.51 831 8.4   CCCH(14)+HCCH(13)+HCCN(18) 
43 A 973 0.04 916 0.0   HCCH(46)+HCCC(18)+HCCC(16) 
44 A 974 0.25 917 0.4   HCCH(46)+HCCC(18)+HCCC(16) 
45 A 1004 0.52 949 0.1   HCCH(74) 
46 A 1004 0.12 949 0.4   CCCH(25)+HCCH(48) 
47 A 1016 75.62 987 116.5   CNC(34)+CN(29) 
48 A 1018 0.68 991 1.2 993 w CNC(34)+CN(29) 
49 A 1081 29.26 1082 7.0   HNC(36)+CC(17) 
50 A 1082 0.33 1083 0.0   HNC(33)+CC(17) 
51 A 1085 1.46 1096 0.3   CC(50)ring 
52 A 1085 0.00 1097 0.0 1119 w CC(50)ring 
53 A 1166 1.72 1150 13.8   CN(25)+HCC(25) 
54 A 1167 2.20 1151 0.0 1164 w CN(15)+HCC(28) 
55 A 1190 17.33 1193 16.2   HCC(76) 
56 A 1190 8.78 1193 11.8 1190 w HCC(76) 
57 A 1320 71.61 1252 55.5 1234 w CN(29)+CC(23) 
58 A 1322 1.95 1254 0.0   CN(29)+CC(23) 
59 A 1371 42.30 1318 55.1   CN(54)+CC(12) 
60 A 1371 10.59 1318 27.8 1321 m CN(54)+CC(12) 
61 A 1382 1.08 1370 31.0   NCH(22)+HCC(15)+HNC(15) 
62 A 1383 0.08 1370 5.8 1382 m NCH(22)+HCC(15)+HNC(15) 
63 A 1494 60.56 1483 85.7 1472 m CCH(27)+CC(15) 
64 A 1495 37.61 1483 58.3   CCH(28)+CC(14) 
65 A 1539 97.31 1525 84.7   HCN(28)+HCC(18) 
66 A 1541 68.43 1527 58.1 1544 m HCN(28)+HCC(18) 
67 A 1621 74.78 1632 57.7 1621 s CC(54) 
68 A 1621 25.26 1632 16.4   CC(54) 
69 A 1667 136.36 1674 122.2 1661 s HCH(49)+HCH(17) 
70 A 1668 0.65 1675 25.7   HCH(49)+HCH(17) 
71 A 1697 259.89 1697 37.3   CC(36)+CN(21) 
72 A 1698 88.21 1698 205.1   CC(36)+CN(21) 
73 A 3195 8.76 3138 9.3   HC(98) 
74 A 3195 2.78 3138 2.4   HC(98) 
75 A 3210 23.61 3153 23.5   HC(95) 
76 A 3210 4.04 3153 4.0   HC(94) 
77 A 3228 0.43 3170 0.4 3169 m HC(95) 
78 A 3228 1.80 3170 1.6   HC(95) 
79 A 3241 0.75 3183 0.7   HC(97) 
80 A 3241 15.21 3183 14.7 3184 m HC(97) 
81 A 3416 722.76 3346 722.0 3343 s HN(96) 
82 A 3416 11.43 3347 11.6   HN(96) 
83 A 3670 104.88 3597 104.8   HN(95) 
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84 A 3671 33.51 3597 33.3 3600 m HN(95) 
Har Harmonic vibrational frequencies. FreqSQM, Calculated from SQM frequencies, IIR Infrared intensities 
, stretching; , bending; , torsion. 

 

Table S3. The vibrational wavenumbers, harmonic and scaled (SQM) frequencies (cm−1), IR intensities, TED and 

assignments of [2a] 
 

  B3LYP SQM Exp.   

No   FreqHa

r 

IIR FreqSQ

M 

IIR
SQM IRExp   Mode Description and TED>%5 

1 A 26 0.85 24 0.86   SbClHN(84) 
2 A 29 4.10 28 4.10   SbClHN(100) 
3 A 34 0.00 34 0.00   SbClHN(81)+HClSb(23)+ClHN(23) 
4 A 35 2.60 35 2.57   SbClHN(217)+HClSb(17) 
5 A 70 0.53 69 0.44   SbClHN(95)+HClSbCl(11)+HClSb(17) 
6 A 79 0.40 78 0.33   ClHNC(170)+ClHNH(151) 
7 A 88 0.04 85 0.08   HCCC(62)+ClHNH(27)+ClHNC(32) 
8 A 88 0.58 85 0.32   HCCC(84) 
9 A 91 3.49 90 3.87   ClHN(68)+SbClHN(29)+ClHNH(28) 
10 A 106 3.51 105 3.29   ClH(14)+SbClH(31)+ClHNC(29)+HClSbCl(26)

) 11 A 116 18.12 114 16.23   ClHN(22)+HClSbCl(20) 
12 A 118 0.04 116 0.02   HClSb(79)+HNCN(13) 
13 A 122 0.14 121 0.05   ClHNC(82)+ClHNH(62)+ClH(22)+ClHN(20) 
14 A 125 42.10 125 46.43   ClH(41)+SbClH(25)+ClHN(12)+SbClHN(39) 
15 A 140 18.68 142 17.74   ClSbCl(61)+HClSb(22) 
16 A 152 0.21 151 0.31   ClH(64)+ClHNC(46)+ClHNH(41) 
17 A 154 9.64 153 6.34   ClH(14)+SbCl(11)+ClSbCl(18)+SbClHN(15) 
18 A 168 3.47 166 2.86   ClHNC(69)+ClHNH(40) 
19 A 175 93.96 174 91.88   ClH(11)+ClHNC(18)+HClSbCl(43) 
20 A 224 123.19 226 122.14   ClSb(84) 
21 A 224 0.63 227 0.76   ClSb(88) 
22 A 309 25.23 310 11.54   ClSb(39)+CCC(29) 
23 A 319 27.76 312 25.80   CCC(48)+ClHNC(19)+ClHNH(17) 
24 A 321 3.63 315 1.27   CCC(10)+CCCC(12)+CCCN(5) 
25 A 324 0.82 315 4.41   CCCC(12)+CCCN(13) 
26 A 325 0.78 320 15.68   ClSb(53)+CCC(10)+tClHNC(44)+ClHNH(32) 
27 A 438 12.91 424 14.40 422 w CC/NCC(18)+SbClHN(11) 
28 A 442 9.91 428 3.30   CCCC(13)+CNCC(17)+SbClHN(30) 
29 A 450 5.05 439 7.56   CCN(40)+HNCC(10)+ClHNH(14) 
30 A 451 12.86 440 19.49   CCN(21)+NCN(15)+ClHNH(35)  
31 A 469 39.97 458 32.59   CCN(13)+HNCC(17)+tHNCN(14)  
32 A 472 67.53 460 69.58   CCN(13)+HNCC(17)+tHNCN(14)  
33 A 490 5.21 475 9.67   CC(10)+NCN(15)+CCC(13)+CCC(11) 
34 A 490 2.61 476 6.67 477 m CC(10)+NCN(15)+CCC(24) 
35 A 531 6.53 515 6.76 512 m Ring(33) 
36 A 531 30.57 516 26.50   Ring(33) 
37 A 656 144.92 647 146.98 645 w SbClHN(149) 
38 A 660 290.84 650 233.11   SbClHN(163) 
39 A 676 5.27 660 1.08   Ring(45)+SbClHC(33) 
40 A 678 30.79 662 84.91   ClHNC(69)+ClHNH(10) 
41 A 754 4.65 732 3.29   CC(21)+CCN(14) 
42 A 754 8.57 732 6.76 740 w CC(21)+CCN(14) 
43 A 787 29.97 763 29.76 757 w SbClHN(45) 
44 A 789 6.81 764 14.93 789 w SbClHN(64) 
45 A 834 22.97 817 22.16   HCCN(60) 
46 A 834 49.00 817 49.18 829 w HCCN(57) 
47 A 874 42.42 835 59.77   CC(29)+CN(27) 
48 A 877 0.09 838 0.00   CC(29)+CN(27) 
49 A 923 1.17 895 0.90   HCCC(60) 
50 A 924 0.80 896 0.54   HCCH(45) 
51 A 990 0.03 961 0.01   HCCH(61) 
52 A 990 0.29 961 0.46   HCCH(55) 
53 A 1014 1.00 984 2.54   HCC(31) 
54 A 1014 0.00 984 0.01   HCC(31) 
55 A 1060 44.25 1030 59.36   NCC(11) 
56 A 1060 0.35 1030 0.41 1030 w NCC(11) 
57 A 1073 2.34 1043 2.40   HCC(62) 
58 A 1073 3.57 1043 3.55 1054 w HCC(62) 
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59 A 1107 60.37 1082 49.28   HNC(40) 
60 A 1109 0.02 1084 0.01   HNC(42) 
61 A 1179 23.41 1147 31.10   CCH(57) 
62 A 1180 11.10 1148 11.99 1148 m CCH(56) 
63 A 1253 19.79 1204 41.51 1212 w CC(38) 
64 A 1254 0.12 1206 0.01 1230 w CN(30)+CC(27) 
65 A 1325 52.91 1258 26.01   NC(48)+CC(22) 
66 A 1326 6.37 1259 1.29   NC(48)+CC(26) 
67 A 1369 15.23 1311 19.42   NC(40)+CC(25) 
68 A 1370 2.09 1312 5.91 1319 w NC(40)+CC(25) 
69 A 1377 32.19 1344 31.59 1342 m HNC(47)+HCC(15) 
70 A 1379 4.39 1345 4.59   HNC(36)+HCC(15)+HNC(11) 
71 A 1435 10.80 1397 95.73 1385 m HCH(48) 
72 A 1435 2.35 1397 59.90   CC(26) 
73 A 1448 55.81 1418 2.16 1414 m CCC(95) 
74 A 1448 29.74 1418 0.35   CCC(95) 
75 A 1499 4.06 1480 3.88 1455 m HCH(56)+HCC(16) 
76 A 1499 6.15 1480 5.94   HCH(56)+HCC(16) 
77 A 1512 14.82 1490 18.64   HCH(31)+HCC(17) 
78 A 1512 14.95 1490 18.09   HCH(31)+HCC(17) 
79 A 1555 143.26 1500 137.26   NC(22) 
80 A 1557 104.17 1502 97.81   NC(23) 
81 A 1617 90.49 1566 85.16 1550 s CC(27) 
82 A 1618 13.58 1567 6.70   CC(27) 
83 A 1675 83.45 1630 2.12 1624 s CC(25) 
84 A 1675 3.23 1631 84.24   CC(25) 
85 A 1699 223.89 1658 174.43   HNH(54) 
86 A 1700 81.27 1660 60.88 1667 s HNH(52) 
87 A 3044 53.54 3027 54.05   HC3(81)sym 
88 A 3044 17.24 3028 17.24 3040 w HC3(81)sym 
89 A 3099 14.90 3082 17.01   HC3(100)assym 
90 A 3099 16.53 3082 14.42 3090 w HC3(100)assym 
91 A 3136 12.88 3119 14.10   HC3(82)assym 
92 A 3136 4.98 3119 3.82   HC3(81)assym 
93 A 3184 21.17 3167 23.19 3155 m HC(93) 
94 A 3184 1.25 3167 1.19   HC(92) 
95 A 3206 18.74 3188 18.03 3181 m HC(99) 
96 A 3206 5.95 3188 5.86   HC(99) 
97 A 3222 0.22 3204 0.25   HC(99) 
98 A 3222 19.04 3205 17.06 3261 m (99) 
99 A 3418 725.81 3265 726.33 3296 m HN(94) 
10

0 

A 3418 8.39 3266 8.58 3414 m HN(93) 
10

1 

A 3668 98.66 3506 98.19 3482 m HN(93) 
10

2 

A 3669 32.74 3506 32.70     HN(93) 
Har Harmonic vibrational frequencies. FreqSQM, Calculated from SQM frequencies, IIR Infrared intensities 
, stretching; , bending; , torsion.vw, very weak; w, weak; m, medium; s, strong; vs, very strong. 

 
Table S4. The vibrational wavenumbers, harmonic and scaled (SQM) frequencies (cm−1), IR intensities, TED and 

assignments of [3a] 

 
 B3LYP SQM Exp.   

No  FreqHar IIR FreqSQM IIR
SQM IRExp Mode Description and TED>%10 

1 A 21 1.03 19 1.10   SbClHN(26)+HClSbCl(34)+HClClH(71) 
2 A 26 0.93 26 0.95   ClHN(24) 
3 A 43 0.98 42 0.99   ClHN(34)+SbClHN(120) 
4 A 43 1.31 43 1.34   SbClHN(203) 
5 A 73 1.95 72 1.83   HClClH(17) 
6 A 84 2.44 84 2.51   HClSb(31)+ClHNC(62)+ClHNH(80) 
7 A 96 2.49 96 2.56   SbClHN(56) 
8 A 112 4.01 111 3.48   HClSb(104)+ClHNC(46) 
9 A 120 0.11 118 0.05   HClSb(89)+ClHNC(27)+ClHNH(48) 
10 A 124 39.74 124 43.56   ClSbCl(72) 
11 A 129 14.48 128 14.11   ClHN(47) 
12 A 134 0.01 134 0.00   ClH(58)+HClSb(28) 
13 A 141 19.81 143 18.22   ClH(48)+ClHN(48)+ClHNC(24) 
14 A 167 81.19 167 71.23   ClH(20) 
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15 A 170 1.90 169 2.42   ClH(45) 
16 A 207 39.04 203 42.11   SbClHN(109) 
17 A 215 4.29 211 3.50   SbClHN(109) 
18 A 230 0.00 232 0.26   ClSb(84)+SbClHN(38) 
19 A 238 112.46 240 114.63   ClSb(92) 
20 A 315 28.94 319 27.56   ClSb(94) 
21 A 427 8.47 413 9.85   CNCC(36) 
22 A 430 6.35 417 5.29   CNCC(89) 
23 A 453 80.42 450 80.22 433 w NCN(60)+ClHN(30) 
24 A 455 3.63 452 4.11 458 m NCN(44)+ClHN(50) 
25 A 521 5.38 503 5.77 503 m NCCC(33)+HCCC(14) 
26 A 522 49.56 503 45.12   NCCC(26)+HCCC(26) 
27 A 560 0.24 544 0.01 547 w HNCN(67) 
28 A 563 195.89 546 179.02   HNCN(68) 
29 A 596 6.51 589 9.35   ClHNC(31)+ClHNH(16) 
30 A 596 4.65 589 13.46 582 w ClHNC(33)+ClHNH(18) 
31 A 634 83.35 627 80.80   SbClHN(187)+HNCN(33) 
32 A 637 165.50 629 177.70 640 m SbClHN(184) 
33 A 662 49.28 657 43.25   CNC(66) 
34 A 664 1.50 659 1.25   CNC(65) 
35 A 802 28.47 778 32.20 777 m CNCN(28) 
36 A 803 54.61 779 63.56   HNCN(28) 
37 A 813 7.15 798 3.60 792 m NCCC(23)+NCNC(14) 
38 A 814 11.06 798 3.52   NCCC(23)+NCNC(14) 
39 A 890 38.12 864 41.44   NC(65) 
40 A 892 0.06 867 0.04 870 vw NC(65) 
41 A 988 0.11 952 0.08   HCCH(21)+CCCH(22) 
42 A 988 0.29 952 0.19   HCCH(22)+CCCH(22) 
43 A 1009 3.18 973 0.60   CCCH(35)+HCCH(22)+tCNCH(20) 
44 A 1009 0.15 973 0.13   CCCH(35)+HCCH(22)+tCNCH(20) 
45 A 1014 8.63 994 8.53 988 m CC(6)+CCC(10) 
46 A 1015 0.46 995 0.06   CC(6) 
47 A 1062 32.97 1039 22.96   HNC(26)+NC(18)+CC(15) 
48 A 1063 0.15 1040 0.03 1045 vw HNC(26)+NC(18)+CC(15) 
49 A 1113 7.66 1065 6.73   CC(46)+CN(10) 
50 A 1114 1.76 1066 1.60 1067 vw CC(46)+CN(10) 
51 A 1162 3.47 1141 19.82 1115 m HCC(42)+CC(14) 
52 A 1163 0.25 1142 1.69 1196 w HCC(42)+CC(13) 
53 A 1283 78.79 1235 99.91 1213 m NC(67)+CC(12) 
54 A 1284 5.79 1236 7.90   NC(66)+CC(12) 
55 A 1348 45.49 1338 49.82   HNC(59) 
56 A 1349 0.00 1339 0.00 1344 m HNC(57) 
57 A 1402 61.87 1375 55.21   CN(49)+HCN(17) 
58 A 1403 12.21 1376 11.71 1386 m CN(46)+HCN(17) 
59 A 1489 7.04 1468 10.06 1450 m HCC(53)+CN(11) 
60 A 1491 0.66 1470 0.01   HCC(52)+CN(11) 
61 A 1526 172.25 1494 214.63   NC(45) 
62 A 1526 90.24 1494 109.55 1509 m NC(43) 
63 A 1608 279.23 1547 301.71 1540 s CC(31)+CN(15) 
64 A 1609 59.69 1548 52.63   CC(31)+CN(15) 
65 A 1653 188.38 1607 24.33   CN(39)+CC(14) 
66 A 1654 0.03 1607 227.65 1620 s CN(39)+CC(14) 
67 A 1689 500.18 1667 372.02   HNH(59)+NH(13) 
68 A 1689 160.76 1669 122.90 1660 vs HNH(59)+NH(13) 
69 A 3174 54.43 3127 54.51   HC(99) 
70 A 3174 0.35 3127 0.40 3145 m HC(99) 
71 A 3225 0.00 3177 0.00 3160 m HC(93) 
72 A 3225 9.31 3177 9.51   HC(92) 
73 A 3248 5.35 3199 4.80 3198 m HC(97) 
74 A 3248 0.48 3199 0.68   HC(97) 
75 A 3442 205.37 3350 666.03 3347 m HN(94) 
76 A 3442 462.15 3350 2.56   HN(94) 
77 A 3684 224.00 3586 223.57   HN(93) 
78 A 3684 50.95 3586 50.99 3589 w HN(93) 
Har Harmonic vibrational frequencies. FreqSQM, Calculated from SQM frequencies, IIR Infrared intensities 
, stretching; , bending; , torsion.vw, very weak; w, weak; m, medium; s, strong; vs, very strong. 

 



Çatıkkaş and Şahinler / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 11(2) – 2023 

 

138 

 

3.4.1. NH2 Group Vibrations 
 

The N–H stretches of primary aliphatic amines in the region of 3450-3160 cm-1, give rise to two 

asymmetric and one symmetric stretching vibration.  The NH2 vibration medium band was assigned at 

3600 cm-1 and 3343 cm-1 [1a]. The corresponding calculated asymmetric and symmetric NH2 vibrations 

were found at 3597 cm-1, 3346 cm-1 , and 3296 cm-1 in [1a] compound. In compound [2a], NH stretching 

vibration were observed as 3482 cm-1, 3414 cm-1 and 3296 cm-1, calculated 3506 cm-1, 3266 cm-1 and 

3265 cm-1. In compound [3a], NH2 bands were observed at 3589 cm-1 and 3347 cm-1 and were 

calculated at 3589 cm-1 and 3350 cm-1. 
 

3.4.2. Aromatic C-H and CH3 Group Vibrations 
 

The characteristic aromatic and heteroaromatic C-H stretching vibrations are expected to appear in the 

wavenumber range 3000–3200 cm-1 [37,38]. The C-H stretching vibrations of the [1a] were observed at 

3184, 3169 cm-1 in the FT-IR spectrum and calculated as 3183 cm-1 and 3170 cm-1. C-H bands were 1 

assigned 3181 3155 3090 3040 cm-1 assigned of number [2a] compounds. HC vibrations were assigned 

experimental at 3198 cm-1, 3145 cm-1 and calculation at 3199 cm-1, 3177 cm-1 in [3a]. 

Fundamental (CH3) stretching symmetric and asymmetric bands appear in the range 3090, 3040 cm-1 

corresponding to the SQM frequencies 3119 cm-1, 3082 cm-1, and 3028 cm-1 respectively for the [2a]th 

compound because only [2a] has CH3 group. 
 

3.4.3. Sb-Cl Vibrations 
 

Sb-Cl vibrations were calculated 216, 233, 240, and 318 cm-1 for [1a], 226, 227, and 310 cm-1 for [2a] 

and 232, 240 and 319 cm-1 for [3a]. 280 cm-1 and 308 cm-1 for SbCl in the literature [39].  
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Figure 4. The experimental and simulated infrared spectrum of the complex [1a] 
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Figure 5. The experimental and simulated infrared spectrum of the complex [2a] 
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Figure 6. The experimental and simulated infrared spectrum of the complex [3a] 
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4. CONCLUSIONS 

 

In this study, theoretical electronic and vibrational spectroscopic analyses of antimony (III) complexes 

were performed with B3LYP method GEN (C, H, N, Cl: 6-31G(d,p) and Sb: LanL2DZ) basis set. Six 

compounds' partial density of state diagram and the calculated PDOS contribution percentage have been 

investigated. The HOMO and LUMO orbitals are localized on mostly N-Sb-X (X: Cl, Br). As seen in 

the molecular electrostatic potential surface map, the negative charge is in the region on the N-Sb-Cl 

atoms. The calculation of first-order hyperpolarizability reveals that the [3b] complex has the lowest 

molecular dipole moment as µ = 0.25 Debye, βtot (×10−30) = 241.85 a.u. and it has a relatively higher 

average polarizability Δα (a.u.) value than the others. The RMS and mean average deviation of 

fundamental vibrations were found to be the average percentage error RMS was found to be 11.09, 

12.64, and 14.26 for the [1a-3a] complexes, respectively. With the use of normal coordinate analysis, 

which was done by the scaled quantum mechanical force field methodology, the full interpretation of 

the vibrational spectra was carried out. According to RMS values, there is a fair agreement between 

experimental and predicted wavenumbers and assignments. 
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ABSTRACT 
 

Let π be the projective plane of order 25 coordinatised by elements of the smallest cartesian group. In this work, in some cases 

depending on the choice of the regular quadrangle it is shown that there is no any projective subplane of order 3 of π. 

 

Keywords: Cartesian group, Algebraic structure, Projective plane 
 

 

1. INTRODUCTION 
 

Projective planes have applications in various branches of mathematics, including combinatorics, 

geometry, and coding theory. They are also studied for their interesting algebraic and combinatorial 

structures. it is well known that every projective plane has an algebraic structure obtained by 

coordinatization. Conversely, certain algebraic structures can be used to construct projective planes. For 

instance, a general method of generating Cartesian groups has been given by Panella in [6].  

 

The algorithm for the classification of the k – arcs, some examples of the k –arcs, Fano planes, Baer 

subplanes in the projective planes of order 9 and 25 and embedding of the Projective Planes to the 

Projective Spaces are given in [2-5]  are given. 

 

Definition  A projective plane ),,( LP consists of a set P of points, and a set L of subsets of P, called 

lines, such that every pair of points is contained in exactly one line, every two different lines intersect 

in exactly one point, and there exist four points, no three of which are collinear.  

 

Definition A subplane of a projective plane ),,( LP  is a B of points and lines which is itself a projective 

plane, relative to the incidence relation given in ),,( LP . Let ),,( LP  be a projective plane of order n. 

If ),,(  LP  is a subplane of order m, then either 
2mn = or mmn + 2

.  ),,( = LPB  is called 

Baer subplane of ),,( LP  if it satisfies the following conditions:  

 

1) Every point of ),,( LP  is incident with a line of B 

2) Every line of ),,( LP  is incident with a point of B.  

It is clear that for the Baer subplane B of order 
2mn = . 

 

Cartesian Group:  A system ),,( S is a Cartesian group if and only if the following conditions are 

satisfied: 

 

1) ),( S a group  

https://orcid.org/0000-0001-6379-0546
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2) Each of equations bxa =  and bax = has a unique solution for all  Where 0 denotes the 

additive identity.  

3) There exists an element Se  such that xexxe ==  for all .Sx  

4) xxx == 00 for all .Sx  

5) Given Sdcba ,,, such that ca  , there exists a unique Sx  such that  

dxcbxa =  

6) Given Sdcba ,,, such that ca  , there exists a unique pair 
2),( Syx  such that 

byax =  

and  

.dycx =  

 

The construction of the cartesian group plane of order 25 in [1] is given. We shall be interested in the 

projective subplanes of order 3 of the smallest Cartesian Group Plane of order 25. 

 

2.  THE SMALLEST CARTESIAN GROUP PLANE  

 

The algebraic structure of finite projective planes is a fascinating topic that combines algebraic and 

geometric concepts. It provides a mathematical framework for studying the properties and 

relationships of points and lines in a finite projective plane. 

 

We consider the geometrical structure of the projective plane which is constructed on the known the 

smallest cartesian group.  

 

Definition (See 1)  Let ,.),( 5 +F be the field of integers modulo 5. Let  5,:),( FbabaS = and 

consider the addition and multiplication on S given by 

 

),(),(),( dcbadcba ++=  

 

and  

 

.
0,)..,.).2(.(

0,).,.(
),(),(

12









−−−

=
=

− bifdacbbdaca

bifdaca
dcba  

 

 

The system ),,( S  is a proper Cartesian group. 

 

We consider the geometrical structure of the projective plane which is constructed on the known the 

smallest cartesian group. 

A finite projective plane of order n has 12 ++ nn  points and 12 ++ nn  lines. We shall be interested 

in the projective plane π over the smallest Cartesian Group of order 25. The 651 oints of π are the 

elements of the set      .)(:)(,:),(  SmmSyxyx   

The points of the form ),( yx , are called affine points and the points of the form )(m  and the unique 

point )(  are called ideal points. The 651 lines of π are defined to be set of points satisfying one of the 

three conditions:  
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     

     

     .)()(

)(:),(

)(*:),(,

2

2

=

==

==

Sm

xSyx

mkxmySyxkm

  

 

The 625 lines of π having form kxmy = *  and 25 lines of π  having of the form =x  are called 

the affine lines and the unique line [∞] of π is called the ideal line. The system of points, lines and 

incidence relation given above defines a projective plane of order 25, which is the smallest Cartesian 

group plane.  

 

3. SUBPLANES OF ORDER 3 OF THE SMALLEST CARTESIAN GROUP PLANE  

 

Let's assume the vertices of the regular quadrangle are PXIO ,,, . If the diagonal points GFE ,,  

of this regular quadrangle are not collinear, then this quadrangle does not determine a Fano plane [1]. 

Let ))0,0(()),0,1(),0,1(()),0,0(),0,0(( === XIO  and )),(),0,0(( baP =  for 0== ba and 

0,1 == ba  be any four points that are known not to form a regular quadrangle. 

 

The following lemmas are taken from [1]. 

Lemma  If  )),(),0,0(( baP = with 0b , then each a regular quadrangle PXIO ,,,  determines a 

Fano subplane of π. 

 

Lemma  If  )),(),0,0(( baP =  with 1,0a  and 0=b , then non of the  regular quadrangle PXIO ,,,  

determines a Fano configuration of π. 

 

Lemma  If )(=P , then the regular quadrangles PXIO ,,,  doesn’t determine a Fano configuration 

of π. 

 

 Theorem  Let ))0,0(()),0,1(),0,1(()),0,0(),0,0(( === XIO and  )),(),0,0(( baP = be a regular 

quadrangle in π. The configurations obtained from completing the some regular quadrangles PXIO ,,,   

of π do not form the respective subplanes of order 3 of π. 

 

Proof  To obtain configurations that form a projective plane of order 3 from completing the regular 

quadrangles PXIO ,,, of π, it is necessary for these configurations to satisfy the conditions in 

Lemma 2. Indeed, the number of such the quadrangles with  diagonal points are not collinear is three 

in Lemma 2.  Because in the other conditions, the completions of these quadrangles, known as Fano 

planes, cannot be subplanes of projective planes of order 3 . Now, let's examine these three cases: 

Case 1 If   0,2 == ba , then P is )).0,2(),0,0((  The coordinates of the opposite sides and diagonal 

points of this quadrangle are obtained as follows: 

 

       
   )0,2(),0,4(,)0,0(),0,0(

,)0,2(),0,0(,)0,0(),0,1(,)0,1(),0,0(,)0,0(

==

====

PIOX

PXOIIXOP
 

 

and  

( ) ( ) ( ).)0,0(),0,2(:,)0,2(),0,2(:,)0,1(),0,0(: ====== OXPIGPXOIFIXOPE  
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The configuration that completes this the regular quadrangles PXIO ,,,   should have the property of 

being a plane of  order 3. For this to happen, four lines must pass through each point, and there should 

be four points on each line. 

By performing the necessary calculations, the remaining 6 points are found as follows: 

 

( ) ( ) ( )

( ) ( ) ( ).)0,2(),0,3(:,)0,4(),0,4(:,:

,)0,1(),0,2(:,)3,2(),1,2(:,)0,0(),0,3(:

======

======

EGPXMOIEGMOPFGL

IXFGLPIEFNOXEFN
 

 

Since there should be four points on each line, two missing points on the line  )0,2(),0,3(=PM  

should be determined. 

However, the points L and N can be on this line PM. 

 

)0,2()0,2()0,3()0,1( =PML    

 

and  

 

)0,2()0,3()0,3()0,0( =PMN   

 

Since the above equations are not satisfied and there are no two points on line PM among these 13 

points, the resulting configuration cannot be a projective plane of order 3. 

Case 2 If  0,3 == ba , then P is )).0,3(),0,0((  The coordinates of the opposite sides and diagonal 

points of this quadrangle are obtained as follows: 

 

       
   )0,0(),0,3(,)0,0(),0,0(

,)0,3(),0,0(,)0,0(),0,1(,)0,1(),0,0(,)0,0(

==

====

PIOX

PXOIIXOP
 

 

and  

( ) ( ) ( ))0,0(),0,4(:,)0,3(),0,3(:,)0,1(),0,0(: ====== OXPIGPXOIFIXOPE . 

 

By performing the necessary calculations, the remaining 6 points are found as follows: 

( ) ( ) ( )

( ) ( ) ( ),)0,3(),0,2(:,0,1:,)0,2(),0,0(:

,)0,1(),0,2(:,)0,4(),0,2(:,)0,0(),0,1(:

====

===

EGPXMML

LNN
 

 

Since there should be four points on each line, two missing points on the line  )0,3(),0,1(=PM  

should be determined. 

However, the points L and N can be on this line PM. 

If calculations are done as in the first case, two points still cannot be found on line PM, the resulting 

configuration cannot be a projective plane of order 3. 

 

Case 3 If  ,0,4 == ba  then P is )).0,4(),0,0((   
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If calculations are done as in the first and second cases, two points still cannot be found on line PM. 

Therefore, a projective plane of order 3 cannot be constructed. 

4. CONCLUSION 

 

In this paper, we have presented an approach for finding projective subplanes of order 3 within the 

cartesian group plane of order 25. By combining principles from algebraic geometry, linear algebra, and 

computational techniques, we have developed a systematic methodology that enables efficient 

identification, characterization of some subplanes. 

Investigating projective subplanes of order 3 within the cartesian group plane of order 25 by 

considering different the regular quadrangles is an open problem. 
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ABSTRACT 
 

The soft set theory is an affective mathematical tool to solve problems that involves uncertainties. Despite the development in 

the theoretical structure of soft sets, researchers did not make consensus formulation of soft element. In this study the soft 

ring is redefined by the help of soft operations which are based on a natural definition of soft element. This new soft ring 

definition is compared with the soft ring definitions in the literature. Some examples, results and theorems are given to enrich 

the concept of soft ring. Also soft topological ring structure which is a harmonization of soft ring and soft topology is studied 

with some results. 

 

Keywords: Soft set, Soft ring, Soft topological ring 

 

 

1. INTRODUCTION 

 

Frequently solutions of real life problems are not possible with a precise and direct informational point 

of view. Several models have been developed to date to cope with this complexity. Often these models 

are not enough to identify the exact solution. The soft set theory is one of these models which was 

defined by Molodtsov [1]. Soft set theory has excited attention since the year it was defined, due to the 

freedom it gives to studies on parameters that is increase the application area of soft sets unlike other 

theories. Some of fundamental soft set operations such as Or, And, Union etc. were introduced by 

Maji et al in [2]. Soft topological structures were given in [3, 4, 5, 6, 7]. Aktaş and Çağman introduced 

and investigated the concept of soft group by taking universal set as a group and they also made a 

comparison with soft sets and other set theories in [8]. After that soft group definition extended soft 

ring by Acar et al in [9] and some related results about soft ring were derived by them. Another 

approach to soft group notion was given by Ghosh et al in [10]. Moreover soft modules and fuzzy soft 

modules were presented by Sun et al in [11] and Gunduz et al in [12]. 

In the meantime soft element and soft point structures were studied and discussed by some researchers 

from different perspectives. One of them is Wardowski [13] who defined soft element which provides 

soft topological structures resembles to pointwise topological structures. After this definition there 

have been studies on soft topological and soft algebraic structures from an elementary point of view 

such as [14] and [15] etc.  

More combination of algebraic constructions and soft topological structures were studied by many 

researchers such as [16, 17, 18, 19, 18] and [20]. For example, as an expected extension of the familiar 

concepts of topological groups were given by Nazmul and Samanta in 2010 [21] and Tanay and 

Çakmak [16] initiated the idea of soft semi topological groups. Later some improvements were added 

to the notion of soft topological groups in [20].  

https://orcid.org/0000-0002-6893-9124
https://orcid.org/0000-0001-8191-2674
https://orcid.org/0000-0003-4066-2044
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Tahat et al.in [18] introduced the concept of soft topological soft rings by applying soft topological 

structures on a soft ring and another approach for soft topological rings was given in [17] by applying 

the topological structures on a soft ring. In [19], the notion soft topological ring which is linked on the 

soft topological structures over the rings directly, rather than on the topological structures over the 

subrings were introduced by Tahat et al. 

In this paper unlike the studies mentioned above, firstly, definition of a soft ring will be given from the 

pointwise perspective. Then, definition of a soft topological ring and some theorems will be examined 

as a result of this study. With this approach soft topological ring structure will depend on a soft 

topology and a soft ring structure on a single soft set. 

 We referee for some basic definitions such as soft set, soft subset, intersection and union of soft sets, 

soft empty set and soft element from [1], [2] and [7]. An application of the these mentioned definitions 

is given by the following example. 

Example 1.1. Mr. X and Mrs. X  are deciding to move to a new city, they list the features of the city in 

which they want to live as follows: Economy, Health, Security, City life, Culture and Art Activities. 

Features of the cities give the parameter set 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} where 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5  stands for 

economy, health, security, city life and culture and art activities respectively. The universe 𝑈 of cities 

that they plan to move to are also listed as London, Paris, New York, Tokyo. Let’s define soft sets 

(𝐹, 𝐸) and (𝐺, 𝐸)  that describe each city with properties determined by Mr. X and Mrs. X 

respectively. 

(𝐹, 𝐸) = {(𝑒1, {London}), (𝑒2, {Paris}), (𝑒3, {New York, Tokyo})(𝑒4, ∅) , (𝑒5, ∅)}.                     

 (𝐺, 𝐸) = {(𝑒1, {London, Paris}), (𝑒2, ∅) (𝑒3, {London, New York, Tokyo}), (𝑒4, ∅) , (𝑒5, ∅)}. 

The intersection of (𝐹, 𝐸) and (𝐺, 𝐸) is (𝐹, 𝐸) ∩̃ (𝐺, 𝐸) =
{(𝑒1, {London}), (𝑒2, ∅), (𝑒3, {New York, Tokyo}), (𝑒4, ∅) , (𝑒5, ∅)}. 

The union of (𝐹, 𝐸) and (𝐺, 𝐸) is, (𝐹, 𝐸) ∪̃ (𝐺, 𝐸) =
{(𝑒1, {London, 𝐵}), (𝑒2, {Paris}), (𝑒3, {London, New York, Tokyo}), (𝑒4, ∅) , (𝑒5, ∅)}. 

The nonempty soft elements of (𝐹, 𝐸) are 

{(𝑒1, {London}), (𝑒2, {Paris}), (𝑒3, {New York}), (𝑒3, Tokyo)}. 

Empty soft elements of (𝐹, 𝐸) are {(𝑒4, ∅), (𝑒5, ∅)}. 

Soft elements of (𝐺, 𝐸) are, 

{(𝑒1, {London}), (𝑒1, {Paris}), (𝑒2, ∅), (𝑒3, {London}), (𝑒3, {New York}), (𝑒3, {Tokyo}), (𝑒4, ∅), (𝑒5, ∅)}  

(𝑒2, ∅), (𝑒4, ∅), (𝑒5, ∅) are the empty soft elements of (𝐺, 𝐸),  

(𝑒1, {London}), (𝑒1, {Paris}), (𝑒3, {London}), (𝑒3, {New York}), (𝑒3, {Tokyo}) are nonempty soft 

elements of (𝐺, 𝐸). 

Complement of soft set (𝐹, 𝐸) is (𝐹, 𝐸) �̃� =
{(𝑒1, {Paris, New York, Tokyo}), (𝑒2, {London, New York, Tokyo}), (𝑒3, {London, Paris}), (𝑒4, 𝑈), (𝑒5, 𝑈)}. 
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2. SOFT RING AND SOFT TOPOLOGY 

 

2.1.Soft Ring  

 

Definitions such as full soft set, operations on soft sets, properties of operations on soft sets and soft 

group which are used in this article are taken from the paper [10]. Following the definitions above soft 

ring definition can be stated as in the below: 

 

Definition 2.1. Let (𝐸, +1,∙1), (𝑈, +2,∙2) be two rings, 𝐴 ⊆ 𝐸 and 𝐹𝐴 ∈ 𝑆𝑓(𝑈), (𝐹𝐴 is a full soft set on 

the universe 𝑈). Consider the binary operations +̃,∙ ̃ given on the soft set 𝐹𝐴 below. For all 

(𝑒1, {𝑢1}), (𝑒2, {𝑢2}) ∈̃ 𝐹𝐴
⦁. 

(𝑒1, {𝑢1})+̃(𝑒2, {𝑢2}) = (𝑒1+1𝑒2, {𝑢1+2𝑢2}) 

(𝑒1, {𝑢1}) ∙̃  (𝑒2, {𝑢2}) = (𝑒1 ∙1 𝑒2, {𝑢1 ∙2 𝑢2}) 

A soft set (𝐹𝐴, +̃,∙)̃ over (𝐸, 𝑈) is said to be a soft ring if the following conditions are satisfied. 

i) (𝐹𝐴, +̃) is a commutative soft group, 

ii) 𝛼 ∙̃ (𝛽 ∙̃ 𝛾) = (𝛼 ∙̃ 𝛽) ∙̃ 𝛾 for all 𝛼, 𝛽, 𝛾 ∈̃ 𝐹𝐴
⦁. 

iii) 𝛼 ∙̃ (𝛽+̃𝛾)=( 𝛼 ∙̃ 𝛽) +̃(𝛼 ∙̃ 𝛾) and (𝛼+̃𝛽) ∙̃ 𝛾 = (𝛼 ∙̃ 𝛾)+̃(𝛽 ∙̃ 𝛾) for all 𝛼, 𝛽, 𝛾 ∈̃ 𝐹𝐴
⦁. 

Example 2.2. Consider the soft set 𝐹𝐸 defined by the set valued function 𝐹: 𝐸 = ℤ2 → 𝑃 (ℤ(√2)),   

 

𝐹(0̅) = {2𝑛 + 2𝑛√2: 𝑛 ∈ ℤ}, 

𝐹(1̅) = {2𝑛 + (2𝑛 + 1)√2: 𝑛 ∈ ℤ}, 

𝐹(2̅) = {(2𝑛 + 1) + 2𝑛√2: 𝑛 ∈ ℤ}, 

𝐹(3̅) = {(2𝑛 + 1) + (2𝑛 + 1)√2: 𝑛 ∈ ℤ} over the rings (𝐸, +1,∙1) = (ℤ4, +,∙), (𝑈, +2,∙2) =

(ℤ(√2), +,∙). If we consider the soft elements of 𝐹𝐸 (1̅, {2𝑛 + (2𝑛 + 1)√2: 𝑛 ∈ ℤ}) and (3̅, {(2𝑛 +

1) + (2𝑛 + 1)√2: 𝑛 ∈ ℤ}) then (1̅, {2𝑛 + (2𝑛 + 1)√2: 𝑛 ∈ ℤ})+̃(3̅, {(2𝑛 + 1) + (2𝑛 + 1)√2: 𝑛 ∈

ℤ}) = (0̅, {(2𝑛 + 1) + 2𝑛√2: 𝑛 ∈ ℤ}) which is not belong to soft set 𝐹𝐸. So 𝐹𝐸 is not a soft ring over 

(𝐸, 𝑈). 

Example 2.3. Consider the soft set 𝐹𝐸 defined by the set valued function 𝐹: 𝐸 = ℤ2 → 𝑃(𝑀3(ℝ)), 

𝐹(0̅) = {03𝑥3}, 

𝐹(1̅) = {𝐴: 𝐴  𝑢𝑝𝑝𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥} = 𝑈3.  If one apply the operation +̃ to the soft element 

(1̅, 𝑈3) 

(1̅, 𝑈3)+̃(1̅, 𝑈3) = (0̅, 𝑈3) that is not a soft element of the soft set 𝐹𝐸. 

𝐹𝐸 is not a soft ring due to +̃ is not closed under the binary operation.  

The soft ring definition which was given by [9] in 2010, is not related the definition stated in 

Definition 2.1.  We can deduce this conclusion in view of the fact that a soft set 𝐹𝐸 which is given in 

the above Example 2.3. is a soft ring according to the definition of soft ring stated in [9]. 

Example 2.4. Consider the soft set 𝐹𝐸 defined by the set valued function 𝐹: 𝐸 = ℤ2 → 𝑃(𝑈 = ℤ4),  

𝐹(0̅) = {0̅, 2̅}, 𝐹(1̅) = {0̅, 2̅}. 
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One can observe from the tables below that soft operations are closed and 𝐹𝐸 is a soft ring over (𝐸, 𝑈). 

+̃ (0̅, {0̅}) (0̅, {2̅}) (1̅, {0̅}) (1̅, {2̅}) 

(0̅, {0̅}) (0̅, {0̅}) (0̅, {2̅}) (1̅, {0̅}) (1̅, {2̅}) 

(0̅, {2̅}) (0̅, {2̅}) (0̅, {0̅}) (1̅, {2̅}) (1̅, {0̅}) 

(1̅, {0̅}) (1̅, {0̅}) (1̅, {2̅}) (0̅, {0̅}) (0̅, {2̅}) 

(1̅, {2̅}) (1̅, {2̅}) (1̅, {0̅}) (0̅, {2̅}) (0̅, {0̅}) 

 

∙ ̃ (0̅, {0̅}) (0̅, {2̅}) (1̅, {0̅}) (1̅, {2̅}) 

(0̅, {0̅}) (0̅, {0̅}) (0̅, {0̅}) (0̅, {0̅}) (0̅, {0̅}) 

(0̅, {2̅}) (0̅, {0̅}) (0̅, {0̅}) (0̅, {0̅}) (0̅, {0̅}) 

(1̅, {0̅}) (0̅, {0̅}) (0̅, {0̅}) (1̅, {0̅}) (1̅, {0̅}) 

(1̅, {2̅}) (0̅, {0̅}) (0̅, {0̅}) (1, {0̅}) (1̅, {0̅}) 

 

Definition 2.5. Let (𝐹𝐸 , +̃,∙)̃ be a soft ring. If there exist an element 1̃ ∈̃ 𝐹𝐸 such that 𝛼 ∙̃ 1̃ = 1̃ ∙̃ 𝛼, for 

all 𝛼 ∈̃ 𝐹𝐸 , then 𝐹𝐸 is called soft ring with identity. 

Theorem 2.6. If 𝐸, 𝑈 are rings with identities 𝑒1 and 𝑒2 and 𝐹𝐸 is a soft ring that contains soft element 

(𝑒1, {𝑒2}), then (𝑒1, {𝑒2}) is the soft identity element. 

Proof. Straightforward. 

Definition 2.7. Let (𝐹𝐸 , +̃,∙)̃ be a soft ring. If 𝛼 ∙̃ 𝛽 = 𝛽 ∙̃ 𝛼, for all 𝛼, 𝛽 ∈̃ 𝐹𝐸 , then 𝐹𝐸 is called 

commutative soft ring . 

Example 2.8. The soft ring 𝐹𝐸 given in Example 2.4. is a commutative soft ring. 

Note 2.9. If 𝐸 and 𝑈 are commutative rings so is 𝐹𝐸 , that is defined over (𝐸, 𝑈). 

Theorem 2.10. If (𝐹𝐸 , +̃,∙)̃ is a soft ring with additive identity 0̃, then for any 𝛾, 𝛽 ∈̃ 𝐹𝐸 , we have  

i) 0̃ ∙̃  𝛾 = 𝛾 ∙̃  0̃=0̃, 

ii) 𝛾 ∙̃ (−𝛽) = (−𝛾) ∙̃ 𝛽 = −(𝛾 ∙̃ 𝛽), 

iii) (−𝛾) ∙̃ (−𝛽) = 𝛾 ∙̃  𝛽. 

Proof: i) 0̃ is the soft identity for the operation +̃ and it can be written as 0̃ ∙̃ 𝛾 = (0̃+̃0̃) ∙̃ 𝛾. From the 

right cancellation law 0̃ ∙̃  𝛾 = 0̃ is satisfied.  The other side of the equality can be done similarly. 

ii) Let us prove that 𝛾 ∙̃ (−𝛽) is the inverse of 𝛾 ∙̃  𝛽 according to the +̃. 

𝛾 ∙̃ (−𝛽)+̃𝛾 ∙̃  𝛽 = 𝛾 ∙̃ ((−𝛽)+̃𝛽) = 𝛾 ∙̃  0̃ = 0̃ 

The other side of the equality can be done similarly 

The last condition of the theorem can be done similarly. 

Definition 2.11. Let (𝐹𝐸 , +̃,∙)̃ be a soft ring and 𝐺𝐵 ⊆̃ 𝐹𝐸. If  𝐺𝐵 is closed under the operations of 𝐹𝐸 

and satisfies the conditions given in the Definition 2.1. then (𝐺𝐵, +̃,∙)̃ is called a soft subring of 

(𝐹𝐸 , +̃,∙)̃. 

Example 2.12. Consider the soft subset 𝐵 = {0̅} ⊆ ℤ2. 𝐺𝐵 = {0̅, {0̅, 2̅}} of 𝐹𝐸 given in Example 2.4. 

Then (𝐺𝐵, +̃,∙)̃ is a soft sub ring of (𝐹𝐸 , +̃,∙)̃. 
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Theorem 2.13. If (𝐹𝐴, +̃,∙)̃ is a soft ring over (𝐸, 𝑈) then  

i) 𝐴 is a subring of 𝐸,  

ii) ⋃ 𝐹(𝑒𝑖)𝑒𝑖∈𝐴  is a subring of 𝑈. 

Proof. i) Ghosh et. al. proved that 𝐴 is a subgroup of 𝐸, in [6]. So to show that A is a subring of  𝐸, we 

prove that 𝑒𝑖 ∙1 𝑒𝑗 ∈ 𝐴, for each 𝑒𝑖, 𝑒𝑗 ∈ 𝐴. Assume that 𝑒𝑖, 𝑒𝑗 ∈ 𝐴 since 𝐹𝐴 ∈ 𝑆𝑓(𝑈) there exist 𝑢𝑘 , 𝑢𝑙 ∈

𝑈 such that (𝑒𝑖, {𝑢𝑘}), (𝑒𝑗, {𝑢𝑙}) ∈̃ 𝐹𝐴. Also (𝑒𝑖, {𝑢𝑘}) ∙̃ (𝑒𝑗, {𝑢𝑙}) = (𝑒𝑖 ∙1 𝑒𝑗, {𝑢𝑘 ∙2 𝑢𝑙}) ∈̃ 𝐹𝐴 which 

proves 𝑒𝑖 ∙1 𝑒𝑗 ∈ 𝐴. 

 ii) The proof can be done similar with condition i). 

Theorem 2.14. Let (𝐹𝐴, +̃,∙)̃ and (𝐺𝐵, +̃,∙)̃ be soft rings over (𝐸, 𝑈). 

i) If 𝐹𝐴 ∩̃ 𝐺𝐵 ∈ 𝑆𝑓(𝑈)  and 𝐴 ∩ 𝐵 ≠ ∅ then (𝐹𝐴 ∩̃ 𝐺𝐵, +̃,∙)̃ is a soft ring over (𝐸, 𝑈). 

ii) If 𝐹𝐴⋃̃𝐺𝐵 ∈ 𝑆𝑓(𝑈)  and 𝐹𝐴 ⊆̃ 𝐺𝐵 or 𝐺𝐵 ⊆̃ 𝐹𝐴 then (𝐹𝐴⋃̃𝐺𝐵, +̃,∙)̃ is a soft ring over (𝐸, 𝑈). 

Proof. Straightforward. 

Definition 2.16. Let (𝐹𝐴, +̃,∙)̃ be a soft ring and ∅̃ ≠ 𝐺𝐵 ⊆̃ 𝐹𝐴. If 𝐺𝐵 satisfies the following conditions 

i) for all 𝛾, 𝛽 ∈̃ 𝐺𝐵, 𝛾+̃𝛽 ∈̃ 𝐺𝐵, 

ii) for all 𝛽 ∈̃ 𝐹𝐴 and for all 𝛾 ∈̃ 𝐺𝐵, 𝛾 ∙̃ 𝛽 ∈̃ 𝐺𝐵 and 𝛽 ∙̃ 𝛾 ∈̃ 𝐺𝐵, 

then 𝐺𝐵 is called a soft ideal of 𝐹𝐴. In particularly, if for all 𝛽 ∈̃ 𝐹𝐴 and for all 𝛾 ∈̃ 𝐺𝐵,, then 𝛾 ∙̃ 𝛽 ∈̃ 𝐺𝐵 

is said to be a soft right ideal of 𝐹𝐴 and 𝛽 ∙̃ 𝛾 ∈̃ 𝐺𝐵 then 𝐺𝐵 is said to be a soft left ideal of  𝐹𝐴. 

Note 2.17. The soft ring (𝐹𝐴, +̃,∙)̃ and 𝐺𝐵 = {0̃} where 0̃ is the identity of 𝐹𝐴 according to the binary 

operation +̃ are soft ideals of 𝐹𝐴. 

It is clear that if (𝐹𝐴, +̃,∙)̃  is a soft ring with an identity 1̃ and 𝐺𝐵 is the soft ideal of 𝐹𝐴 then 𝐺𝐵 = 𝐹𝐴.  

Every soft ideal is a soft subring but the converse side is not true in general. 

Example 2.17. Consider the Example 2.4. Take the soft subset 𝐺𝐸 of 𝐹𝐸 where (0̅) = {0̅, 2̅}, 𝐺(1̅) =

∅, is an soft ideal of 𝐹𝐸 . 

2.2. Soft Topology 

Soft topological structures are studied by many authors with their own approaches. In this subsection 

definitions and some several properties about the soft topological spaces are reminded, which is going 

to be used in the third section. The essentials of the theory of soft topological structures were 

introduced by Roy et al. [10]. 

Example 2.18. [3] Let 𝑈 = {𝑢1, 𝑢2, 𝑢3}, 𝐴 = {𝑝1, 𝑝2} and 𝐹𝐴 = {(𝑝1, {𝑢1, 𝑢2}), (𝑝2, {𝑢2, 𝑢3})}. In that 

case all soft subsets of 𝐹𝐴 are listed below. 

𝐹𝐴1

1 = {(𝑝1, {𝑢1})}, 

𝐹𝐴2

2 = {(𝑝1, {𝑢2})}, 

𝐹𝐴3

3 = {(𝑝1, {𝑢1, 𝑢2})}, 

𝐹𝐴4

4 = {(𝑝2, {𝑢2})}, 
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𝐹𝐴5

5 = {(𝑝3, {𝑢3})}, 

𝐹𝐴6

6 = {(𝑝2, {𝑢2, 𝑢3})}, 

𝐹𝐴7

7 = {(𝑝1, {𝑢1}), (𝑝2, {𝑢2})}, 

𝐹𝐴8

8 = {(𝑝1, {𝑢1}), (𝑝2, {𝑢3})}, 

𝐹𝐴9

9 = {(𝑝1, {𝑢1}), (𝑝2, {𝑢2, 𝑢3})}, 

𝐹𝐴10

10 = {(𝑝1, {𝑢2}), (𝑝2, {𝑢2})}, 

𝐹𝐴11

11 = {(𝑝1, {𝑢2}), (𝑝2, {𝑢3})}, 

𝐹12
12 = {(𝑝1, {𝑢2}), (𝑝2, {𝑢2, 𝑢3})}, 

𝐹𝐴13

13 = {(𝑝1, {𝑢1, 𝑢2}), (𝑝2, {𝑢2})}, 

𝐹𝐴14

14 = {(𝑝1, {𝑢1, 𝑢2}), (𝑝2, {𝑢3})}, 

𝐹𝐴15

15 = 𝐹𝐴, 

𝐹𝐴16

16 = ∅̃.  

Then 𝜏1̃ = {∅̃, 𝐹𝐴},𝜏2̃ = {𝐹𝐴1

1 , 𝐹𝐴2

2 , … , 𝐹𝐴16

16 }, 𝜏3̃ = {∅̃, 𝐹𝐴, 𝐹𝐴2

2 , 𝐹𝐴11

11 , 𝐹12
12} are soft topologies on 𝐹𝐴. 

Definition 2.19. [14] Let (𝐹𝐴, �̃�) be a soft topological space and (𝑒𝑗, {𝑢𝑙}) ∈̃ 𝐹𝐴. Given soft subset 𝐺𝐵 

of 𝐹𝐴 is said to be a soft neighborhood of (𝑒𝑗, {𝑢𝑙}), if there exist an open soft set 𝐻𝐶 such that 

(𝑒𝑗, {𝑢𝑙}) ∈̃ 𝐻𝐶 ⊆̃ 𝐺𝐵. 𝑁(𝑒𝑗,{𝑢𝑙}) is symbolized the all soft neighborhoods of the soft element (𝑒𝑗, {𝑢𝑙}). 

Example 2.20. [14] Let 𝐹𝐴 be the soft set and 𝜏3̃ be the soft topology on 𝐹𝐴 given in Example 2.18. 

The set of all nonempty soft elements of 𝐹𝐴 is  

𝐹𝐴
⦁ = {(𝑝1, {𝑢1}), (𝑝1, {𝑢2}), (𝑝2, {𝑢2}), (𝑝2, {𝑢3})}. For the soft element (𝑝1, {𝑢1}) ∈̃ 𝐹𝐴, the soft sets 

containing  (𝑝1, {𝑢1}) are 𝐹𝐴, 𝐹𝐴1

1 , 𝐹𝐴3

3 , 𝐹𝐴7

7 , 𝐹𝐴8

8 , 𝐹𝐴9

9 , 𝐹𝐴13

13  and   𝐹𝐴14

14 . 

𝑁(𝑝1,{𝑢1}) = {𝐹𝐴, 𝐹𝐴13

13 } is a set of all soft neighborhoods of (𝑝1, {𝑢1}). 

𝑁(𝑝1,{𝑢2}) = {𝐹𝐴, 𝐹𝐴2

2 , 𝐹𝐴11

11 , 𝐹𝐴13

13 } is a set of soft all neighborhoods of (𝑝1, {𝑢2}). 

𝑁(𝑝2,{𝑢2}) = {𝐹𝐴, 𝐹𝐴13

13 } is a set of all soft neighborhoods of (𝑝2, {𝑢2}). 

𝑁(𝑝2,{𝑢3}) = {𝐹𝐴, 𝐹𝐴11

11 } is a set of all soft neighborhoods of (𝑝2, {𝑢3}). 

Proposition 2.21. [14] Let (𝐹𝐴, �̃�) be a soft topological space. A soft set  𝐺𝐵 ⊆̃ 𝐹𝐴 is soft open if and 

only if for each soft element 𝛼 ∈̃ 𝐺𝐵 there exists a soft set 𝐻𝐶 ∈ �̃� such that 𝛼 ∈̃ 𝐻𝐶 ⊆̃ 𝐺𝐵. 

Definition 2.22. [14] Let (𝐹𝐴, �̃�) be a soft topological space and 𝐺𝐵 ⊆̃ 𝐹𝐴. The soft topology on 𝐺𝐵 

induced by the soft topology �̃� is the family of �̃�𝐺𝐵
 of the soft subsets of 𝐺𝐵 of the form 

�̃�𝐺𝐵
= {𝐻𝐶 ∩̃ 𝐺𝐵: 𝐻𝐶 ∈ �̃�}. 
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One can prove that the family �̃�𝐺𝐵
 is a soft topology on 𝐺𝐵. The soft topological space (𝐺𝐵, �̃�𝐺𝐵

) is 

called a soft topological subspace of (𝐹𝐴, �̃�). 

Definition 2.23. [14] Let (𝐹𝐴, �̃�1) and (𝐺𝐵, �̃�2) be soft topological spaces and 𝛽 = {𝐹𝐴𝑖
𝑥𝐺𝐵𝑗

: 𝐹𝐴𝑖
∈

�̃�1, 𝐺𝐵𝑗
∈ �̃�2}. The collection �̃� of all arbitrary union of soft elements of β is called the soft product 

topology over 𝐹𝐴 × 𝐺𝐵. 

 

3. SOFT TOPOLOGICAL RING 

 

The structure of the topological ring is more improved in comparison with the concept of a topological 

group. Also theory of topological rings has several characteristics in common with the theory of 

topological groups. In the soft set theory, it would be similar. The soft topological group was defined 

by Polat et. al. in [18] in 2018. 

After searching literature on soft rings and soft topological rings reader can deduced that the soft ring 

structure used the refer to a soft set 𝐹𝐴 over a ring 𝑈 such that 𝐹(𝑥) is a subring of universal set 𝑈, for 

every 𝑥 ∈ 𝐴 and the soft topological ring studies based on this soft ring definition defined in [9]. The 

soft ring definition is redefined in this study. Purpose of this study is to combine soft ring and soft 

topological space structures on a soft set. 

 

Definition 3.1. Let (𝐹𝐴, +̃,∙)̃ be a soft ring and define a soft topology �̃� over 𝐹𝐴. If the following three 

conditions are satisfied then (𝐹𝐴, +̃,∙,̃ �̃� ) is called a soft topological ring. 

i) For each soft neighborhood 𝐺𝐵 of the soft element (𝑒𝑖 , {𝑢𝑘})+̃ (𝑒𝑗, {𝑢𝑙}) there exist soft 

neighborhoods 𝐻𝐶 of (𝑒𝑖, {𝑢𝑘}) and 𝐾𝐷 of (𝑒𝑗, {𝑢𝑙}) satisfies that 𝐻𝐶+̃𝐾𝐷 ⊆̃ 𝐺𝐵. 

ii) For each soft neighborhood 𝐺𝐵 of the soft element (𝑒𝑖 , {𝑢𝑘})−1 there exist a soft neighborhood 

𝐻𝐶 of (𝑒𝑖, {𝑢𝑘}) such that 𝐻𝐶
−1 ⊆̃ 𝐺𝐵. 

iii) For each soft neighborhood 𝐺𝐵 of the soft element (𝑒𝑖 , {𝑢𝑘}) ∙̃  (𝑒𝑗, {𝑢𝑙}) there exist soft 

neighborhoods 𝐻𝐶 of (𝑒𝑖, {𝑢𝑘}) and 𝐾𝐷 of (𝑒𝑗, {𝑢𝑙}) respectively satisfies that 𝐻𝐶 ∙̃ 𝐾𝐷 ⊆̃ 𝐺𝐵. 

Note 3.2. If (𝐹𝐴, +̃,∙,̃ �̃� )  is a soft topological ring then (𝐹𝐴, +̃, �̃� ) is a soft topological group. Therefore, 

every property given for soft commutative topological groups is valid for soft topological rings. 

Theorem 3.3. Let (𝐹𝐴, +̃,∙ ̃) be a soft ring and define a soft topology �̃� over 𝐹𝐴. If the conditions given 

in below are satisfied, 

i) For each soft neighborhood 𝐺𝐵 of the soft element (𝑒𝑖 , {𝑢𝑘})+̃ (𝑒𝑗, {𝑢𝑙})
−1

 there exist soft 

neighborhoods 𝐻𝐶 of (𝑒𝑖, {𝑢𝑘}) and 𝐾𝐷 of (𝑒𝑗, {𝑢𝑙}) respectively satisfy that 𝐻𝐶+̃𝐾𝐷
−1 ⊆̃ 𝐺𝐵. 

ii) For each soft neighborhood 𝐺𝐵 of the soft element (𝑒𝑖 , {𝑢𝑘}) ∙̃  (𝑒𝑗, {𝑢𝑙}) there exist soft 

neighborhoods 𝐻𝐶 of (𝑒𝑖, {𝑢𝑘}) and 𝐾𝐷 of (𝑒𝑗, {𝑢𝑙}) respectively satisfy that 𝐻𝐶 ∙̃ 𝐾𝐷 ⊆̃ 𝐺𝐵  

then (𝐹𝐴, +̃,∙,̃ �̃� )  is a soft topological ring. 

Proof. The proof is obvious from the continuity of composite function. 

Example 3.4. [14]  Let 𝐸 = {𝑒1, 𝑒2}, 𝑈 = ℤ4 be the classes of residues of integers module 4. 𝐸 is a 

ring defined with the operations +, ∙. Tables of the operation +, ∙ on 𝐸 are given as in the below. 
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Define a soft set 𝐹: 𝐸 → 𝑃(𝑈) by 𝐹𝐸 = {(𝑒1, {0̅, 2̅}), (𝑒2, {1̅, 3̅})}. The table of the operations +̃ and ∙ ̃

on the soft set 𝐹𝐸 given as; 

 

In this example one can easily prove that (𝐹𝐴, +̃,∙ ̃) is a commutative soft ring with a soft identity 

element (𝑒2, {1̅}). Consider the soft topology �̃� = {∅̃, 𝐹𝐴, 𝐹𝐴1

1 , 𝐹𝐴2

2 }  where soft subsets of 𝐹𝐴 are given 

as; 𝐹𝐴1

1 = {(𝑒1, {0̅, 2̅})} and 𝐹𝐴2

2 = {(𝑒2, {1̅, 3̅})}. Then (𝐹𝐴, +̃,∙,̃ �̃� ) is a soft topological ring over (𝐸, 𝑈). 

Theorem 3.5. If (𝐹𝐴, +̃,∙,̃ �̃� ) is a soft topological ring and 𝐺𝐵 is a soft subring of  𝐹𝐴, so is 

(𝐺𝐵, +̃,∙,̃ �̃�𝐺𝐵
 ). 

Proof. Straightforward. 

 

4. CONCLUSION 

The soft set theory has wide field of study in different fields especially for the mathematicians in the 

algebraic and the topological structures. In this paper soft ring and soft topological ring structures are 

given from the soft element viewpoint which is very naturel approximation. For further studies the 

other algebraic structures can be studied by the similar viewpoint.  
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ABSTRACT 
 

In this manuscript we introduce three new algorithms: (1) An algorithm to recover an unknown polynomial in terms of Dickson 

polynomials of the first kind, (2) an algorithm to recover an unknown polynomial in terms Dickson polynomials of the second 

kind, (3) an algorithm to recover an unknown polynomial in terms of Bernstein basis polynomials, from given black boxes for 

the polynomial itself and its first derivative. In each algorithm, we assume that the unknown polynomial has a sparse 

representation in the corresponding basis. The methods presented use transformations from Dickson polynomials to Laurent 

polynomials, a transformation from Bernstein basis polynomials to Laurent polynomials, and a recently developed algorithm 

as a middle step. 

 

Keywords: Hermite Interpolation, Sparse Polynomials, Dickson Polynomials, Bernstein Basis Polynomials, Algorithms 
 

 

1. INTRODUCTION 

 

Hermite interpolation is a method of reconstructing an unknown polynomial 𝑓(𝑥) by using known 

evaluations of 𝑓(𝑥) and known evaluations of the first few derivatives of 𝑓(𝑥). More details about 

Hermite interpolation can be found at [1] and references therein. In this manuscript, we deal with sparse 

Hermite interpolation. 

 

A sparse Hermite interpolation algorithm is presented in [2]: Let 𝑓(𝑥) = ∑ 𝑐𝑗𝑥
𝑒𝑗𝑡

𝑗=1 ∈ 𝐾[𝑥, 𝑥−1] be an 

unknown sparse univariate Laurent polynomial, i.e. an element in 𝐾[𝑥, 𝑥−1], in Laurent polynomial 

basis with 𝑡 ≪ deg⁡(𝑓) terms, where 𝐾 is a field and its’ characteristic is 0 or a prime 𝑝, and where for 

all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡. Let 𝑘 ∈ 𝐾 − {0,1}. Let black boxes for 𝑓(𝑥) and 𝑓′(𝑥) be given. [2] 

introduces a procedure to rebuild the unknown polynomial 𝑓(𝑥) from the data sets {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and 

{(𝑘𝑠, 𝑓′(𝑘𝑠))}
𝑠=0

𝑚
 where 𝑚 = 𝑡 + ⌈

𝑡+1

2
⌉ − 1. Here the tuples (∗, 𝑓(∗)) and (∗, 𝑓′(∗)) can be computed 

with given black boxes. The algorithm presented in [2], which is based on Prony’s sparse polynomial 

interpolation algorithm (a.k.a. Ben-or & Tiwari’s Algorithm) [3,4], performs sparse Hermite 

interpolation using those 2𝑚 + 2, where 𝑡 ≪ deg⁡(𝑓), data points above. The method in [2] uses “less 

data points” than the previously known Hermite interpolation algorithms use to reconstruct the unknown 

polynomial 𝑓(𝑥). 
 

Remark 1.1 We note that a black box for an unknown polynomial 𝑓(𝑥) is a known mathematical object 

that takes a value 𝑘 and evaluates 𝑓(𝑘) without revealing any information about the unknown 

polynomial 𝑓(𝑥). Here we assume a black box for a polynomial always computes the correct evaluation 

with no error. See [5] for more details about computations with black boxes. 
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Any polynomial 𝑓(𝑥) ∈ 𝐾[𝑥] can be represented in terms of Dickson polynomials (both the first and 

the second kind). A degree 𝑛 polynomial with real coefficients can be represented in terms of degree 𝑛 

Bernstein basis polynomials. We want to replace the Laurent polynomial basis with Dickson 

polynomials and Bernstein basis polynomials and aim to develop new sparse Hermite interpolation 

algorithms that work directly with those bases. 

 

In this text, we present three new algorithms that solve the following three problems. The algorithms in 

the present manuscript perform sparse Hermite interpolation with Dickson polynomials (both the first 

and the second kind) and Bernstein basis polynomials. The algorithms use transformations from Dickson 

polynomials to Laurent polynomials, a transformation from Bernstein basis polynomials to Laurent 

polynomials, and the algorithm given in [2] as a middle step. 

 

Problem 1.1 

 

i. Let 

 

𝑓(𝑥) =∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡

𝑗=0
∈ 𝐾[𝑥] 

 

where for all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡, be an unknown polynomial. Here 𝐷𝑒𝑗(𝑥, 𝑎) is the 

Dickson polynomial of the first kind of degree 𝑒𝑗. Here we assume that 𝑡 ≪ deg⁡(𝑓), i.e., 𝑓(𝑥) 

has sparse representation in terms of Dickson polynomials of the first kind. 

 

Construct 𝑓(𝑥) from given black boxes for 𝑓(𝑥) and 𝑓′(𝑥), 𝑎 ∈ 𝐾, the integer 𝑡, from the sets 

of tuples {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and {(𝑘𝑠, 𝑓′(𝑘𝑠))}

𝑠=0

𝑚
 where 𝑘 ∈ 𝐾 and 𝑚 = 𝑡 + ⌈

𝑡+1

2
⌉ − 1. Here the 

data points are computed by the given black boxes.  

 

ii. Let 

 

𝑓(𝑥) =∑ 𝑐𝑗𝐸𝑒𝑗(𝑥, 𝑎)
𝑡

𝑗=0
∈ 𝐾[𝑥] 

 

where for all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡, be an unknown polynomial. Here 𝐸𝑒𝑗(𝑥, 𝑎) is the 

Dickson polynomial of the second kind of degree 𝑒𝑗. Here we assume that 𝑡 ≪ deg⁡(𝑓), i.e., 

𝑓(𝑥) has sparse representation in terms of Dickson polynomials of the second kind. 

 

Construct 𝑓(𝑥) from given a black boxes for 𝑓(𝑥) and 𝑓′(𝑥), 𝑎 ∈ 𝐾, the integer 𝑡, from the sets 

of tuples {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and {(𝑘𝑠, 𝑓′(𝑘𝑠))}

𝑠=0

𝑚
 where 𝑘 ∈ 𝐾 and 𝑚 = 𝑡 + ⌈

𝑡+1

2
⌉ − 1. Here the 

data points are computed by the given black boxes. 

 

iii. Let 

 

𝑓(𝑥) =∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡

𝑗=0
∈ 𝐾[𝑥] 

 

where for all 𝑗, 𝑐𝑗 ≠ 0, 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑡, be an unknown polynomial. Here 𝐵𝑒𝑗,𝑛(𝑥) is the 𝑒𝑗-

th Bernstein basis polynomial of degree 𝑛. Here we assume 𝑛 = deg(𝑓(𝑥)) is known, 𝐾 = ℝ, 

and 𝑡 ≪ deg⁡(𝑓), i.e., 𝑓(𝑥) has sparse representation in terms of Bernstein basis polynomials. 
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Construct 𝑓(𝑥) from given black boxes for 𝑓(𝑥) and 𝑓′(𝑥), 𝑎 ∈ 𝐾, the integer 𝑡, 𝑛 =

deg(𝑓(𝑥)) from the sets of tuples {(𝑘𝑠, 𝑓(𝑘𝑠))}
𝑠=0

𝑚
 and {(𝑘𝑠, 𝑓′(𝑘𝑠))}

𝑠=0

𝑚
 where 𝑘 ∈ 𝐾 and 

𝑚 = 𝑡 + ⌈
𝑡+1

2
⌉ − 1. Here the data points are computed by the given black boxes. 

 

Before we state our procedures, we briefly mention about Dickson polynomials and Bernstein basis 

polynomials. 
 

1.1. Dickson Polynomials 

 

Dickson polynomials are introduced in [6]. Let 𝐾 be a finite field with characteristic 𝑝 and 𝑎 ∈ 𝐾. 
Degree 𝑛 Dickson polynomial of the first kind, 𝐷𝑛(𝑥, 𝑎), can be defined by the following recursion: 

 

𝐷0(𝑥, 𝑎) ≔ 2 
𝐷1(𝑥, 𝑎) ≔ 𝑥 
𝐷𝑛(𝑥, 𝑎) ≔ 𝑥𝐷𝑛−1(𝑥, 𝑎) − 𝑎𝐷𝑛−2(𝑥, 𝑎), ∀𝑛 ≥ 2. 

 

Similarly, degree 𝑛 Dickson polynomial of the second kind, 𝐸𝑛(𝑥, 𝑎), can be defined by the same 

recursion as above, but with a different zero-degree polynomial: 
 

𝐸0(𝑥, 𝑎) ≔ 1 
𝐸1(𝑥, 𝑎) ≔ 𝑥 
𝐸𝑛(𝑥, 𝑎) ≔ 𝑥𝐸𝑛−1(𝑥, 𝑎) − 𝑎𝐸𝑛−2(𝑥, 𝑎), ∀𝑛 ≥ 2. 

 

Dickson polynomials form a 𝐾 vector space bases for 𝐾[𝑥]: Any 𝑓(𝑥) ∈ 𝐾[𝑥] can be represented in 

terms of Dickson polynomials (both the first and the second kind). 

 

Dickson polynomials are one of the examples of many orthogonal polynomials and they occur in various 

areas of mathematical research, such as cryptography and number theory [8,9]. The polynomials possess 

many useful properties. Details of Dickson polynomials and their further properties can be found at [6-

9] and references in [6-9]. 

 

1.2 Bernstein Basis Polynomials 

 

The 𝑖-th degree 𝑛 Bernstein basis polynomial, which is denoted by 𝐵𝑖,𝑛(𝑥), is defined as 

 

𝐵𝑖,𝑛(𝑥) = (
𝑛
𝑖
) 𝑥𝑖(1 − 𝑥)𝑛−𝑖. 

 

Here (
𝑛
𝑖
) denotes the binomial coefficient. The set {𝐵𝑠,𝑛(𝑥)}𝑠=0

𝑛
⁡form a vector space basis (a.k.a. 

Bernstein-Bezier basis) for the polynomials in Π𝑛, where Π𝑛 is the vector space of polynomials of degree 

≤ 𝑛 with real coefficients. Bernstein-Bezier basis is the standard way of representing a polynomial 

curve. We refer to [10,11] for further properties of Bernstein basis polynomials. 

 

2. DISCUSSION AND ALGORITHMS 

 

2.1. Sparse Hermite Interpolation with Dickson Polynomials of the First Kind 

 

In [9], it is stated that Dickson polynomials satisfy the transformation formulas below: If 𝑥 ≠ 0 and 

𝑥2 ≠ 𝑎, 
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𝐷𝑛 (𝑥 +
𝑎

𝑥
, 𝑎) = 𝑥𝑛 + (

𝑎

𝑥
)
𝑛

 

 

𝐸𝑛 (𝑥 +
𝑎

𝑥
, 𝑎) =

𝑥𝑛+1 − (
𝑎
𝑥
)
𝑛+1

𝑥 − (
𝑎
𝑥)

. 

 

If we let 𝑏2 = 𝑎, then: 

 

𝐷𝑛 (𝑏𝑥 +
𝑎

𝑏𝑥
, 𝑎) = 𝑏𝑛𝑥𝑛 + (

𝑎

𝑏𝑥
)
𝑛

= 𝑏𝑛 (𝑥𝑛 +
1

𝑥𝑛
) 

 

(1) 

(𝑏𝑥 −
𝑎

𝑏𝑥
)𝐸𝑛 (𝑏𝑥 +

𝑎

𝑏𝑥
, 𝑎) = (𝑏𝑥 −

𝑎

𝑏𝑥
)(

𝑏𝑛+1𝑥𝑛+1 − (
𝑎
𝑏𝑥
)
𝑛+1

𝑏𝑥 − (
𝑎
𝑏𝑥
)

) = 𝑏𝑛+1 (𝑥𝑛+1 −
1

𝑥𝑛+1
). 

 

(2) 

Equations (1) and (2) are also used in [12] to perform sparse polynomial interpolation in Dickson 

polynomial bases. 

 

Assume that 𝑓(𝑥) = ∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . Then, with the help of Equation (1), we can define 𝑔(𝑥) from 

𝑓(𝑥): 
 

 

 

𝑔(𝑥) ≔ 𝑓 (𝑏 (𝑥 +
1

𝑥
)) 

= 𝑓 (𝑏𝑥 +
𝑎

𝑏𝑥
) 

=∑ 𝑐𝑗𝐷𝑒𝑗 (𝑏𝑥 +
𝑎

𝑏𝑥
, 𝑎)

𝑡

𝑗=0
 

=∑ 𝐺𝑗 (𝑥
𝑒𝑗 +

1

𝑥𝑒𝑗
)

𝑡

𝑗=1
∈ 𝐾[𝑥, 𝑥−1] 

 

(3) 

where 𝐺𝑗 = 𝑏𝑒𝑗𝑐𝑗.  

 

Here, 𝑔(𝑥) has 𝑇 = 2𝑡 terms in Laurent polynomial bases and 𝑔(𝑘𝑖) = 𝑔(𝑘−𝑖)⁡for 𝑘 ∈ 𝐾. To compute 

the two evaluations 𝑔(𝑘𝑖) and 𝑔(𝑘−𝑖), we need to evaluate 𝑓(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

Here, we have 

 

𝑔′(𝑥) = 𝑓′ (𝑏 (𝑥 +
1

𝑥
))(𝑏 (1 −

1

𝑥2
)) 

 

and 

 

𝑔′(𝑥) =∑
𝐺𝑗𝑒𝑗

𝑥
(𝑥𝑒𝑗 −

1

𝑥𝑒𝑗
)

𝑡

𝑗=1
. 
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Note that, 𝑘𝑖𝑔′(𝑘𝑖) = −(𝑘−𝑖𝑔′(𝑘−𝑖)). To compute the two evaluations 𝑔′(𝑘𝑖) and 𝑔′(𝑘−𝑖)), we need 

to evaluate 𝑓′(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

We make use of Equation (3) to present Algorithm 2.1.1 below that solves Problem 1.1.i. Algorithm 

2.1.1 first uses Equation (3) to convert Problem 1.1.i to another problem that the Algorithm in [2] can 

solve, then uses Algorithm [2], and then recovers the coefficient-degree tuples (𝑐𝑗, 𝑒𝑗) such that 𝑓(𝑥) =

∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . 

 

Algorithm 2.1.1 

 

Input: 

 

• Black boxes for 𝑓(𝑥) and 𝑓′(𝑥). 
• The integer 𝑡. 
• 𝑘 ∈ 𝐾 − {0,1}. 
• 𝑎 ∈ 𝐾 − {0} such that 𝑏2 = 𝑎. 

 

Output: 

 

• The 𝑐𝑗 and the 𝑒𝑗 such that 𝑓(𝑥) = ∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . 

 

• The 𝛿𝑗 and the 𝜀𝑗 such that for 𝑓𝜀(𝑥) = ∑ 𝛿𝑗𝐷𝜀𝑗(𝑥, 𝑎)
𝑡
𝑗=0 ; 𝑓(𝑘𝑖0+𝑖) = 𝑓𝜀(𝑘

𝑖0+𝑖) and 𝑓′(𝑘𝑖0+𝑖) =

𝑓𝜀
′
⁡(𝑘

𝑖0+𝑖). 

 

1.  

i. Use Equation (3) and form 𝑔(𝑥). 
 

ii. Let ℓ = − ⌈
3𝑡−1

2
⌉. 

 

a. By using the black box for 𝑓(𝑥), for 𝑖 = 0,1,… , |ℓ|, …3𝑡 − 1, compute the 𝑎𝑖 =

𝑔(𝑘ℓ+𝑖)⁡by using 𝑔(𝑥) = 𝑓 (𝑏 (𝑥 +
1

𝑥
)). 

 

Use the equality 𝑔(𝑘ℓ+𝑖) = 𝑔(𝑘−ℓ−𝑖) to generate the 𝑎𝑖 with less computation. 

 

b. By using the black box for 𝑓′(𝑥), for 𝑖 = 0,1,… , |ℓ|, … ,3𝑡 − 1, compute the 𝑎𝑖
′ =

𝑔′(𝑘ℓ+𝑖)⁡by using 𝑔′(𝑥) = 𝑓′ (𝑏 (𝑥 +
1

𝑥
)) (𝑏 (1 −

1

𝑥2
)).  

 

Use the equality 𝑘ℓ+𝑖𝑔′(𝑘ℓ+𝑖) = −(𝑘−ℓ−𝑖𝑔′(𝑘−ℓ−𝑖)) to generate the 𝑎𝑖
′ with less 

computation. 

 

We encounter the same scenario as in Section 5.2 of [1]: Similarly, here we have 𝑖0 = ℓ =

− ⌈
3𝑡−1

2
⌉, 𝑔(𝑘ℓ+𝑖) = 𝑔(𝑘−ℓ−𝑖), 𝑘ℓ+𝑖𝑔′(𝑘ℓ+𝑖) = −(𝑘−ℓ−𝑖𝑔′(𝑘−ℓ−𝑖)). As stated in Section 5.2 

of [1], we can compute the 𝑎𝑖 and the 𝑎𝑖
′ above from 2(|ℓ| + 1) ≤ 3𝑡 + 2 values of 𝑓(𝑥) and 

𝑓′(𝑥). To generate those values of 𝑓(𝑥) and 𝑓′(𝑥), we need to use given black boxes for 𝑓(𝑥) 

and 𝑓′(𝑥) only ≤ 𝑡 + ⌊
𝑡

2
⌋ + 1 times. 
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2. Use the Algorithm 2.1 in [1] with inputs 𝑇 = 2𝑡, 𝑘, 𝑖0 = ℓ, 𝑟 = ⌊
𝑡

2
⌋, and 𝑎𝑖 = 𝑔(𝑘ℓ+𝑖) and 𝑎𝑖

′′ =

𝑘ℓ+𝑖𝑎𝑖
′ = 𝑘ℓ+𝑖𝑔′(𝑘ℓ+𝑖). Note that here we have 3𝑇 = 6𝑡 values of 𝑔(𝑥) and 𝑔′(𝑥). 

 

3.  

i. If Step 2 decides there is no 𝑇 sparse polynomial 𝑔(𝑥) in Laurent basis that interpolates 𝑎𝑖 and 

𝑎𝑖
′′, then print that information and stop. 

 

ii. If 𝑐ℎ𝑎𝑟(𝐾) = 0, or, 𝑐ℎ𝑎𝑟(𝐾) > 0 and 𝑘𝑠 ≠ 1 for all 𝑠 ≥ 1, then the algorithm in Step 2 

returns the 𝐺𝑗 and the 𝑒𝑗 such that 𝑔(𝑥) = ∑ 𝐺𝑗 (𝑥
𝑒𝑗 +

1

𝑥
𝑒𝑗
)𝑡

𝑗=1 .  

 

In this case, compute the 𝑐𝑗 from 𝐺𝑗 = 𝑏𝑒𝑗𝑐𝑗 and return the 𝑐𝑗 and the 𝑒𝑗 such that 𝑓(𝑥) =

∑ 𝑐𝑗𝐷𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . 

 

iii. If 𝑐ℎ𝑎𝑟(𝐾) > 0 and there exists 𝑠 ≥ 2 such that 𝑘𝑠 = 1, then the algorithm in Step 2 returns Γ𝑗 

and 𝜀𝑗 such that 𝑔𝜀(𝑥) = ∑ Γ𝑗 (𝑥
𝜀𝑗 +

1

𝑥
𝜀𝑗
)𝑡

𝑗=1  such that 𝑔(𝑘ℓ+𝑖) = 𝑔𝜀(𝑘
ℓ+𝑖) and 𝑔′(𝑘ℓ+𝑖) =

𝑔𝜀
′
⁡(𝑘

ℓ+𝑖). 

 

In this case, compute the 𝛿𝑗 from Γ𝑗 = 𝑏𝜀𝑗𝑐𝑗 and return the 𝑐𝑗 and the 𝜀𝑗 such that 𝑓𝜀(𝑥) =

∑ 𝛿𝑗𝐷𝜀𝑗(𝑥, 𝑎)
𝑡
𝑗=0 , such that 𝑓(𝑘ℓ+𝑖) = 𝑓𝜀(𝑘

ℓ+𝑖) and 𝑓′(𝑘ℓ+𝑖) = 𝑓𝜀
′
⁡(𝑘

ℓ+𝑖). 

 

2.2 Sparse Hermite Interpolation with Dickson Polynomials of the Second Kind 

 

Assume that 𝑓(𝑥) = ∑ 𝑐𝑗𝐸𝑒𝑗(𝑥, 𝑎)
𝑡
𝑗=0 . Then, with the help of Equation (2), we can define ℎ(𝑥) from 

𝑓(𝑥): 
 

 

 

ℎ(𝑥) ≔ (𝑏 (𝑥 −
1

𝑥
))𝑓 (𝑏 (𝑥 +

1

𝑥
)) 

= (𝑏𝑥 −
𝑎

𝑏𝑥
) 𝑓 (𝑏𝑥 +

𝑎

𝑏𝑥
) 

= (𝑏𝑥 −
𝑎

𝑏𝑥
)∑ 𝑐𝑗𝐸𝑒𝑗 (𝑏𝑥 +

𝑎

𝑏𝑥
, 𝑎)

𝑡

𝑗=0
 

=∑ 𝐻𝑗 (𝑥
𝑒𝑗+1 −

1

𝑥𝑒𝑗+1
)

𝑡

𝑗=1
∈ 𝐾[𝑥, 𝑥−1] 

 

(4) 

where 𝐻𝑗 = 𝑏𝑒𝑗+1𝑐𝑗.  

 

Here, ℎ(𝑥) has 𝑇 = 2𝑡 terms in Laurent polynomial bases and ℎ(𝑘𝑖) = −ℎ(𝑘−𝑖) for 𝑘 ∈ 𝐾. To compute 

two evaluations ℎ(𝑘𝑖) and ℎ(𝑘−𝑖), we need to evaluate 𝑓(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

Here, we have 

 

ℎ′(𝑥) = 𝑏 (1 +
1

𝑥2
) 𝑓 (𝑏 (𝑥 +

1

𝑥
)) + 𝑎 (𝑥 −

1

𝑥
) (1 −

1

𝑥2
)𝑓′ (𝑏 (𝑥 +

1

𝑥
)) 

 

and 
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ℎ′(𝑥) =∑
𝐻𝑗(𝑒𝑗 + 1)

𝑥
(𝑥𝑒𝑗+1 +

1

𝑥𝑒𝑗+1
) .

𝑡

𝑗=1
 

 

Note that, 𝑘𝑖ℎ′(𝑘𝑖) = 𝑘−𝑖ℎ′(𝑘−𝑖). To compute the two evaluations ℎ′(𝑘𝑖) and ℎ′(𝑘−𝑖), we need to 

evaluate 𝑓(𝑥) and 𝑓′(𝑥) only once at 𝑥 = 𝑏 (𝑘𝑖 +
1

𝑘𝑖
). 

 

One can make use of Equation (4) and can design an algorithm (which is similar to Algorithm 2.1.1) 

that solves Problem 1.1.ii. 

 

2.3 Sparse Hermite Interpolation with Bernstein Basis Polynomials 

 

In [13], it is introduced that 

 

(1 + 𝑥)𝑛𝐵𝑖,𝑛 (
𝑥

1 + 𝑥
) = (

𝑛
𝑖
) 𝑥𝑖 . 

 

(5) 

 

Assume 𝑓(𝑥) = ∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡
𝑗=0 . Then, with the help of Equation (5), we can define 𝑧(𝑥) from 𝑓(𝑥): 

 

𝑧(𝑥) ≔ (1 + 𝑥)𝑛𝑓 (
𝑥

1 + 𝑥
) 

= (1 + 𝑥)𝑛∑ 𝑐𝑗𝐵𝑒𝑗,𝑛 (
𝑥

1 + 𝑥
)

𝑡

𝑗=0
 

=∑ 𝑍𝑗
𝑡

𝑗=0
𝑥𝑒𝑗  

 

(6) 

where 𝑍𝑗 = (
𝑛
𝑗) 𝑐𝑗 . Here 𝑧(𝑥) and 𝑓(𝑥) have the same number of terms and 𝑧(𝑘𝑖), 𝑧′(𝑘𝑖) can be 

computed from 𝑓 (
𝑘𝑖

1+𝑘𝑖
) , 𝑓′ (

𝑘𝑖

1+𝑘𝑖
).  

 

We can make use of Equation (6) and can design an algorithm that solves Problem 1.1.iii. Algorithm 

2.3.1 first uses Equation (6) to convert Problem 1.1.iii to another problem that the Algorithm in [2] can 

solve, then uses Algorithm [2], and then recovers the coefficient-degree tuples (𝑐𝑗, 𝑒𝑗) such that 𝑓(𝑥) =

∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡
𝑗=0 . 

 

Algorithm 2.3.1 

 

Input: 

 

• Black boxes for 𝑓(𝑥) and 𝑓′(𝑥). 
• The integer 𝑡. 
• An integer 𝑟 such that 1 ≤ 𝑟 ≤ 𝑡 − 1. 

• An integer ℓ. 

• 𝑘 ∈ ℝ − {0,1}. 
• 𝑛 = deg⁡(𝑓(𝑥)). 

 

Output: 
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• The 𝑐𝑗 and the 𝑒𝑗 such that 𝑓(𝑥) = ∑ 𝑐𝑗𝐵𝑒𝑗,𝑛(𝑥)
𝑡
𝑗=0 . 

 

1.  

i. Use Equation (6) and form 𝑧(𝑥). 
 

ii. By using black the boxes for 𝑓(𝑥) and 𝑓′(𝑥), for 𝑖 = 0,… ,2𝑡 − 𝑟 − 1, compute 𝑎𝑖 = 𝑧(𝑘ℓ+𝑖) 

and 𝑎𝑖
′′ = 𝑘ℓ+𝑖𝑧′(𝑘ℓ+𝑖) by using 𝑧(𝑥) = (1 + 𝑥)𝑛𝑓 (

𝑥

1+𝑥
). 

 

2. Use the algorithm 2.1 in [1] with inputs 𝑡, 𝑘, 𝑖0 = ℓ, 𝑟, and 𝑎𝑖 = 𝑧(𝑘ℓ+𝑖) and 𝑎𝑖
′′ = 𝑘ℓ+𝑖𝑧′(𝑘ℓ+𝑖). 

 

3.  

i. If Step 2 decides there is no 𝑡 sparse polynomial 𝑧(𝑥) in Laurent basis that interpolates 𝑎𝑖 and 

𝑎𝑖
′′, then print that information and stop. 

 

ii. If Step 2 returns the 𝑍𝑗 and the 𝑒𝑗 such that 𝑧(𝑥) = ∑ 𝑍𝑗
𝑡
𝑗=0 𝑥𝑒𝑗, then compute the 𝑐𝑗 from 𝑍𝑗 =

(
𝑛
𝑗) 𝑐𝑗, and then return the 𝑐𝑗 and the 𝑒𝑗. 

 

3. CONCLUSION 

 

In this manuscript, we present three sparse Hermite interpolation algorithms: An algorithm that 

computes an unknown polynomial directly as a linear combination of Dickson polynomials of the first 

kind, an algorithm that recovers an unknown polynomial directly in terms of Dickson polynomials of 

the second kind, and an algorithm that rebuilds an unknown polynomial as a combination of Bernstein 

basis polynomials. Future work may include developing sparse Hermite interpolation algorithms that 

perform similar compuations with orthogonal polynomial bases, such as Legendre polynomials and 

Jacobi polynomials. 
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ABSTRACT 
 

Let (𝑋, 𝑑) be a finite metric space with elements 𝑃𝑖 , 𝑖 = 1, … , 𝑛 and with distances 𝑑𝑖𝑗: = 𝑑(𝑃𝑖 , 𝑃𝑗) for 𝑖, 𝑗 = 1, … , 𝑛. The 

“Gromov product” Δ𝑖𝑗𝑘, is defined as Δ𝑖𝑗𝑘 =
1

2
(𝑑𝑖𝑗 + 𝑑𝑖𝑘 − 𝑑𝑗𝑘). (𝑋, 𝑑) is called Δ-generic, if for each fixed 𝑖, the set of 

Gromov products has a unique least element, Δ𝑖𝑗𝑖𝑘𝑖
.  The Gromov product structure on a Δ-generic finite metric space (𝑋, 𝑑) 

is the map that assigns the edge 𝐸𝑗𝑖𝑘𝑖
 to 𝑃𝑖. A finite metric space is called “quadrangle generic”, if for all 4-point subsets 

{𝑃𝑖 , 𝑃𝑗 , 𝑃𝑘 , 𝑃𝑙}, the set  {𝑑𝑖𝑗 + 𝑑𝑘𝑙 , 𝑑𝑖𝑘 + 𝑑𝑗𝑙 , 𝑑𝑖𝑙 + 𝑑𝑗𝑘} has a unique maximal element. We define the “quadrangle structure” on 

a quadrangle generic finite metric space (𝑋, 𝑑) as the map that assigns to each 4-point subset of 𝑋, the pair of edges 

corresponding to the maximal element of the sums of the distances. Two metric spaces (𝑋, 𝑑) and (𝑋, 𝑑′) are said to be Δ-

equivalent (𝑄-equivalent), if the corresponding Gromov product (quadrangle) structures are the same up to a permutation of 𝑋. 

 

In this paper, Gromov product structures, quadrangle structures, optimal reductions and explicit parameterizations for 5-point 

spaces are obtained and compared with previous results in the literature. In the final part of this paper, we have used the Monte 

Carlo method to obtain the relative volume of each of the 5-point metric types inside the corresponding metric cone for 5-point 

spaces, meanwhile 102 different partitions of metric cone for 5-point spaces are derived, considering Gromov product 

structures. These 102 partitions, come in three symmetric classes forming three types of metrics for 5-point spaces. Thus, one 

can say that all the methods of classification given here or given before in the literature of finite metric spaces, give 3 types of 

metrics for 5-point spaces. 

 

Keywords: Finite metric spaces, Split metric decompositions, Gromov products, Quadrangle structures 
 

 

1. INTRODUCTION 
 

The notions of Gromov product structures, Δ-equivalence, quadrangle structures and 𝑄-equivalence 

have been defined in previous work [1]. Here, we present the applications of these notions to 5-point 

spaces. Basic definitions are quoted from [1]. 

 

Notation: Let (𝑋, 𝑑) be a finite metric space with 𝑛 elements 𝑃𝑖, 𝑖 = 1, … , 𝑛  (𝑛 ≥  3)  and let 𝑑𝑖𝑗 be 

the distance between 𝑃𝑖 and 𝑃𝑗. The elements of 𝑋 are also referred to as “vertices” or “nodes”. 𝐸𝑖𝑗 and 

𝑇𝑖𝑗𝑘 denote respectively an edge and a triangle with corresponding vertices. 

 

Gromov products:  The quantity Δ𝑖𝑗𝑘, defined as 

Δ𝑖𝑗𝑘 = Δ𝑖𝑘𝑗 =
1

2
(𝑑𝑖𝑗 + 𝑑𝑖𝑘 − 𝑑𝑗𝑘) 

is called the Gromov product of the triangle 𝑇𝑖𝑗𝑘 at the vertex 𝑃𝑖 [2]. 

https://orcid.org/0000-0002-6043-0833
https://orcid.org/0000-0003-2499-791X
https://orcid.org/0009-0007-6672-5214
https://orcid.org/0000-0002-2940-2236
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𝚫-generic metrics: A metric space is called Δ-generic, if for each 𝑃𝑖 the set of Gromov products Δ𝑖𝑗𝑘 

has a unique smallest element. 

 

Gromov product structures: Let (𝑋, 𝑑) be a Δ-generic finite metric space. Let 𝑃𝑖 ∈ 𝑋, and let Δ𝑖𝑗𝑘 be 

the minimal Gromov product at 𝑃𝑖, (𝑖 = 1, … , 𝑛). The function that assigns the edge 𝐸𝑗𝑘 to the vertex 𝑃𝑖 

is called the Gromov product structure on 𝑋. Two Δ-generic metric spaces (𝑋, 𝑑) and (𝑋, 𝑑′) are Δ-

equivalent, if the corresponding Gromov product structures are the same up to a permutation of 𝑋. 

 

The metric cone: The set 𝐶𝑛 of all pseudo-metrics 𝑑 = (𝑑𝑖𝑗) ∈ ℝ
(

𝑛
2

)
 on a given 𝑛-point set 𝑋, is called 

the metric cone.  

 

The metric fan: A decomposition of metric cone 𝐶𝑛 into some sub-cones defined as below is called the 

metric fan [3]. Consider the (
𝑛
2

) × n matrix 𝒜 where the rows are numbered by the edges as 

(1,2), (1,3), … , (1, 𝑛), (2,3), (2,4), … , (2, 𝑛), … , (𝑛 − 1, 𝑛) 

and the (𝑖, 𝑗)-row (𝑖 < 𝑗) is given by 𝑒𝑖 + 𝑒𝑗 = (0, … ,1, … ,1, … ,0) ∈ ℝ𝑛. Let ℬ be an invertible 𝑛 × 𝑛 

submatrix of 𝒜 and denote the [(
𝑛
2

) − 𝑛] ×  𝑛 matrix obtained by deleting ℬ from 𝒜 by ℬ′. Likewise, 

define 𝑑ℬ ∈  ℝ𝑛 by choosing the components of 𝑑 ∈  ℝ
(

𝑛
2

)
 corresponding to ℬ and 𝑑ℬ′ ∈  ℝ

(
𝑛
2

)−𝑛
 

corresponding to ℬ′. Now consider the following system of equations and inequalities for 𝑥 ∈  ℝ𝑛: 

ℬ𝑥 = 𝑑ℬ  and   ℬ′𝑥 > 𝑑ℬ′ . 
If this system has a solution we say that the matrix ℬ is a “cell” or a “thrackle” for the metric 𝑑. The 

collection of cells of a metric 𝑑 is denoted by 𝐶𝑒𝑙𝑙(𝑑). Two metrics 𝑑 and 𝑑′ on an 𝑛-point metric space 

𝑋 are said to be equivalent in the metric-fan sense, if they have the same collection of cells or what 

amounts to the same collection of sub-graphs, i.e. 𝐶𝑒𝑙𝑙(𝑑) = 𝐶𝑒𝑙𝑙(𝑑′). The equivalence class of a metric 

𝑑 is a sub-cone of the metric cone and these sub-cones constitute altogether the metric fan. 

 

The classification of 6-point spaces with respect to Gromov product structures (Δ-equivalence) is 

obtained in [4]. In that work it is shown that there are 26  Δ-equivalence classes and also presented their 

correspondences to the classification by the decomposition of the metric fan. The list of Gromov product 

structures and the corresponding metric fan types for the 26 Δ-generic metrics are given in [4]. 

 

In [5], the Gromov classification of 7-point spaces has been obtained and shown that there are 431 

equivalence classes. For 8-point metric spaces, we have obtained the Δ-equivalence classifications 

and found 11470 equivalence classes in the work on our website: 

http://finitemetricspaces.khas.edu.tr/118F412_webpage_8pointspaces.pdf  

 

The metric fan classification of 𝑛-point spaces for 𝑛 > 6 is not known. It looks like the number of 

classes will be increasingly large and such a classification would not be practical. Even the Gromov 

product classification is becoming impractical for 𝑛 > 8. Thus, we are looking for coarser equivalences 

that would reflect essential properties of a finite metric space. 

 

Quadrangle generic metric spaces: An 𝑛-point finite metric space 𝑋 is called “quadrangle generic”, 

or 𝑄-generic, if for every 4-point subset {𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} ⊆  𝑋, the set of distances 
{𝑑𝑎𝑏 + 𝑑𝑐𝑑 , 𝑑𝑎𝑐 + 𝑑𝑏𝑑 , 𝑑𝑎𝑑 + 𝑑𝑏𝑐} 

has a unique maximal element. 

 

http://finitemetricspaces.khas.edu.tr/118F412_webpage_8pointspaces.pdf
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Quadrangle Structures: A quadrangle structure on a 𝑄-generic finite metric space (𝑋, 𝑑) is a map 

which assigns to any 4-point subset {𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} of 𝑋, the pair of edges corresponding to the maximal 

element of the set {𝑑𝑎𝑏 + 𝑑𝑐𝑑 , 𝑑𝑎𝑐 + 𝑑𝑏𝑑 , 𝑑𝑎𝑑 + 𝑑𝑏𝑐}. We denote the 4-point subset {𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} 

without any restriction on the sides by 𝑄(𝑎, 𝑏, 𝑐, 𝑑) in which the ordering of the indices is irrelevant. If 

𝑑𝑎𝑐 + 𝑑𝑏𝑑 is maximal, the vertices are ordered as (𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑) and we denote this structured 

quadrangle by 𝑄(𝑎𝑏𝑐𝑑) in which the cyclic permutations and reversal of the order of the indices give 

equivalent quadrangles. 

 

𝑸-equivalence: Two 𝑄-generic metric spaces (𝑋, 𝑑) and (𝑋, 𝑑′) are called 𝑄-equivalent, if the 

corresponding quadrangle structures are the same up to a permutation of 𝑋. 

 

Parameterization of 𝟒-point spaces: Let the set of minimal Gromov products of the quadrangle  

𝑄(𝑎𝑏𝑐𝑑) be {Δ𝑎𝑏𝑑 , Δ𝑏𝑎𝑐, Δ𝑐𝑏𝑑 , Δ𝑑𝑎𝑐} and let 𝛼 and 𝛽 be defined as 

𝛼 = Δabc − Δabd, β = Δadc − Δadb,  
then, one has the following equalities between Gromov products 

𝛼 = Δ𝑎𝑏𝑐 − Δ𝑎𝑏𝑑 = Δ𝑏𝑎𝑑 − Δ𝑏𝑎𝑐 = Δ𝑐𝑑𝑎 − Δ𝑐𝑑𝑏 = Δ𝑑𝑐𝑏 − Δ𝑑𝑐𝑎, 
𝛽 = Δ𝑎𝑑𝑐 − Δ𝑎𝑑𝑏 = Δ𝑏𝑐𝑑 − Δ𝑏𝑐𝑎 = Δ𝑐𝑏𝑎 − Δ𝑐𝑏𝑑 = Δ𝑑𝑎𝑏 − Δ𝑑𝑎𝑐, 

and the distances are expressed as 

𝑑𝑎𝑏 = Δ𝑎𝑏𝑑 + Δ𝑏𝑎𝑐 + 𝛼,  𝑑𝑐𝑑 = Δ𝑐𝑏𝑑 + Δ𝑑𝑎𝑐 + 𝛼,  

𝑑𝑏𝑐 = Δ𝑏𝑎𝑐 + Δ𝑐𝑏𝑑 + 𝛽,  𝑑𝑎𝑑 = Δ𝑎𝑏𝑑 + Δ𝑑𝑎𝑐 + 𝛽,  

𝑑𝑎𝑐 = Δ𝑎𝑏𝑑 + Δ𝑐𝑏𝑑 + 𝛼 + 𝛽,   𝑑𝑏𝑑 = Δ𝑏𝑎𝑐 + Δ𝑑𝑎𝑐 + 𝛼 + 𝛽.  

This is shown in Figure 1 below. 

 

 

 
 

 

 

 

 

 

 

 
Figure 1.  A quadrangle with the set of minimal Gromov products {Δ𝑎𝑏𝑑 , Δ𝑏𝑎𝑐 , Δ𝑐𝑏𝑑 , Δ𝑑𝑎𝑐}.  
 

Matrix representation of Gromov product structures: Gromov product structures on an 𝑛-point 

space are represented by the 𝑛 × 𝑛 matrix 𝑀Δ defined by 𝑀Δ(𝑖, 𝑗) = 1 and 𝑀Δ(𝑖, 𝑘) = 1 if Δ𝑖𝑗𝑘 is the 

minimal Gromov product at 𝑃𝑖 and 0 otherwise [6]. 

 

Matrix representation of quadrangle structures: The matrix of a quadrangle structure 𝑄, 𝑀𝑄 on  an 

𝑛-point space is an 𝑛𝑑 × 𝑛𝑑   matrix (𝑛𝑑 =
𝑛(𝑛−1)

2
) such that 𝑀𝑄(𝑎𝑏, 𝑐𝑑) = 1 if the edges 𝐸𝑎𝑏 and 𝐸𝑐𝑑 

are diagonals in {𝑃𝑎 , 𝑃𝑏 , 𝑃𝑐 , 𝑃𝑑} and 𝑀𝑄(𝑎𝑏, 𝑐𝑑) = 0 otherwise. 

These matrix representations proved to be useful in determining equivalences/inequivalences of 

Δ- and 𝑄-equivalence classes. We recall that two structures are equivalent if their matrices can be 

mapped to each other by a permutation of indices. Similarity and isospectrality of matrices leads to 

coarser classifications [6]. 

 

Split pseudo-metrics: A “split” 𝑆 = {𝐴, 𝐵} of a finite set 𝑋 is a partition of 𝑋 into two non-empty 

subsets 𝐴 and 𝐵. For simplicity we often identify the set of points of 𝐴 with its index set.  For  each 

𝛽 

𝛽 

𝛼 𝛼 

𝑃𝑏 
𝑃𝑐 

𝑃𝑎 𝑃𝑑 
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𝑃𝑎 ∈ 𝑋, we denote by 𝑆(𝑎) the subset 𝐴 or 𝐵 that contains 𝑃𝑎.  Corresponding to each split 𝑆 we define 

the pseudo-metric 𝛿𝑆 by 

𝛿𝑆(𝑎, 𝑎′) = { 
1, 𝑖𝑓  𝑆(𝑎) ≠ 𝑆(𝑎′),

0, 𝑖𝑓  𝑆(𝑎) = 𝑆(𝑎′).
 

If the number of elements of 𝐴 or 𝐵 is equal to 𝑘, the split is referred to as a 𝑘-split. 

 

Totally split decomposable metrics: A metric on 𝑋 is called totally split decomposable if it can be 

expressed as a linear combination (with non-negative coefficients) of the split metrics [7]. 

 

The isolation index of a split: The isolation index of a split 𝑆 = {𝐴, 𝐵} is defined as 

𝛼{𝐴,𝐵} =
1

2
min

{𝑎,𝑎′∈ 𝐴,𝑏,𝑏′∈ 𝐵}
{ max { 𝑑𝑎𝑏 + 𝑑𝑎′𝑏′  , 𝑑𝑎𝑏′  + 𝑑𝑎′𝑏 , 𝑑𝑎𝑎′ + 𝑑𝑏𝑏′}  − (𝑑𝑎𝑎′ + 𝑑𝑏𝑏′)}. 

 

Split prime: A pseudo-metric is called a split prime if all of its isolation indices are equal to zero [7]. 

        

Lemma 1: Let (𝑋, 𝑑) be a finite metric space with 𝑛 elements 𝑃𝑖 (𝑖 =  1, … , 𝑛) and let 𝑆 = {𝐴, 𝐵} be 

a split for 𝑋. Then, 

i. The isolation index for the 1-split with 𝐴 = {𝑃𝑎}  is the minimal Gromov product at 𝑃𝑎, 

ii. If (𝑋, 𝑑) is 𝑄-generic, then the isolation index for the 𝑘-split with 𝐴 = {𝑃𝑖1
, … , 𝑃𝑖𝑘

} is non-zero 

if and only if for no pair of indices 𝑎, 𝑎′ ∈ 𝐴, 𝐸𝑎𝑎′ is a diagonal of the quadrangles 𝑄(𝑎, 𝑎′, 𝑏, 𝑏′) 

where 𝑏, 𝑏′ ∈ 𝐵. 

Proof: See [1]. 

 

In [1], we have shown that the number of 2-splits in an 𝑛-point space is at most 𝑛. We have discussed 

the case 𝑛 = 6 in terms of 3-splits, relating to the results of [7]. 

 

2. PARAMETERIZATION OF 𝟓-POINT METRIC SPACES 

 

In this section we will give an explicit parameterization of 5-point spaces using Gromov product 

structures, quadrangle structures and partial orders on Gromov products at each 𝑃𝑎. This 

parameterization coincides with the parameterization given in [8]. 

It is known that the Gromov product equivalence gives the known classification of 5-point Δ-

generic metric spaces [4]. 

A:   {Δ125, Δ213, Δ324, Δ435, Δ514} 

B:   {Δ125, Δ213, Δ325, Δ425, Δ514}, 
C:   {Δ125, Δ213, Δ325, Δ425, Δ513}. 

 

Note that, if say Δ𝑖𝑗𝑘 is minimal in the metric space 𝑋, then it is also minimal in every quadrangle  

𝑄 = {𝑃𝑖, 𝑃𝑗, 𝑃𝑘 , 𝑃𝑙}. In a graphical presentation we indicate this by marking the corresponding angle by 

a filled arc as shown in Figure 2. For a 5-point metric space 𝑋, at least one of the Gromov products in 

any quadrangle belongs to the list of minimal Gromov products. It follows that for a 5-point space, the 

Gromov product structure determines the quadrangle structure. The determination of the parameters 

displayed in the quadrangles will be explained below. 

 



Bilge et al. / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 11 (2) – 2023 

 

171 

 
 

Figure 2. The structure of the 4-point subsets for the three types of  5-point metric spaces. 
 

From Figure 2, we can see that, in Type A, the edges 𝐸12, 𝐸23, 𝐸34, 𝐸45 and 𝐸15 are “sides” in all 

quadrangles, hence Type A metrics are totally split-decomposable by Lemma 1. For Type B, there are 

4 edges 𝐸45, 𝐸15, 𝐸12 and 𝐸23 that occur as sides in all quadrangles. Therefore it is not totally split-

decomposable. Similarly for Type C, the edges that occur as “sides” in all quadrangles are 𝐸12, 𝐸23, 𝐸34 

and 𝐸45, hence it is not totally split-decomposable. 

 

In order to obtain an explicit parameterization of these metrics,  we will use the quadrangle structure to 

obtain partial order relations among the Gromov products, then use the relations 𝑑𝑖𝑗 = Δ𝑖𝑗𝑘 + Δ𝑗𝑖𝑘 . The 

structure of the quadrangles in Figure 2 lead  to the following order relations for each of the types A, B, 

C in the following way: Take quadrangle 𝑄(1234) of Type A for instance. Since 𝑑12 + 𝑑34 < 𝑑13 +

𝑑24, equivalently 
1

2
(𝑑12 + 𝑑14 − 𝑑24) <

1

2
(𝑑13 + 𝑑14 − 𝑑34) which is to say Δ124 < Δ134; we can also 

say that since 𝑑14 + 𝑑23 < 𝑑13 + 𝑑24 is equivalent to 
1

2
(𝑑12 + 𝑑14 − 𝑑24)  <

1

2
(𝑑12 + 𝑑13 − 𝑑23) 

which means Δ124 < Δ123. Thus for each vertex of a quadrangle, two inequalities among three Gromov 

products could be derived by similar algebraic manipulations. The list of these inequalities for each type 

is given below. These order relations are used to determine isolation indices for 2-splits and the split 

primes. 

 

From quadrangles of Type A, we have the following relations among Gromov products: 

 

       
 

 

 

 

 

which lead to the following Hasse diagrams given in Figure 3. 

𝑄(1234) ∶ Δ124 < Δ123, Δ134, Δ213 < Δ214, Δ234, Δ324 < Δ312, Δ314, Δ413 < Δ412, Δ423, 

𝑄(1235) ∶ Δ125 < Δ123, Δ135, Δ213 < Δ215, Δ235, Δ325 < Δ312, Δ315, Δ513 < Δ512, Δ523, 

 𝑄(1245) ∶ Δ125 < Δ124, Δ145,   Δ214 < Δ215, Δ245, Δ425 < Δ412, Δ415, Δ514  < Δ512, Δ524, 

𝑄(1345) ∶ Δ135 < Δ134, Δ145, Δ314 < Δ315, Δ345, Δ435 < Δ413, Δ415, Δ514  < Δ513, Δ534, 

  𝑄(2345) ∶ Δ235 < Δ234, Δ245,  Δ324 < Δ325, Δ345, Δ435 < Δ423, Δ425, Δ524 < Δ523, Δ534. 
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Figure 3. The partial order diagrams for the Type A. 

 

For Type B, we have: 

 

 

 

which give the following Hasse diagrams given in Figure 4. 

 

 
 

Figure 4. The partial order diagrams for the Type B. 

 

For Type C, the quadrangles give the following relations: 

𝑄(1234) ∶ Δ124 < Δ123, Δ134, Δ213 < Δ214, Δ234, Δ324 < Δ312, Δ314, Δ413  < Δ412, Δ423, 

𝑄(1235) ∶ Δ125 < Δ123, Δ135, Δ213 < Δ215, Δ235, Δ325 < Δ312, Δ315, Δ513  < Δ512, Δ523, 

𝑄(1245) ∶ Δ125  < Δ124, Δ145, Δ214 < Δ215, Δ245, Δ425 < Δ412, Δ415, Δ514  < Δ512, Δ524, 

𝑄(1435) ∶ Δ145  < Δ134, Δ135, Δ345 < Δ314, Δ315, Δ413 < Δ415, Δ435, Δ513 < Δ514, Δ534, 

𝑄(2354) ∶ Δ234  < Δ235, Δ245, Δ325  < Δ324, Δ345, Δ425 < Δ423, Δ435, Δ534  < Δ523, Δ524. 

𝑄(1234) ∶  Δ124 < Δ123, Δ134, Δ213 < Δ214, Δ234,  Δ324 < Δ312, Δ314, Δ413 < Δ412, Δ423, 

𝑄(1235) ∶  Δ125 < Δ123, Δ135, Δ213 < Δ215, Δ235, Δ325 < Δ312, Δ315, Δ513 < Δ512, Δ523, 

𝑄(1245) ∶  Δ125 < Δ124, Δ145, Δ214 < Δ215, Δ245, Δ425 < Δ412, Δ415, Δ514 < Δ512, Δ524, 

𝑄(1345) ∶  Δ135 < Δ134, Δ145, Δ314 < Δ315, Δ345, Δ435 < Δ413, Δ415, Δ514 < Δ513, Δ534, 

𝑄(2354) ∶  Δ234 < Δ235, Δ245, Δ325 < Δ324, Δ345, Δ425 < Δ423, Δ435, Δ534 < Δ523, Δ524. 
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which lead to the Hasse diagrams given in Figure 5. 

 

 
 

Figure 5. The partial order diagrams for the Type C. 

 

Remark 1 For Types A and B, the quadrangle structure determines the Gromov product structure, in 

the sense that the partial order relations deduced from the quadrangle structure determine the smallest 

Gromov product at each 𝑃𝑖.  On the other hand, for Type C, the partial order relations imply that both 

Δ413 and Δ425 are smaller than Δ412, Δ415, Δ423 and Δ435, but the order relation between Δ413 and Δ425 

is not determined by the quadrangle structure. This is an example for the case where the quadrangle 

structure does not determine the Gromov product structure. 

 

Recall that the minimal Gromov products at each 𝑃𝑎  are the isolation indices of 1-splits. In what follows, 

we assume that minimal Gromov products are zero. 

The isolation indices for 2-splits will serve as free variables for the parameterization of the distances.  

For example, for Type A, 

𝛼12 =
1

2
min{ max{𝑑13 + 𝑑24, 𝑑14 + 𝑑23, 𝑑12 + 𝑑34} − (𝑑12 + 𝑑34),

max{𝑑13 + 𝑑25, 𝑑15 + 𝑑23, 𝑑12 + 𝑑35}  − (𝑑12 + 𝑑35),
max{𝑑14 + 𝑑25, 𝑑15 + 𝑑24, 𝑑12 + 𝑑45}  − (𝑑12 + 𝑑45)} 

            = min{ 𝑑13 + 𝑑24 − 𝑑12 − 𝑑34,  𝑑13 + 𝑑25 − 𝑑12 − 𝑑35,  𝑑14 + 𝑑25 − 𝑑12 − 𝑑45}. 
Which reformulating by using Gromov products gives: 

 

𝛼12 = min{Δ134 − Δ124  = Δ234 − Δ213, Δ135 − Δ125  = Δ235 − Δ213 , Δ145  − Δ125  = Δ245 − Δ214}. 
 

Finally since Δ125 = Δ213 = 0 we may write it as: 

𝛼12 = min{Δ234, Δ135 = Δ235, Δ145}. 
From the partial order relations it is clear that  𝛼12 cannot be equal to Δ145. Similarly, as Δ234 > Δ235, 

we choose Δ135 as a free variable for the parameterization.  By similar arguments and what is given 

when discussing “Parameterization of 4-point spaces” and Figure 1 in the introduction, the 

parameterization of the Gromov products and of the distance functions can be obtained as given below. 

 

Type A: Δ125 = Δ213 = Δ324 = Δ435 = Δ514 = 0. 
Δ124 = 𝛼, Δ135 = 𝛽, Δ123 = 𝛼 + 𝛾, Δ145 = 𝛽 + 𝜂, Δ134 = 𝛼 + 𝛽 + 𝛿, 

Δ214 = 𝛾, Δ235 = 𝛽, Δ215 = 𝛼 + 𝛾, Δ234 = 𝛽 + 𝛿, Δ245 = 𝛽 + 𝛾 + 𝜂, 

Δ314 = 𝛾, Δ325 = 𝛿, Δ312 = 𝛽 + 𝛿, Δ345 = 𝛾 + 𝜂, Δ315 = 𝛼 + 𝛿 + 𝛾, 
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Δ413 = 𝜂, Δ425 = 𝛿, Δ415 = 𝛼 + 𝛿, Δ423 = 𝛾 + 𝜂, Δ412 = 𝛽 + 𝛿 + 𝜂, 

Δ513 = 𝜂, Δ524 = 𝛼, Δ512 = 𝛽 + 𝜂, Δ534 = 𝛼 + 𝛿, Δ523 = 𝛼 + 𝛾 + 𝜂. 

  
Type B: Δ125 = Δ213 = Δ325 = Δ425 = Δ514 = 0. 

Δ124 = 𝛿 + 𝜂, Δ135 = 𝛽 + 𝜂, Δ134 = 𝛽 + 𝛿 + 𝜂, Δ123 = 𝛼 + 𝛿 + 𝜂, Δ145 = 𝛽 + 𝛾 + 𝜂, 

Δ214 = 𝛼, Δ234 = 𝛽, Δ235 = 𝛽 + 𝜂, Δ215 = 𝛼 + 𝛿 + 𝜂, Δ245 = 𝛼 + 𝛽 + 𝛾 + 𝜂, 

Δ324 = 𝜂, Δ312 = 𝛽 + 𝜂, Δ314 = 𝛼 + 𝜂, Δ315 = 𝛼 + 𝛿 + 𝜂, Δ345 = 𝛼 + 𝛾 + 𝜂, 

Δ435 = 𝜂, Δ413 = 𝛾 + 𝜂, Δ415 = 𝛿 + 𝜂, Δ423 = 𝛼 + 𝛾 + 𝜂, Δ412 = 𝛽 + 𝛾 + 𝜂, 

Δ534 = 𝛿, Δ513 = 𝛾, Δ524 = 𝛿 + 𝜂, Δ512 = 𝛽 + 𝛾 + 𝜂, Δ523 = 𝛼 + 𝛿 + 𝛾 + 𝜂. 

 

𝑑12 = 𝛼 + 𝛿 + 𝜂,   𝑑13 = 𝛼 + 𝛽 + 𝛿 +  2𝜂,  𝑑14 = 𝛽 + 𝛿 + 𝛾 +  2𝜂, 𝑑15 = 𝛽 + 𝛾 + 𝜂, 𝑑23 = 𝛽 + 𝜂, 

𝑑24 = 𝛼 + 𝛽 + 𝛾 + 𝜂,   𝑑25 = 𝛼 + 𝛽 + 𝛿 + 𝛾 +  2𝜂,   𝑑35 = 𝛼 + 𝛿 + 𝛾 + 𝜂,   𝑑45 = 𝛿 + 𝜂.  

 

Type C : Δ125 = Δ213 = Δ325 = Δ425 = Δ513 = 0. 

 

𝑑12 = 𝛼 + 𝛿 + 𝜂, 𝑑13 = 𝛼 + 𝛽 + 𝛿 + 𝛾 +  2𝜂, 𝑑14 = 𝛽 + 𝛿 +  2𝜂, 𝑑15 = 𝛽 + 𝛾 + 𝜂,  𝑑23 = 𝛽 + 𝛾 + 𝜂, 

𝑑24 = 𝛼 + 𝛽 + 𝜂,  𝑑25 = 𝛼 + 𝛽 + 𝛿 + 𝛾 +  2𝜂, 𝑑34 = 𝛼 + 𝛾 +  2𝜂, 𝑑35 = 𝛼 + 𝛿 + 𝜂, 𝑑45 = 𝛿 + 𝛾 + 𝜂. 
 

 

These parameterizations are exactly the ones given by Koolen, Lesser and Moulton [8]. In the paper [8], 

the classes obtained via the decomposition of the metric cone are denoted as Type I, Type II and Type 

III. These correspond respectively to our equivalence classes denoted by Type A, Type C and Type B.  

The metrics of Type I, II and III are defined by their split decompositions, given as below. For simplicity 

we consider the pendant free case, i.e, we take the coefficients of the 1-splits as zero, equivalently the 

minimal Gromov products at each node are zero. 

 

We use the labeling of the nodes by {𝑥, 𝑦, 𝑢, 𝑣, 𝑤}. 
(Type I): 𝑑 = 𝛼𝑥𝑦𝛿𝑥𝑦 + 𝛼𝑦𝑢𝛿_𝑦𝑢 + 𝛼𝑢𝑣𝛿𝑢𝑣 + 𝛼𝑣𝑤𝛿𝑣𝑤 + 𝛼𝑤𝑥𝛿𝑤𝑥, 

(Type II): 𝑑 = 𝛼𝑥𝑢𝛿𝑥𝑢 + 𝛼𝑥𝑣𝛿𝑥𝑣 + 𝛼𝑢𝑦𝛿𝑢𝑦 + 𝛼𝑣𝑦𝛿𝑣𝑦 + 𝑐 𝑑′, 

(Type III): 𝑑 = 𝛼𝑥𝑢𝛿𝑥𝑢 + 𝛼𝑥𝑣𝛿𝑥𝑣 + 𝛼𝑤𝑦𝛿𝑤𝑦 + 𝛼𝑣𝑦𝛿𝑣𝑦 + 𝑐  𝑑′, 

where 𝑑′(𝑎, 𝑏) = 0 𝑖𝑓 𝑎 = 𝑏, 𝑑′(𝑥, 𝑦) = 𝑑′(𝑢, 𝑣) = 𝑑′(𝑢, 𝑤) = 𝑑′(𝑣, 𝑤) = 2 and 𝑑′(𝑎, 𝑏) = 1 for all 

other cases. 

 

We identify the indices 𝑥, 𝑦, 𝑢, 𝑣, 𝑤 with our notation.  For example, for Type I, i.e, our Type A, 

𝑥, 𝑦, 𝑢, 𝑣, 𝑤 correspond to 1, 2, 3, 4, 5 respectively and the correspondence of the parameters are 

𝛼𝑥𝑦 = 𝛽, 𝛼𝑦𝑢 = 𝛾, 𝛼𝑢𝑣 = 𝛿, 𝛼𝑣𝑤 = 𝜂, 𝛼𝑤𝑥 = 𝛼. 

For Type II, i.e, our Type C, 𝑥, 𝑦, 𝑢, 𝑣, 𝑤 correspond to 5, 2, 1, 3, 4 respectively and the correspondence 

of the parameters are 

𝛼𝑥𝑢 = 𝛿, 𝛼𝑥𝑣 = 𝛾, 𝛼𝑢𝑦 = 𝛽, 𝛼𝑣𝑦 = 𝛼, 𝑐 = 𝜂. 

For Type III, i.e, our Type B, 𝑥, 𝑦, 𝑢, 𝑣, 𝑤 correspond to 2, 5, 3, 1, 4 respectively and 

the correspondence of the parameters are 

𝑑12 = 𝛼 + 𝛾,     𝑑13 = 𝛼 + 𝛽 + 𝛿 + 𝛾,      𝑑14 = 𝛼 + 𝛽 + 𝛿 + 𝜂,     𝑑15 = 𝛽 + 𝜂,      𝑑23 = 𝛽 + 𝛿, 

𝑑24 = 𝛽 + 𝛿 + 𝛾 + 𝜂, 𝑑25 = 𝛼 + 𝛽 + 𝛾 + 𝜂,   𝑑34 = 𝛾 + 𝜂,   𝑑35 = 𝛼 + 𝛿 + 𝛾 + 𝜂,   𝑑45 = 𝛼 + 𝛿. 

Δ123 = 𝛼 + 𝛿 + 𝜂, Δ124 = 𝛿 + 𝜂, Δ134 = 𝛽 + 𝛿 + 𝜂, Δ135 = 𝛽 + 𝛾 + 𝜂, Δ145 = 𝛽 + 𝜂, 

Δ214 = 𝛼, Δ215 = 𝛼 + 𝛿 + 𝜂, Δ234 = 𝛽, Δ235 = 𝛽 + 𝛾 + 𝜂, Δ245 = 𝛼 + 𝛽 + 𝜂, 

Δ312 = 𝛽 + 𝛾 + 𝜂, Δ314 = 𝛼 + 𝛾 + 𝜂, Δ315 = 𝛼 + 𝛿 + 𝜂, Δ324 = 𝛾 + 𝜂, Δ345 = 𝛼 + 𝜂, 

Δ412 = 𝛽 + 𝜂, Δ413 = 𝜂, Δ415 = 𝛿 + 𝜂, Δ423 = 𝛼 + 𝜂, Δ435 = 𝛾 + 𝜂, 

Δ512 = 𝛽 + 𝛾 + 𝜂, Δ514 = 𝛾, Δ523 = 𝛼 + 𝛿 + 𝜂, Δ524 = 𝛿 + 𝛾 + 𝜂, Δ534 = 𝛿. 
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𝛼𝑥𝑢 = 𝛼, 𝛼𝑥𝑣 = 𝛽, 𝛼𝑤𝑦 = 𝛾, 𝛼𝑣𝑦 = 𝛿, 𝑐 = 𝜂. 

Explicit parametrizations for certain 6-point spaces have been also obtained  via partial order relations 

and quadrangle classifications. It is available on  

http://finitemetricspaces.khas.edu.tr/Optimal%20Realizations,%20h-

optimal%20Realizations%20and%20Tight%20Spans%20of%20Metric%20Spaces.pdf}. 

 

3. OPTIMAL REDUCTIONS OF 𝟓-POINT METRIC SPACES 

 

Optimal realizations of 5-point metric spaces for three types are given in [8], in what follows we will 

give underlying graphs for each metric type and will drive their optimal reductions. 

 

The weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) is called a realization of the finite metric space (𝑋, 𝑑) if there is a 

labeling function 𝜙 ∶ 𝑋 →  𝑉 such that for all 𝑥, 𝑦 ∈  𝑋 the weight of any path between 𝜙(𝑥) and 𝜙(𝑦) 

is equal to 𝑑(𝑥, 𝑦). Any such realization is called optimal if ||𝐺||, the total edge weight of the graph 𝐺 , 

is minimal among all realizations of the metric space (𝑋, 𝑑) [8]. 

 

As it is clear from the definition above that a finite metric space can have many realizations. In the 

following, we will start with the pendant free reductions and use certain “moves” as defined in [9] to 

reduce the total weight and reach the optimal representation.  This kind of operations are generally done 

by adjoining new vertices to the original graph, which in this case the added vertices are called secondary 

vertices and the original vertices as primary, discarding some edges or adding new edges between the 

enlarged set of vertices and assigning weights to the new edges in a way that the distance between 

primary nodes are unchanged but the weight of the graph, namely ||𝐺||, is reduced. 

 

The first move, which is called joining edges, is done in the following way: Consider a vertex 𝑢 and all 

(or some) of the other nodes 𝑣1, 𝑣2, … , 𝑣𝑘 of 𝐺, which are neighbors of 𝑢. Calculate the Gromov 

products of all triangles 𝑇𝑢𝑣𝑖𝑣𝑗
 with 1 ≤  𝑖 , 𝑗 ≤  𝑘 at vertex 𝑢 and call the minimum 𝑚𝑢. Now delete all 

the edges between 𝑢 and 𝑣𝑖 's, introduce a new vertex 𝑣 and connect 𝑣𝑖 's to 𝑣 by edges of weight 𝑤𝑢𝑣𝑖
−

𝑚𝑢 for 1 ≤  𝑖 ≤  𝑘 and also 𝑢 to 𝑣 by an edge of weight 𝑚𝑢; hence the nodes 𝑣𝑖 become connected to 

𝑢 by two edges through 𝑣 and the total weight of the graph is reduced by an amount of (𝑘 − 1)𝑚𝑢. 
 

The second move, which is called edge removing, is done by deleting the edge between two nodes 𝑢 

and 𝑣 if it can be avoided by a shortest path. This move reduces ||𝐺|| by an amount of the weight of the 

deleted edge. 

 

The “Δ − 𝑌” transform is a consequence of the above moves and can be applied to any triangle with 1-

connected vertices in 𝐺. It is called a Δ − 𝑌 transform, because a triangle shape (Δ) turns to a 𝑌 shape 

after the operation. 

 

We should also note that what we mean by underlying graph of a metric, is the complete graph with the 

same set of vertices as the metric space and all the edges with weight 𝑑𝑖𝑗 removed for which there is a 

point in space 𝑝𝑘 such that 𝑑𝑖𝑗 = 𝑑𝑖𝑘 + 𝑑𝑘𝑗. 

 

For Type A with the Gromov product structure as { Δ125, Δ213, Δ324, Δ435, Δ514 }, when edge removing 

operations are applied and passed to pendant-free reduction, a 5-cycle given in Figure 6 is obtained. The 

optimal realization given in [8] is a 5-cycle with edges connected to each of its nodes (Type (𝑎) of [8]). 

 

 

 

 

 

http://finitemetricspaces.khas.edu.tr/Optimal%20Realizations,%20h-optimal%20Realizations%20and%20Tight%20Spans%20of%20Metric%20Spaces.pdf
http://finitemetricspaces.khas.edu.tr/Optimal%20Realizations,%20h-optimal%20Realizations%20and%20Tight%20Spans%20of%20Metric%20Spaces.pdf
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Figure 6. Optimal reduction of metric Type A. 

 

For Type B with the Gromov product structure as { Δ125, Δ213, Δ325, Δ425, Δ514}, the underlying graph 

is given in Figure 7: 

 

 
 

 
Figure 7. Underlying graph of metric Type B. 

 

By applying a Δ − 𝑌 transform to 𝑇345 we have Figure 8 

 

 
 

Figure 8. Graph with Δ − 𝑌 transformed. 
 

In this step, one can follow two different approaches which reduce the metric to Type (𝑏) or (𝑐) of [8]. 

To observe the process closely we need to point out that the parameterization of Type B is given in 

Figure 9: 

 
 

Figure 9. Underlying graph of metric Type B with distances parameterized. 

 

Here we have Δ345 = 𝛼 + 𝛾 + 𝜂, Δ435 = 𝜂 and Δ534 = 𝛿, and applying a Δ − 𝑌 transform to 𝑇345 will 

be as in Figure 10: 

5 2 

3 4 

1 
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Figure 10. 𝑇345 of Type B after Δ − 𝑌 transform. 

 

So the Type B with parameters are as following: 

 
 

Figure 11. Metric Type B with the parameters. 
 

Now according to the graph above, we have 𝑑14 equal to 𝛽 + 𝛿 + 𝛾 +  2𝜂 (path 𝑝1) or equal to 2𝛼 +
𝛽  + 𝛾 + 𝛿 +  2𝜂 (path 𝑝2). Path 𝑝2 is longer than path 𝑝1 by an amount of 2𝛼. Likewise 𝑑34 is equal 

to 𝛼 + 𝛾 +  2𝜂 (path 𝑝3) or equal to 𝛼 +  2𝛽 + 𝛾 +  2𝜂 (path 𝑝4). Here path 𝑝4 is longer than path 𝑝3 

by a difference of 2𝛽. It should be noted that 𝛼 = Δ214 and 𝛽 = Δ234 and two scenarios are possible: 

either 𝛼 > 𝛽 or 𝛽 > 𝛼. If 𝛼 > 𝛽, in order to decrease the total weight of the graph, we will introduce 

a new node called 𝑣 on the edge joining 1 to 2 as shown below: 

 
 

Figure 12. Reduction of Type B to (𝑏). 
 

This will reduce the total weight as 𝑥 = Δ214  and that results the Type B to reduced into (𝑏) of [8] and 

the metric will be as following: 

 
Figure 13. Reduction of Type B to (𝑏) when 𝛼 > 𝛽 (parameters given). 
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In the other case, when 𝛽 > 𝛼, if we do the same operation as before, but this time for the edge joining 

2 to 3 we will have the following reduction: 

 
 

Figure 14. Reduction of Type B to (𝑐). 
 

This reduces the weight of graph as 𝑦 = Δ234 and turns it into Type (𝑐) given as below: 

 

 
 

Figure 15. Reduction of Type B to (𝑐) when 𝛽 > 𝛼  (parameters given). 

 

For Type C which the underlying graph with the parameters given is depicted below, the following can 

be done: 

 
 

Figure 16. Underlying graph of metric Type C with the metric parameterized. 
 

Since Δ124 = 𝛿 + 𝜂, Δ214 = 𝛼 and Δ412 = 𝛽 + 𝜂, applying a Δ − 𝑌 transform to 𝑇124 will result in 

the following: 

 
 

Figure 17. Type C with a Δ − 𝑌 transform applied to 𝑇124. 
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Finally considering that Δ345 = 𝛼 + 𝜂, Δ435 = 𝛾 + 𝜂 and Δ534 = 𝛿, applying another Δ − 𝑌 transform 

to 𝑇345 will result in the following: 

 
 

Figure 18. Type C with a second Δ − 𝑌 transform applied to 𝑇345 and reduced to (𝑏). 

 

4. VOLUMES OF GROMOV METRIC TYPES 

 

One of the ways to study the stability of Δ-equivalence classes under small numerical perturbations on 

components of metric represented as the vector 𝑑 = (𝑑𝑖𝑗), is to consider the relative volume of each 

class inside the metric cone. To estimate these relative sizes of Δ-equivalence classes in an 𝑛-point space, 

we generate random points that lie in the intersection of the metric cone with unit ball in ℝ
𝑛(𝑛−1)

2  and 

then count the occurrence of points in each class. 

We note that the volume of unit ball in  ℝ𝑁 is equal to 𝑉𝑁 =
𝜋

𝑁
2

Γ(
𝑁

2
+1)

, where Γ is the Gamma function. It 

should also be noted that since the rate of growth of Gamma function is greater than the exponentials, 

as the dimension of space increases this volume decreases. It is known that the maximum volume is 

obtained for 𝑁 = 6 and for the values of 𝑁 greater than 6, 𝑉𝑁 starts to decrease. On the other hand by 

keeping in mind that a metric 𝑑 on an 𝑛-point space can be shown by a vector of positive coordinates in 

ℝ𝑁 where 𝑁 =
𝑛(𝑛−1)

2
, we need to work with the intersection of unit ball with the orthant in which all 

the coordinates are positive (the first orthant in higher dimensions). Both of these issues leave us with 

only a few samples to work with. 

 

To deal with the problem of generating a statistically significant number of points in the metric cone in 

ℝ10 (since every metric on a 5-point space can be shown by a vector in ℝ10) on a standard computer, 

we generate 107 random points 𝑃 = (𝑥1, 𝑥2, … , 𝑥10), 0 < 𝑥𝑖 < 1 and accumulate these points from 10 

such runs to get 108 points. Each of these points has 10 positive coordinates that are uniformly 

distributed random numbers in the range (0,1). Then the points that fall inside the unit ball are chosen 

and in the next step by checking which points satisfy the triangle inequalities, we select the points inside 

the metric cone. Finally, for each of these points (metrics) we calculate the Gromov product structure in 

order to determine the metric type. This process is repeated 30 times and some of the results are given 

in Table \ref{table:random} below. The Matlab code for this program is available at 

http://finitemetricspaces.khas.edu.tr/Volume_of_Metric_Cone_n=5.m.  

 
Table 1. Sample results of accumulating 108 points in ℝ10. Each row is a single run of the program and shows how many 

points fall inside the unit ball, metric cone, and each type. 

 
points in unit ball points in metric cone Type A Type B Type C 

274578 705 142 360 203 

273136 735 186 351 198 

273891 716 161 362 193 

273426 733 170 376 187 

272959 721 167 363 191 

http://finitemetricspaces.khas.edu.tr/Volume_of_Metric_Cone_n=5.m
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As shown in Table 1, from 108 points in the cube, around 2.7 × 105 points (0.275%) fall inside the 

unit ball and around 0.25% of these points fall inside the metric cone. To understand why these small 

amounts of points in unit cube of ℝ10 fall inside the unit ball, it should be noted that the volume of unit 

ball 𝑉10 in ℝ10 is equal to 
𝜋5

120
 and we work only with the portion of unit ball intersecting the first orthant. 

This volume is approximately 0.00249 which is 0.24% of the volume of the unit cube. 

 

In order to interpret the data given in Table 1, some clarifications must be made. 5-point metrics inside 

the metric cone in ℝ10, when the Gromov product structure is considered, fall into 102 classes. Under 

permutation of the points of underlying metric space, these 102 classes form 3 families. In a family 

which is the orbit of the Gromov product structure {Δ125, Δ213, Δ324, Δ435, Δ514} under the action of the 

permutation group 𝑆5, there are 12 elements. The metrics that have a Gromov product structure in this 

family are called Type A metrics. Furthermore, the orbit of the Gromov product structure 
{Δ125, Δ213, Δ325, Δ425, Δ514} and {Δ125, Δ213, Δ325, Δ425, Δ513} have 60 and 30 elements respectively 

and the metrics of these families are called Type 𝐵 and Type 𝐶 in this order. 

 

For calculating the type of a metric inside the metric cone to obtain the results given in Table 1, these 

102 classes are taken into consideration. With this view in hand, the volume of Type A, Type B and 

Type C metrics on average are 22.07%, 51.02% and 26.26 % of the metric cone (within a standard 

deviation of 21.1 for points inside the metric cone, 10.83 for Type A metrics, 17.03 for Type B metrics 

and 12.43 for Type C metrics in our runs to obtain the data given in Table 1). If we take the other view, 

without considering the permutations, results of Type A, B and C should be divided by 12, 60 and 30 

respectively to obtain the volume of a single representative of each class. This means that within error 

bounds, the volumes of a single representative of Type A, B and C are respectively 1.84 %, 0.85 % and 

0.87 % of the metric cone. 

 

The results above, give us the following intuitive conclusions: first that the volume of a single 

representative of Type B and Type C metrics are almost equal and Type A is “thicker'” than these two 

types. Second, although a single representative of metric Type A is thicker than other types, these 

representatives are small in number (12 among 102 classes) with respect to Type B (60 among 102) 

and Type C (30 among 102) inside the metric cone. 
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